Science handbook
Acknowledgements

The Arms of the University

Sidere mens eadem mutato
Though the constellation may change
the spirit remains the same

Copyright
This work is copyright. No material anywhere in this work may be
copied, reproduced or further disseminated – unless for private use
or study – without the express and written permission of the legal
holder of that copyright. The information in this handbook is not to be
used for commercial purposes.

Official course information
Faculty handbooks and their respective online updates, along with
the University of Sydney Calendar, form the official legal source of
information relating to study at the University of Sydney. Please refer
to the following websites:

www.usyd.edu.au/handbooks
www.usyd.edu.au/calendar

Amendments
All authorised amendments to this handbook can be found at
www.usyd.edu.au/handbooks/handbooks_admin/updates2010

Disability access
An accessible version of this handbook (in Microsoft Word) is available
at www.usyd.edu.au/handbooks/handbooks_disability

Resolutions
The Coursework Clause
Resolutions must be read in conjunction with the University of Sydney
(Coursework) Rule 2000 (as amended), which sets out the
requirements for all undergraduate courses, and the relevant
resolutions of the Senate.

The Research Clause
All postgraduate research courses must be read in conjunction with
the relevant rules and resolutions of the Senate and Academic Board,
including but not limited to:

1. The University of Sydney (Amendment Act) Rule 1999 (as amended).
2. The University of Sydney (Doctor of Philosophy (PhD)) Rule 2004.
3. The resolutions of the Academic Board relating to the
 Examination Procedure for the Degree of Doctor of Philosophy.
4. The relevant faculty resolutions.

Disclaimers
1. The material in this handbook may contain references to persons
 who are deceased.
2. The information in this handbook was as accurate as possible at
 the time of printing. The University reserves the right to make
 changes to the information in this handbook, including
 prerequisites for units of study, as appropriate. Students should
 check with faculties for current, detailed information regarding
 units of study.

Price
The price of this handbook can be found on the back cover and is in
Australian dollars. The price includes GST.

Handbook purchases
You can purchase handbooks at the Student Centre, or online at
www.usyd.edu.au/handbooks

Production
Digital and Print Media Office
Website: www.usyd.edu.au/dpm

Printing
Impress Colour

Handbook enquiries
For any enquiries relating to the handbook, please email the handbook
editors at info@publications.usyd.edu.au

Address
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 2222
Website: www.usyd.edu.au

CRICOS Provider Code 00026A
ISSN: 1834-9544
ISBN: 978-1-74210-110-1
Important dates

University semester and vacation dates for 2010

<table>
<thead>
<tr>
<th>Summer/Winter School lectures</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer School – December program</td>
<td>Begins: Monday 7 December 2009</td>
</tr>
<tr>
<td>Summer School – main program</td>
<td>Begins: Monday 4 January 2010</td>
</tr>
<tr>
<td>Summer School – late January program</td>
<td>Begins: Monday 18 January</td>
</tr>
<tr>
<td>Winter School – main program</td>
<td>Monday 28 June to Friday 24 July</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester One</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>International student orientation (Semester One) – STABEX</td>
<td>Monday 15 February and Tuesday 16 February</td>
</tr>
<tr>
<td>International student orientation (Semester One) – full degree</td>
<td>Wednesday 18 February and Thursday 19 February</td>
</tr>
<tr>
<td>Lectures begin</td>
<td>Monday 1 March</td>
</tr>
<tr>
<td>AVCC Common Week/non-teaching Easter period</td>
<td>Friday 2 April to Friday 9 April</td>
</tr>
<tr>
<td>International application deadline (Semester Two) *</td>
<td>Thursday 30 April *</td>
</tr>
<tr>
<td>Last day of lectures</td>
<td>Friday 4 June</td>
</tr>
<tr>
<td>Study vacation</td>
<td>Monday 7 June to Friday 11 June</td>
</tr>
<tr>
<td>Examination period</td>
<td>Tuesday 15 June to Saturday 26 June</td>
</tr>
<tr>
<td>Semester ends</td>
<td>Saturday 26 June</td>
</tr>
<tr>
<td>AVCC Common Week/non-teaching period</td>
<td>Monday 5 July to Friday 9 July</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Two</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>International student orientation (Semester Two) – STABEX</td>
<td>Monday 19 July and Tuesday 20 July</td>
</tr>
<tr>
<td>International student orientation (Semester Two) – full degree</td>
<td>Wednesday 22 July and Thursday 23 July</td>
</tr>
<tr>
<td>Lectures begin</td>
<td>Monday 26 July</td>
</tr>
<tr>
<td>AVCC Common Week/non-teaching period</td>
<td>Monday 27 September to Friday 1 October</td>
</tr>
<tr>
<td>Last day of lectures</td>
<td>Friday 29 October</td>
</tr>
<tr>
<td>International application deadline (for Semester 1, 2011) *</td>
<td>Saturday 30 October *</td>
</tr>
<tr>
<td>Study vacation</td>
<td>Monday 1 November to Friday 5 November</td>
</tr>
<tr>
<td>Examination period</td>
<td>Monday 8 November to Saturday 20 November</td>
</tr>
<tr>
<td>Semester ends</td>
<td>Saturday 20 November</td>
</tr>
</tbody>
</table>

* Except for the faculties of Dentistry, Medicine and the Master of Pharmacy course. See www.acer.edu.au for details.

Last dates for withdrawal or discontinuation for 2010

<table>
<thead>
<tr>
<th>Semester One – units of study</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last day to add a unit</td>
<td>Friday 12 March</td>
</tr>
<tr>
<td>Last day for withdrawal</td>
<td>Wednesday 31 March</td>
</tr>
<tr>
<td>Last day to discontinue without failure (DNF)</td>
<td>Friday 23 April</td>
</tr>
<tr>
<td>Last to discontinue (Discontinued – Fail)</td>
<td>Friday 4 June</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester Two – units of study</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last day to add a unit</td>
<td>Friday 6 August</td>
</tr>
<tr>
<td>Last day for withdrawal</td>
<td>Monday 31 August</td>
</tr>
<tr>
<td>Last day to discontinue without failure (DNF)</td>
<td>Friday 10 September</td>
</tr>
<tr>
<td>Last day to discontinue (Discontinued – Fail)</td>
<td>Friday 29 October</td>
</tr>
<tr>
<td>Last day to withdraw from a non-standard unit of study</td>
<td>Census date of the unit, which cannot be earlier than 20 per cent of the way through the period of time during which the unit is undertaken.</td>
</tr>
</tbody>
</table>

Public holidays

<table>
<thead>
<tr>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Day</td>
</tr>
<tr>
<td>Good Friday</td>
</tr>
<tr>
<td>Easter Monday</td>
</tr>
<tr>
<td>Anzac Day</td>
</tr>
<tr>
<td>Queen's Birthday</td>
</tr>
<tr>
<td>Labour Day</td>
</tr>
</tbody>
</table>
What is a handbook?
The handbook is an official publication and an essential guide for every student who studies at the University of Sydney. It is an important source of enrolment information. It can also help you with more than just planning your course of study.

As a student at the University of Sydney you need to be aware of course structures and content, who your lecturers are, as well as examination procedures.

You should also become familiar with University policies and faculty rules and regulations. This handbook supplies a lot of this information.

It will also point you to places and people around the University who can help with enquiries about library loans, child care, fees, casual employment, places to eat and stay, support groups and much more.

What new students need to know

• terminology used for courses and programs of study
• semester dates and examination periods
• important contact details
• how to plan your study program
• rules and policies on assessment, satisfactory progression, honours, etc
• what University services are available and where to find them
• how to get around campus.

At the beginning of many of these chapters there will be explanations to help you proceed further.

Where to find information

Course terminology
University terminology, such as 'credit point', 'unit of study', and 'WAM', can be found in the Abbreviations and Glossary chapters, at the back of this handbook.

Dates
The start and finish dates of semester can be found in the front section of the handbook. Summer School and Winter School dates are in the general information section at the back of the handbook.

Contents and index
The comprehensive Contents section at the back of the handbook explains the details you'll find within each chapter.

You'll find information like:

• how and where to contact faculty staff
• how to select your units of study and programs
• a list of degrees
• detailed information on all units of study, classified by unit identifiers (a four-alpha, four-digit code and a title)
• electives and streams
• scholarships and prizes
• information specific to faculties.

The Index lists units of study only. It allows you to check every reference which refers to your unit of study within the handbook. It is divided into two parts, and lists units of study alphabetically (by course name) and again by course code (alphanumeric).

Colour-coded sections
• Ivory – for undergraduate courses
• Blue – for postgraduate courses

Faculty rules and regulations
Faculty resolutions are the rules and regulations that relate to a specific faculty. They can generally be found in their own chapter, or next to the relevant units of study.

These should be read along with the University's own Coursework Rule 2000 (as amended) which is described in the Essential information for students chapter near the end of this book. Together they outline the agreement between student and faculty, and student and University.

General University information
This is information about the University in general, rather than information specific to the faculty. This information is at the back of the book and includes, among other things:

• terminology and abbreviations used at the University
• campus maps to help you find your way around
• Summer School and Winter School information
• information for international students
• student services.

Course planner
You might like to plot the course of your degree as you read about your units of study. Use the planner at the back of this handbook.

Timetables
For information about personal timetables, centrally timetabled units of study, and venue bookings, see:

For the session calendar, see:
http://web.timetable.usyd.edu.au/calendar.jsp

Students with a disability
For accessible (word, pdf and html) versions of this document, see:
www.usyd.edu.au/handbooks/handbooks_disability

You can find information on Disability Services in the General University information section of the handbook. The service can provide information regarding assistance with enrolment and course requirement modifications where appropriate.

For details on registering with the service and online resources, see:
www.usyd.edu.au/disability

Handbook updates
The information in this handbook is current at the time of publication. Further information on University policies, such as plagiarism and special consideration, can be found on the University's website, along with official handbook amendments.

www.usyd.edu.au/handbooks/handbooks_admin/updates2010

Feedback regarding this handbook is welcome.
info@publications.usyd.edu.au
Bachelor of Medical Science (BMedSc) 110
Combined BMedSc/MBBS degree 112
Table IV – Bachelor of Medical Science 113

6. Bachelor of Psychology 117
Enrolment day FAQs 117
Bachelor of Psychology (BPsych) 118

7. Bachelor of Science and Technology 121
Enrolment day FAQs 121
Bachelor of Science and Technology (BST) 122
Enrolment guide by major 124
Table VII - Bachelor of Science and Technology 124

8. Combined degrees 129
Enrolment day FAQs 129
Combined BAppSc (Exercise and Sport Science)/BSc (Nutrition) degrees 130
Combined Science/Law degrees (BSc/LLB) 131
Table II: Law units of study 132
Combined Science/Arts degree 133
Combined Engineering/Science degrees 134
Double degree in Science/Engineering 135
Combined Science/Commerce degrees 136
Combined Nursing/Science degrees 137
Combined Education/Science degrees 137
Bachelor of Liberal Studies (BLibStud) 139
Combined Engineering/Medical Science degrees 140

9. Undergraduate units of study 141
Organisation of unit of study information 141
Aerospace, Mechanical and Mechatronic Engineering 141
Registration 141
Tutorials and laboratories 141
Double degree 141
Agricultural Chemistry and Soil Science 141
Agricultural Chemistry Honours 142
Soil Science 142
Anatomy and Histology 144
Location 144
Noticeboards 144
Advice on units of study and enrolment 144
Registration 144
Vaccinations 145
Protective clothing 145
Website 145
Anatomy and Histology Honours and Graduate Diploma 148
Anatomy and Histology Higher Degrees 148
Biochemistry 148
Junior program 148
Intermediate program 148
Senior program 148
Biochemistry Honours 151
Honours Research Areas 151
Applying for admission to Honours 152
Bioinformatics 152
First Year 152
Second Year 152
Third Year 152
Biological Sciences 152
Advice on units of study 152
Assistance during semester 152
Summer School: January-February 152
Biology Bridging Course 152
Junior units of study 152
Intermediate units of study 154
Senior units of study 156
Biology Honours 160
Graduate Diploma in Science (Biology) 160
Postgraduate study in Biology 160
Cell Pathology 160
Chemical Engineering 161
Chemistry 161
Junior units of study 161
Intermediate units of study 163
Senior units of study 164
Chemistry Honours 167
Civil Engineering 167
Double Degree 167
Computational Science 167
Junior units of study 167
Senior units of study 168
Electrical Engineering 168
Double Degree 168
Environmental Science 168
Honours in the Bachelor of Science (Environmental) 169
Environmental Studies 169
Obtaining a major in Environmental studies 169
Financial Mathematics and Statistics 170
Geosciences 170
Geography 170
Geology and Geophysics 170
Geosciences Advice 170
Geosciences junior units of study 171
Geosciences intermediate units of study 172
Geosciences senior units of study 174
Geography Major 174
Geology and Geophysics Major 174
Geography or Geology and Geophysics Honours 179
Geosciences Postgraduate Study 179
History and Philosophy of Science 179
Junior units of study 179
Intermediate units of study 179
Senior units of study 180
History and Philosophy of Science Honours 181
Immunobiology major 182
Immunology 183
Immunology intermediate units of study 183
Immunology senior units of study 183
Doctor of Philosophy 297
Admission requirements 297
Degrees offered 297
Postgraduate degrees, graduate diplomas and graduate certificates
1. Degrees of Doctor 297
2. Degrees of Master 297
3. Graduate Diplomas 297
4. Graduate Certificates 298
Organisation of the postgraduate chapters 298
University of Sydney (Coursework) Rule 2000 (as amended)

15. Doctorates in the Faculty of Science 299
Research doctorate degrees 299
Doctor of Science (DSc) 299
Doctor of Philosophy (PhD) 299
Doctor of Clinical Psychology/Master of Science (DCP/Msc) 299
Doctor of Clinical Psychology/ Master of Science table 301
Doctor of Clinical Psychology/ Master of Science unit of study descriptions 2010
Presentation of theses - for research degrees 304
Resolutions 305
Doctor of Science (DSc) 305
Doctor of Philosophy 305
Doctor of Clinical Psychology/Master of Science 305

16. Master's research degrees 307
Research degrees 307
Master of Science (MSc) 307
Master of Science (Environmental Science) 307
Presentation of theses for Master of Science (MSc) and Master of Science (Environmental Science) 307
Resolutions 308
Master of Science (MSc) 308
Master of Science (Environmental Science) 309

17. Graduate Diploma in Science 311
Graduate Diploma in Science (GradDipSc) 311
Admission requirements 311
Relationship of Graduate Diploma to research degrees 311
Course requirements 311
Resolutions 311
Graduate Diploma in Science (GradDipSc) 311

18. Bioethics coursework degrees 313
Master of Bioethics (Honours) (MBEthHon) 313
Master of Bioethics (MBEth) 313
Graduate Diploma in Bioethics (GradDipBEth) 313
Graduate Certificate in Bioethics (GradCertBEth) 313
Course overview 313
Course outcomes 313
Bioethics postgraduate coursework degree table 314
Bioethics unit of study descriptions 2010 316
Bioethics unit of study descriptions 2010 318
Resolutions 320

Master of Bioethics (MBEth) 320
Master of Bioethics (Honours) (MBEthHon) 320
Graduate Diploma in Bioethics (GradDipBEth) 320
Graduate Certificate in Bioethics (GradCertBEth) 320

Master of Applied Science (Bioinformatics) (MApplSc(Bioinf)) 323
Graduate Diploma in Applied Science (Bioinformatics) (GradDipApplSc(Bioinf)) 323
Graduate Certificate in Applied Science (Bioinformatics) (GradCertApplSc(Bioinf))
Course overview 323
Course outcomes 323
Bioinformatics postgraduate coursework degree table 323
Bioinformatics unit of study descriptions 2010 325
Resolutions 328
Master of Applied Science (Bioinformatics) 328
Graduate Diploma in Applied Science (Bioinformatics) 328
Graduate Certificate in Applied Science (Bioinformatics) 328

20. Coastal Management coursework degrees 331
Master of Applied Science (Coastal Management) (MApplSc(CoastalMgt)) 331
Graduate Diploma in Applied Science (Coastal Management) (GradDipApplSc(CoastalMgt)) 331
Graduate Certificate in Applied Science (Coastal Management) (GradCertApplSc(CoastalMgt))
Course overview 331
Course outcomes 331
Coastal Management Postgraduate Degree Table 331
Coastal Management Unit of Study Descriptions 2010 332
Resolutions 333
Master of Applied Science (Coastal Management) 333
Graduate Diploma in Applied Science (Coastal Management) 333
Graduate Certificate in Applied Science (Coastal Management) 333

21. Environmental Science coursework degrees 337
Master of Environmental Science and Law 337
Course overview 337
Course outcomes 337
Master of Environmental Science and Law table 337
Environmental Science and Law unit of study descriptions 2010 338
Resolutions 341
Master of Environmental Science and Law (MEnvSci and Law) 341
Environmental Science Applied Science degrees 342
Master of Applied Science (Environmental Science) 342
Graduate Diploma in Applied Science (Environmental Science) 342
Graduate Certificate in Applied Science (Environmental Science) 342
Course overview 342
Course outcomes 342
Contents

Master of Environmental Science postgraduate coursework degree table 343
Environmental Science unit of study descriptions 2010 344
Resolutions 347
Master of Applied Science (Environmental Science) 347
Graduate Diploma in Applied Science (Environmental Science) 347
Graduate Certificate in Applied Science (Environmental Science) 347

22. History and Philosophy of Science coursework degrees 349
Graduate Certificate in Science (History and Philosophy of Science) 349
Course overview 349
Course outcomes 349
Graduate Diploma in Science (History and Philosophy of Science) 349
History and Philosophy of Science postgraduate coursework degree table 349
History and Philosophy of Science unit of study descriptions 2010 349
Resolutions 351
Graduate Certificate in Science (History and Philosophy of Science) 351

23. Microscopy and Microanalysis coursework degrees 353
Master of Applied Science (Microscopy and Microanalysis) (MApplSc(Microsc&Microanal) 353
Graduate Diploma in Applied Science (Microscopy and Microanalysis) (GradDipApplSc(Microsc&Microanal) 353
Graduate Certificate in Applied Science (Microscopy and Microanalysis) (GradCertApplSc(Microsc&Microanal) 353
Course overview 353
Course outcomes 353
Microscopy and Microanalysis postgraduate coursework degree table 353
Microscopy and Microanalysis unit of study descriptions 2010 354
Resolutions 355
Master of Applied Science (Microscopy and Microanalysis) 355

24. Molecular Biotechnology coursework degrees 359
Master of Applied Science (Molecular Biotechnology) 359
Graduate Diploma in Applied Science (Molecular Biotechnology) 359
Graduate Certificate in Applied Science (Molecular Biotechnology) 359
Course overview and outcomes 359
Molecular Biotechnology postgraduate coursework degree table 359
Molecular Biotechnology unit of study descriptions 2010 360
Resolutions 361
Master of Applied Science (Molecular Biotechnology) 361
Graduate Diploma in Applied Science (Molecular Biotechnology) 361
Graduate Certificate in Applied Science (Molecular Biotechnology) 361

25. Nutrition and Dietetics coursework degrees 363
Master of Nutrition and Dietetics 363
Course overview 363
Course outcomes 363
Admission requirements 363
Course requirements 363
Master of Nutrition and Dietetics table 363
Nutrition and Dietetics unit of study descriptions 2010 364
Resolutions 365
Master of Nutrition and Dietetics 365
Bachelor of Science and Master of Nutrition and Dietetics 366

26. Physics coursework degrees 369
Medical Physics degrees 369
Master of Medical Physics (MMedPhys) 369
Graduate Diploma in Medical Physics (GradDipMedPhys) 369
Course overview 369
Course outcomes 369
Medical Physics postgraduate coursework degree table 369
Medical Physics unit of study descriptions 2010 370
Resolutions 370
Master of Medical Physics 370
Graduate Diploma in Medical Physics 370
Nuclear Science degrees 372
Master of Applied Nuclear Science 372
Graduate Diploma in Applied Nuclear Science 372
Course overview 372
Course outcomes 372
Nuclear Science postgraduate coursework degree table 372
Nuclear Science unit of study descriptions 2010 372
Resolutions 373
Master of Applied Nuclear Science 373
Graduate Diploma in Applied Nuclear Science 373
Photonics and Optical Science degrees 375
Master of Photonics and Optical Science 375
Graduate Diploma in Photonics and Optical Science 375
Course overview 375
Course outcomes 375
Photonics and Optical Science postgraduate coursework degree table 375
Photonics and Optical Science unit of study descriptions 2010 375
Resolutions 377
Master of Photonics and Optical Science 377
27. Psychology coursework degrees

Graduate Diploma in Psychology
Course outcomes
Eligibility for admission
Graduate Diploma in Psychology table
Graduate Diploma in Psychology unit of study descriptions 2010
Resolutions
Graduate Diploma in Psychology
Applied Positive Psychology degrees
Graduate Certificate in Applied Science (Applied Positive Psychology)
Course overview
Course outcomes
Applied Positive Psychology postgraduate coursework degree table
Applied Positive Psychology unit of study descriptions 2010
Resolutions
Graduate Certificate in Applied Science (Applied Positive Psychology)
Details of units of study
Health Psychology degrees
Master of Applied Science (Health Psychology)
Graduate Diploma in Applied Science (Health Psychology)
Graduate Certificate in Applied Science (Health Psychology)
Course overview
Course outcomes
Health Psychology postgraduate coursework degree table
Health Psychology unit of study descriptions 2010
Resolutions
Master of Applied Science (Health Psychology)
Graduate Diploma in Applied Science (Health Psychology)
Graduate Certificate in Applied Science (Health Psychology)

28. Spatial Information Science coursework degrees

Master of Applied Science (Spatial Information Science)
Graduate Diploma in Applied Science (Spatial Information Science)
Graduate Certificate in Applied Science (Spatial Information Science)
Course overview
Course outcomes
Spatial Information Science postgraduate coursework degree table
Spatial Information Science unit of study descriptions 2010
Resolutions
Master of Applied Science (Spatial Information Science)
Graduate Diploma in Applied Science (Spatial Information Science)
Graduate Certificate in Applied Science (Spatial Information Science)

29. Wildlife Health and Population Management coursework degrees

Master of Applied Science (Wildlife Health and Population Management)
Graduate Diploma in Applied Science (Wildlife Health and Population Management)
Graduate Certificate in Applied Science (Wildlife Health and Population Management)
Course overview
Course outcomes
Wildlife Health and Population Management postgraduate coursework degree table
Wildlife Health and Population Management unit of study descriptions 2010
Resolutions
Master of Applied Science (Wildlife Health and Population Management)
Graduate Diploma in Applied Science (Wildlife Health and Population Management)
Graduate Certificate in Applied Science (Wildlife Health and Population Management)

30. Postgraduate coursework: Sustainability degrees

Master of Sustainability
Course Overview
Graduate Certificate of Sustainability
Graduate Diploma of Sustainability
Course Outcomes
Sustainability Units 2010
Faculty resolutions
Master of Sustainability
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspension/discontinuation</td>
<td>451</td>
</tr>
<tr>
<td>Health cover</td>
<td>451</td>
</tr>
<tr>
<td>The University of Sydney Foundation Program (USFP)</td>
<td>451</td>
</tr>
<tr>
<td>International Office</td>
<td>452</td>
</tr>
<tr>
<td>International Student Support Unit</td>
<td>452</td>
</tr>
<tr>
<td>Essential information for students</td>
<td>453</td>
</tr>
<tr>
<td>Calendar</td>
<td>453</td>
</tr>
<tr>
<td>Coursework Rule</td>
<td>453</td>
</tr>
<tr>
<td>PhD Rule</td>
<td>453</td>
</tr>
<tr>
<td>Plagiarism</td>
<td>453</td>
</tr>
<tr>
<td>Students at Risk Policy</td>
<td>453</td>
</tr>
<tr>
<td>Grievance Procedure</td>
<td>453</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>455</td>
</tr>
<tr>
<td>Glossary</td>
<td>459</td>
</tr>
<tr>
<td>Index by alpha code</td>
<td>471</td>
</tr>
<tr>
<td>Index by name</td>
<td>491</td>
</tr>
</tbody>
</table>
This is a fascinating time to study science. Major technological advances are opening up many new areas, from ecosystems to nano-technology. At the same time, boundaries between traditional areas of science are blurring, as inter-disciplinary research leads to rapid progress on a wide range of issues in environmental, technology and medical/health related industries that underpin the future prosperity and quality of life in Australia.

These issues include protection of biodiversity, environmental remediation, control of industrial pollution, energy production, new manufacturing technologies, genetically modified organisms, stem cells and other new genetic advances in health and medicine, data management and new computing developments, and understanding human behaviour.

The comprehensive scope of the Faculty of Science at the University of Sydney allows us to offer courses in all of these areas and the many joint degree options provide the opportunity to study social, moral and commercial consequences of science.

A degree in science is a first step towards an exciting career, one that stimulates, challenges and rewards you. It can take you from the microscopic to the cosmic level, into physical and biological processes and from order to chaos.

A science degree develops your investigative skills and teaches you the tools of critical analysis and communication skills for lifelong learning. Employers in government, industry and education need graduates who are trained to think, analyse and communicate.

Science graduates have a unique blend of generic and discipline related skills that give them the capacity to tackle problems with initiative and resourcefulness, to plan and execute projects and to work as part of a team.

Studying science gives you the innovative skills for an ever-changing workforce environment and makes you a valuable and sought-after resource for employers. And if you become really excited by a particular area, our honours and postgraduate courses provide you with the training to become a practicing scientist in that field.

The degree programs at the University of Sydney are of exceptional quality. Many of our academic staff have won teaching awards and our research programs are world class.

Our degree programs are designed to offer challenges and excitement at a range of different levels, including the Talented Students Program, Advanced Science degree and specialist streams within the BSc that provide more directed science training, and in some cases, opportunities for industry placements.

The Faculty of Science has close links with industry and a wide range of employers, and will provide opportunities throughout your degree to explore career options.

The degree programs have been designed so that you can specialise if you wish, but you don’t have to make that decision until you have completed a general first year.

The first-year experience is designed to help you settle into University, to meet other students, and to decide on or confirm your interest in a specialised area of study.

We use a variety of teaching methods to help you develop sound generic computing skills, interpersonal and communication skills, and an ability to work in teams and groups.

Most importantly, you will learn how to analyse problems, work out solutions, and communicate these clearly to others. We will help you to discover how things function, develop lifelong strategies for learning new approaches, and gain skills to explore and use information in different contexts.

David Day
Dean
Introduction to the faculty

In this handbook you will find a wealth of information about the Faculty of Science and the University. In particular, it will help you find out who the people are in your faculty, the requirements for degrees and the ways these can be satisfied.

Chapter 1 is the 'who and where' of the faculty, listing names and locations of people and offices you are likely to need to contact during the year. It also contains information on some important University policies. It is essential that students become familiar with these policies.

Chapter 2 has all the fine print of the undergraduate degree resolutions (rules) covering your degree. The information here takes precedence over all other information in later chapters. You should definitely read the relevant parts of this chapter, and refer to them from time to time during your studies to make sure you are on track to satisfy the requirements of your degree.

Chapters 3 to 8 contain information on undergraduate degrees offered by the Faculty of Science. These chapters contain enrolment advice for undergraduates as well as frequently asked questions and important policy affecting students in the faculty. You will find enrolment guides and a degree planner to assist you to plan your degree. You should read the particular chapter devoted to your degree in conjunction with the resolutions in chapter 2.

Chapter 9 has unit of study descriptions for undergraduates. If you want to know what a unit of study is and how it fits into your degree plan, this is the best place to look. You should read this chapter in conjunction with chapters 2 and your degree chapter.

Chapter 10 provides information for the Bachelor of Liberal Arts and Science degree. It also includes Arts Table A, for the use of all science students choosing to take an Arts elective.

Chapter 11 provides information for honours students.

Chapter 12 introduces the faculty’s Talented Student Program and gives contact details for coordinators in participating departments and schools.

Chapter 13 is for all science students considering taking up the opportunity to study on exchange overseas at a partner institution.

Chapters 14 to 30 are for postgraduate students. Each chapter contains enrolment advice, unit of study descriptions and resolutions for specific postgraduate degrees offered by the faculty.

Chapter 31 lists the staff of the faculty, organised by their school or department.

Chapter 32 contains a summary of scholarships and information about prizes for both undergraduate and postgraduate students.

General University information is a handy reference section describing all sorts of services on campus.

The Glossary and Abbreviations explain terms and abbreviations used throughout this handbook.

The Index is a useful reference tool for students who want to locate information on a particular unit of study.

Campus maps are included to help you locate lecture theatres, offices, libraries, cafes, and other student facilities.
1. Contact information and policies

This chapter gives contact details for staff of schools and departments of the Faculty of Science, and some key policies. Students enrolled in units of study offered by the faculty must familiarise themselves with these policies. Towards the end of the chapter, you find information on faculty life and representation, and employment for graduates in science. Information is accurate at 1 August 2009.

The Faculty of Science
Faculty and Student Information Office
Level 2, Carslaw Building, F07
University of Sydney NSW 2006

Counter hours
Monday to Thursday 10am to 4pm, Friday 10am to 1pm
Phone: +61 2 9351 3021
Fax: +61 2 9351 4846
Email: info@science.usyd.edu.au
Website: www.science.usyd.edu.au

Undergraduate degree advisers
BSc (Molecular Biology & Genetics) Professor Iain Campbell
BSc (Molecular Biotechnology) A/ Prof Kevin Downard
BSc (Nutrition) A/ Prof Margaret Allman-Farinelli
B Medical Science Mrs Helen Agus
B Psychology A/ Prof Ian McGregor
B Liberal Arts & Science Dr Fiona White & Dr Dirk Moses

Sub Deans for Undergraduate Matters
Biology A/ Prof Peter McGee
Chemistry A/ Prof Brendan Kennedy
Geosciences A/ Prof William Pritchard
HPS Dr Hans Pol
Mathematics A/ Prof David Easdown
MBB Mrs Jill Johnston
Medical Science Dr Meloni Muir
Physics Dr John O’Byrne
Psychology Dr Fiona Hibberd

Schools, departments, centres
Agriculture, Food and Natural Resources
Room 304, McMillan Building, A05
Phone: +61 2 9351 6926
Fax: +61 2 9351 2945
Email: dean@agric.usyd.edu.au
Website: www.agric.usyd.edu.au/su/agric

Academic advisers
Agricultural Chemistry
Undergraduate Dr Robert Caldwell
Honours Professor Ivan Kennedy
Graduate Dr Robert Caldwell

Soil Science
Intermediate year Dr Stephen Cattle
Senior A/Prof Balwant Singh
Honours Professor Alex McBratney
Graduate A/ Prof Balwant Singh

School of Biological Sciences
Science Road Cottage, A10
Phone: +61 2 9351 2848
Fax: +61 2 9351 2558
Email: office@bio.usyd.edu.au
Website: www.bio.usyd.edu.au
Head of School: Robyn Overall

Academic advisers
Junior year Dr Adele Pile
Intermediate year Dr Elizabeth May
Senior year Dr Elizabeth May
Honours year A/Prof Madeleine Beekman
Graduate adviser Dr Glen Wardle

Cell Pathology
See ‘Pathology’.
1. Contact information and policies

Central Clinical School
Immunology Discipline
Room 648, Blackburn Building, D06
Phone: +61 2 9351 7308
Fax: +61 2 9351 3969
Email: a.abendroth@usyd.edu.au
Website: www.infectiousdiseasesandimmunology.med.usyd.edu.au
Head of Discipline: Professor Warwick Britton

<table>
<thead>
<tr>
<th>Academic adviser</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All years</td>
<td>Dr Allison Abendroth</td>
</tr>
</tbody>
</table>

Infectious Diseases Discipline
Room 676, Blackburn Building, D06
Phone: +61 2 9351 2412 Fax: +61 2 9351 4731
Email: charbour@infdis.usyd.edu.au
Website: www.infectiousdiseasesandimmunology.med.usyd.edu.au
Head of Discipline: Associate Professor Colin Harbour

<table>
<thead>
<tr>
<th>Academic adviser</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All years</td>
<td>A/ Prof Colin Harbour</td>
</tr>
<tr>
<td>Honours</td>
<td>Dr Allison Abendroth</td>
</tr>
</tbody>
</table>

School of Chemistry
School of Chemistry, F11
Phone: +61 2 9351 4504
Fax: +61 2 9351 3329
Email: enquiries@chem.usyd.edu.au
Website: www.chem.usyd.edu.au
Head of School: Professor G G Warr

<table>
<thead>
<tr>
<th>Academic advisers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior year</td>
<td>Dr Adam Bridgeman</td>
</tr>
<tr>
<td>Intermediate year</td>
<td>Dr Peter Rutledge</td>
</tr>
<tr>
<td>Senior year</td>
<td>Dr Rob Baker</td>
</tr>
<tr>
<td>Honours year</td>
<td>Dr Tim Schmidt</td>
</tr>
<tr>
<td>Graduate adviser</td>
<td>Dr Ron Clarke</td>
</tr>
</tbody>
</table>

Computational Science
See 'Physics'.

Computer Science
See 'Information Technologies'.

Centre for Research on Ecological Impacts of Coastal Cities
Old Geology Building, A11
Phone: +61 2 9351 4835
Fax: +61 2 9351 6713
Email: eicc@bio.usyd.edu.au
Website: www.eicc.bio.usyd.edu.au
Director: Professor Antony J Underwood

<table>
<thead>
<tr>
<th>Academic adviser</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate</td>
<td>Professor Antony Underwood</td>
</tr>
</tbody>
</table>

Environmental Studies
Admin: Room 435, Madsen Building, F09
Phone: +61 2 9351 4242
Fax: +61 2 9351 3644
Website: www.usyd.edu.au/envsci
Program Coordinator: Dr Phil McManus
Academic adviser: Dr Phil McManus

<table>
<thead>
<tr>
<th>Academic advisers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>A/Prof Phil McManus</td>
</tr>
<tr>
<td>Graduate</td>
<td>A/Prof Phil McManus</td>
</tr>
</tbody>
</table>

Fruit Fly Research Centre
Botany Building, A12
Phone: +61 2 9351 2298
Fax: +61 2 9351 4771
Email: ffrc@bio.usyd.edu.au
Website: www.bio.usyd.edu.au/fruitfly/index.htm
Chair: To be advised

School of Geosciences
Room 348, Madsen Building, F09
Phone: +61 2 9351 2912
Fax: +61 2 9351 0184
Email: admin@geosci.usyd.edu.au
Website: www.geosci.usyd.edu.au
Acting Head of School: A/Prof Peter Cowell

<table>
<thead>
<tr>
<th>Academic advisers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Geosciences</td>
<td></td>
</tr>
<tr>
<td>Junior year</td>
<td>Dr Kurt Iveson</td>
</tr>
<tr>
<td>Intermediate year</td>
<td>A/ Prof Gavin Birch</td>
</tr>
<tr>
<td>Senior year</td>
<td>Dr Stephen Gale</td>
</tr>
<tr>
<td>Honours year</td>
<td>A/ Prof Bill Pritchard</td>
</tr>
<tr>
<td>Graduate coursework adviser</td>
<td>Dr Derek Wyman</td>
</tr>
</tbody>
</table>

History and Philosophy of Science Unit
Room 441, Carslaw Building, F07
Phone: +61 2 9351 4226
Fax: +61 2 9351 4124
Email: hps@science.usyd.edu.au
Website: www.usyd.edu.au/hps
Director: Dr Ofer Gal

<table>
<thead>
<tr>
<th>Academic advisers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>Dr Dean Rickles</td>
</tr>
<tr>
<td>Honours</td>
<td>Dr Dominic Murphy</td>
</tr>
<tr>
<td>Graduate</td>
<td>Dr Hans Pols</td>
</tr>
</tbody>
</table>

Immunology
See 'Central Clinical School'.

Infectious Diseases
See 'Central Clinical School'.
1. Contact information and policies

School of Information Technologies (Faculty of Engineering and Information Technologies)
School of IT Building, J12
1 Cleveland Street
Phone: +61 2 9351 3423
Fax: +61 2 9351 3838
Email: info@it.usyd.edu.au
Website: www.it.usyd.edu.au
Head of School: Associate Professor Sanjay Chawla

Academic advisers
Undergraduate Dr Josiah Poon
Honours year Dr Josiah Poon
Graduate (coursework) Dr Uwe Roehm
Graduate (research) Dr Bernhard Scholz

University of Sydney Institute of Marine Science
Room 308, Madsen Building, F09
Phone: +61 2 9351 3426
Fax: +61 2 9351 3644
Website: www.usyd.edu.au/marine
Director: Professor Doug Cato
Deputy Director: Associate Professor Ross Coleman
USIMS Coordinator: Dr Michelle Blewitt

Academic advisers
Undergraduate A/Prof Peter Cowell
A/ Prof Ross Coleman
First year Mel Neave
Room 462, Madsen Building
mneave@geoosci.usyd.edu.au
Second year Gavin Birch
Room 462, Madsen Building
gavin@geoosci.usyd.edu.au
Third year Stephen Gale
Room 441, Madsen Building
sgale@mail.usyd.edu.au
Hons A/ Prof Bill Pritchard
Room 439, Madsen Building
pritchard@usyd.edu.au
Graduate A/ Prof Ross Coleman

School of Mathematics and Statistics
Carslaw Building, F07
Phone: +61 2 9351 4533
Fax: +61 2 9351 4534
Email: firstyear@maths.usyd.edu.au
Email: statenq@maths.usyd.edu.au
Email: pg-director@maths.usyd.edu.au
Website: www.maths.usyd.edu.au
Head of School: Professor Nalini Joshi

Academic advisers
Junior year Student Office, Carslaw 520
Director: Ms Sandra Britton
Intermediate year Applied Mathematics A/Prof Charlie Macaskill
Mathematical Statistics Dr Jennifer Chan
Pure Mathematics A/Prof Robert Howlett
Senior year Applied Mathematics Dr David Ivers
Mathematical Statistics Dr Samuel Mueller
Pure Mathematics Dr Adrian Nelson
Honours year Applied Mathematics Dr Martin Wechselberger
Mathematical Statistics Dr Michael Steward

Academic advisers
Pure Mathematics Dr Laurentiu Paunescu
Director PG studies Dr Mary Myerscough
Deputy Director Dr Shelton Peiris
Talented Students Program Dr Daniel Daners
Credit Transfer Dr Adrian Nelson

Microbiology
See ‘Molecular and Microbial Biosciences’.

