The Information Content of the Yield Curve in Australia*

by

C.J. Karfakis and D.M. Meachem

No. 105 APRIL 1993

This paper examines the expectation theory of the term structure of interest rates in Australia by looking at the information content of the yield curve. Cointegration results provide evidence that the slope coefficient of the yield curve is unity. Bivariate vector autoregressive analysis (VAR) indicates that the spread between the long term and the short term rates is informative about changes in the short rate. In addition, the spread between the short term rate and the official cash rate has predictive power for changes in the cash rate. These findings imply that the Reserve Bank of Australia could influence the long term rate by intervening on the official cash rate. Finally, the efficient market restrictions were tested and accepted by the data.

*The authors would like to thank, without implicating, Victor Argy, Warren Hogan, Phillip Lowe, Tony Phipps and Jaff Sheen for useful comments and suggestions.

National Library of Australia Card Number and ISBN 0 86758 769 5
1. Introduction

The financial deregulation of the Australian financial system during the 1980s undermined the role of monetary aggregates as useful intermediate targets (Milsom, 1990). Since the floating of the Australian dollar in December 1983, the Reserve Bank of Australia (RBA) has used the official cash rate (the cost of funds for interbank clearing) as an operating instrument for the conduct of monetary policy (Dotsey, 1987, 1991).

In a deregulated environment, monetary shocks are transmitted to the real economy through changes in interest rates and asset prices. If economic activity responds to movements in the long-term interest rate but the monetary authorities use the short-term interest rate as an operating instrument of monetary policy, the term structure of interest rates is becoming important in the monetary transmission mechanism.

According to the expectation theory of the term structure of interest rates, which is an arbitrage equilibrium condition, the long-term rate is determined by the current and the expected short-term rates over the same time horizon as the long-term rate. In addition, under the expectation theory, the money market determines the short-term interest rates as a weighted average of the current and expected levels of the interbank rate over the same horizon as that of the short rate. Consider, for instance, a corporation which has the option of buying a treasury bill or lending its funds overnight for three months (Goodfriend, 1988, 1990). To the extent that the monetary authorities affect the current and expected future interbank rates and the theory is valid, the long-term rate can be influenced through the effect of monetary policy actions on the short-term rate.

Recent developments in the theory of cointegration have been used to test
the expectation theory of the term structure. In a earlier work, Campbell and Shiller (1987) examined past-war term structure data for the US using a vector autoregressive (VAR) system which incorporated an error-correction model for the short rate. They found evidence in favour of the weak implication of the expectation theory, namely that the spread Granger-causes changes in the short rate. However they could not accept the full set of efficient market restrictions implied by the theory. MacDonald and Speight (1992) have investigated the expectation theory in a VAR context using Belgian, Canadian, German, UK and US data. They found mixed evidence concerning the weak implication of the theory and also rejected the efficient market restrictions for all countries apart from the UK, for which the tests confirmed the results in MacDonald and Speight (1988). In a recent study Taylor (1992) tested alternative models of the yield curve using weekly data on UK interest rates. His evidence indicates that the expectations and the risk premium models are both rejected. On the other hand, the data supported a market segmentation model.

The present paper examines movements between interest rates in Australia over the deregulated period 1984-1991 using the cointegration approach developed by Phillips and Hansen (1990) and the relevant Wald test for the unity restriction of the yield curve. Next, it investigates the information content of the yield curve by testing (a) whether the spread between the short term interest rate and the official cash rate is informative in forecasting changes in the official cash rate, and (b) whether the spread between the long term and the short term interest rates has predictive power for future changes in the short rate as predicted by the expectation theory of the term structure. It then proceeds with testing the restrictions implied by the efficient markets view of the term structure.

2. The Expectation Theory of the Term Structure of Interest Rates

The expectation theory of the term structure of interest rates holds that the n period bond rate (R_n) is a weighted average of present and expected future short term interest rates (r_t). In the case of discount bonds, the theory is written as (Mishkin, 1990)

$$R_n=\frac{1}{(n-1)}E[(r_1 \cdot \ldots \cdot r_{n-1})]$$

where F_t is the expectation at time t. Subtracting r_t from both sides of (1) and rearranging, we obtain

$$S_n=\frac{1}{(n-1)}E[\sum_{i=1}^{n-1} \Delta r_{t-i} \cdot (r_{t-1} \cdot \ldots \cdot r_{t-n+1})]$$

where $S_n=\frac{R_n-r_t}{n}$ denotes the slope of the yield curve. A positive (negative) yield curve predicts that the short rates are expected to rise (fall) in the future. Thus, the expectation in that future short rates, and hence the long rate, will be above (below) the current short rate.

