OLS and Instrumental Variable Price Elasticity Estimates for Water in Mixed-Effects Model Under Multiple Tariff Structure

by

Nadira Barkatullah

No. 226 January 1996

DEPARTMENT OF ECONOMICS

The University of Sydney Australia 2006
OLS and Instrumental Variable Price
Elasticity Estimates for Water
in Mixed-Effects Model Under
Multiple Tariff Structure

by

Nadira Barkatullah

No. 226 January 1996

Abstract

A mixed-effects residential demand model for potable water is developed using a longitudinal data set constructed for the analysis. The data set comprises of 1,065 households from the Sydney Metropolitan and Wollongong areas, covering sixteen quarters from 1980 to 1994. The purpose of developing the demand model is to use it as a base model to forecast water demand changes in response to changes in the tariff structure. The empirical results show that consumers do respond to the marginal price while faced with the multipart tariff structure. Therefore price can be considered as an influential tool in the implementation of demand management strategies. However the magnitude of price elasticity suggests that substantial increases in price would be required to influence demand.

OLS and Instrumental Variable Maximum Likelihood estimation techniques are employed to conduct the analysis. The results support both - theory and past research, which states that IV/ML estimation technique tends to produce unbiased and consistent estimates than OLS, when price depends on quantity consumed. The Taylor/Nordin theory is also tested and the results are supportive of the theory.
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>II. Past Approaches to Modelling</td>
<td>3</td>
</tr>
<tr>
<td>III. Data</td>
<td>6</td>
</tr>
<tr>
<td>IV. Methodology and Estimation Technique</td>
<td>8</td>
</tr>
<tr>
<td>V. Results</td>
<td>11</td>
</tr>
<tr>
<td>VI. Conclusion</td>
<td>13</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
<tr>
<td>Addendum</td>
<td>22</td>
</tr>
</tbody>
</table>
OLS and Instrumental Variable Price Elasticity Estimates for Water in Mixed-Effects Model Under Multipart Tariff Structure

1. Introduction

Over recent years with growing water demand water authorities have resorted to demand management strategies to influence water consumption, mainly by increasing the price of water to reduce consumption. Previously, the main tools used to influence water demand were water conservation programs and public education, which advocated more efficient use of water. The purpose of this paper is to develop a demand model and test the significance of marginal price in the demand equation. Do consumers react to marginal prices? If yes, water authorities can more efficiently manage their resources by implementing appropriate pricing strategies.

In NSW a trend to greater reliance on usage pricing emerged with the Hunter District Water Corporation 'pay-for-use' pricing reforms which resulted in major cost savings. Following the Hunter Water Corporation example, Sydney Water (then the Water Board) modified their pricing structure in 1986/87. Prior to 1986/87 each household was given a water allowance determined by the property valued based rates. The higher the amount of property rate paid, the higher was the water allowance it received. Consumption above the water allowance was classified as "excess" and was charged at the usage rate. After 1986/87 Sydney Water changed the way it charged for usage. Under the new pricing policy each property was given a water allowance of 300KL per annum, irrespective of the property value. This was reduced to 250KL per annum in 1989. Finally in 1990, with the introduction of quarterly meter reading and billing, all water used was priced. This resulted in an increase in the water usage component of revenue from households from 6% in 1987/88 to 13% in 1990/91.1

---

In addition to Sydney Water’s own initiative of movement towards a pay-for-use pricing structure, with the establishment of the Government Pricing Tribunal (GPT) in New South Wales there has been an increasing emphasis on efficient pricing. The GPT states: “the prices of water services in New South Wales need to more closely reflect the true scarcity value of the water resources.” Water prices should be the true reflectors of cost and should give correct signals to the community. They also have emphasized the elimination of cross-subsidies in the price structure. At present the property component remains in the current water price schedule but there is a movement away from the property based charges and greater reliance on usage pricing, as shown in Table 1 in the appendix.

Water is frequently priced using the multipart tariff structure which is a non-uniform price schedule and can either be two-part, increasing, or decreasing. In each case the consumer pays a fixed charge which does not vary with the usage and a usage charge. It is the latter, that is charged differently under each case. In case of decreasing block tariff the succeeding blocks of water units are sold at lower prices. Under increasing or progressive block tariff the succeeding water units are sold at higher prices whereas in case of two-part tariff each additional water unit consumed is charged at the same price. Progressive and two-part tariffs are the most common pricing schedules because the declining block tariff structure is advocated against, since it encourages inefficient allocation of resources and is inequitable. It is inefficient because it encourages waste since succeeding water units can be purchased at lower price and is inequitable because low income earners tend to use less water than high income earners with huge gardens.

Over the time of the study, the price schedule took the form of either increasing or two-part tariff comprising two components as mentioned before i.e., fixed charge and usage charge. The fixed charge usually just comprises the base charge which is fixed but in case of Sydney Water the fixed charge is made of two components the base charge which is fixed and the property rate which varies with the property value. The property component is gradually being reduced and will be totally eliminated by next year. The usage charge for the first fourteen quarters of the study period consists of an increasing block tariff structure which is common among the developing countries, where the income redistribution objective is given a priority and the water authority undertakes the workings of the social security agencies. In case of developed nations like Australia, the main objective of the water authority is to cover the total cost in the most efficient manner and the “closest practical approach to efficient pricing is two-part tariff” (the fixed part of the tariff covers the fixed costs and the operating costs are covered by the usage revenue). Following the economics principle of efficient pricing Sydney Water converted to two-part tariff in 1993/94.

This paper proceeds as follows: Section II discusses various past approaches used to address similar demand modelling issues. Section III presents details about the data set used and Section IV specifies the methodology adopted by the paper and the demand function used in the analysis. Section V discusses the results derived and finally Section VI provides concluding comments.

