Strategic Trade Policy
and Signalling with
Unobservable Costs

by
D.J. Wright
No. 198 April 1994

ABSTRACT
A two-period simultaneous signalling model is developed in which first period outputs not only signal a firm's costs to its competitor, but also signal its costs to a home country government. It is shown that the existence of second period home country strategic trade policy increases the incentives that both home and foreign high-cost firms have to misrepresent themselves as low cost. As a result, in the unique separating sequential equilibrium of this signalling game, second period strategic trade policy induces low-cost firms to distort their first period outputs more than otherwise. The major implication of this result is that the existence of second period strategic trade policy can reduce welfare.

National Library of Australia Card Number and ISBN 0 86758 826 8
1. Introduction

In an internationally oligopolistic industry, the use of export/output subsidies by a home country government to shift profits away from foreign firms to home firms has become known in the literature as strategic trade policy [Brander and Spence (1985)]. It is well known that the strategic trade policy argument is not a general argument for industry assistance, but rather an argument for assistance under specific conditions. This has led many authors to caution the use [Grossman (1986)]. In a recent paper Brainard and Martinson (1992) continue this tradition of caution by demonstrating, in the presence of incomplete information about firms' costs, that the optimal trade policy may involve an export/output tax rather than a subsidy. To obtain this result, Brainard and Martinson solve a mechanism design problem and assume that firms know each other's costs although the home government does not. This assumption seems quite restrictive especially when one considers the substantial industrial organization literature which is based on the assumption that firms do not know each other's costs [Milgram and Roberts (1982) and Mallath (1988, 1989)]. In this literature firms produce in each of two periods and signal their costs through their first period choices. Rather than use the mechanism design approach (screening) of Brainard and Martinson, this paper marries the signalling literature with the strategic trade policy literature to ascertain the welfare effects of strategic trade policy in the presence of unobservable costs.

In section 2 a discrete two-period simultaneous signalling model of duopoly is developed. One firm is located in the home country the other in the foreign country. The model is similar to Mallath (1989) except output is the choice variable rather than price and firms are either high cost or low cost rather than being drawn from a continuum of costs. Each firm's costs are private information though at the end of the first period each firm observes the first period output of its competitor and uses this to update its prior probability assessment of the costs of its competitor. Each firm then chooses second period output. In

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Simultaneous Signalling in Duopoly</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Period 2</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Period 1</td>
<td>6</td>
</tr>
<tr>
<td>3. Strategic Trade Policy</td>
<td>10</td>
</tr>
<tr>
<td>4. Simultaneous Signalling and Strategic Trade Policy</td>
<td>12</td>
</tr>
<tr>
<td>5. Welfare</td>
<td>14</td>
</tr>
<tr>
<td>6. Conclusion</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
<tr>
<td>Addendum</td>
<td>22</td>
</tr>
</tbody>
</table>
the first period a high-cost firm has an incentive to misrepresent itself as a low-cost firm, through its first period choice, to induce its competitor to produce a low output in the second period. It is shown that the unique separating sequential equilibrium of this game involves (1) the low-cost firm signalling the fact that it is low cost by choosing a first period output which is greater than the profit-maximising output of a low-cost firm, (2) the high-cost firm signalling the fact that it is high cost by choosing the first period profit-maximising output of a high-cost firm, and (3) both types of firms choosing the profit-maximising output in the second period given the updated probability assessments.

In section 3 strategic trade policy is discussed. To provide the strongest case for strategic trade policy it is assumed that firms choose output, that there is no entry, that there is only one home firm, that output is sold in a third market, and that only the home government implements strategic trade policy. It is also assumed that strategic trade policy is undertaken in period 2 after the government observes the first period output signals of the home and foreign firms. Therefore, first period output not only signals a firm's costs to its competitor, but also to the home country government. It is shown that a low-cost home firm receives a bigger per-unit subsidy than a high-cost home firm and that the home firm receives a smaller per-unit subsidy if the foreign firm is low cost.

The implications of second period home government strategic trade policy for first period output choices are explored in section 4. It is shown that the existence of second period strategic trade policy increases the incentives that both home and foreign high-cost firms have to misrepresent themselves as low cost. As a result, in the unique separating sequential equilibrium of the signalling game, second period strategic trade policy induces low-cost home and foreign firms to distort their first period outputs more than otherwise.

The sequence of firm and government actions which is assumed has the firms moving first through their choice of first period outputs, the governments moving second through their choice of second period subsidies, and finally, given these subsidies, the firms moving again through their choice of second period outputs. Modelling firms as the first movers is not new to the trade policy literature. Carmichael (1987) and Gruespecht (1988) do precisely this, though under conditions of symmetric information, and justify the sequence of moves on the observed and stated practices of the U.S. Export-Import Bank.

The welfare implications of second period home government strategic trade policy are discussed in section 5. There are three effects to consider. The first is the usual profit-shifting effect in period 2 which increases welfare. The second is the output distortion effect in period 1 which decreases welfare and the third is the profit-shifting effect in period 1 which can increase or decrease welfare. Due to the complexity of the model numerical methods are used to show that there are parameter values which result in the existence of period 2 strategic trade policy decreasing welfare. Some concluding remarks are made in section 6.

2. Simultaneous Signalling in Duopoly

It is assumed that two firms, one located in the home country the other in the foreign country, sell homogeneous output in a third country or market.\footnote{This is the traditional set up in the strategic trade policy literature [Branden and Spencer (1985)].} Foreign variables are denoted by an asterisk. The inverse demand function in the third country is assumed to be linear and given by \(p = a - b \cdot (q + q^*) \), where \(p \) is the per-unit price when \(q \) units of home output and \(q^* \) units of foreign output are sold and \(a \) and \(b \) are strictly positive.

The firms simultaneously choose output in each of two periods, 1 and 2. In the first period each firm's costs are private information and unknown to the other firm, however, it is known that the other firm has constant marginal costs which can be either high or low. It is assumed that the foreign firm attaches probabilities \(\rho \) and \((1 - \rho) \) to the home firm having marginal costs \(c^L \) and \(c^H \), respectively, where \(c^L < c^H \). The home firm attaches probabilities \(\rho^* \) and \((1 - \rho^*) \) to the foreign firm having marginal costs \(c^{L*} \) and \(c^{H*} \), respectively, where \(c^{L*} < c^{H*} \). At the end of the first period, each firm observes the first period output of its competitor and uses this to update its prior on the costs of its competitor. Let \(\rho(q_1) \) and
\(\rho^* (q^*_i) \) be these updated priors, where \(q_1 \) and \(q_1^* \) are the first period outputs of the home and foreign firms respectively. Each firm then chooses second period output. A high-cost firm has an incentive to misrepresent itself as a low-cost firm to induce its competitor to produce a low output in the second period. In equilibrium each firm understands this incentive and allows for it when inferring first period costs from first period outputs.