In the case of coupon bonds, the expectation theory is written as (Shiller, 1979)

$$R_n-\frac{1}{n} \sum_{i=1}^{n} \Delta r_{t-i} \cdot E/r_t$$

where $0<\alpha=(1/1+K^2)<1$ and K is the mean long term rate. According to equation (3), more recent values of r play a greater role than earlier values, and hence recent ones are weighted more heavily. Subtracting r_t from both sides of (3) and rearranging, we obtain
Equation (4) shows that the spread is equal to the optimal forecast of future changes in the short rates.

3. Methodology

As Campbell and Shiller (1987) argue, if \(\Delta r_t \) is stationary then equation (4) implies that \(S_t \) is also stationary, or alternatively that \(R_s \) and \(r \) are cointegrated with a cointegrating vector \([1 -1]\) (Engle and Granger, 1987). Thus, we can model the data generation process of \(\Delta r \) and \(S_t \) as a bivariate VAR system, in the context of which the information content of the yield curve can be examined.

Consider the following bivariate VAR model

\[
\Delta r_t = A(L)\Delta r_{t-1} + \varepsilon_t
\]

where \(z = [\Delta r_t, S_t]' \) is a 2x1 vector of endogenous variables; \(A(\cdot) = [a(\cdot), b(\cdot)] \) is a 2x2 polynomial matrix in the lag operator, with \(a(L) = [a_0(L), a_1(L), \ldots] \) and \(b(L) = [b_0(L), b_1(L), \ldots] \), \(\varepsilon_t = [\varepsilon_{r,t}, \varepsilon_{s,t}] \) is a 2x1 vector of white noise errors with properties: \(E(\varepsilon_t) = 0, \quad \text{var}(\varepsilon_t) = \Sigma \), when \(t = s \) and zero otherwise, with \(\Sigma \) denoting the variance-covariance matrix of residuals. The polynomials in the lag operators \(a(L), b(L), c(L), \) and \(d(L) \) are all of order \(p \).

An investigation of the expectation theory of the term structure for the VAR system (5) is that \(S_t \) will Granger-cause the future path of \(\Delta r_t \) if agents have information beyond the history of \(\Delta r_t \). Moreover, following Campbell and Shiller (1987), the full set of restrictions implied by the efficient market hypothesis are derived as \(c_i = c_i (i=1, 2, \ldots, p), \quad d_i = d_i (i=1, 2, \ldots, p) \). Using this set of restrictions to eliminate \(c_i \) and \(d_i \) from the VAR system and adding the equations for \(\Delta r_t \) and \(S_t \) we obtain \(S_t = A(\cdot)S_{t-1} + \Delta r_t = A(\cdot)S_{t-1} + \Delta r_t \). Thus under the efficient market restrictions the expression \(E_t = S_t - S_t \) is unpredictable. Hence a test of this set of restrictions can be obtained using a Wald test of the orthogonality of \(\mathbf{\beta} \) on the information set consisting of lagged \(\Delta r_t \) and \(S_t \).

Estimation of the VAR system (5) requires investigation of the time series properties of the variables involved. To test whether a time series is integrated of order one \((I(1))\) against the alternative of zero order integration \((I(0))\), a number of unit root tests have been developed (Fuller, 1976), Dickey and Fuller (1981), Phillips (1987) and Perron (1989)). The hypothesis that \(S_t \) is stationary can also be investigated in a bivariate context by testing whether or not \(R_s \) and \(r \) are cointegrated with a cointegrating vector \([1 -1]\). In the presence of endogenous regressors and residual serial correlation, the OLS estimates of the parameters of the cointegrating equation are biased and cannot be used to test parameter restrictions. Phillips and Hansen (1990) have developed an approach which corrects for this bias. They have also produced a modified Wald statistic to test linear restrictions on the parameters of cointegrating regressions.4

Consider the following model.

\[
\gamma^\prime \Delta r_t = \varepsilon_t
\]
4. Empirical Results

4.1 Integration and Cointegration Analysis

The empirical analysis is carried out using quarterly data on the 3-month treasury note rate \(\delta \), the official cash rate \(\sigma \), the two \(\text{(R}_2) \), five \(\text{(R}_5) \) and ten \(\text{(R}_\text{e}) \) year treasury bonds rates over the period 1984-1991, taken from the vs v2 data base.

The strategy recommended by Perron (1989) is used to test for unit roots. The test statistics of the single hypothesis of one unit root, and the joint hypotheses of a unit root and a zero trend as well as a unit root and a zero mean for both the levels and the first differences are reported in Table 1.