Australian Key Centre for Microscopy and Microanalysis
Room LG21, Madsen Building, F09
Phone: +61 2 9351 2351
Fax: +61 2 9351 7682
Email: kcentre@emu.usyd.edu.au
Website: www.emu.usyd.edu.au
Director: Professor Simon Ringer

Academic adviser
Graduate Dr Lilian Soon

School of Molecular and Microbial Biosciences
Room 435, Biochemistry/Microbiology Building, G08
Phone: +61 2 9351 5417
Fax: +61 2 9351 5858
Email: mmb.studsupport@usyd.edu.au
Website: www.mmb.usyd.edu.au
Head of School: Associate Professor Arthur Conigrave

Academic advisers
Graduate adviser Dr Kim Bell-Anderson

Biochemistry
Intermediate year Biochemistry A/ Prof Gareth Denyer
A/ Prof Charles Collyer
Junior and intermediate year Molecular Biology and Genetics Dr Dale Hancock
Ms Vanessa Gysbers
Medical Science Mrs Helen Agus
Senior year Mrs Jill Johnstone
Honours year Dr Stuart Cordwell

Human Nutrition
Intermediate year Dr Kim Bell-Anderson
Senior year Ms Soumela Amanatidis
Honours year Ms Beth Robitach
Ms Margaret Nicholson
Postgraduate A/ Prof Margaret Allman-Farinelli
(Clinical Training) A/ Prof Samir Sämmann (Research Training)

Microbiology
Intermediate year Dr Andrew Holmes
Ms Deborah Blanckenberg
Senior year Mrs Helen Agus
A/ Prof Dee Carter
Honours year and postgraduate Dr Stuart Cordwell
Dr Andrew Holmes

Molecular Biotechnology
Intermediate year Dr Matthew Todd
Senior year Dr Neville Finth
Graduate adviser A/ Prof Kevin Downard

Nutrition
See ‘School of Molecular and Microbial Sciences’.
1. Contact information and policies

Department of Pathology
Room 501, Blackburn Building, D06
Phone: +61 2 9351 2414/2600
Fax: +61 2 9351 3429
Email: pathdept@med.usyd.edu.au
Website: www.pathology.usyd.edu.au
Head of Department: Professor Nicholas King

Academic advisers

<table>
<thead>
<tr>
<th>Pathology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
</tr>
<tr>
<td>Honours</td>
</tr>
<tr>
<td>Graduate</td>
</tr>
</tbody>
</table>

Discipline of Pharmacology
Room 301, Blackburn Building, D06
Phone: +61 2 9351 3819
Fax: +61 2 9351 3868
Email: beverly@med.usyd.edu.au
Website: www.usyd.edu.au/su/pharmacology

Academic advisers

<table>
<thead>
<tr>
<th>Pharmacology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate year</td>
</tr>
<tr>
<td>Senior year</td>
</tr>
<tr>
<td>Honours year</td>
</tr>
<tr>
<td>Graduate adviser</td>
</tr>
</tbody>
</table>

School of Physics
Student Support Office Room 202
School of Physics, A28
Phone: +61 2 9351 3037
Fax: +61 2 9351 7726
Email: student_support@physics.usyd.edu.au
Website: www.physics.usyd.edu.au
Head of School: Professor Anne Green

Academic advisers

<table>
<thead>
<tr>
<th>Junior year</th>
<th>Dr Joe Khachan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior Deputy</td>
<td>Dr Richard Thompson</td>
</tr>
<tr>
<td>Intermediate year</td>
<td>A/Prof Manjula Sharma</td>
</tr>
<tr>
<td>Senior year</td>
<td>Professor Tim Bedding</td>
</tr>
<tr>
<td>Honours</td>
<td>Dr Stephen Bartlett</td>
</tr>
<tr>
<td>Medical Physics program</td>
<td>Dr Zdenka Kuncic</td>
</tr>
<tr>
<td>Nuclear Science program</td>
<td>Dr Reza Hashemi-Nezhad</td>
</tr>
<tr>
<td>Photonics & Optical Science program</td>
<td>Dr Boris Kuhlme</td>
</tr>
<tr>
<td>Graduate research adviser</td>
<td>A/Prof Geraint Lewis and A/Prof Serdar Kuyucak</td>
</tr>
<tr>
<td>Computational science:</td>
<td>A/Prof Mike Wheatland</td>
</tr>
</tbody>
</table>

Key Centre for Polymer Colloids
Phone: +61 2 9351 3366
Fax: +61 2 9351 8651
Email: s.perrier@chem.usyd.edu.au
Website: www.kcpc.usyd.edu.au
Director: Associate Professor S Perrier

School of Psychology
Room 325, Mungo MacCallum Building, A18
Phone: +61 2 9351 2872
Fax: +61 2 9036 5223
Email: enquiries@psych.usyd.edu.au
Website: www.psych.usyd.edu.au
Head of School: Professor Sally Andrews

Academic advisers

<table>
<thead>
<tr>
<th>Junior year</th>
<th>Dr Caleb Owens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate year</td>
<td>Dr Fiona White</td>
</tr>
<tr>
<td>Senior year</td>
<td>Dr Fiona White</td>
</tr>
<tr>
<td>Honours year</td>
<td>Dr Fiona Hibberd</td>
</tr>
<tr>
<td>Doctor of Clinical Psychology</td>
<td>Dr Caroline Hunt</td>
</tr>
<tr>
<td>Doctor of Clinical Neuropsychology</td>
<td>Dr Caroline Hunt</td>
</tr>
<tr>
<td>Applied Science (Coaching)</td>
<td>Dr Anthony Grant</td>
</tr>
<tr>
<td>Graduate adviser</td>
<td>Dr Pauline Howie</td>
</tr>
<tr>
<td>Graduate Diploma Psychology</td>
<td>Dr Mariana Szabo</td>
</tr>
<tr>
<td>Applied Science (Health Psychology)</td>
<td>Dr Barbara Mullin</td>
</tr>
</tbody>
</table>
Important policies relating to undergraduate candidature

Restrictions (general)

1. A candidate for a degree must satisfy the minimum eligibility requirements before commencing the degree units of study. Units of study taken before satisfying these requirements cannot normally be counted for degree purposes.

2. A candidate may not take a unit of study in any subject without having previously completed the qualifying unit(s) of study appropriate to that subject. Except with the permission of the Head of Department, he or she must also complete the prerequisites and corequisites as prescribed.

3. The only combinations of units of study available are those permitted by the timetable. A candidate may attend summer school, winter school and evening units of study if they are available.

Time limits

The faculty resolved at its meeting on 14 March 1995 that, except with the permission of the faculty, students must complete the requirements for award of their degree within ten calendar years of admission to candidature. This rule applies to all students who first enrolled in their degree after 1995, and applies from 1998 to students who first enrolled in their degree before 1996.

Suspension

The faculty resolved at its meeting on 14 March 1995 that all students must re-enrol each calendar year unless the faculty has approved suspension of candidature. Candidature will lapse if a student has not obtained approval for suspension and does not re-enrol. A student whose candidature has lapsed must be selected for admission again (usually by submitting an application to UAC) or the International Office before they can re-enrol.

Satisfactory progress

A student shall not have made satisfactory progress in any semester if the student:

1. fails to complete successfully more than 50 per cent of the credit points in which the student was enrolled for that semester; and/or
2. fails to complete successfully on the second or later attempt the same unit of study; and/or
3. is consequently unable to complete the degree within the maximum permitted time while carrying a normal student load.

4. fails a mandated unit of study - a mandated unit of study is any unit of study which is compulsory in the degree program in which a student is enrolled.

A student who has not made satisfactory progress in accordance with the above will be placed on a faculty list of students at risk and will be required to take steps in accordance with the University’s ‘At Risk’ policy as implemented by the Faculty of Science.

1. A student who is placed on the Faculty’s At Risk list for any three semesters shall be required to show good cause why they should be permitted to re-enrol in the degree;
2. A student who has failed to show good cause in accordance with 12.2.1 shall be excluded from the degree.
3. A student who has been permitted to re-enrol after having been asked to show good cause and is placed on a faculty list of students at risk for the fourth time will be automatically excluded from the degree.

Faculty of Science attendance policy

Students enrolled in courses and units of study under the administration of the Faculty of Science are expected to attend a minimum of 80 per cent of tutorials, seminars, exercises, quizzes etc which must be completed.

On the recommendation of the relevant Head of Department the Dean may determine that a student fails a unit of study because of inadequate attendance or insufficient assessment items completed.

Credit

The faculty resolved at its meeting on 14 March 1995 that students who have previously completed studies which are considered by the Faculty to be equivalent to any unit of study listed in the Tables may be given credit for that unit of study providing that the unit of study was completed not more than ten years before admission to candidature in the faculty.

Examinations and assessment

The faculty resolved at its meeting on 9 March 1993 that the various forms of assessment of a student’s performance in an undergraduate unit of study should include an examination or examinations conducted under University supervision and requiring written answers to unseen questions, provided that the general scope of a supervised examination paper may be made known to students in advance.

Results

For all junior, intermediate and senior units of study in the Bachelor of Science, Bachelor of Science and Technology, Bachelor of Medical Science, Bachelor of Liberal Arts and Sciences and Bachelor of Psychology degrees, the following mark ranges apply within the Faculty of Science:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
<td>High Distinction</td>
<td>85 – 100</td>
</tr>
<tr>
<td>D</td>
<td>Distinction</td>
<td>75 – 84</td>
</tr>
<tr>
<td>CR</td>
<td>Credit</td>
<td>65 – 74</td>
</tr>
<tr>
<td>P</td>
<td>Pass</td>
<td>50 – 64</td>
</tr>
<tr>
<td>F</td>
<td>Fail</td>
<td>Below 50</td>
</tr>
<tr>
<td>AF</td>
<td>Absent Fail</td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>Discontinued – Fail</td>
<td></td>
</tr>
<tr>
<td>DNF</td>
<td>Discontinued – not to count as failure</td>
<td></td>
</tr>
</tbody>
</table>

The Head of Department may set additional requirements for the minimum number of assessment items such as practical reports, tutorial papers, seminars, essays, exercises, quizzes etc which must be completed.

Below 46 or 50
50 – 64
65 – 74
75 – 84
85 – 100
Below 46 or 50
Discontinued – not to count as failure

1. Contact information and policies
Key policies for undergraduate and postgraduate coursework students

Students enrolled in units of study offered by the Faculty of Science are required to familiarise themselves with the following six policies:

- Special Arrangements
- Special Consideration
- At Risk
- Code of Conduct for Students
- Student Plagiarism: coursework policy and procedure
- Intellectual Property

Special Arrangements
Students who are experiencing difficulty in meeting their assessment requirements due to competing essential community commitments may apply for special arrangements for examination and assessment.

Special Consideration
Students who have a serious illness or who have experienced misadventure which may affect their academic performance in a course or unit of study may request that they be given special consideration in relation to the determination of their results.

At Risk
To progress through a degree course, students are required to:

1. achieve the minimum progression rate specified by the faculty. In the Faculty of Science, students must pass more than 50 per cent of the credit points attempted in each semester.
2. pass any field or clinical work, practicum, or other unit of study mandated by the faculty (listed in your degree requirements).

If you do not meet the progress requirements, you will be identified as a student at risk. The details of the policy can be found at: www.usyd.edu.au/secretariat/students/risk_index.shtml

Code of Conduct for Students
The University has clear expectations of students in respect of academic matters and personal behaviour.

Student Plagiarism: coursework policy and procedure
The University of Sydney expects high standards of academic honesty in all student work. In particular, the University is opposed to and will not tolerate plagiarism.

Intellectual Property
Students and staff should be familiar with University of Sydney policies on intellectual property. The relevant policies are the:

University of Sydney (Intellectual Property) Rule 2002

Intellectual Property Rule Guide

Additional important policies
The University of Sydney (Coursework Rule) contains important policies for all students. A faculty has authority to determine what constitutes satisfactory progress for all students enrolled in award courses in that faculty, in accordance with the policies and directions of the Academic Board.

You may need to refer to the Coursework Rule from time to time, particularly in relation to discontinuation of enrolment and suspension of candidature, and unsatisfactory progress and exclusion.

The Coursework Rule can be found in the following locations:

- University Calendar (print or online version, found at www.usyd.edu.au/calendar)
- Policy Online (www.usyd.edu.au/policy)
- Handbooks website: www.usyd.edu.au/handbooks/university_information/01_uni_coursework_rule.shtml

See ‘Essential Info for Students’ at the back of this handbook for more information.

Special Arrangements
The University’s assessment practices for ‘Special Arrangements’ and ‘Special Consideration’ are designed to ensure that conditions are as consistent as possible.

The Special Arrangements for Examination and Assessment policy is designed to support and assist students who are experiencing difficulty in meeting their assessment requirements due to competing essential community commitments.

Special Arrangements may be made available to any student enrolled within a Faculty of Science unit of study, who is unable to meet assessment requirements or attend examinations, because of one or more of the following situations:

- Essential religious commitments or essential beliefs
- Compulsory legal absence (such as jury duty, court summons)
- Sporting or cultural commitments, including political and union commitments, where the student is representing the University, state or nation
- Australian Defence Force commitments (including Army Reserve).

Special Arrangements may only be considered in the above circumstances if the commitment falls on the same day as an assessment task or examination. Special arrangements will not be made if the commitment falls before or after the assessment task or examination.

The application for Special Arrangements must be submitted no later than seven (7) days prior to the due date of the assessment or examination for which alternative arrangements are being sought.

Students may elect to include details on preparation time required for the essential commitment (for example, travel time, training camps etc) but the Faculty of Science is under no obligation to make additional arrangements for preparation time.

This information should be noted on the application form, and supporting documentation detailing the tasks and time required to prepare must be submitted.

In cases of an extended absence, the relevant School should discuss the option of withdrawal without failure with students. An ‘extended absence’ is defined, for the purposes of Special Arrangements, as being a period of more than two weeks.

To apply for Special Arrangements the student must obtain and complete a Special Arrangements application pack from the Faculty of Science Information Office or from the faculty website.

- For arrangements due to religious or ceremonial commitments the student must have a religious authority complete the Statement of Essential Religious or Ceremonial Commitment (SERCC).
- For arrangements due to compulsory legal absence, sporting or cultural commitments or Australian Defence Force commitments the student must attach the appropriate documentation (Jury Summons, Notification of Selection for Sporting Event or Brigade Statement etc.)

Original paperwork should be lodged at the Student Information Office of the Faculty of Science, with one copy for each piece of assessment for which consideration is being sought.

All copies of the application will be stamped by faculty staff on receipt. The student is required to distribute stamped copies of the application to the School administrative office as directed by faculty staff.
Students will be notified of the academic judgement concerning their application for Special Arrangements by the Faculty of Science, via an email to their University email account.

Special Consideration

Generally, serious illness or misadventure will be taken into account when considering a student’s academic performance in a course or units of study. There is a clear distinction between long-standing illness or difficulties which prevent students from attending classes or completing required work or which seriously interfere with their capacity to study for long periods, and short-term serious illness or misadventure that may prevent a well-prepared student from sitting for an examination or completing a particular assignment.

Applications must be received within seven (7) days from the end of the period for which consideration is sought (i.e., from the assignment due date or date of examination).

To apply for Special Consideration a student must obtain and complete a Special Consideration application pack from the Student Information Office of the Faculty of Science or from the Faculty website.

- For consideration due to serious illness the student must have a registered medical practitioner or counsellor complete the Professional Practitioner’s Certificate.
- For consideration due to misadventure the student must attach the appropriate documentation (police reports, counselling service statements etc).

Original paperwork should be lodged at the Student Information Office of the Faculty of Science, with one copy for each piece of assessment for which consideration is being sought. All copies of the application will be stamped by faculty staff on receipt. The student is required to distribute stamped copies of the application to the School administrative office as directed by faculty staff.

Students will be notified of the academic judgement concerning their application for Special Consideration by the Faculty of Science, via an email to their University email account.

At Risk

The University of Sydney, through its Academic Board, has always been concerned to develop policies and procedures that promote the welfare and well-being of students of the University.

In particular, the Academic Board recognises the value of reliably and efficiently monitoring the progress of students in their studies, and of having systems in place to promote the early detection of students who are making poor or unsatisfactory progress and are therefore at risk of exclusion from their degree.

A benefit of early detection of students in this at-risk category is that it allows timely intervention, and the provision of advice and assistance to support students in their ongoing studies.

This Policy and Procedure sets out:

- the University of Sydney’s commitment to early identification and support of students At Risk of exclusion from the degree course
- the principles and processes to be followed by faculties in detecting and dealing with students who might be categorised as At Risk.

The progression of students At Risk is promoted by:

- regularly/efficiently advising students of Progress Requirements
- identifying students At Risk
- alerting students that they are At Risk
- providing assistance to address the risk
- tracking the progress of students after they are identified as being At Risk.

For full details of the policy, visit the University website: www.usyd.edu.au/secretariat/students/riskstudents.shtml

General progress requirements

To progress through a degree course, students are required to:

1. achieve the minimum Progression Rate specified by the faculty.
2. pass any field or clinical work, practicum, or other unit of study mandated by the Faculty (listed in your degree requirements).

If you do not meet the progress requirements, you will be identified as a student At Risk. At the end of each semester the faculty will produce a report listing all undergraduate students within the faculty determined to be At Risk, based on these triggers:

- failure to successfully complete more than fifty per cent of the credit points for which the student was enrolled in the semester just completed
- failure to complete a mandated unit of study, field or clinical work, practicum, as appropriate. A mandated unit of study is any unit of study compulsory in the degree program in which a student is enrolled.
- failure twice to pass the same unit of study
- an unsatisfactory student attendance record
- inability to complete their degree within the maximum permitted time while carrying a normal student load (24 credit points per semester full-time, 12 credit points per semester part-time).

Stages in the At Risk process

The reports generated each semester will be used to manage and advise students At Risk.

STAGE 1

The Faculty of Science will write to all students listed in the At Risk report for the first time, giving the following information and advice:

- that the student has been identified as At Risk
- how the student has been identified as At Risk
- that the student is required to attend a Staying on Track information session, which will cover study skills and introduce the student to remedial learning services, counselling services and relevant student association representatives
- that all correspondence and documents relating to the student’s At Risk status will be recorded on their Progression Profile.

Students enrolled in postgraduate coursework degrees of less than two years (full-time) duration who are listed in the At Risk report are required to consult an Academic Advisor and attend a Staying on Track information session.

STAGE 2

The faculty will write to all students listed in the At Risk report for the second time, giving the following information and advice:

- that they have been identified as At Risk for the second time
- how they have been identified as At Risk for the second time
- that all correspondence and documents relating to their At Risk status will be recorded on their Progression Profile.
- that they are required to complete a Staying on Track Survey (Stage 2) which will:
 (i) invite each student to identify and explain any reasons for their academic performance in the preceding semester(s) being of a standard that caused them to be identified as an At Risk student
 (ii) ask that they provide information about any support services or other relevant remedial action they may have taken since they were identified as Stage 1 At Risk
 (iii) require students to consult with their year adviser or Associate Dean.
- that they are required to attend a Staying on Track information session, if they have not already done so.
Students enrolled in postgraduate coursework degrees of less than two years (full-time) duration who are listed in the At Risk report for a second time proceed directly to stage 3.

STAGE 3

The Faculty of Science will write to the all students listed in the At Risk report for the third time, asking them to show good cause why they should not be excluded from their degree course.

The faculty will consider and rule on whether a student has shown good cause in accordance with Division 6 of the University of Sydney (Coursework) Rule 2000 (as amended).

Where a student has not established good cause, the Dean may, in accordance with clause 16 of the University of Sydney (Coursework) Rule 2000 (as amended):

1. exclude the student from the degree course; or
2. permit the student to re-enrol in the degree course subject to restrictions on units of study, which may include:
 - completion of a unit or units of study within a specified time;
 - exclusion from a unit or units of study; and
 - specification of the earliest date on which a student may re-enrol in a unit or units of study.

The faculty will normally provide reasons for their decisions in their advice to the student, and record those reasons on the Progression Profile.

STAGE 4

The Faculty of Science will automatically exclude the following students from their degree:

- all students listed in an At Risk report for the fourth time after having been asked to 'show cause' and permitted to re-enrol after stage 3
- all students enrolled in award programs of two years or less (full-time) duration and listed in an At Risk report for the third time after having been asked to 'show cause' and permitted to re-enrol after stage 3.

Students first enrolled prior to 2008

The At Risk policy applies to all students from 1 January 2007. A student's record prior to 2007 is not considered when making the decision whether a student should appear on the At Risk list. Any undergraduate coursework student who appears on the At Risk list at the end of semester 1, 2007 will enter the process at stage 1.

Students enrolled in specialist undergraduate degrees

This covers students in specialised degrees such as Bachelor of Science (Nutrition), Bachelor of Science (Marine Science), Bachelor of Science (Molecular Biotechnology), Bachelor of Science (Molecular Biology and Genetics) and Advanced Mathematics streams. The At Risk rules supplement the existing progression rules for these degrees. They do not replace the existing progression requirements for these degrees.

Students enrolled in Applied Science coursework degrees

The At Risk rules supplement the existing progression rules for these degrees. They do not replace the existing progression requirements for these degrees. Satisfactory progress requirements are detailed in the resolutions for each degree.

Code of Conduct for Students

1. Principles

This Code of Conduct has been formulated to provide a clear statement of the University's expectations of students in respect of academic matters and personal behaviour.

Study at the University presents opportunities for interacting with other members of the University community. The University recognises and values the diversity of student experiences and expectations, and is committed to treating students, both academically and personally, in a fair and transparent manner.

All students, in return, are required to comply with the requirements set down in this Code of Conduct.

The University reaffirms its commitment to:

- high academic standards, intellectual rigour and a high quality education
- intellectual freedom and social responsibility
- recognition of the importance of ideas and the pursuit of critical and open enquiry
- tolerance, honesty and respect as the hallmarks of relationships throughout the University community
- high standards of ethical behaviour.

All students are required to be aware of and act consistently with these values.

2. Coverage

This Code of Conduct applies to all students of the University of Sydney in respect of all actions and activities (including inaction or inactivity) relating to or impacting on the University or its students and employees. It must be read in conjunction with the statutes, rules, and resolutions of the University.

Definitions

In this Code of Conduct:

Student means all students of the University of Sydney, including but not limited to fee paying students, HECS-HELP students, FEE-HELP students, audit students, Centre for Continuing Education Students, Centre for English Teaching students, exchange students, Study Abroad students, Summer School students and Winter School students.

Employee means all staff of the University of Sydney, including full-time, part-time and casual staff.

4. Personal conduct

All students must:

- Treat all employees, honorary appointees, consultants, contractors, volunteers, any other members of the public, and other students with respect, dignity, impartiality, courtesy and sensitivity.
- Maintain a cooperative and collaborative approach to inter-personal relationships.
- Act honestly and ethically in their dealings with University employees, honorary appointees, consultants, contractors, volunteers, any other members of the public and other students.
- Respect the privacy of University employees, honorary appointees, consultants, contractors, volunteers, any other members of the public and other students.
- Ensure that they do not act in a manner that unnecessarily or unreasonably impedes the ability of University employees, honorary appointees, consultants, contractors, volunteers, any other members of the public and other students.
- Ensure that they do not act in a manner that unnecessarily or unreasonably impedes the ability of University employees, honorary appointees, consultants, contractors, volunteers, any other members of the public and other students to carry out their study, research or work at the University, including in the University of Sydney Library, lecture theatres and laboratories.
- Ensure that they do not become involved in or encourage discrimination against or harassment or bullying of University employees, honorary appointees, consultants, contractors, volunteers, any other members of the public or other students.
5. Academic conduct

All students must:

- Ensure that their enrolment and progress in their award course is lawful and consistent with the statutes, rule and resolutions of the University of Sydney.
- Not enrol in additional units of study outside the degree resolutions, even if the student information system allows it when enrolling online.
- Take responsibility to maintain current information in the student information system, and observe key dates and deadlines.
- Read all official correspondence from the University, including email.
- Act ethically and honestly in the preparation, conduct, submission and publication of academic work, and during all forms of assessment, including formal examinations and informal tests.
- Avoid any activity or behaviour that would unfairly advantage or disadvantage another student academically.
- Conform to the University’s requirements for working with humans, animals and biohazards.
- Behave professionally, ethically and respectfully in all dealings with the University’s learning partners during extramural placements and practicums.
- Use the University’s resources, including information and communication technology resources, in a lawful and ethical manner and for University purposes only, unless express permission has been granted for non-University or private usage.

6. Authority

This Code of Conduct was approved by the Academic Board pursuant to the University of Sydney (Academic Governance) Rule 2003 on 2 February 2005.

For further details on the Code of Conduct for Students, see the Academic Board Policies website: www.usyd.edu.au/ab/policies.

Student plagiarism: Coursework policy and procedures

Part A – Purpose

1. Academic honesty and prohibition on plagiarism

(1) The role of the University of Sydney is to create, preserve, transmit and apply knowledge through teaching, research, creative works and other forms of scholarship. The University is committed to academic excellence and high standards of ethical behaviour as the cornerstones of scholastic achievement and quality assurance. The University requires all students to act honestly, ethically and with integrity in their dealings with the University, its employees, members of the public and other students.

(2) The University of Sydney is opposed to and will not tolerate Plagiarism. It is the responsibility of all students to:

- (a) ensure that they do not commit or collude with another person to commit Plagiarism;
- (b) report possible instances of Plagiarism; and
- (c) comply with this Policy and Procedure.

(3) The University will treat all identified cases of student Plagiarism seriously, in accordance with this Policy and Procedure, and with Chapter 8 of the University of Sydney By-Law 1999 (as amended) which deals with Student Discipline.

Part B – Preliminary

2. Commencement and coverage

This Policy and Procedure commences on 4 April 2005. It replaces all previous policies and procedures relating to Plagiarism by students enrolled in course work degrees, to the extent that any such previous policies and procedures are inconsistent with this Policy and Procedure.

www.usyd.edu.au senate/policies/Plagiarism.pdf

The University’s Code of Conduct for Responsible Research Practice and Guidelines for dealing with Allegations of Research Misconduct are accessible on the University’s website at: www.usyd.edu.au/policy.

3. Authority

The Policy and Procedures were approved by the Vice-Chancellor on 15 February 2005.

4. Definitions

In this Policy and Procedure:

Acknowledgement of the Source means identifying at least:

- the author or person who owns the Work; and
- the place from which the Work or part of the Work was sourced.

Dishonest plagiarism is defined by Part B Clause 7.

Examiner means the person responsible for assessing the Work.

Legitimate Cooperation means any constructive educational and intellectual practice that aims to facilitate optimal learning outcomes through interaction between students, including:

- researching, writing and/or presenting joint Work;
- discussion of general themes and concepts;
- interpretation of assessment criteria;
- informal study/discussion groups; and
- strengthening and development of academic writing skills through peer assistance.

Negligent plagiarism is defined by Part B Clause 6.

Nominated Academic means the relevant Heads of School and/or Associate Deans responsible for handling plagiarism, as nominated by the Dean of the Faculty in accordance with the University’s Delegations of Authority.

Plagiarism is defined by Part B Clause 5.

Work means ideas, findings or written and/or published material.

Written Warning means a warning issued under Part D Clauses 11(2)(b) or 12(4)(b).

5. Plagiarism

(1) Plagiarism for the purpose of this Policy and Procedure (which applies to students enrolled in course work degrees) means presenting another person’s Work as one’s own Work by presenting, copying or reproducing it without Acknowledgement of the Source.

(2) Plagiarism includes presenting Work for assessment, publication, or otherwise, that includes:

- (a) sentences, paragraphs or longer extracts from published or unpublished Work (including from the Internet) without Acknowledgement of the Source; or
- (b) the Work of another person, without Acknowledgement of the Source and presented in a way that exceeds the boundaries of Legitimate Cooperation.

(3) Plagiarism can be negligent (Negligent plagiarism) or dishonest (Dishonest plagiarism).

6. Negligent plagiarism

(1) Negligent plagiarism means innocently, recklessly or carelessly presenting another person’s Work as one’s own Work without Acknowledgement of the Source.

(2) Negligent plagiarism often arises from a student’s fear of paraphrasing or writing in their own words, and/or ignorance of this Policy and Procedure. It arises from:

- (a) failure to follow appropriate referencing practices; and
- (b) failure to determine or verify and acknowledge the source of the Work.

7. Dishonest plagiarism

(1) Dishonest plagiarism means knowingly presenting another person’s Work as one’s own Work without Acknowledgement of the Source.
(2) Alleged plagiarism will be deemed to be alleged Dishonest plagiarism where:

- (a) substantial proportions of a student's Work have been copied from the Work of another person, in a manner that clearly exceeds the boundaries of Legitimate Cooperation;
- (b) a student's Work contains a substantial body of copied material (including from the Internet) without Acknowledgement of the Source, and in a manner that cannot be explained as Negligent plagiarism;
- (c) there is evidence that the student engaged another person to produce or conduct research for the Work, either partly or wholly, for payment or other consideration; or
- (d) the student has previously received a Written Warning.

Part C – Preventing plagiarism

8. Compliance statements

All students are required to submit a signed statement of compliance with all Work submitted to the University for assessment, presentation or publication. A statement of compliance must be in the form of:

1. a University assignment cover sheet;
2. a University electronic form; or
3. a University written statement; certifying that no part of the Work constitutes a breach of this Policy.

Part D – Procedure for dealing with plagiarism

9. Procedural fairness

The University is committed to dealing with student plagiarism in accordance with the principles of procedural fairness, including the right of a student to:

1. be informed of the allegations against them in sufficient detail to enable them to understand the precise nature of the allegations and to properly consider and respond;
2. have a reasonable period of time within which to respond to the allegations against them;
3. have the matter resolved in a timely manner;
4. be informed of their rights under this Policy and Procedure and under Chapter 8 of the University of Sydney By-Law 1999 (as amended);
5. invite a support person or student representative to any meeting regarding alleged Plagiarism;
6. impartiality in any investigation process; and
7. an absence of bias in any decision-maker.

10. Identification and assessment of alleged plagiarism

(1) Where an Examiner detects or is made aware of alleged Plagiarism by a student, the Examiner must report the alleged Plagiarism to a Nominated Academic.

(2) Where:

- (a) an Examiner reports alleged plagiarism to a Nominated Academic;
- (b) a Nominated Academic otherwise becomes aware of alleged plagiarism;

the Nominated Academic must, in consultation with the Examiner, make a preliminary assessment of whether the alleged Plagiarism would, if proven, constitute Negligent plagiarism or Dishonest plagiarism.

(3) The Nominated Academic and the Examiner will make a preliminary assessment of whether the alleged plagiarism would, if proven, constitute Negligent plagiarism or Dishonest plagiarism on a case by case basis, taking into account factors such as:

- (a) the extent of the alleged plagiarism measured against the student's original contribution to the Work;
- (b) the percentage value of the Work in the unit of study or course;
- (c) the student's overall academic performance in the unit of study or course; and
- (d) the circumstances in which the plagiarism is alleged to have occurred.

11. Negligent plagiarism

(1) Cases of alleged Negligent plagiarism will be handled by the Nominated Academic in accordance with this clause and with Part D Clause 9 (Procedural Fairness) above.

(2) Where, following discussion with the student, a Nominated Academic forms the view that the Student is guilty of Negligent plagiarism, the Nominated Academic will:

- (a) counsel the student by explaining referencing guidelines, providing a copy of this Policy and Procedure, and referring the student to services for assistance; and
- (b) issue a Written Warning about the consequences of any subsequent breaches of this Policy.

(3) A copy of a Written Warning issued under Clause 11(2)(b) above must be:

- (a) signed and dated by the Nominated Academic and the student;
- (b) retained by the student; and
- (c) placed on a central file maintained by the Registrar.

(4) Where, following discussion with the student, the Nominated Academic forms the view that the student is guilty of Negligent Plagiarism, the Nominated Academic may also take other appropriate action, including:

- (a) requiring the student to resubmit the Work for assessment;
- (b) requiring the student to undertake another form of assessment;
- (c) requiring the student to undertake other remedial action; or
- (d) applying a fail grade to the Work or part thereof.

12. Dishonest plagiarism

(1) Cases of alleged Dishonest plagiarism will be handled in accordance with this clause and with Part D Clause 9 (Procedural Fairness) above.

(2) The Nominated Academic will make a preliminary assessment of whether the alleged Dishonest plagiarism is serious enough, if proven, to constitute potential student misconduct under Chapter 8 of the University of Sydney By-Law 1999 (as amended).

(3) In making his or her assessment under Part D Clause 12(2) above, the Nominated Academic will take into account:

- (a) whether the student has previously received a Written Warning;
- (b) the extent of the alleged Dishonest plagiarism measured against the student's original contribution to the Work;
- (c) the percentage value of the Work in the unit of study or course;
- (d) the capacity of the alleged Dishonest plagiarism to adversely affect the student's peers and/or teachers; and
- (e) the capacity of the alleged Dishonest plagiarism to impact adversely on the actual or perceived academic standards of the University.

(4) Where the Nominated Academic assesses that the alleged Dishonest plagiarism is not serious enough, if proven, to constitute potential student misconduct under Chapter 8 of the University of Sydney By-Law 1999 (as amended), the Nominated Academic will, following discussion with the student:

- (a) counsel the student by explaining referencing guidelines, providing a copy of this Policy and Procedure, and referring the student to services for assistance; and
- (b) issue a Written Warning about the consequences of any subsequent breaches of this Policy.

(5) A copy of a Written Warning issued under Part D Clause 12(4)(b) above must be:

- (a) signed and dated by the Nominated Academic and the student;
- (b) retained by the student; and
- (c) placed on a central file maintained by the Registrar.

(6) Where the Nominated Academic assesses that the alleged Dishonest plagiarism is not serious enough, if proven, to constitute
potential student misconduct under Chapter 8 of the University of Sydney By-Law 1999 (as amended), the Nominated Academic may also, following discussion with the student, take other appropriate action, including:

- (a) requiring the student to resubmit the Work for assessment;
- (b) requiring the student to undertake another form of assessment;
- (c) requiring the student to undertake remedial action;
- (d) applying a fail grade to the Work or part thereof; or
- (e) applying a fail grade to the unit of study.

(7) Where the Nominated Academic assesses that the alleged Dishonest plagiarism is serious enough, if proven, to constitute potential student misconduct under Chapter 8 of the University of Sydney By-Law 1999 (as amended), the Nominated Academic will refer the alleged Dishonest plagiarism to the Registrar.

(8) The Nominated Academic will refer the alleged Dishonest plagiarism to the Registrar in all cases of alleged Dishonest plagiarism where the student has previously received a Written Warning.

13. Appeals
An appeal by a student against a decision made under Part D Clauses 11(4)(a)-(d) and 12(6)(a)-(e) of this Procedure will be handled by the University in accordance with the Resolutions of Senate and the Academic Board on Student Appeals against Academic Decisions.

Faculty of Science intervention and support strategies

The Faculty of Science has always been concerned to develop policies that promote the welfare and well-being of its students. A number of University and faculty rules and policies require the faculty to intervene and support students who may be at risk of not meeting progression requirements. These policies are:

- Any Satisfactory Progress requirements that are found in the resolutions for particular degrees.
- The University’s Students At Risk policy.
- For international students, the National Code for Education Providers 2007.

An intervention is an action taken in relation to an individual student by the faculty in applying policies that deal with satisfactory progress. An intervention can take a number of forms, but is typically a referral to particular student support services or a direction in relation to a student's studies.

A support strategy is a plan or process to assist an individual student or group of students within the faculty to better achieve academic success.

All students should take advantage of the faculty’s support strategies and the University’s student support services. Do not wait until you are in severe difficulties to seek assistance!

The faculty has a number of strategies and intervention possibilities in place. These include, but are not limited to, the following:

Making available information on degree requirements in the Faculty of Science

The faculty publishes handbooks on an annual basis. Handbooks become available in the August prior to the calendar year, so the 2010 Handbook is available from August 2009. Handbooks are available online, for purchase in hardcopy format from the Student Centre, and are available at many public libraries.

Each Faculty of Science student receives an enrolment guide at in-person enrolment. These guides set out relevant contacts and degree rules. In addition, the faculty distributes information on University student support services.

Provision of specialist administrative staff

Administrative staff are available at the Faculty of Science office counter and by email and by telephone to assist with queries relating to degree requirements and other administrative matters. For opening times and contact details, see www.science.usyd.edu.au.

Faculty of Science Transition Workshop

To enable new first year undergraduate students to study effectively and enjoy a positive student experience, the Faculty of Science offers a transition workshop each year. Workshops are held prior to the commencement of the academic year. Details on registration are available at enrolment sites or on the faculty webpage at enrolment periods.

Faculty of Science website

The faculty’s website is specifically for students enrolled in the Faculty of Science, and contains relevant information on degree requirements and many other things.

Implementing progression requirements

- The faculty administers progression requirements for undergraduate specialist degrees on an annual basis. Students who do not meet the progression requirements will be notified within 4 weeks of second semester results becoming available that they have not fulfilled satisfactory progression requirements. Students will be notified of the intervention to be implemented.
- The faculty administers progression requirements for postgraduate coursework degrees on a semester basis. Students who do not meet the progression requirements will be notified within 4 weeks of semester results becoming available that they have not fulfilled satisfactory progression requirements. Students will be notified of the intervention to be implemented.
- The faculty administers the University's At Risk policy on a semester by semester basis. Students are notified in accordance with the At Risk policy set out in Chapter 1 of the Faculty of Science Handbook.
- The faculty has a staff member dedicated to administration for International Student candidatures. The International Student Adviser works closely with the International Office to facilitate compliance with the ESOS code.