This two-period game is an example of a simultaneous signalling game [Mailath (1988, 1989)]. The equilibrium concept used is sequential equilibrium [Kreps and Wilson (1982)] which in this setting is a list of period 1 and 2 outputs for each type of each firm, \((q_1(c), q_1^* (c^*, q_1), q_1^* (c^*, q_1)) \) and \((q_2^*(c^*, q_1), q_2^*(c^*, q_1^* (c^*, q_1))) \), \(i = H, L; j = H, L \) and a system of beliefs, \((\rho, \rho(q_1)) \) and \((\rho^*, \rho^*(q_1)) \), that are consistent with each other and satisfy sequential rationality at every information set. That is, \((q_1(c), q_1^* (c^*, q_1), q_1^* (c^*, q_1)) \) form a Bayesian-Nash equilibrium and firms choose output optimally in the second period given \(\rho(q_1) \) and \(\rho^*(q_1) \).

This paper is solely concerned with the separating sequential equilibria of the simultaneous signalling game and can be justified, as in Mailath (1989), on the grounds that these equilibria maximise the amount of information transmitted and are the equilibria most often studied. In a separating sequential equilibrium private information about costs is fully revealed by first period outputs. Therefore, in the second period firms essentially play a game of complete information. This simplifies the solution of the game which begins by solving for the period 2 strategies first.

2.1. Period 2

In a separating sequential equilibrium the second period game is a game of complete information. Each firm knows the other firm's costs. The equilibrium concept used is Nash equilibrium in outputs. The home firm's problem is

\[
\max \left\{ \Pi^*_j \equiv (a - b \cdot (q^*_j + q_2^* - c^*) \cdot q_1^* \right\}, \quad i = H, L; \quad j = H, L.
\]

(1)

The first order condition of this problem can be solved for \(q_1^* (c^*, c^*) \). This is commonly referred to as the home firm's reaction function; however, following Dixit (1986) it will be referred to as the home firm's equilibrium locus. The foreign firm faces a similar problem and its equilibrium locus is given by \(q_2^* (q_1^* (c^*, c^*)) \). The second order conditions for a maximum and the stability conditions are satisfied.

The two equilibrium loci are solved simultaneously for the Nash equilibrium in outputs. Assuming an interior solution, these outputs are given by

\[
q_1^* = \frac{a - 2c^* + c^*}{3b}.
\]

(2)

and

\[
q_2^* = \frac{a - 2c^* + c^*}{3b},
\]

(3)

where the * signifies the Nash equilibrium solution. Substitution of the Nash equilibrium solutions into the objective function of each firm yields maximised profit denoted by

\[
\Pi^*_j (c^*, c^*) = \left(a - 2c^* + c^* \right) \frac{q_1^* q_2^*}{9b}.
\]

(4)

and \(\Pi^*_j (c^*, c^*) \). These represent the maximised profit of the home and foreign firm when the marginal cost of each firm is given by \(c^* \) and \(c^* \) respectively.

For later reference it is convenient to define \(\Pi^*_j (c^*, c^*) \), \(i \neq k = H, L \) as the maximised value of home firm profit where, the foreign firm's costs are \(c^* \) and the home firm's costs are \(c^* \), but the home firm signals via first period output that its costs are \(c^* \).

\[
\Pi^*_j (c^*, c^*) = \left(a - 1.5c^* + c^* - 5c^* \right) \frac{q_1^* q_2^*}{9b}.
\]

(5)

is obtained by substituting \(q_2^* \), evaluated at \((c^*, c^*) \)), and \(q_2^* (q_1^* (c^*, c^*)) \) into the objective function of the home firm. \(\Pi^*_j (c^*, c^*) \), \(j \neq k = H, L \) is defined in a similar fashion for the foreign firm.
2.2. Period 1

In period 1 the costs of each firm are private information and unknown to the other firm. In a separating sequential equilibrium each firm signals each of its possible costs with a different first period output. For the home firm, the low-cost signal \(q^L_1 \) must be associated with the foreign firm’s posterior (up-dated) belief \(\rho(q^L_1) = 1 \); the high-cost signal \(q^H_1 \) must be associated with the foreign firm’s posterior belief \(\rho(q^H_1) = 0 \); and it suffices for any other signal \(q^i_1 \) to be associated with posterior belief \(\rho(q^i_1) = 0, i \neq H, L \). Similar posterior beliefs are attached to the signals of the foreign firm.

Let the home firm’s first period expectation of second period profits, if the home firm is high cost, be given by \(E\bar{\Pi}_2^H = \rho^* \cdot \bar{\Pi}_2(c^H, c^L) + (1 - \rho^*) \cdot \bar{\Pi}_2(c^H, c^H) \) and let the home firm’s first period expectation of second period profits, if the home firm is high cost, but has signalled that it is low cost, be given by \(E\bar{\Pi}_2^{H|L} = \rho^* \cdot \bar{\Pi}_2(c^H|c^L, c^H) + (1 - \rho^*) \cdot \bar{\Pi}_2(c^H|c^L, c^H) \). Define \(E\bar{\Pi}_1^H, E\bar{\Pi}_2^{H|L}, E\bar{\Pi}_1^{H|L}, E\bar{\Pi}_2^L \), and \(E\bar{\Pi}_2^{L|H} \) similarly.

Separating sequential equilibria must satisfy the following self-selection (incentive compatibility) constraints

\[
\Pi_1^H(q^H_1, E_q^H) + E\bar{\Pi}_2^H \geq \Pi_1^H(q^L_1, E_q^L) + E\bar{\Pi}_2^{H|L},
\]

(6)

\[
\Pi_1^{H|L}(q^H_1, E_q^H) + E\bar{\Pi}_2^{H|L} \geq \Pi_1^{L|L}(q^L_1, E_q^L) + E\bar{\Pi}_2^{H|L},
\]

(7)

\[
\Pi_1^L(q^L_1, E_q^L) + E\bar{\Pi}_2^L \geq \Pi_1^L(q^H_1, E_q^H) + E\bar{\Pi}_2^{L|H},
\]

(8)

and

\[
\Pi_1^{H|L}(q^H_1, E_q^H) + E\bar{\Pi}_2^{L|H} \geq \Pi_1^{L|H}(q^L_1, E_q^L) + E\bar{\Pi}_2^{L|H},
\]

(9)

where \(\Pi_1^H(q^H_1, E_q^H) \) is the profit of the home firm in period 1 if its costs are \(c^H \), its output is \(q^H_1 \), and the expected output of the foreign firm is \(E_q^H = \rho^* \cdot q^H_1 + (1 - \rho^*) \cdot q^{H|L} \). \(\Pi_1^L(q^L_1, E_q^L) \) is the profit of the home firm in period 1 if its costs are \(c^L \), its output is \(q^L_1 \), and \(E_q^L \) is defined as above; and \(\Pi_1^{H|L}(\cdot), \Pi_1^{L|L}(\cdot), \) and \(\Pi_1^{H|H}(\cdot) \) are defined similarly.