With regard to the interest rates levels, none of the tests can reject the null hypothesis of a unit root. On the contrary, the hypothesis of a unit root in the first differences of the interest rates is rejected at the 5% significance level for all the series. As far as the spreads are concerned, the tests reject the joint hypothesis for the levels of \(\delta \), and the single hypothesis of one unit root (without trend and mean) for the levels of \(\sigma \), \(\text{(R}_2) \), \(\text{(R}_5) \), and \(\text{(R}_\text{e}) \). Overall, the univariate tests suggest that the interest rates are \(\text{(I)} \), whereas the spreads are \(\text{II} \) processes.

The movements of the interest rates entering the definitions of the various spreads are also investigated by means of cointegration tests. In this respect, it should be noted that the existence of cointegration between \(\delta \) and \(\sigma \) is not a sufficient condition to ensure that the spread \(\delta - \delta \) is stationary.

It is also requires that \(\lambda = 1 \). To see this, rewrite the model (6) as follows:

\[
S_t = y_t_{\sigma}, x_t = (\lambda - 1)x_t, u_t
\]

Since \(u_t \) is an \(\text{(I)} \) process (we assume cointegration), if \(\lambda = 1 \) equation (10) implies
that the spread contains the same degree of persistence as \(x \). Then the only value of the cointegrating parameter \(\lambda \) that will imply \(z_t - \pi(0) \) is \(\lambda = 1 \).

The Phillips and Hansen tests for cointegration between the short term and the long term rates, and between the official cash and the short term rates, which appear in Table 2, reject the null hypothesis of noncointegration in all cases. In addition, the modified Wald test does not reject the hypothesis that \(\lambda = 1 \), confirming the results obtained from the integration analysis. The nonrejection of the restriction that \(\lambda = 1 \) implies that the interest rate spreads do not contain a permanent component.

Overall, the tests indicate that the interest rates are \(1(1) \), but their spreads are \(1(0) \) suggesting that the data generation mechanism of \((S_t, \Delta e_t) \) is modeled as a bivariate VAR system in the context of which the information content of the yield curve can be examined.

4.2. The VAR Analysis

The strategy adopted in specifying the number of lagged \(\Delta e \) terms in equation (5) was based on Sims’s (1980) likelihood ratio test corrected for the degrees of freedom. A maximum number of four lags was considered in order to preserve a reasonable number of degrees of freedom. The selected lag length was also checked for the presence of serial correlation associated with the truncation of the lag structure. Table 3 reports the selected lags and residual misspecification tests. The diagnostic tests reject the presence of serial correlation, functional misspecification and heteroscedasticity. The normality test suggests that the error process represents a random sample from a normal distribution.

The results of Granger causality tests given in Table 4, suggests that the past history of the spread at two, five and ten year maturity has information content for short term interest rate changes, as predicted by the expectation theory of the term structure. In addition, the spread between the treasury note rate and the official cash rate has predictive power for changes in the cash rate.

The existence of causality from \(\Delta e \) to \(\Delta (e) \) seems to suggest that monetary policy actions can affect the interest rate spread at short horizons by intervening on the cash rate. The evidence that the interest rate spreads are Granger exogenous with respect to changes in the treasury note rate may indicate that they are only affected by inflationary expectations.

The results of the efficient markets (EM) view of the term structure are reported in Table 5. The evidence indicates that the EM restrictions of the VAR model are not rejected by the data.

The nonrejection of the expectation theory of the term structure seems to indicate that the Australian monetary authorities have not been strongly committed to maintaining short term interest rates targets in the deregulated period. Had this been the case, expected future short rates would have been equal to the actual short rate and variations in the spread would only reflect variations in the term-premium (Mankiw and Miron, 1986). A further implication of these findings is that the monetary authorities could influence the short term rate and, thereby, the long term rate by intervening on the current level of the cash rate, as well as on its expected path.

5. Concluding Remarks

This paper has examined the expectation theory of the term structure of interest rates by looking at the information content of the of the yield curve. Given the evidence on the presence of a unit root in the levels of the interest rates, the time series properties of the spreads were investigated by unit root and
cointegration tests. The results suggest that the spreads are the same order of integration as the first differences of the interest rates. An interesting aspect of the VAR analysis is the evidence that the spread between the long term rates, and the 3-month treasury note rate has predictive power for changes in the short rate, which is consistent with the expectation theory. Furthermore, the spread between the 3-month note rate and the official cash rate has predictive power for movements in the cash rate. One implication of these findings is that the Reserve Bank of Australia could influence the long term rate by changing the cash rate. Finally, the EM restrictions are tested and accepted by the data.

