EXCHANGE RATE CONVERGENCE AND
MARKET EFFICIENCY

by
C.I. KARFAXIS and A. PARIKH

No. 167
DECEMBER 1991

ABSTRACT

The objective of this paper is to examine the market efficiency hypothesis for five major exchange rates of the Australian dollar using multivariate cointegration techniques. The conclusion is that cointegrated relationships exist in foreign exchange markets when interdependence among exchange rates is accounted for.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Methodological and Theoretical Issues</td>
<td>1</td>
</tr>
<tr>
<td>3. Empirical Results</td>
<td>4</td>
</tr>
<tr>
<td>4. Concluding Remarks</td>
<td>8</td>
</tr>
<tr>
<td>Addendum</td>
<td>9</td>
</tr>
</tbody>
</table>
1. Introduction

This study investigates firstly the market efficiency hypothesis for five major exchange rates of the Australian dollar (henceforth, AS) before and after the float by means of the cointegration methodology developed by Johansen and Juselius (1990a), and then, if exchange rate convergence exists, it examines which spot rate has borne the burden of adjustment to equilibrium.

In a recent article, MacDonald and Taylor (1989) provided evidence in favour of the hypothesis that foreign exchange markets are efficient, since non-cointegration between a number of US bilateral exchange rates could not be rejected.

The present study argues that foreign exchange markets involve the simultaneous determination of several exchange rates through international arbitrage, and therefore testing the efficiency hypothesis in a bivariate framework is incorrect. The other problem with testing the concept of efficiency in a bivariate framework is the interpretation of nonrejection of the null hypothesis of noncointegration being regarded as equivalent to the market efficiency hypothesis. This paper tries to remedy these problems by using a multivariate procedure for testing the market efficiency.

The rest of the paper is organized as follows. In Section 2, methodological and theoretical issues are presented. Section 3 reports and discusses the results. Concluding remarks are given in Section 4.

2. Methodological and Theoretical Issues

It is an empirical fact that many macroeconomic time series are characterised by nonstationarities. Under nonstationarity, the classical t and F-statistics are inappropriate to test theoretical restrictions because the limiting distribution of the asymptotic variance of the parameter estimates is not finitely defined [see Fuller (1985)]. In order to test whether a time series contains a unit root, i.e., it is integrated of order one (I(1)), the parametric
tests developed by Fuller (1976), and Dickey and Fuller (1981) are used. Recently Phillips (1987) and Perron (1988) have proposed nonparametric tests which allow for serial correlation and heteroscedasticity. These tests were also conducted in this study.

The long run linkage between a number of series can be looked at from the viewpoint of cointegration [see Engle and Granger (1987)]. Let \(x(t) \) be a vector of \(n \)-component time series each integrated of the same order \(k \). Then \(x(t) \) is said to be cointegrated of order \(k \), if there exists a vector \(\lambda \) such that:

\[
\Delta x(t) = \lambda' \Delta x(t-1) = \lambda' x(t-1)
\]

\(\lambda(k-p), p>0 \). Stationarity of \(x(t) \) implies that the \(n \) elements of \(x(t) \) do not drift away from one another over the long run, obeying thus an equilibrium relationship. If \(\lambda \) exists, it may not be unique as there can be several equilibrium relationships. If the number of variables to be tested for cointegration is greater than two, the testing procedure developed by Engle and Granger is not applicable, since it does not address the possibility that more than one cointegrating vector may be present. Recent advances in cointegration theory [Johansen and Juselius (1990a)] have developed a maximum likelihood (ML) testing procedure on the number of cointegrating vectors which also allows for inference on parameter restrictions. The ML method uses the interim multiplier form

\[
\Delta x(t) = \sum_{j=1}^{k} \Pi_j \Delta x(t-j) + \Pi_k x(t-k) + \mu + v(t)
\]

of the vector autoregressive (VAR) representation of the system, where \(x(0) \) is a \(nx1 \) vector of variables of interest and \(\Pi_k \) is a square \(nxn \) matrix of rank \(r \leq n \), \(\mu \) is a \(nx1 \) vector of constant terms, and \(v(t) \) is a \(nx1 \) vector of residuals. The testing procedure involves the null hypothesis \(H_0: \Pi_k = 0 \), i.e., there are at most \(r \) cointegrating vectors \(\beta_1, \beta_2, \ldots, \beta_r \) which provide \(r \) stationary linear combinations \(\beta' x(t-q) \).