Self-selection constraint (6) states that the high-cost home firm would prefer to produce \(q^H_1 \) in period 1 and be perceived as high cost in period 2 rather than be perceived as low cost in period 2 and be forced to produce \(q^L_1 \) in period 1. Constraint (7) is a similar condition for the foreign firm. Self-selection constraint (8) states that the low-cost home firm would prefer to produce \(q^L_1 \) in period 1 and be perceived as low cost in period 2 rather than be perceived as high cost in period 2 and be forced to produce \(q^H_1 \) in period 1. Constraint (9) is a similar condition for the foreign firm. In a separating sequential equilibrium, given that \(\rho(q_1) = 0 \lor q_1 \neq q^H_1 \), the high-cost home firm chooses \(q^H_1 \) to maximise \(\Pi_1^H(q^H_1, E_q^L) \). Let the solution to this problem be given by \(q^H_1(E_q^L) \). An identical argument applies to the high-cost foreign firm. Let the solution to its maximisation problem be given by \(q^H_1^*(E_q^L) \).

To obtain the period 1 separating sequential equilibrium output of the low-cost home firm constraint (6) is used. Similar arguments are then used to obtain the output of the low-cost foreign firm from constraint (7). Finally it is shown that when constraints (6) and (7) bind, constraints (8) and (9) do not. The discrete nature of this problem means that constraints (6) and (7) may not bind. In the Appendix conditions are derived under which both (6) and (7) bind. For the purposes of this paper these conditions are assumed to be satisfied.

Consider Figure 1 where \(\Pi^H_1(\cdot) \) and \(\Pi^L_1(\cdot) \) are drawn. Given the assumptions of linear demand and constant marginal costs, both of these function are strictly concave and have maximums at \(\hat{q}^H_1 \) and \(\hat{q}^L_1 \), respectively, where \(\hat{q}^H_1 < \hat{q}^L_1 \). The (...) have been dropped for notational convenience. For a given \(q_1 \), \(\Pi^L_1(\cdot) < \Pi^L_1(\cdot) \). For outputs associated with positive profits, \(\Pi^H_1 \) has an axis of symmetry at \(\hat{q}^H_1 \) and \(\Pi^L_1 \) has an axis of symmetry at \(\hat{q}^L_1 \). In period 1 \(E\bar{\Pi}^H_2 \) and \(E\bar{\Pi}^{H|L}_2 \) are constants. \(E\bar{\Pi}^H_2 < E\bar{\Pi}^{H|L}_2 \) because second period equilibrium loci slope downwards and the foreign firm produces less output if it believes the home firm is low cost rather than high cost. \(\Pi^H_2(q^H_1, E_q^L) + E\bar{\Pi}^H_2 \) and \(\Pi^H_2(q^L_1, E_q^L) + E\bar{\Pi}^{H|L}_2 \) are also

\[\text{In Mailath (1988, 1990) and Riley (1987) in which there are a continuum of types, envelope theorem arguments establish that the self-selection constraints bind. These arguments can not be used in the discrete framework of this paper.}\]
shown in Figure 1.

A multiplicity of separating sequential equilibria exist for the high-cost firm as there are many outputs q^o_1 that satisfy (6). In Figure 1 these are represented by any q^o_1 such that $q^o_1 \geq q^2_1$ or $q^o_1 \leq q^6_1$. However, only one separating sequential equilibrium survives once dominated strategies are eliminated when forming out-of-equilibrium beliefs. Once again refer to Figure 1 and in particular output q^o_1. This output forms part of a separating sequential equilibrium only because the foreign firm's posterior belief after observing an out-of-equilibrium output like q^o_2 is that $\beta(q^o_2) = 0$. Nevertheless, the output q^o_2 is dominated for the high-cost firm by output q^o_1. Therefore, if the foreign firm believes that the home firm would not choose a dominated output, the only posterior belief possible on observing output q^o_2 is that $\beta(q^o_2) = 1$. This overturns the equilibrium involving q^o_1 because the posterior belief on which it is based is found to be implausible. In particular, the low-cost firm would deviate from the equilibrium involving q^o_2 in favour of an equilibrium involving q^o_1 because q^o_2 yields more profit (with q^o_2 closer to the complete information profit maximising solution than q^o_1.) A similar argument can be applied to any $q^2_1 > q^o_1$ and any $q^o_1 \leq q^6_1$, therefore, the only separating solution that survives once dominated strategies are eliminated when forming out-of-equilibrium beliefs involves the high-cost home firm signalling its costs with $q^o_1(E_q)$ and the low-cost home firm signalling its costs with $q^o_1(E_q^o)$.\footnote{\footnotetext{\footnotemark[5]\footnotemark[6]}\footnotemark[6]}\footnotemark[5]

Using identical analysis on constraint (7) yields a unique solution in which the high-cost foreign firm signals its costs with $q^o_1(E_q)$ and the low-cost foreign firm signals its costs with $q^o_1(E_q^o)$.\footnote{\footnotetext{\footnotemark[6]These unique separating sequential equilibria for the home and foreign firms have similarities with the one-sided unique separating sequential equilibrium obtained by Choo and Kreps (1987) for the Spencer (1957) signalling model.}}

Lemma 1: If constraints (6) and (7) hold, then constraints (8) and (9) do not.

Proof: First consider constraints (6) and (8). Given the functional forms of the demand and cost functions, in the Appendix it is shown that $E\hat{H}^H_1 - E\hat{H}^H_2 < E\hat{E}/H_1 - E\hat{H}^L_2$. It is also shown that $\frac{\partial^2 q^H}{\partial q^H} < \frac{\partial^2 q^L}{\partial q^L}$, where $q^H = q^H$. Now $\Pi^H_q(q^H) > \Pi^H_q(q^H) > \Pi^H_q(q^H)$ because $q^H > q^H > q^H$ and $\frac{\partial^2 q^H}{\partial q^H} < \frac{\partial^2 q^L}{\partial q^L}$, where $q^H = q^H$. If constraint (6) binds, then $\Pi^H_q(q^H) > \Pi^H_q(q^H)$ $= E\hat{H}^H_1 - E\hat{H}^L_2$. As $E\hat{H}^H_1 > E\hat{H}^H_2 > E\hat{H}^H_1 - E\hat{H}^L_2$ and $\Pi^H_q(q^H) < \Pi^H_q(q^H)$ it must be the case that $\Pi^H_q(q^H) > \Pi^H_q(q^H) > E\hat{H}^H_1 - E\hat{H}^L_2$. This latter inequality can be rearranged to yield

$$\Pi^H_q(q^H) + E\hat{H}^H_2 > \Pi^H_q(q^H) + E\hat{H}^L_2$$

which is constraint (8). A similar argument can be applied to constraints (7) and (9).

(Q.E.D.)

Lemma 1 establishes that if constraints (6) and (7) hold, then constraints (8) and (9) do not and can be ignored when solving for the separating sequential equilibrium. For the remainder of this paper it is assumed that (6) and (7) hold.

To be part of a separating sequential equilibrium $(q^H_q(E_q^o), q^H_q(E_q), q^H_q), \bar{q}^{q^H}(E_q), q^{q^L}(q^{q^L}_q(E_q)), q^{q^L}(E_q), \bar{q}^{q^L}(q^{q^L}_q(E_q))$ must form a Bayesian-Nash equilibrium. The above discussion is summarised in the following proposition.