1. For a theoretical discussion of the monetary transmission mechanism, see Brunner and Meltzer (1990).

2. In a recent contribution, Campbell and Shiller (1991) using US post war data showed that the spread between the long and the short rate forecasted rising short term interest rates, but a declining yield on the long term bond a finding which was inconsistent with the expectation theory of the term structure.

3. In our analysis, we take the start of the deregulated period to be 1984, so it coincides with the floating of the Australian dollar, the adoption of an interest rate operating instrument procedure (Dotsey, 1987, 1991), and the abolition of all remaining controls on bank deposits interest rates. Fischer and Robinson (1992) have also used 1984 as the start of the deregulated period.

5. Taking variances in equation (10) yields

\[\sigma^2 = (\lambda - 1) \sigma^2 + \sigma^2 \]

This equation shows that \(\sigma^2 \) is dominated by \(\sigma^2 \), unless \(\lambda = 1 \).

6. The selection of the lag order was also based on Akaike's (1969) information criterion as implemented by Hsiao (1979). The results were similar with those obtained by the Sims's criterion.
Table 1
Phillips and Perron Unit Root Tests

<table>
<thead>
<tr>
<th>V/bcl</th>
<th>(\phi_1)</th>
<th>(\phi_2)</th>
<th>(\phi_3)</th>
<th>(\tau_1)</th>
<th>(\tau_2)</th>
<th>(\tau_3)</th>
<th>(\tau_4)</th>
<th>(\tau_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.31</td>
<td>1.55</td>
<td>1.13</td>
<td>-2.0</td>
<td>-2.23</td>
<td>-0.3</td>
<td>1.99</td>
<td>-0.04</td>
</tr>
<tr>
<td>0</td>
<td>3.26</td>
<td>2.20</td>
<td>1.55</td>
<td>-2.28</td>
<td>-2.63</td>
<td>-0.14</td>
<td>2.31</td>
<td>-0.5</td>
</tr>
<tr>
<td>2</td>
<td>2.08</td>
<td>1.90</td>
<td>0.72</td>
<td>-1.81</td>
<td>-2.07</td>
<td>-0.38</td>
<td>1.79</td>
<td>-0.65</td>
</tr>
<tr>
<td>2</td>
<td>2.41</td>
<td>1.67</td>
<td>2.00</td>
<td>-2.10</td>
<td>-2.18</td>
<td>-0.55</td>
<td>2.07</td>
<td>-0.95</td>
</tr>
<tr>
<td>3</td>
<td>3.69</td>
<td>2.67</td>
<td>3.59</td>
<td>-2.85</td>
<td>-2.33</td>
<td>-0.98</td>
<td>2.81</td>
<td>-1.69</td>
</tr>
<tr>
<td>5</td>
<td>18.66*</td>
<td>12.59*</td>
<td>-4.63*</td>
<td>-0.34*</td>
<td>-2.44*</td>
<td>-1.2</td>
<td>0.15</td>
<td>-0.12</td>
</tr>
<tr>
<td>8</td>
<td>2.71*</td>
<td>1.85</td>
<td>3.04</td>
<td>-2.31</td>
<td>-2.47*</td>
<td>-0.24</td>
<td>0.41</td>
<td>0.15</td>
</tr>
<tr>
<td>12</td>
<td>2.48</td>
<td>1.69</td>
<td>1.87</td>
<td>-2.14</td>
<td>-2.34</td>
<td>-2.16*</td>
<td>2.05</td>
<td>-1.10</td>
</tr>
<tr>
<td>16</td>
<td>2.41</td>
<td>1.66</td>
<td>1.57</td>
<td>-2.04</td>
<td>-2.31</td>
<td>-2.13*</td>
<td>1.10</td>
<td>0.13</td>
</tr>
</tbody>
</table>

*Notes: The calculated statistics are those reported in Dickey and Fuller (1981). The critical values at 5% with T=25 are: \(\phi_0=2.21\), \(\phi_1=2.66\), \(\phi_2=5.18\), \(\tau_1=3.60\), \(\tau_2=3.00\), \(\tau_3=1.95\), \(\tau_4=3.20\), \(\tau_5=2.85\), \(\tau_6=2.61\). The critical value of \(\tau\) at 5% with T=30 is equal to -1.90 (Blangiewicz and Charemza, 1990). The lag length of the Phillips and Perron test is set equal to 5 to ensure white noise residuals. \(\rho_{\lambda}=2.5\) and \(\lambda=1\). * indicates significance at 5%.