II. Past Approaches to Modelling

Prior to the 70’s most of the studies that estimated demand under a multipart tariff structure used average price (AP) as the only explanatory price variable [see Wong 1972, Young 1973, Gottlieb 1963 & Foster and Beatje 1979]. Most of these studies calculated the AP per household as Total Bill/Total Consumption and argued that the consumers respond to the total bill rather than the marginal price because they have more accurate information about their bills rather than the block

---

2 The Government Pricing Tribunal is a regulatory authority. It was established in 1992.
3 Efficient prices are those which lead to highest possible level of welfare, defined as the sum of consumers surplus and producers surplus, see Brown and Sibley (1986).
4 1993/94 Determination of Water Board Charges.
5 Cross-subsidy is said to exist when one or more group of customers are paying more than its stand alone costs i.e., the true cost attributed to that group. Often it is interpreted more loosely in public discussion of water pricing.
6 These will be totally eliminated by next year.
7 The fixed charge is meant to cover capital cost and overheads.
nature of pricing. Thus earlier studies did not account for any intramarginal effects caused by the block structure pricing. The concept of second price along with the marginal price (MP) was introduced by Taylor [1975]. He suggested that a single price variable AP or MP is not sufficient - in fact the entire demand schedule should be represented in the demand function, stressing the importance of capturing the budget constraint facing the consumers. His theory was further developed by Nordin [1976] who introduced a difference variable often referred to as the rate structure premium (RSP). The RSP is called the difference variable because it is the difference between the total bill less what the bill would have been if the water quantity was consumed at the marginal price. This is defined as follows:

\[
AP = \text{Bill}/Q = MP + \text{RSP}/Q^{13}
\]

\[
\Rightarrow \text{RSP} = (AP - MP)Q
\]

The RSP should be able to capture the income effects of changes in the intramarginal prices, the fixed price and the quantity breakpoints. Nordin also hypothesised that the coefficients of RSP and income variables should be equal in magnitude but opposite in sign because each measures a pure income effect therefore their coefficients in a linear demand equation should be equal. The expected sign of income is positive but the derivative of water use with respect to difference is negative because increasing the intramarginal rates increases the difference and the implicit tax which reduces water use.

The Taylor/Nordin theory has been tested in several studies in both the electricity and water industries. The results of Billing and Agthe [1980] support the theory to some extent since they found that the rate structure premium (RSP) and income co-efficients have opposite signs but significantly different magnitudes. They attribute the limitation to the use of aggregate rather than individual data. In case of water, Jones and Morris [1984] tested the theory but their results were not supportive. The coefficients on these variables were also found to be of unequal magnitude in case of an electricity industry study conducted by Taylor and Blattenberger [1977].

In response to the failure of past empirical research to validate the Taylor/Nordin theory, Jeong-Shik Shin [1985] argued that the cause might be price illusion or incomplete information concerning the full budget constraint. In such a situation to capture the pure income effect Shin introduces a perceived price variable called the price perception variable in his "Price Perception Model", in addition to the marginal price. The price perception variable is a function of average price, marginal price and a price perception parameter. His paper examines the price information problem that the consumers face. The empirical results of the Shin price perception model show that consumers respond to average price rather than marginal price when faced with the decreasing block rate structure. His model was tested by Nieswiadomy and Molina [1991] for increasing block tariff structure, who concluded that water consumers react more to marginal price than average price. But whether consumers respond to average or marginal price is still a debatable issue because William [1985] using similar data to Shin [1985] found that consumers respond to marginal price.

This study does not use the price perception model, but develops a demand model which includes the RSP, the marginal price and income along with other explanatory variables.

The RSP is illustrated on the following page, using the increasing block tariff case. The increasing steps in Figure 1a are the result of increasing block tariff structure. This flows into Fig 1b where the slopes of the price segments are increasing as consumption increases. The y-axis measures the income spent on all other goods excluding water whereas x-axis represents water consumption.

The budget constraint faced by the consumers is a piecewise linear segment y=\text{a}b\text{x}. Suppose the

\[13\text{Billing and Agthe [1980].}
\[14\text{He emphasised that the consumers react not only to marginal prices but also to the changes in the consumer surplus as a result of moving from one block to the other and that these intramarginal effects should be included in the demand equation [Chisholm, Deler and Rasmussen 1980]. The difference variable in terms of consumer surplus is described as the difference in the consumer surplus under marginal pricing and the consumer surplus that is actually experienced by a typical consumer. In case of increasing (decreasing) block tariff the consumer surplus is larger (smaller) then if the units were purchased at marginal price.}
\[15\text{Jeong-Shik Shin [1985].}
\[16\text{In multi-part tariff structure it is required to capture the correct intercept.}
\[17\text{Which states that the rate structure premium and the income co-efficients should be opposite in signs but equal in magnitude.}
\[18\text{Jeong-Shik Shin [1985].}
consumer consumes Qo, where the indifference curve lo is tangent to the budget line ye at a. The fixed charge is ye yi. In such a situation if only average price (line ye yi passing through point a) is used in the analysis the intercept will be yi which exaggerates the price. On the other hand, if only MP is used the appropriate intercept captured is yi which is the MP line extended to the vertical axis when Qo amount is consumed. In this case, the correction required to obtain the correct intercept is the distance yi, which is the RSP. This is consistent with the theory of consumer choice if ye is linearised, given a single marginal price (P2) and the income intercept. In case of increasing block tariff the over and underestimation of the MP also depends on the fixed charge or the base charge. A small fixed charge leads to underestimation of the MP and a high fixed charge leads to overestimation of the MP. Therefore, in case of a block tariff structure, to capture the correct intercept it is essential to include the RSP in addition to the MP and the actual income otherwise the parameters estimated are biased.

