SOME NEW EVIDENCE ON THE TIMING OF CONSUMPTION DECISIONS AND ON THEIR GENERATING PROCESS

By Luigi Ermini

No. 105

March, 1988

DEPARTMENT OF ECONOMICS

The University of Sydney
Australia 2006
SOME NEW EVIDENCE ON THE TIMING OF CONSUMPTION
DECISIONS AND ON THEIR GENERATING PROCESS

By Luigi Ermini

No. 105 March, 1998

Abstract

While quarterly consumption data are known to be well fitted by an integrated
first-order moving average process, $IMA(1,1)$, with a positive coefficient, it is found
that monthly consumption data are well fitted by the same type of process, but
with a negative coefficient. This sign reversal has three main implications. First, if
the random walk hypothesis of consumption behavior is true, then the agents' deci-
sion interval must be greater than a month. In particular, this evidence rejects the
possibility of continuously taken decisions of Hall's type. Second, quarterly data
can be indistinguishably generated by temporal aggregation of either a random
walk or an $IMA(1,1)$ process with negative coefficient. Third, if consumption deci-
sions are generated as an $IMA(1,1)$ process at intervals shorter than a month, then
the coefficient must be negative. The theoretical effects of temporal aggregation on
$IMA(1,1)$ processes are also investigated, and some implications for empirical infer-
ence discussed.
Some new evidence on the timing of consumption decisions and on their generating process (*)

1. Introduction

Working [1960] showed that a random walk process under temporal aggregation (TA) becomes a first-order moving average process in the first differences, IMA(1,1), with a positive coefficient whose magnitude depends on the interval of aggregation. The fact that quarterly U.S. data on consumption of non-durable goods and services are satisfactorily fitted, at least in a univariate framework, by an IMA(1,1) model with positive coefficient has led some authors to conjecture that consumption decisions may indeed be generated by the agents as a random walk, in line with the well known Hall [1978] model, but at a time interval smaller than a quarter; hence the observed quarterly data would be necessarily affected by the TA effect. Christiano et al. [1987], by adopting a continuous-time approach, determined that quarterly consumption data are consistent with the temporal aggregation of Hall-type decisions taken continuously. Ermini [1987], arguing that the "true" consumption decision interval is more plausibly in the vicinity of a month because of certain relationships between the timing of consumption decisions and income receipts, concluded that all reported tests on Hall theory of consumption behavior conducted with quarterly data are likely to be biased towards rejection, and showed that the bias reduces considerably if the null hypothesis is based on the IMA(1,1) representation and not on the random walk. In both investigations the estimated coefficient of the IMA(1,1) model fitted to quarterly consumption data was consistent with the theoretical value predicted by Working.

This paper presents some new empirical evidence indicating that, if the random walk model of consumption is true, then the true consumption decision interval must be strictly greater than a month. As described in Section 2, in fact, it is found that when fitting an IMA(1,1) model to monthly data of consumption of non-durables and services, the coefficient of the first-order moving average is significantly negative. Since a random walk process cannot turn under TA into an IMA(1,1) with a negative coefficient, one implication of this finding is the strong rejection of the continuous-time approach of

(*) I thank Clive J.W. Granger for helpful comments and Mark Kamstra for assistance in computations.
Christiano et al [1987]: if the agents truly make Hall-type decisions continuously, then monthly data should fit an IMA(1,1) model with a positive coefficient as well.

Another implication is the following. Based on the theoretical effects of TA on IMA(1,1) processes presented in the Appendix, it is shown in Section 3 that a monthly IMA(1,1) with negative coefficient can turn under TA into a quarterly IMA(1,1) with positive coefficient. Particularly, it is shown that in some cases an IMA(1,1) with negative coefficient can be transformed into an IMA(1,1) with a positive coefficient consistent with the value that would be obtained, through Working's derivation, from aggregating a random walk. This fact indicates that the same observed quarterly series can be indistinguishably generated from the temporal aggregation of either a random walk model of consumption or an IMA(1,1) model of consumption. This result clearly weakens any empirical inference about the validity of Hall model in the case where the null hypothesis of a IMA(1,1) model is not rejected, as in Christiano et al [1987], against an alternative model.

