TWO PATHWAYS OF SHEDDING OF L-SELECTIN
AND CD23 FROM HUMAN B-LYMPHOCYTES

A thesis submitted to fulfil the requirements for the degree of

Master of Science in Medicine

by

Baijun Gu B.Med

Department of Medicine, Nepean Hospital,
Faculty of Medicine,
University of Sydney
March 2000
Table of Contents

Abstract .. 1
Acknowledgements .. 4
Declaration .. 5
Abbreviations .. 6
Publications .. 8

Chapter 1: General Introduction
1.1 ATP ... 9
1.2 Historical Aspects of ATP Receptors ... 10
1.3 Properties of P2X7 Receptor ... 14
1.4 Advantages of Using Cells from Chronic Lymphocytic Leukemia (CLL) Patients to Study B-lymphocytes ... 17
1.5 In Vitro Model For Lymphocyte Transendothelial Migration 18
1.6 L-selectin .. 22
1.7 CD23 ... 28

Chapter 2: Materials and Methods
2.1 Materials .. 32
2.2 Solutions ... 33
2.3 Preparation Of HUVEC Culture Flasks And Plates ... 36
2.4 Isolation of Human Umbilical Vein Endothelial Cells (HUVEC) 36
2.5 Subculture HUVEC .. 37
2.6 Cell Preparation ... 37
2.7 Lymphocyte Transmigration Assay By Phase Contrast Microscopy 38
2.8 Lymphocyte Transmigration Assay by Transmission Electron Microscopy 38
2.9 Monitoring L-selectin Expression .. 39
2.10 L-selectin and CD23 Shedding Induced by ATP, BzATP or PMA 40
2.11 Measurement of soluble L-selectin using ELISA ... 40
2.12 Correlation between L-selectin MESF and Molecules per Lymphocyte ... 41
2.13 Measurement of L-selectin and CD23 Changes during Transmigration .. 42
2.14 Ethidium\(^+\) Influx Measurement by Time Resolved Flow Cytometry .. 43
2.15 Prepare Cell Lysates .. 43
2.16 Western Blot for L-Selectin and CD23 .. 44
2.17 Statistics .. 44

Chapter 3: ATP-induced Shedding of CD23 and L-selectin (CD62L) from Lymphocytes Is Mediated by The Same Receptor but Different Metalloproteases

3.1 Introduction ... 45
3.2 Methods and Results .. 46
3.2.1 Extracellular ATP causes loss of CD23 Discussion 46
3.2.2 ATP releases soluble CD23 and L-selectin 48
3.2.3 Agonist dose-response for CD23 shedding 49
3.2.4 CD23 shedding is mediated via P2X\(_7\) receptors 51
3.2.5 PMA induce shedding of L-selectin but not CD23 53
3.2.6 The shedding of CD23 and L-selectin is inhibited by Ro 31-9790 .. 53
3.2.7 CD23 shedding is inhibited by extracellular Ca\(^{2+}\) 54
3.3 Discussion ... 56

Chapter 4: Downregulation of L-selectin and CD23 on Lymphocyte Transendothelial Migration