Interventions

Interventions are made with regard to the particular policy or rule being applied. Interventions include:

- Completion of a back on track survey by Students At Risk.
- Requirement to attend at an information session to raise awareness of student services.
- A referral to attend particular student services.
- An interview with the Associate Dean or other course adviser.
- Recommendations on study patterns.
- Recommendation on suspension or withdrawal from study.

Where a student has failed to make satisfactory progress as required, subsequent interventions include:

- Transfer to a more appropriate degree program as provided in degree resolutions or as recommended by an Associate Dean.
- Transfer to a more appropriate stream in a degree as provided in degree resolutions or as recommended by an Associate Dean.
- Direction to move from full-time to part-time enrolment.
- Direction to suspend studies for a period.
- Mandatory attendance at specified Learning Centre courses.
- Case management on an individual student basis.
- Exclusion for a specified period from a degree.

Support Strategies

The faculty supports students by:

- Making information on degree requirements easily available.
- Making information on University student support services easily available.
- Offering a Transition Workshop.
- Offering the Talented Student Program to support the development of talented Science students.
- Providing specialist administrative staff to advise on faculty policy and procedures.
1. Contact information and policies

- Providing individual consultations, by appointment, with Associate Deans.

The Schools within the Faculty of Science support students through:

- Issuing unit of study outlines detailing requirements and learning outcomes.
- Making available specialist administrative staff to advise on School policy and procedures.
- Making available specialist academic advisers to advise on academic matters within the School.

Faculty life and representation

Student membership of the faculty

The Constitution of the Faculty of Science provides that, in addition to the ex officio and academic staff members of the Faculty, there shall be the following categories of membership:

1. Not more than three persons distinguished in the field of Science and its teaching, appointed by the faculty on the nomination of the Dean.
2. Not more than six students, undergraduate or postgraduate, enrolled as candidates for a degree or diploma in the Faculty of Science elected in the manner prescribed by resolution of the Senate.
3. Not more than five persons, who have teaching, research or offer appropriate associations with the work of the faculty, appointed by the faculty on the nomination of the Dean.

Two of the six students are elected annually by the undergraduate students in the faculty, two are elected by the postgraduate students and one each is nominated by each of the Sydney University Science Society and the Sydney University Postgraduate Representative Association.

The Senate resolutions for the student membership of the Faculty of Science are set out in full in the University of Sydney Calendar.

Students may request permission to attend faculty meetings as observers. Details are available from the faculty office.

Sydney University Science Society (SCISOC)

As a student in the Faculty of Science you are a member of the Sydney University Science Society (SCISOC), the faculty society. SCISOC promotes activities of both an educational and a social nature.

The Society holds a number of activities throughout the year, including barbecues every two weeks and the highlighting of the Science student year – the Annual Science ‘Bucky’ Ball. The Society appoints sports directors who help organise interfaculty sport.

The society runs a stall during orientation week, where t-shirts are sold and you can find out more about what the SCISOC does. The Aqua Regia (official publication of SCISOC) which heralds information concerning the activities of SCISOC and Science departmental societies, is produced weekly and can be found on official departmental noticeboards.

The postal address is Faculty of Science, Carslaw Building F07, University of Sydney, 2006.

The affairs of the society are governed by a council consisting of office bearers, delegate members from member societies, student members of faculty and nine members elected at the annual general meeting, at least three of whom are first year students. You are encouraged to attend the AGM (held in Semester 1) and to take an active part in the society and on council. Council meets regularly during term and all members are invited to attend the meetings. These are advertised in the Daily Bull. Your attendance will ensure that SCISOC effectively meets the needs of science students on campus. For more information, visit the website at www.sci.soc.usyd.edu.au.

Member societies

A member of the departments within the Faculty of Science have departmental societies, for example the Alchemist’s Society, Biochemical Society, Biological Society, School of Geosciences Society (includes Geography, Geology, Environmental Science and Marine Science), Mathematical Society, Medical Science Society, Microbiology Society, Physics Society, and Psychological Society.

These societies organise talks, films, field trips and other activities relating to their particular discipline, as well as parties, wine and cheese evenings and other social activities. Most departmental societies have a stall during the orientation period.

Employment for graduates in Science

The field of employment for science graduates is extraordinarily wide, ranging from dedicated research scientist in a university or research laboratory to managing director of a large corporation, school teacher, technical representative, laboratory bench worker, production superintendent, consultant geologist, bird banding biologist, actuary, computer sales representative, beachcomber ... the list is endless and will depend on a student's subject choices and interests.

Many science graduates choose to undertake further study to prepare for employment. There is a wide range of Graduate Diplomas and coursework masters degrees available. These include Molecular Biotechnology, Bioinformatics, Nutrition and Dietetics, Information Technology, Environmental Science, Marine Ecology and Psychology.

Some science graduates complete a Bachelor of Engineering degree after an additional two years’ study. This qualifies them as professional engineers, with a wide range of additional job opportunities in chemical, civil, electrical, mechanical and mining engineering.

If you wish to consider this option, it is important to make sure that you choose the appropriate prerequisite subjects in your science degree.

It is prudent to plan your course with a career in mind, or a couple of careers if possible. For example, even though you might be sure you want to teach mathematics, you might include some computer science in your course so that if you did not like teaching you would have another choice of career.

Alternatively, you might have your heart set on being a biologist, but as an insurance policy in case you could not get a job as a biologist, you might consider also majoring in biochemistry, microbiology or chemistry to widen the scope.

This is not to say you should give up too easily if you want to be a biologist. In areas where jobs are not too plentiful you have to start right at the beginning of your course to prepare to secure that job on graduation. Some suggestions are to learn scuba-diving, join the bush-walking or speleological clubs, work in the vacation for one of the national parks – for nothing if necessary – and make as many personal contacts as you can.

Such evidence of keenness and initiative impresses an employer. As you will have understood, it is not only your academic ability an employer looks at but also your personality, evidence of a sense of responsibility and activities beyond the set curriculum.

Similarly, if you want a job related to chemistry, physics, geology, computer science, biochemistry, etc, do your best to obtain a vacation job that will enable you to claim relevant experience when applying for your first job. These vacation jobs are hard to get, admittedly, but the extra legwork and initiative involved in finding one will pay off in the long run.
2. Undergraduate degree regulations

Undergraduate Resolutions

This chapter contains the regulations governing undergraduate degrees throughout the University and the regulations governing undergraduate degrees offered by the Faculty of Science.

1. The degrees in the Faculty of Science shall be:
 1.1 Bachelor of Science (BSc), which shall also incorporate the specially designated streams:
 1.1.1 Bachelor of Science (Advanced) (BSc(Advanced))
 1.1.2 Bachelor of Science (Advanced Mathematics) (BSc(Advanced Mathematics))
 1.1.3 Bachelor of Science (Marine Science) (BSc(Marine Science))
 1.1.4 Bachelor of Science (Molecular Biology & Genetics) (BSc(Molecular Biology & Genetics))
 1.1.5 Bachelor of Science (Molecular Biotechnology) (BSc(Molecular Biotechnology))
 1.1.6 Bachelor of Science (Nutrition)/Master of Nutrition and Dietetics (BSc(Nut)/MND)
 1.2 Bachelor of Medical Science (BMedSc), which is offered in the following designated combined degree courses:
 1.2.1 Bachelor of Medical Science/Bachelor of Medicine and Bachelor of Surgery (BMedSc/MBBS)
 1.2.2 Bachelor of Engineering/Bachelor of Medical Science (BE/BMedSc)
 1.3 Bachelor of Psychology (BPsych)
 1.4 Bachelor of Science and Technology (BST)

2. The Bachelor of Science is offered in the following designated combined degree courses:
 2.1 Bachelor of Science (Advanced)/Bachelor of Medicine and Bachelor of Surgery (BSc(Adv)/MBBS)
 2.2 Bachelor of Science/Bachelor of Laws (BSc/LLB)
 2.3 Bachelor of Science and Bachelor of Arts (BSc/BA)
 2.4 Bachelor of Commerce and Bachelor of Science (BCom/BSc)
 2.5 Bachelor of Science and Bachelor of Engineering (BSc/BE)
 2.6 Bachelor of Engineering and Bachelor of Science (BE/BSc)
 2.7 Bachelor of Education (Secondary:Science) and Bachelor of Science (BEd(Secondary:Science)/BSc)
 2.8 Bachelor of Education (Secondary:Mathematics) and Bachelor of Science (BEd(Secondary:Mathematics)/BSc)
 2.9 Bachelor of Education (Secondary:Science) and Bachelor of Science (BEd(Secondary)/BScPsychology)
 2.10 Bachelor of Nursing and Bachelor of Science (BN/BSc)
 2.11 Bachelor of Science/Master of Nursing Practice (BSc/MNP)
 2.12 Bachelor of Applied Science (Exercise and Sport Science)/Bachelor of Science (Nutrition)

3. The degrees in the Faculty of Science offered in conjunction with other faculties shall be:
 3.1 Bachelor of Liberal Studies (BLibStud), which shall incorporate the streams:
 3.1.1 Bachelor of Liberal Studies (International) (BLibStud(International))
 3.1.2 Bachelor of Liberal Studies (Advanced) (BLibStud(Advanced))
 3.2 Bachelor of Arts and Science (BAS)

Note the specific glossaries attached to each degree, and the generic glossary common to all degrees.

The regulations governing postgraduate award courses can be found at the end of each postgraduate degree chapter.

University of Sydney (Coursework) Rule 2000 (as amended)

The resolutions in this chapter must be read in conjunction with the University of Sydney (Coursework) Rule 2000 (as amended) which sets out the requirements for all coursework courses, and the relevant Senate Resolutions which are available in the University Calendar.

The Calendar can also be viewed at www.usyd.edu.au/calendar.

Bachelor of Science

Course rules

1. Admission
 1.1 All applications for admission to candidature to an undergraduate degree or combined undergraduate degree in the Faculty of Science will be subject to the Undergraduate Admissions policy of the University of Sydney.
 1.2 A candidate for the BSc degree in any stream may apply to the Dean for permission to transfer candidature to any other stream.

2. Units of study
 2.1 The units of study for the Bachelor of Science are set out under subject areas in Table I and Table VI, together with:
 2.1.1 designation as junior, intermediate, senior or honours and, where appropriate, as advanced units of study
 2.1.2 credit point values
 2.1.3 assumed knowledge, corequisites and prerequisites
 2.1.4 the semesters in which they are offered; and
 2.1.5 the units of study with which they are mutually exclusive.
 2.2 The Dean may permit a student of exceptional merit who is admitted to the Talented Student Program to undertake a unit or units of study within the Faculty other than those specified in Table I.
 2.3 A student who enrols, in accordance with these resolutions, in a unit or units of study prescribed for a degree other than the Bachelor of Science, shall satisfy the prerequisites, corequisites and other requirements prescribed for such units of study.

3. Requirements for the pass degree
 3.1 Bachelor of Science
 3.1.1 To qualify for the award of the Bachelor of Science, a student shall complete units of study having a total value of at least 144 credit points, including:
 3.1.1.1 at least 96 credit points from Science subject areas;
 3.1.1.2 at least one major from those included in Table I;
 3.1.1.3 at least 12 credit points from the Science subject areas of Mathematics and Statistics;
 3.1.1.4 at least 24 credit points of Junior units of study from at least two Science subject areas other than Mathematics and Statistics; and
 3.1.1.5 no more than 60 credit points from Junior units of study.
 3.1.2 A major in the BSc normally requires the completion of a minimum of 24 credit points of senior units of study in one Science area, including any units of study specified in the Table of undergraduate units of study as compulsory for that major.
 3.1.3 A major in Psychology requires 48 credit points across intermediate and senior Psychology* units of study including PSYC(2111 or 2011), PSYC(2112 or 2012), PSYC(2113 or 2013) and PSYC(2114 or 2014). No other intermediate Psychology units can be counted towards the major.
 3.1.3.1 The senior units must include at least one of PSYC3011, 3012, 3013 and 3014.*Note: HPSC3023 Psychology and
Psychiatry History and Phil is available for Senior Psychology students and will count towards a major in Psychology. Successful completion of this unit of study is essential for students intending to take the Theoretical Thesis option in Psychology Honours.

3.1.4 A maximum of 48 credit points may be counted towards the degree requirements from units of study offered by faculties other than the Faculty of Science.

3.1.5 Units of study completed at the University of Sydney Summer School which correspond to units of study specified in sub-sections 2 and 3 may be credited towards the course requirements.

3.1.6 The testamur for the degree of Bachelor of Science shall specify the major(s) completed in order to qualify for the award.

3.2 Bachelor of Science (Advanced)

3.2.1 To qualify for the award of the pass degree in the BSc (Advanced) stream, a student shall complete the requirements for the BSc degree in sub-section 3.1 with the exception of 3.1.1.5 and in addition, except with the permission of the Dean:

3.2.1.1 include no more than 48 credit points from Junior units of study;

3.2.1.2 include at least 12 credit points of Intermediate units of study at either the Advanced level or as TSP units;

3.2.1.3 include at least 48 credit points of Senior units of study of which at least 24 are completed at the Advanced level or as TSP units in a single Science subject area; and

3.2.1.4 maintain in Intermediate and Senior units of study in Science subject areas an average mark of 65 or greater in each year of enrolment;

3.2.2 candidates who fail to maintain the required credit average will be transferred to candidature for the Bachelor of Science degree in their next year of enrolment with full credit for the units of study completed as Bachelor of Science (Advanced) candidates.

3.2.3 Candidates who fail to achieve a credit average across all units of study attempted in the year in which they have otherwise completed the requirements for the degree will be awarded the Bachelor of Science.

3.2.4 Students who have completed at least 48 credit points may be permitted to transfer to the BSc (Advanced) stream, a student shall complete the requirements for the BSc degree in sub-section 3.1 with the exception of 3.1.1.5 and in addition, except with the permission of the Dean:

3.2.4.1 their mark averaged over all attempted units of study is 75 or greater; and

3.2.4.2 they are able to enrol in the required number of Advanced level units or TSP units.

3.2.5 The testamur for the degree of Bachelor of Science (Advanced) shall specify the major(s) completed in order to qualify for the award.

3.3 Bachelor of Science (Advanced Mathematics)

3.3.1 To qualify for the award of the pass degree in the BSc (Advanced Mathematics) stream, a student shall complete the requirements for the BSc degree in subsection 3.1 with the exception of 3.1.1.5 and in addition, except with the permission of the Dean:

3.3.1.1 include no more than 48 credit points from Junior units of study;

3.3.1.2 include at least 12 credit points of Intermediate units of study at either the Advanced level or as TSP units in the Science subject areas of Mathematics and Statistics;

3.3.1.3 include a major in Mathematics, Statistics or Financial Mathematics and Statistics;

3.3.1.4 include at least 48 credit points of senior units of study of which at least 24 are completed at the Advanced level or as TSP units in the Science subject areas of Mathematics and Statistics; and

3.3.1.5 maintain in Intermediate and Senior units of study in Science subject areas an average mark of 65 or greater in each year of enrolment;

3.3.2 candidates who fail to maintain the required credit average will be transferred to candidature for the Bachelor of Science degree in their next year of enrolment with full credit for the units of study completed as Bachelor of Science (Advanced Mathematics) candidates.

3.3.3 Candidates who fail to achieve a credit average across all units of study attempted in the year in which they have otherwise completed the requirements for the degree will be awarded the Bachelor of Science.

3.3.4 Students who have completed at least 48 credit points may be permitted to transfer to the BSc (Advanced Mathematics) stream from the BSc or other degree programs if:

3.3.4.1 their mark averaged over all attempted units of study is 75 or greater; and

3.3.4.2 they are able to enrol in the required number of Advanced level units or TSP units.

3.3.5 The testamur for the degree of Bachelor of Science (Advanced Mathematics) shall specify the major(s) completed in order to qualify for the award.

3.4 Other streams of the Bachelor of Science

3.4.1 In order to qualify for the award of the BSc degree in the following streams, a student shall, except with the permission of the Dean, complete the requirements for the BSc degree in subsection 3.1 with the exception of 3.1.1.2 and notwithstanding section 13 satisfy the requirements and complete the units of study set out in the respective Tables of undergraduate units of study:

3.4.1.1 Marine Science Table IC

3.4.1.2 Molecular Biology and Genetics Table ID

3.4.1.3 Molecular Biotechnology Table IE

4. Requirements for the honours degree

4.1 There shall be honours courses in all Science subject areas listed in Table VI (Honours units of study).

4.2 To qualify to enrol in an honours course, students shall:

4.2.1 have qualified for the award of a pass degree; or

4.2.2 be a graduate of the Faculty of Science; or

4.2.3 be a graduate holding a Bachelor of Science degree or an equivalent qualification from another institution;

4.2.4 have completed a minimum of 24 credit points of senior units of study relating to the intended honours course (or equivalent at another institution);

4.2.5 have achieved either:

4.2.5.1 a least a credit average in 48 credit points in relevant intermediate and senior Science units of study; or

4.2.5.2 a SCIWAM of at least 65 (or equivalent at another institution); and

4.2.6 satisfy any additional criteria set by the Head of Department concerned.

4.3 Students shall complete the requirements for the honours course full-time over two consecutive semesters.

4.4 If the Faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half-time over four consecutive semesters.

4.5 To qualify for the award of an honours degree, students shall complete 48 credit points of honours units of study in Table VI of undergraduate units of study, as prescribed by the Head of Department concerned.

4.6 The grade of honours and the honours mark are determined by performance in the honours course.

4.7 Honours in the Bachelor of Science may be awarded in four classes as follows:

4.7.1 Class I (mark range: 80 and above)

4.7.2 Class II(1) (mark range: 75-79)

4.7.3 Class II(2) (mark range: 70-74)

4.7.4 Class III (mark range: 65-69)

4.8 A student with an honours mark of 90 or greater in an honours subject area and a minimum SCIWAM of 80 shall, if deemed to be of sufficient merit by the Dean, receive a bronze medal.

4.9 A student may not re-attempt an honours course in a single subject area.

4.10 A student who is qualified to enrol in two honours courses may enrol in:

4.10.1 complete the honours courses in the two subject areas separately and in succession; or

4.10.2 complete a joint honours course, equivalent to an honours course in a single subject area, in the two subject areas.

4.11 A joint honours course shall comprise such parts of the two honours courses as may be decided by the Dean.

5. Transfer from the Bachelor of Engineering degree

5.1 Bachelor of Science/Bachelor of Engineering double degree

5.1.1 A student enrolled for a Bachelor of Engineering degree may be permitted to transfer to the Faculty of Science to complete
6. Details of units of study

6.1 The units of study for the Bachelor of Science are listed in Table 1 and Table VI of these resolutions.

6.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

6.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

6.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:

6.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;

6.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and

6.4.3 to pass any other examination of the unit of study that may apply.

6.5 All units of study for a particular subject area may not be available every semester.

6.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other undergraduate programs in the Faculty or elsewhere in the University.

7. Enrolment in more/less than minimum load

7.1 A candidate may not enrol in additional units of study once the degree requirements of 144 credit points have been satisfied, without first obtaining permission from the Dean.

7.2 Students may enrol on either a full-time or part-time basis.

8. Cross-institutional study

8.1 Provided that permission has been obtained in advance, the Dean may permit a student to complete a unit of study at another institution and have that unit credited to his/her course requirements provided that either:

8.1.1 the unit of study content is material not taught in any corresponding unit of study in the University; or

8.1.2 the student is unable for good reason to attend a corresponding unit of study at the University.

9. Restrictions on enrolment

9.1 Units of study which overlap substantially in content are noted in the Tables of undergraduate units of study. Such units of study are mutually exclusive and no more than one of the overlapping units of study may be counted towards meeting the course requirements.

9.2 Where a student enrols in a unit of study which is the same as, or has a substantial amount in common with, a unit of study previously attempted but not completed at the grade of Pass or better, the Head of Department concerned may exempt the student from certain requirements of the unit of study if satisfied that the relevant competence has been demonstrated.

9.3 A student may not enrol in a unit of study which they have completed previously with a grade of Pass or better.

9.4 A candidate may not enrol in units of study having a total value of more than 30 credit points in a semester.

10. Discontinuation of enrolment

10.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

10.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

11. Suspension of candidature

11.1 A student may seek written permission from the Dean to suspend candidature in the course.

11.2 Suspension may be granted for a maximum of one year on any one application.

12. Re-enrolment after an absence

12.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

13. Satisfactory progress

13.1 A student shall not have made satisfactory progress in any semester if the student:

13.1.1 fails to complete successfully more than 50% of the credit points in which the student was enrolled for that semester; and/or

13.1.2 fails to complete successfully on the second or later attempt the same unit of study; and/or
13.1.3 is consequently unable to complete the degree within the maximum permitted time while carrying a normal student load.

13.2 A student who has not made satisfactory progress in accordance with 13.1.1 or 13.1.2 will be placed on a Faculty list of students at risk and will be required to take steps in accordance with the University’s At Risk policy as implemented by the Faculty of Science.

13.2.1 a student who is placed on the Faculty’s At Risk list for any three semesters shall be required to show good cause why the student should be permitted to reenrol in the degree;

13.2.2 a student who has failed to show good cause in accordance with 13.2.1 shall be excluded from the degree;

13.2.3 a student who has been permitted to reenrol after having been asked to show good cause and is placed on a Faculty list of students at risk for the fourth time will be automatically excluded from the degree.

14. Time limit

14.1 A candidate must complete all the requirements for the award of the degree within ten calendar years of admission to candidature or readmission without credit.

14.1.1 If a candidate is readmitted with credit, the Faculty will determine a reduced time limit for completion of the degree.

14.2 Students shall complete the requirements for the honours course full-time over two consecutive semesters.

14.2.1 If the Faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half-time over four consecutive semesters.

15. Assessment policy

15.1 Students may be tested by written and oral examinations, exercises, essays or practical work or any combination of these as the Faculty may determine.

15.2 Where a unit of study is offered at different levels of difficulty, the performance of students will be matched so that a grade obtained at one level indicates a quality of work comparable with that required for the same grade at the other level(s).

15.3 Heads of Department may arrange for further testing in cases of special consideration, in accordance with Academic Board policy governing illness and misadventure.

16. Credit transfer policy

16.1 Credit will not be granted for units of study completed ten years or more prior to application, except with the permission of the Dean.

16.2 Credit may be granted as specific credit if the unit of study is considered to be directly equivalent to a unit of study in Table I, or as non-specific credit.

16.3 The total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points of units of study from other degrees for which credit is maintained or a degree has been conferred.

16.4 All students, notwithstanding any credit transfer, must complete at least 24 credit points of senior Science units of study towards a major taken at the University of Sydney.

17. Candidates enrolled before 2005

17.1 These resolutions apply to all candidates for the degree enrolling in units of study after 1 January 2005.

17.2 With the permission of the Faculty of Science, candidates who first enrolled for the degree prior to 2005 and have not had a period of suspension or exclusion may until 31 March 2008 choose to qualify for the degree under the old resolutions.

17.3 With the permission of the Faculty of Science, candidates who first enrolled for the degree as part-time candidates prior to 2005 and have not had a period of suspension or exclusion may until 31 March 2010 choose to qualify for the degree under the old resolutions.

18. Glossary for the BSc

18.1 Completion of a unit of study means that the assessment requirements have been satisfied and a grade of Pass or better has been achieved.

18.2 Junior unit of study is a 1000 or first-year stage unit. Its prerequisites or assumed knowledge are non-tertiary qualifications and corequisites are other Junior units of study.

18.3 Intermediate unit of study is a 2000 or second-year stage unit. Its prerequisites or assumed knowledge are Junior or Intermediate units of study and corequisites are other Intermediate units of study. (Specific to the Faculty of Science).

18.4 Senior unit of study is a 3000 or third-year stage unit. Its prerequisites or assumed knowledge are Junior, Intermediate or Senior units of study and corequisites are other Senior units of study. (Specific to the Faculty of Science).

18.5 Honours unit of study is a 4000 or fourth-year stage unit offered within an honours course or as non-specific credit.

18.6 Advanced unit of study is a unit which generally parallels a normal unit of study but which provides added breadth of material and/or sophistication of approach.

18.7 Major in the BSc normally requires the completion of a minimum of 24 credit points of Senior units of study in one Science area, including any units of study specified in the Table of undergraduate units of study as compulsory for that major. A student may not count a unit of study toward more than one major. (A major in Psychology requires 48 credit points of intermediate and senior Psychology units of study including PSYC(2111 or 2011), PSYC(2112 or 2012), PSYC(2113 or 2013) and PSYC(2114 or 2014). No other Intermediate Psychology units can be counted towards the major).

18.8 Dean means the Dean of Science.

18.9 Faculty means the Faculty of Science.

18.10 Science subject area means a defined field of study in science.

18.11 Degree means the degree of Bachelor of Science.

18.12 Requirements means coursework requirements for the award of the degree of Bachelor of Science.

18.13 Student means a person enrolled as a candidate for the degree of Bachelor of Science.

18.14 TSP means the Talented Student Program in the Faculty of Science.

18.15 SCIWAM means the weighted average mark calculated by the Faculty from the results for all Intermediate and Senior units of study with a weighting of 2 for intermediate units and 3 for senior units.

Bachelor of Medical Science

Course rules

1. Admission

1.1 All applications for admission to candidature to an undergraduate degree or combined undergraduate degree in the Faculty of Science will be subject to the Undergraduate Admissions policy of the University of Sydney.

2. Units of study

2.1 The units of study for the Bachelor of Medical Science are set out in Table IV together with:

2.1.1 designation as junior, intermediate, senior or honours and, where appropriate, as advanced units of study

2.1.2 credit point values

2.1.3 assumed knowledge, corequisites and prerequisites

2.1.4 the semesters in which they are offered; and

2.1.5 the units of study with which they are mutually exclusive.

2.2 A student may enrol, in accordance with subsection 3.1.5, in a unit of study prescribed for a degree other than the Bachelor of Medical Science and shall satisfy the prerequisites, corequisites, qualifying and other requirements prescribed for such units of study for that other degree.

2.3 The Dean may permit a student of exceptional merit who is admitted to the Talented Student Program to undertake a unit or units of study within the Faculty other than those specified in Table IV.

2.4 There shall be honours units of study in Science subject areas listed in Table IV D.

3. Requirements for the pass degree

3.1 In order to qualify for the award of the Bachelor of Medical Science degree a student shall complete units of study having a total value of at least 144 credit points, including:

3.1.1 at least 48 credit points from junior units of study, comprising MBLG1001 and 12 credit points each from Chemistry, Mathematics and Physics or Computational Science and 6 credit points from Biology;

3.1.2 no more than 60 credit points from junior units of study; and

3.1.3 48 credit points of Intermediate core units of study listed in Table IV.
3.4.2 to complete satisfactorily the essays, exercises, practical work, or project work specified in subsection 3 may be credited towards the course requirements.

4. Requirements for the honours degree

4.1 Students may proceed to an honours course in the Bachelor of Medical Science.

4.2 In order to qualify to enrol in an honours course, students shall either:

4.2.1 have qualified for the award of the pass degree; or

4.2.2 be a pass graduate in Medical Science of the Faculty of Science.

4.2.3 be a pass graduate holding a Bachelor of Medical Science degree or an equivalent qualification from another institution;

4.2.4 have completed a minimum of 24 credit points of senior units of study relating to the intended honours course (or equivalent at another institution);

4.2.5 have achieved either:

4.2.5.1 a least a credit average in 48 credit points in the relevant intermediate and senior Science units of study; or

4.2.5.2 a SCIWAM of at least 65 (or equivalent at another institution); and

4.2.5.3 satisfy any additional criteria set by the Head of Department concerned.

4.2.6 Students shall complete the requirements for the course full-time over two consecutive semesters.

4.2.6.1 If the Faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half-time over four consecutive semesters.

4.3 To qualify for the award of an honours degree, students shall complete 48 credit points of honours units of study in one subject area from those listed in Table IV D.

4.4 The grade of honours and the honours mark are determined by performance in the honours course.

4.4.1 Honours in the Bachelor of Science may be awarded in four classes as follows:

4.4.1.1 Class I (mark range: 80 and above)

4.4.1.2 Class II(1) (mark range: 75-79)

4.4.1.3 Class II(2) (mark range: 70-74)

4.4.1.4 Class III (mark range: 65-69)

4.4.2 A student with an honours mark of 90 or greater in an honours subject area and a minimum SCIWAM of 80 shall, if deemed to be of sufficient merit by the Dean, receive a bronze medal.

4.5 A student who is qualified to enrol in two honours courses may either:

4.5.1 complete the honours courses in the two subject areas separately and in succession; or

4.5.2 complete a honours course, equivalent to an honours course in a single subject area, in the two subject areas.

4.6 A student may not re-attempt an honours course in a single subject area.

Faculty rules

5. Details of units of study

5.1 The units of study for the Bachelor of Medical Science are listed in Table IV of these resolutions.

5.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

5.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

5.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:

5.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;

5.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and

5.4.3 to pass any other examination of the unit of study that may apply.

5.5 All units of study for a particular subject area may not be available every semester.

5.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other undergraduate programs in the Faculty or elsewhere in the University.

6. Enrolment in more/less than minimum load

6.1 A candidate may not enrol in additional units of study once the degree requirements of 144 credit points have been satisfied, without first obtaining permission from the Dean.

6.2 Students may enrol on either a full-time or part-time basis.

7. Cross-institutional study

7.1 Provided that permission has been obtained in advance, the Dean may permit a student to complete a unit of study at another institution and have that unit credited to her/his course requirements provided that either:

7.1.1 the unit of study content is material not taught in any corresponding unit of study in the University; or

7.1.2 the student is unable for good reason to attend a corresponding unit of study at the University.

8. Restrictions on enrolment

8.1 Except with the permission of the Dean, candidates may not enrol in an intermediate core unit of study until they have completed 42 credit points of junior units of study prescribed by the Faculty.

8.2 Except with the permission of the Dean, candidates may not enrol in a senior unit of study:

8.2.1 until they have gained credit for at least 42 credit points from core intermediate units of study; and

8.2.2 until they have completed the intermediate units of study prescribed as prerequisites for the senior unit of study, as set out in Table IV.

8.2.3 Enrolment in some senior units of study may be subject to a quota.

8.3 Where a student enrolls in a unit of study which is the same as, or has a substantial amount in common with, a unit of study previously attempted but not completed satisfactorily, the Head of Department concerned may exempt the student from certain requirements of the unit of study requirements if satisfied that the relevant competence has been demonstrated.

8.4 A student may not enrol in a unit of study which they have completed previously with a grade of pass or better.

8.5 A candidate may not enrol in units of study having a total value of more than 30 credit points in a semester.

8.6 In satisfying the requirements of subsection 3.1.3 a student may not enrol in units of study which overlap substantially in content with units of study listed in subsection 3.1.4.

8.7 A student may not enrol without first obtaining permission from the Dean in:

8.7.1 additional units of study once the degree requirements of 144 credit points have been satisfied; or

8.7.2 units of study which may not be counted towards the course requirements.

9. Discontinuation of enrolment

9.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

9.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

10. Suspension of candidature

10.1 A student may seek written permission from the Dean to suspend candidature in the course.

10.2 Suspension may be granted for a maximum of one year on any one application.

11. Re-enrolment after an absence

11.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

12. Satisfactory progress

12.1 A student shall not have made satisfactory progress in any semester if the student:
12.1.1 fails to complete successfully more than 50% of the credit points in which the student was enrolled for that semester; and/or
12.1.2 fails to complete successfully on the second or later attempt the same unit of study; and/or
12.1.3 is consequently unable to complete the degree within the maximum permitted time while carrying a normal student load.
12.2 A student who has not made satisfactory progress in accordance with 12.1.1 or 12.1.2 will be placed on a Faculty list of students at risk and will be required to take steps in accordance with the University’s At Risk policy as implemented by the Faculty of Science;
12.2.1 a student who is placed on the Faculty’s At Risk list for any three semesters shall be required to show good cause why the student should be permitted to reenrol in the degree;
12.2.2 a student who has failed to show good cause in accordance with 12.2.1 shall be excluded from the degree;
12.2.3 a student who has been permitted to reenrol after having been asked to show good cause and is placed on a Faculty list of students at risk for the fourth time will be automatically excluded from the degree.
13. Time limit
13.1 A candidate must complete all the requirements for the award of the degree within ten calendar years of admission to candidacy or re-admission without credit.
14. Assessment policy
14.1 Students may be tested by written and oral examinations, exercises, essays or practical work or any combination of these as the Faculty may determine.
14.2 Where a unit of study is offered at different levels of difficulty, the performance of students will be matched so that a grade obtained at one level indicates a quality of work comparable with that required for the same grade at the other level(s).
14.3 Heads of Department may arrange for further testing in cases of special consideration, in accordance with Academic Board policy governing illness and misadventure.
15. Credit transfer policy
15.1 Credit will not be granted for units of study completed nine years or more prior to application, except with the permission of the Dean.
15.2 Credit may be granted as specific credit if the unit of study is considered to be directly equivalent to a unit of study in Tables I or IV, or as non-specific credit.
15.3 The total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points as the Faculty may determine.
15.4 All students, notwithstanding any credit transfer, must complete at least 36 credit points of senior Science units of study in accordance with subsection 3.1.1.
16. Candidates enrolled before 2005
16.1 These Resolutions apply to all candidates for the degree enrolling in units of study after 1 January 2005.
16.2 With the permission of the Faculty of Science, candidates who first enrolled for the degree prior to 2005 and have not had a period of suspension or exclusion may until 31 March 2008 choose to qualify for the degree under the old resolutions.
16.3 With the permission of the Faculty of Science, candidates who first enrolled for the degree as part-time candidates prior to 2005 and have not had a period of suspension or exclusion may until 31 March 2010 choose to qualify for the degree under the old resolutions.
17. Specific glossary for the Bachelor of Medical Science
17.1 AAM means the average mark over all units of study attempted in a given academic year (equivalent to the calendar year).
17.2 Completion of a unit of study means that the assessment requirements have been satisfied and a grade of pass or better has been achieved.
17.3 Intermediate unit of study is of second-year (2000) level. Its prerequisites or assumed knowledge are junior or intermediate units of study and corequisites are other intermediate units of study.
17.4 Senior unit of study is of third-year (3000) level. Its prerequisites or assumed knowledge are junior, intermediate or senior units of study and corequisites are other senior units of study.
17.5 Honours unit of study is a 4000 level unit offered within an honours course.
17.6 Advanced unit of study is a unit which generally parallels a normal unit of study but which provides added breadth of material and/or sophistication of approach.
17.7 Dean means the Dean of Science.
17.8 Faculty means the Faculty of Science.
17.9 Degree means the Bachelor of Medical Science.
17.10 Requirements means coursework requirements for the award of the degree of Bachelor of Medical Science.
17.11 Student means a person enrolled as a candidate for the degree of Bachelor of Medical Science.
17.12 TSP means the Talented Student Program in the Faculty of Science.
17.13 SCIWAM means the weighted average mark calculated by the Faculty from the results for all intermediate and senior units of study with a weighting of 2 for intermediate units and 3 for senior units.

Bachelor of Psychology
Course rules
1. Admission
1.1 All applications for admission to candidacy to an undergraduate degree or combined undergraduate degree in the Faculty of Science will be subject to the Undergraduate Admissions policy of the University of Sydney.
2. Units of study
2.1 The units of study, which may be taken for the degree, are set out under subject areas in Table I of the Faculty of Science Handbook and in Table A of the Faculty of Arts Handbook together with:
2.1.1 designation as junior, intermediate, senior or honours and, where appropriate, as advanced units of study
2.1.2 credit point values
2.1.3 assumed knowledge, corequisites and prerequisites
2.1.4 the semesters in which they are offered; and
2.1.5 the units of study with which they are mutually exclusive.
2.2 The Dean may permit a student of exceptional merit who is admitted to the Talented Student Program to undertake a unit or units of study within the Faculty other than those specified in Table I.
2.3 A student who enrolls, in accordance with these resolutions, in a unit or units of study prescribed for a degree other than the Bachelor of Psychology, shall satisfy the prerequisites, corequisites and other requirements prescribed for such units of study.
3. Requirements for the degree
3.0 Students are required to nominate at first enrolment in the degree whether they wish to enrol in the Science or Arts stream of the Bachelor of Psychology degree.
3.1 To qualify for the award of the Bachelor of Psychology degree a student shall complete units of study in either the Science or Arts streams having a total value of at least 192 credit points where:
3.1.1 at least 12 credit points are from Junior units of study in the Science subject area of Psychology, with an average grade of credit or better;
3.1.2 at least 54 credit points are from Intermediate and Senior units of study in the Science subject area of Psychology,
3.1.3 24 credit points are from Intermediate units of study PSYC2011, PSYC2012, PSYC2013 and PSYC2014 with an average grade of Distinction or better.
3.1.4 At least 30 credit points are from senior units of study in the Science subject area of Psychology which must include PSYC3010, PSYC3018 and at least one of PSYC3011, 3012, 3013 and 3014. Except with the permission of the Faculty, the senior units must be completed with an average grade of Distinction or better. Note: HPSC3023 Psychology and Psychiatry: History and Phil is available for Senior Psychology students and will count towards a major in Psychology. Successful completion of this unit of study is essential for
students intending to take the Theoretical Thesis option in Psychology Honours.

3.1.5 Candidates who fail to maintain the required average in Psychology units will be transferred to candidature for the Bachelor of Science or Bachelor of Arts degree in their next year of enrolment with full credit for the units of study completed as Bachelor of Psychology candidates. The degree to which the candidate will be transferred depends upon the stream (Science or Arts) in which the student elected to study.

3.1.6 Candidates who successfully complete all course requirements to the end of the third year, but who fail to achieve the required average in Psychology units and are unable to progress to the Honours year will be awarded the Bachelor of Science or Bachelor of Arts. The degree which will be awarded depends upon the stream (Science or Arts) in which the candidates elected to study.