Proposition 1: The unique separating sequential equilibrium of the simultaneous move signalling game involves the high-cost home and foreign firms signalling their costs in period 1 with $\bar{q}^{q^H}(E_q^o)$ and $\bar{q}^{q^L}(E_q^o)$, respectively, while the low-cost home and foreign firms signal their costs in period 1 with $\bar{q}^{q^H}(E_q)$ and $\bar{q}^{q^L}(E_q)$, respectively, where $\bar{q}^{q^H}(E_q) > \bar{q}^{q^H}(E_q^o)$, $\bar{q}^{q^L}(E_q) > \bar{q}^{q^L}(E_q^o)$, $E_q^o = (1 - \rho') \cdot \bar{q}^{q^L}(E_q) + \rho' \cdot \bar{q}^{q^L}(E_q)$, and $E_q = (1 - \rho') \cdot \bar{q}^{q^L}(E_q) + \rho \cdot \bar{q}^{q^L}(E_q)$.

In period 2 outputs are chosen optimally, given the period 1 signals, and in equilibrium are denoted by $\bar{q}^{q^H}_2$, $\bar{q}^{q^L}_2$, and $\bar{q}^{q^L}_2$.

The intuition behind the period 1 outputs of Proposition 1 is clear. The high-cost home and foreign firms are able to obtain complete information profits, the equilibrium
expected outputs of their competitor, because \(q_i^H \) and \(q_i^{H*} \) would only be chosen by high-cost firms. On the other hand, the low-cost home and foreign firms must distort their outputs away from the complete information profit maximising outputs to convince their competitor that it is indeed low cost. The minimum distortion necessary to achieve this involves outputs \(q_i^* \) and \(q_i^{**} \). The information asymmetry imposes a cost on the low-cost home and foreign firms.

3. Strategic Trade Policy

It is assumed that the home country government can use an output/export subsidy in the second period to shift profits from the foreign firm to the home firm. The effects of this subsidy are now analysed.

In a separating sequential equilibrium the second period game is a game of complete information. This game differs from the game of section 2.1 because the home country government places a subsidy on home output before the output game is played. The home firm’s problem is

\[
\max \{ \Pi_2^i \equiv (a - b \cdot (q_i^* + q_i^{**}) - c^t + s) \cdot q_i^2 \}, \quad i = H, L; \quad j = H, L
\]

where \(s \) is the per-unit output subsidy. The foreign firm faces a similar problem except its government does not place a subsidy on foreign output.

As in section 2.1, the first order conditions of the home and foreign firms’ problems can be solved for the equilibrium loci, \(q_i^2(\cdot, c^t, s) \) and \(q_i^{**}(\cdot, c^{**}) \), and for the Nash equilibrium outputs,

\[
q_i^2 = \frac{a - 2c^t + c^{**} + 2s}{3b}
\]

and

\[
q_i^{**} = \frac{a - 2c^{**} + c^t - s}{3b}
\]

Substitution of the Nash equilibrium outputs into each firm’s objective function gives \(\Pi_2(c^t, c^{**}, s) \) and \(\Pi_2^*(c^t, c^{**}, s) \).

The home country government maximises home firm profit minus the subsidy, \(W_2^t \), by choice of the per-unit subsidy. Its problem is

\[
\max \{ W_2^t \equiv \Pi_2^i(c^t, c^{**}, s) - s \cdot q_i^2(c^t, c^{**}, s) \}.
\]

Solving the first order condition of this problem yields the optimal subsidy

\[
s = \frac{a - 2c^t + c^{**}}{4}
\]

This optimal subsidy shifts the equilibrium locus of the home firm in such a way that the new Nash equilibrium outputs of the home and foreign firms coincide with what would, in the absence of a subsidy, be the Stackelberg leader–follower equilibrium outputs with the home firm as leader [Brander and Spencer (1985)]. Note that the optimal subsidy, \(s \), is decreasing in \(c^t \) and increasing in \(c^{**} \).

Substituting \(s \) into \(\Pi_2(c^t, c^{**}) \) yields maximised home firm profit, given the optimal subsidy. Let this maximised profit be denoted by

\[
\Pi_2(c^t, c^{**}) = \frac{(a - 2c^t + c^{**})^2}{16b}.
\]

Let foreign firm maximised profit, given the optimal subsidy, be denoted by

\[
\Pi_2^*(c^t, c^{**}) = \frac{(a + 2c^t - 2c^{**})^2}{16b}.
\]

For later reference it is convenient to define \(\Pi_2(c^t, c^{**}), \ i \neq k = H, L \) as the maximised value of home firm profit, where the foreign firm’s costs are \(c^{**} \) and the home firm’s costs are \(c^t \), but the home firm signals via first period output that its costs are \(c^t \).

\[
\Pi_2(c^t, c^{**}) = \frac{(a - c^t + c^{**} - c^t)^2}{4b}
\]

is obtained by substituting \(q_i^2(\cdot, c^{**}, s(c^t, c^{**})) \) and \(q_i^*(\cdot, s(\cdot)) \) into the objective function of the home firm. For the foreign firm,

\[
\Pi_2^*(c^t, c^{**}) = \frac{(a + 2c^t - 2c^{**} - c^t)^2}{16b}
\]

is defined in a similar fashion.
4. Simultaneous Signalling and Strategic Trade Policy

In the previous section it was shown that the existence of home country strategic trade policy in period 2 changed period 2 home firm profits from $\tilde{\Pi}_2(\cdot)$ to $\bar{\Pi}_2(\cdot)$, where $\tilde{\Pi}_2(\cdot) < \bar{\Pi}_2(\cdot)$. The subsidy not only had the direct effect of increasing home firm profit because the home firm received a subsidy of s for every unit produced, but also had the indirect effect of increasing home firm profit because the subsidy induced the foreign firm to produce less output. For the foreign firm the subsidy changed profits from $\tilde{\Pi}_2(\cdot)$ to $\bar{\Pi}_2(\cdot)$, where $\bar{\Pi}_2(\cdot) > \tilde{\Pi}_2(\cdot)$.

