Dynamic Modelling, Measurement and Control of Co-rotating Twin-Screw Extruders

Justin Rae Elsey, B.E.(Chem)

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Chemical Engineering
University of Sydney, Australia
August, 2002

© Justin Rae Elsey, 2002
Declaration

I hereby declare that the work presented in this thesis is solely my own work. To the best of my knowledge the work presented is original except where otherwise indicated by reference to other authors. No part of this work has been submitted for any other degree.

(Justin Rae Elsey)
25 August, 2002
Summary

Co-rotating twin-screw extruders are unique and versatile machines that are used widely in the plastics and food processing industries. Due to the large number of operating variables and design parameters available for manipulation and the complex interactions between them, it cannot be claimed that these extruders are currently being optimally utilised. The most significant improvement to the field of twin-screw extrusion would be through the provision of a generally applicable dynamic process model that is both computationally inexpensive and accurate. This would enable product design, process optimisation and process controller design to be performed cheaply and more thoroughly on a computer than can currently be achieved through experimental trials.

This thesis is divided into three parts: dynamic modelling, measurement and control. The first part outlines the development of a dynamic model of the extrusion process which satisfies the above mentioned criteria. The dynamic model predicts quasi-3D spatial profiles of the degree of fill, pressure, temperature, specific mechanical energy input and concentrations of inert and reacting species in the extruder. The individual material transport models which constitute the dynamic model are examined closely for their accuracy and computational efficiency by comparing candidate models amongst themselves and against full 3D finite volume flow models. Several new modelling approaches are proposed in the course of this investigation. The dynamic model achieves a high degree of simplicity and flexibility by assuming a slight compressibility in the process material, allowing the pressure to be calculated directly from the degree of over-fill in each model element using an equation of state. Comparison of the model predictions with dynamic temperature, pressure and residence time distribution data from an extrusion cooking process indicates a good predictive capability. The model can perform dynamic step-change calculations for typical screw configurations in approximately 30 seconds on a 600 MHz Pentium 3 personal computer.

The second part of this thesis relates to the measurement of product quality attributes of extruded materials. A digital image processing technique for measuring the bubble size distribution in extruded foams from cross sectional images is presented. It is recognised that this is an important product quality attribute, though difficult to measure accurately with existing techniques. The present technique is demonstrated on several different products. A simulation study of the formation mechanism of polymer foams is also performed. The
measurement of product quality attributes such as bulk density and hardness in a manner suitable for automatic control is also addressed. This is achieved through the development of an acoustic sensor for inferring product attributes using the sounds emanating from the product as it leaves the extruder. This method is found to have good prediction ability on unseen data.

The third and final part of this thesis relates to the automatic control of product quality attributes using multivariable model predictive controllers based on both direct and indirect control strategies. In the given case study, indirect control strategies, which seek to regulate the product quality attributes through the control of secondary process indicators such as temperature and pressure, are found to cause greater deviations in product quality than taking no corrective control action at all. Conversely, direct control strategies are shown to give tight control over the product quality attributes, provided that appropriate product quality sensors or inferential estimation techniques are available.
Original Work and Publications

The conditions of candidature for the degree of Doctor of Philosophy at The University of Sydney require the candidate to state the sources from which they have derived their information, the extent to which they have availed themselves of the work of others, and the portions of the work they claim as original. The following papers are associated with the work presented in this thesis, while the table below summarises the work in this thesis that is claimed to be original.