3.2 Science stream specific requirements
3.2.1 at least 96 credit points from Science subject areas in Table 1 of the Faculty of Science Handbook;
3.2.2 at least 12 credit points from the Science subject area of Mathematics and Statistics;
3.2.3 at least 12 credit points of Junior units of study from Science Subject areas other than Psychology and Mathematics and Statistics.

3.3 Arts stream specific requirements
3.3.1 a minimum of 60 credit points from Part A of the Table of units of study for the Bachelor of Arts degree, including a major consisting of 36 senior credit points in a single subject area or cross-listed between subject areas, as outlined in the Faculty of Arts Resolutions Section 3 The Major and cross-listing as outlined in the Faculty of Arts Resolutions.

3.4 Additional Requirements for Both Streams
3.4.0 Students in both streams must fulfill these additional requirements:
3.4.1 complete 48 credit points from fourth year (honours) units of study in the Science subject area of Psychology with a grade of honours.
3.4.2 Units of study completed at the University of Sydney Summer School which correspond to units of study specified in subsections 2 and 3.1.3 may be credited towards the course requirements.
3.4.3 No more than 60 credit points are to be taken from Junior units of study.

3.5 Honours
3.5.1 Students shall complete the requirements for the honours course full-time over two consecutive semesters.
3.5.2 If the Faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half-time over four consecutive semesters.
3.5.3 The grade of honours and the honours mark are determined by performance in the honours course.
3.5.4 A student with an honours mark of 90 or greater and a minimum SCUWAM of 80 shall, if deemed to be of sufficient merit by the Dean, receive a bronze medal.
3.5.5 A student may not re-attempt the Psychology honours course.

Faculty rules

4. Details of units of study
4.1 The units of study for the Bachelor of Psychology are listed in Table 1 of the resolutions of the Bachelor of Science and in Table A of the resolutions of the Bachelor of Arts degree.
4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.
4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.
4.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:
4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;
4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
4.4.3 to pass any other examination of the unit of study that may apply.
4.5 All units of study for a particular subject area may not be available every semester.
4.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other undergraduate programs in the Faculty or elsewhere in the University.

5. Enrolment in more/less than minimum load
5.1 A candidate may not enrol in additional units of study once the degree requirements of 192 credit points have been satisfied, without first obtaining permission from the Dean.
5.2 Students may enrol on either a full-time or part-time basis.

6. Cross-institutional study
6.1 Provided that permission has been obtained in advance, the Dean may permit a student to complete a unit of study at another institution and have that unit credited to his/her course requirements provided that either:
6.1.1 the unit of study content is material not taught in any corresponding unit of study in the University; or
6.1.2 the student is unable for good reason to attend a corresponding unit of study at the University.

7. Restrictions on enrolment
7.1 Units of study which overlap substantially in content are noted in the Tables of undergraduate units of study. Such units of study are mutually exclusive and no more than one of the overlapping units of study may be counted towards meeting the course requirements.
7.2 Where a student enrolls in a unit of study which is the same as, or has a substantial amount in common with, a unit of study previously attempted but not completed at the grade of Pass or better, the Head of Department concerned may exempt the student from certain requirements of the unit of study if satisfied that the relevant competence has been demonstrated.
7.3 A student may not enrol in a unit of study which they have completed previously with a grade of Pass or better.
7.4 A candidate may not enrol in units of study having a total value of more than 30 credit points in a semester.

8. Discontinuation of enrolment
8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.
8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature
9.1 A student may seek written permission from the Dean to suspend candidature in the course.
9.2 Suspension may be granted for a maximum of one year on any one application.

10. Re-enrolment after an absence
10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress
11.0 University At Risk policy
11.1 A student shall not have made satisfactory progress in any semester if the student:
11.1.1 fails to complete successfully more than 50% of the credit points in which the student was enrolled for that semester; and/or
11.1.2 fails to complete successfully on the second or later attempt the same unit of study; and/or
11.1.3 is consequently unable to complete the degree within the maximum permitted time while carrying a normal student load.
11.2 A student who has not made satisfactory progress in accordance with 12.1.1 or 12.1.2 will be placed on a Faculty list of students at risk and will be required to take steps in accordance with the University’s At Risk policy as implemented by the Faculty of Science;

11.2.1 a student who is placed on the Faculty’s At Risk list for any three semesters shall be required to show good cause why the student should be permitted to reenroll in the degree;

11.2.2 a student who has failed to show good cause in accordance with 12.2.1 shall be excluded from the degree;

11.2.3 a student who has been permitted to reenroll after having been asked to show good cause and is placed on a Faculty list of students at risk for the fourth time will be automatically excluded from the degree.

Required average in Psychology units of study

11.2.4 As per resolution 3.1, candidates must maintain a required average in Psychology units or be transferred to an appropriate degree at the end of the academic year.

11.2.5 Candidates are required to maintain the following averages:

11.2.5.1 PSYC1001 and PSYC1002 at an average of Credit or better;

11.2.5.2 PSYC2011, 2012, 2013 and 2014 at an average grade of Distinction or better; and

11.2.5.3 At least 30 credit points from senior units of study in the science subject area of Psychology with an average grade of Distinction or better. The senior units must include PSYC3010, 3011, 3012, 3018 and at least one of PSYC3011, 3012, 3013 and 3014. HPSC3023 may be included as a senior unit in the 30 senior credit points.

Time limit

12.1 A candidate must complete all the requirements for the award of the degree within ten calendar years of admission to candidature or readmission without credit.

12.1.1 If a candidate is readmitted with credit, the Faculty will determine a reduced time limit for completion of the degree.

Assessment policy

13.1 Students may be tested by written and oral examinations, exercises, essays or practical work or any combination of these as the Faculty may determine.

13.2 Where a unit of study is offered at different levels of difficulty, the performance of students will be matched so that a grade obtained at one level indicates a quality of work comparable with that required for the same grade at the other level(s).

13.3 Heads of Department may arrange for further testing in cases of special consideration, in accordance with Academic Board policy governing illness and misadventure.

Credit transfer policy

14.1 Credit will not be granted for units of study completed ten years or more prior to application, except with the permission of the Dean.

14.2 Credit may be granted as specific credit if the unit of study is considered to be directly equivalent to a unit of study in Table I or as non-specific credit.

14.3 The total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points of units from other degrees for which credit is maintained or a degree has been conferred.

14.4 All students, notwithstanding any credit transfer, must complete at least 30 credit points of Senior Psychology units at the University of Sydney.

Candidates enrolled before 2005

15.1 These Resolutions apply to all candidates for the degree enrolling in units of study after 1 January 2005.

15.2 With the permission of the Faculty of Science, candidates who first enrolled for the degree as part-time candidates prior to 2005 and have not had a period of suspension or exclusion may until 31 March 2010 choose to qualify for the degree under the old resolutions.

Glossary for the Bachelor of Psychology

16.1 Completion of a unit of study means that the assessment requirements have been satisfied and a grade of Pass or better has been achieved.

16.2 Junior unit of study is a 1000 or first-year stage unit. Its prerequisites or assumed knowledge are non-tertiary qualifications and corequisites are other Junior units of study.

16.3 Intermediate unit of study is a 2000 or second-year stage unit. Its prerequisites or assumed knowledge are Junior or Intermediate units of study and corequisites are other Intermediate units of study. (Specific to the Faculty of Science.)

16.4 Senior unit of study is a 3000 or third-year stage unit. Its prerequisites or assumed knowledge are Junior, intermediate or senior units of study and corequisites are other senior units of study. (Specific to the Faculty of Science.)

16.4.1 A Senior unit of study taken from Table A in the Bachelor of Arts resolution is a 2000 or 3000 level unit.

16.5 An Honours unit of study is a 4000 or fourth-year stage unit offered within an honours course.

16.6 Advanced unit of study is a unit which generally parallels a normal unit of study but which provides added breadth of material and/or sophistication of approach.

16.7 Major in the Faculty of Science normally requires the completion of a minimum of 24 credit points of senior units of study in one Science area, including any units of study specified in the Table of undergraduate units of study as compulsory for that major.

16.7.1 A student may not count a unit of study toward more than one major. A major in Psychology within the Bachelor of Psychology requires 54 credit points of Intermediate and Senior Psychology units of study including PSYC 2011, PSYC 2012, PSYC 2013 and PSYC 2014. No other Intermediate Psychology units can be counted towards the major.

16.8 Dean means the Dean of Science.

16.9 Faculty means the Faculty of Science.

16.10 Science subject area means a defined field of study in science.

16.11 Degree means the Bachelor of Psychology.

16.12 Requirements means coursework requirements for the award of the degree of Bachelor of Psychology.

16.13 Student means a person enrolled as a candidate for the degree of Bachelor of Psychology.

16.14 TSP means the Talented Student Program in the Faculty of Science.

16.15 SCIWAM means the weighted average mark calculated by the Faculty from the results for all Intermediate and Senior units of study with a weighting of 2 for Intermediate units and 3 for Senior units. Table A Bachelor of Arts units shall be included in the weighted average mark calculated by the Faculty from the results for all 2000 and 3000 level units with a weighting of 2 for 2000 level units and 3 for 3000 level units.
Bachelor of Science and Technology

Course rules

1. Admission
1.1 All applications for admission to candidature to an undergraduate degree or combined undergraduate degree in the Faculty of Science will be subject to the Undergraduate Admissions policy of the University of Sydney.

2. Units of study
2.1 The units of study available for the Bachelor of Science and Technology are set out together with:

2.1.1 Units of study listed in Table I, Table III in the Handbook of Faculty of Science and the BCST table in the Faculty of Engineering Handbook, excluding all units with INFNS codes.

2.1.2 Units of study listed in Table A in the Handbook of the Faculty of Arts.

2.1.3 Units of study in Legal Studies units listed as available for study in the Bachelor of Arts and Sciences offered by the Faculty of Arts.

2.1.4 Units of study completed at the University of Sydney Summer or Winter School which correspond to units of study specified in 2.1.1 and 2.1.2 above.

2.1.5 These units of study are listed as in subsections 2.1.1 to 2.1.3, together with:

2.1.5.1 designation as junior, intermediate, senior or honours and, where appropriate, as advanced units of study

2.1.5.2 credit point values

2.1.5.3 assumed knowledge, corequisites and prerequisites

2.1.5.4 the semesters in which they are offered; and

2.1.5.5 the units of study with which they are mutually exclusive.

2.2 With the permission of the Dean of Science, candidates may count towards the degree a maximum of 36 credit points not specified in subsections 3.1 to 3.1.6.1 but from within the University.

2.3 A student who enrolls, in accordance with these resolutions, in a unit or units of study prescribed for a degree other than the Bachelor of Science and Technology, shall satisfy the prerequisites, corequisites and other requirements prescribed for such units of study.

3. Requirements for the pass degree
3.1 To qualify for the award of the pass degrees a student shall complete 144 credit points comprising:

3.1.1 a minimum of 12 credit points from the Science subject areas of Mathematics and Statistics;

3.1.2 a minimum of 12 credit points in Experimental Science units of study from those specified in Table Vb in the Handbook of Faculty of Science;

3.1.3 a minimum of 12 credit points in Science/Technology associated Humanities and Social Sciences units of study from those specified in Table Vlc in the Handbook of Faculty of Science;

3.1.4 a minimum of 12 credit points in Technology/Applied Science units of study from those specified in Table VId in the Handbook of Faculty of Science;

3.1.5 a minimum of 72 credit points in senior or intermediate units of study, or in units of study normally taken at second or third year level or higher;

3.1.6 a major in the Faculty of Science specified in Table I or a major from the list of majors in Table VId in the Handbook of Faculty of Science.

3.1.6.1 A major in the BST requires a minimum of 36 credit points at 2000 and 3000 level including a minimum of 12 credit points at 3000 level except in the case of a major in a Science area which normally requires the completion of 24 credit points of senior units of study, in addition to any other units of study specified in the table as compulsory for that major.

3.7 The testamur for the degree of Bachelor of Science and Technology shall specify the major(s) completed.

3.8 Notwithstanding 3.1.6 above, where, in exceptional circumstances arising from prerequisites or other restrictions in certain discipline areas, a student is unable to complete the formal requirements of a major in the normal course of the degree but is nevertheless able to demonstrate depth of study in a specified discipline area within a faculty by the completion of a total of 36 intermediate and senior credit points including at least 12 senior credit points in a Faculty of Science, Faculty of Architecture or Faculty of Engineering discipline area, the Dean of Science may, on application from the student and a recommendation from the Head of Department, permit the student to graduate without a major. In such circumstances no major shall be specified on the transcript.

4. Requirements for honours degree
4.1 There shall be honours courses in all Science subject areas listed in Table VI (Honours units of study).

4.2 To qualify to enrol in an honours course, students shall:

4.2.1 have qualified for the award of a pass degree; or

4.2.2 be a pass graduate of the Faculty of Science; or

4.2.3 be a pass graduate holding a Bachelor of Science and Technology degree or an equivalent qualification from another institution.

4.2.4 have completed a minimum of 24 credit points of senior units of study relating to the intended honours course (or equivalent at another institution); and

4.2.5 have achieved either:

4.2.5.1 at least a credit average in 48 credit points in relevant intermediate and senior Science units of study; or

4.2.5.2 a SCIWAM of at least 65 (or equivalent at another institution); and

4.2.5.3 satisfy any additional criteria set by the Head of Department concerned.

4.3 Students shall complete the requirements for the honours course full-time over two consecutive semesters.

4.4 If the Faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half-time over four consecutive semesters.

4.5 To qualify for the award of an honours degree, students shall complete 48 credit points of honours units of study in the Table of undergraduate units of study, as prescribed by the Head of Department concerned.

4.6 The grade of honours and the honours mark are determined by performance in the honours course.

4.7 Honours in the Bachelor of Science may be awarded in four classes as follows:

4.7.1 Class I (mark range: 80 and above)

4.7.2 Class II(1) (mark range: 75-79)

4.7.3 Class II(2) (mark range: 70-74)

4.7.4 Class III (mark range: 65-69)

4.8 A student with an honours mark of 90 or greater in an honours subject area and a minimum SCIWAM of 80 shall, if deemed to be of sufficient merit by the Dean, receive a bronze medal.

4.9 A student may not re-attempt an honours course in a single subject area.

4.10 A student who is qualified to enrol in two honours courses may either:

4.10.1 complete the honours courses in the two subject areas separately and in succession; or

4.10.2 complete a joint honours course, equivalent to an honours course in a single subject area, in the two subject areas.

4.11 A joint honours course shall comprise such parts of the two honours courses as may be decided by the Dean.

Faculty rules

5. Details of units of study
5.1 The units of study for the Bachelor of Science and Technology are listed in subsection 3 of these resolutions.

5.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

5.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

5.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:

5.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;

5.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and

5.4.3 to pass any other examination of the unit of study that may apply.

5.5 All units of study for a particular subject area may not be available every semester.
2. Undergraduate degree regulations

5.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other undergraduate programs in the Faculty or elsewhere in the University.

6. Enrolment in more/less than minimum load

6.1 A student may not enrol without first obtaining permission from the Dean of Science in additional units of study once the degree requirements of 144 credit points have been satisfied.

6.2 A student may not enrol in units of study having a total value of more than 30 credit points in a semester.

6.3 Students may enrol on either a full-time or part-time basis.

6.4 Full-time students normally take units of study with a total credit point value of 24 credit points per semester for 6 semesters.

7. Cross-institutional study

7.1 Provided that permission has been obtained in advance, the Dean may permit a student to complete a unit of study at another institution and have that unit credited to his/her course requirements provided that either:

7.1.1 the unit of study content is material not taught in any corresponding unit of study in the University; or

7.1.2 the student is unable for good reason to attend a corresponding unit of study at the University.

8. Restrictions on enrolment

8.1 Units of study which overlap substantially in content are noted in Table I of units of study for the Bachelor of Science, in Table III for Bachelor of Computer Science & Technology and Table VII for the Bachelor of Information Technology and in the Tables of undergraduate units of study for the Bachelor of Arts, Bachelor of Engineering and Bachelor of Architecture.

8.1.1 Such units of study are mutually exclusive and no more than one of the overlapping units of study may be counted towards meeting the course requirements.

8.2 Where a student enrolls in a unit of study which is the same as, or has a substantial amount in common with, a unit of study previously attempted but not completed at the grade of Pass or better, the Head of Department concerned may exempt the student from certain requirements of the unit of study if satisfied that the relevant competence has been demonstrated.

8.3 A student may not enrol in a unit of study which they have completed previously with a grade of Pass or better.

8.4 A candidate may not enrol in units of study having a total value of more than 30 credit points in a semester.

9. Discontinuation of enrolment

9.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

9.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

10. Suspension of candidature

10.1 A student may seek written permission from the Dean to suspend candidature in the course.

10.2 Suspension may be granted for a maximum of one year on any one application.

11. Re-enrolment after an absence

11.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

12. Satisfactory progress

12.1 A student shall not have made satisfactory progress in any semester if the student:

12.1.1 fails to complete successfully more than 50% of the credit points in which the student was enrolled for that semester; and/or

12.1.2 fails to complete successfully on the second or later attempt the same unit of study; and/or

12.1.3 is consequently unable to complete the degree within the maximum permitted time while carrying a normal student load.

12.2 A student who has not made satisfactory progress in accordance with 12.1.1 or 12.1.2 will be placed on a Faculty list of students at risk and will be required to take steps in accordance with the University’s At Risk policy as implemented by the Faculty of Science;

12.2.1 a student who is placed on the Faculty’s At Risk list for any three semesters shall be required to show good cause why the student should be permitted to reenrol in the degree;

12.2.2 a student who has failed to show good cause in accordance with 12.2.1 shall be excluded from the degree;

12.2.3 a student who has been permitted to reenrol after having been asked to show good cause and is placed on a Faculty list of students at risk for the fourth time will be automatically excluded from the degree.

13. Time limit

13.1 A candidate must complete all the requirements for the award of the degree within ten calendar years of admission to candidature or re-enrolment without credit.

13.1.1 If a candidate is readmitted with credit, the Faculty will determine a reduced time limit for completion of the degree.

14. Assessment policy

14.1 Students may be tested by written and oral examinations, exercises, essays or practical work or any combination of these as the Faculty may determine.

14.2 Where a unit of study is offered at different levels of difficulty, the performance of students will be matched so that a grade obtained at one level indicates a quality of work comparable with that required for the same grade at the other level(s).

14.3 Heads of Department may arrange for further testing in cases of special consideration, in accordance with Academic Board policy governing illness and misadventure.

15. Credit transfer policy

15.1 Credit will not be granted for units of study completed more than nine years prior to admission, except with the permission of the Dean.

15.2 Credit may be granted as specific credit if the unit of study is considered to be directly equivalent to a unit of study from Table I, Table III or from Table VII or as non-specific credit.

15.3 The total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points of units from other degrees for which credit is maintained or a degree has been conferred.

15.4 Except as provided by subsection 3.8, all students, notwithstanding any credit transfer, must complete a major at the University of Sydney from the list of majors in Table VIIe in the Handbook of Faculty of Science.

16. Supervision

16.1 Students shall be under the supervision of the Faculty of Science.

16.2 The Dean of the Faculty of Science shall exercise authority in any matter concerning the degree program not otherwise dealt with in the Resolutions of the Senate or Faculty.

17. Glossary for the BST

17.1 Completion of a unit of study means that the assessment requirements have been satisfied and a grade of Pass or better has been achieved.

17.2 Junior unit of study is a 1000 or first-year stage unit. Its prerequisites or assumed knowledge are non-tertiary qualifications and corequisites are other junior units of study.

17.3 Intermediate unit of study is a 2000 or second-year stage unit. Its prerequisites or assumed knowledge are Junior or senior units of study and corequisites are other senior units of study.

17.4 Senior unit of study is a 3000 or third-year stage unit. Its prerequisites or assumed knowledge are Junior, intermediate or senior units of study and corequisites are other senior units of study.

17.5 Honours unit of study is a 4000 or fourth-year stage unit offered within an honours course.

17.6 Advanced unit of study is a unit which generally parallels a normal unit of study but which provides added breadth of material and/or sophistication of approach.

17.7 Major in the BST normally requires a minimum of 36 credit points at 2000 and 3000 level including a minimum of 12 credit points at 3000 level unless in the case of a major in a Science area which normally requires the completion of 24 credit points of senior units of study, in addition to any other units of study specified in the table as compulsory for that major.

17.8 A student may not count a unit of study toward more than one major. (A major in Psychology requires 48 credit points of Intermediate and Senior Psychology units of study including PSYC(2111 or 2011), PSYC(2112 or 2012), PSYC(2113 or
3.1.6 To qualify for the award of the degrees of Bachelor of Science (Advanced) in minimum 4 years of study, a student shall complete the requirements for the BSc degree as described below with the exception of 5.1, 5.2, and 5.3 in addition, except with the permission of the Dean:

3.1.7 Students may abandon the combined degree course and elect to complete the BSc (Advanced) degree.

4. Requirements for the award of the Bachelor of Science (Advanced)

4.1 To qualify for the award of the BSc (Advanced) stream in Psychology, a student shall meet the following requirements:

4.1.1 include at least 24 credit points of Intermediate units of study at either the Advanced level or as TSP units;

4.1.2 maintain in Intermediate and Senior Psychology units of study an average mark of 65 or greater in each year of enrolment;

4.1.3 no more than 60 credit points from Junior Psychology units can be counted towards the major.

Science combined degrees
Bachelor of Science (Advanced)/MBBS

Course rules
1. Admission

1.1 All applications for admission to candidature for the combined Bachelor of Science (Advanced)/MBBS course will be subject to the Undergraduate Admissions policies of the Faculty of Science and of the Faculty of Medicine.

2. Units of study

2.1 The units of study for the Bachelor of Science (Advanced) are set out in Table I together with:

2.1.1 designation as Junior, Intermediate, Senior or Honours and, where appropriate, as Advanced units of study;

2.1.2 credit point values;

2.1.3 assumed knowledge, corequisites and prerequisites;

2.1.4 the semesters in which they are offered; and

2.1.5 the units of study with which they are mutually exclusive.

2.2 A student may enrol in a unit of study prescribed for a degree other than the Bachelor of Science (Advanced) and shall satisfy the prerequisites, corequisites, qualifying and other requirements prescribed for such units of study for that other degree.

2.3 The Dean may permit a student of exceptional merit who is admitted to the Talented Student Program to undertake a unit or units of study within the Faculty other than those specified in Table I.

2.4 There shall be honours units of study in Science subject areas listed in Table VI.

2.5 Units of study taken at the University of Sydney Summer School which correspond to units of study specified in subsections 4.1.1-4.1.3 may be credited towards the course requirements.

3. Requirements for the award of the degrees

3.1 To qualify for the award of the Bachelor of Science (Advanced)/MBBS degrees a student shall:

3.1.1 complete units of study having a total value of at least 336 credit points;

3.1.2 Complete the Bachelor of Science (Advanced) in minimum 4 years of study, including a minimum, a credit average in the Bachelor of Science (Advanced), being the minimum level of academic performance required for admission to the combined course for the degrees of MBBS;

3.1.3 satisfactorily complete three zero credit point units in the first three years of the program; and

3.1.4 meet the requirements of the Bachelor of Science (Advanced) degree outlined below.

3.1.5 Students who fail to satisfy subsections 3.1.2 and/or 3.1.3 will be transferred to candidature for the Bachelor of Science (Advanced) degree.

3.1.6 To qualify for the award of the degrees of Bachelor of Medicine and Bachelor of Surgery, a student shall complete units of study having a total value of 192 credit points as required by the Resolutions of the Faculty of Medicine.

3.1.7 Students may abandon the combined degree course and elect to complete the BSc (Advanced) degree.

4. Requirements for the award of the Bachelor of Science (Advanced)

4.1 To qualify for the award of the BSc (Advanced) stream in Psychology, a student shall complete the requirements for the BSc degree as described below with the exception of 5.1, 5.2, and 5.3 in addition, except with the permission of the Dean:

4.1.1 include at least 24 credit points of Intermediate units of study at either the Advanced level or as TSP units;

4.1.2 maintain in Intermediate and Senior Psychology units of study an average mark of 65 or greater in each year of enrolment;

4.1.3 no more than 60 credit points from Junior Psychology units can be counted towards the major.

5. Requirements for the award of the Bachelor of Science

5.1 To qualify for the award of the Bachelor of Science, a student shall complete units of study having a total value of at least 144 credit points, including:

5.1.1 at least 96 credit points from Science subject areas;

5.1.2 at least one major from those included in Table I;

5.1.3 at least 12 credit points from the Science subject areas of Mathematics and Statistics;

5.1.4 at least 24 credit points of Junior units of study from at least two Science subject areas other than Mathematics and Statistics; and

5.1.5 no more than 60 credit points from Junior units of study.

5.2 A major in the BSc normally requires the completion of a minimum of 24 credit points of senior units of study in one Science area, including any units of study specified in the Table of undergraduate units of study as compulsory for that major.

5.3 A major in Psychology requires 48 credit points across Intermediate and Senior Psychology units of study including PSYC (2111 or 2011), PSYC (2112 or 2012), PSYC (2113 or 2013) and PSYC (2114 or 2014). No other intermediate Psychology units can be counted towards the major.

5.4 The senior units must include at least one of PSYC 3011, 3012, 3015 and 3014. Note: HPSC3023 Psychology & Psychiatry History & Phil is available for Senior Psychology students and will count towards a major in Psychology. Successful completion of this unit of study is essential for students intending to take the Theoretical Thesis option in Psychology Honours.

5.5 A maximum of 48 credit points may be counted towards the degree requirements from units of study offered by faculties other than the Faculty of Science.

5.6 The testamur for the degree of Bachelor of Science shall specify the major(s) completed in order to qualify for the award.

6. Requirements for the Honours degree

6.1 Students who qualify to undertake honours in the Bachelor of Science (Advanced) degree may elect to do so either:

6.1.1 by suspending candidature from the MBBS degrees for one year, with the permission of the Faculty of Medicine; or

6.1.2 after completion of the combined course.

6.2 In order to qualify to enrol in an honours course in the Bachelor of Science (Advanced), students shall either:

6.2.1 have qualified for the award of the pass degree; or

6.2.2 be a graduate of the Faculty of Science; or

6.2.3 be a graduate holding a Bachelor of Science degree or an equivalent qualification from another institution;

6.2.4 have completed a minimum of 24 credit points of senior units of study relating to the intended honours course (or equivalent at another institution);

6.2.5 have accumulated a SCIWAM of at least 65; and

6.2.6 satisfy any additional criteria set by the Head of Department concerned.
6.3 Students shall complete the requirements for the course full-time over two consecutive semesters.

6.4 If the Faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half-time over four consecutive semesters.

6.5 To qualify for the award of an honours degree, students shall complete 48 credit points of honours units of study in one subject area from those listed in Table VI.

6.6 The grade of honours and the honours mark are determined by performance in the honours course.

6.6.1 Honours in the Bachelor of Science (Advanced) may be awarded in four classes as follows:

- Class I (mark range: 80 and above)
- Class II (mark range: 75-79)
- Class III (mark range: 70-74)
- Class IV (mark range: 65-69)

6.6.2 A student with an honours mark of 90 or greater in an honours subject area and a minimum SCIWAM of 80 shall, if deemed to be of sufficient merit by the Dean, receive a bronze medal.

6.7 A student who is qualified to enrol in two honours courses may either:

- 6.7.1 complete the honours courses in the two subject areas separately and in succession; or
- 6.7.2 complete a joint honours course, equivalent to an honours course in a single subject area, in the two subject areas.

6.7.3 A joint honours course shall comprise such parts of the two honours courses as may be decided by the Dean.

6.8 A student may not re-attempt an honours course in a single subject area.

7. Supervision

7.1 Students will be under the general supervision of the Faculty of Science until the end of the semester in which they complete the requirements for the Science degree. After that, they will be under the general supervision of the Faculty of Medicine.

7.2 The Deans of the Faculties of Medicine and Science shall jointly exercise authority in any matter concerning the combined degree program not otherwise dealt with in these resolutions.

Faculty rules

8. Details of units of study

8.1 The units of study for the Bachelor Science (Advanced) are listed in Table I of the resolutions for the Bachelor of Science.

8.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

8.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

8.4 In these resolutions, ‘to complete a unit of study’ or any derivative expression means:

- 8.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;
- 8.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
- 8.4.3 to pass any other examination of the unit of study that may apply.

8.5 All units of study for a particular subject area may not be available every semester.

9. Enrolment in more/less than minimum load

9.1 A candidate may not enrol in additional units of study once the degree requirements of 336 credit points have been satisfied, without first obtaining permission from the Dean.

9.2 Students may enrol on either a full-time or part-time basis.

10. Cross-institutional study

10.1 Provided that permission has been obtained in advance, the Dean may permit a student to complete a unit of study at another institution and have that unit credited to his/her course requirements provided that either:

10.1.1 the unit of study content is material not taught in any corresponding unit of study in the University; or
10.1.2 the student is unable for good reason to attend a corresponding unit of study at the University.

11. Restrictions on enrolment

11.1 Units of study which overlap substantially in content are noted in the tables of undergraduate units of study. Such units of study are mutually exclusive and no more than one of the overlapping units of study may be counted towards meeting the course requirements.

12. Discontinuation of enrolment

12.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

12.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

13. Suspension of candidature

13.1 A student may seek written permission from the Dean to suspend candidature in the course.

13.2 Suspension may be granted for a maximum of one year on any one application.

14. Re-enrolment after an absence

14.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

15. Satisfactory progress

15.1 A student shall not have made satisfactory progress in any semester if the student:

- 15.1.1 fails to complete successfully more than 50% of the credit points in which the student was enrolled for that semester; and/or
- 15.1.2 fails to complete successfully the same unit of study; and/or
- 15.1.3 is consequently unable to complete the degree within the maximum permitted time while carrying a normal student load.

15.2 A student who has not made satisfactory progress in accordance with 12.1.1 or 12.1.2 will be placed on a Faculty list of students at risk and will be required to take steps in accordance with the University’s At Risk policy as implemented by the Faculty of Science;

15.2.1 15.2.1 a student who is placed on the Faculty’s At Risk list for any three semesters shall be required to show good cause why the student should be permitted to reenrol in the degree;

15.2.2 15.2.2 a student who has failed to show good cause in accordance with 12.2.1 shall be excluded from the degree;

15.2.3 15.2.3 a student who has been permitted to reenrol after having been asked to show good cause and is placed on a Faculty list of students at risk for the fourth time will be automatically excluded from the degree.

16. Time limit

16.1 A candidate must complete all the requirements for the award of the degrees within ten calendar years of admission to candidature or readmission without credit.

16.1.1 If a candidate is readmitted with credit, the Faculty will determine a reduced time limit for completion of the degree.

17. Assessment policy

17.1 Students may be tested by written and oral examinations, exercises, essays or practical work or any combination of these as the Faculty may determine.

17.2 Where a unit of study is offered at different levels of difficulty, the performance of students will be matched so that a grade obtained at one level indicates a quality of work comparable with that required for the same grade at the other level(s).

17.3 Heads of Department may arrange for further testing in cases of special consideration, in accordance with Academic Board policy governing illness and misadventure.

18. Credit transfer policy

18.1 Credit will not be granted for units of study completed ten years or more prior to application, except with the permission of the Dean.

18.2 Credit may be granted as specific credit if the unit of study is considered to be directly equivalent to a unit of study in Tables I, or as non-specific credit.

18.3 The total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points
of units of study from other degrees for which credit is
maintained or a degree has been conferred.
18.4 All students, not withstanding any credit transfer, must complete
at least 24 credit points of senior Science units of study towards
a major taken at the University of Sydney.
19. Candidates enrolled before 2005
19.1 These Resolutions apply to all candidates for the degree
enrolling in units of study after 1 January 2005.
19.2 With the permission of the Faculty of Science, candidates who
first enrolled for the degree prior to 2005 and have not had a
period of suspension or exclusion may until 31 March 2008
choose to qualify for the degree under the old resolutions.
19.3 With the permission of the Faculty of Science, candidates who
first enrolled for the degree as part-time candidates prior to
2005 and have not had a period of suspension or exclusion
may until 31 March 2010 choose to qualify for the degree under
the old resolutions.
20. Specific glossary for the Bachelor of Science
(Advanced)/MBBS
20.1 AAM means the average mark over all units of study attempted
in a given academic year (equivalent to the calendar year).
20.2 Completion of a unit of study means that the assessment
requirements have been satisfied and a grade of pass or better
has been achieved.
20.3 Intermediate unit of study is of second-year (2000) level. Its
prerequisites or assumed knowledge are junior or intermediate
units of study and corequisites are other intermediate units of
study.
20.4 Senior unit of study is of third-year (3000) level. Its prerequisites
or assumed knowledge are junior, intermediate or senior units
of study and corequisites are other senior units of study.
20.5 Honours unit of study is a 4000 level unit offered within an
honours course.
20.6 Advanced unit of study is a unit which generally parallels a
normal unit of study but which provides added breadth of
material and/or sophistication of approach.
20.7 Dean means the Dean of Science for the duration of the
candidate for the Bachelor of Science (Advanced) and the
Dean of Medicine for the duration of candidature for the MBBS.
20.8 Faculty means the Faculty of Science for the duration of
candidate for the Bachelor of Science (Advanced) and the
Faculty of Medicine for the duration of candidature in the MBBS.
20.9 Degree means the Bachelor of Science (Advanced)/MBBS.
20.10 Requirements means coursework requirements for the award
of the degree of Bachelor of Science (Advanced)/MBBS.
20.11 Student means a person enrolled as a candidate for the degree
of Bachelor of Science (Advanced)/MBBS.
20.12 TSP means the Talented Student Program in the Faculty of
Science.
20.13 SCIWAM means the weighted average mark calculated by the
Faculty from the results for all intermediate and senior units of
study with a weighting of 2 for intermediate units and 3 for
senior units.

Bachelor of Medical Science/MBBS

Course rules

1. Admission
1.1 All applications for admission to candidature to the combined
Bachelor of Medical Science/MBBS course will be subject to
the Undergraduate Admissions policies of the Faculty of
Science and of the Faculty of Medicine.
1.2 A candidate may elect to abandon the combined degree course and
elect to complete the BMedSc degree.
2. Units of study
2.1 The units of study for the Bachelor of Medical Science are set
out in Table IV together with:
2.1.1 designation as junior, intermediate, senior or honours and, where
appropriate, as advanced units of study
2.1.2 credit point values
2.1.3 assumed knowledge, corequisites and prerequisites
2.1.4 the semesters in which they are offered; and
2.1.5 the units of study with which they are mutually exclusive.
2.2 A student may enrol, in accordance with subsection 4.1.5, in
a unit of study prescribed for a degree other than the Bachelor
of Medical Science and shall satisfy the prerequisites,
corequisites, qualifying and other requirements prescribed for
such units of study of that other degree.
2.3 The Dean may permit a student of exceptional merit who is
admitted to the Talented Student Program to undertake a unit
or units of study within the Faculty other than those specified in
Table IV.
2.4 There shall be honours units of study in Science subject areas
listed in Table IV D.
2.5 Units of study taken at the University of Sydney Summer School
which correspond to units of study specified in subsection 4
may be credited towards the course requirements.
3. Requirements for the award of the degrees
3.1 To qualify for the award of the BMedSc/MBBS degrees a student shall:
3.1.1 complete units of study having a total value of at least 336
credit points;
3.1.2 complete the Bachelor of Medical Science in minimum time and
maintain, as a minimum, a credit average in the Bachelor
of Medical Science, being the minimum level of academic
performance required for admission to candidature for the degrees of MBBS; or
3.1.3 satisfactorily complete three zero credit point units in the first
three years of the program; and
3.1.4 meet the requirements of the Bachelor of Medical Science
degree.
3.1.5 Students who fail to satisfy 3.1.2 and/or 3.1.3 will be
transferred to candidature for the Bachelor of Medical
Science degree.
3.1.6 To qualify for the award of the degrees of Bachelor of
Medicine and Bachelor of Surgery a student shall complete
units of study having a total value of 192 credit points as
required by the Resolutions of the Faculty of Medicine.
3.1.7 Students may abandon the combined degree course and
elect to complete the Bachelor of Medical Science.
4. Requirements for the award of the Bachelor of Medical Science
4.1 In order to qualify for the award of the Bachelor of Medical Science
degree a student shall complete units of study having a
total value of at least 144 credit points, including:
4.1.1 at least 48 credit points from junior units of study, comprising
MBLG1001 and 12 credit points each from Chemistry,
Mathematics and Physics or Computational Science and 6
credit points from Biology; or
4.1.2 no more than 60 credit points from junior units of study;
4.1.3 48 credit points of Intermediate core units of study listed in
Table IV; or
4.1.4 at least 36 credit points of senior units of study taken from
the subject areas of Anatomy/Physiology, Biology (Genetics),
Biochemistry, Cell Pathology, Immunology, Infectious
Diseases, Microbiology, Pharmacology and Physiology;
4.1.5 no more than 12 credit points from units of study other than
core units of study;
4.1.6 Units of study taken at the University of Sydney Summer
School which correspond to units of study specified in
subsection 3 may be credited towards the course requirements.
5. Requirements for the honours degree
5.1 Students who qualify to undertake honours in the Bachelor of
Medical Science degree may elect to do so either:
5.1.1 by suspending candidature from the MBBS degrees for one
year, with the permission of the Faculty of Medicine; or
5.1.2 after completion of the combined course.
5.2 In order to qualify to enrol in an honours course in the BMedSc,
students shall either:
5.2.1 have qualified for the award of the Bachelor of Medical
Science degree; or
5.2.2 be a pass graduate in Medical Science of the Faculty of
Science; or
5.2.3 be a pass graduate holding a Bachelor of Medical Science
degree or an equivalent qualification from another institution;
5.2.4 have completed a minimum of 24 credit points of senior units
of study relating to the intended honours course (or equivalent
at another institution); or
5.2.5 have achieved either:
5.2.5.1 at least a credit average in 48 credit points in relevant
intermediate and senior Science units of study; or
5.2.5.2 a SCIWAM of at least 65; and

27
2. Undergraduate degree regulations

5.2.5.3 satisfy any additional criteria set by the Head of Department concerned.