III. Data
The data used in the analysis is a cross-section time-series longitudinal or panel data. The cross-section data is based on the survey conducted by the Government Pricing Tribunal. The total survey sample comprised of 400 collectors district, of which 352 were picked from Sydney Water supply area. In each collectors district 5 households were randomly chosen and interviewed. The GPT survey covers the Sydney LGAs including Penrith, Campbelltown, Camden, Hawkesbury, Lake Macquarie, Blue Mountains, Wollongong, Keira and Shellybeard. The main objective of the survey was to have representative samples of households in the specified catchment areas. The cross-section data for 1992 provides information on demographics, income and property values. The survey collected the information on separate dwellings and units but only the information on 1,065 separate dwellings served by Sydney Water is used in the present analysis because the quarterly data on water usage (in kilolitres) was only available for these household.

A panel data set was constructed in order to improve the precision of demand estimates. The GPT survey data is amalgamated with quarterly data on water usage (in kilolitres), weather and rate structure. The rate structure or the price schedule for sixteen quarters used in the analysis is non-uniform. The households face an increasing block tariff for the first fourteen quarters and a two-part tariff for the remaining two quarters. All values are specified in $1994. Summary statistics are given in table 2.

The RSP captures the correct intercept in case of a block rate structure and is calculated as follows:

\[
RSP = (Bill \cdot MP \cdot Q)^{13}
\]

The consumer bill is the total bill which includes;

\[
Bill = SAC + PT + UC
\]

where

- SAC = Service Availability Charge
- PT = Property Tax and
- UC = Usage Charge

---


18The appropriate intercept is income-RSP, therefore both income and RSP are included in the demand analysis as explanatory variables.

19The survey data (cross-section) was only available for 1992. Since similar information was not available for other years it was assumed that the demographics, property value and income variable remained constant for the last two years (1990 and 1991) and for the next two years (1993 and 1994). It is very unlikely that the number of bathrooms, toilets or property value would change much though the number of people per household and the income variable might vary, but these are also assumed to be constant over time in real terms. The income and property values are deflated and inflated to specify them in real $1994.

20Additional information that the survey collected per household was the type of water efficient appliance installed, (eg dual flush toilets), blocksize, number of part-time or full-time workers, number of people less than 15 year. These variables are not used in the demand function because they did not improve the model.

21Separate dwelling comprises of houses, villas, townhouses and duplexes.

22The panel data obtained for Sydney Water for 1,065 households from 1990-1994 for sixteen quarters.

23The quarterly (1990-1994) weather data for rainfall and temperature is obtained from the Bureau of Meteorology.

24Derived from equation (1) in section I.
The bill is calculated separately for pensioners and non-pensioners because pensioner rebates had to be taken into account while computing the cost of water consumption.

The other variable in equation (3) is MP or the price consumers would pay with each additional use, where the use is specified in each block to which the MP is attributed.

IV. Methodology and Estimation Technique
The methodology employed in this paper is the one developed by Nordin which is a modification of Taylor's [1975] theory. To apply the theory, a mixed-effects demand model (equation 5) is developed to conduct the analysis on the panel data set constructed.

\[ Q_{it} = \beta X_{it} + \gamma R_{it} + \epsilon_{it} \]  
\[ \epsilon_{it} = v_{it} + e_{it} + \mu_{it} \]  
\[ e_{it} = \rho e_{i,t-1} + \lambda_{it} \]  
\[ v_{it} \sim N(0, \sigma_v^2) \]  
\[ \lambda_{it} \sim N(0, \sigma_{\lambda}^2) \]  
\[ u_{it} \sim N(0, \sigma_u^2) \]

where:
- \( i \) is a cross-sectional index representing each household,
- \( t \) is quarterly time series index and \( \rho \) is the autocorrelation estimate.

The mixed-effects model takes into account both fixed and random effects. \( \beta \) and \( \gamma \) are vectors of fixed and random effects, respectively. The error term \( \epsilon_{it} \) takes into consideration the cross-section disturbance term \( (v_{it}) \) which measures the shock across households, the time-series disturbance term \( (e_{it}) \) with the first order autoregressive error structure \( (e_{i,t-1}) \) and a combined error component \( (u_{it}) \).

The assumptions imply that the cross-sectional errors are uncorrelated over time but the time-series disturbances are correlated over time.

The assumptions imply that the cross-sectional errors are uncorrelated over time but the time-series disturbances are correlated over time.

The maximum likelihood (ML) estimation technique is employed to estimated the demand model. The Newton-Raphson iterative procedure is used to maximise the likelihood function with respect to the parameters specified in the model and tries to locate an optimum subject to the demand model specified.

Panel data sets have advantage over either time-series or cross-section data sets because they increase the number of data points and lead to more degrees of freedom. They also add a new dimension to the problems of model specifications. The additional problem is the structure of the error term which gets more complex because it includes both time-series and cross-sectional related disturbances. Thus a complex stochastic structure is specified in equation (6) and (7).

An additional model specification problem in estimating the demand function is the endogenous price variables. Under an increasing block tariff structure the non-linear budget constraints\(^{24}\) cause the price variables to be endogenous. The price and rate structure premium determined by the quantity demanded\(^{17}\) leads to a "reverse causality"\(^{25}\) problem which has to be corrected for otherwise the demand estimates are biased, inefficient and inconsistent. The paper employs the Instrumental Variable (IV) estimation technique which addresses the problem of endogenous price variables (MP) and (RSP) which are correlated to the error term \( (\epsilon_{it}) \) on the right hand side of the regression equation (8).

\[ X = f (\text{MP, RSP, Z}) + \epsilon \]  
\[ Z \] are the other explanatory variables including income. In this situation the use of OLS estimation generates biased, inefficient and inconsistent estimates.