Table 1: Original work performed in this thesis.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Description</th>
<th>Other similar published work</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Analysis of flow in co-rotating screw pairs using a flow structure based on a repeating sequence of six elements to represent the geometry.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>3</td>
<td>Simplified 1D mesh approach for calculating forward and reverse flow rates of a non-Newtonian fluid in a 2D conduit.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>3</td>
<td>Calculation of 3D non-Newtonian isothermal flow in co-rotating screw pairs using correct boundary conditions.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>4</td>
<td>Direct comparison of 1D, 2D and 3D models for calculating flow in kneading discs.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>4</td>
<td>Prediction of reversing net flow direction in kneading discs at high stagger angles.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>5</td>
<td>Dynamic simulation of the co-rotating twin-screw extrusion process using fixed model elements and an equation of state to calculate the pressure directly from the degree of over-fill in each model element.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>5</td>
<td>Inclusion of starch gelatinisation kinetics and product bubble growth dynamics in a dynamic model of the extrusion cooking process.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>6</td>
<td>The modelling of uneven fill across the screws in the partially filled zone of a co-rotating twin-screw extruder.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>6</td>
<td>Calculation of residence time distributions using a first principles dynamic process model.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>6</td>
<td>Analysis of the pore size distribution in extruded products using a digital image processing algorithm.</td>
<td>Campbell et al. (1991) used a manual measurement technique for measuring bubbles in bread doughs</td>
</tr>
<tr>
<td>8</td>
<td>Simulation of bubble nucleation, growth and coalescence during puffing.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>9</td>
<td>Estimation of bulk density and hardness of extruded products using an acoustic sensor.</td>
<td>None to author’s knowledge.</td>
</tr>
<tr>
<td>10</td>
<td>Simulation of model predictive controller performance to compare the effect on product quality attributes when both indirect and direct control strategies are used.</td>
<td>None to author’s knowledge.</td>
</tr>
</tbody>
</table>
Acknowledgements

I have been fortunate in working with many talented people while undertaking this thesis. Special thanks must first go to my thesis supervisor Geoff Barton, whose guidance, patience and support made this thesis possible. My associate supervisor Tim Langrish also provided constant encouragement and technical advice on many occasions. My thanks also to David Fletcher for scrutinising my fluid modelling work and making himself available to answer my many questions on the subject. Dominique Pomerleau has been extremely generous in tutoring me on model predictive control and testing my software for bugs. Hans Musch deserves special thanks for his guidance with the early modelling work. Chris Durrant of the Mathematics Department went beyond the call of duty in helping me to understand the helical coordinate system used in this thesis. Thanks also to Jörg Riepenhausen, an early collaborator on this project and still a good friend.

All of the experimental extrusion data and product samples used in this thesis were provided by Food Science Australia, so I thank Jay Sellahewa and Charlie Chessari for their frequent assistance. I would especially like to thank Geoff Francis, a creative thinker who was always very helpful and who originally suggested that acoustics might be used to infer various product attributes.

I spent four months working on projects related to this thesis at the University of Newcastle Upon Tyne under the supervision of Mark Willis. Mark was very generous in inviting me to stay at his home when I first arrived, and I would like to thank him and Ming Tham for their friendly supervision during my stay.

Of my past and present postgraduate friends I would particularly like to thank Tim Dun, Geoff Henry, Ben McKay, Dennis McNevin and Chiew Hiet Wong for their helpful discussions over the years. Tim Dun deserves special thanks for proof-reading this entire manuscript, making valuable suggestions and keeping me in high spirits during the write-up process. However, this is almost completely offset by all the speed chess distractions that he provided during our studies.

My current employer Susan Law at the Optical Fibre Technology Centre has been very accommodating during the final and most demanding months of writing this thesis. Without her support this thesis would have taken far longer to complete.

For their financial support I would like to thank the Australian Postgraduate Award Scheme, Geoff Barton, The British Council Postgraduate Bursaries Scheme, the James Kentley Memorial Scholarship, and my parents.
Contents

Declaration i
Summary ii
Original Work and Publications iv
Acknowledgements vii

1 Introduction 1

1.1 A General Overview of Screw Extrusion Technology 2
1.2 Scope For Process Improvement 5
1.3 Thesis Aims and Organisation 5

2 Geometry of Extrusion Equipment 8

2.1 Introduction .. 9
2.2 Cross-Section Geometry, Surface Area and Volume 9
 2.2.1 The Barrel ... 9
 2.2.2 Trapezoidal-Flight Screws 10
 2.2.3 Self-Wiping Screws ... 15
 2.2.4 Kneading Discs .. 18
 2.2.5 Orifice Discs .. 20
 2.2.6 Reverse Screw Elements 20
 2.2.7 The Die ... 21
2.3 Channel Geometry and Leakage Gaps in Co-rotating Screws 21
 2.3.1 The Screw Channel ... 22
 2.3.2 The Tetrahedron Gap 24
 2.3.3 The Side Gap .. 27
 2.3.4 The Calender Gap ... 29
 2.3.5 The Flight Gap .. 30
2.4 Conclusions ... 31
List of Figures