5.3 Students shall complete the requirements for the course full-time over two consecutive semesters.

5.4 If the Faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half-time over four consecutive semesters.

5.5 To qualify for the award of honours in the Bachelor of Medical Science degree, students shall complete 48 credit points of honours units of study in one subject area from those listed in Table IV D.

5.6 The grade of honours and the honours mark are determined by performance in the honours course.

5.6.1 Honours in the Bachelor of Medical Science may be awarded in four classes as follows:

5.6.1.1 Class I (mark range: 80 and above)
5.6.1.2 Class II(1) (mark range: 75-79)
5.6.1.3 Class II(2) (mark range: 70-74)
5.6.1.4 Class III (mark range: 65-69)

5.6.2 A student with an honours mark of 90 or greater in an honours subject area and a minimum SCIWAM of 80 shall, if deemed to be of sufficient merit by the Dean, receive a bronze medal.

5.7 A student who is qualified to enrol in two honours courses may either:

5.7.1 complete the honours courses in the two subject areas separately and in succession; or
5.7.2 complete a joint honours course, equivalent to an honours course in a single subject area, in the two subject areas.

5.8 A student may not re-attempt an honours course in a single subject area.

6. Supervision

6.1 Students will be under the general supervision of the Faculty of Science until the end of the semester in which they complete the requirements for the BMedSc degree. After that they will be under the general supervision of the Faculty of Medicine.

6.2 The Deans of the Faculties of Medicine and Science shall jointly exercise authority in any matter concerning the combined degree program not otherwise dealt with in these resolutions.

Faculty rules

7. Details of units of study

7.1 The units of study for the Bachelor of Medical Science are listed in Table IV of these resolutions.

7.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

7.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

7.4 In these resolutions, ‘to complete a unit of study’ or any derivative expression means:

7.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;
7.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
7.4.3 to pass any other examination of the unit of study that may apply.

7.5 All units of study for a particular subject area may not be available every semester.

8. Enrolment in more/less than minimum load

8.1 A candidate may not enrol in additional units of study once the degree requirements of 336 credit points have been satisfied, without first obtaining permission from the Dean.

8.2 Students may enrol on either a full-time or part-time basis.

9. Cross-institutional study

9.1 Provided that permission has been obtained in advance, the Dean may permit a student to complete a unit of study at another institution and have that unit credited to his/her course requirements provided that either:

9.1.1 the unit of study content is material not taught in any corresponding unit of study in the University; or
9.1.2 the student is unable for good reason to attend a corresponding unit of study at the University.

10. Restrictions on enrolment

10.1 Except with the permission of the Dean, candidates may not enrol in an intermediate core unit of study until they have completed 42 credit points of junior units of study prescribed by the Faculty.

10.2 Except with the permission of the Dean, candidates may not enrol in a senior unit of study:

10.2.1 until they have gained credit for at least 42 credit points from core intermediate units of study; and
10.2.2 until they have completed the intermediate units of study prescribed as prerequisites for the senior unit of study, as set out in Table IV.

10.3 Enrolment in some senior units of study may be subject to a quota.

11. Discontinuation of enrolment

11.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

11.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

12. Suspension of candidature

12.1 A student may seek written permission from the Dean to suspend candidature in the course.

12.2 Suspension may be granted for a maximum of one year on any one application.

13. Re-enrolment after an absence

13.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

14. Satisfactory progress

14.1 A student shall not have made satisfactory progress in any semester if the student:

14.1.1 fails to complete successfully more than 50% of the credit points in which the student was enrolled for that semester; and/or
14.1.2 fails to complete successfully on the second or later attempt the same unit of study; and/or
14.1.3 is consequently unable to complete the degree within the maximum permitted time while carrying a normal student load.

14.2 A student who has not made satisfactory progress in accordance with 12.1.1 or 12.1.2 will be placed on a Faculty list of students at risk and will be required to take steps in accordance with the University’s At Risk policy as implemented by the Faculty of Science.

14.2.1 a student who is placed on the Faculty’s At Risk list for any three semesters shall be required to show good cause why the student should be permitted to reenroll in the degree;
14.2.2 a student who has failed to show good cause in accordance with 12.2.1 shall be excluded from the degree;
14.2.3 a student who has been permitted to reenroll after having been asked to show good cause and is placed on a Faculty list of students at risk for the fourth time will be automatically excluded from the degree.
15. Time limit
15.1 A candidate must complete all the requirements for the award of the degree within ten calendar years of admission to the candidature for the admission without credit.
15.1.1 If a candidate is readmitted with credit, the Faculty will determine a reduced time limit for completion of the degree.
16. Assessment policy
16.1 Students may be tested by written and oral examinations, exercises, essays or practical work or any combination of these as the Faculty may determine.
16.2 Where a unit of study is offered at different levels of difficulty, the performance of students will be matched so that a grade obtained at one level indicates a quality of work comparable with that required for the same grade at the other levels.
16.3 Heads of Department may arrange for further testing in cases of special consideration, in accordance with Academic Board policy governing illness and misadventure.
17. Credit transfer policy
17.1 Credit will not be granted for units of study completed 10 years or more prior to application, except with the permission of the Dean.
17.2 Credit may be granted as specific credit if the unit of study is considered to be directly equivalent to a unit of study in Tables I or IV, or as non-specific credit.
17.3 The total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points of units of study from other degrees for which credit is maintained or a degree has been conferred.
17.4 All students, notwithstanding any credit transfer, must complete at least 36 credit points of Senior Science units of study in accordance with subsection 3.1.4.
18. Candidates enrolled before 2005
18.1 These Resolutions apply to all candidates for the degree enrolling in units of study after 1 January 2005.
18.2 With the permission of the Faculty of Science, candidates who first enrolled for the degree prior to 2005 and have not had a period of suspension or exclusion may until 31 March 2008 choose to qualify for the degree under the old resolutions.
18.3 With the permission of the Faculty of Science, candidates who first enrolled for the degree as part-time candidates prior to 2005 and have not had a period of suspension or exclusion may until 31 March 2010 choose to qualify for the degree under the old resolutions.
19. Specific glossary for the Bachelor of Medical Science/MBBS
19.1 AAM means the average mark over all units of study attempted in a given academic year (equivalent to the calendar year).
19.2 Completion of a unit of study means that the assessment requirements have been satisfied and a grade of pass or better has been achieved.
19.3 Intermediate unit of study is at second-year (2000) level. Its prerequisites or assumed knowledge are junior or intermediate units of study and corequisites are other intermediate units of study.
19.4 Senior unit of study is at third-year (3000) level. Its prerequisites or assumed knowledge are junior, intermediate or senior units of study and corequisites are other senior units of study.
19.5 Honours unit of study is a 4000 level unit offered within an honours course.
19.6 Advanced unit of study is a unit which generally parallels a normal unit of study but which provides added breadth of material and/or sophistication of approach.
19.7 Dean means the Dean of Science for the duration of the candidature for the Bachelor of Medical Science, and the Dean of Medicine for the duration of candidature for the MBBS.
19.8 Faculty means the Faculty of Science for the duration of candidature in the Bachelor of Medical Science and Faculty of Medicine for the duration of candidature in the MBBS.
19.9 Degrees means the Bachelor of Medical Science/MBBS.
19.10 Student means a person enrolled as a candidate for the degree of Bachelor of Medical Science.
19.11 TSP means the Talented Student Program in the Faculty of Science.
19.12 SCWAM means the weighted average mark calculated by the Faculty from the results for all intermediate and senior units of study with a weighting of 2 for intermediate units and 3 for senior units.

Bachelor of Science and Bachelor of Laws (BSc/LLB)

1. Cross-Faculty management of combined degree course
1.1 Students will be under the general supervision of the Faculty of Science until the end of the semester in which they complete the requirements for the Bachelor of Science (BSc).
1.2 They will then be under the general supervision of the Faculty of Law.
1.3 The Deans of the Faculty of Science and the Faculty of Law shall jointly exercise authority in any matter concerning the combined award course not otherwise dealt with in these Resolutions.
2. Units of study
2.1 The units of study which may be taken for the Bachelor of Science (BSc) are set out under Tables of units of study in the Faculty of Science Handbook, together with:
2.1.1 credit point value;
2.1.2 the units of study with which they are mutually exclusive;
2.1.3 assumed knowledge/prerequisites/corequisites/prohibition; and
2.1.4 any special conditions.
2.2 The units of study which may be taken for the Bachelor of Laws (LLB) are set out in the Undergraduate units of study table in the Faculty of Law Handbook, together with:
2.2.1 designation as compulsory or optional;
2.2.2 credit point value;
2.2.3 the units of study with which they are mutually exclusive;
2.2.4 assumed knowledge/prerequisites/corequisites/prohibition; and
2.2.5 any special conditions.
3. Requirements for the Bachelor of Science (BSc) and the Bachelor of Laws (LLB)
3.1 To qualify for the award of the pass degree a student must complete successfully units of study amounting to a total of 240 credit points.
3.2 To qualify for the award of the pass degree of Bachelor of Science (BSc) in the Bachelor of Science and Bachelor of Laws (BSc/LLB) combined degree program a student must complete 144 credit points in total, comprising 48 credit points of LAWS units of study as listed below in 3.6.1 and 96 credit points from Science units of study set out under Table I, in chapter 3 of the Faculty of Science Handbook, including:
3.2.1 at least 12 credit points from the Science subject areas of Mathematics and Statistics;
3.2.2 24 credit points of Junior units of study from at least two Science subject areas other than Mathematics or Statistics;
3.2.3 60 credit points of Intermediate/Senior units of study in Science subject areas; and
3.2.4 a major in a Science area.
3.3 To qualify for the award of the pass degree in an advanced stream of the Bachelor of Science (BSc) degree, a student must complete the requirements for the BSc degree in Section 3.2 above and in addition, except with the permission of the Dean of Science:
3.3.1 at least 12 credit points of Intermediate units of study at either the Advanced level or as TSP units in Science subject areas;
3.3.2 include at least 24 credit points of Senior units of study at the Advanced level or as TSP units in a single Science subject area;
3.3.3 maintain in Intermediate and Senior units of study in Science subject areas an average mark of 65 or greater in each year of enrolment.
3.4 Candidates in the Advanced stream of the BSc degree who fail to maintain the required Credit average will be transferred to candidature for the Bachelor of Science (BSc) degree in their next year of enrolment with full credit for the units of study completed in the Advanced stream.
3.5 Candidates in the Advanced stream of the BSc degree who fail to achieve a Credit average across all Science units of study attempted in the year in which they would have otherwise completed the requirements for the degree will be awarded the Bachelor of Science (BSc).
3.6 To qualify for the degree of Bachelor of Laws (LLB), in the Bachelor of Science and Bachelor of Laws (BSc/LLB) combined degree program, a student must complete units of study to the value of 144 credit points, made up of the following:
2. Undergraduate degree regulations

3.6.1 96 credit points of compulsory units of study, which includes the 48 credit points of LAWS units of study listed below in table 3.8.1 and counted towards the Bachelor of Science;

3.6.2 48 credit points of elective units of study in the Faculty of Law Handbook that must include:

3.6.2.1 a maximum of 42 credit points from the units of study listed in Part 1 of the Undergraduate units of study table, and

3.6.2.2 a minimum of six credit points from the units of study listed in Part 2 of the Undergraduate units of study table.

3.7 Candidates may credit the following units of study to both the Bachelor of Science (BSc) and the Bachelor of Laws (LLB):

3.7.1 Contracts

3.7.2 Criminal Law

3.7.3 Foundations of Law

3.7.4 International Law

3.7.5 Legal Research I

3.7.6 Legal Research II

3.7.7 Civil and Criminal Procedure

3.7.8 Public Law

3.7.9 Torts

3.7.10 Torts and Contracts II

3.8.1 Candidates in Combined Law must complete the law units of study in the following sequence:

<table>
<thead>
<tr>
<th>Year</th>
<th>Unit of study</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Law 1</td>
<td>Foundations of Law</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Legal Research I</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Torts</td>
<td>6</td>
</tr>
<tr>
<td>Combined Law 2</td>
<td>Contracts</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Civil and Criminal Procedure</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Criminal Law</td>
<td>6</td>
</tr>
<tr>
<td>Combined Law 3</td>
<td>International Law</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Legal Research II</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Public Law</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Torts and Contracts II</td>
<td>6</td>
</tr>
</tbody>
</table>

3.8.2 On completion of the requirements for the degree of Bachelor of Science (BSc) a student must then complete the following compulsory units of study towards the Bachelor of Laws (LLB) degree.

<table>
<thead>
<tr>
<th>Year</th>
<th>Unit of study</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combined Law 4</td>
<td>Administrative Law</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Corporations Law</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Equity</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Evidence</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Federal Constitutional Law</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Introduction to Property and Commercial Law</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Real Property</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>The Legal Profession</td>
<td>6</td>
</tr>
<tr>
<td>Combined Law 5</td>
<td>Elective units of study selected from Part 1 and Part 2</td>
<td>48</td>
</tr>
</tbody>
</table>

3.9 Except with the permission of the Dean or Associate Dean (Undergraduate), candidates in a Combined Law program must successfully complete Foundations of Law before enrolling in any other Bachelor of Laws (LLB) units of study.

3.10 Students must complete the requirements for the Bachelor of Science (BSc) before proceeding to the Bachelor of Laws (LLB) (unless they have permission from the Faculty of Law stating otherwise).

4. Requirements for award of honours

4.1 Both the Bachelor of Science (BSc) and the Bachelor of Laws (LLB) may be awarded with honours.

4.2 Students who qualify to undertake Honours in the Bachelor of Science (BSc) degree by completion of an Honours year in accordance with the resolutions of the Bachelor of Science (BSc) may elect to do so:

4.2.1 by suspending candidature from the Bachelor of Laws (LLB) degree for one year, with the permission of the Faculty of Law; or

4.2.2 undertake the honours course after completion of both degrees in the combined program.

4.3 Honours in the Bachelor of Science (BSc) may be awarded in four classes: Class I, Class II(1), Class II(2) and Class III in accordance with the resolutions of the Bachelor of Science.

4.3.1 Requirement for award of honours.

4.3.1.1 To qualify to enrol in the honours program candidates shall:

4.3.1.1.1 Be selected in the penultimate year of the Bachelor of Law degree;

4.3.1.1.2 Have a weighted average mark (WAM) of at least 75, averaged out across all law compulsory units with the exception of Foundations of Law.

4.3.1.2.1 Results in elective subjects will not be included in the calculation.

4.3.1.2.2 Entry to the Honours program is competitive and the number of places in the Honours program each year is limited and dependent on available resources. The exact WAM will be determined by the Honours Committee on an annual basis.

4.3.2 The honours program will be assessed by an honours dissertation, completed under the supervision of an academic member of staff or adjunct staff.

4.3.2.1 Candidates will enrol in two specified 6 credit point Honours research units as listed in the "Table of undergraduate units of study" in Part 2 of the Bachelor of Laws resolutions.

4.3.2.2 These units will be included in the 48 credit points of elective subjects that are part of the pass requirements for the Bachelor of Laws.

4.3.3 The Faculty Honours Committee will determine the class of honours, based on a student's final Honours WAM (HWAM).

4.3.3.1 The HWAM will be drawn from a minimum of 90 credit points, and will include all compulsory and elective units undertaken at the University of Sydney, with the exception of Foundations of Law.

4.3.3.2 The weighting of the Honours research units will be double that of the non-Honours units.

4.3.4 Honours in the Bachelor of Laws may be awarded in two classes: Class I and Class II.

4.3.4.1 The honours degree of the Bachelor of Laws will be awarded on the following basis:

4.3.4.1.1 Honours class 1: those students with an HWAM of at least 80;

4.3.4.1.2 Honours class 2/Division 1: those students with an HWAM of at least 75;

4.3.4.1.3 The Faculty Honours Committee will have the discretion to vary the required HWAM in exceptional circumstances.

4.3.4.2 To be awarded honours, a student must pass the honours dissertation.

4.3.4.3 A candidate for the Honours program who does not meet the requirements for the award of honours may be awarded the Bachelor of Laws pass degree.

4.3.4.4 All pass and honours students will be ranked together for graduation purposes to achieve a final graduation ranking.

4.3.4.5 Students who qualify for the award of first class honours, and whose work is of outstanding merit in the opinion of the faculty, may be considered for the award of a University Medal.

4.3.5 These resolutions will apply to all students who will complete their degree in the July semester 2013 or later.

4.3.5.1 Students who complete the requirements of their degree by 31 July 2013 will have honours awarded in accordance with the Faculty resolutions in force at the time of commencement.
Bachelor of Science and Bachelor of Arts

Course rules

1. Admission

1.1 All applications for admission to candidature to an undergraduate degree or combined degree in the Faculty of Science will be subject to the Undergraduate Admissions policy of the University of Sydney.

1.1.1 A candidate for the BSc, BSc(Advanced) or BSc(Advanced Mathematics) may apply to the Dean for permission to transfer candidature to any other stream.

1.2 Cross-Faculty Management of Combined Degree Course

1.2.1 The primary Faculty for management of the combined course is the Faculty of Science. The Deans of the Faculties of Arts and Science shall jointly exercise authority in any matter concerning the combined degrees not otherwise dealt with in these resolutions.

2. Requirements for the degree

2.1 To qualify for the award of the pass degree in the Bachelor of Science and Bachelor of Arts, Bachelor of Science and Bachelor of Arts or Bachelor of Science and Bachelor of Arts, Bachelor of Science, normally requiring the completion of 192 credit points, including:

2.1.1 no more than 18 junior credit points from the same Arts subject area;

2.1.2 at least 96 credit points from Science subject areas, including:

2.1.2.1 at least 12 credit points from the Science subject area of Mathematics and Statistics;

2.1.2.2 at least 24 credit points of senior units of study from at least two Science subject areas other than Mathematics & Statistics;

2.1.2.3 a major in a Science area as defined in Table I for the Bachelor of Science, normally requiring the completion of 24 credit points of senior units of study in one Science area, including any units of study specified in the table as compulsory for that major;

2.1.3 at least 72 credit points of senior units of study in Arts subject areas from Part A including:

2.1.3.1 a Part A major consisting of 36 senior credit points in a single subject area listed in Part A of the table of units of study for the Bachelor of Arts or of at least 18 senior credit points from a Part A subject area combined with no more than 18 senior credit points from units of study approved by the Dean of Arts for cross-listing with the major, except in the case of Medieval Studies, Film Studies, European Studies and Asian Studies where the entire major may be cross-listed, and in such other subject areas as may be approved by the Dean of Arts;

2.1.3.2 no more than 60 senior credit points from the same Arts subject area.

2.1.4 A student may not count a unit of study toward more than one major.

2.1.5 The testamur for the degrees of Bachelor of Science and Bachelor of Arts shall specify the major(s) completed in order to qualify for the awards.

3. Specially designated streams

3.1 A student may proceed concurrently to the degrees of Bachelor of Science and Bachelor of Arts, Bachelor of Science (Advanced) and Bachelor of Science or Bachelor of Science (Advanced Mathematics) and Bachelor of Arts.

3.2 BSc(Advanced)

3.2.1 To qualify for the award of the pass degree in the Advanced stream of the BSc degree, a student shall complete the requirements for the BSc degree in subsection 2 and in addition, except with the permission of the Dean:

3.2.1.1 include at least 12 credit points of Intermediate Science units of study at either the Advanced level or as TSP units;

3.2.1.2 include at least 24 credit points of Senior units of study at the Advanced level or as TSP units in a single Science subject area; and

3.2.1.3 maintain in Intermediate and Senior units of study in Science subject areas an average mark of 65 or greater in each year of enrolment.

3.2.2 Candidates who fail to maintain the required Credit average will be transferred to candidature for the Bachelor of Science degree in their next year of enrolment with full credit for the units of study completed in the Advanced stream. Candidates who fail to achieve a Credit average across all units of study attempted in the year in which they have otherwise completed the requirements for the degree will be awarded the Bachelor of Science.

3.2.3 Students who have completed at least 48 credit points may be permitted to transfer to the BSc (Advanced) stream from the BSc or BSc (Advanced Mathematics) if:

3.2.3.1 their mark averaged over all attempted units of study is 75 or greater; and

3.2.3.2 they are able to enrol in the required number of Advanced level units or TSP units.

3.2.4 The testamur for the degree of Bachelor of Science (Advanced) shall specify the major(s) completed in order to qualify for the award.

3.3 BSc (Advanced Mathematics)

3.3.1 To qualify for the award of the pass degree in the Advanced Mathematics stream of the BSc degree, a student shall complete the requirements for the BSc degree in subsection 2 and in addition, except with the permission of the Dean:

3.3.1.1 include no more than 48 credit points from junior Science units of study;

3.3.1.2 include at least 12 credit points of intermediate units of study at either the Advanced level or as TSP units in the Science subject areas of Mathematics and Statistics;

3.3.1.3 include a major in Mathematics, Statistics or Financial Mathematics and Statistics;

3.3.1.4 include at least 48 credit points of senior units of study of which at least 24 are completed at the Advanced level or as TSP units in the Science subject areas of Mathematics and Statistics; and

3.3.1.5 maintain in intermediate and senior units of study in Science subject areas an average mark of 65 or greater in each year of enrolment.

3.3.2 Candidates who fail to maintain the required Credit average will be transferred to candidature for the Bachelor of Science degree in their next year of enrolment with full credit for the units of study completed as Bachelor of Science (Advanced Mathematics) candidates. Candidates who fail to achieve a Credit average across all units of study attempted in the year in which they have otherwise completed the requirements for the degree will be awarded the Bachelor of Science.

3.3.3 Students who have completed at least 48 credit points may be permitted to transfer to the BSc (Advanced) stream from the BSc or BSc(Advanced Mathematics) stream from the BSc or BSc(Advanced Mathematics) if:

3.3.3.1 their mark averaged over all attempted units of study is 75 or greater; and

3.3.3.2 they are able to enrol in the required number of Advanced level units or TSP units.

4. Honours in Science and Arts

4.1 Students who are qualified to do so may undertake honours courses in either or both degrees or a joint honours course at the completion of the combined degrees.

4.2 There shall be honours courses in the following Science subject areas:

4.2.1 Agricultural Chemistry

4.2.2 Anatomy and Histology

4.2.3 Biochemistry

4.2.4 Biology

4.2.5 Cell Pathology

4.2.6 Chemistry

4.2.7 Computational Science

4.2.8 Computer Science

4.2.9 Environmental Studies

4.2.10 Geography

4.2.11 Geology

4.2.12 Geophysics

4.2.13 History and Philosophy of Science

4.2.14 Immunology

4.2.15 Information Systems

4.2.16 Marine Science

4.2.17 Applied Mathematics

4.2.18 Pure Mathematics
4.12 To qualify to enrol in an honours course, students shall:
4.12.1 have qualified for the award of the pass degree;
4.12.2 have completed a minimum of 24 credit points of Senior units of study relating to the intended honours course;
4.12.3 have achieved either:
4.12.3.1 at least a credit average in 48 credit points in relevant intermediate and senior Science units of study; or
4.12.3.2 a SCIWAM of at least 65; and
4.12.3.3 satisfy any additional criteria set by the Head of Department concerned.
4.4 Students shall complete the requirements for the honours course full-time over two consecutive semesters.
4.5 If the Faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half-time over four consecutive semesters.
4.6 To qualify for the award of an honours degree, students shall complete 48 credit points of honours units of study in the Table of undergraduate units of study, as prescribed by the Head of Department concerned.
4.7 The grade of honours and the honours mark are determined by performance in the honours course.
4.8 Honours in the Bachelor of Science may be awarded in four classes as follows:
4.8.1 Class I (mark range: 80 and above)
4.8.2 Class II(1) (mark range: 75-79)
4.8.3 Class II(2) (mark range: 70-74)
4.8.4 Class III (mark range: 65-69)
4.9 A student with an honours mark of 90 or greater in an honours subject area and a minimum SCIWAM of 80 shall, if deemed to be of sufficient merit by the Dean of Science, receive a bronze medal.
4.10 A student may not re-attempt an honours course in a single subject area.
4.11 A student who is qualified to enrol in two honours courses may either:
4.11.1 complete the honours courses in the two subject areas separately and in succession; or
4.11.2 complete a joint honours course, equivalent to an honours course in a single subject area, in the two subject areas. A joint honours course shall comprise such parts of the two honours courses as may be decided by the Dean of Arts.
4.12 There shall be honours courses in the following Arts subject areas:
4.12.1 Ancient History
4.12.2 Social Anthropology
4.12.3 Archaeology
4.12.4 Art History and Theory
4.12.5 Australian Literature
4.12.6 Chinese Studies
4.12.7 Classics
4.12.8 Economics
4.12.9 Education
4.12.10 English
4.12.11 French Studies
4.12.12 Gender Studies
4.12.13 Germanic Studies
4.12.14 Government and International Relations
4.12.15 Greek (Ancient)
4.12.16 Hebrew (Classical)
4.12.17 History
4.12.18 Indonesian Studies
4.12.19 Industrial Relations and Human Resource Management
4.12.20 Italian Studies
4.12.21 Japanese Studies
4.12.22 Jewish Civilisation, Thought and Culture
4.12.23 Korean Studies
4.12.24 Latin
4.12.25 Linguistics
4.12.26 Medieval Studies
4.12.27 Modern Greek Studies
4.12.28 Music
4.12.29 Performance Studies
4.12.30 Philosophy
4.12.31 Political Economy
4.12.32 Sanskrit
4.12.33 Sociology
4.12.34 Studies in Religion
4.13 To qualify to enrol in an honours course, students shall:
4.13.1 have qualified for the award of the pass degree; and
4.13.2 have completed at least 48 senior credit points in the subject area concerned, completed at an average of credit level, or
4.13.3 have completed the requirements of the Faculties of Economics and Business, and Education and Social Work, for subject areas listed in Part B of the table of units of study for the BA, as appropriate; and
4.13.4 have met any other entry requirements as specified in the table of units of study for the BA, except that the entry requirement must not exceed 64 senior credit points in the subject area concerned; and
4.13.5 have the written approval of the Chair of department concerned.
4.14 A student who is qualified to enrol in two honours courses may either:
4.14.1 complete the honours courses in the two subject areas separately and in succession, or
4.14.2 complete a joint honours course, equivalent to an honours course in a single subject area, in the two subject areas. A joint honours course shall comprise such parts of the two honours courses as may be decided by the Dean of Arts.
4.15 Candidature is normally full-time. Full-time students must complete the requirements over two consecutive semesters.
4.16 A student may seek permission from the Dean of Arts to undertake the honours course on a part-time basis. Part-time candidature must not exceed four consecutive semesters.
4.17 A student may seek written permission from the Dean of Arts to suspend candidature.
4.18 Suspension may be granted for a maximum period of one semester.
4.19 In the case of a student being granted suspension the student must not exceed five consecutive semesters, including the semester of suspension.
4.20 Students resuming the honours course after a period of suspension must advise the Faculty of Arts office in writing of their intention to re-enrol.
4.21 A student may not:
4.21.1 enrol in any fourth year unit of study without first qualifying for the award of the pass degree,
4.21.2 be awarded the pass degree while enrolled in final year honours, or
4.21.3 enrol concurrently in a fourth year unit of study and any other course or unit of study,
4.21.4 enrol in more than two fourth year units per semester.
4.22 A student may:
4.22.1 enrol in any fourth year unit of study after first qualifying for the award of the pass degree,
4.22.2 be awarded the pass degree while enrolled in final year honours, or
4.22.3 enrol concurrently in a fourth year unit of study and any other course or unit of study,
4.22.4 enrol in more than two fourth year units per semester.
4.23 Candidates for combined degrees are required to transfer to the single Bachelor of Arts candidature when enrolled in fourth year units of study.
4.24 To qualify for the award of an honours degree, students shall complete 48 credit points of honours units of study, comprising four, 12 credit point semester length units of study.
4.25 The grade of honours and the honours mark are determined by performance in the honours course.
4.26 The award of honours degrees, the level at which they are awarded and the award of the University Medal shall be determined by the Dean of Arts on the advice of the Faculty Honours Committee.
4.27 A student with an honours mark of 90 and a meritorious record in previous studies may be considered by the Dean of Arts on the advice of the Faculty Honours Committee for the award of the University Medal.
4.28 The testamur for the honours course shall specify the subject area or areas and the grade of honours, and the medal if awarded. It shall not include majors.
4.29 Students who fail or discontinue fail final year honours may not re-enrol in it.

Faculty rules
5. Units of study
5.1 The units of study which may be taken for the degrees of Bachelor of Science and Bachelor of Arts are set out under subject areas in Tables I and VI for the Bachelor of Science and Table Part A and Part B for the Bachelor of Arts together with:

5.1.1 designation as junior, intermediate (in the case of Science units), senior or Honours, and where appropriate as Advanced, units of study
5.1.2 credit point values
5.1.3 corequisites/prerequisites/assumed learning/assumed knowledge
5.1.4 the semesters in which they are offered
5.1.5 the units of study with which they are mutually exclusive
5.1.6 units of study in Part A of the table of units available to BA students cannot be cross-listed to majors in Part B of the table of units of study available to BA students
5.1.7 the faculty responsible for the unit of study; and
5.1.8 any special conditions.
5.2 The Dean may permit a student of exceptional merit who is admitted to the Talented Student Program to undertake a unit or units of study within the Faculty other than those specified in Table I.
5.3 Units of study completed at the University of Sydney Summer/Winter School which correspond to units of study in the tables of units of study for the Bachelor of Arts and the Bachelor of Science may be credited towards the course requirements.

6. Enrolment in more/less than minimum load
6.1 A student may not enrol without first obtaining permission from the Dean in additional units of study once towards the degrees or count two units of study which overlap substantially in content. If enrolment has already taken place, the student may be asked to show good cause why he or she should be allowed to re-enrol in that unit of study.

7. Cross-institutional enrolment
7.1 Provided that permission has been obtained in advance, the Dean may permit a student to complete a unit of study at another institution and have that unit credited to his/her course requirements provided that either
7.1.1 the unit of study content is material not taught in any corresponding unit of study in the University; or
7.1.2 the student is unable for good reason to attend a corresponding unit of study at the University.

8. Restrictions on enrolment
8.1 Units of study in subject areas in the Faculty of Arts which are restricted to a specific degree are as follows:

8.1.1 Bachelor of Arts Informatics - units of study with the prefix ARIN except ARIN2100 Web Tools available to Bachelor of Arts with departmental permission and ARIN3000 Technocultures available to Bachelor of Arts.
8.1.2 Bachelor of Arts (Media and Communications) - units of study with the prefix MECO
8.1.3 Bachelor of Social Sciences - units of study with the prefix SSCI
8.1.4 Bachelor of Arts (Honours), Bachelor of Arts (Asian Studies) (Honours), Bachelor of Arts (Languages) (Honours), Bachelor of Informatics (Honours), Bachelor of Social Sciences (Honours) - Bachelor of Arts and Sciences (Honours) all Fourth Year Honours units (4000 units)
8.1.5 Bachelor of Arts/Bachelor of Laws - units of study with the prefix LAWS
8.1.6 Bachelor of Arts and Sciences degree - units of study with the prefix SLSS
8.2 A student may not enrol in a language based unit of study, if, in the opinion of the Chair of the department involved, on the advice of the teacher of the unit, the student's linguistic knowledge or competence would unfairly advantage them over other students in the unit. If enrolment has already taken place, the Dean may direct that the student be withdrawn without penalty from the unit.
8.3 A candidate may not count a particular unit of study more than once towards the degrees or count two units of study which overlap substantially in content.
8.4 Units of study which overlap substantially in content are noted in the Tables of undergraduate units of study. Such units of study are mutually exclusive and no more than one of the overlapping units of study may be counted towards meeting the combined course requirements.

8.5 A candidate may not enrol in units of study having a total value of more than 30 credit points in a semester.

9. Time limits
9.1 A candidate must complete all the requirements for the award of the degrees within ten calendar years of admission to candidature or readmission without credit. If a candidate is readmitted with credit, the Faculty will determine a reduced time limit for completion of the degrees.

10. Repeating a unit of study
10.1 Where a student enrolls in a unit of study which is the same as, or has a substantial amount in common with, a unit of study previously attempted but not completed at the grade of Pass or better, the Head of Department concerned may exempt the student from certain requirements of the unit of study if satisfied that the relevant competence has been demonstrated.
10.2 A student may not enrol in a unit of study which they have completed previously with a grade of Pass or better.

11. Discontinuation of enrolment
11.1 Students may abandon the combined degree course and elect to complete either a Bachelor of Science or a Bachelor of Arts in accordance with the resolutions governing these degrees.
11.2 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course. Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

12. Suspension of candidature
12.1 A student may seek written permission from the Dean to suspend candidature in the combined course. Suspension may be granted for a maximum period of one year on any one application.

13. Re-enrolment after an absence
13.1 A student who intends to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First semester of the following year or the end of May for Second semester of the same year.

14. Satisfactory progress
14.1 If a student fails or discontinues enrolment in one unit of study twice, a warning will be issued that if the unit is failed a third time, the student may be asked to show good cause why he or she should be allowed to re-enrol in that unit of study.

15. Assessment policy
15.1 Students may be tested by written and oral examinations, exercises, essays or practical work or any combination of these as the Faculty may determine.
15.2 Where a unit of study is offered at different levels of difficulty, the performance of students will be matched so that a grade obtained at one level indicates a quality of work comparable with that required for the same grade at the other level(s).
15.3 Heads of Department may arrange for further testing in cases of special consideration, in accordance with Academic Board policy governing illness and misadventure.

16. Credit Transfer Policy
16.1 Credit will not be granted for units of study completed more than 10 years prior to application, except with the permission of the Dean.
16.2 Credit may be granted as specific credit if the unit of study is considered to be directly equivalent to a unit of study in Table I or as non-specific credit.
16.3 The total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points of units of study from other degrees for which credit is maintained or a degree has been conferred.
2. Undergraduate degree regulations

17. Candidates enrolled before 2010

17.1 These resolutions apply to all candidates for the degree enrolling in units of study after 1 January 2010.

17.1.1 Pre 2006, pre 2010 and 2010 onwards resolutions are all operating.

17.1.2 With the permission of the Faculty of Science candidates who first enrolled for the degrees prior to 2006 and have not had a period of suspension or exclusion may until 31 March 2013 choose to qualify for the degrees under the pre 2006 resolutions.

17.1.3 With the permission of the Faculty of Science candidates who first enrolled for the degrees as part time candidates prior to 2006 and have not had a period of suspension or exclusion may until 31 March 2015 choose to qualify for the degrees under the pre 2006 resolutions.

17.1.4 With the permission of the Faculty of Science candidates who first enrolled for the degrees after 2006 and before 2010 and have not had a period of suspension or exclusion may until 31 March 2013 choose to qualify for the degrees under the pre 2010 resolutions.

17.1.5 With the permission of the Faculty of Science candidates who first enrolled for the degrees as part time candidates after 2006 and before 2010 and have not had a period of suspension or exclusion may until 31 March 2015 choose to qualify for the degrees under the pre 2010 resolutions.

18. Glossary for the BSc/BA

18.1 Completion of a unit of study means that the assessment requirements have been satisfied and a grade of Pass or better has been achieved.

18.2 Junior unit of study is a 1000 or first-year stage unit. Its prerequisites or assumed knowledge are non-tertiary qualifications and corequisites are other Junior units of study.

18.3 Intermediate unit of study is a 2000 or second-year stage unit. Its prerequisites or assumed knowledge are Junior or Intermediate units of study and corequisites are other Intermediate units of study. (Specific to the Faculty of Science.)

18.4 Senior unit of study is a 3000 or third-year stage unit. Its prerequisites or assumed knowledge are Junior, Intermediate or Senior units of study and corequisites are other Senior units of study. (Specific to the Faculty of Science.) A Senior Arts unit of study is a 2000 or 3000 level unit of study. (Specific to the Faculty of Arts.)

18.5 Honours unit of study is a 4000 or fourth-year stage unit offered within an honours course.

18.6 Advanced unit of study is a unit which generally parallels a normal unit of study but which provides added breadth of material and/ or sophistication of approach.

18.7 Major in the BSc normally requires the completion of a minimum of 24 credit points of Senior units of study in one Science area, including any units of study specified in the Table of undergraduate units of study as compulsory for that major. A student may not count a unit of study toward more than one major. (A major in Psychology requires 48 credit points of Intermediate and Senior Psychology units of study including PSYC(2111 or 2011), PSYC(2112 or 2012), PSYC(2113, or 2013) and PSYC(2114 or 2014). No other Intermediate Psychology units can be counted towards the major).

18.8 Major in the Faculty of Arts is normally 36 credit points from Senior units of study in an Arts subject area.

18.9 Dean means the Dean of Science.

18.10 Faculty means the Faculty of Science.

18.11 Science subject area means a defined field of study in science.

18.12 Degrees means the degrees of Bachelor of Science and Bachelor of Arts.

18.13 Requirements means coursework requirements for the award of the degree of Bachelor of Science or Bachelor of Arts.

18.14 Student means a person enrolled as a candidate for the degrees of Bachelor of Science and Bachelor of Arts.

18.15 TSP means the Talented Student Program in the Faculty of Science.

18.16 SCIWAM means the weighted average mark calculated by the Faculty from the results for all Intermediate and Senior units of study with a weighting of 2 for Intermediate units and 3 for Senior units.

Bachelor of Commerce and Bachelor of Science

Participating Faculties: Faculty of Economics and Business, Faculty of Science

Course rules

1. Cross-faculty management of the combined award course

1.1 The Faculty of Economics and Business is the primary Faculty of management for the combined award course.

1.2 The Deans of the Faculty of Economics and Business and the Faculty of Science shall jointly exercise authority in any matter concerning the combined award course not otherwise dealt with in these Resolutions.