\(^{24}\) Which leads to the problem of the "kinked budget constraint", it is assumed for the purpose of this analysis that non of the observations lie at the kink - thus everyone is assumed to be located at one of the price segments.

\(^{17}\) \( P = f(Q) \Rightarrow Q = f(P) \)

In order to address this problem an instrument variable is required, a variable that is highly correlated with the price variable but uncorrelated with the error term, \( \omega \). Once such a variable is found, OLS or ML estimation techniques can be used.

Though several instrumental variable techniques have been suggested, the two stage instrumental variable estimation technique used in this analysis is analogous to the one used by Hausman and Wise [1976] and Rosen [1976] in the labor supply cases, by Hausman, Kuminen and McFadden [1979] and Terza [1986] in the electricity industry and by Nieswiadomy and Molina [1989] in the water industry demand models. The stages involved in the development of the price instruments are given in detail in the following section.

In the first stage, the water demand is estimated on the set of actual marginal prices that are faced by each household at the three predetermined consumption levels (600, 822 and 823) chosen to capture the budget set, as specified in equation (9):

\[
Q_s^* = \theta P^e B^e X_e
\]  (9)

Where \( P_e \) is a vector of prices corresponding to the exogenous quantities.

\( B^e \) is the base charge

\( X_e \) are exogenous variable used in the analysis

The predicted water consumption estimated in stage 1 is used to calculate the predicted marginal price and the predicted rate structure premium, specified in equation (10) and (11), respectively:

\[
MP_v = \theta Q_s^*
\]  (10)

\[
RSP_v = \theta Q_s^*
\]  (11)

In stage 2, these instrument price variables are used as independent variables in the demand model (equation 12) to estimate water consumption.

The mixed-effects demand function used in the analysis is:

\[
\log Q_h = a + b \log RSP + c \log MP + d \log T + e \log R + f \log Y + g \log PV + h \log P + \omega
\]  (12)

Where:

- \( h \neq 1\), 1.065 (households) and \( r = 1\), 0.16 (quarters)
- \( Q_h \) denotes the quantity of water demanded by the \( h \)th household in \( r \)th quarter.
- \( RSP \) is the difference variable calculated for each household for each quarter.
- \( MP \) is the predicted marginal price faced by \( h \)th household in \( r \)th quarter.
- \( T \) is the average temperature variable in \( r \)th quarter.
- \( R \) is lagged rainfall (lagged by one quarter).
- \( Y \) is income of the \( h \)th household in \( r \)th quarter (using the midpoints of the relevant ranges specified in the series).
- \( PV \) is the market property value of \( h \)th household in \( r \)th quarter. This is the expected price of the property as perceived by each household (endpoints of the property value range are used in the calculation).
- \( P \) is a dummy for peak and off peak.
- \( D = 1 \) for summer quarters - peak.
- \( D = 0 \) for winter quarters - off peak.
- \( X_e \) is demographic variables used in the analysis comprising of household size, bedrooms and the number of bathrooms, toilets plus the household garden condition.
- \( \omega \) refer to equation (6) and (7).

The model adopted is a log-linear form so that the coefficients of price and income are specified as elasticities. The log-linear model also provides a better fit (higher \( R^2 \)) than the linear one.

V. Results

The results of the analysis are presented in table 3. The water demand estimates are calculated using OLS and IV/ML estimation techniques. The OLS estimates are given for the purpose of...
comparison. The IV/ML techniques are used to deal with the model specification problems discussed in section IV.

The results presented in table 3 are interesting from many angles. First, the wrong sign of the price coefficient: 0.25 under OLS depicts the inherent bias. The bias in OLS can get extremely large and in certain cases can reverse the expected sign of price and income elasticities [Dubin 1982; Medgel 1987; Moffit and Nicholson 1982]. In case of this study only the price variable has a wrong sign. Similar results are reported using an increasing block tariff structure by Niewiadomy and Molina [1989] - who conclude that the bias in the price coefficient is positive in case of increasing block tariffs. The results of this study also show the inherent positive bias. The signs of other coefficients under OLS are as expected except for temperature but the t-ratios are slightly exaggerated because of a bias in the estimated variances. In addition to this the presence of autoregressive error structure (dw=1.49) can also cause misleading parameter estimates and levels of significance.

In contrast to the OLS estimates the results under IV/ML estimations are supportive of past theory. The coefficient of price elasticity is -0.21, which is inelastic with negative sign as expected. Since water is a necessity the degree of responsiveness of water with respect to price is less than unity. This is also consistent with the income elasticity of 0.07, which lies within the range of previous studies given in table 4.

The signs of the other variables are as expected. The t-ratios of all the other variables are significant except for temperature and property value. The t-ratios in Table 3 for the second stage have been adjusted for the inherent bias in the coefficient's standard errors22. The peak dummy is significant implying that during summer the demand is higher. The rain variable is lagged by one quarter assuming that the heavy rainfall in last quarter will reduce consumption in the next quarter. The demographic variables in, household size, bedrooms and toilets all have the expected positive signs. The garden condition variable is significant which implies that households with well maintained gardens tend to consume more.

The property value variable included is the market value of the property which has a positive sign as expected but is insignificant. This implies that more expensive properties tend to use more water.

Another important point to note is that the income and RSP coefficients are opposite in sign as expected but are not equal in magnitude. The results shown in table 4 support the former part of the hypothesis.24 The latter part of the hypothesis which specifies that the magnitude of the income and RSP coefficient should be the same applies to the derivatives and not to elasticities. Since the elasticities are specified in table 3 the coefficients of income and price variables are derived23 which are 0.0005 and -0.018, respectively. The co-efficients are significantly different in magnitude which supports the previous empirical research suggesting some price illusion.