The testing procedure is based on regressing the \(n \)-element vectors \(\Delta x(t) \) and \(x(t-q) \) on \(\Delta x(t-1), \ldots, \Delta x(t-q+1) \), and possibly on a constant and seasonal dummies, and obtaining the associated \(n \)-element residual vectors \(R(t) \) and \(R(0) \). The test statistic for the number of cointegrating vectors is obtained by solving the eigenvalue problem

\[
\lambda S_n = S_n S_0 S_n S_0' S_n
\]

where \(S_n = \sum_{t=1}^{T} \Delta x(t) \), \(i=0, q \), and \(T \) denotes the number of observations. The likelihood ratio (LR) statistic for the hypothesis \(H_0: \Pi_k = 0 \)

\[
-2 \ln (Q^0|H_0) = -2 \ln (1-\lambda^2)
\]

is a test that there are at most \(r \) cointegrating vectors versus the general alternative (trace), where \(\lambda \) corresponds to the \(n-r \) smaller eigenvalues. The \(nxn \) matrix of cointegrating vectors \(\Phi \) can be obtained as the \(n \)-element eigenvectors corresponding to \(\lambda \).

The LR statistic for testing \(H_0(r) \) in \(H_0(r+1) \) is given by:

\[
-2 \ln (Q^r|H_0) = -2 \ln (1-\lambda_{r+1}^2)
\]

The LR statistic for testing the hypothesis for zero loading factors \(H_{10} : \alpha = \lambda \Psi \) is

\[1\] The calculation of the eigenvectors of \(S_n S_0' S_n \) with respect to \(S_n \) can be transformed into a standard eigenvalue problem by using Choleski decomposition \(S_n = C \), since the eigenvalues that solve \(|A S_n S_0' S_n| \) also solve \(|A I^2 C S_n S_0' S_n| \). Premultiplying the eigenvectors of the standardized problem by \(C' \), one can obtain the original eigenvectors normalized such that \(E S_n = I \). The calculations of the eigenvectors have been performed using the computer package RATS 3.0, VAR Econometrics, Inc./Down Associates.
which is asymptotically distributed as \(\chi^2 \) with \((n-k-1)\) degrees of freedom; \(k \) denotes the restrictions on matrix \(\alpha \).

Let \(x(t) = (x_1(t) \ldots x_k(t))^T \) be a 5-dimensional vector of spot rates. The weak form of market efficiency for the spot rate \(x^i(t) \) requires that there is no difference between its expected value \(E(x^i(t)) \) conditional on two different information sets [see Fama (1970)]. That is,

\[
E(x^i(t)|\Omega(t-1)) = E(x^i(t)|f(t-1))
\]

where \(\Omega(t-1) = (x^1(t-1) \ldots , x^k(t-1)) \), and \(f(t-1) = (x^1(t-1) \ldots , x^k(t-1)) \), with \(j = 2, \ldots , 5 \). In other words, the past history of \(s^i(t) \) incorporates all useful information in predicting its current value. If the hypothesis of noncointegration is rejected, it will be regarded as an evidence against the market efficiency hypothesis because of the prevalence of the error correction mechanism.

3. Empirical Results

Monthly data on the exchange rate of the A$ against the US dollar (US), the Japanese yen (J), the pound Sterling (UK), the German mark (G) and the French franc (F) are used for the period January 1975 to February 1990.²

With respect to the univariate time series properties of the data, the results reported in Table 1 indicate that the null hypothesis of unit root is not rejected for the levels of all the series at a 5% significance level. In contrast, when first differences are used, nonstationarity is rejected in all cases.