2. Units of study

2.1 The units of study which may be taken for the combined award course are set out under the tables of undergraduate units of study in the Faculty of Economics and Business Handbook, and the Undergraduate tables and units of study in the Faculty of Science Handbook together with:

2.1.1 designation as junior, intermediate, senior or honours level;

2.1.2 credit point value;

2.1.3 the units of study with which they are mutually exclusive;

2.1.4 the semesters in which they are offered;

2.1.5 corequisites / prerequisites / assumed learning / assumed knowledge;

2.1.6 the faculty responsible for the unit of study; and

2.1.7 any special conditions.

2.2 The Dean of the Faculty of Science may permit a student admitted to the Talented Student Program to undertake Science units of study other than those specified in Table I: Bachelor of Science in the Faculty of Science Handbook (see the tables of undergraduate units of study in the Faculty of Economics and Business Handbook).

3. Requirements for the Bachelor of Commerce and Bachelor of Science

3.1 To qualify for the award of the pass degrees a student must complete successfully units of study amounting to a total of 240 credit points (but no more than 96 credit points of junior units of study), including:

3.2 In the Faculty of Economics and Business:

3.2.1 at least 96 credit points (minimum of 48 senior credit points) of units of study from the Faculty of Economics and Business, as specified in the Faculty of Economics and Business Handbook, which must include:

3.2.1.1 7 core units of study (comprising 36 junior and 6 senior credit points), as specified in the Faculty of Economics and Business Handbook; and

3.2.1.2 either a major (minimum of 36 senior credit points) or an extended major (minimum of 48 senior credit points), comprising units of study as specified in the Faculty of Economics and Business Handbook, from one of the following subject areas:

3.2.1.2.1 Accounting;

3.2.1.2.2 Business Information Systems;

3.2.1.2.3 Commercial Law;

3.2.1.2.4 Econometrics;

3.2.1.2.5 Economics;

3.2.1.2.6 Finance;

3.2.1.2.7 Industrial Relations and Human Resource Management;

3.2.1.2.8 International Business;

3.2.1.2.9 Management;

3.2.1.2.10 Marketing; or

3.2.1.2.11 Operations Management and Decision Sciences

3.3 In the Faculty of Science:

3.3.1 at least 12 credit points of units of study from the Science subject area of Mathematics and Statistics;

3.3.2 24 credit points of junior units of study from at least two Science subject areas (excluding Mathematics and Statistics);

3.3.3 at least 50 credit points of intermediate and senior Science units of study;

3.3.4 a major (normally 24 senior credit points) comprising units of study specified in Table I: Bachelor of Science listed in
the Undergraduate tables and units of study in the Faculty of Science Handbook.

3.4 In the Bachelor of Science (Advanced), those requirements specified in 4(2) and in addition, except with the permission of the Dean of the Faculty of Science:

3.4.1 include no more than 48 credit points of junior Science units of study;

3.4.2 include at least 12 credit points of intermediate Science units of study at either the advanced level or as TSP units;

3.4.3 include at least 48 credit points of senior Science units of study of which at least 24 credit points are units of study in a single Science subject area, taken at the advanced level (or as TSP units); and

3.4.4 maintain in intermediate and senior units of study in Science subject areas an average mark of 65 or greater in each year of enrolment.

3.5 In the Bachelor of Science (Advanced Mathematics), those requirements specified in 4(2) and in addition, except with the permission of the Dean of the Faculty of Science:

3.5.1 include no more than 48 credit points of junior Science units of study;

3.5.2 include at least 12 credit points of intermediate Mathematics and Statistics units of study at either the advanced level or as TSP units;

3.5.3 include at least 48 credit points of senior Science units of study of which at least 24 are completed at the advanced level (or as TSP units) in Mathematics and Statistics; and

3.5.4 maintain in intermediate and senior units of study in Science subject areas an average mark of 65 or greater in each year of enrolment.

4. Transfer between Bachelor of Science streams

4.1 Students in the Bachelor of Science (Advanced) or Bachelor of Science (Advanced Mathematics) streams who fail to maintain a Credit average will be transferred to the Bachelor of Science in the next year of enrolment with full credit for units completed in the Advanced or Advanced Mathematics stream.

4.2 Students in the Bachelor of Science (Advanced) or Bachelor of Science (Advanced Mathematics) streams who fail to achieve a Credit average across all units attempted in their final year of the degree will be awarded the Bachelor of Science.

4.3 To transfer to the Bachelor of Science (Advanced) or Bachelor of Science (Advanced Mathematics), a student must satisfy the following:

4.3.1 completion of at least 48 credit points;

4.3.2 an average of 75 or greater over all attempted units of study; and

4.3.3 be able to enrol in the required number of advanced level or TSP units.

5. Requirements for the Honours degrees

5.1 On completion of the Bachelor of Commerce and Bachelor of Science (or equivalent), students who are qualified to do so may undertake an honours year in either or both of the award courses.

5.2 Joint honours courses are also available.

5.3 To qualify for the award of honours in the Bachelor of Commerce a student must complete successfully an additional year of study (the honours year), as specified in the Faculty of Science Handbook.

5.4.1 The Bachelor of Science may be awarded with honours in any of the subject areas in Table VI: Honours units of study listed in Undergraduate tables and units of study of the Faculty of Science Handbook or, as approved by the Faculty of Science, with joint honours in two of these subject areas.

5.4.2 To qualify to enrol in an honours course a student must satisfy the following:

5.4.2.1 have completed a minimum of 24 credit points of senior units of study relating to the intended honours course;

5.4.2.2 have achieved either at least a credit average in 48 credit points in relevant intermediate and senior Science units of study or a SCIWAM of at least 65; and

5.4.2.3 any additional criteria set by the Head of Department concerned.

5.5 The classes for the award of honours are specified in the following table:

<table>
<thead>
<tr>
<th>Description</th>
<th>Mark range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Honours Class I and University Medal</td>
<td>90 to 100*</td>
</tr>
<tr>
<td>Honours Class I</td>
<td>80 to 100</td>
</tr>
<tr>
<td>Honours Class II (Division 1)</td>
<td>75 to 79</td>
</tr>
<tr>
<td>Honours Class II (Division 2)</td>
<td>70 to 74</td>
</tr>
<tr>
<td>Honours Class III</td>
<td>65 to 69</td>
</tr>
<tr>
<td>Pass</td>
<td>50 to 64</td>
</tr>
</tbody>
</table>

*Please note: This is a minimum criterion only, other criteria apply.

6. Award of Bachelor of Commerce and Bachelor of Science

6.1 A student who completes the requirements for the Bachelor of Commerce and the Bachelor of Science shall receive at graduation a separate testamur for each of the degrees.

6.2 The Bachelor of Commerce and the Bachelor of Science may be awarded in two grades, namely pass and honours.

6.2.1 The testamur for the pass degrees shall specify the major(s) completed.

6.2.2 The testamur for the honours degrees shall specify the subject area(s) and the class of honours.

6.2.3 It shall not include majors.

6.3 The Bachelor of Science may be awarded in the following streams:

6.3.1 Bachelor of Science;

6.2.2 Bachelor of Science (Advanced); or

6.2.3 Bachelor of Science (Advanced Mathematics).

6.3 Students may abandon the combined award course and elect to complete either the Bachelor of Commerce or the Bachelor of Science in accordance with the Resolutions governing those award courses.

Bachelor of Engineering and Bachelor of Science

Combined degree course rules

1. Cross-faculty management of the combined award course

1.1 A student may proceed concurrently to the degrees of Bachelor of Science, Bachelor of Science (Advanced) or Bachelor of Science (Advanced Mathematics) and Bachelor of Engineering. Admission, progression and assessment criteria apply and are described in the resolutions for the BE specialisations shown above.

1.2 Students will be under the general supervision of the Faculty of Engineering and Information Technologies for administrative matters.

1.3 The Faculty of Science and the Faculty of Engineering and Information Technologies shall jointly exercise authority in any academic matter concerning the combined course not otherwise dealt with in these resolutions.

2. Units of study

2.1 Units of study must be selected as shown in the Engineering specialisation tables for the core components of the chosen Engineering specialisation. Units from the Science Faculty must
be chosen as shown in the Science Faculty Handbook to meet requirements of a Science major.

2.2 The faculty resolutions (which are reproduced in the Engineering and Information Technologies and Science Handbooks, as the case may be) specify:

2.2.1 credit point values;

2.2.2 corequisites/prerequisites and assumed learning/assumed knowledge; and

2.2.3 any special conditions.

3. Requirements for the BE/BSc Pass degree

3.1 To qualify for the award of the pass degrees a student shall complete units of study having a total value of at least 240 credit points including:

3.1.1 96 credit points of units from Science subject areas,

3.1.2 a major in a Science area, and

3.1.3 Units of study as prescribed in the tables of BE specialisation requirements for the specialisation that the student is pursuing.

3.2 To qualify for the award of the pass degree in the Advanced or Advanced Mathematics stream of the BSc a student shall in addition to the requirements of resolution 3.1:

3.2.1 complete at least 54 credit points of intermediate/senior Science units of study of which at least 36 shall be completed at the Advanced level or as TSP units;

3.2.2 complete at least 24 credit points of senior Science units of study at the Advanced level or as TSP units in a single Science subject area; and

3.2.3 maintain in intermediate and senior Science units of study an average mark of 65 or greater in each year of enrolment.

4. Requirement for Honours degrees

4.1 BE with Honours

4.1.1 On completion of the requirements for the combined degrees, a student may qualify for the award of BE degree with Honours in accordance with the requirements set out in the Resolutions of the Faculty of Engineering and Information Technologies relating to the BE degree.

4.2 BSc with Honours

4.2.1 On completion of the requirements for the combined degrees, a student may be qualified to enrol in Honours in the Bachelor of Science.

4.2.2 To qualify for the award of the BSc with Honours, a student must complete successfully an additional year of study (the Honours year), as specified in the Faculty of Science Handbook.

5. Award of the degrees

5.1 A student who completes the requirements for the Bachelor of Engineering and Bachelor of Science degrees shall receive at graduation a separate testamur for each of the degrees.

5.2 Students may at any stage abandon the combined degree course and elect to complete either a BSc or a BE in accordance with the resolutions governing those degrees.

5.3 Resolutions covering admission, enrolment restrictions, progressions, requirements, satisfactory progress, cross-institutional study and assessment criteria for the combined degree are equivalent to those for the BE degree and specialisations, as shown in the Faculty of Engineering and Information Technologies Handbook.

6. The Deans of the Faculty of Engineering and Information Technologies and Science shall jointly exercise authority in any matter concerning the combined degrees not otherwise dealt with in these resolutions.

Bachelor of Engineering and Bachelor of Science double degree

Double degree course rules

1. Transfer to Science requirements

1.1 A student enrolled for a Bachelor of Engineering degree may be permitted to transfer to the Faculty of Science to complete a BSc degree at the end of Second Year or Third Year in the BE degree if:

1.1.1 all units of study attempted in the BE degree have been completed with a grade of Pass or better;

1.1.2 at least 96 credit points from units of study in the BE degree have been completed, of which no more than 12 credit points are from units of study with the grade of Pass (Concessional);

1.1.3 the student is qualified to enrol in a major in a Science area; and

1.1.4 for admission to the Advanced streams, the student satisfies the requirements in Section 3.2 or 3.3 of the Resolutions of the Faculty of Science relating to the BSc degree.

2. Students will be under the supervision of the Faculty of Engineering and Information Technologies for the period of BE degree enrolment and under the supervision of the Faculty of Science for the BSc enrolment and completion.

3. Units of study

3.1 Units of study must be selected as shown in the Engineering specialisation tables for the core components of the chosen Engineering specialisation.

3.2 Units from the Science Faculty must be chosen as shown in the Science Faculty Handbook to meet requirements of a Science major.

3.3 The faculty Resolutions (which are reproduced in the Engineering and Information Technologies and Science Handbooks, as the case may be) specify:

3.3.1 credit point values;

3.3.2 corequisites/prerequisites/assumed-learning/assumed knowledge; and

3.3.3 any special conditions.

4. Award of Pass degree in Science

4.1 To qualify for the award of the pass BSc degree a student shall complete units of study to a value of at least 48 credit points including:

4.1.1 42 credit points of intermediate/senior units of study in Science subject areas; and

4.1.2 a major in a Science area.

4.2 To qualify for the award of the pass degree in the Advanced or Advanced Mathematics stream of the BSc a student shall in addition to the requirements of Section 4.1:

4.2.1 include at least 72 credit points of intermediate/senior Science units of study;

4.2.2 include at least 24 credit points of senior Science units of study at the Advanced level or as TSP units in a single Science subject area; and

4.2.3 maintain in intermediate and senior Science units of study an average mark of 65 or greater in each year of enrolment.

4.3 The requirements of sections 4.1 or 4.2 must be completed in one year of full-time study or two years of part-time study.

4.4 Students who complete at least 42 but less than 48 credit points in the prescribed time limits may in the following year of enrolment in the BE complete the remaining units to satisfy the requirements of the Faculty of Science.

4.5 Students who complete less than 42 credit points may apply to be readmitted to the degree, subject to sections 92–95 of the Resolutions of the Faculty of Science relating to the BSc degree.

5. Award of Honours in Science

5.1 Students who are so qualified may undertake an Honours course in the BSc in accordance with sections 12–20 of the Resolutions of the Faculty of Science relating to the BSc degree.

5.2 On completion of the requirements of the BSc degree or BSc Honours course, students will be eligible to resume their enrolment toward the BE degree according the Faculty of Engineering and Information Technologies Resolutions for that degree.

5.3 Students may abandon the BSc degree enrolment at any stage and resume their enrolment in the BE degree.

5.4 Resolutions covering admission, enrolment restrictions, progressions, requirements, satisfactory progress, cross-institutional study and assessment criteria for the Engineering component of the double degree are equivalent to those for the BE degree and specialisations, as shown in the Faculty Handbook.

5.5 The Deans of the Faculty of Engineering and Information Technologies and Science shall jointly exercise authority in any matter concerning the double degree not otherwise dealt with in these resolutions.
Bachelor of Engineering and Bachelor of Medical Science

Combined degree course rules

1. Requirements of the BE/BMedSc
 1.1 A student may proceed concurrently to the degrees of Bachelor of Medical Science, and Bachelor of Engineering.
 1.2 To qualify for the award of the BE/BMedSc combined degree a student must:
 1.2.1 complete successfully units of study giving credit for a total of 240 credit points; and
 1.2.2 satisfy the requirements of all other relevant By-laws, Rules and Resolutions of the University.
 1.3 Admission, progression and assessment criteria apply and are described in the resolutions for the BE specialisations shown in the relevant section of the faculty handbook.
 1.4 Students will be under the general supervision of the Faculty of Engineering and Information Technologies for administrative matters.
 1.5 The Faculty of Science and the Faculty of Engineering and Information Technologies shall jointly exercise authority in any academic matter concerning the combined course not otherwise dealt with in these Resolutions.

2. Specialisations, streams and majors
 2.1 The combined award course, BE/BMedSc, will be awarded in all of the Engineering specialisations that are available for the BE degree and all majors as are applicable under the resolutions of the Faculty of Science.

3. Requirements for the BE/BMedSc Pass degree
 3.1 To qualify for the award of the Pass degrees a student shall complete units of study having a total value of at least 240 credit points including:
 3.1.1 Units of study as prescribed in the tables of BE specialisation requirements for the specialisation that the student is pursuing;
 3.1.2 at least 24 credit points from junior Science units of study (which may be common with those of 3.1.1, but including 12 credit points of Junior Chemistry, MBLG1001 Introductory Molecular Biology & Genetics and 12 credit points of Mathematics);
 3.1.3 48 credit points of Intermediate core units of study as listed in Table IV of the Science Faculty Handbook of units of study for the BMedSc;
 3.1.4 at least 24 credit points of Senior units of study taken from the subject areas of Anatomy/Histology, Biology (Genetics), Biochemistry, Cell Pathology, Immunology, Infectious Diseases, Microbiology, Pharmacology and Physiology;

4. Requirements for the Honours degree
 4.1 BE with Honours
 4.1.2 On completion of the requirements for the combined degrees, a student may qualify for the award of BE degree with Honours in accordance with the requirements set out in the Resolutions of the Faculty of Engineering and Information Technologies relating to the BE degree.
 4.2 BMedSc with Honours
 4.2.1 On completion of the requirements for the combined degrees, a student may be qualified to enrol in Honours in the Bachelor of Medical Science.
 4.2.2 To qualify for the award of the BMedSc with Honours, a student must complete successfully an additional year of study (the Honours year), as specified in the faculty handbook.

5. Units of study
 5.1 Units of study must be selected as shown in the Engineering specialisation tables for the core components of the chosen Engineering specialisation and as specified for the MedSc component in clause 3.1 above.
 5.2 Units from the Science Faculty must be chosen as shown in the Science Faculty Handbook to meet requirements of a Science major.
 5.3 The faculty Resolutions (which are reproduced in the Engineering and Information Technologies and Science Handbooks, as the case may be) specify:
 5.3.1 credit point values;
 5.3.2 corequisites/prerequisites/assumed learning/ assumed knowledge; and
 5.3.3 any special conditions.

6. Students may at any stage abandon the combined degree course and elect to complete either a BMedSc or a BE in accordance with the resolutions governing those degrees.

7. Resolutions covering admission, enrolment restrictions, progression requirements, satisfactory progress, cross-institutional study and assessment criteria for the combined degree are equivalent to those for the BE degree and specialisations, as shown in the faculty handbook.

8. The Deans of the Faculties of Engineering and Information Technologies and Science shall jointly exercise authority in any matter concerning the combined degrees not otherwise dealt with in these resolutions.

Bachelor of Education (Secondary): Science)/Bachelor of Science or Bachelor of Science (Advanced)

1. Special provisions
 1.1 A student may proceed concurrently to the degrees of Bachelor of Education and Bachelor of Science or Bachelor of Science (Advanced). Refer to Section 3 below.
 1.2 No more than 100 credit points may be from Junior units of study.

2. Program of study
 2.1 Year I
 2.1.1 Junior units of study in Education, as specified in the Table of units of study, total of 12 credit points; and
 2.1.2 Junior units of study in Mathematics, offered by the School of Mathematics and Statistics in the Faculty of Science, equivalent to 12 credit points; and
 2.1.3 Junior units of study offered by the Faculty of Science, equivalent to 12 credit points, in an approved teaching area, selected from Science Table 1; and
 2.1.4 Junior units of study offered by the Faculty of Science in an approved teaching area, equivalent to 12 credit points selected from Science Table 1.
 2.2 Year II
 2.2.1 Senior, 200 level, units of study in Education, as specified in the Table of units of study, total of 18 credit points; and
 2.2.2 Senior units of study, in Curriculum and Professional Studies in Secondary Education, as specified in the Table of units of study, total of 6 credit points; and
 2.2.3 Intermediate units of study in the minor sequence, 12 credit points, offered by the Faculty of Science selected from Science Table 1; and
 2.2.4 Intermediate units of study in the major sequence, 12 credit points, offered by the Faculty of Science selected from Science Table 1.
 2.3 Year III
 2.3.1 Senior units of study in Education, selected from the Table of units of study, total of 6 credit points; and
 2.3.2 Senior units of study in Curriculum and Professional Studies in Secondary Education, selected from the Table of units of study, including specified units, total of 30 credit points; and
 2.3.3 Senior units of study in major sequence, total of 12 credit points, offered by the Faculty of Science, selected from Science Table 1.
 2.4 Year IV
 2.4.1 Two Senior, 300 level, units of study in Education selected from the Table of units of study, including specified units, total of 12 credit points; and
 2.4.2 Senior units of study in Curriculum and Professional Studies in Secondary Education, selected from the Table of units of study, including specified units, total of 24 credit points; and
 2.4.3 Senior units of study in the major sequence, total of 12 credit points, offered by the Faculty of Science, selected from Science Table 1.
 2.5 Year V
 2.5.1 Curriculum and Professional Studies in Secondary Education as specified in the Table of units of study, 24 credit points; and
 2.5.2 Senior or intermediate units of study, 24 credit points, in the major sequence, to complete requirements for award of the Bachelor of Science (Science).
requirements for award

3.1 To qualify for the award of the pass degree in an Advanced stream of the BSc degree, a student shall complete the requirements for the BSc degree according to these resolutions and those of the Faculty of Science and, in addition, and except with the permission of the Dean of the Faculty of Science:

3.1.1 include at least 16 credit points of Intermediate units of study at either the Advanced level or as TSP units;

3.1.2 include at least 24 credit points of Senior units of study at the Advanced level or as TSP units in a single Science subject area; and

3.1.3 maintain in Intermediate and Senior units of study at the Advanced level in Science subject areas an average of 65 or greater in each year of enrolment.

Bachelor of Education (Secondary: Mathematics)/Bachelor of Science or Bachelor of Science (Advanced)

1. Special provisions

1.1 A student may proceed concurrently to the degrees of Bachelor of Education and Bachelor of Science or Bachelor of Science (Advanced Mathematics). Refer to Section 3 below.

1.2 No more than 100 credit points may be from Junior units of study.

2. Program of study

2.1 Year I

2.1.1 Junior units of study in Education, as specified in the Table of units of study, total of 12 credit points; and

2.1.2 Junior units of study in Mathematics, offered by the School of Mathematics and Statistics in the Faculty of Science, total of 12 credit points; and

2.1.3 Junior units of study offered by the Faculty of Science, total of 12 credit points, in an approved teaching area, selected from Science Table 1; and

2.1.4 Junior units of study offered by the Faculty of Science total of 12 credit points.

2.2 Year II

2.2.1 Senior units of study in Education, as specified in the Table of units of study, total of 18 credit points; and

2.2.2 Senior units of study, in Curriculum and Professional Studies in Secondary Education, as specified in the Table of units of study, total of 6 credit points; and

2.2.3 Intermediate units of study in Mathematics and Statistics; and

2.2.4 Intermediate units of study offered by the Faculty of Science, total of 12 credit points, in the second approved teaching area selected from Science Table 1.

2.3 Year III

2.3.1 Senior units of study in Education, selected from the Table of units of study, 6 credit points; and

2.3.2 Senior units of study in Curriculum and Professional Studies in Secondary Education taken from those listed in the Table of units of study, including specified units, total of 30 credit points; and

2.3.3 Senior units of study in Mathematics and Statistics, 12 credit points, offered by the Faculty of Science.

2.4 Year IV

2.4.1 Two Senior, 300 level, units of study in Education selected from the Table of units of study, including specified units, total of 12 credit points; and

2.4.2 Senior units of study in Curriculum and Professional Studies in Secondary Education selected from the Table of units of study, including specified units, total of 24 credit points; and

2.4.3 Senior units of study in Mathematics and Statistics, 12 credit points, offered by the Faculty of Science.

2.5 Year V

2.5.1 Curriculum and Professional Studies in Secondary Education, as specified in the Table of units of study, total of 24 credit points; and

2.5.2 Senior or intermediate units of study, 24 credit points, to complete requirements for award of the Bachelor of Science (Mathematics).

3. Requirements for award

3.1 To qualify for the award of the pass degree in an Advanced stream of the BSc degree, a student shall complete the requirements for the BSc degree according to these resolutions and those of the Faculty of Science and in addition, and except with the permission of the Dean of the Faculty of Science:

3.1.1 include at least 16 credit points of Intermediate units of study at either the Advanced level or as TSP units;

3.1.2 include at least 24 credit points of Senior units of study at the Advanced level or as TSP units in a single Science subject area; and

3.1.3 maintain in Intermediate and Senior units of study at the Advanced level in Science subject areas an average of 65 or greater in each year of enrolment.

Bachelor of Science/Bachelor of Nursing

For course resolutions, refer to the current Faculty of Nursing and Midwifery handbook.

Bachelor of Applied Science (Exercise and Sport Science)/Bachelor of Science (Nutrition)

For course resolutions, refer to the current Faculty of Health Sciences handbook.

Bachelor of Liberal Studies

For course resolutions, refer to the current Faculty of Arts handbook.

Bachelor of Arts and Sciences

For course resolutions, refer to the current Faculty of Arts Handbook.

Bachelor of Liberal Arts and Science

Course Rules

The Resolutions for all coursework degrees, diplomas and certificates must be read in conjunction with the University of Sydney (Coursework) Rule 2000 (as amended), which sets out the requirements for all coursework courses, and with the relevant Faculty Resolutions.

1. Admission

1.1 All applications for admission to candidature to an undergraduate degree or combined undergraduate degree in the Faculty of Science will be subject to the undergraduate Admissions policy at the University of Sydney.

2. Units of Study

2.1 The units of study available for the Bachelor of Liberal Arts and Science are set out in Table 1 of Undergraduate Units of Study for the Bachelor of Science and Table A of the Faculty of Arts Units of study together with the Table of Liberal Studies (LS) Units of Study, including:

2.1.1 designation as junior, intermediate, senior or honours and where appropriate, advanced units of study;

2.1.2 credit point value;

2.1.3 assumed knowledge;

2.1.4 co-requisites/prerequisites/assumed learning/assumed knowledge and the units with which they are mutually exclusive;

2.1.5 the semesters in which they are offered.

2.2 Students may also take units of study from the Faculty of Economics and Business which are associated with B Arts and B Science.

2.3 The Dean may permit a student of exceptional merit who is admitted to the Talented Student Program to undertake a unit or units of study other than those referred to in 2.1 and 2.2.

3. Requirements for the pass degree

3.1 To qualify for the award of the Bachelor of Liberal Arts and Science degree a student shall complete 144 credit points comprising: 1. 2. a major in Science or a major in Arts, as defined in 3.1.1 and 3.1.23. a minimum of 36 credit points from the Faculty of Science Table 1 and a minimum of 36 credit points for the Faculty of Arts Table A. 4. no more than 84 junior credit points.

3.1.1 36 credit points from the designated Liberal Studies stream of the BSc degree, a student shall complete the requirements for the Bachelor of Liberal Arts and Science, including at
5.2 Units of study completed at the University of Sydney

5.1 The units of study which may be taken for the degree of Bachelor of Arts in the Faculty of Science and in the Table of Undergraduate Units of Study for the Bachelor of Science. Such units of study are mutually exclusive and no more than one of the overlapping units of study may be counted towards meeting the course requirements.

5.3 A student who has not made satisfactory progress in a semester if the student:

6. Enrolment in more/less than minimum load

6.1 A candidate may not enrol in additional units of study once the degree requirements have been satisfied, without first obtaining permission from the Dean of Science.

6.2 Students may enrol on either a full-time or a part-time basis.

7. Cross-institutional study

7.1 Provided that permission has been obtained in advance, the Dean of Science may permit a student to complete a unit of study at another institution and have that unit credited to his/her course requirements provided that either:

7.1.1 the unit of study content is material not taught in any corresponding unit of study in the University;

7.1.2 the student is unable to attend a corresponding unit of study at the University.

8. Restrictions on enrolment

8.1 Units of study which overlap substantially in content are noted in the Table of units of study for the Bachelor of Arts and in the Tables of Undergraduate Units of Study for the Bachelor of Science. Such units of study are mutually exclusive and no more than one of the overlapping units of study may be counted towards meeting the course requirements.

8.2 A student may not enrol in a unit of study which they have completed previously with a grade of pass or better.

8.3 A candidate may not enrol in units of study having a total value of more than 30 credit points in a semester without permission from the Dean.

9. Discontinuation of enrolment

9.1 A student who does not enrol in any semester without first obtaining permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

9.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

10. Suspension of candidature

10.1 A student may seek written permission from the Dean to suspend candidature or readmission without credit.

10.2 Suspension may be granted for a maximum of one year on any one application.

11. Re-enrolment after an absence

11.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for first Semester of the following year or the end of May for second semester of the same year.

12. Satisfactory Progress

12.1 A student shall not have made satisfactory progress in any semester if the student:

12.1.1 fails to complete successfully more than 50% of the credit points in which the student was enrolled for that semester; and/or

12.1.2 fails to complete successfully on the second or later attempt the same unit of study; and/or

12.1.3 is consequently unable to complete the degree within the maximum permitted time while carrying a normal student load

12.2 A student who has not made satisfactory progress in accordance with 12.1.1 or 12.1.2 will be placed on a Faculty list of students at risk and will be required to take steps in accordance with the University’s At Risk policy as implemented by the Faculty of Science;

12.2.1 a student who is placed in the Faculty’s At Risk list for any three semesters shall be required to show good cause why the student should be permitted to re-enrol in the degree;

12.2.2 a student who has failed to show good cause in accordance with 12.2.1 shall be excluded from the degree;

12.2.3 a student who has been permitted to re-enrol after having been asked to show good cause and is placed on a faculty list of students at risk for the fourth time will be automatically excluded from the degree.

13. Time Limit

13.1 A candidate must complete all the requirements for the award of the degree within ten calendar years of admission to candidature or readmission without credit.

13.1.1 If a candidate is readmitted with credit, the Faculty will determine a reduced time limit for the completion of the degree.
13.2 Students shall complete the requirements for the Honours course full-time over two consecutive semesters.

13.2.1 If the Faculty is satisfied that a student is unable to attend the Honours course on a full-time basis and if the Head of the Department concerned so recommends, permission may be granted to undertake Honours half-time over four consecutive semesters.

14. **Assessment policy**

14.1 Students may be assessed by written and oral examinations, exercises, essays or practical work or any combination of these as the faculties of Arts and Science determine.

15. **Credit transfer policy**

15.1 Credit will not be granted for units of study completed ten years or more prior to application, except with the permission of the Dean of Science.

15.2 Credit may be granted as specific credit if the unit of study is considered to be directly equivalent to a unit of study in Faculty of Science Table 1 or Faculty of Arts Table A, or as non-specific credit.

15.3 The total amount of credit granted may not be greater than 76 credit points and may not include more than 48 credit points of units of study from other degrees for which credit is maintained or a degree has been conferred.
This chapter is intended to give enrolment advice to undergraduate students enrolling in the Bachelor of Science degree and its streams: the BSc(Advanced), the BSc (Advanced)/MBBS and the BSc (Advanced Mathematics). You will find answers to frequently asked questions covering all students.

Following this are specific summaries of the requirements for each degree including examples of how unit of study choices can be made over the duration of the degree. With some degrees there is information on recommended combinations of units of study, especially in first year, to help guide you to your goals.

It should be stressed that the information in this chapter is intended to be a rough guide only. All students will have to decide for themselves how to plan their degree to suit their own particular interests and situation.

All students are expected to read the degree resolutions for their course before they commence their studies, and from time to time during their studies. Undergraduate degree resolutions appear in chapter 2. The table of undergraduate units of study available for the Bachelor of Science degree and degree streams is included towards the end of this chapter.

Students enrolled in units of study offered by the Faculty of Science are required to familiarise themselves with the following key policies:

Special Arrangements
Students who are experiencing difficulty in meeting their assessment requirements due to competing essential community commitments may apply for Special Arrangements for examination and assessment.

Special Consideration
Students who have a serious illness or who have experienced misadventure which may affect their academic performance in a course or unit of study may request that they be given Special Consideration in relation to the determination of their results.

At Risk
In order to progress through a degree course, students must:

1. achieve the minimum Progression Rate specified by the Faculty; in the Faculty of Science, students must pass more than 50% of the units attempted in each semester
2. pass any field or clinical work, practicum, or other unit of study mandated by the Faculty (listed in your degree requirements)
3. avoid fail grades in repeated units of study
4. maintain a weighted average mark of more than 50.

If you do not meet the progress requirements, you will be identified as a student at risk.

Code of Conduct for Students
The University has clear expectations of students in respect of academic matters and personal behaviour.

Student Plagiarism: coursework Policy and Procedure
The University of Sydney expects high standards of academic honesty in all student work. In particular, the University is opposed to and will not tolerate plagiarism.

Details on Special Arrangements, Special Consideration, Code of Conduct for Students, and Student Plagiarism Policy are provided in chapter 1 of this handbook.

Inside the back cover of this handbook you will find a planner to assist you to map out your degree. It is recommended that you plan your studies carefully with an eye to your final years, so that you take the correct prerequisites in the preceding years. It will be useful to revisit this planner during your studies as your interests take more detailed shape.

Enrolment day FAQs

What is a ‘major’?
Students enrolled in the Bachelor of Science degree and its streams are required to complete at least one major. A major is a specialisation in the senior year of your degree. It is useful to have an idea of what major, or group of majors, interest you now, so that you can plan your junior and intermediate years properly.

The Bachelor of Science majors Neuroscience and Nanoscience and Technology require earlier planning than most others. If you are interested in these then read Table I (Bachelor of Science: at the end of this chapter) carefully and/or seek advice.

A major is usually defined as 24 credit points of study at the Senior level in a single Science Area. Neuroscience and Psychology both have additional requirements. Depending on the majors chosen, it is possible to complete more than one major in your degree.

How many credit points should I take per semester?
You should take 24 credit points each semester if you are a full-time student. There is an upper limit of 30 credit points per semester. If you take fewer than 18 credit points in each semester you will automatically become part-time.

To finish your degree in the recommended minimum time you will have to take 48 credit points per year, or 24 per semester. If you enrol part-time you can take as few credit points as you like. You must keep in mind however that you have a 10 year limit to finish your degree.

Students wishing to accelerate their degree programs may consider undertaking units offered at Summer School or undertaking up to 30 credit points each semester. The degree summaries and sample programs in this chapter assume you will enrol full-time.

Do I need to be full-time?
International Students must enrol full-time in a minimum of 24 credit points per semester unless there are exceptional circumstances. Failure to enrol in 24 credit points per semester may have serious ramifications for your visa.

Australian citizens and permanent residents are considered full-time if they are enrolled in 18 or more credit points per semester. Australian citizens and permanent residents who wish to receive a transport concession card must be full-time students.

If you receive any financial support, whether from a University scholarship or from the government, you may well need to enrol as a full-time student. Check the terms and conditions of that support before going part-time.

Can I take units of study from other faculties?
Yes. Generally you can take any unit of study offered by the Faculty of Arts and the Faculty of Economics and Business. Lists of available units of study will be available on enrolment day, or in each faculty’s handbook. Each faculty website has links to Departmental and unit of study information.
The Talented Student Program (TSP) is tailored to meet students’ needs. Students in an Advanced degree are very demanding and students are required to enrol in Intermediate units of study after enrolment and are recommended for students who didn’t normally cover in the HSC. They run in February each year. There are bridging courses in Biology, Chemistry, Mathematics and Statistics. Y ou must bring this information with you on the day that you enrol.

On enrolment day you will have to make unit of study choices as if you have had no previous university study. Alternatively, you may be able to obtain special permission to enrol in Intermediate or Senior units of study by taking a copy of your transcript and unit of study descriptions to Academic advisers for each individual unit of study.

Enrolment guide by major

The following information is for first year students. Listed below are the essential and recommended combinations of junior units of study for students who are intending to complete a major in a particular Science Subject Area. Students should also consult Table I (Bachelor of Science: at the end of this chapter) and school/department advisers for further information on major requirements.

Mathematics requirements for all Science degrees

In addition to the specific requirements for each major all science degrees require a minimum of 12 credit points of Mathematics and Statistics units of any level and a minimum of 24 credit points of other Junior Science to complete.

Planning for an Agricultural Chemistry major

Essential: 12 credit points of Junior Chemistry.

Planning for an Anatomy and Histology major

Essential: 12 credit points of Junior Biology or 12 credit points of Junior Psychology.

Planning for a Biochemistry major

Essential: 12 credit points of Junior Chemistry and Molecular Biology and Genetics Intro; MBLG1001/1901.

Recommended: 6 credit points of Junior Biology

Planning for a Bioinformatics major

Essential: 12 credit points of Junior units of study in Mathematics and Statistics (including MATH1015/1005/1905), 12 credit points of Junior units of study in Biology (including MBLG1001/1901), 12 credit points of Junior units of study in Chemistry, and 12 credit points from Junior units of study in Information Technologies (ie, INFO1103/1903 and INFO1105/1905).

Planning for a Biology major

Essential: 12 credit points of Junior Biology/ Molecular Biology & Genetics and 12 credit points of Junior Chemistry are needed to enrol in Intermediate units of study in Biology.

Recommended: BIOI(1001 or 1901) and BIOL(1002 or 1902) and 12 credit points of Junior Chemistry and 12 credit points of Junior Mathematics and 6 credit points of MBLG(1001 or 1901). Students who have not completed HSC or equivalent Biology are strongly recommended to take the Biology Bridging Course in February. Details are available from www-secure.cce.usyd.edu.au.

Also available are undergraduate units from any other faculty at the University. The onus is on you to get written permission from the relevant department and bring it to the Faculty of Science.

There are limits, and exclusions. You should refer to the degree summary sections of this chapter for specific information about your particular degree. The Bachelor of Science allows for up to 48 credit points of Non-Science units of study to be included in the 3-year program. Junior Econometrics (ECMT units) and General Statistical Methods (STAT units) are specifically excluded from the BSc. Students in specialist programs and combined degrees may have less flexibility.

Can I get receive credit for previous tertiary study?

Yes. The amount of credit you may receive depends on your individual circumstances, but in general the total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points from degrees that have been completed.

On the day that you enrol you must lodge an application for credit from a Handbook or a unit of study syllabus/outline, and should include the credit point value, learning outcomes, assessment details, texts and references, and contact details for each unit of study. You must bring this information with you on the day that you enrol.

Am I eligible for the Talented Student Program?

Entry to the TSP is by invitation from the Dean which you should have received by the time you enrol. The following guidelines apply generally, although Departments May have additional (and sometimes more stringent) requirements for entry into the program.

To get into the program in your first year, you should normally have aATAR (or equivalent) of at least 99.00 and a result in band 6 in at least one HSC Science subject area and/or a mark of 95 or better in HSC Mathematics Extension 2.

For entry into the program in your second and third years, you should normally have a weighted average mark of 85 or over and a high distinction grade in a relevant subject area.
Planning for an Information Systems major

Essential: 12 credit points of Junior Information Systems units.