In Section 3 it is also shown that there exists a specific interval of aggregation that can turn an IMA(1,1) with negative coefficient into a random walk; particularly, for the observed monthly IMA(1,1) this interval of aggregation is two months. This result raises some important questions for economic theory. On the one hand, if Hall model is true, the evidence presented here would indicate that consumers make their decisions at intervals close to two months. In this case the problem is to interpret the observed monthly IMA(1,1). Current life-cycle economic models do not provide insights on how agents behave between consumption decision times. Some results in this direction can be found in Ermini [1987b]. On the other hand, if agents truly make consumption decisions at intervals shorter than two months, then the problem is to suitably modify Hall model so to explain the generation of an IMA(1,1) with a negative coefficient. Life-cycle models of consumption behavior that generate IMA(1,1) processes have been proposed, among others, in Ermini [1987b] and Zin [1987]. However, the conditions under which the coefficient of the moving average component is negative are not clear. Moreover, it is worth mentioning the result in Backus et al [1988] that a positive risk-premium of equities over riskless assets apparently implies a consumption function following an IMA(1,1) process with positive coefficient.
2. The empirical results

Let \(C_t \) be a flow variable generated at every \(\Delta t_d \) (the decision interval) according to a random walk process, that is \(\Delta C_t = \epsilon_t \), with \(\epsilon_t \) a zero-mean white noise process of variance \(\sigma^2 \epsilon \). Let \(\bar{C}_t \) the (non-overlapping) temporally aggregated version of \(C_t \), that is, for all integers \(t \):

\[
\bar{C}_t = \sum_{j=0}^{m-1} C_{mt-j},
\]

with \(m \Delta t_d \) the interval of aggregation and \(m \) the sampling ratio. It is shown in Working [1960]\(^1\) that \(\Delta \bar{C}_t \) is a first-order moving average MA(1), with variance \(R_m(0) \), first-lag autocovariance \(R_m(1) \) and first-lag autocorrelation \(\rho_m \) given by:

\[
R_m(0) = \frac{m(2m^2+1)}{3} \sigma^2 \epsilon, \tag{2}
\]

\[
R_m(1) = \frac{m(m^2-1)}{6} \sigma^2 \epsilon, \tag{3}
\]

\[
\rho_m = \frac{R_m(1)}{R_m(0)} = \frac{m^2-1}{2(2m^2+1)}. \tag{4}
\]

For \(m = \infty \) (equivalent to \(C_t \) being generated in continuous time and to \(\bar{C}_t \) being observed at any discrete interval), \(\rho_m = 0.25 \). Further, for all \(m > 1 \) \(\rho_m \) is strictly positive, which implies that the first-order coefficient of the moving average \(\Delta \bar{C}_t = \epsilon_t + h \epsilon_{t-1} \) is also positive, since \(\rho_m = h/(1+h^2) \).

Fig. 1 reports the autocorrelogram of the first differences of US quarterly consumption of services and non-durable goods (per capita, seasonally adjusted, constant 1982 dollars, from 1947-I to 1985-IV\(^2\)). For consistency of notation, this series will be denoted as \(\bar{C}_t \). The probability value of the first 18 lags to be white noise is 3.7%. By fitting an IMA(1,1) to the data, we get (t-statistics in parenthesis):

\[
\Delta \bar{C}_t = 0.06 + \epsilon_t + 0.211 \epsilon_{t-1}, \tag{5}
\]

from which the estimated \(\rho_m = 0.202 \). The 95% confidence interval for the true \(\rho_m \) is (0.042, 0.362), so

\(^1\) Working's paper concerns averages of stock variables (specifically, prices); that is, in our notation, \(\bar{C}_t = (1/m) \sum C_{mt-j} \). To account for this difference, the expressions (3) and (3) have been suitably modified from the corresponding ones of the original paper.

\(^2\) Source: Citibank database 1986. The series was obtained (in Citibank notation) as \((GCN82 + GCS82)/(GYDPC10)/(GYD82) \).
that from (4) all values of \(m \) greater than one (including \(m = \infty \)) are consistent with the data. Further, the probability value of the first 18 autocorrelation lags of the residuals \(e_t \) to be white noise rises to 10.5%. Thus, (5) is a "good" model for quarterly consumption, at least in a univariate framework\(^3\). In fact, from the apparent significance in Fig. 1 of at least the third-lag autocorrelation, higher order moving average terms should also be included. Fitting an IMA(1,3) to the data, we get for the first, second and third coefficient (t-statistics in parenthesis): 0.168 (2.14), 0.105 (1.32), 0.243 (3.08). (Fitting an IMA(1,6) confirms that the only significant coefficients are the first and the third.) The probability value of the first 18 autocorrelation lags of the residuals to be white noise rises to 36.3%. However, with a log-likelihood ratio LR = 5.99 and a value of the central \(\chi^2 \) distribution with 2 d.f. of 5.99 at 5%, the null IMA(1,1) is not rejected against the alternative IMA(1,3). The IMA(1,1) is also not rejected against more complex univariate ARIMA models, even without penalizing the latter ones for their number of parameters. For example, against an ARIMA(3,1,3) the log-likelihood ratio LR = 11.32 and the value of the central \(\chi^2 \) distribution with 5 d.f. is 11.07 at the 5% and 12.83 at the 2.5% levels of significance.