Table 2

<table>
<thead>
<tr>
<th>Dep. Variance</th>
<th>SSE</th>
<th>Q(24)</th>
<th>skewness</th>
<th>kurtosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-float</td>
<td>14.059(0.09)</td>
<td>2.90(0.00)*</td>
<td>12.35(0.00)*</td>
<td>0.0005</td>
</tr>
<tr>
<td>post-float</td>
<td>38.560(0.14)</td>
<td>-0.45(0.02)</td>
<td>16.20(0.00)*</td>
<td>0.0006</td>
</tr>
<tr>
<td>pre-float</td>
<td>17.260(0.97)</td>
<td>-1.34(0.00)</td>
<td>8.59(0.00)*</td>
<td>0.0008</td>
</tr>
<tr>
<td>post-float</td>
<td>26.400(0.65)</td>
<td>-0.15(0.03)</td>
<td>1.49(0.00)</td>
<td>0.0007</td>
</tr>
<tr>
<td>pre-float</td>
<td>23.120(0.61)</td>
<td>0.54(0.03)</td>
<td>3.82(0.00)</td>
<td>0.0005</td>
</tr>
<tr>
<td>post-float</td>
<td>34.19(0.08)</td>
<td>0.21(0.04)</td>
<td>2.04(0.00)</td>
<td>0.0007</td>
</tr>
<tr>
<td>pre-float</td>
<td>30.26(0.18)</td>
<td>-0.57(0.00)</td>
<td>6.03(0.00)</td>
<td>0.0012</td>
</tr>
<tr>
<td>post-float</td>
<td>24.02(0.40)</td>
<td>-0.06(0.13)</td>
<td>1.27(0.00)</td>
<td>0.0014</td>
</tr>
<tr>
<td>pre-float</td>
<td>31.10(0.15)</td>
<td>0.54(0.02)</td>
<td>3.02(0.00)</td>
<td>0.0013</td>
</tr>
<tr>
<td>post-float</td>
<td>34.70(0.07)</td>
<td>-0.30(0.07)</td>
<td>1.86(0.00)</td>
<td>0.0011</td>
</tr>
</tbody>
</table>

²The skewness and kurtosis tests seem to suggest the presence of nonnormality in the pre-float regime.

²The period 1975-1983 was mainly the era during which the Australian currency moved to a managed float from a pegged exchange rate to US dollar. The system of a market determined exchange rate was adopted in December 1983.
In order to check for the presence of a linear trend in the nonstationary part of the data generation process, the hypothesis that a linear trend is absent (c(1)=0) is tested by means of the approach suggested by Johansen (1991). The trace test results given in Table 3 indicate that the absence of a linear trend cannot be rejected.

The results of testing for the number of cointegrating vectors between the five-A$ bilateral rates are also reported in Table 3. The LR test statistics that there are zero cointegrating vectors or five common trends reject the null hypothesis against the 95% critical value in both time periods. The trace test does not reject the hypothesis that at least two but possibly three or four cointegrating vectors are present in the pre-Float regime. The maximum eigenvalue test does not reject the hypothesis r=2 against r=3. The trace test statistic for the post-Float regime indicates the existence of four cointegrating vectors, implying that the change in the exchange rate regime has imposed two additional equilibrium constraints on the data. This suggests that future movements of one exchange rate can be predicted by using the information of other currencies. One implication of these findings is that the market efficiency hypothesis is rejected in a multivariate context.

The other implication is that overall the system has moved to a greater stability in the post-Float regime with four cointegrating vectors and one common trend.