Recommended: INFO1003 and INFO1103 and 12 credit points of Junior Mathematics including MATH (1015 or 1005 or 1905) and 24 credit points of electives including PHIL1012 and INFO1105 and a language unit (ENGL1005 or LNGS1001/1002/1005).

Planning for a Marine Biology major

Recommended: To complete a Marine Biology major the minimum requirement is 24 credit points of BIOL units listed under Table 1 for marine science. It is recommended to prepare for this that a student complete 12 credit points of Junior Biology, 12 credit points of Junior Chemistry and 12 credit points of Junior Geosciences.

Planning for a Marine Geoscience major

Essential: 24 credit points of Junior Science study.

Recommended: To complete a Marine Geoscience major the minimum requirement is 24 credit points of GEOS units listed under Table 1 for marine science. It is recommended to prepare for this that a student complete 12 credit points of Junior Biology, 12 credit points of Junior Chemistry and 12 credit points of Junior Geosciences.

Planning for a Marine Science major

Essential: 24 credit points of Junior Science study.

Recommended: To complete a Marine Science major the minimum requirement is 24 credit points of GEOS or BIOL units listed under Table 1 for marine science which must include one senior BIOL unit and one senior GEOS unit. It is recommended to prepare for this that a student complete 12 credit points of Junior Biology, 12 credit points of Junior Chemistry and 12 credit points of Junior Geosciences.

Planning for a Mathematics major

12 credit points of Junior Mathematics are generally needed to enrol in Intermediate units of study in Mathematics. Students intending to major in Mathematics should take at least 12 credit points of Intermediate Mathematics.

Recommended: MATH(1001 or 1901) and MATH(1002 or 1902) and MATH(1003 or 1903 or 1907) and MATH(1004 or 1005/1905) and 36 other Junior credit points.

Mathematics in other majors

Statistics majors: must include MATH(1015 or 1005 or 1905) and MATH(1003 or 1903).

Computer Science majors: should include MATH(1005 or 1905).

Biological and other Life Science majors: should include MATH(1015 or 1005 or 1905).

Planning for a Medicinal Chemistry major

Essential: 12 credit points of Junior Chemistry and 6 credit points of Junior BIOL or MBLG.

Planning for a Microbiology major

Essential: 6 credit points of Junior BIOL, MBLG1001 and 6 credit points of Junior Chemistry.

Planning for a Nanoscience and Technology major

Recommended: A combination of Junior Physics, Junior Chemistry and Junior Mathematics

Planning for a Neuroscience major

Recommended: A combination of Junior Biology, MBLG, Junior Psychology and Junior Chemistry.

Planning for a Pharmacology major

Essential: 6 credit points of Junior BIOL/MBLG1001/MBLG1901 and 6 credit points of Junior Chemistry.

Planning for a Physics major

Essential: 12 credit points of Junior Physics are needed to enrol in Intermediate units of study in Physics.

Recommended: 12 credit points of Junior units of study in each of Physics and Mathematics (MATH1001/1901 and MATH 1002/1902 and MATH1003/1903 and 1005/1905) and 24 credit points of other Junior units of study selected in consultation with an adviser.

Students interested in Astronomy may enrol in PHYS1500. However, it should be noted that it is a general interest course and cannot be counted towards progression into Intermediate Physics.
Planning for a Physiology major

Essential: 6 credit points of Junior Chemistry and 30 credit points of Junior study from the areas of MATH, BIOL, PSYC, CHEM and PHYS.
Recommended: 12 credit points of Junior Mathematics units and 6 credit points of MBLG(1001 or 1901).

Planning a Plant Science major

Essential: 12 credit points of Junior Chemistry and 12 credit points of Junior Biology.
Recommended: 6 credit points of BIOL(1002 or 1902). Students wishing to enrol in Intermediate PLNT using BIOL(1003 or 1903) will need to do some preparatory reading.

Planning for a Psychology major

Essential: 12 credit points of Junior Psychology (PSYC1001 and PSYC1002).
Recommended: PSYC1001 and PSYC1002 and 12 credit points of Junior units of study in Mathematics including MATH1015 or 1005 or 1905 (statistics) and 12 credit points of Junior Science electives and 12 credit points of Junior electives.

Planning a major in Soil Science

Essential: 6 credit points of Junior Geoscience units.
Recommended: 6 credit points of GEOS1001 or GEOS1002.

Planning for a Statistics major

The Junior Mathematics units, MATH1005/1905 and MATH1001/1901/1906, are needed to enrol in Intermediate units of study in Statistics and one of: MATH1003/1903/1907 is required to complete a major in Statistics. Students intending to major in Statistics should take 12 credit points of Intermediate Statistics.

Statistics in other majors

Computer Science majors: Should include MATH1005/1905. Biological and other Life Science majors: should include MATH1015/1005/1905.

Bachelor of Science (BSc)

Degree code: LH000

Summary of requirements

The requirements for the degree are set out in the Senate and faculty resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. These should be consulted for any clarification of the summary points.

Enrolment guide

In your junior year you should complete:

- 12 credit points from the Science subject areas of Mathematics and Statistics
- 24 credit points of Junior units of study from at least two Science subject areas other than Mathematics and Statistics
- 12 credit points of elective units of study from Science, Arts, Economics and Business, Engineering and Information Technologies or other faculties.

To complete your degree you must gain credit for at least 144 credit points. The 144 credit points required for the degree must include:

- At least 96 credit points from Science subject areas.
- At least one major from those included in Table I (see Table I: Bachelor of Science: end of this chapter).
- At least 12 credit points from the Science subject areas of Mathematics and Statistics.
- At least 24 credit points of Junior units of study from at least two Science subject areas other than Mathematics and Statistics;
- no more than 60 credit points from Junior units of study;
- all students, notwithstanding any credit transfer, must complete at least 24 credit points of Senior Science units of study towards a major taken at the University of Sydney. A major in the BSc normally requires the completion of 24 credit points of Senior units of study in one Science area, including any units of study specified in the table of undergraduate units of study as compulsory for that major.

You should also note the following:

- A student may not count a unit of study toward more than one major.
- A maximum of 48 credit points may be counted towards the degree requirements from units of study offered by faculties other than the Faculty of Science.
- Units of study completed at the University of Sydney Summer School which correspond to units of study permitted to count to this degree may be credited towards the course requirements.
- A standard full-time enrolment is 24 credit points per semester; less than 18 credit points per semester is considered to be part-time.
- You may not enrol in more than 30 credit points in any one semester without permission.
- You may not enrol in a unit of study, before meeting any prerequisites and corequisites for that unit of study.
- Advanced units of study are indicated by a 9 (or 8) as the second digit of the unit of study code, and usually have higher entry requirements than the equivalent normal units.
- Once the award course requirements of 144 credit points have been satisfied a student may not enrol in additional units of study without first obtaining the permission of the Dean.
- If a student fails or discontinues enrolment in one unit of study twice, a warning will be issued that if the unit is failed a third time, the student may be asked to show good cause why he or she should be allowed to re-enrol in that unit of study.

Plans of study

It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program below as well as information about each major and recommended first year combinations of units of study. There is also a degree planner inside the back cover. Consultation with a faculty adviser is always recommended.

Units of study

The Science units of study available for this degree are set out in Table I: Bachelor of Science in this chapter. Unit descriptions follow in Chapter 9. You may also wish to refer to the handbooks of other faculties as the degree resolutions allow.

Honours

There will be Honours courses in all Science subject areas. Please refer to "Honours in the Faculty of Science" and "Honours units of study" in chapter 11.

Discontinuation

If you wish to discontinue a unit of study it is important to talk to staff in the Faculty Office. In some circumstances, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission

You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Transferring into the BSc

Students may transfer into the BSc from any of the streams within the BSc, with the permission of the Dean.

Australian Tertiary Admission Rank (ATAR)

The minimum ATAR for admission to the course varies each year.

Degree resolutions

See chapter 2.
Bachelor of Science (Advanced)

Degree code: LH000, **Stream:** 4

Summary of requirements

The requirements for the degree are set out in the Senate and faculty resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the resolutions are summarised below. These should be consulted for any clarification of the summary points.

Enrolment guide

In your junior year you should complete:

- 12 credit points from the Science subject areas of Mathematics and Statistics.
- 24 credit points of Junior units of study from at least two Science subject areas other than Mathematics and Statistics.
- 12 credit points of elective units of study from Science, Arts, Economics and Business, Engineering and Information Technologies or other faculties.
- No more than 48 credit points from Junior units of study.

Advanced students usually take 24 credit points of the above at the Advanced level.

To complete your degree you must satisfy the requirements outlined for the BSc and gain credit for at least 144 credit points. The 144 credit points required for the degree must include:

- at least 12 credit points of Intermediate units of study at either the Advanced level or as TSP units.
- at least 48 credit points of Senior units of study of which at least 24 credit points are completed at the Advanced level or as TSP units in a single Science subject area.
- at least 12 credit points from the Science subject areas of Mathematics and Statistics.

Progression requirements

You should note that you must maintain in intermediate and senior units of study in Science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the BSc.

Plans of study

It is important when choosing units of study at any stage of your university career that you consider your overall degree program. See the Bachelor of Science entry for information about each major and recommended first year combinations of units of study. There is a sample degree program on the next page and a degree planner inside the back cover. Consultation with a faculty adviser is always recommended.

Units of study

The Science units of study available for this degree are set out in Table I: Bachelor of Science towards the end of this chapter. Unit descriptions may be found in chapter 9. You may also wish to refer to the handbooks of other faculties as the degree resolutions allow.

Honours

There are Honours courses in all Science subject areas. Please refer to "Honours in the Faculty of Science" and "Honours units of study" in chapter 11.

Discontinuation

If you wish to discontinue a unit of study it is important to talk to staff in the Faculty Office. In some circumstances, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission

You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Transferring into the BSc (Advanced)

Students who have completed at least 48 credit points may, with the permission of the Dean, transfer to the BSc (Advanced) from the BSc or any of its streams if their mark averaged over all attempted units of study is 75 or greater, and they are able to enrol in the required number of Advanced level units or TSP units.

Australian Tertiary Admission Rank (ATAR)

The minimum ATAR for admission to the faculty varies each year.

Degree resolutions

See chapter 2.
Sample Bachelor of Science (Advanced)

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>MATH 1XXX</td>
<td>MATH 1XXX</td>
<td>Science elective A 1XXX/19XX</td>
<td>Science elective B 1XXX/19XX</td>
<td>Elective</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>Major 1 Intermediate 29XX</td>
<td>Major 2 Intermediate or Science elective 2X XX</td>
<td>Intermedlate or Senior Science elective</td>
<td>Intermediate or Senior elective</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>Major 1 39XX</td>
<td>Major 1 39XX</td>
<td>Major 2 or elective 3XXX</td>
<td>Major 2 or elective 3XXX</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Total credit points: 144

Require: 144cp total, min. 96cp Science, max. 48cp Junior, min 36cp Junior Science incl. 12cp Maths, min. 48cp Senior, min. 12cp Intermediate Advanced and/or TSP, min. 24cp Senior Advanced and/or TSP major.

Bachelor of Science (Advanced Mathematics)

Degree code: LH000, Stream: 9

Summary of requirements
The requirements for the degree are set out in the Senate and faculty resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the resolutions are summarised below. The resolutions should be consulted for any clarification of the summary points.

Enrolment guide
In your junior year you should complete:

- 12 credit points from Junior Advanced Mathematics and Statistics units of study.
- 24 credit points of Junior units of study from at least two Science subject areas other than Mathematics and Statistics.
- 12 credit points of elective units of study from Science, Arts, Economics and Business, Engineering and Information Technologies or other faculties.

Advanced students usually take 24 credit points of the above at the Advanced level.

To complete your degree you must satisfy the requirements outlined for the BSc and gain credit for at least 144 credit points. The 144 credit points required for the degree must include:

- No more than 48 credit points from junior units of study.
- At least 24 credit points of Intermediate units of study at either the Advanced level or as TSP units in the Science subject areas of Mathematics and Statistics.
- At least 48 credit points of senior units of study of which at least 24 credit points are completed at the Advanced level or as TSP units in the Science subject areas of Mathematics and Statistics.
- A major in Mathematics or Statistics at advanced level.

Progression requirements
You should note that you must maintain in intermediate and senior units of study in science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the BSc.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. See the Bachelor of Science entry for information about majors in Mathematics and Statistics and recommended first year combinations of units of study. There is a sample degree program below and a degree planner inside the back cover. Consultation with a faculty adviser is always recommended.

Units of study
The Science units of study available for this degree are set out in Table I: Bachelor of Science towards the end of this chapter. Unit descriptions may be found in chapter 9. You may also wish to refer to the handbooks of other faculties as the degree resolutions allow.

Honours
There are Honours courses in Mathematics and Statistics. Please refer to "Honours in the Faculty of Science" and "Honours units of study" in chapter 11.

Discontinuation
If you wish to discontinue a unit of study it is important to talk to staff in the Faculty Office. In some circumstances, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Transferring into the BSc (Advanced Mathematics)
Students who have completed at least 48 credit points may, with the permission of the Dean, transfer to the BSc (Advanced Mathematics) from the BSc or any of its streams if their mark averaged over all attempted units of study is 75 or greater, and they are able to enrol in the required number of Advanced level units or TSP units.

Australian Tertiary Admission rank (ATAR)
The minimum ATAR for admission to the Faculty varies each year.

Degree resolutions
See chapter 2.
Sample Bachelor of Science (Advanced Mathematics)

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>1</td>
<td>MATH 1XXX</td>
<td>MATH 1XXX</td>
<td>Science elective A 1XXX/19XX</td>
<td>Science elective B 1XXX/19XX</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MATH 1XXX</td>
<td>MATH 1XXX</td>
<td>Science elective A 1XXX/19XX</td>
<td>Science elective B 1XXX/19XX</td>
<td>Elective</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>1</td>
<td>MATH 29XX</td>
<td>MATH 29XX</td>
<td>Intermediate or Senior elective</td>
<td>Intermediate or Senior elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MATH 29XX</td>
<td>MATH 29XX</td>
<td>Intermediate or Senior elective</td>
<td>Intermediate or Senior elective</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>1</td>
<td>MATH 39XX</td>
<td>MATH 39XX</td>
<td>Major 2 or elective 3XXX</td>
<td>Major 2 or elective 3XXX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MATH 39XX</td>
<td>MATH 39XX</td>
<td>Major 2 or elective 3XXX</td>
<td>Major 2 or elective 3XXX</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total credit points:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>

Require: 144cp total, min. 96cp Science, max. 48cp Junior, min 36cp Junior Science incl. 12cp Maths, min. 48cp Senior, min. 12cp Intermediate Advanced and/or TSP, min. 24cp Senior Advanced and/or TSP major.

Combined Science/Medicine degrees

Degree codes: LH033/LH034

Summary of requirements
The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates.

A student may proceed through the degree of Bachelor of Science (Advanced) or the Bachelor of Medical Science to the degrees of Bachelor of Medicine and Bachelor of Surgery.

Enrolment guide
To qualify for the award of the degrees a student shall complete units of study to a total value of at least 336 credit points including:

- Satisfactorily completing three SMTP units in the first three years of the program;
- Meeting the requirements of the BSc (Adv) or BMedSc degree outlined above;
- Completing 192 credit points towards the MBBS degree as required by the Resolutions of the Faculty of Medicine.

Progression requirements
Students are required to maintain a minimum AAM of 65 or above and to satisfactorily complete three SMTP units of study in the first three years of the program. Students who fail to satisfy these requirements will be transferred to the BSc (Adv) or BMedSc.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. See the Bachelor of Science (Advanced) or Bachelor of Medical Science entry for information about recommended first year combinations of units of study and the sample degree program. There is a degree planner inside the back cover. Consultation with a faculty adviser is always recommended.

Units of study
The Science units of study available for this degree are set out in Table I: Bachelor of Science in this chapter and Table IV: Bachelor of Medical Science in chapter 5. Unit descriptions appear in chapter 9. The Medicine units of study available for this degree are set out in the Faculty of Medicine handbook.

Honours
Students who qualify to undertake Honours in the BSc (Adv) or BMedSc degree may elect to do so either by suspending their candidature from the MBBS degree for one year, or after completion of the combined course. Please refer to honours information in chapter 11.

Abandoning and discontinuing
Students may abandon the combined degree course and elect to complete the BSc (Adv) or BMedSc degree.

If you wish to discontinue a unit of study it is important to talk to staff in the Faculty Office. In some circumstances, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Supervision
Students will be under the general supervision of the Faculty of Science until the end of the semester in which they complete the requirements for the BSc (Adv) or BMedSc degree. After that they will be under the general supervision of the Faculty of Medicine.

Australian Tertiary Admission Rank (ATAR)
The minimum ATAR for admission into the course varies from year to year.

Degree resolutions
See chapter 2.
Table 1: Bachelor of Science

Table 1 lists units of study available to students in the Bachelor of Science and combined degrees. The units are available to students enrolled in other degrees in accordance with their degree resolutions.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For a major in Agricultural Chemistry: AGCH3025 and AGCH3026; and either (AGCH3032 and SOIL3010); or (BCHM3X72 and BCHM3X82); or 12 credit points of senior Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGCH2003</td>
<td>6</td>
<td>P 12 credit points of Junior Chemistry</td>
<td></td>
<td>N AGCH2001, AGCH2002 and CHEM2404</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGCH3025 Chemistry and Biochemistry of Foods</td>
<td>6</td>
<td>P AGCH2003 or AGCH2004 or PLNT2001 or PLNT2901 or BCHM2071 or BCHM2072 or 6 credit points of Intermediate units in Chemistry</td>
<td></td>
<td>N AFNR5102</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>AGCH3026</td>
<td>6</td>
<td>P AGCH2003 or AGCH2004 or PLNT2001 or PLNT2901 or BCHM2071 or BCHM2072 or 6 credit points of Intermediate units in Chemistry</td>
<td></td>
<td>C AGCH3025</td>
<td>N AFNR5103</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Senior units of study (compulsory for a major in Agricultural Chemistry)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGCH3032</td>
<td>6</td>
<td>P AGCH2003 or AGCH2004 or PLNT2001 or CHEM24XX or BCHM2XXX or ENVI2001</td>
<td></td>
<td>N AGCH3030, AGCH3031</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Anatomy and Histology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For a major in Anatomy and Histology, the minimum requirement is 24 credit points from any ANAT, HSTO, EMHU or NEUR Senior units of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAT2008 Principles of Histology</td>
<td>6</td>
<td>A General concepts in human biology</td>
<td></td>
<td>N ANAT2001</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANAT2009 Comparative Primate Anatomy</td>
<td>6</td>
<td>A Knowledge of basic vertebrate biology</td>
<td>36 credit points, including 12 credit points of Junior Biology (BIOL) or Junior Psychology or Junior Archaeology.</td>
<td>N ANAT2002</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ANAT2010 Concepts of Neuroanatomy</td>
<td>6</td>
<td>A Background in basic cell biology and basic mammalian biology.</td>
<td>P BIOL (1003 or 1903) and one of: ANAT2008 or BIOL (1002 or 1902) or MBLG(1001 or 1901 or 2071 or 2971) or PSYC (1001 and 1002). Students must have a grade of credit in at least one of the prerequisite units.</td>
<td>N ANAT2003</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Senior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAT3006 Forensic Osteology</td>
<td>6</td>
<td>A An understanding of basic musculoskeletal anatomy</td>
<td></td>
<td>N ANAT2008 and a credit in ANAT2009 or in ANAT2012</td>
<td>The completion of 6 credit points of MBLG is highly recommended.</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANAT3007 Visceral Anatomy</td>
<td>6</td>
<td>A General knowledge of biology.</td>
<td></td>
<td>P ANAT2009 or ANAT2010</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTO3001 Microscopy & Histochemistry Theory</td>
<td>6</td>
<td>A Basic understanding of biology.</td>
<td>P ANAT2008 or (BMED 2803 or 2804 or 2805 or 2806)</td>
<td>C HSTO3002</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTO3002 Microscopy & Histochemistry Practical</td>
<td>6</td>
<td>A Basic understanding of biology.</td>
<td>P ANAT2008 or (BMED 2803 or 2804 or 2805 or 2806)</td>
<td>C HSTO3001</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>NEUR3001 Neuroscience: Special Senses</td>
<td>6</td>
<td>A It is strongly recommended that students also take unit NEUR3002. PHSI2005 and ANAT2010 are assumed knowledge.</td>
<td>P For BMedsSc students: BMED(2801 or 2503) and BMED(2806 or 2505) For other students: (PHSI(2101 or 2001 or 2901 or 2005 or 2905) or ANAT(2003 or 2010)) and 6 credit points of MBLG.</td>
<td>N PHSI3001, NEUR3901</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>NEUR3901 Neuroscience: Special Senses (Advanced)</td>
<td>6</td>
<td>A PHSI2005 and ANAT2010</td>
<td>For BMedsSc students: Credit average in BMed(2801 or 2503) and BMed(2806 or 2505) For other students: Credit average in PHSI(2101 or 2001 or 2901 or 2005 or 2905) or ANAT(2003 or 2010) and 6 credit points of MBLG.</td>
<td>N NEUR3001, PHSI3001, PHSI3901</td>
<td>Permission from the coordinators is required for entry into this course. It is strongly recommended that students also take unit NEUR3002 or NEUR3902.</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>NEUR3002 Neuroscience: Motor Systems & Behaviour</td>
<td>6</td>
<td>A It is strongly recommended that students also take unit NEUR3001. ANAT2010 and PHSI2005 is assumed knowledge.</td>
<td>P For BMedSc students: BMED2801 and BMED2806 For other students: (PHSI(2101 or 2001 or 2901 or 2005 or 2905) or ANAT(2003 or 2010)) and 6 credit points of MBLG.</td>
<td>N</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>NEUR3002 Neuroscience: Motor Systems & Behav. Adv</td>
<td>6</td>
<td>A ANAT2010 and PHSI2005 is assumed knowledge.</td>
<td>P For BMedSc students: Credit average in BMED2801 and BMED2806 For other students: Credit average in (PHSI(2101 or 2001 or 2901 or 2005 or 2905) or ANAT(2003 or 2010)) and 6 credit points of MBLG.</td>
<td>N</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>ANAT3004 Cranial and Cervical Anatomy</td>
<td>6</td>
<td>A General knowledge of biology.</td>
<td>P ANAT2009 or ANAT2010 or BMED2803 or BMED2804 or BMED2805 or BMED2806</td>
<td>N ANAT3004</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ANAT3004 Cranial & Cervical Anatomy (Advanced)</td>
<td>6</td>
<td>P For Medical Science: Credit in BMED(2803 or 2804 or 2805 or 2806). For BSc and other students Credit in ANAT (3007 or 2010 or 2009).</td>
<td>Note: Department permission required for enrolment</td>
<td>N</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ANAT3008 Musculoskeletal Anatomy</td>
<td>6</td>
<td>A Some knowledge of basic mammalian biology</td>
<td>P ANAT2009 or ANAT2002 (for students who completed Intermediate study before 2005) or BMED2803 or BMED2804 or BMED2805 or BMED2806</td>
<td>N</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>EMHU3001 Electron Microscopy and Imaging/Theory</td>
<td>6</td>
<td>A General concepts in Biology, and in Biochemistry or in Chemistry.</td>
<td>P At least 12 cp of Intermediate Science units from any of the following: Anatomy & Histology, Biochemistry, Biology, Chemistry, Mathematics, Microbiology, Molecular Biology & Genetics, Pharmacology, Physics, Physiology or Statistics. For BMedSc students: 42 cp of BMed Intermediate units including (2801, 2802, 2803 & 2806)</td>
<td>C EMHU3001</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>HSTO3003 Cells and Development: Theory</td>
<td>6</td>
<td>A (i) An understanding of the basic structure of vertebrates; (ii) An understanding of elementary biochemistry and genetics.</td>
<td>P For BSc students: ANAT2008 For BMedSc students: 42 credit points of Intermediate BMed units, including: BMED2801, 2802, 2805.</td>
<td>C</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>HSTO3003 Cells and Development: Practical (Adv)</td>
<td>6</td>
<td>P Note: This advanced unit of study is only available to select students who have achieved a mark of 65 or above in the following prerequisite units of study, For BSc students: ANAT2008. For BMedSc students: 42 credit points of Intermediate BMed units, including: BMED2801, 2802, 2805.</td>
<td>C HSTO3003</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NEUR3003 Cellular and Developmental Neuroscience</td>
<td>6</td>
<td>A Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain.</td>
<td>P For BMEDSci: 42 credit points of intermediate BMed units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology & Genetics, Physiology, Psychology or Statistics.</td>
<td>N NEUR3003, PHSI3002, PHSI3902</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>NEUR3003 Cellular & Developmental Neurosci. (Adv)</td>
<td>6</td>
<td>A Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain.</td>
<td>P For BMEDSci: 42 credit points of intermediate BMed units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology & Genetics, Physiology, Psychology or Statistics. Plus, students must have a CREDIT (or better) in NEUR3001/3901 and NEUR3002/3902.</td>
<td>N NEUR3003, PHSI3002, PHSI3902</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>NEUR3004 Integrative Neuroscience</td>
<td>6</td>
<td>A Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain.</td>
<td>P For BMEDSci: 42 credit points of intermediate BMed units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology & Genetics, Physiology, Psychology or Statistics.</td>
<td>N NEUR3003, PHSI3002, PHSI3902</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>NEUR3004 Integrative Neuroscience (Advanced)</td>
<td>6</td>
<td>A Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain.</td>
<td>P For BMEDSci: 42 credit points of intermediate BMed units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology & Genetics, Physiology, Psychology or Statistics. Plus, students must have a CREDIT (or better) in NEUR3001/3901 and NEUR3002/3902.</td>
<td>N NEUR3003, PHSI3002, PHSI3902</td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>

For other NEUR units, see the Physiology subject area entry in this table.
Biochemistry

For a major in Biochemistry, the minimum requirement is 24 credit points from senior units of study listed in this subject area.

Intermediate units of study

The completion of 6 credit points of MBLG units of study is highly recommended.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCHM2071 Protein Biochemistry</td>
<td>6</td>
<td>A CHEM (1101 and 1102)</td>
<td>P 12 credit points of Junior Chemistry and MBLG (1001 or 1001)</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM2971 Protein Biochemistry (Advanced)</td>
<td>6</td>
<td>A CHEM (1101 and 1102)</td>
<td>P 12 credit points of Junior Chemistry and Distinction in MBLG1001 or MBLG1901</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM2072 Human Biochemistry</td>
<td>6</td>
<td>P Either MBLG (1001 or 1001) and 12 credit points of Junior Chemistry or either MBLG2071 or MBLG2971</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM2972 Human Biochemistry (Advanced)</td>
<td>6</td>
<td>P Distinction in one of BCHM (2071 or 2971) or MBLG(2071 or 2971)</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior units of study

For a major in Biochemistry, the minimum requirement is 24 credit points from senior units of study listed in this subject area.

Bioinformatics

For a major in Bioinformatics, students must complete a minimum of 24 credit points from senior units of study in the Life Sciences, Statistics, and Information Technologies, including:

- A: least one of BIOL3027 or BIOL3927 or BCHM3092 or BCHM3992
- B: at least one of STAT3012 or STAT3912 or STAT3014 or STAT3914
- C: COMP3456
- D: BINF3101

For further information on how to prepare for a major in Bioinformatics, please consult the Faculty of Science's web page [http://www.science.usyd.edu.au/student/undergrad/course/]

Bioinformatics major (A) units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3027 Bioinformatics and Genomics</td>
<td>6</td>
<td>P 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

50
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3927 Bioinformatics and Genomics (Advanced)</td>
<td>6</td>
<td>P Distinction average in 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMedSc students: 36 credit points of Intermediate MBLG units including Distinction in MBLG2980.</td>
<td>N BIOL3907</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM3092 Proteomics and Functional Genomics</td>
<td>6</td>
<td>P MBLG (1001 or 1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972) or 42CP of Intermediate BMedSc units, including BMED2802 and BMED2804.</td>
<td>N BCHM3992, BCHM3998</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM3992 Proteomics and Functional Genomics (Adv)</td>
<td>6</td>
<td>P MBLG (1001 or 1901) and Distinction in 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972) or 42CP of Intermediate BMedSc units, with Distinction in BMED2802 and BMED2804.</td>
<td>N BCHM3992, BCHM3998</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioinformatics major (B) units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT3012 Applied Linear Models</td>
<td>6</td>
<td>P STAT(2012 or 2912 or 2004) and MATH(1002 or 1014 or 1902).</td>
<td>N STAT3912, STAT3902, STAT3904, STAT3906</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT3912 Applied Linear Models (Advanced)</td>
<td>6</td>
<td>P (STAT2912 or Credit in STAT2004 or Credit in STAT2012) and MATH(2061 or 2961 or 1902).</td>
<td>N STAT3912, STAT3902, STAT3904, STAT3906</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT3014 Applied Statistics</td>
<td>6</td>
<td>A STAT(3012 or 3912).</td>
<td>STAT(3012 or 3912).</td>
<td>STAT(3012 or 3912).</td>
<td>STAT(3012 or 3912).</td>
<td>Semester 2</td>
</tr>
<tr>
<td>STAT3914 Applied Statistics Advanced</td>
<td>6</td>
<td>A STAT3912 or credit or better in (STAT2004 or STAT2012).</td>
<td>N STAT3914, STAT3902, STAT3906, STAT3907</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bioinformatics major (C) unit of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3456 Computational Methods for Life Sciences</td>
<td>6</td>
<td>P INFO1105 and (COMP2007 or INFO2120) and 6 credit points from BIOL or MBLG</td>
<td>N INFO1105, INFO1110</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For a major in Biology, the minimum requirement is 24 credit points from senior BIOL units of study listed in this subject area. Senior PLNT units and BIOL3008/3909, 3917/3917 may be counted towards a major in Biology or Plant science, not both.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1001 Concepts in Biology</td>
<td>6</td>
<td>A None. However, students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February).</td>
<td>N BIOL1911</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1911 Concepts in Biology (Advanced)</td>
<td>6</td>
<td>P 80+ in HSC 2-unit Biology (or equivalent) or Distinction or better in a University level Biology unit, or by invitation.</td>
<td>N BIOL1001</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1003 Human Biology</td>
<td>6</td>
<td>A HSC 2-unit Biology. Students who have not completed HSC biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February).</td>
<td>N BIOL1903, EDUH1016.</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1903 Human Biology (Advanced)</td>
<td>6</td>
<td>P UAI (or ATAR equivalent) of at least 93 and HSC Biology result in the 90+, or Distinction or better in a University level Biology unit, or by invitation.</td>
<td>N BIOL1003, EDUH1016</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1002 Living Systems</td>
<td>6</td>
<td>A HSC 2-unit Biology. Students who have not completed HSC biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February).</td>
<td>N BIOL1902</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1902 Living Systems (Advanced)</td>
<td>6</td>
<td>P UAI (or ATAR equivalent) of at least 93 and HSC Biology result in the 90+, or Distinction or better in a University level Biology unit, or by invitation.</td>
<td>N BIOL1002</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The completion of 6 credit points of MBLG units of study is highly recommended.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2011 Invertebrate Zoology</td>
<td>6</td>
<td>A BIOL (1002 or 1902).</td>
<td>P BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for students in the BSc(Marine Science) stream: 6 credit points of Junior Chemistry and 6 credit points of Junior Physics).</td>
<td>N BIOL2911</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>BIOL2911 Invertebrate Zoology (Advanced)</td>
<td>6</td>
<td>A BIOL (1002 or 1902), P Distinction average in BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for students in BSc[Marine Science] stream: 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). These requirements may be varied and students with lower averages should consult the Unit Executive Officer. N BIOL2011.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2016 Cell Biology</td>
<td>6</td>
<td>P 12 credit points of Junior Biology, e.g. any combination of 2 units made from the following options, BIOL (1001 or 1911), BIOL (1002 or 1902), BIOL (1003 or 1903), MBLG (1001 or 1901), EDUH1016, and 12 credit points of Junior Chemistry. For students in the BSc (Marine Science) 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics. N BIOL2016.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2916 Cell Biology (Advanced)</td>
<td>6</td>
<td>P Distinction average in 12 credit points of Junior Biology or equivalent, e.g. any combination of 2 units made from the following options, BIOL (1001 or 1911), BIOL (1002 or 1902), BIOL (1003 or 1903), MBLG (1001 or 1901), EDUH1016, and 12 credit points of Junior Chemistry. For students in the BSc (Marine Science) 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics. N BIOL2016.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLNT2001 Plant Biochemistry and Molecular Biology</td>
<td>6</td>
<td>P 12 credit points of Junior Chemistry and 12 credit points of Junior Biology (or with the Dean's permission BIOL 1200 and BIOL 1205)</td>
<td>N PLNT2901, AGCH2001</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLNT2901 Plant Biochem & Molecular Biology (Adv)</td>
<td>6</td>
<td>P Distinction average in 12 credit points of Junior Chemistry and 12 credit points of Junior Biology (or with the Dean's permission BIOL1201 and BIOL1202)</td>
<td>N PLNT2001, AGCH2001</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLNT2002 Aust Flora: Ecology and Conservation</td>
<td>6</td>
<td>P 6 credit points of a Junior unit of study</td>
<td>N PLNT2902</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLNT2902 Aust Flora: Ecology & Conservation (Adv)</td>
<td>6</td>
<td>A The contents of BIOL1002 or 1902) is assumed knowledge. Students wishing to enroll in Intermediate Biology (BIOL and Plant Science (PLNT) units of study using BIOL1003 or 1903) will need to do some preparatory reading</td>
<td>P Distinction average in 6 credit points of Junior units of study</td>
<td>N PLNT2902</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>ENVI2111 Conservation Biology and Applied Ecology</td>
<td>6</td>
<td>P BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and 6 credit points of Junior Physics).</td>
<td>N ENVI2291, ENVI2201</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVI2911 Conservation Biol & Applied Ecology Adv</td>
<td>6</td>
<td>P Distinction average in BIOL (1001 or 1911 or 1101 or 1901) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for BSc [Marine Science] students 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). These requirements may be varied and students with lower averages should consult the Unit Executive Officer.</td>
<td>N ENVI2111, ENVI2201</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2012 Vertebrates and their Origins</td>
<td>6</td>
<td>A The content of BIOL (1002 or 1902) is assumed knowledge and students who have not completed BIOL (1002 or 1902) will need to do some preparatory reading. P BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for students in the BSc [Marine Science] stream: 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). N BIOL 2912.</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2912 Vertebrates and their Origins (Advanced)</td>
<td>6</td>
<td>A The content of BIOL (1002 or 1902) is assumed knowledge and students who have not completed BIOL (1002 or 1902) will need to do some preparatory reading. P Distinction average in BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for students in the BSc [Marine Science] stream: 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). These requirements may be varied and students with lower averages should consult the Unit Executive Officer N BIOL2012. The completion of MBLG1001 is highly recommended.</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2017 Entomology</td>
<td>6</td>
<td>A BIOL (2011 or 2911), P BIOL (1001 or 1911 or 1101 or 1901) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics. N BIOL2917.</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2917 Entomology (Advanced)</td>
<td>6</td>
<td>A BIOL (2011 or 2911), P Distinction average in BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for BSc [Marine Science] students: 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics. These requirements may be varied and students with lower averages should consult the Unit Executive Officer. N BIOL2017.</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2018 Introduction to Marine Biology</td>
<td>6</td>
<td>A 12 credit points of Junior Biology: MARS2005, P BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for BSc [Marine Science] students 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics). N BIOL2918, MARS (2006 or 2906 or 2007).</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>BIOL2918 Introduction to Marine Biology (Adv)</td>
<td>6</td>
<td>A 12 credit points of Junior Biology</td>
<td>P Distinction average in BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for BSc (Marine Science) students, 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics. These requirements may be varied and students with lower averages should consult the Unit Executive Officer.</td>
<td>N BIOL2018, MARS (2006 or 2906 or 2007 or 2907). Entry is restricted and selection is made from applicants on the basis of previous performance.</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>PLNT2003 Plant Form and Function</td>
<td>6</td>
<td>A 12 credit points of Junior Biology, or equivalent eg BIOL (1001 or 1101 or 1901 or 1111) and BIOL (1002 or 1902 or 1003 or 1903) PLNT2903, BIOL2003, BIOL2903, CROP2001</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLNT2903 Plant Form and Function (Advanced)</td>
<td>6</td>
<td>A 12 credit points of Junior Biology, or equivalent eg BIOL (1001 or 1101 or 1901 or 1111) and BIOL (1002 or 1902 or 1003 or 1903)</td>
<td>N PLNT2003, BIOL2003, BIOL2903, CROP2001</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior units of study