4.1 Introduction .. 60
4.2 Methods and Results .. 61
4.2.1 Time and Concentration Dependence of Transmigration 61
4.2.2 Index of Transmigration Is Increased on Activated HUVECs 65
4.2.3 Comparison of L-selectin expression on normal and leukaemic lymphocytes ... 66
4.2.4 Impaired transendothelial migration on leukaemic lymphocytes . 67
4.2.5 Correlation Between L-selectin Expression and Transmigration
Lymphocytes from patients with B-chronic lymphocytic leukemia (B-CLL) express large numbers of P2X7 receptors for extracellular adenosine triphosphate (ATP). Activation of P2X7 receptors induces multiple downstream effects, of which the best documented is the opening of an ionic channel that is selective for divalent cations. Another effect of ATP is to induce the shedding of L-selectin (CD62L), a molecule which is involved in the adhesive interactions of lymphocytes on endothelial cells. High levels of soluble L-selectin and CD23 are found in the serum of patients with B-CLL, although the mechanisms involved in their production are poorly characterized. Because extracellular ATP causes shedding of L-selectin, we studied the effect of ATP on shedding of CD23, an adhesion molecule expressed on the surface of B-CLL lymphocytes. ATP induced the shedding of CD23 at an initial rate of 12% of that for L-selectin, while the EC50 of ATP (35 µM) and BzATP (10 µM) was identical for shedding of both molecules. Inactivation of the P2X7 receptor by pre-incubation with OxATP, an irreversible inhibitor of P2X7 purinoceptor, abolished ATP-induced shedding of both molecules. Moreover, KN-62, the most potent inhibitor for the P2X7 receptor inhibited ATP-induced shedding of both CD23 and L-selectin with the same IC50 (12 nM). Ro 31-9790, a membrane permeant zinc chelator which inhibits the phorbol-ester stimulated shedding of L-selectin also inhibited shedding of CD23 from B-CLL lymphocytes, but the IC50 was different for the two shed molecules (25 versus 1 µg/ml respectively). Although L-selectin was completely shed by incubation of cells with phorbol-ester no
CD23 was lost under these conditions. Also, Ca\(^{2+}\) inhibits ATP-induced CD23 shedding but not L-selectin shedding.

Since soluble CD23 and L-selectin are found in the serum of normal subjects and B-CLL patients, the expression of these two adhesion molecules on lymphocytes before and after transendothelial migration was studied in an *in vitro* model of this process. In normal and B-CLL subjects, 71±5\% of L-selectin from both T and B cells and 90\% of CD23 from B cells was lost following transmigration, while the expression of a range of other adhesion molecules such as VLA-4, ICAM-1, LFA-1 and CD44 was unchanged. Lymphocytes incubated with OxATP retained their capacity for transendothelial migration and showed the same loss of L-selectin as control leukaemic lymphocytes. Ro 31-9790, which can protect ATP-induced both L-selectin and CD23 shedding, had no effect on inhibiting L-selectin and CD23 lost during transmigration. These data show the presence of a second pathway for the downregulation of L-selectin and CD23 from the lymphocyte surface.

Data *in vivo* from 'knock-out' mice show that L-selectin is essential for the emigration of lymphocytes through high endothelial venules into lymph nodes. The migration of normal and B-CLL lymphocytes across confluent human umbilical vein endothelial monolayers was studied in an *in vitro* model of this process. Lymphocytes treated with ATP or BzATP showed 56±25\% or 67±16\% loss of L-selectin on the surface and 36±24\% or 64±19\% decrease of transmigration, respectively, while OxATP, which does not alter the L-selectin level, had no effect on lymphocyte transmigration. Further experiments examined this correlation between L-selectin expression and lymphocyte
transendothelial migration in this model system. A quantitative assay for cell surface L-selectin showed that expression of L-selectin was lower on B-CLL lymphocytes (8,880±5,700 molecules/cell) than on normal lymphocytes (29,500±7,500 molecules/cell, p<0.001). Also the rate of transmigration of B-CLL lymphocytes (1.5±0.9 migrated cells/HUVEC) was lower than normal peripheral lymphocytes (2.4±0.9 migrated cells/HUVEC, p=0.04). Incubation of lymphocytes in complete medium for 24 hrs increased the expression of L-selectin on B-CLL lymphocytes by 1.5 to 2 fold while the normal lymphocyte L-selectin remained at the initial level. This upregulation of B-CLL L-selectin correlated with a 2 fold increased rate of transendothelial migration. A correlation was found between L-selectin expression on lymphocytes and their ability for transendothelial migration (r²=0.6).

This study shows that the adhesion molecules L-selectin and CD23 can be lost from lymphocytes by two different physiological pathways. One is by P2X7 receptor activation by extracellular ATP while the second is activated by transendothelial migration of these cells. A second finding is that B-CLL lymphocytes have lower level of L-selectin expression and an impaired ability for transendothelial migration compared with normal peripheral blood lymphocytes. Do these results explain the high serum levels of soluble L-selectin and CD23 observed in B-CLL? Although B-CLL lymphocytes do not recirculate as rapidly as normal peripheral blood lymphocytes, the greatly increased number of leukaemic cells in B-CLL ensures that much more soluble L-selectin and CD23 is generated during the recirculation of these cells through the body.
ACKNOWLEDGMENTS

This work was supported by grants from the National Health and Medical Research Council (NHMRC) of Australia and the New South Wales Cancer Council, Australia.