The goodness of fit (R²) for the IV/ML second stage is 0.62 which is good given the amount of time-series data available and is better than the R² under OLS model. The model has also been corrected for autocorrelation with the given estimated value of p = 0.0105 ⇒ DW_ 1.98. The null model likelihood test ratio (LTR) is 4651 which shows a significant difference between the null model and the likelihood model. The null model is the standard linear model with only fixed effects24 and the residual. This implies that the first order autoregressive covariance matrix is preferred to the diagonal one of the OLS null model.

VI. Conclusion

This paper has estimated a water demand model under a multipart tariff structure consisting of an increasing or two-part tariff structure depending on the date. The purpose of developing the demand model is to use it as a base model to forecast water demand25 changes in response to

22billing and Agthe [1980] and Jones and Morris [1984].

23The income (c_y) and price (c_{re}) elasticity values are taken from table 3 whereas the mean values are taken from table 2.

\[
\frac{\partial c_y}{\partial Y} = 0.025 \times 73.45 / (10,041.76) = 0.0009
\]

and

\[
\frac{\partial c_{re}}{\partial RSP} = 0.025 \times 73.45 / (12,71,41) = 0.008
\]

24Including intercept and all independent variables.

25Assuming that the independent variables used in the analysis follow the same pattern of growth.
changes in the tariff structure. Two estimation techniques are used which are OLS and IV-ML. The OLS estimates are likely to be biased and inconsistent with the theory of structural demand models where equations are specified as supply-demand models. The results are also supportive of both the theory and past research which states that IV-ML estimation technique should be used in case of mixed-effects simultaneous equation models where the error term is of a complex stochastic form with an inherent autoregressive error structure and is correlated with the price variable.

The estimated parameters of the model have expected signs and nearly all are significant at 1% level of significance. The price elasticity of income is less than one which is supportive of past research since water is a necessity, this is supported by the highly inelastic income elasticity.

The empirical results show that consumers do respond to the marginal price while faced with the multipart tariff structure. Therefore price can be considered as an influential tool in the implementation of demand management strategies. However the magnitude of price elasticity suggests that substantial increases in price would be required to influence demand.

References:


---

Table 4 gives a comparative analysis of income and price elasticities. The price elasticity is inelastic and so is income except in case of Billing and Agthe [1980] which show an elastic income elasticity.


### Rate Schedule Used in the Analysis

**Under Multpart Tariff Structure**

<table>
<thead>
<tr>
<th>Year</th>
<th>Water</th>
<th>Sewer</th>
<th>Drain</th>
<th>Water &amp; Drain</th>
<th>Water, Sewer &amp; Drain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990/91</td>
<td>$23,250</td>
<td>$57,500</td>
<td>$3,000</td>
<td>$20,000</td>
<td>$48,000</td>
</tr>
<tr>
<td>Base Charges</td>
<td>0.043</td>
<td>0.109</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pensioner Rebate Property Rates*</td>
<td>Maximum</td>
<td>35,000</td>
<td>122,700</td>
<td>13,870</td>
<td></td>
</tr>
<tr>
<td>1991/92</td>
<td>$23,250</td>
<td>$57,500</td>
<td>$3,000</td>
<td>$20,000</td>
<td>$48,000</td>
</tr>
<tr>
<td>Base Charges</td>
<td>0.045</td>
<td>0.115</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pensioner Rebate Property Rates*</td>
<td>Maximum</td>
<td>40,950</td>
<td>128,830</td>
<td>14,560</td>
<td></td>
</tr>
<tr>
<td>1992/93</td>
<td>$23,250</td>
<td>$57,500</td>
<td>$3,000</td>
<td>$20,000</td>
<td>$48,000</td>
</tr>
<tr>
<td>Base Charges</td>
<td>0.045</td>
<td>0.115</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pensioner Rebate Property Rates*</td>
<td>Maximum</td>
<td>40,830</td>
<td>128,640</td>
<td>14,880</td>
<td></td>
</tr>
<tr>
<td>1993/94</td>
<td>$23,250</td>
<td>$57,500</td>
<td>$3,000</td>
<td>$20,000</td>
<td>$48,000</td>
</tr>
<tr>
<td>Base Charges</td>
<td>0.045</td>
<td>0.115</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pensioner Rebate Property Rates*</td>
<td>Maximum</td>
<td>37,000</td>
<td>128,000</td>
<td>14,880</td>
<td></td>
</tr>
</tbody>
</table>

---

### Summary Statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Units</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of Observations</td>
<td>-------</td>
<td>17,024</td>
<td></td>
</tr>
<tr>
<td>Water Consumption</td>
<td>Kilolitres</td>
<td>73.45</td>
<td>124.83</td>
</tr>
<tr>
<td>Price</td>
<td>$</td>
<td>1994</td>
<td>0.37</td>
</tr>
<tr>
<td>Marginal Price</td>
<td>$</td>
<td>1994</td>
<td>3.74</td>
</tr>
<tr>
<td>Average Price</td>
<td>$</td>
<td>1994</td>
<td>121.41</td>
</tr>
<tr>
<td>Rate Structure Premium</td>
<td>$</td>
<td>1994</td>
<td>131.33</td>
</tr>
<tr>
<td>Base</td>
<td>$</td>
<td>1994</td>
<td>155.67</td>
</tr>
<tr>
<td>Bill</td>
<td>$</td>
<td>1994</td>
<td>10,041.76</td>
</tr>
<tr>
<td>Property Value</td>
<td>$</td>
<td>1994</td>
<td>260,302.27</td>
</tr>
<tr>
<td>Demographics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bedrooms</td>
<td></td>
<td></td>
<td>3.22</td>
</tr>
<tr>
<td>Toilets</td>
<td></td>
<td></td>
<td>1.74</td>
</tr>
<tr>
<td>Household Size</td>
<td></td>
<td></td>
<td>3.25</td>
</tr>
<tr>
<td>Weather</td>
<td></td>
<td></td>
<td>87.81</td>
</tr>
<tr>
<td>Rainfall</td>
<td>Millimetres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Centigrades</td>
<td></td>
<td>21.25</td>
</tr>
</tbody>
</table>