In the Appendix it is shown that

$$E\tilde{\Pi}^{HIL}_2 - E\tilde{\Pi}^H_2 > E\bar{\Pi}^{HIL}_2 - E\bar{\Pi}^H_2.$$ (20)

The low-cost home firm receives a greater subsidy than the high-cost home firm so the expected benefits of a high-cost home firm misrepresenting itself as a low-cost firm in period 1 are greater with the subsidy than without. The effect of this in the first period can be ascertained by referring to Figure 1. Although not drawn, $\tilde{\Pi}^H_1 + E\tilde{\Pi}^H_2$ and $\bar{\Pi}^H_1 + E\bar{\Pi}^{HIL}_2$ are vertically above $\tilde{\Pi}^H_1 + E\bar{\Pi}^H_2$ and $\bar{\Pi}^H_1 + E\tilde{\Pi}^{HIL}_2$ respectively. Furthermore, the vertical distance between $\tilde{\Pi}^H_1 + E\tilde{\Pi}^H_2$ and $\bar{\Pi}^H_1 + E\bar{\Pi}^{HIL}_2$ is greater than the vertical distance between $\tilde{\Pi}^H_1 + E\bar{\Pi}^H_2$ and $\bar{\Pi}^H_1 + E\tilde{\Pi}^{HIL}_2$. As a result, in period 1, for a given $E\bar{\pi}_1^H$, the low-cost home firm signals the fact that it is low cost with an output greater that $\bar{\pi}_1^H$. Let this output be denoted $\bar{\pi}_1^H$, where $\bar{\pi}_1^H > \bar{\pi}_1^H$. This inequality leads to home firm expected first period output being greater with the second period subsidy than without, that is,

$$(1 - \rho) \cdot \bar{\pi}_1^H + \rho \cdot \bar{\pi}_1^H > (1 - \rho) \cdot \bar{\pi}_1^H + \rho \cdot \bar{\pi}_1^H$$ (21)

The foreign firm does not receive a second period subsidy, but can affect the size of the home firm’s subsidy through its cost signal. The home firm receives a smaller subsidy if the foreign firm is low cost rather than high cost, therefore, the expected benefits of a high-cost foreign firm misrepresenting itself as a low-cost firm in period 1 are greater with the subsidy than without. As for the home firm, this means that the foreign firm signals the fact that it is low cost with an output greater than $\bar{\pi}_1^H$. Let this output be denoted $\bar{\pi}_1^H$, where $\bar{\pi}_1^H > \bar{\pi}_1^H$. For a given $E\bar{\pi}_1$, foreign firm period 1 expected output is greater with the second period subsidy than without.

In a separating sequential equilibrium home and foreign firm first period outputs depend on two effects. The first is the signalling effect which causes $\bar{\pi}_1$ and $\bar{\pi}_1^H$ to be greater with the subsidy than without. The second is the strategic effect. An increase in the expected output of one firm, ceteris paribus, decreases the equilibrium outputs of both its low cost and high-cost competitor because equilibrium loci slope down. Together these effects suggest that the separating sequential equilibrium outputs of the high-cost home and foreign firms are lower with the subsidy than without. However, this is not necessarily so.

The degree to which the low-cost home and foreign firms must distort their outputs from their profit maximising levels differs for each firm. Each firm faces different incentives to misrepresent their costs because (1) c^H and c^H enter δ with different coefficients (in absolute value) and (2) the high-cost home firm receives a direct benefit from a greater subsidy which the high-cost foreign firm does not. This latter effect strongly suggests that the low-cost home firm must distort its output much further than the low-cost foreign firm to satisfy the self-selection constraint and signal its true cost, although, in general, no such claim can be made. If the low-cost home firm distorts its period 1 output more than the foreign firm to signal its true costs, then the high-cost foreign firm may reduce its output to such an extent that the foreign firm’s equilibrium expected output is lower with the subsidy than without.

Let the first period separating sequential equilibrium outputs of the high-cost and low-cost foreign firms be given by $\bar{\pi}_1^H$ and $\bar{\pi}_1^H$ respectively. If the equilibrium expected output of the foreign firm is lower with the subsidy than without, the equilibrium outputs of both
the high and low-cost home firms are greater with the subsidy than without. Let the first period separating sequential equilibrium outputs of the high and low-cost home firms be given by q^H_1 and q^L_1 respectively. The preceding discussion is summarised in the following proposition.

Proposition 2: The unique separating sequential equilibrium of the simultaneous move signalling game, in the presence of a second period output subsidy for the home firm, involves the high-cost home and foreign firms signalling their costs in period 1 with q^H_1 and q_1^{H*}, respectively, while the low-cost home and foreign firms signal their costs in period 1 with q^L_1 and q_1^{L*}, respectively. If the equilibrium expected output of the foreign firm is lower with the second period subsidy than without, then $q^H_1 > q^H_1$, $q^L_1 > q^L_1$, $q_1^{H*} < q_1^{H*}$, and $q_1^{L*} < q_1^{L*} > q_1^{L*}$.

The second period subsidy to the home firm commits the low-cost home firm to a greater output in period 1 as a greater output is required to signal its true costs. The foreign firm notes this commitment and may produce less expected output in period 1 even though a low-cost foreign firm also requires a greater output in period 1 to signal its true costs. With the foreign firm producing less expected output in period 1, in a separating sequential equilibrium, the home firm produces more output in period 1 with the subsidy than without, regardless of its costs.

5. Welfare

In this section the welfare implications of strategic trade policy are considered. It is assumed that welfare, W, is given by the expected value of the sum of first and second period home firm expected profits net of any subsidy. Let $E\Pi_1$, $i = H, L$ denote the sum of first and second period home firm expected profits net of any subsidy, then

$$W = (1 - \rho) \cdot E\Pi^H + \rho \cdot E\Pi^L.$$

(22)

A second period subsidy, s, has three effects on home country welfare. Firstly, there is the profit shifting effect in period 2. This was discussed in section 3 above and increases expected welfare. Secondly, there is the output distortion effect in period 1. For the low-cost firm a second period subsidy increases the amount by which period 1 output must be distorted away from its complete information profit maximising level. This was discussed in section 4 above and decreases expected welfare. Thirdly, there is the profit shifting effect in period 1. The second period subsidy commits the low-cost home firm to produce greater output in period 1 and may induce the foreign to produce less expected output in period 1. This was discussed in section 4 above and increases expected welfare. Due to the complexity of the model numerical methods are used to ascertain the net effect of these three influences on welfare.

The base case has $a = 30$, $b = 1$, $\rho = \rho^* = .5$, $c^H = c^H* = 10$, and $c^L = c^L* = 5$. Table 1 shows the separating sequential equilibrium first period outputs for the home and foreign firms, q^H_1, q_1^{H*}, q^L_1, and q_1^{L*}; first period expected profits for the high and low-cost home firm, $E\Pi^H$ and $E\Pi^L$; the sum of period 1 and period 2 expected profits net of any subsidy for the high and low-cost home firm, $E\Pi^H$ and $E\Pi^L$; and welfare, W, with and without the second period subsidy s.

<table>
<thead>
<tr>
<th></th>
<th>q^H_1</th>
<th>q_1^{H*}</th>
<th>q^L_1</th>
<th>q_1^{L*}</th>
<th>$E\Pi^H$</th>
<th>$E\Pi^L$</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>no subsidy</td>
<td>9.36</td>
<td>6.13</td>
<td>9.36</td>
<td>6.13</td>
<td>37.56</td>
<td>73.93</td>
<td>72.28</td>
</tr>
<tr>
<td>subsidy</td>
<td>13.81</td>
<td>6.74</td>
<td>8.17</td>
<td>4.86</td>
<td>45.47</td>
<td>64.53</td>
<td>84.53</td>
</tr>
</tbody>
</table>

Consider the period 1 output of the low-cost home firm. The second period subsidy increases this output substantially and is the sum of two effects. Firstly, the subsidy increases q^H_1 because a larger output distortion is required to signal low cost. Second, q^L_1 increases because the period 1 expected output of the foreign firm decreases. This latter effect explains the increase in q^H_1. As a result of the second period subsidy, both q_1^{H*} and q_1^{L*}
decrease in this separating sequential equilibrium because the strategic effect of the increase in the expected output of the home firm dominates the low-cost foreign firm's signalling effect. These effects were discussed in section 4.