Table 2
Cointegration Analysis of Interest Rates: \(\dot{y} = \alpha + \mu\)

<table>
<thead>
<tr>
<th>(\mu_\lambda)</th>
<th>(\lambda)</th>
<th>(R^2)</th>
<th>Wald-Test</th>
<th>Phillips-Perron Unit Root Tests on Residuals (\mu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.99</td>
<td>0.99</td>
<td>0.69</td>
<td>18.47* 12.46* -6.40*</td>
</tr>
<tr>
<td>0.1</td>
<td>0.96</td>
<td>0.08</td>
<td>3.00</td>
<td>2.75 1.88 2.37 -2.57 -2.53 -0.26</td>
</tr>
<tr>
<td>0.01</td>
<td>0.95</td>
<td>-0.01</td>
<td>2.29</td>
<td>2.49 1.71 1.97 -2.16 -2.35 -2.38 -2.83</td>
</tr>
<tr>
<td>0.001</td>
<td>0.94</td>
<td>-0.94</td>
<td>2.07</td>
<td>2.42 1.67 1.64 -2.05 -2.31 -2.35 -0.34</td>
</tr>
</tbody>
</table>

*Notes: The modified Wald test is distributed as \(X^2(1)\). A negative \(R^2\) is not reported. * (s) indicates significance at 5% (10%). The critical value of \(\tau\) at 10% with T=30 is -2.35 (Blangiewicz and Charemza, 1990). The critical value of \(\tau\) at 5% with T=50 is -3.29 (Engle and Yoo, 1996). It is worth noting that the Engle and Yoo model includes an intercept whereas ours does not, and hence the critical values are only indicative. See also notes to Table 1.

Table 3
Residual Misspecification Tests in the VAR Model

<table>
<thead>
<tr>
<th>System</th>
<th>Lags</th>
<th>Dep.</th>
<th>(V/bc)</th>
<th>(R^2)</th>
<th>SEE</th>
<th>SC(13)</th>
<th>SC(12)</th>
<th>FF(1)</th>
<th>NO(1)</th>
<th>HF(1)</th>
<th>ARCH(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_{0\Delta})</td>
<td>1</td>
<td>(S_0)</td>
<td>0.52</td>
<td>0.9280</td>
<td>18.61</td>
<td>17.73</td>
<td>0.18</td>
<td>0.41</td>
<td>0.00</td>
<td>13.42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.14)</td>
<td>(1.10)</td>
<td>(2.50)</td>
<td>(2.80)</td>
<td>(2.99)</td>
<td>(2.30)</td>
</tr>
<tr>
<td>(S_{0\Delta})</td>
<td>1</td>
<td>(S_0)</td>
<td>0.59</td>
<td>1.1325</td>
<td>18.56</td>
<td>18.19</td>
<td>0.21</td>
<td>0.39</td>
<td>0.00</td>
<td>14.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.12)</td>
<td>(1.10)</td>
<td>(2.50)</td>
<td>(2.90)</td>
<td>(2.50)</td>
<td>(2.20)</td>
</tr>
<tr>
<td>(S_{0\Delta})</td>
<td>1</td>
<td>(S_0)</td>
<td>0.64</td>
<td>1.2924</td>
<td>20.28</td>
<td>16.79</td>
<td>0.29</td>
<td>0.37</td>
<td>0.00</td>
<td>14.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.09)</td>
<td>(1.10)</td>
<td>(2.50)</td>
<td>(2.90)</td>
<td>(2.50)</td>
<td>(2.20)</td>
</tr>
<tr>
<td>(S_{n\Delta})</td>
<td>4</td>
<td>(S_n)</td>
<td>0.58</td>
<td>0.4583</td>
<td>18.16</td>
<td>20.73</td>
<td>0.01</td>
<td>0.81</td>
<td>1.53</td>
<td>11.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.11)</td>
<td>(1.05)</td>
<td>(2.50)</td>
<td>(2.50)</td>
<td>(2.20)</td>
<td>(2.30)</td>
</tr>
<tr>
<td>(S_{n\Delta})</td>
<td>4</td>
<td>(S_n)</td>
<td>0.62</td>
<td>1.2605</td>
<td>6.92</td>
<td>18.52</td>
<td>2.33</td>
<td>0.24</td>
<td>0.05</td>
<td>12.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.86)</td>
<td>(1.10)</td>
<td>(2.80)</td>
<td>(2.80)</td>
<td>(2.80)</td>
<td>(2.80)</td>
</tr>
</tbody>
</table>