Table 3

<table>
<thead>
<tr>
<th>r</th>
<th>n-r</th>
<th>T,</th>
<th>95%</th>
<th>T,</th>
<th>95%</th>
<th>m.L</th>
<th>95%</th>
<th>m.L</th>
<th>95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>pre-Float</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r=4</td>
<td>1</td>
<td>6.31</td>
<td>9.094</td>
<td>1.03</td>
<td>0.03</td>
<td>0.63</td>
<td>0.23</td>
<td>0.294</td>
<td>0.193</td>
</tr>
<tr>
<td>r=3</td>
<td>2</td>
<td>15.09</td>
<td>22.448</td>
<td>3.54</td>
<td>17.844</td>
<td>9.62</td>
<td>15.752</td>
<td>8.51</td>
<td>14.095</td>
</tr>
<tr>
<td>r=1</td>
<td>4</td>
<td>58.13</td>
<td>53.347</td>
<td>33.77</td>
<td>49.419</td>
<td>28.34</td>
<td>28.167</td>
<td>21.94</td>
<td>27.341</td>
</tr>
<tr>
<td>r=0</td>
<td>5</td>
<td>97.65</td>
<td>75.328</td>
<td>34.36</td>
<td>89.977</td>
<td>31.34</td>
<td>34.387</td>
<td>27.51</td>
<td>33.262</td>
</tr>
<tr>
<td>post-Float</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r=4</td>
<td>1</td>
<td>4.94</td>
<td>9.094</td>
<td>0.94</td>
<td>0.04</td>
<td>0.92</td>
<td>0.23</td>
<td>0.924</td>
<td>0.23</td>
</tr>
<tr>
<td>r=3</td>
<td>2</td>
<td>20.57</td>
<td>22.148</td>
<td>19.27</td>
<td>23.144</td>
<td>16.00</td>
<td>15.752</td>
<td>14.33</td>
<td>14.095</td>
</tr>
<tr>
<td>r=2</td>
<td>3</td>
<td>41.43</td>
<td>35.068</td>
<td>39.75</td>
<td>31.256</td>
<td>28.34</td>
<td>28.167</td>
<td>20.48</td>
<td>21.595</td>
</tr>
<tr>
<td>r=1</td>
<td>4</td>
<td>69.71</td>
<td>53.347</td>
<td>34.61</td>
<td>48.419</td>
<td>28.34</td>
<td>28.167</td>
<td>26.28</td>
<td>27.341</td>
</tr>
<tr>
<td>r=0</td>
<td>5</td>
<td>121.05</td>
<td>75.328</td>
<td>39.55</td>
<td>69.977</td>
<td>31.34</td>
<td>34.207</td>
<td>31.34</td>
<td>33.262</td>
</tr>
</tbody>
</table>

r and n-r denote the number of eigenvectors and common trends respectively. T, (T,) and m.L (m.L) denote, respectively, the trace and maximum eigenvalue statistics for the restricted (unrestricted) model. Critical values are taken from Johansen and Juselius (1990a, Tables A2, A3).

Having established the existence of a long run exchange rate convergence, the analysis proceeds to investigate whether this convergence has been achieved in a symmetric way through adjustments by all exchange rates. In the VAR system (1), with \(x(t), \alpha, \beta, \delta, \eta, \delta, \xi \) and \(\alpha \), the equations for \(\beta(x(t+1) - x(t)) \) and \(\beta(x(t+1) - x(t)) \) are included. It is desirable to test whether the cointegrating relationship \(\beta(x(t+1) - x(t)) \) does not enter all the equations of the VAR system. In fact, the loading factors \(\alpha \) entering the \(j \)th equation serves as a test of weak exogeneity of \(\Delta x \) with respect to the cointegrating parameters \(\beta \) [see Johansen and Juselius (1990a)].

The results of the likelihood ratio tests on loading factors reported in Table 4 indicate that the null hypothesis of zero loading is rejected for all currencies other than US dollar during the pre-Float period. This means that all other currencies adjust to clear disequilibrium in foreign exchange markets. On the other hand, during the post-Float regime, the hypothesis of zero loading is rejected for US dollar, mark, and franc. In this period, adjustment in these currencies clear the disequilibrium. The analytical interpretation of these findings implies that exchange rate convergence has been achieved in an asymmetric manner.

Table 4

<table>
<thead>
<tr>
<th>Testing for Zero Loading Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_0: \beta_{ij}=0)</td>
</tr>
<tr>
<td>pre-Float</td>
</tr>
<tr>
<td>(H_0: \beta_{ij}=0)</td>
</tr>
<tr>
<td>post-Float</td>
</tr>
<tr>
<td>(H_0: \beta_{ij}=0)</td>
</tr>
</tbody>
</table>

* indicates significance at 5%.
4. Concluding remarks

The analysis of similarly integrated I(1) variables in a multivariate VAR framework rejected noncointegration between the A$ and other five leading currencies, and thus did not support the market efficiency hypothesis. One implication is that the efficiency hypothesis should be addressed in a multivariate context, when foreign currency movements are interdependent through international arbitrage. Furthermore, the nonexistence of a cointegrated relationship should not be interpreted as an evidence in favour of market efficiency.