Fig. 2 reports the autocorrelogram of the first differences of US monthly consumption of services and non durable goods (per capita, seasonally adjusted, constant 1982 dollars, from 1959 to 1985\(^4\)). Not only do we observe a sign reversal of the first-lag autocorrelation, but also a marked insignificance of any other lag (some residuals of seasonality appear at lags 12 and 24). The probability value of the first 18 lags to be white noise is 0.5%. By fitting an IMA(1,1) to the data, we get:

\[
\Delta \tilde{C}_t = -0.045 + e_t - 0.221 e_{t-1}.
\]

\(^6\)

The corresponding estimated \(\rho_m = -0.211 \) and the 95% confidence interval for the true \(\rho_m \) is (-0.321, -0.101). Fitting, in analogy to the quarterly case, the IMA(1,3) to the data, we get: -0.234 (-4.17), 0.059 (1.02), 0.036 (0.65); further, the log-likelihood is practically zero. This confirms that monthly data in the first differences exhibit a marked first-order moving average component with a negative coefficient.

\(^3\) This model is dominated by bivariate consumption-income representations. In particular, it is rejected against the error-correction model that corresponds to being quarterly income and consumption co-integrated. However, the focus of the paper is not on deriving the best specification for quarterly consumption data, but on evidencing the presence of a significant positive first-lag autocorrelation of its first differences.

\(^4\) Same source of quarterly data. This series was obtained as (GMCN82 + GMCS82)x(GMYDPS3)(GMYD82).
Thus, the shift from quarterly to monthly data reverses the sign of the MA coefficient, or equivalently of the first-lag autocorrelation of consumption in the first differences.

To check the robustness of this sign reversal, the monthly sample was split in three subsamples of equal length, and an \text{IMA}(1,3) fitted to each. In all three cases the first-order coefficient only was significant and significantly negative, thus suggesting that this sign reversal phenomenon indeed reflects a consistent property of monthly consumption data. As a further check, the monthly data were temporally aggregated with \(m = 2, 3, 4 \), again obtaining a sign reversal.

Finally, the monthly series was subject to the Dickey-Fuller test for unit root and to the test for cointegration with monthly income, obtaining equivalent results to those already known for quarterly data (for instance, as in Engle and Granger [1987]).

3. Temporal aggregation of an \text{IMA}(1,1) process

In the Appendix the effects of the temporal aggregation (1) on \text{IMA}(1,1) processes are investigated. The main results from the Appendix are:

1. \textit{Effect of TA on the process order}: if \(C_t \) is \text{IMA}(1,1) then also \(\Delta C_t \) is \text{IMA}(1,1) for all \(m > 1 \).

Let \(\rho_1 \) be the first-lag autocorrelation of \(\Delta C_t \), and recall that \(\rho_m \) is the first-lag autocorrelation of \(\Delta C_t \). Then:

2. \textit{Effect of TA on the first-lag autocorrelation}:

\[
\rho_m = \frac{(m^2-1) + 2(m^2+2) \rho_1}{2(2m^2+1) + 8(m^4-1) \rho_1} \quad (7)
\]

for all \(m > 1 \). For \(b = 0 \) (and hence \(\rho_1 = 0 \)), (7) reduces to (4), the case of temporal aggregation of random walk processes. Some implications of these expressions are:

(i) \(\lim_{m \to \infty} \rho_m = 0.25 \) for all values of \(\rho_1 \).

This is the same limit established by Working [1960] for the random walk process. This result shows, for example, that quarterly data can be consistent with a continuous-time \text{IMA}(1,1) process as well.
(ii) $\max_{m, \rho_1} \rho_m = 0.25$.
for all values of $m > 1$ and all values of ρ_1 in the admitted interval $(-0.5, 0.5)$. Therefore, if the first-lag
autocorrelation of an IMA(1,1) process is greater than 0.25, this process cannot be produced by temporal
aggregation of another IMA(1,1) process.

(iii) $\rho_1 > 0 \Rightarrow \rho_m > 0$.

This shows that monthly data cannot be the result of temporal aggregation of an IMA(1,1) process with
positive coefficient. Thus, if consumption decisions are truly taken at intervals shorter than a month,
they cannot follow an IMA(1,1) process with positive coefficient.

(iv) $\rho_1 = \frac{1-m^2}{2(m^2+2)} \Leftrightarrow \rho_m = 0$.

This shows that there exist IMA(1,1) processes with negative ρ_1 that at a specific sampling ratio are
aggregated into a random walk. For example, the IMA(1,1) with $\rho_1 = -0.25$, which is consistent with the
monthly data, turns into a random walk with $m=2$. This shows that, had consumption data been available
bimonthly and had it appeared as generated by a random walk, it would be impossible to infer whether
agents make decisions bimonthly and thus follow Hall model, or make decisions more frequently, in
which case they must follow an IMA(1,1) with negative coefficient.

(v) there exist some $m > 1$ such that $\rho_1 < 0 \Rightarrow \rho_m > 0$.