I wish to sincerely thank my supervisor Prof. James S. Wiley, Professor of Haematology, Department of Medicine, Nepean Hospital, University of Sydney, for his support and guidance both before and during my master candidature. His never-failing sense of enthusiasm has been a continuing source of inspiration.

I wish to thank my co-supervisor Dr. Linda J. Bendall, Research Officer, Leukemia Research Unit, Institute of Clinical Pathology and Medical Research, University of Sydney, for her intellectual and technical support.

I also thank my former colleague Dr. Joan R. Chen, Department of Haematology, Austin Hospital, Victoria, for her intellectual and technical contributions, and many useful suggestions on transmigration study.

I would like to thank my colleague Mrs. Phuong Dao-Ung for her help on leukemia immunophenotyping and transmigration study.

Much gratitude also goes to the many other members of Haematology Research Group, Austin Hospital, Nepean Hospital, and Westmead Hospital, who provided their technical expertise and knowledge, in particular: Dr. Gary Jamieson, Mrs. Mary Snook and Ms. Monique Spencer for the correlation of L-selectin MESF with molecules per cell; Dr. Christopher J. Bradley for the electron-microscope photos of transmigration; Dr. Stephen P. Mulligan for organising the source of subjects for study; Mrs. Mary Sartor for technical support on flow cytometry and kind contribution of monoclonal antibodies.
DECLARATION

The work described in this thesis was carried out on a full-time basis by the candidate under the supervision of Prof. James S. Wiley and Dr. Linda J. Bendall in the University of Sydney, Department of Medicine, Nepean Hospital, New South Wales. The studies described in this thesis have not previously been submitted for a degree at this or any other university. The experiments undertaken are my own original work except where due acknowledgement has been made.

Baijun Gu
ABBREVIATIONS

The abbreviations listed below are frequently used in the thesis.

µM 10^{-6} M
ATP adenosine 5'-triphosphate
BAPTA-AM 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester)
BSA bovine serum albumin
BzATP 3'-O-(4-benzoyl)benzoyl-adenosine 5'-triphosphate
CLL chronic lymphocytic leukemia
dATP 3'-deoxy adenosine 5'-triphosphate
EC50 concentration of a drug that produce 50% of the maximum response
ECGS endothelial-cell growth supplement
ECL enhanced chemiluminescence
EDTA ethylenediaminetetraacetic acid
EGTA ethylene glycol-bis (β-aminoethyl ether) N,N,N',N'-tetraacetic acid
ELISA enzyme-linked immunosorbent assay
Fig figure
FITC fluorescein isothiocyanate
Fura-2 AM Fura-2 acetoxymethyl ester
HBSS Hanks balanced salt solution
HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid
HEV high endothelial cells present in postcapillary venules
HMA 5-(N,N-hexamethylene)-amiloride
HRP horseradish peroxidase
HUVEC human umbilical vein endothelial cell
IFN-γ Interferon-γ
KN-62 1-[N,O-bis(5-isoquinoline sulfonyl)N-methyl-L-tyrosyl]-4-phenylpiperazine
2-MeSATP 2-methylthio- adenosine 5'-triphosphate
α,β-meATP α,β-methylene adenosine 5'-triphosphate
MESF molecules of equivalent soluble fluorescein
mM 10^{-3} M
MoAb monoclonal antibody
nM 10^{-9} M
OxATP adenosine 5'-triphosphate-2',3'-dialdehyde
PAGE polyacrylamide gel electrophoresis
PBS phosphate buffered saline
PLD phospholipase D
PMA phorbol 12-myristate 13-acetate
PTX pertussis toxin
Ro 31-9790 N-2-((2s)-[(hydroxycarbamoyl)4-methylvaleryl]-N-1,3-dimethyl-L-valinamide
R.T. room temperature
SDS sodium dodecyl sulfate
TMA trimethylammonium chloride
TNF-α Tumour Necrosis Factor-α
PUBLICATIONS

(arising from work in this thesis)