1.1 Extrusion cooking process diagram. .. 2
1.2 Exploded view of shaft and barrel of a co-rotating twin-screw extruder. 3
1.3 Organisation of thesis. ... 6

2.1 The extruder barrel. ... 9
2.2 The trapezoidal flight screw. .. 11
2.3 Cross-section geometry of the trapezoidal flight screw. 12
2.4 Trapezoidal flight screw surface area element. 14
2.5 Self-wiping screws with two and three tips. 16
2.6 Self-wiping screws in various stages of rotation. 17
2.7 Parameters of the self-wiping screw. .. 17
2.8 Examples of kneading discs with two and three tips. 19
2.9 A pair of orifice discs. ... 20
2.10 Flow in internmeshing screw pairs. ... 22
2.11 Screw cross-sections showing channel shape. 23
2.12 Angular span of the trapezoidal flight screw channel cross-section. 24
2.13 Section showing flow in the tetrahedron gap. 25
2.14 Tetrahedral gaps in co-rotating screw pairs. 25
2.15 Deriving the shape of the tetrahedron gap. 26
2.16 Deriving a representative shape for the side gap. 28
2.17 Width of the side gap .. 30
2.18 The calender gap. .. 30
2.19 The flight gap is the clearance between the screw tips and the barrel wall. 31

3.1 The screw channel is unwrapped and represented by a trough with a moving wall. ... 34
3.2 Twin-screw extrusion process model structure. 38
3.3 Flow through the five identified bottlenecks in internmeshing screw pairs. 40
3.4 Segmentation of screw pair volume into model elements. 41
3.5 Plan view of screws showing divisions between the model sections. 42
3.6 Flow network for a single-lobed screw pair. 43
3.7 Flow network for a double-lobed screw pair. 44
3.8 Flow network for a triple-lobed screw pair.
3.9 A slice through the intermeshing region clarifies that there are side gap
flows both above and below the intermeshing flights.
3.10 Three dimensional perspective view of a single-lobed screw flow network.
3.11 Derivation of flow through a general 2D conduit.
3.12 Velocity field resulting from pressure and drag flows acting in opposite di-
rections.
3.13 The helical coordinate system used in this study.
3.14 The helical screw channel is divided into a 1D mesh in the r-θ plane.
3.15 The tetrahedron gap divided into a 1D mesh.
3.16 The side gap divided into a 1D mesh.
3.17 The calender gap (shaded) and coordinate system for flow calculation.
3.18 The orientation of the coordinate system used for calculating flow in the
flight gap.
3.19 The flow volume of the screws divided into a mesh of rectangular elements.
3.20 A single cell in the 3D mesh.
3.21 Velocity profile schematic.
3.22 Comparison between 1D mesh model and theory for power law fluid flow in
a circular tube.
3.23 Flow network for a single tipped screw operating under periodic boundary
conditions.
3.24 Flow rate versus pressure gradient in a 10mm pitch trapezoidal flight screw.
3.25 Flow rate versus pressure gradient in 40mm pitch trapezoidal flight screw.

4.1 Pressure profile around a single kneading disc.
4.2 Geometry of the kneading disc used in the 1D flow analysis.
4.3 Unwrapped disc geometry used in FAN analysis.
4.4 FAN analysis grid.
4.5 Kneading disc 3D mesh geometry.
4.6 Representation of a sequence of kneading discs as a flow network.
4.7 Nomenclature of the cross-sectional areas.
4.8 Pressure profiles generated by the 1D model.
4.9 Flow velocity fields generated by the FAN model.
4.10 Flow channel geometry for kneading discs staggered at +45°.
4.11 Flow in 45° forward staggered kneading discs.
4.12 Comparison of flow rates predicted by the kneading disc models as a function
of stagger angle.
4.13 Forward and reverse flow components predicted by the single-layer FAN,
2D FAN and 3D models.
4.14 Flow in 85° forward staggered kneading discs.
4.15 Mechanism of reversing flow in kneading discs. 99

5.1 A pair of orifice discs and their flow geometry. 103
5.2 The orifice disc flow network representation. 104
5.3 The die flow network representation. 105