REFERENCES

Johansen, S., 1991 Determination of cointegration rank in the presence of a linear trend, mimeo, University of Copenhagen, Institute of Mathematical Statistics.

Working Papers in Economics

115 F. Gill
Social Justice and the Low-Paid Worker; October 1988

116 G. Kingston
Theoretical Foundations of Constant-Propotion Portfolio Insurance; October 1988

117 V.B. Neil & D.R. Mills
In Medium Temperature Solar Thermal Process Steam Viable I: Some Preliminary Results; November 1988

118 W.P. Hogan
Insider Information and Market Adjustment; November 1988

119 L. Ermini
Reinterpreting a Recent Temporally Aggregated Consumption-GNP Model; December 1988

120 P. Groenevagen
Progressive Personal Income Tax - A Historical Perspective; December 1988

121 M.C. Blad
Rubinstein’s Solution of the Bargaining Problem: Some Generalisations and Extensions; December 1988

122 W.P. Hogan & I.G. Sharpe
Prudential Regulation of Bank Ownership and Control; January 1989

123 G. Miller
The Reform of Australian Aviation; June 1989

124 L. Ermini
Transitory Consumption and Measurement Errors in the Permanent Income Hypothesis; June 1989

125 E. Kiernan
Is Austerity Necessary? July 1989

126 F. Gill
Labour Market Flexibility - To What End? August 1989

127 E. Kiernan
Financial Reform: A Perspective; September 1989

128 S. Lahiri & J. Sheen
On Optimal Damping; September 1989

129 S. Margarets-Haque & Y. Varoufakis
Multiple Reputations in Infinitely Repeated Games; October 1989

130 J. Sheen
International Monetary and Fiscal Policy Cooperation in the Presence of Wage Inflexibilities; October 1989

131 E. Jones
Was The Post-War Boom Keynesian? October 1989

132 S. Lahiri & J. Sheen
A Risk Averse Price-Setting Monopolist in a Model of International Trade; October 1989

133 P. Gill
A Target-Wage Dilemma: Some Consequences of Incomplete Information; December 1989

134 W.P. Hogan
New Banks in Australia; December 1989

135 Y. Varoufakis
Modelling Rational Conflict: The Limits of Game Theory; February 1990

136 L. Ermini
Shock Persistence in Australian Output and Consumption; March 1990

137 S. Zia
Strategic Investment, Competition and the Independence Result; March 1990

138 D.J. Wright
International Technology Transfer with an Information Asymmetry and Endogenous Research and Development; April 1990

139 D.J. Wright
International Technology Transfer and Per Unit Royalties; April 1990

140 P. Ganguli & S. Nath
Optimal Mix of Urban Public Services: The Case of Three Indian Cities; May 1990

141 P.D. Groenevagen
Alfred Marshall’s Principles of Economics: A Centenary Perspective from the Antipodes; June 1990

142 J. Sheen
Real Wages and the Business Cycle in Australia; June 1990

143 C.J. Karfasikas
A Model of Exchange Rate Policy: Evidence for the US Dollar-Greek Drachma Rate 1975-1987; August 1990

144 C.J. Karfasikas & D.M. Hoschos
Interest Rate Linkages within the European Monetary System: A Time Series Analysis; August 1990

145 C.J. Karfasikas & D.M. Hoschos
Asymmetries in the European Monetary System: Evidence from Interest Rates; September 1990

146 W.P. Hogan
International Capital Adequacy Standards: October 1990

147 J. Yates
Shared Strategies for Housing: The Socialisation or Privatisation of Housing? October 1990

148 G. Butler
Contracts in the Political Economy of a Nation; November 1990

149 B. Rao
Some Further Evidence on the Policy Ineffectiveness Proposition; November 1990

150 D.J. Wright
Hidden Action and Learning-By-Doing in Models of Monopoly Regulation and Infant Industry Protection; November 1990