The expected period 1 profit of the high-cost home firm, \(\Pi_L^H \), increases as a result of the second period subsidy due to the decrease in foreign firm period 1 expected output. This is the profit shifting effect in period 1 of the period 2 subsidy. This profit shifting effect tends to increase \(\Pi_L^H \) as well; however, the output distortion effect swamps the profit shifting effect, so the expected period 1 profit of the low-cost home firm decreases as a result of the second period subsidy.

The second period output subsidy also shifts profit to the home firm in period 2. For the low-cost home firm this effect is so large that the sum of period 1 and period 2 expected profits net of any subsidy, \(\Pi_L^H \), is greater with the subsidy than without even though expected first period profit is lower with the subsidy than without. For the high-cost home firm the sum of period 1 and period 2 expected profits net of any subsidy, \(\Pi_H^H \), is greater with the subsidy than without because the period 1 and period 2 profit shifting effects reinforce each other.

Finally, welfare is greater with the subsidy than without because both \(\Pi_H^L \) and \(\Pi_L^H \) are greater with the subsidy than without. In this case, the existence of period 2 strategic trade policy unambiguously increases home welfare.

Next consider table 2 for which \(p = p^* = .2 \) and the other parameters take the same values as those in the base case.

<table>
<thead>
<tr>
<th>(c^H = 15, c^L = 13)</th>
<th>(q_L^*)</th>
<th>(q_H^*)</th>
<th>(q_L^^)</th>
<th>(q_H^^)</th>
<th>(\Pi_L^H)</th>
<th>(\Pi_L^L)</th>
<th>(\Pi_H^H)</th>
<th>(\Pi_H^L)</th>
<th>(\Pi_H^H)</th>
<th>(\Pi_H^L)</th>
<th>(\Pi_H^H)</th>
<th>(\Pi_H^L)</th>
<th>(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>subsidy</td>
<td>5.28</td>
<td>2.36</td>
<td>12.46</td>
<td>8.09</td>
<td>5.58</td>
<td>7.65</td>
<td>13.40</td>
<td>24.96</td>
<td>19.18</td>
<td>19.18</td>
<td>19.18</td>
<td>19.18</td>
<td>19.18</td>
</tr>
</tbody>
</table>

These variables display a similar pattern to those of tables 1 and 2 except here the existence of period 2 strategic trade policy unambiguously decreases home welfare. The welfare decreasing effect of the low-cost firm's first period output distortion more than offsets the welfare increasing effects of first and second period profit shifting.\(^7\) The reduction in the first period expected profit of the low-cost home firm that results from signalling is greater the closer are \(c^H \) and \(c^L \) because greater output distortions are required to signal the firm's true costs. However, for a second period subsidy to reduce welfare, it appears that it is also necessary to have \(c^H > c^L \) and \(c_H^* > c_L^* \). The intuition for this latter condition is not clear, though it is necessary to generate a welfare decrease in the numerical analysis.\(^8\)

\(^7\) Unlike tables 1 and 2, in table 3 \(q_L^* \) is greater with the subsidy than without. The low-cost foreign firm's signalling effect is sufficient to dominate the strategic effect, though expected foreign output is lower with the subsidy than without.

\(^8\) Setting \(c_H^* = 10 \) and \(c_L^* = 9 \) does not generate a welfare decrease.
The practical significance of the cost structure in Table 3 should be considered. This structure would arise if the foreign firm had access to a newer (lower cost) technology, but one that was more affected by stochastic shocks, than the technology used by the home firm. It is not claimed that the parameter values in Table 3 are any more representative of real world cost conditions than Tables 1 or 2, but merely that such cost conditions may exist. Given this possibility and the numerous other parameterizations of the model which make strategic trade policy welfare decreasing, the results of this section reinforce what other researchers have found, namely, that strategic trade policy is not a general argument for industry assistance, but rather an argument for assistance under a very specific set of conditions.

6. Conclusion

This paper has shown that second period strategic trade policy increases the incentives that both high-cost home and foreign firms have to misrepresent themselves as low cost. As a result, low-cost home and foreign firms must distort their first period outputs even further than otherwise from their profit maximizing levels to signal that they are in fact low cost. The effect of this additional output distortion can be such that if the firm in the home country is low cost, then the existence of second period strategic trade policy can actually make the home country worse off. In fact, there are parameter values for which the output distortion of the low-cost home firm is such that the existence of second period strategic trade policy reduces expected welfare. These results add to the substantial literature that cautions the general use of strategic trade policy, for even under those conditions which are most favourable to its use the existence of strategic trade policy can reduce welfare.

8 In this case, if the home country government could commit to a policy of non-intervention prior to firms choosing first period outputs [Hirsh and Schulman (1993)], such a policy would be optimal.
\[
\frac{\partial \eta^I_1}{\partial q^I_1} = a - b \cdot E_{q^I_1} - 2bq^I_1 - c^I
\]
(A.9)

If \(q^H = q^I \), then \(\frac{\partial \eta^H}{\partial q^H} < \frac{\partial \eta^I}{\partial q^I} \) because \(c^H > c^I \). (Q.E.D.)

4. \(E_{\eta^H}^{HN} - E_{\eta^I}^{HN} > E_{\eta^H}^{II} - E_{\eta^I}^{II} \)

Proof:
\[
E_{\eta^H}^{HN} - E_{\eta^H}^{II} = \frac{(c^H - c^I) \cdot (4a - 6c^H + 4c^H^* - 2c^I - 4\rho^*c^H^* + 4\rho^*c^I^*)}{36a}
\]
(A.10)

and
\[
E_{\eta^H}^{II} - E_{\eta^I}^{II} = \frac{(c^H - c^I) \cdot (4a - 7c^H + 4c^H^* - c^I - 4\rho^*c^H^* + 4\rho^*c^I^*)}{36a}
\]
(A.11)

Now
\[
(4a - 6c^H + 4c^H^* - 2c^I - 4\rho^*c^H^* + 4\rho^*c^I^*) > (4a - 7c^H + 4c^H^* - c^I - 4\rho^*c^H^* + 4\rho^*c^I^*)
\]
(A.12)

because \(c^I < c^H \), so \(E_{\eta^H}^{HN} - E_{\eta^H}^{II} > E_{\eta^H}^{II} - E_{\eta^I}^{II} \). (Q.E.D.)