In other words, the observed sign reversal phenomenon between monthly and quarterly data is consistent
with the theory. In particular, with $m = 3$, $\rho_m = \frac{(4+11\rho_1)/(19+32\rho_1)}{\rho_1}$ so that the 95% confidence interval
for the true ρ_1, $(-0.321, -0.101)$, reported in Section 2 for monthly data, produces a theoretical 95%
confidence interval for the true ρ_2, $(0.054, 0.183)$, which is a subset of, and hence is consistent with, the
empirical 95% confidence interval reported in Section 2 for quarterly data.

(vi) there exist a sampling ration m greater than one but less than infinite such that
$\rho_1 < 0 \Rightarrow \rho_m < 0$.

That is, the monthly IMA(1,1) with negative coefficient can be the result of temporally aggregated con-
sumption truly generated by an IMA(1,1) with negative coefficient.
4. Conclusions

The analysis of monthly and quarterly consumption data reveals a phenomenon of sign reversal of the first-lag autocorrelation of consumption in the first differences: positive for quarterly data and negative for monthly data. This sign reversal has three main implications. First, if the random walk hypothesis of consumption behavior is true, then the agents’ decision interval must be greater than a month. In particular, this results rejects the possibility of continuously made decisions of Hall type. Second, quarterly data can be indistinguishably generated by temporal aggregation of either a random walk or an IMA(1,1) with negative coefficient. Third, if consumption decisions are generated as an IMA(1,1) process at intervals shorter than a month, then the coefficient must be negative.

These implications raise some questions about the possibility of even finding the "true" model that generates consumption behavior. It seems, in fact, that different pairs (model, decision interval) are consistent, under suitable temporal aggregation, with both monthly and quarterly data. Some light on this problem may be shed by research efforts aimed at determining theoretical reasons for the negative coefficient of the monthly IMA(1,1).

Appendix: The effect of temporal aggregation on IMA(1,1) processes.

Let C_t follow the IMA(1,1) process

$$(1-B)C_t = \varepsilon_t + b \varepsilon_{t-1}$$

with B the backward operator (e.g., $BC_t = C_{t-1}$) and ε_t a zero-mean white noise process of variance $\sigma^2_{\varepsilon_t}$.

Let

$$\overline{C}_t = \sum_{j=0}^{m-1} C_{m-j} = T(B) C_m$$

where $T(B) = \sum_{j=0}^{m-1} B^j$ is the temporal aggregation operator. Then:

$$\Delta \overline{C}_t = \overline{C}_t - \overline{C}_{t-1} = T(B) (C_m - C_{m-1}) = T(B)(1-B^m) C_m.$$

Multiplying and dividing by $(1-B)$, and considering that $(1-B^m)/(1-B) = T(B)$,
\[\Delta \tilde{C}_t = |T(B)|^2 (1-B) C_{out} = |T(B)|^2 (1+bB) \varepsilon_{out}. \] (4)

For simplicity of notation, let \(\Delta \tilde{C}_t = \eta_t \) and \(u_t = (1+bB) \varepsilon_t \). Then (4) becomes:

\[\eta_t = |T(B)|^2 u_{out}. \] (5)

The autocovariances \(R_u(t) \) of \(u_t \) are:

\[R_u(0) = (1 + b^2) \sigma^2 \varepsilon \] (6)
\[R_u(1) = R_u(-1) = b \sigma^2 \varepsilon \]
\[R_u(\tau) = R_u(-\tau) = 0 \text{ for all } \tau > 1, \]

and the autocovariances of \(\eta_t \) from (5) are:

\[R_{\eta}(t) = (|T(B)|^2)^2 R_u(m \tau), \] (7)

where

\[
(1T(B)|^2)^2 = \sigma^2 + 2m \sum_{j=1}^{m-1} (m-j)[B^j + B^{j-1}] + \\
\sum_{j=1}^{m-1} \sum_{i=0}^{m} (m-j)(m-i)[B^{j+i} + B^{j-i} + B^{j-i} + B^{j-i}].
\] (8)

Thus:

(i) variance:

\[R_{\eta}(0) = (1T(B)|^2)^2 R_u(0) = \]
\[= \sigma^2 + 2m \sum_{j=1}^{m-1} (m-j)[R_u(j) + R_u(-j)] + \\
\sum_{j=1}^{m-1} \sum_{i=0}^{m} (m-j)(m-i)[R_u(j+i) + R_u(-j-i) + R_u(j-i) + R_u(i-j)].
\]

From (6) the second summation is equal to \(2(m-1)R_u(1) \). With regard to the third RHS term, the double summation of both \(R_u(j+i) \) and \(R_u(-j-i) \) is zero; the double summation of both \(R_u(j-i) \) and \(R_u(i-j) \) is equal to

\[\sum_{j=1}^{m-1} (m-j)^2 R_u(0) + \sum_{j=2}^{m-1} (m-j)(m-j+1) R_u(1) + \sum_{j=2}^{m-2} (m-j)(m-j-1) R_u(-1). \]