151 C.J. Karfasikas
Testing for Run Money Demand Functions in Greece Using Coincident Technique; November 1990

152 D. Hutchinson & S. Nicholas
The Internationalisation of Australian Business: Technology Transfer and Australian Manufacturing in the 1980s; November 1990

153 B. Rao
A Disequilibrium Approach to the New Classical Model; December 1990

154 J.B. Towe
The Determinants of American Equity Investment in Australia; December 1990

155 E. Jones
Economists, The State and The Capitalist Dynamic; January 1991

156 L.J. Irvin & W.A. Sim
Gorman Polar Forms and the S-Branch Utility Tree; February 1991

157 B. Rao
A Model of Income, Unemployment and Inflation for the U.S.A.; February 1991

158 W.P. Hogan
New Banks: Impact and Responses; March 1991

159 P.D. Groenevagen
Decentralising Tax Revenues: Recent Initiatives in Australian Federalism; April 1991

160 C.J. Karfasikas
Monetary Policy and the Velocity of Money in Greece: A Cointegration Approach; July 1991

161 B. Rao
Disaggregation, Disequilibrium and the New Classical Model; July 1991

162 Y. Varoufakis
Postmodern Challenges to Game Theory; August 1991

163 Y. Varoufakis
Freedom within Reason from Axions to Marxian Praxis; August 1991

164 D.J. Wright
Permanent vs. Temporary Infant Industry Assistance; September 1991

165 C.J. Karfasikas & A.J. Phillips
Covered Interest Parity and the Efficiency of the Australian Dollar Forward Market: A Cointegration Analysis Using Daily Data; November 1991

166 W. Jack
Pollution Control Versus Abatement: Implications for Taxation Under Asymmetric Information; November 1991

167 C.J. Karfasikas & A. Parikh
Exchange Rate Convenience and Market Efficiency; December 1991

Copies are available upon request from:
Department of Economics,
The University of Sydney,
N.S.W. 2006, Australia.
Working Papers in Economics Published Elsewhere