*Notes: SEE is the standard error of the equation, Q(13) is 1-lag Box Q statistic for serial correlation at 13 degrees of freedom. The Q statistic of the system \(S_{0\Delta}\) is calculated at 12 degrees of freedom. SC is the Lagrange multiplier test of residual serial correlation. The Ramsey's RESET test of functional specification (FF) uses the square of the fitted values. The Jarque-Bera normality test statistic (HF) is based on a test of skewness and kurtosis of residuals. The test of heteroscedasticity (HF) is based on the regression of squared residuals on squared fitted values. ARCH refers to the test statistic for autoregressive conditional heteroscedasticity. Numbers in parentheses are p-values.
Table 4
Granger Causality Tests

<table>
<thead>
<tr>
<th>System</th>
<th>Dep. V/ble</th>
<th>F-test</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{\alpha} d_{1}$</td>
<td>S_{d}</td>
<td>$F(2,24)=0.511$</td>
<td>0.607</td>
</tr>
<tr>
<td>$S_{\alpha} d_{1}$</td>
<td>d_{1}</td>
<td>$F(2,24)=0.033$</td>
<td>0.970</td>
</tr>
<tr>
<td>$S_{\alpha} d_{2}$</td>
<td>S_{d}</td>
<td>$F(2,24)=0.387$</td>
<td>0.688</td>
</tr>
<tr>
<td>$S_{\alpha} d_{2}$</td>
<td>d_{1}</td>
<td>$F(2,15)=1.673$</td>
<td>0.201</td>
</tr>
</tbody>
</table>

Notes: The F-tests are calculated for the joint hypothesis that the coefficients of the lags of the independent variable are zero. The symbol \rightarrow means that the independent variable does not Granger cause the dependent variable. ***, *, denote significance at 1%, 5%, and 10%, respectively.

Table 5
Tests of the Efficient Market Restrictions

<table>
<thead>
<tr>
<th>System</th>
<th>F-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S_{\alpha} d_{1}$</td>
<td>$F(2,24)=0.511$</td>
</tr>
<tr>
<td>$S_{\alpha} d_{2}$</td>
<td>$F(2,24)=0.033$</td>
</tr>
<tr>
<td>$S_{\alpha} d_{2}$</td>
<td>$F(2,24)=0.387$</td>
</tr>
<tr>
<td>$S_{\alpha} d_{2}$</td>
<td>$F(2,15)=1.673$</td>
</tr>
</tbody>
</table>

Notes: The tests are obtained as the F-tests of the joint hypothesis that the lagged values of S_{d} and d_{1} are insignificant in the regressions of $E-S_{d}$ (1-d_{1},d_{2}) on lagged S_{d} and d_{1}.

References

Working Papers in Economics

136 L. Emami
Shock Persistence in Australian Output and Consumption; March 1990

137 S. Zia
Strategic Investment, Competition and the Independence Result; March 1990

138 D.J. Wright
International Technology Transfer: an Information Asymmetry and Endogenous Research and Development; April 1996

139 D.J. Wright
International Technology Transfer and Per Unit Royalties; April 1996

140 P. Cangialosi & S. Neth
Optimal Mix of Urban Public Services: The Case of Three Indian Cities; May 1990

141 P.G. Groenewegen
Alfred Marshall's Principles of Economics: A Centenary Perspective from the Antipodes; June 1990

142 J. Shew
Real wages and the Business Cycle in Australia; June 1990

143 C.J. Karfakis
A Model of Exchange Rate Policy: Evidence for the US Dollar-Greek Drachma Rate 1975-1987; August 1990

144 C.J. Karfakis & D.H. Horshos
Interest Rate Linkages within the European Monetary System: A Time Series Analysis; August 1990

145 C.J. Karfakis & D.A. Horshos
Asymmetries in the European Monetary System; September 1990

146 W.P. Hogan
International Capital Adequacy Standards; October 1990

147 J. Yates
Shared Ownership: The Socialisation or Privatisation of Housing? October 1990

148 G. Butler
Contacts in the Political Economy of a Nation; November 1990

149 B. Rao
Some Further Evidence on the Policy Ineffectiveness Proposition; November 1990

150 D.J. Wright
Hidden Action and Learning-by-Dwelling in Models of Monopoly Regulation and Infant Industry Protection; November 1990

151 C.J. Karfakis
Testing for Long Run Money Demand Functions in Greece Using Cointegration Techniques; November 1990

152 D. Hutchinson & S. Nicholas
The Internationalisation of Australian Business: Technology Transfer and Australian Manufacturing in the 1980s; November 1990