REFERENCES

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
<td>D.J. Wright</td>
<td>Hidden Action and Learning-By-Doing in Models of Monopoly Regulation and Infant Industry Protection; November 1990</td>
</tr>
<tr>
<td>151</td>
<td>C. Karfakis</td>
<td>Testing for Long Run Money Demand Functions in Greece Using Cointegration Techniques; November 1990</td>
</tr>
<tr>
<td>152</td>
<td>D. Hutchinson & S. Nicholas</td>
<td>The Internationalisation of Australian Business: Technology Transfer and Australian Manufacturing in the 1980s; November 1990</td>
</tr>
<tr>
<td>153</td>
<td>B. Rao</td>
<td>A Disequilibrium Approach to the New Classical Model; December 1990</td>
</tr>
<tr>
<td>154</td>
<td>J.B. Towe</td>
<td>The Determinants of American Equity Investment in Australia; December 1990</td>
</tr>
<tr>
<td>155</td>
<td>E. Jones</td>
<td>Economists, The State and The Capitalist Dynamic; January 1991</td>
</tr>
<tr>
<td>156</td>
<td>I. J. Irvine & W.A. Sims</td>
<td>Gorman Polar Forms and the S-Branch Utility Tree; February 1991</td>
</tr>
<tr>
<td>158</td>
<td>W.P. Hogan</td>
<td>New Banks: Impact and Response; March 1991</td>
</tr>
<tr>
<td>159</td>
<td>P.D. Groenewegen</td>
<td>Decentralising Tax Revenues: Recent Initiatives in Australian Federalism; April 1991</td>
</tr>
<tr>
<td>161</td>
<td>B. Rao</td>
<td>Disaggregation, Disequilibrium and the New Classical Model; July 1991</td>
</tr>
<tr>
<td>162</td>
<td>Y. Varoufakis</td>
<td>Postmodern Challenges to Game Theory; August 1991</td>
</tr>
<tr>
<td>163</td>
<td>Y. Varoufakis</td>
<td>Freedom within Reason from Axioms to Marxian Praxis; August 1991</td>
</tr>
<tr>
<td>164</td>
<td>D.J. Wright</td>
<td>Permanent vs. Temporary Infant Industry Assistance; September 1991</td>
</tr>
<tr>
<td>166</td>
<td>W. Jack</td>
<td>Pollution Control Versus Abatement: Implications for Taxation Under Asymmetric Information; November 1991</td>
</tr>
<tr>
<td>167</td>
<td>C. Karfakis & A. Parikh</td>
<td>Exchange Rate Convenience and Market Efficiency; December 1991</td>
</tr>
<tr>
<td>168</td>
<td>W. Jack</td>
<td>An Application of Optimal Tax Theory to the Regulation of a Duopoly; December 1991</td>
</tr>
<tr>
<td>169</td>
<td>I.J. Irvine & W.A. Sims</td>
<td>The Welfare Effects of Alcohol Taxation; December 1991</td>
</tr>
<tr>
<td>170</td>
<td>B. Frisch</td>
<td>Energy and Environment in Terms of Evolutionary Economies; January 1992</td>
</tr>
<tr>
<td>171</td>
<td>W.P. Hogan</td>
<td>Financial Deregulation: Fact and Fantasy, January 1992</td>
</tr>
<tr>
<td>172</td>
<td>P.T. Viprato</td>
<td>An Evolutionary Approach to International Expansion: A Study for an Italian Region; January 1992</td>
</tr>
<tr>
<td>173</td>
<td>C. Rose</td>
<td>Equilibrium and Adverse Selection; February 1992</td>
</tr>
<tr>
<td>174</td>
<td>D.J. Wright</td>
<td>Incentives, Protection and Time Consistency; April 1992</td>
</tr>
<tr>
<td>175</td>
<td>A.J. Phipps, J. Sheen & C. Wilkins</td>
<td>The Showdown in Australian Productivity Growth: Some Aggregated and Disaggregated Evidence; April 1992</td>
</tr>
<tr>
<td>176</td>
<td>J.B. Towe</td>
<td>Aspects of the Japanese Equity Investment in Australia; June 1992</td>
</tr>
<tr>
<td>178</td>
<td>D.J. Wright</td>
<td>Television Advertising Regulation and Programme Quality; August 1992</td>
</tr>
<tr>
<td>179</td>
<td>S. Ziss</td>
<td>Moral Hazard with Cost and Revenue Signals; December 1992</td>
</tr>
<tr>
<td>180</td>
<td>C. Rose</td>
<td>The Distributional Approach to Exchange Rate Target Zones; December 1992</td>
</tr>
<tr>
<td>181</td>
<td>W.P. Hogan</td>
<td>Markets for Illicit Drugs; January 1993</td>
</tr>
<tr>
<td>182</td>
<td>E. Jones</td>
<td>The Macroeconomic Fetish in Anglo-American Economies; January 1993</td>
</tr>
<tr>
<td>184</td>
<td>Y. Varoufakis & S. Hargreaves-Heap</td>
<td>The Simultaneous Evolution of Social Roles and of Cooperation; April 1993</td>
</tr>
<tr>
<td>185</td>
<td>C. Karfakis & D.M. Moschos</td>
<td>The Information Content of the Yield Curve in Australia; April 1993</td>
</tr>
<tr>
<td>186</td>
<td>C. Karfakis & A. Parikh</td>
<td>Uncovered Interest Parity Hypothesis for Major Currencies; May 1993</td>
</tr>
<tr>
<td>188</td>
<td>J.B. Towe</td>
<td>Citation Analysis of Publications on the Australian Tariff Debate, 1946-1991; August 1993</td>
</tr>
<tr>
<td>191</td>
<td>W.P. Hogan</td>
<td>Market Value Accounting in the Financial Sector; November 1993</td>
</tr>
<tr>
<td>192</td>
<td>Y. Varoufakis & W. Kafouros</td>
<td>The Transferrability of Property Rights and the Scope of Industrial Relations' Legislation: Some Lessons from the NSW Road Transport Industry; November 1993</td>
</tr>
<tr>
<td>193</td>
<td>P.D. Groenewegen</td>
<td>Jacob Viner and the History of Economic Thought; January 1994</td>
</tr>
<tr>
<td>194</td>
<td>D. Dutta & A. Hussain</td>
<td>A Model of Share-Cropping with Interlinked Markets in a Dual Agrarian Economy; March 1994</td>
</tr>
<tr>
<td>195</td>
<td>P.E. Korsvold</td>
<td>Hedging Efficiency of Forward and Option Currency Contracts; March 1994</td>
</tr>
<tr>
<td>196</td>
<td>J. Yates</td>
<td>Housing and Taxation: An Overview; March 1994</td>
</tr>
<tr>
<td>197</td>
<td>P.D. Groenewegen</td>
<td>Keynes and Marshall: Methodology, Society and Politics; March 1994</td>
</tr>
<tr>
<td>198</td>
<td>D.J. Wright</td>
<td>Strategic Trade Policy and Signalling with Unobservable Costs; April 1994</td>
</tr>
</tbody>
</table>

Copies are available upon request from: Department of Economics The University of Sydney N.S.W. 2006, Australia
Working Papers in Economics Published Elsewhere