---

### Usage Charges

**Increasing Block Tariff Structure**

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter 1 (Jan - Mar)</th>
<th>Quarter 2 (Apr - Jun)</th>
<th>Quarter 3 (Jul - Sep)</th>
<th>Quarter 4 (Oct - Dec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990/91</td>
<td>$0.15</td>
<td>$0.15</td>
<td>$0.15</td>
<td>$0.15</td>
</tr>
<tr>
<td>601 - 822</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>822 - 30,000</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>above 30,000</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
<td>0.55</td>
</tr>
<tr>
<td>1991/92</td>
<td>0.15</td>
<td>0.15</td>
<td>0.16</td>
<td>0.16</td>
</tr>
<tr>
<td>601 - 822</td>
<td>0.27</td>
<td>0.27</td>
<td>0.29</td>
<td>0.29</td>
</tr>
<tr>
<td>822 - 30,000</td>
<td>0.55</td>
<td>0.55</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>above 30,000</td>
<td>0.55</td>
<td>0.55</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>1992/93</td>
<td>0.18</td>
<td>0.21</td>
<td>0.21</td>
<td>0.21</td>
</tr>
<tr>
<td>601 - 822</td>
<td>0.29</td>
<td>0.30</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>822 - 30,000</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
<td>0.59</td>
</tr>
<tr>
<td>above 30,000</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
<td>0.64</td>
</tr>
<tr>
<td>1993/94</td>
<td>0.21</td>
<td>0.21</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>601 - 822</td>
<td>0.30</td>
<td>0.30</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>822 - 30,000</td>
<td>0.59</td>
<td>0.59</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>above 30,000</td>
<td>0.64</td>
<td>0.64</td>
<td>0.65</td>
<td>0.65</td>
</tr>
</tbody>
</table>

---

**Two-part Tariff Structure**

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter 1 (Jan - Mar)</th>
<th>Quarter 2 (Apr - Jun)</th>
<th>Quarter 3 (Jul - Sep)</th>
<th>Quarter 4 (Oct - Dec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990/91</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>601 - 822</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>822 - 30,000</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
<tr>
<td>above 30,000</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
<td>0.65</td>
</tr>
</tbody>
</table>

---

**Note:**

*CS for land value above $33,000.
## Water Demand Estimates
### Under Multipan Tariff

**Table 3**

<table>
<thead>
<tr>
<th>Variables</th>
<th>OLS</th>
<th>IV 2nd Stage</th>
<th>IV 1st Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>5.07</td>
<td>2.57</td>
<td>1.64</td>
</tr>
<tr>
<td>MP</td>
<td>-0.25</td>
<td>-0.79</td>
<td>-1.18</td>
</tr>
<tr>
<td>*16.12</td>
<td>*.41</td>
<td>-1.11</td>
<td>---</td>
</tr>
<tr>
<td>RSP</td>
<td>-0.19</td>
<td>-0.03</td>
<td>---</td>
</tr>
<tr>
<td>HH Size</td>
<td>*.5097</td>
<td>0.17</td>
<td>0.17</td>
</tr>
<tr>
<td>Toilets</td>
<td>0.03</td>
<td>0.08</td>
<td>0.24</td>
</tr>
<tr>
<td>*14.56</td>
<td>*.17</td>
<td>*.78</td>
<td>*.28</td>
</tr>
<tr>
<td>*1.88</td>
<td>*.24</td>
<td>*.24</td>
<td></td>
</tr>
<tr>
<td>Bedrooms</td>
<td>0.91</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Temp</td>
<td>1.15</td>
<td>2.97</td>
<td>0.03</td>
</tr>
<tr>
<td>Peak</td>
<td>*.18.99</td>
<td>0.23</td>
<td>0.71</td>
</tr>
<tr>
<td>Lag Rainfall</td>
<td>0.32</td>
<td>0.26</td>
<td>0.15</td>
</tr>
<tr>
<td>Garden</td>
<td>*.30.05</td>
<td>0.09</td>
<td>0.69</td>
</tr>
<tr>
<td>Prop Val</td>
<td>-0.05</td>
<td>-0.13</td>
<td>0.00</td>
</tr>
<tr>
<td>Income</td>
<td>*.396</td>
<td>*.381</td>
<td>1.16</td>
</tr>
<tr>
<td>Base</td>
<td>0.01</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>Block 1</td>
<td>0.77</td>
<td>2.49</td>
<td>0.08</td>
</tr>
<tr>
<td>Block 2</td>
<td>0.77</td>
<td>2.49</td>
<td>0.08</td>
</tr>
<tr>
<td>Block 3</td>
<td>0.77</td>
<td>2.49</td>
<td>0.08</td>
</tr>
<tr>
<td>R-sq</td>
<td>0.39</td>
<td>0.64</td>
<td>0.79</td>
</tr>
<tr>
<td>STDEV</td>
<td>0.524</td>
<td>0.588</td>
<td>0.5927</td>
</tr>
<tr>
<td>*Rho</td>
<td>0.255</td>
<td>0.0105</td>
<td>0.044</td>
</tr>
<tr>
<td>DW(approx)</td>
<td>1.49</td>
<td>1.98</td>
<td>1.91</td>
</tr>
<tr>
<td>Null Model LRT</td>
<td>4651</td>
<td>3681</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
The figures in italics are T-ratios, **”** implies significance at 1% level.