153 B. Rao
A Disaggregation Approach to the New Classical Model; December 1990

154 J.R. Towe
The Determinants of American Equity Investment in Australia; December 1990

155 E. Jones
Economists, the State and the Capitalist Dynamic; January 1991

156 R.J. Irvine & H.A. Sims
German Polar Bears and the Boom-Branch Utility Tree; January 1991

157 B. Rao
A Model of Income, Unemployment and Inflation for the U.S.A.; February 1991

158 W.P. Hogan
New Banks: Impact and Response; March 1991

159 P.G. Groenewegen
De央ralising Tax Revenues: Recent Initiatives in Australian Federalism; April 1991

160 C.J. Karfakis
Monetary Policy and the Velocity of Money in Greece: A Cointegration Approach; July 1991

161 B. Rao
Disaggregation, Disequilibrium and the New Classical Model; July 1991

162 Y. Varoufakis
Postmodern Challenges to Game Theory; August 1991

163 Y. Varoufakis
Freedom within Reason from Action to Marxism; August 1991

164 D.J. Wright
Permanent vs. Temporary Infant Industry Assistance; September 1991

165 C.J. Karfakis & A.J. Phillips
Covered Interest Parity and the Efficiency of the Australian Dollar Forward Market: A Cointegration Analysis Using Daily Data; November 1991

166 W. Jack
Pollution Control Versus Abatement: Implications for Taxation Under Asymmetric Information; November 1991

167 C.J. Karfakis & A. Patil
Exchange Rate Conveniences and Market Efficiency; December 1991

168 W. Jack
An Application of Optimal Tax Theory to the Regulation of a Monopoly; December 1991

169 T.J. Irvine & W.A. Sims
The Welfare Effects of Alcohol Taxation; December 1991

170 R. Fritsch
Energy and Environment in Terms of Evolutionary Economics; January 1992

171 W.P. Hogan
Financial Derisegulation: Fact and Fantasy; January 1992

172 P.T. Vignola
An Evolutionary Approach to International Expansion: A Study for an Italian Region; January 1992

173 C. Rose
Equilibrium and Adverse Selection; February 1992

174 D.J. Wright
Incentives, Protection and Time Consistency; April 1992

175 A.J. Phillips, J. Shew & C. Wilkins
The Bloodbath of Australian Productivity Growth: Some Aggregated and Disaggregated Evidence; April 1992