Since the second and third terms of this expression are equal, the third RHS term of the variance becomes for \(m > 2 \):
\[2 \sum_{j=1}^{m-1} (m-j)^2 R_u(0) + 4 \sum_{j=2}^{m-1} (m-j)(m-j+1) R_u(1) \]

and for \(m = 2 \) it simply equals \(2 \sum_{j=1}^{m-1} (m-j)^2 R_u(0) \). Hence, collecting terms:

\[R_m(0) = R_u(0) \frac{2m^3 + m}{3} + R_u(1) \frac{4(m^3 - m)}{3} \quad \text{for } m > 2 \]

\[R_2(0) = R_u(0) \frac{2m^3 + m}{3} + R_u(1) 4m(m-1) \]

Letting \(\rho_1 = R_u(1)/R_u(0) \) be the first-lag autocorrelation of the first differences of the original series \(C_t \), and recalling (6), we get:

\[R_m(0) = (1 + b^2) \sigma^2 \left[\frac{m(2m^2 + 1)}{3} + \frac{4m(m^2 - 1)}{3} \rho_1 \right] \quad \text{for } m > 2 \]

\[R_2(0) = (1 + b^2) \sigma^2 \left[\frac{m(2m^2 + 1)}{3} + 4m(m-1) \rho_1 \right]. \]

For \(b = 0 \) (and hence \(\rho_1 = 0 \)), (9) and (10) reduce to (2) of Section 1, the case of temporal aggregation of a random walk.

(ii) first-lag autocovariance:

\[R_m(1) = (1T(B)^2) R_u(m) = \]

\[= m^2 R_u(m) + 2m \sum_{j=1}^{m-1} (m-j)(R_u(m+j) + R_u(m-j)) + \]

\[+ \sum_{j=1}^{m-1} \sum_{i=1}^{m-1} (m-j)(m-i)(R_u(m+j+i) + R_u(m-j-i) + R_u(m+j-i) + R_u(m-j+i)) \]

From (6), the first RHS term is zero; in the second RHS term the summation of \(R_u(m+j) \) is zero and the summation of \(R_u(m-j) \) is equal to \(R_u(1) \). In the third RHS term the double summation of \(R_u(m+j+i) \), \(R_u(m+j-i) \) and \(R_u(m-j+i) \) is zero, while the double summation of \(R_u(m-j-i) \) is:

\[\sum_{j=1}^{m-1} (m-j) R_u(0) + \sum_{j=1}^{m-2} (m-j)(j+1) R_u(1) + \sum_{j=2}^{m-1} (m-j)(j-1) R_u(-1). \]

For \(m = 2 \) only the first term of this expression is different from zero. Since \(\sum_{j=2}^{m-2} (m-j)(j+1) = \)

\[m-1 \sum_{j=2}^{m-1} (m-j+1) j \text{, rearranging terms, and using (6) and the definition of } \rho_1, \text{ we obtain:} \]

\[R_m(1) = (1 + b^2) \sigma^2 \left[\frac{m(m^2 - 1)}{6} + \frac{m(m^2 + 2)}{3} \rho_1 \right] \quad \text{for } m > 2 \]

\[R_2(1) = (1 + b^2) \sigma^2 \left[\frac{m(m^2 - 1)}{6} + \frac{m(m^2 + 2)}{3} \rho_1 \right]. \]
\[R_x(1) = (1 + b^2) \sigma^2 \left(\frac{m(m^2-1)}{6} + 2m \rho_1 \right) \quad (12) \]

For \(b=0 \), (11) and (12) reduce to (3) of Section 1. Finally, let \(\rho_m = R_m(1)/R_m(0) \) be the first-lag autocorrelation of the first differences of the temporally aggregated series \(\bar{c}_t \). Then:

\[
\rho_m = \frac{(m^2-1) + 2(m^2+2) \rho_1}{2(2m^2+1) + 8(m^2-1) \rho_1} \quad \text{for } m > 2 \quad (13)
\]

\[
\rho_2 = \frac{(m^2-1) + 12 \rho_1}{2(2m^2+1) + 24(m-1) \rho_1} = \frac{1 + 4 \rho_1}{6 + 8 \rho_1} \quad (14)
\]

Note that the value \(\rho_2 = (1+4\rho_1)/(6+8\rho_1) \) in (14) can also be obtained directly from (13) with \(m = 2 \).

Finally, with regard to the effect of temporal aggregation on the model order, the proposition that an IMA(1,1) under TA remains IMA(1,1) for all \(m \) greater than one can be easily verified from \(R_m(\tau) = 0 \) for all lags \(\tau > 1 \). This result is equivalently obtained from the formula reported, for example, in Weiss [1984].

References

Ermini L., 1987b, Excessive sensitivity of consumption and postponed revision of the optimal plans, under revision for *Journal of Macroeconomics*.