### Elasticity Estimates of Various Studies

**Table 4**

<table>
<thead>
<tr>
<th>Studies</th>
<th>Marginal Price</th>
<th>Rate Structure Premium</th>
<th>Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>-0.11</td>
<td>-0.03</td>
<td>0.06</td>
</tr>
<tr>
<td>Panel Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Billing and Aghe (1980)</td>
<td>-0.27</td>
<td>-0.12</td>
<td>1.68</td>
</tr>
<tr>
<td>Time Series</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jones and Morris (1984)</td>
<td>-0.18</td>
<td>-0.24</td>
<td>0.40</td>
</tr>
<tr>
<td>Cross Section</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chiccone, Deller &amp; Ramamurthy (1986)</td>
<td>-0.22</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Cross Section Rural</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neswedordony and Molina (1989)</td>
<td>-0.86</td>
<td></td>
<td>0.14</td>
</tr>
<tr>
<td>Time Series</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
206 W. Kafoulis & Y. Vardoukakis
Bargaining and Strikes: From an Equilibrium to an
Evolutionary Framework; July 1994
207 A. Oswald & I. Walker
Rethinking Labor Supply: Contract Theory and
Unions; July 1994
208 J.B. Towe & D.J. Wright
The Research Output of Australian Econometrics and
Economics Department: 1988-95; July 1994
209 F. Gill & C. Rose
Discontinuous Payoff Functions under Incomplete
Information; August 1994
210 S.J Kim
Inflation News in Australia: Its Effects on Exchange
Rates and Interest Rates; October 1994
211 Y. Vardoukakis
Moral Hysteric in the Face of Strategic Weakness: Modern
Clues for an Ancient Puzzle; November 1994
212 E. Jones
Bureaucratic Politics and Economic Policy: The
Evolution of Trade Policy in the 1970s and 1980s;
December 1994
213 R. Hatanaree & A.J. Phipps
The Relationship Between Money and Income in Thailand:
Some Evidence for the 1980s Using a Cointegration
Approach; January 1995
214 G. White
Classical Competition, Keynesian Adjustment and Composite
Dynamics: A Critical Perspective; February 1995
215 C. Kafoulis & A.J. Phipps
Treasary Note and Bank Bill Rates, the Risk Premium and
Australian Monetary Policy; February 1995
216 P.D. Groenewegen
The Post-1945 Internationalization of Economics The
Australian Experience; April 1995
217 S.J Kim
Modeling Changes in Daily RA Exchange Rates:
An Application of GARCH; June 1995
218 R. Hatanaree & A. Phipps
The Degree of Capital Mobility in Thailand: Some
Estimates Using a Cointegration Approach; June 1995
219 I.J. Irvine & W.A. Sims
Measuring Consumer Surplus with Unknown Hicksian
Demands; June 1995
220 I.J. Irvine & S. Wang
Saving Behavior in a Pure Life-Cycle Model with
Income Uncertainty; June 1995
221 J. Logan
The Self-Destruction of Private Health Insurance;
October 1995
222 A. Aspromourgos
Cardillops on Real Wages and Employment: a rational
reconstruction of the significance of land
utilization; November 1995
223 M. Smith
A Monetary Explanation of Distribution in a Gold
Money Economy; December 1995
224 J.B. Towe
The Ranking of University Accounting and Finance
Departments in Australia, 1990-94; January 1996
225 W.P. Hogan
Foreign Debt Perceptions, Experiences and
Issues; January 1996
226 N. Barkatullah
OLS and Instrumental Variable Price Elasticity Estimates
for Water in Mixed-Effects Model Under Multisport
Tariff Structure; January 1996

Copies are available upon request from:
Department of Economics
The University of Sydney
N.S.W. 2006, Australia
Working Papers in Economics Published Elsewhere

2 I.G. Sharpe & R.G. Walker  
Journal of Accounting Research, 13(2), Autumn 1975

3 N.V. Lam  
Journal of the Developing Economies, 17(1), March 1979

4 V.B. Hall & M.L. King  
New Zealand Economic Papers, 10, 1976

5 A.J. Phipps  
Economic Record, 53(143), September 1977

6 N.V. Lam  
Journal of Development Studies, 14(1), October 1977

7 I.G. Sharpe  
Australian Journal of Management, April 1976

8 W.P. Hogan  
Economic Papers, 55, The Economic Society of Australia and New Zealand, October 1977

12 I.G. Sharpe & P.A. Volker  
Economics Letters, 2, 1979

13 I.G. Sharpe & P.A. Volker  
Kredit und Kapital, 12(1), 1979

14 W.P. Hogan  

15 F. Gill  
Australian Economic Papers, 19(35), December 1980

18 I.G. Sharpe  
Journal of Banking and Finance, 3(1), April 1978

21 R.L. Brown  
Australian Journal of Management, 3(1), April 1978

23 I.G. Sharpe & P.A. Volker  
The Australian Monetary System in the 1970s, M. Porter (ed.), Supplement to Economic Board 1978