3 N.V. Lam Journal of the Developing Economies, 17(1), March 1979
4 V.B. Hall & M.L. King New Zealand Economic Papers, 10, 1976
5 A.J. Phibbs Economic Record, 53(143), September 1977
6 N.V. Lam Journal of Development Studies, 14(1), October 1977
7 I.G. Sharpe Australian Journal of Management, April 1976
8 W.P. Hogan Economic Papers, 5, The Economic Society of Australia and New Zealand, October 1977
9 I.G. Sharpe & P.A. Volker Economic Letters, 2, 1979
10 I.G. Sharpe & P.A. Volker Kredit und Kapital, 12(1), 1979
12 I.G. Sharpe Australian Economic Papers, 19(35), December 1979
13 I.G. Sharpe Australian Journal of Management, 1(1), April 1978
15 I.G. Sharpe The Australian Monetary System in the 1970s, P.A. Volker, Australian Economic Papers, 56(152), March 1980
16 I.G. Sharpe & P.A. Volker Australian Journal of Management, October 1979
17 W.P. Hogan Malay Economic Review, 24(11), April 1979
18 P. Saunders Australian Economic Papers, 19(34), June 1980
20 I.G. Sharpe & P.A. Volker Australian Economic Papers, 19(33), December 1979
22 U.R. Kohli Australian Economic Papers, 22(39), December 1982
26 P. Saunders Australian Economic Papers, 20(37), December 1981
28 W.J. Harrelees Journal of Industrial Economics, 31, March 1983
30 P. Saunders Economic Record, 57(199), December 1981
31 J. Yates APSI, Commissioned Studies and Selected Papers, APSI, IV 1982
32 J. Yates Economic Record, 58(161), June 1982
33 G.Mills Seventh Australian Transport Research Forum Papers, Hobart, 1982
34 V.B. Hall & P. Saunders Economic Record, 60(168), March 1984
35 F. Gill Economic Record, 59(166), September 1983
36 F. Gill Economic Record, 59(166), September 1983
37 F. Gill Economic Record, 59(166), September 1983
38 F. Gill Economic Record, 59(166), September 1983
39 F. Gill Economic Record, 59(166), September 1983
40 F. Gill Economic Record, 59(166), September 1983
41 F. Gill Economic Record, 59(166), September 1983
42 F. Gill Economic Record, 59(166), September 1983
43 F. Gill Economic Record, 59(166), September 1983
44 F. Gill Economic Record, 59(166), September 1983
45 F. Gill Economic Record, 59(166), September 1983
46 F. Gill Economic Record, 59(166), September 1983
47 F. Gill Economic Record, 59(166), September 1983
48 F. Gill Economic Record, 59(166), September 1983
49 F. Gill Economic Record, 59(166), September 1983
50 F. Gill Economic Record, 59(166), September 1983
51 F. Gill Economic Record, 59(166), September 1983
52 F. Gill Economic Record, 59(166), September 1983
53 F. Gill Economic Record, 59(166), September 1983
54 F. Gill Economic Record, 59(166), September 1983
55 F. Gill Economic Record, 59(166), September 1983
56 F. Gill Economic Record, 59(166), September 1983
57 F. Gill Economic Record, 59(166), September 1983
58 F. Gill Economic Record, 59(166), September 1983
59 F. Gill Economic Record, 59(166), September 1983
60 F. Gill Economic Record, 59(166), September 1983
61 F. Gill Economic Record, 59(166), September 1983
62 F. Gill Economic Record, 59(166), September 1983
63 F. Gill Economic Record, 59(166), September 1983
64 F. Gill Economic Record, 59(166), September 1983
65 F. Gill Economic Record, 59(166), September 1983
66 F. Gill Economic Record, 59(166), September 1983
67 F. Gill Economic Record, 59(166), September 1983
68 F. Gill Economic Record, 59(166), September 1983
69 F. Gill Economic Record, 59(166), September 1983
70 F. Gill Economic Record, 59(166), September 1983
71 F. Gill Economic Record, 59(166), September 1983
72 F. Gill Economic Record, 59(166), September 1983
73 F. Gill Economic Record, 59(166), September 1983
74 F. Gill Economic Record, 59(166), September 1983
75 F. Gill Economic Record, 59(166), September 1983
76 F. Gill Economic Record, 59(166), September 1983
77 F. Gill Economic Record, 59(166), September 1983
78 F. Gill Economic Record, 59(166), September 1983
79 F. Gill Economic Record, 59(166), September 1983
80 F. Gill Economic Record, 59(166), September 1983
81 F. Gill Economic Record, 59(166), September 1983
82 F. Gill Economic Record, 59(166), September 1983
83 F. Gill Economic Record, 59(166), September 1983
84 F. Gill Economic Record, 59(166), September 1983
85 F. Gill Economic Record, 59(166), September 1983
86 F. Gill Economic Record, 59(166), September 1983
87 F. Gill Economic Record, 59(166), September 1983
88 F. Gill Economic Record, 59(166), September 1983
89 F. Gill Economic Record, 59(166), September 1983
90 F. Gill Economic Record, 59(166), September 1983
91 F. Gill Economic Record, 59(166), September 1983
92 F. Gill Economic Record, 59(166), September 1983
93 F. Gill Economic Record, 59(166), September 1983
94 F. Gill Economic Record, 59(166), September 1983
95 F. Gill Economic Record, 59(166), September 1983
96 F. Gill Economic Record, 59(166), September 1983
97 F. Gill Economic Record, 59(166), September 1983
98 F. Gill Economic Record, 59(166), September 1983
99 F. Gill Economic Record, 59(166), September 1983
100 L.Haddad The Economic and Social Review, 20(3), April 1989
103 L.Haddad Rivista di Diritto Valutario e Di Economia Internazionale, 35(2), June 1988
| 112 | P.Groenewegen | *NeoClassical Economic Theory 1870 to 1930*
118	W.P.Hogan	*Abacus*, 25(2), September 1989
126	F.Gill	*The Australian Quarterly*, 61(4), 1989
128	S.Lahiri & J.Sheen	*The Economic Journal*, 100(400), 1990
144	C.J.Karfasik & D.Noschos	*Journal of Money, Credit, and Banking*, 22(3), 1990
158	W.P.Hogan	*Economic Papers*, 10(1), March 1991