6.1 Flow networks for various screw types. 112
6.2 A sample screw configuration and its representation as a flow network. 113
6.3 Joining unlike flow networks. 114
6.4 Temperature field in the cross-section of an extruder between flight passes. 119
6.5 Product bubble radius as a function of moisture content and temperature. 124
6.6 Startup simulation dynamic axial profile surfaces. 131
6.7 Steady-state axial profiles. 133
6.8 Distribution of material in co-rotating intermeshing screw pairs. .. 134
6.9 The screw shaft configuration used in the cooking extruder dynamic response simulations. 136
6.10 Dynamic response at the die to a step change in screw speed. 137
6.11 Dynamic response at the die to a step change in feed rate. 137
6.12 Dynamic response at the die to a step change in moisture fraction. 138
6.13 Dynamic response at the die to a step change in screw radius. 139
6.14 Photograph of the APV-Baker MPF-40 co-rotating twin-screw cooking extruder. 140
6.15 The screw shaft configuration used in the experiments. 141
6.16 Model comparison with experimental set-point changes in feed rate and screw speed. 143
6.17 Comparison between model predicted and experimentally measured residence time distributions. 146

7.1 Schematic representation of a co-rotating twin-screw extruder. 149
7.2 Sample cross-sectional images of the products analysed. 152
7.3 Photographic equipment. .. 152
7.4 A circular fluorescent light tube gives improved edge illumination. 153
7.5 Image analysis applied to a sample image. 155
7.6 Cavity detection algorithm applied to a sample image. 157
7.7 Apparent diameter of a sphere which has been cut off-centre. 158
7.8 Actual and observed diameter distributions in material with a uniform bubble size. 159
7.9 Actual and observed diameter distributions in a material with varying bubble sizes. 160
7.10 Product bubble size distributions. 161
7.11 Normal, log-normal and Rosin-Rammler curves fitted to the measured bubble diameter distributions on a volumetric basis. 162
7.12 RMS error as a function of the number of cavities used in the analysis. . . . 164

8.1 Simulation flow chart. ... 170
8.2 Simulated distributions when temperature is varied (with normal curves fitted). ... 172
8.3 Simulated distributions when moisture content is varied (with normal curves fitted). ... 172
8.4 Experimentally observed void volume distributions for three different puffed corn products. ... 173
8.5 The effect of coalescence on the predicted volumetric diameter distribution. 174

9.1 Schematic representation of experimental apparatus. 177
9.2 Time domain signal showing popping rate bounds. 178
9.3 Power spectrum. ... 179
9.4 GP-generated models for bulk density and fracture force. 183
9.5 ANN generated models for bulk density and fracture force. 184

10.1 The extrusion cooking process showing inputs, outputs and disturbances. . 188
10.2 Reciprocal bulk density as a function of moisture content and temperature. 192
10.3 MPC structure. ... 196
10.4 Open-loop response to simulated disturbances. 198
10.5 Closed-loop response to simulated disturbances when die pressure and die temperature are the controlled variables. 199
10.6 Closed-loop response to simulated disturbances when gelatinisation fraction and product bulk density are the controlled variables. 201
10.7 Closed-loop response for set-point tracking when gelatinisation fraction and product bulk density are the controlled variables. 202
List of Tables

1. Original work performed in this thesis. .. vi

3.1 Screw parameters and barrel radius used in the simulations. Dimensions are in millimetres. .. 73

4.1 Parameter values used in the kneading disc simulations. 90

6.1 Parameters in molten corn starch rheology model of Vergnes and Villemaire (1987). ... 125
6.2 Geometric and physical data parameters used in the startup simulation. 130
6.3 Geometric and physical data parameters used in the extrusion cooking dynamic response simulations. 135
6.4 Geometric and physical data parameters used in the experiments. 142

7.1 Extruder operating conditions and product expansion ratios. 151
7.2 Summary of product bubble characteristics on a volumetric basis. 163

9.1 Correlation coefficients between modelling inputs and outputs. 181

10.1 Variation in steady-state gain over operating range. 192
10.2 Variation in settling times (in seconds) over operating range. 192
10.3 Variation in outputs over studied operating range for different manipulated variable pairings. 194
10.4 Process transfer functions and scaling matrices. 195