24 V.B. Hall  
Economic Record, 56(152), March 1980

25 I.G. Sharpe & P.A. Volker  
Australian Journal of Management, October 1979

27 W.P. Hogan  
Malayan Economic Review, 24(1), April 1979

28 P. Saunders  
Australian Economic Papers, 19(34), June 1980

29 W.P. Hogan  

30 W.P. Hogan  
Australian Economic Papers, 18(33), December 1979


35 P.C.B. Phillips  

57 P. Saunders  
Economic Record, 59(166), September 1983

58 F. Gill  
Economic Appliqué, 37(3-4), 1984

59 G. Mills & W. Coleman  
Journal of Transport Economics and Policy, 16(3), September 1982

60 J. Yates  
Economic Papers, Special Edition, April 1983

61 S.S. Joson  
Australian Economic Papers, 54(44), June 1985

62 R.T. Ross  
Australian Quarterly, 55(3), Spring 1984

65 W.J. Merrihew  
Economic Record, 59(166), September 1983

65 A.J. Phipps  
Australian Economic Papers, 22(41), December 1983

67 V.B. Hall  
Economics Letters, 12, 1985

69 V.B. Hall  
Energy Economics, 8(2), April 1986

70 F. Gill  
Australian Quarterly, 59(2), Winter 1987

71 W.J. Merrihew  
Australian Economic Papers, 25(43), December 1984

73 C.G.F. Sinkin  
Singapore Economic Review, 29(1), April 1984

74 J. Yates  
Australian Quarterly, 56(2), Winter 1984

77 V.B. Hall  
Economics Letters, 20, 1986

78 S.S. Joson  
Journal of Policy Modeling, 8(2), Summer 1986

79 R.T. Ross  
Economic Record, 58(178), September 1986

81 R.T. Ross  
Australian Bulletin of Labour, 11(4), September 1985

82 P.D. Groenewegen  
History of Political Economy, 20(4), Winter 1988 and 
Scottish Journal of Political Economy, 37(1) 1990

84 F.M.A. Gross, W.P. Hogan & I.G. Sharpe  
Australian Economic Papers, 27(50), June 1988

85 F. Gill  
Australian Bulletin of Labour, 16(4), December 1990

94 W.P. Hogan  
Company and Securities Law Journal, 6(1), February 1988

95 J. Yates  
Urban Studies, 26, 1989

96 B.W. Ross  
The Economic and Social Review, 20(3), April 1989

97 F. Gill  

98 A.J. Phipps  
Australian Economic Papers, 31(58), June 1992

99 R.T. Ross  
Australian Bulletin of Labour, 15(1), December 1988

100 L. Haddad  
Heits Bulletin, (11), Winter 1989

101 J. Pigott  
Public Sector Economics - A Reader, P. Hare (ed.), Basil Blackwell, 1988

102 J. Carlson & D. Findlay  
Journal of Macroeconomics, 13(1), Winter 1991

102 J. Carlson & D. Findlay  
Journal of Economics and Business, 44(1), February 1992

104 P.D. Groenewegen  

107 B.W. Ross  
Prometheus, 6(3), December 1988

108 S.S. Joson  
Ristta di diritto valutario e di economia internazionale, 55(3), June 1988

112 P. Groenewegen  

113 V.B. Hall  
Energy Economics, 12(4) October 1990

24 25
114 V.B. Hall 
T.P. Truong
& V.A. Nguyen
_Australian Economic Review, (87) 1989(3)

115 F. Gill

117 V.B. Hall &
D.R. Mills

118 W.P. Hogan
_Economic Analysis and Policy, 19(1), March 1989

120 P. Groenewegen

122 W.P. Hogan &
L.G. Sharpe

123 G. Mills
_Economic Quarterly, 61(4), 1989

128 S. Lahiri &
J. Sheen
_The Economic Journal, 100(400), 1990

130 J. Sheen
_Journal of Economic Dynamics and Control, 16, 1992

133 Y. Varoufakis
_Economic Alquique, 45(1), 1992

136 L. Ermini
_The Economic Record, 69(204), March 1993

138 D. Wright
_Journal of International Economics, 35, (1-2) 1993

139 D. Wright
_Australian Economic Papers, 32, 1993

141 P. Groenewegen
_Australian Economic Papers, 31, 1992

143 C. Karfakis
_Applied Economics, 23, 1991

144 C. Karfakis &
D. Moschot
_Journal of Money, Credit and Banking, 22(3), 1990

147 J. Yates
_Housing Studies, 7, (2), April 1992

158 W.P. Hogan
_Economic Papers, 10(1), March 1991

159 P. Groenewegen
Local Government and Market Decentralisation: Experiences in Industrialised, Developing and Former Eastern Block Countries, R. J. Benett (ed.) UN University Press, 1994

160 C. Karfakis
Applied Financial Economics, 1(3), September 1991

162 Y. Varoufakis
_Erkenntnis, 38, 1993

163 Y. Varoufakis
_Science and Society, 56(4), 1993

173 C. Rose
_The Rand Journal of Economics, 24(4), Winter 1993

177 P. Groenewegen
European Journal of the History of Economic Thought, 1(2) Spring 1994

178 D. J. Wright
_Economic Record, 70(211), December 1994

187 C. Karfakis &
A. J. Phipps
_Australian Economic Papers, 33(62), June 1994

189 C. Karfakis &
Sj Kim
_Journal of International Money and Finance, 14(4)

190 A.J. Phipps &
J.R. Sheen
_August 1995

193 P. Groenewegen
Labour Economics and Productivity, 6(1), March 1994

194 D Dutta &
A. Hussain
_Journal of Contemporary Asia, 25(4), 1995

199 J. Yates
_Housing Policy Debate, 5(2), 1994

202 P. Groenewegen
Dis-Heterogeneity Stige (26), 1994

203 F. Gill
_Australian Economic Papers, 33(62), June 1994

208 J.B. Towe &
D J. Wright
_Economic Record, 71(212), March 1995

210 Sj Kim
_Applied Financial Economics, 6(2), 1996