Zin S.E., 1987, Aggregate consumption behavior in a life cycle model with non-additive recursive utility, working paper, Dept. of Economics, Queen's University.

Figure 1. Autocorrelogram of first differences of quarterly consumption

LAG	COVARIANCE	CORRELATION	-1	9	8	7	6	5	4	3	2	1	0	1	2	3	4	5	6	7	8	9	1	
0	1208.81	1.00000																						
1	263.58	0.21805																						
2	122.537	0.10137																						
3	281.008	0.23247																						
4	102.692	0.08495																						
5	-145.73	-0.12055																						
6	29.2349	0.02418																						
7	97.9367	0.08102																						
8	-157.39	-0.13020																						
9	-6.0069	-0.00497																						
10	-17.235	-0.01426																						
11	0.66905	0.00055																						
12	45.2551	0.03744																						
13	-96.109	-0.07951																						
14	-26.943	-0.02229																						
15	26.6412	0.02204																						
16	-44.137	-0.03651																						
17	90.1093	0.07454																						
18	129.381	0.10703																						
19	-82.282	-0.06807																						
20	166.69	0.13789																						
21	61.1987	0.05063																						
22	70.1732	0.05805																						
23	-79.492	-0.06576																						
24	98.5961	0.08156																						

'.' marks two standard errors
Figure 2. – Autocorrelogram of first differences of monthly consumption

<table>
<thead>
<tr>
<th>LAG</th>
<th>COVARIANCE</th>
<th>CORRELATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>870.568</td>
<td>1.00000</td>
</tr>
<tr>
<td>1</td>
<td>-201.63</td>
<td>-0.23161</td>
</tr>
<tr>
<td>2</td>
<td>34.0358</td>
<td>0.03910</td>
</tr>
<tr>
<td>3</td>
<td>57.9028</td>
<td>0.06651</td>
</tr>
<tr>
<td>4</td>
<td>-58.763</td>
<td>-0.06750</td>
</tr>
<tr>
<td>5</td>
<td>37.6007</td>
<td>0.04319</td>
</tr>
<tr>
<td>6</td>
<td>8.58664</td>
<td>0.00986</td>
</tr>
<tr>
<td>7</td>
<td>19.1208</td>
<td>0.02196</td>
</tr>
<tr>
<td>8</td>
<td>59.8783</td>
<td>0.06878</td>
</tr>
<tr>
<td>9</td>
<td>-14.648</td>
<td>-0.01683</td>
</tr>
<tr>
<td>10</td>
<td>68.9066</td>
<td>0.07915</td>
</tr>
<tr>
<td>11</td>
<td>93.2503</td>
<td>0.10711</td>
</tr>
<tr>
<td>12</td>
<td>-34.929</td>
<td>-0.04012</td>
</tr>
<tr>
<td>13</td>
<td>13.4403</td>
<td>0.01544</td>
</tr>
<tr>
<td>14</td>
<td>-55.593</td>
<td>-0.06386</td>
</tr>
<tr>
<td>15</td>
<td>-31.203</td>
<td>-0.03584</td>
</tr>
<tr>
<td>16</td>
<td>-13.672</td>
<td>-0.01571</td>
</tr>
<tr>
<td>17</td>
<td>-90.591</td>
<td>-0.10406</td>
</tr>
<tr>
<td>18</td>
<td>62.1711</td>
<td>0.07141</td>
</tr>
<tr>
<td>19</td>
<td>-4.425</td>
<td>-0.00508</td>
</tr>
<tr>
<td>20</td>
<td>78.6705</td>
<td>0.09037</td>
</tr>
<tr>
<td>21</td>
<td>-13.03</td>
<td>-0.01497</td>
</tr>
<tr>
<td>22</td>
<td>-50.98</td>
<td>-0.05856</td>
</tr>
<tr>
<td>23</td>
<td>43.5516</td>
<td>0.05003</td>
</tr>
<tr>
<td>24</td>
<td>-188.12</td>
<td>-0.21609</td>
</tr>
</tbody>
</table>

| | -1 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 |
| | * | * |

'.' marks two standard errors
Regulation, Risk and the Pricing of Australian Bank Shares 1957-76; April 1979

Quicksteps of Policy-Making; March 1979

Taxes on Natural Resources Projects; May 1979

A Small Model of Output, Employment, Capital Formation and Inflation, Applied to the New Zealand Economy; May 1979

Eurofinancing: Currencies, Loans and Bonds; December 1979

The 40 Per Cent Investment Allowance; January 1980

Controlling Eurofinance Markets; December 1979

Disaggregate Labour Supply Functions for Married Women: Preliminary Estimates For New Zealand; April 1980

Beginning and End-of-Period Specifications of Asset Market Equilibrium in Balance-of-Payments Theory; April 1980

Government Incentive Contracts with Private Companies; Some Lessons from the Channel Tunnel; April 1980