176 J.B. Towe
Aspects of the Japanese Equity Investment in Australia; June 1992

177 P.G. Groenewegen

178 D.J. Wright
Television Advertising Regulation and Programme Quality; August 1992

179 S. Zia
Moral Hazard with Cost and Revenue Signals; December 1992

180 C. Rose
The Productive Output Approach to Exchange Rate Target Zones; December 1992

181 W.P. Hogan
Maths for Economics Students; January 1993

182 E. Jones
The Macroeconomic Fetsch in Anglo-American Economics; January 1993

183 F. Gill
Statistics in Social Sciences A Mixed Blessing; March 1993

184 Y. Varoufakis & Barlow
The Simultaneous Evolution of Social Roles and Institutions: A New Approach; April 1993

185 C.J. Karfakis
The Information Content of Yield Curve Slopes; April 1993

Copies are available upon request from

Department of Economics,
The University of Sydney,
N.S.W. 2006, Australia.
<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title and Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>I.G. Sharpe & P.A. Volker</td>
<td>Journal of Accounting Research, 13(2), Autumn 1975</td>
</tr>
<tr>
<td>3</td>
<td>N. V. Lam</td>
<td>Journal of the Developing Economies, 17(1), March 1979</td>
</tr>
<tr>
<td>4</td>
<td>V. B. Hall & M. L. King</td>
<td>New Zealand Economic Papers, 10, 1976</td>
</tr>
<tr>
<td>5</td>
<td>A. J. Hipple</td>
<td>Economic Record, 53(143), September 1977</td>
</tr>
<tr>
<td>6</td>
<td>N. V. Lam</td>
<td>Journal of Development Studies, 14(1), October 1977</td>
</tr>
<tr>
<td>7</td>
<td>I. G. Sharpe</td>
<td>Australian Journal of Management, April 1976</td>
</tr>
<tr>
<td>8</td>
<td>W. P. Hogan</td>
<td>Economic Papers, 55, The Economic Society of Australia and New Zealand, October 1977</td>
</tr>
<tr>
<td>9</td>
<td>G. A. Volker</td>
<td>Economic Letters, 2, 1979</td>
</tr>
<tr>
<td>15</td>
<td>F. Gill</td>
<td>Australian Economic Papers, 19(35), December 1980</td>
</tr>
<tr>
<td>16</td>
<td>I. G. Sharpe</td>
<td>Journal of Banking and Finance, 3(1), April 1978</td>
</tr>
<tr>
<td>18</td>
<td>I. G. Sharpe & P.A. Volker</td>
<td>The Australian Monetary System in the 1970s, M. Porterfield (ed.), Supplement to Economic Board of Australia, 1978</td>
</tr>
<tr>
<td>19</td>
<td>V. B. Hall</td>
<td>Economic Record, 56(152), March 1980</td>
</tr>
<tr>
<td>25</td>
<td>I. G. Sharpe</td>
<td>Australian Journal of Management, October 1979</td>
</tr>
<tr>
<td>26</td>
<td>W. P. Hogan</td>
<td>Malayan Economic Review, 24(1), April 1979</td>
</tr>
<tr>
<td>27</td>
<td>P. Saunders</td>
<td>Australian Economic Papers, 21(14), June 1980</td>
</tr>
<tr>
<td>30</td>
<td>W. P. Hogan</td>
<td>Economic Letters, 6 (1980), 7 (1981)</td>
</tr>
<tr>
<td>40</td>
<td>W. P. Hogan</td>
<td>Australian Economic Papers, 18(33), December 1979</td>
</tr>
<tr>
<td>38</td>
<td>U. P. Kohli</td>
<td>Australian Economic Papers, 21(19), December 1982</td>
</tr>
<tr>
<td>42</td>
<td>W. J. Harrington</td>
<td>Applied Economics, 15, February 1983</td>
</tr>
<tr>
<td>43</td>
<td>P. Saunders</td>
<td>Australian Economic Papers, 20(37), December 1981</td>
</tr>
<tr>
<td>46</td>
<td>W. J. Harrington</td>
<td>Journal of Industrial Economics, 31, March 1983</td>
</tr>
<tr>
<td>50</td>
<td>P. Saunders</td>
<td>Economic Record, 57(1591), December 1981</td>
</tr>
</tbody>
</table>

Additional References:
- J. Yates
- G. Mills
- V. B. Hall & P. Saunders
- P. Saunders
- G. Hills & W. Coleman
- J. Yates
- S. S. Jessen
- R. T. Ross
- M. J. Harrington
- A. J. Phillips
- V. B. Hall
- E. H. A. Gross
- J. G. Sharpe
- F. Gill
- W. P. Hogan
- J. A. Phillips
- R. T. Ross
- P. D. Groeningen
- G. A. Volker
- J. G. Sharpe
- P. A. Volker
- W. P. Hogan
- Australian Economic Papers, 27(50), June 1980
- Australian Bulletin of Labour, 16(11), December 1980
- Urban Studies, 26, 419-413, 1989
- The Economic and Social Review, 24(3), April 1983
- Australian Economic Papers, 31(58), June 1982
- Beta Bulletin, 111, Winter 1983
- Public Sector Economics, - A. Reesed
- P. Norton, J. B. Blackwell, 1988
- Journal of Macroeconomics, 2, 11(1), Winter 1993
- Australian Economic Papers, 27(50), June 1980

107 B.W. Ross Prometheus, 6(2), December 1988

108 S.S. Juson Rivista Di Diritto Valutario e Di Economia Internazionale, 35(2), June 1988

112 F. Groenewegen Neoclassical Economic Theory 1970 to 1990
K.Jennings & W.Samuels (eds.), 1, 1-51, 1990

114 V.R. Hall, T.P. Truong & V.A. Nguyen Australian Economic Review, 23(3) 1990

118 W.P. Hogan Abacus, 25(2), September 1989

122 W.P. Hogan & I.G. Sharpe Economic Analysis and Policy, 19(1), March 1989

126 F. Gill The Australian Quarterly, 61(4), 1989

128 S. Tahiri & J. Sheen The Economic Journal, 100(400), 1990

130 J. Sheen Journal of Economic Dynamics and Control, 16, 1992

135 T. Varoufakis Economic Affairs, 45(1), 1992

141 P. Groenewegen Australian Economic Papers, 31, 1992

143 C.J. Katfakis Applied Economics, 23, 1991

144 C.J. Katfakis Journal of Money Credit and Banking, 22(3), 1990

145 D. Moshos & J. Yates Housing Studies, 7, (2), April 1992

159 W.P. Hogan Economic Papers, 10(1), March 1991

163 T. Varoufakis Science and Society, 36(4), 1993