2 I.G. Sharpe & R.G. Walker
Journal of Accounting Research, 13(2), Autumn 1975

3 N.V. Lam
Journal of the Developing Economies, 17(1), March 1979

4 V.B. Hall & M.L. King
New Zealand Economic Papers, 10, 1976

5 A.J. Phipps
Economic Record, 53(143), September 1977

6 N.V. Lam
Journal of Development Studies, 14(1), October 1977

7 I.G. Sharpe
Australian Journal of Management, April 1976

9 W.P. Hogan
Economic Papers, 55, The Economic Society of Australia and New Zealand, October 1977

12 I.G. Sharpe & P.A. Volker
Economics Letters, 2, 1979

13 I.G. Sharpe & P.A. Volker
Kredit und Kapital, 12(1), 1979

14 W.P. Hogan

15 F. Gill
Australian Economic Papers, 19(35), December 1980

18 I.G. Sharpe
Journal of Banking and Finance, 3(1), April 1979

21 R.L. Brown
Australian Journal of Management, 3(1), April 1978

23 I.G. Sharpe & P.A. Volker
The Australian Monetary System in the 1970s, M. Porter (ed.), Supplement to Economic Board 1978

24 V.B. Hall
Economic Record, 50(152), March 1980

25 I.G. Sharpe & P.A. Volker
Australian Journal of Management, October 1979

27 W.P. Hogan
Malayan Economic Review, 24(1), April 1979

28 P. Saunders
Australian Economic Papers, 19(34), June 1980

29 W.P. Hogan

30 I.G. Sharpe & P.A. Volker
Australian Economic Papers, 18(33), December 1979

32 R.W. Bailey, V.B. Hall & P.C.B. Phillips
Keynesian Theory, Planning Models, and Quantitative Economics, G. Gandolfo and F. Marzano (eds.), 1987

38 U.R. Kohli
Australian Economic Papers, 21(39), December 1982

39 G. Mills
Journal of the Operational Research Society (33) 1982

41 U.R. Kohli
Canadian Journal of Economics, 15(2), May 1982

42 W.J. Merrilees
Applied Economics, 15, February 1983

43 P. Saunders
Australian Economic Papers, 20(37), December 1981

45 W.J. Merrilees

46 W.J. Merrilees
Journal of Industrial Economics, 31, March 1983

49 U.R. Kohli
Review of Economic Studies, 50(160), January 1983

50 P. Saunders
Economic Record, 57(159), December 1981

53 J. Yates
AFSI Commissioned Studies and Selected Papers, AGPS, IV 1982

54 J. Yates
Economic Record, 58(161), June 1982

55 G. Mills
Seventh Australian Transport Research Forum-Papers, Hobart 1982

56 V.B. Hall & P. Saunders
Economic Record, 60(168), March 1984

58 F. Gill
Esquelles, 37(3-4), 1984

59 G. Mills & W. Coleman
Journal of Transport Economics and Policy, 16(3), September 1982

60 J. Yates
Economic Record, 59(166), September 1983

61 S.S. Joson
Australian Economic Papers, 24(44), June 1985

62 R.T. Ross
Australian Quarterly, 50(3), Spring 1984

63 W.J. Merrilees
Economic Record, 59(166), September 1983

65 A.J. Phipps
Australian Economic Papers, 22(41), December 1983

67 V.B. Hall
Energy Economics, 8(2), April 1986

70 F. Gill
Australian Quarterly, 59(2), Winter 1987

71 W.J. Merrilees
Australian Economic Papers, 23(45), December 1984

73 C.G.F. Simkin
Singapore Economic Review, 29(1), April 1984

74 J. Yates
Australian Quarterly, 50(2), Winter 1984

75 V.B. Hall
Economics Letters, 20, 1986

78 S.S. Joson
Journal of Policy Modeling, 8(2), Summer 1986

79 R.T. Ross
Economic Record, 62(178), September 1986

81 R.T. Ross
Australian Bulletin of Labour, 11(4), September 1985

82 P.D. Groenewegen

84 E.M.A. Gross, W.P. Hogan & I.G. Sharpe
Australian Economic Papers, 27(50), June 1988

85 F. Gill
Australian Bulletin of Labour, 16(4), December 1990

94 W.P. Hogan
Company and Securities Law Journal, 6(1), February 1988

95 J. Yates
Urban Studies, 26, 1989

96 B.W. Ross
The Economic and Social Review, 20(3), April 1989

97 F. Gill

98 A.J. Phipps
Australian Economic Papers, 31(58), June 1992

99 R.T. Ross
Australian Bulletin of Labour, 15(1), December 1988

100 F. Gill
Heta Bulletin, (11), Winter 1989

101 J. Piggott
Public Sector Economics - A Reader, P. Hare (ed.), Basil Blackwell, 1988

102 J. Carlson & D. Findlay
Journal of Macroeconomics, 13(1), Winter 1991

102 J. Carlson & D. Findlay
Journal of Economics and Business, 44(1), February 1992
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
<th>Source or Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>107</td>
<td>B.W. Ross</td>
<td>Prometeus, 6(2), December 1988</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>S.S. Josen</td>
<td>Rivista di diritto valutario e di economia internazionale, 35(2), June 1988</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>V.B. Hall</td>
<td>Energy Economics, 12(4) October 1990</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>V.B. Hall</td>
<td>Australian Economic Review, (87) 1989(3)</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>W.P. Hogan</td>
<td>Abacus, 25(2), September 1989</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>W.P. Hogan & J.G. Sharpe</td>
<td>Economic Analysis and Policy, 19(1), March 1989</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>F. Gill</td>
<td>The Australian Quarterly, 61(4), 1989</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>S. Lahiri & J. Sheen</td>
<td>The Economic Journal, 100(400), 1990</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>J. Sheen</td>
<td>Journal of Economic Dynamics and Control, 16, 1992</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Y. Varoufakis</td>
<td>Economic Applique, 45(1), 1992</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>L. Ermini</td>
<td>The Economic Record, 60(204), March 1993</td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>D. Wright</td>
<td>Journal of International Economics, 35, (1/2) 1993</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>D. Wright</td>
<td>Australian Economic Papers, 32, 1993</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>P. Groenewegen</td>
<td>Australian Economic Papers, 31, 1992</td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>C. Karfakis & D. Moschos</td>
<td>Journal of Money, Credit and Banking, 22(3), 1990</td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>J. Yates</td>
<td>Housing Studies, 7, (2), April 1992</td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>W.P. Hogan</td>
<td>Economic Papers, 10(1), March 1991</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>P.Groenewegen</td>
<td>Local Government and Market Decentralisation: Experiences in Industrialised, Developing and Former Eastern Block Countries, R.J. Bennett (ed.) UN University Press, 1994</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Y. Varoufakis</td>
<td>Erkenntnis, 38, 1993</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Y. Varoufakis</td>
<td>Science and Society, 56(4), 1993</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>C. Rose</td>
<td>The Rand Journal of Economics, 24(4), Winter 1993</td>
<td></td>
</tr>
</tbody>
</table>