Closer Economic Relations Between Australia and New Zealand; June 1980

Relative Price Effects and the Demand for Imports; July 1980

Alternative Models of Apprentice Recruitment: With Special Reference to the British Engineering Industry; August 1980

Price Determination in Australian Manufacturing Firms: A Cross-Section Study; August 1980

Immigration Policies and Issues; October 1980

Labour Market Segmentation in Canada: A Translog Approach; October 1980

Pricing Strategies in the Newspaper Industry; November 1980

The Micro-Foundations of Layoffs and Labour-Boarding; November 1980

On the Duality between Fixed and Flexible Exchange Rates; November 1980

Nonjoint Technologies; December 1980

Price Determination, Expectations Formation and Some Tests of the Rationality of Australian Price Expectations; March 1981

Rational Choice, Learning-by-Doing and the Personal Distribution of Income; April 1981

Firm-Specific Human Capital, Experience and the Differential Incidence of Unemployment; April 1981

An Analysis of Asset Holdings in Australia by Income Class; May 1981

An Analysis of the Distributional Impact of Imputed Rent Taxation; June 1981

Investment in Airport Capacity - A Critical Review of the MANS Study; January 1982

Pricing Models in Australian Manufacturing: The Evidence from Survey Data; January 1982

How Rational are Australian Price Expectations?; January 1982

The Costs of Adjustment and the Invisible Hand with Special Reference to the Labour Market; February 1982

Peak Load Pricing and the Channel Tunnel: A Re-Examination; March 1982

Access to Housing Finance and the Campbell Report: The Implication of Implementing the Recommendations of Chapter 37; July 1982

The Gatt Agreement on Government Procurements: Canada and Australia; July 1982

Pension Benefits and the Decline in Elderly Male Labour Force Participation; September 1982

Industry, Employment and Inflation; October 1982
A.J. Phipps
Australian Unemployment: Some Evidence from Industry Labour Demand Functions; November 1982

E.M.A. Gross & W.P. Hogan
Short Term Management of the Australian Exchange Rate, 1977-82; December 1982

V.B. Hall
Industrial Sector Interfuel Substitution Following the First Major Oil Shock; January 1983

J. Yates
Access to Housing Finance and Alternative Forms of Housing Loans in the 1980s; July 1983

V.B. Hall
Major OECD Country Industrial Sector-Interfuel Substitution Estimates: 1960-79; August 1983

P. Gill
Inequality and Arbitration of Wages in Australia: An Historical Perspective; December 1983

W.J. Marrillies
Do Wage Subsidies Stimulate Training? An Evaluation of the Craft Rate Rebate Scheme; November 1983

M.C. Blad
Economic Policy and Catastrophe Theory; November 1983

C.G.F. Simkin
Does Money Matter in Singapore?; April 1984

J. Yates
Home Purchase Assistance for Low Income Earners; March 1984

C.G.F. Simkin
Long-term Aspects of New Zealand's External Deficit; April 1984

C.G.F. Simkin
Methodological Scepticism; July 1984

V.B. Hall
Industrial Sector Fuel Price Elasticities of Demand Following the First and Second Major Oil Shocks; August 1984

S.S. Josen
Substitutability of 'Buy Local' Policy for Tariff Protection in Small Economies; January 1985

R.T. Ross
Analysis of the 1980 Sydney Survey of Work Patterns of Married Women: Further Results; January 1985

J. Yates
Discrimination in Lending; May 1985

R.T. Ross
Measuring Underutilisation of Labour: Beyond Unemployment Statistics; May 1985

P.D. Groesenwagen
Alfred Marshall as Professor of Political Economy at Cambridge 1885-1905; June 1985

C.G.F. Simkin
Popper’s Methodology and Economic Theory; July 1985

E.M.A. Gross, W.P. Hogan & I.G. Sharpe
Market Information and Potential Insolvency of Australian Financial Institutions; July 1985

F. Gill
Over-Award Payments; Result of a Survey conducted in 1982; December 1985

S.K. Kim
Short Run Policy Analysis of Employment, Food Prices and Rural-Urban Migration for a Labour-Abundant Developing Economy; January 1986

E. Kiefer & D.B. Madan
Stochastic Stability in a Rational Expectations Model of a Small Open Economy; March 1986

E. Gross
A Note on the Testability of Fama's Efficient Capital Market Hypothesis; February 1986

M.C. Blad & E. Gross
Multinational Producers in an Arrow-Debreu Type General Equilibrium Model; March 1987

P. Saunders
Explaining International Differences in Public Expenditure: An Empirical Study; August 1988

W.P. Hogan
International Debt and Foreign Exchange Markets; January 1987

Michael C. Blad & Nicholas Caltoun
Union-Firm Bargaining as a Repeated Prisoner's Dilemma; January 1987

R.T. Ross
94. W.P. Hogan
Assessing Insider Trading; June 1987

95. J. Yates
Housing Policy Reform: A Constructive Critique; June 1987

96. B.W. Rosa
The Leisure Factor in Entrepreneurial Success during the 'Robber Baron' Era; July 1987

97. F. Gill
Determination of Wage Relativities under the Federal Tribunal: 1953-1974; August 1987

98. A.J. Phipps
Union Objectives, Wage Bargaining and the Phillips Curve; October 1987

99. R.T. Ross
The Labour Market Position of Aboriginal People in New South Wales; November 1987

100. L. Naddad
List Revisited: Dynamic Consideration of Trade and Protection; November 1987

101. John Piggott
General Equilibrium Computation Applied to Public Sector Issues; December 1987

102. J.A. Carlson &
Relative Prices, Wage Indexation and Unemployment; December 1987
D.W. Findlay

103. M. Waterson
A Model of Product Differentiation and Profitability; December 1987

104. P.D. Groenevagen
Taxation and Decentralisation: A Reconsideration of the Costs and Benefits of a Decentralised Tax System; March 1988

105. L. Ermini
Some New Evidence on the Timing of Consumption Decisions and on Their Generating Process; March 1988

Papers marked with an asterisk are out of stock. Copies of the others are available upon request from:

Department of Economics,
The University of Sydney,
N.S.W. 2066, Australia.
2. I.G. Sharpe & R.G. Walker

3. N. V. Lam

4. V.B. Hall & M.L. King
 New Zealand Economic Papers, Vol. 10, 1976

5. A.J. Phipps
 Economic Record, Vol. 53, No. 143, September 1977

6. M.V. Lam

7. I.G. Sharpe
 Australian Journal of Management, April 1976

8. W.P. Hogan
 Economic Papers, No. 55, The Economic Society of Australia and New Zealand

9. I.G. Sharpe & P.A. Volker
 Economics Letters, 2, (1979)

10. I.G. Sharpe & P.A. Volker
 Kredit and Kapital, Vol. 12, No.1, 1979

11. W.P. Hogan
 Some Calculations in Stability And Inflation, A.R. Bergstrom et al. (eds), John Wiley and Sons, 1978

12. I.G. Sharpe

13. R.L. Brown
 Journal of Banking and Finance, 4, 1980

14. I.G. Sharpe & P.A. Volker

15. V.B. Hall
 The Australian Monetary System in the 1970s, M. Porter (ed.), Supplement to the Economic Board 1978

16. I.G. Sharpe & P.A. Volker
 Economic Record, Vol. 56, No. 152, March 1980

17. W.P. Hogan
 Australian Journal of Management, October 1979

18. W.P. Hogan
 Malayan Economic Review, Vol. 24, No. 1, April 1979

19. P. Saunders
 Australian Economic Papers, Vol. 19, No. 34, June 1980

20. W.P. Hogan
 Economics Letters, 6 (1980)

21. I.G. Sharpe & P.A. Volker
 Economics Letters, 7 (1981)

22. W.P. Hogan
 Australian Economic Papers, Vol. 18, No. 33, December 1979

23. U.R. Kohli
 Australian Economic Papers, Vol. 21, No. 39, December 1982

24. G. Mills

25. U.R. Kohli

26. W.J. Merrilees

27. P. Saunders
 Australian Economic Papers, Vol 20, No. 37, December 1981

28. W.J. Merrilees

29. W.J. Merrilees

30. U.R. Kohli

31. P. Saunders
 Economic Record, Vol. 57, No. 152, December 1981

32. J. Yates
 APSI, Commissioned Studies and Selected Papers, AGPS, IV 1982

33. J. Yates
 Economic Record, Vol. 56, No. 161, June 1982

34. G. Mills
 Seventh Australian Transport Research Forum-Papers, Hobart, 1982

35. G. Mills & V. B. Hall
 Economic Record, Vol. 60, No. 169, March 1984

36. P. Saunders
 Economic Record, Vol. 59, No. 166, September 1983

37. F. Gill
 Economic Appliques, Vol XXXVII, 1984, No's 3-4, pp. 523-541

38. G. Mills & W. Coleman
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Journal, Volume, Issue, Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>W.J. Merrilees</td>
<td>Economic Record, Vol. 59, No. 166, September 1983</td>
</tr>
<tr>
<td>67</td>
<td>V.B. Holt</td>
<td>Economics Letters, 12, (1983)</td>
</tr>
<tr>
<td>69</td>
<td>V.B. Hall</td>
<td>Energy Economics, Vol. 8, No. 2, April 1986</td>
</tr>
<tr>
<td>71</td>
<td>W.J. Merrilees</td>
<td>Australian Economic Papers, Vol. 23, No. 43, December 1984</td>
</tr>
<tr>
<td>74</td>
<td>J. Yates</td>
<td>Australian Quarterly, Vol. 56 (2), Winter 1984</td>
</tr>
</tbody>
</table>