BIOL3010 Tropical Wildlife Biology and Management	6	A None, although BIOL2012/2912 (Vertebrates and Their Origins) would be useful.	P 12 credit points of Intermediate Biology (BIOL/ENVI/PLNT), or equivalent.	N BIOL3910 Dates: 14 February - 19 February 2010 Northern Territory, followed by tutorials and practical classes at the University of Sydney 22 February - 26 February 2010.	Semester 1
BIOL3910 Tropical Wildlife Biol & Management Adv	6	A None, although BIOL2012/2912 (Vertebrates and their Origins) would be useful.	P Distinction average in 12 credit points of Intermediate Biology (BIOL/ENVI/PLNT).	N BIOL3910 Note: Department permission required for enrolment Dates: 14 - 19 February 2010 Northern Territory followed by tutorials and practical classes at the University of Sydney 22 - 26 February 2010.	Semester 1
BIOL3017 Fungi in the Environment	6	P 12 credit points of Intermediate Biology or Plant Science, or 6 credit points of Intermediate Biology, or Plant Science, and 6 Intermediate credit points of either Microbiology or Geography.	N BIOL3917 Dates: 15-26 February 2010. The completion of 6 credit points of MBLG units is highly recommended.	Semester 1	
BIOL3917 Fungi in the Environment (Advanced)	6	P Distinction average in 12 credit points of Intermediate Biology and Plant Science, or 6 credit points of Intermediate Biology, or Plant Science, and 6 Intermediate credit points of either Microbiology or Geography.	N BIOL3917 The completion of 6 credit points of MBLG units is highly recommended.	Semester 1	
BIOL3006 Ecological Methods	6	A BIOL (2011 or 2911 or 2012 or 2912) or PLNT (2002 or 2902)	P 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL units and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.	N BIOL3906, MARS3102	Semester 1
BIOL3906 Ecological Methods (Advanced)	6	A BIOL (2011 or 2911 or 2012 or 2912) or PLNT (2002 or 2902).	P Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006. These requirements may be varied and students with lower averages should consult the Unit Executive Officer.	N BIOL3906, MARS3102	Semester 1
BIOL3011 Ecophysiology	6	A BIOL (2012 or 2912 or 2016 or 2916) or PLNT (2003 or 2903).	P 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.	N BIOL3911 The completion of 6 credit points of MBLG units is highly recommended.	Semester 1
BIOL3911 Ecophysiology (Advanced)	6	A BIOL (2012 or 2912 or 2016 or 2916) or PLNT (2003 or 2903).	P Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.	N BIOL3911 The completion of 6 credit points of MBLG units is highly recommended.	Semester 1
BIOL3012 Animal Physiology	6	P 12 credit points of Intermediate Biology including BIOL (2012 or 2912 or 2016 or 2916) or PLNT (2003 or 2903)	N BIOL3912 The completion of 6 credit points of MBLG units is highly recommended.	Semester 1	
BIOL3912 Animal Physiology (Advanced)	6	P Distinction average in 12 credit points of Intermediate Biology including BIOL (2012 or 2912 or 2016 or 2916) or PLNT (2003 or 2903). These requirements may be varied and students with lower averages should consult the Unit Executive Officer.	N BIOL3912 The completion of 6 credit points of MBLG units is highly recommended.	Semester 1	
BIOL3013 Marine Biology	6	A BIOL 2018 or MARS2006	P 12 credit points of Intermediate Biology, or 6 credit points of Intermediate BIOL and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.	N BIOL3913 The completion of 6 credit points of MBLG units is highly recommended.	Semester 1
BIOL3913 Marine Biology (Advanced)	6	A BIOL2018 or MARS2006	P Distinction in average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.	N BIOL3913 The completion of 6 credit points of MBLG units is highly recommended.	Semester 1
BIOL3018 Applications of Recombinant DNA Tech	6	P 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMEDSc students: 36 credit points of Intermediate BMED units including BMED2802.	N BIOL3918	Semester 1	
BIOL3918 Applications of Recombinant DNA Tech Adv	6	P Distinction in average in 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMEDSc students: 36 credit points of Intermediate BMED units including Distinction in BMED2802.	N BIOL3918	Semester 1	
### Unit of study	Credit points	A: Assumed knowledge	P: Prerequisites	C: Corequisites	N: Prohibition	Session
B I O L 3 0 2 7 Bioinformatics and Genomics	6	P 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMEDSc students: 36 credit points of Intermediate BMED units including BMED 2802.				Semester 1
	N BIOL3927					
B I O L 3 9 2 7 Bioinformatics and Genomics (Advanced)	6	P Distinction average in 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMEDSc students: 36 credit points of Intermediate BMED units including Distinction in BMED2802.				Semester 1
	N BIOL3927					
P L N T 3 0 0 3 Systematics and Evolution of Plants	6	P 6 credit points of any Intermediate unit of study from BIOL, PLNT, LWSC, HORT, GEOS, GEOG, ENVI, SOIL.				Semester 1
	N PLNT3903, BIOL3015/3915.					
P L N T 3 9 0 3 Systematics and Evolution of Plants Adv	6	P Distinction average in 6 credit points of any Intermediate unit of study from BIOL, PLNT, LWSC, HORT, GEOS, GEOG, ENVI, SOIL. These requirements may be varied and students with lower averages should consult the Unit Executive Officer.				Semester 1
	N PLNT3003, BIOL3015/3915.					
B I O L 3 0 0 8 Marine Field Ecology	6	A BIOL (3006 or 3906). Prior completion of one of these units is very strongly recommended.	P 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.			Semester 2
	N BIOL3908, MARS3102.					
B I O L 3 9 0 8 Marine Field Ecology (Advanced)	6	A BIOL (3006 or 3906). Prior completion of one of these units is very strongly recommended.	P Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate Biology and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.			Semester 2
	N BIOL3908, MARS3102.					
B I O L 3 0 0 9 Terrestrial Field Ecology	6	A BIOL (3006 or 3906). Prior completion of one of these units is very strongly recommended.	P Distinction average in 12 credit points of Intermediate Biology or ANSC2004 and BIOM2001			Semester 2
	N BIOL3909					
B I O L 3 9 0 9 Terrestrial Field Ecology (Advanced)	6	A BIOL (3006 or 3906). Prior completion of one of these units is very strongly recommended.	P Distinction average in 12 credit points of Intermediate Biology or ANSC2004 and BIOM2001			Semester 2
	N BIOL3909					
B I O L 3 0 0 7 Ecology	6	A Although not prerequisites, knowledge obtained from BIOL3006/3906, and BIOL3008/3908	P 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL, and ENVI2111 or MARS2006; or 12 credit points of MARS units, including MARS2006.			Semester 2
and/or BIOL3009/3909, is strongly recommended.	N BIOL3907, MARS3102					
B I O L 3 9 0 7 Ecology (Advanced)	6	A Although not prerequisites, knowledge obtained from BIOL3006/3906, and BIOL3008/3908	P 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL, and ENVI2111 or MARS2006; or 12 credit points of MARS units, including MARS2006.	and/or BIOL3009/3909, is strongly recommended.	Students entering this unit of study should have achieved Distinction average.	Semester 2
	N BIOL3907, MARS3102					
B I O L 3 0 2 5 Evolutionary Genetics & Animal Behaviour	6	P 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMEDSc students: 36 credit points of Intermediate BMED units including BMED2802.				Semester 2
	N BIOL3925					
B I O L 3 9 2 5 Evolutionary Gen. & Animal Behaviour Adv	6	P Distinction average in 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMEDSc students: 36 credit points of Intermediate BMED units including Distinction in BMED2802.				Semester 2
	N BIOL3925					
B I O L 3 0 2 6 Developmental Genetics	6	P 12 credit points from MBLG (2071/2971) and MBLG (2072/2972), For BMEDSc students: 36 credit points of Intermediate BMED units including BMED2802.				Semester 2
	N BIOL3926					
B I O L 3 9 2 6 Developmental Genetics (Advanced)	6	P Distinction average in 12 credit points from MBLG (2071/2971), and MBLG (2072/2972), For BMEDSc students: 36 credit points of Intermediate BMED units including Distinction in BMED2802.				Semester 2
	N BIOL3026					

Cell Pathology

For a major in Cell Pathology, the minimum requirement is 24 credit points from:

(i) CPRAT3201 and CPRAT3202; and

(ii) any two of the listed senior units of study

Senior units of study

The completion of 6 credit points of MBLG units of study is highly recommended.

Unit of study	Credit points	A: Assumed knowledge	P: Prerequisites	C: Corequisites	N: Prohibition	Session
C P R A T 3 2 0 1 Pathogenesis of Human Disease 1	6	P At least 6cp intermediate of one of the following: ANAT or BCHM or MBLG or BIOL or HPSC				Semester 2
	and/or FCCL or PHSI, or as the head of department determines.	C CPRAT3201				
C P R A T 3 2 0 2 Pathogenesis of Human Disease 2	6	P At least 6cp intermediate of one of the following: ANAT or BCHM or MBLG or BIOL or HPSC				Semester 2
and/or FCCL or PHSI, or as the head of department determines.	C CPRAT3201					
H S T O 3 0 0 1 Microscopy & Histochemistry Theory	6	A Basic understanding of biology.	P ANAT2008 or (BMED 2803 or 2804 or 2805 or 2806)	C HSTO30002		Semester 1
H S T O 3 0 0 2 Microscopy & Histochemistry Practical | 6 | A Basic understanding of biology. | P ANAT2008 or (BMED 2803 or 2804 or 2805 or 2806) | C HSTO30001 | | Semester 1

54
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSTO3003 Cells and Development: Theory</td>
<td>6</td>
<td>A (i) An understanding of the basic structure of vertebrates; (ii) An understanding of elementary biochemistry and genetics.</td>
<td>P For BSc students: ANAT2008 For BMedSc students: 42 credit points of Intermediate BMED units, including: BMED2801, 2802, 2805.</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HSTO3004 Cells and Development: Practical (Adv)</td>
<td>6</td>
<td>P Note: This advanced unit of study is only available to select students who have achieved a mark of 65 or above in the following prerequisite units of study. For BSc students: ANAT2008. For BMedSc students: 42 credit points of Intermediate BMED units, including: BMED2801, 2802, 2805.</td>
<td>C HSTO3003</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM3971 Molecular Biology & Biochemistry-Genes (Adv)</td>
<td>6</td>
<td>P MBLG (1001 or 1901) and 12 CP of Intermediate BMED/MBLG units (taken from MBLG2071/2971 or BMED2072/2972) or 42CP of Intermediate BMedSc units, including MBLG2072/2972 and BMED2804. N BCHM3971, BCHM3001, BCHM3901</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM3971 Molecular Biology & Biochem- Genes (Adv)</td>
<td>6</td>
<td>P MBLG (1001 or 1901) and Distinction in 12 CP of Intermediate BMED/MBLG units (taken from MBLG2071/2971 or BMED2072/2972) or 42CP of Intermediate BMedSc units, with Distinction in BMED2802 and BMED2804. N BCHM3071, BCHM3001, BCHM3901</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM3972 Human Molecular Cell Biology (Advanced)</td>
<td>6</td>
<td>P MBLG (1001 or 1901) and 12 CP of Intermediate BMED/MBLG units (taken from MBLG2071/2971 or BMED2072/2972) or 42CP of Intermediate BMedSc units, including MBLG2072/2972 and BMED2804. N MBLG3999</td>
<td>C MBLG3999, BCHM3002, BCHM3004, BCHM3902, BCHM3904</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM3981 Mol Biology & Biochemistry-Proteins Adv</td>
<td>6</td>
<td>P MBLG (1001 or 1901) and 12 CP of Intermediate BMED/MBLG units (taken from MBLG2071/2971 or BMED2072/2972) or 42CP of Intermediate BMedSc units, with Distinction in BMED2802 and BMED2804. N BCHM3081, BCHM3001, BCHM3901</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM3982 Medical and Metabolic Biochemistry</td>
<td>6</td>
<td>P MBLG (1001 or 1901) and 12 CP of Intermediate BMED/MBLG units (taken from MBLG2071/2971 or BMED2072/2972) or 42CP of Intermediate BMedSc units, including MBLG2072/2972 and BMED2804. N MBLG3982, MBLG3002, MBLG3004, BHCM3902. BCHM3904</td>
<td>BCHSc/BSc(Nutrition) students successfully progressing though the combined degree meet the pre-requisites for this unit of study</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICR3011 Microbes in Infection</td>
<td>6</td>
<td>P At least 6 credit points of MBLG units and MIC (2022 or 2922 or 2902 or 2902). For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2807 and 2808). For BScAgr students: PLNT (2001 or 2001) and MICR (2022 or 2022). N MICR3911, MICR3001, MICR3901</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICR3911 Microbes in Infection (Advanced)</td>
<td>6</td>
<td>P At least 6 credit points of MBLG units and Distinction in MIC (2022 or 2922 or 2002 or 2902). For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2807 or 2808) with a Distinction in one of these two. For BScAgr students: PLNT (2001 or 2001) and MICR (2022 or 2922) including one Distinction. N MICR3011, MICR3001, MICR3901</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICR3912 Molecular Biology of Pathogens (Adv)</td>
<td>6</td>
<td>P At least 6 credit points of MBLG units and MICR (2022 or 2922 or 2002 or 2902). For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2802 or 2807 or 2808) with a Distinction in one of these three. For BScAgr students: PLNT (2001 or 2001) and MICR2024 including one Distinction. N MICR3012, MICR3002, MICR3004, MICR3003, MICR3004, MICR3004</td>
<td></td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICR3922 Microbial Biotechnology</td>
<td>6</td>
<td>P At least 6 credit points of MBLG units and 6 credit points of Intermediate MICR units. For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2802 and 2807). For BScAgr students: PLNT (2001 or 2001) and MICR2024. N MICR3022, MICR3002, MICR3902</td>
<td></td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICR3922 Microbial Biotechnology (Advanced)</td>
<td>6</td>
<td>P At least 6 credit points of MBLG units and 6 credit points of Intermediate MICR units. For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2802 and 2807) with a Distinction in at least one of these two. For BScAgr students: PLNT (2001 or 2001) and MICR2024 including one Distinction. N MICR3022, MICR3002, MICR3902</td>
<td></td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHSI3005 Human Cellular Physiology: Theory</td>
<td>6</td>
<td>A 6 credit points of MBLG</td>
<td>P Except for BMedSc students: PHSI(2005 or 2905) and PHSI(2006 or 2906) For BMedSc: BMED (2801 and 2802). N PHSI3005, PHSI3004, PHSI3004. It is highly recommended that this unit of study be taken in conjunction with PHSI3006.</td>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHSI3905 Human Cellular Physiology: Theory</td>
<td>6</td>
<td>A 6 credit points of MBLG</td>
<td>P Credit average in PHSI(2005 or 2905) and PHSI(2006 or 2906) or in BMED (2801 and 2802). Students enrolling in this unit should have a WAM of at least 70. N PHSI3005, PHSI3004, PHSI3004. Note: Department permission required for enrolment. It is highly recommended that this unit of study be taken in combination with PHSI3006.</td>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHSI3006 Human Cellular Physiology: Research</td>
<td>6</td>
<td>P Except for BMedSc students: PHSI (2005 or 2905) and PHSI (2006 or 2906) For BMedSc: BMED (2801 and 2802).</td>
<td>C PHSI3005, N PHSI3006, PHSI3004, PHSI3004</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>PHSI3906 Human Cellular Physiology (Ad): Research</td>
<td>6</td>
<td>A 6 credit points of MBLG</td>
<td>P PHSI (2003 or 2005) and PHSI2006 or 2006 or in BMED (2801 and 2802). Students enrolling in this unit should have a WAM of at least 70. C PHSI3905</td>
<td>N PHSI3006, PHSI3004, PHSI3904 Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Information on these units may be found under the relevant teaching department entries.

Chemistry

For a major in chemistry, the minimum requirement is 24 credit points from senior units of study listed in this subject area, which must include the associated laboratory units.

Junior units of study

<table>
<thead>
<tr>
<th>CHEM1001 Fundamentals of Chemistry 1A</th>
<th>6</th>
<th>A There is no assumed knowledge of chemistry for this unit of study, but students who have not undertaken an HSC chemistry course are strongly advised to complete a chemistry bridging course before lectures commence.</th>
<th>N CHEM1101, CHEM1002, CHEM1108, CHEM1902, CHEM1904</th>
<th></th>
<th></th>
<th>Semester 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1002 Fundamentals of Chemistry 1B</td>
<td>6</td>
<td>P CHEM (1001 or 1101) or equivalent</td>
<td>N CHEM1102, CHEM1108, CHEM1902, CHEM1904</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHEM1101 Chemistry 1A</td>
<td>6</td>
<td>A HSC Chemistry and Mathematics</td>
<td>C Recommended concurrent units of study: 6 credit points of Junior Mathematics</td>
<td>N CHEM1001, CHEM1109, CHEM1901, CHEM1903</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHEM1102 Chemistry 1B</td>
<td>6</td>
<td>P CHEM (1101 or 1901) or a Distinction in CHEM1001 or equivalent</td>
<td>C Recommended concurrent units of study: 6 credit points of Junior Mathematics</td>
<td>N CHEM1002, CHEM1108, CHEM1902, CHEM1904</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHEM1901 Chemistry 1A (Advanced)</td>
<td>6</td>
<td>P UAI (or ATAR equivalent) of at least 95 and HSC Chemistry result in band 5 or 6, or Distinction or better in a University level Chemistry unit, or by invitation</td>
<td>C Recommended concurrent unit of study: 6 credit points of Junior Mathematics</td>
<td>N CHEM1001, CHEM1101, CHEM1109, CHEM1901</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHEM1902 Chemistry 1B (Advanced)</td>
<td>6</td>
<td>P CHEM (1901 or 1903) or Distinction in CHEM1101 or equivalent</td>
<td>C Recommended concurrent unit of study: 6 credit points of Junior Mathematics</td>
<td>N CHEM1002, CHEM1102, CHEM1108, CHEM1904</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHEM1903 Chemistry 1A (Special Studies Program)</td>
<td>6</td>
<td>P UAI (or ATAR equivalent) of at least 88.7 and HSC Chemistry result in Band 6</td>
<td>C Recommended concurrent unit of study: 6 credit points of Junior Mathematics</td>
<td>N CHEM1001, CHEM1101, CHEM1109, CHEM1901</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHEM1904 Chemistry 1B (Special Studies Program)</td>
<td>6</td>
<td>P Distinction in CHEM1903</td>
<td>C Recommended concurrent unit of study: 6 credit points of Junior Mathematics</td>
<td>N CHEM1002, CHEM1102, CHEM1108, CHEM1902</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Intermediate units of study

CHEM2401 Molecular Reactivity and Spectroscopy	6	P CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics.	N CHEM1101, CHEM1201, CHEM2301, CHEM2301, CHEM2501, CHEM2901, CHEM2903, CHEM2915.	This is a required chemistry unit of study for students intending to major in chemistry.		Semester 1
CHEM2911 Molecular Reactivity & Spectroscopy Adv	6	P Credit average or better in CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics.	N CHEM1101, CHEM1201, CHEM2301, CHEM2301, CHEM2501, CHEM2901, CHEM2903, CHEM2915.			Semester 1
CHEM2915 Molecular Reactivity & Spectroscopy SSP	6	P By invitation. High WAM and a Distinction average in CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics.	N CHEM1101, CHEM1201, CHEM2301, CHEM2301, CHEM2401, CHEM2502, CHEM2901, CHEM2903, CHEM2911.	Note: Department permission required for enrolment	The number of places in this unit of study is strictly limited and entry is by invitation only. Enrolment is conditional upon available places.	Semester 1
CHEM2402 Chemical Structure and Stability	6	P CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics.	N CHEM1102, CHEM2302, CHEM2902, CHEM2912, CHEM2916.	This is a required chemistry unit of study for students intending to major in chemistry.		Semester 2
CHEM2912 Chemical Structure and Stability (Adv)	6	P Credit average or better in CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics.	N CHEM1102, CHEM2302, CHEM2402, CHEM2902, CHEM2916.			Semester 2
CHEM2916 Chemical Structure and Stability (SSP)	6	P By invitation. High WAM and a Distinction average in CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics.	N CHEM2202, CHEM2302, CHEM2402, CHEM2902, CHEM2912.	Note: Department permission required for enrolment	The number of places in this unit of study is strictly limited and entry is by invitation only. Enrolment is conditional upon available places.	Semester 2
CHEM2404 Forensic and Environmental Chemistry	6	P 12 credit points of Junior Chemistry; 6 credit points of Junior Mathematics.	N CHEM1307, CHEM3197		To enrol in Senior Chemistry students are required to have completed CHEM (2401 or 2911 or 2915) and CHEM (2402 or 2912 or 2916), Students are advised that combinations of Intermediate Chemistry units that do not meet this requirement will generally not allow progression to Senior Chemistry.	Semester 1
Mathematical Computing

- **Scientific Computing (Advanced)**
 - **MATH3076**
 - **COSC3911**

Scientific Computing

- **Computational Science in C (Adv)**
 - **COSC3011**

Senior core units of study

- **Computational Science in C**
 - **COSC1902**
 - **COSC1002**

Intermediate units in Science subject areas

- **Surfaces**
 - **CHEM3917**

Computational Science

For a major in Computational Science the minimum requirement is 24 credit points chosen from the core or elective senior units of study listed for this subject area, of which at least 12 credit points are from the core senior units of study.

Junior units of study

- **COSC1001**
 - **Computational Science in Matlab**

- **COSC1901**
 - **Synthetic Medicinal Chemistry**

- **COSC3002**
 - **Computational Science in C**

Senior core units of study

- **Scientific Computing**
 - **COSC3011**
 - **COSC3911**

- **Mathematical Computing**
 - **MATH3076**
Unit of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3976</td>
<td>6</td>
<td>P 12 credit points of Intermediate Mathematics and one of MATH(1903 or 1907) or Credit in MATH1003</td>
<td>N MATH3007, MATH3016, MATH3016</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Senior elective units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BINF3101</td>
<td>6</td>
<td>A INFO2115 and (INFO1023 or INFO1903)</td>
<td>P 12 credit points from Intermediate Biology, Molecular Biology and Genetics, Biochemistry, Microbiology, Pharmacology</td>
<td>N COMP3206, BINF3001, INFO3600, SOFT3300, SOFT3600, SOFT3200, SOFT3700</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BIOC3006</td>
<td>6</td>
<td>A BIOL (2011 or 2011 or 2012 or 2012) or PLNT (2002 or 2002).</td>
<td>P 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL units and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N BIOL3906, MARS3102</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BIOC3906</td>
<td>6</td>
<td>A BIOL (2011 or 2011 or 2012 or 2012) or PLNT (2002 or 2002).</td>
<td>P Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006. These requirements may be varied and students with lower averages should consult the Unit Executive Officer.</td>
<td>N BIOL3907, MARS3102</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BIOC3027</td>
<td>6</td>
<td>A BIOL credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMedSc students: 36 credit points of Intermediate BMED units including BMED 2802.</td>
<td></td>
<td>N BIOL3927</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BIOC3927</td>
<td>6</td>
<td>A BIOL credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMedSc students: 36 credit points of Intermediate BMED units including Distinction in BMED2802.</td>
<td></td>
<td>N BIOL3927</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP3308</td>
<td>6</td>
<td>A COMP2007</td>
<td>N COMP (3600 or 3902)</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP3608</td>
<td>6</td>
<td>P Distinction-level results in some 2nd year COMP or MATH or SOFT units.</td>
<td>N COMP (3300 or 3902)</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP3565</td>
<td>6</td>
<td>A INFO105 and (COMP2007 or INFO2120) and 6 credit points from BIOL or MBLG.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3009</td>
<td>6</td>
<td>P (6 credit points of Intermediate Geoscience units) and (6 credit points of Intermediate Geosciences or 6 credit points of Physics or Mathematics or Information Technology or Engineering units) or (MARS2005 or MARS2905) or (MARS2006 or MARS2906)</td>
<td>A GEOS3909, MARS3003, MARS3105</td>
<td>N GEO3909, MARS3003, MARS3105</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MATH3063</td>
<td>6</td>
<td>A MATH2061</td>
<td>P 12 credit points of Intermediate Mathematics</td>
<td>N MATH3020, MATH3020, MATH3003, MATH3923, MATH3963</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MATH3963</td>
<td>6</td>
<td>A MATH2961</td>
<td>P 12 credit points of Intermediate Mathematics</td>
<td>N MATH3020, MATH3920, MATH3903, MATH3923, MATH3963</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MATH3078</td>
<td>6</td>
<td>A MATH2061(2961) and MATH(2065/2965)</td>
<td>P 12 credit points of Intermediate Mathematics</td>
<td>N MATH3978, MATH3018, MATH3921</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>MATH3978</td>
<td>6</td>
<td>A MATH2061(2961) and MATH(2065/2965)</td>
<td>P 12 credit points of Intermediate Mathematics with at least Credit average</td>
<td>N MATH3018, MATH3903</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>STAT3011</td>
<td>6</td>
<td>P (STAT (2011 or 2011 or 2001 or 2901) and MATH (1003 or 1903 or 1907).</td>
<td>N STAT3911, STAT3003, STAT3903, STAT3005, STAT3905</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT3911</td>
<td>6</td>
<td>P (STAT(2911 or 2911) and MATH(1003 or 1903 or 1907).</td>
<td>N STAT3011, STAT3003, STAT3903, STAT3005, STAT3905</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT3015</td>
<td>6</td>
<td>P (STAT(2912 or 2012 or 2012) and MATH(1002 or 1014 or 1902).</td>
<td>N STAT3912, STAT3002, STAT3902, STAT3004, STAT3904</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT3912</td>
<td>6</td>
<td>P (STAT(2912 or 2012 or 2012) and MATH(2061 or 2961 or 1902).</td>
<td>N STAT3012, STAT3002, STAT3902, STAT3004, STAT3904</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Computer Science

For a major in Computer Science the minimum requirement is 24 credit points chosen from the senior units of study listed for this subject area.

Students enrolled in non-IT degrees or majors, are eligible (upon application) for a Minor in Information Technology if they complete at least 18 credit points of intermediate or above units of study offered by the School of IT, within a completed degree. For further information, please refer to: http://www.it.usyd.edu.au/future_students/undergrad/minor.html

Students should note that applications for special consideration on the basis of illness or misadventure for INFO, ISYS, COMP, ELEC units should be lodged with the Faculty of Engineering and IT.

Junior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO1003</td>
<td>6</td>
<td>A INFO1000 or INFO1000</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INFO1103</td>
<td>6</td>
<td>A HSC Mathematics</td>
<td>N SOFT (1001 or 1001) or COMP (1001 or 1001) or DECC2011</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Advanced Units of Study

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A</th>
<th>P</th>
<th>C</th>
<th>N</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO1903 Informatics (Advanced)</td>
<td>6</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Data Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFO1105 Data Structures</td>
<td>6</td>
<td>A</td>
<td>Programming, as for INFO1103</td>
<td>INFO1905 or SOFT (1002 or 1902) or COMP (1002 or 1902 or 2160 or 2860 or 2111 or 2811 or 2002 or 2902)</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>INFO1905 Data Structures (Advanced)</td>
<td>6</td>
<td>P</td>
<td>Distinction-level performance in INFO1103 or INFO1903 or SOFT100 or SOFT1901</td>
<td>INFO1105 or SOFT (1002 or 1902) or COMP (1002 or 1902)</td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>

Intermediate Units of Study

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A</th>
<th>P</th>
<th>C</th>
<th>N</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP2007 Algorithms and Complexity</td>
<td>6</td>
<td>A</td>
<td>INFO1105, MATH1004 or MATH1904</td>
<td>COMP (2907 or 3309 or 3609 or 3111 or 3811)</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>COMP2007 Algorithms and Complexity (Advanced)</td>
<td>6</td>
<td>A</td>
<td>INFO1905, MATH1904</td>
<td>Distinction-level result in INFO (1105 or 1905) or SOFT (1002 or 1902)</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>COMP2129 Operating Systems and Machine Principles</td>
<td>6</td>
<td>A</td>
<td>Programming, as from INFO1103</td>
<td>SOFT (2130 or 2830 or 2004 or 2904) or COMP (2004 or 2904)</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>INFO2110 Systems Analysis and Modelling</td>
<td>6</td>
<td>A</td>
<td>Experience with a data model as in INFO1003 or INFO1103 or INF5100</td>
<td>INFO (2810 or 2000 or 2900)</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>INFO2120 Database Systems 1</td>
<td>6</td>
<td>A</td>
<td>Some exposure to programming and some familiarity with data model concepts such as taught in INFO1003 or INFO1005 or INF5100 or INFO1903</td>
<td>INFO (2820 or 2905 or 2905)</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>INFO2820 Database Systems 1 (Advanced)</td>
<td>6</td>
<td>A</td>
<td>Distinction-level result in INFO (1003 or 1103 or 1903 or 1105 or 1905) or SOFT (1001 or 1901 or 1002 or 1902)</td>
<td>INFO (2120 or 2005 or 2905)</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>INFO2315 Introduction to IT Security</td>
<td>6</td>
<td>A</td>
<td>Computer literacy</td>
<td>NETS (3305 or 3605 or 3016 or 3916) or ELEC (5610 or 5616)</td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>

Senior Units of Study

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A</th>
<th>P</th>
<th>C</th>
<th>N</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3609 Internet Software Platforms</td>
<td>6</td>
<td>P</td>
<td>INFO1103, INFO2110, INFO2120</td>
<td>EBUS4501 E-Business Engineering</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ELEC3609 E-Business Analysis and Design</td>
<td>6</td>
<td>P</td>
<td>INFO2120</td>
<td>EBUS3003 E-Business System Design, EBUS3001 Introduction to e-Commerce Systems</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>COMP3109 Programming Languages and Paradigms</td>
<td>6</td>
<td>A</td>
<td>COMP2007</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3308 Introduction to Artificial Intelligence</td>
<td>6</td>
<td>A</td>
<td>COMP2007</td>
<td>COMP (3608 or 3002 or 3902)</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>COMP3608 Intro. to Artificial Intelligence (Adv)</td>
<td>6</td>
<td>P</td>
<td>Distinction-level results in some 2nd year COMP or MATH or SOFT units</td>
<td>COMP (3308 or 3002 or 3902)</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>COMP3619 Graphics and Multimedia</td>
<td>6</td>
<td>A</td>
<td>COMP2007, MATH1002</td>
<td>MULT (3306 or 3606 or 3019 or 3919 or 3004 or 3904) or COMP(3004 or 3904)</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>COMP3456 Computational Methods for Life Sciences</td>
<td>6</td>
<td>P</td>
<td>INFO1105 and (COMP2007 or INFO2120) and 6 credit points from BIOL or MBLI3</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP3520 Operating Systems Internals</td>
<td>6</td>
<td>A</td>
<td>COMP2129, INFO1105</td>
<td>NETS (3304 or 3004 or 3909 or 3909) or COMP (3009 or 3909)</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>COMP3615 Software Development Project</td>
<td>6</td>
<td>P</td>
<td>INFO3402</td>
<td>INFO3600 or SOFT (3300 or 3600 or 3200 or 3700)</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>INFO3220 Object Oriented Design</td>
<td>6</td>
<td>A</td>
<td>INFO2110, INFO1105</td>
<td>SOFT (3301 or 3601 or 3101 or 3801) or COMP (3008 or 3908)</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>INFO3315 Human-Computer Interaction</td>
<td>6</td>
<td>A</td>
<td>INFO2110</td>
<td>MULT (3007 or 3607 or 3018 or 3918) or SOFT (3102 or 3802) or COMP (3102 or 3802)</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>INFO3402 Management of IT Projects and Systems</td>
<td>6</td>
<td>A</td>
<td>INFO (2000 or 2110 or 2810 or 2900)</td>
<td>ISYS (3000 or 3012) or ELEC3606</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>INFO3404 Database Systems 2</td>
<td>6</td>
<td>A</td>
<td>Introductory database study such as INFO2120 or INFO2820 or INFO2005 or INFO2905. Students are expected to be familiar with SQL and the relational data model, and to have some programming experience.</td>
<td>INFO (3504 or 3005 or 3905 or 3905) or COMP (3005 or 3905)</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>INFO3504 Database Systems 2 (Adv)</td>
<td>6</td>
<td>P</td>
<td>Distinction-level result in INFO (2120 or 2820) or COMP (2007 or 2907)</td>
<td>INFO (3404 or 3005 or 3905) or COMP (3005 or 3905)</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>INFO3600 Major Development Project (Advanced)</td>
<td>12</td>
<td>P</td>
<td>INFO3402</td>
<td>N COMP3615 or ISYS3400 or SOFT (3300 or 3600 or 3200 or 3700) Only available to students in BIT, BCST(Adv) or BSc(Adv)</td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>

Environmental Studies

For a major in Environmental Studies, students are required to complete a minimum of 24 credit points from Senior units of study listed below, including at least 12 credit points from Senior ENVI units.

Junior units of study

Students are recommended to take at least one of the following units of study:

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS1001</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>GEOS1901</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>GEOS1002</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>GEOS1902</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>GEOS1003</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>GEOS1903</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>GEOS1001 Earth, Environment and Society</td>
<td>6</td>
<td>N GEOS1901, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902</td>
</tr>
<tr>
<td>GEOS1901 Earth, Environment and Society Advanced</td>
<td>6</td>
<td>P Departmental permission is required for enrolment. A UAI (or ATAR equivalent) above 93 is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.</td>
</tr>
<tr>
<td>GEOS1002 Introductory Geography</td>
<td>6</td>
<td>N GEOS1902, GEOG1001, GEOG1002</td>
</tr>
<tr>
<td>GEOS1902 Introductory Geography (Advanced)</td>
<td>6</td>
<td>P Departmental permission is required for enrolment. A UAI (or ATAR equivalent) above 93 is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.</td>
</tr>
<tr>
<td>GEOS1003 Introduction to Geology</td>
<td>6</td>
<td>N GEOS1903, GEOL1002, GEOL1902, GEOL1501</td>
</tr>
<tr>
<td>GEOS1903 Introduction to Geology (Advanced)</td>
<td>6</td>
<td>P Departmental permission is required for enrolment. A UAI (or ATAR equivalent) above 93 is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.</td>
</tr>
</tbody>
</table>

Intermediate units of study

The completion at least one of the following units of study is highly recommended:

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV2111 Conservation Biology and Applied Ecology</td>
<td>6</td>
<td>P BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and 6 credit points of Junior Physics).</td>
<td>N ENV2911, ENVI2001</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV2911 Conservation Biol & Applied Ecology Adv</td>
<td>6</td>
<td>P Distinction average in BIOL (1001 or 1911 or 1101 or 1901) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). These requirements may be varied and students with lower averages should consult the Unit Executive Officer.</td>
<td>N ENV2111, ENVI2001</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV2112 Atmospheric Processes and Climate</td>
<td>6</td>
<td>P 24 credit points of Junior Science units, including 12 credit points of Junior Chemistry or Physics</td>
<td>N ENVI2002</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2111 Natural Hazards: a GIS Approach</td>
<td>6</td>
<td>P 24 credit points of Junior units of study including 6 credit points of Junior Geoscience</td>
<td>GEOS1903, GEOL1002, GEOL1902</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2113 Making the Australian Landscape</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including GEOS1002 or GEOS1003 or GEOS1902 or GEOS1002 or GEOS1003 or GEOS1902</td>
<td>GEOS1903, GEOL1001 or ENVI1002 or GEOL1002 or GEOL1002</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2121 Environmental and Resource Management</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including 6 credit points of Junior Geoscience or ECOP1001 or ECOP1002</td>
<td>GEOS2913, GEOS2921</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2122 Urban Geography</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including 6 credit points of Junior Geoscience or ECOP1001 or ECOP1002</td>
<td>GEOS2922, GEOS2921</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2921 Natural Hazards: a GIS Approach Advanced</td>
<td>6</td>
<td>P 24 credit points of junior units of study including a distinction in 6 credit points of Junior Geoscience</td>
<td>GEOS2111, GEOS2921</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2921 Environmental & Resource Management Adv</td>
<td>6</td>
<td>P 24 credit points of junior units of study, including a distinction in 6 credit points of Junior Geoscience in or ECOP1001 or ECOP1002. This requirement may be varied and students should consult the unit of study coordinator.</td>
<td>GEOS2421, GEOL2002, GEOS2921</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2922 Urban Geography (Advanced)</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including a distinction in 6 credit points of Junior Geoscience in or ECOP1001 or ECOP1002</td>
<td>GEOS2922</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENV3111 Environmental Law and Ethics</td>
<td>6</td>
<td>A Intermediate Environmental Science. 12 credit points of Intermediate Science or Agriculture units.</td>
<td>N ENVI3001, ENVI3003</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV3112 Environmental Assessment</td>
<td>6</td>
<td>A Intermediate Environmental Science. 12 credit points of Intermediate Science or Agriculture units.</td>
<td>N ENVI3002, ENVI3004</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV3114 Energy and the Environment</td>
<td>6</td>
<td>A Junior Physics or Intermediate Environmental Science. 12 credit points of Intermediate Science or Agriculture units.</td>
<td>N ENVI3001, PHYS3600</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3014 GIS in Coastal Management</td>
<td>6</td>
<td>P MARS(2005 or 2905) and MARS(2006 or 2906), or 12 credit points of Intermediate Geoscience* units, or (GEOS(2115 or 2915) and BIOL(2018 or 2918))</td>
<td>GEOS3914, MARS3104, * Geoscience is the disciplines of Geography, Geology and Geophysics.</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3018 Rivers: Science, Policy and Management</td>
<td>6</td>
<td>P (24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906))</td>
<td>GEOS3918</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3511 Understanding Australia's Regions</td>
<td>6</td>
<td>P 24 credit points of Intermediate Units of study including 6 credit points of Intermediate Geography units of study - one of GEOG2311,GEOG2321, GEOG2411, GEOG2421, GEOS2911, GEOL2921, GEOS2921, GEOS2922, GEOS2924</td>
<td>N GEOS3911</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Financial Mathematics and Statistics

For a major in Financial Mathematics and Statistics, students are required to complete:

Junior units of study

At least 12 credit points of junior units of study from the Science Subject Area of Mathematics including:

- MATH (1001 or 1901) and MATH (1002 or 1902) and MATH (1003 or 1903) and MATH (1005 or 1905)

Unit of study	**Credit points**	**A: Assumed knowledge**	**P: Prerequisites**	**C: Corequisites**	**N: Prohibition**	**Session**
GEO3313 Regional Development and Environment | 6 | P 24 credit points of intermediate and/or senior units of study including 6 credit points of Intermediate units of study in Geography. | N ENVI3113, GEO3351, GEO3391, GEO3913 | Semester 1
GEO33913 Regional Development & Environment (Adv) | 6 | P 24 credit points of intermediate and/or senior units of study including 6 credit points of Intermediate units of study in Geography with a grade of Credit or better | N ENVI3113, GEO3351, GEO3391, GEO3911 | Semester 1
GEO33914 GIS in Coastal Management (Advanced) | 6 | P Distinction average in 12 credit points of Intermediate geography or geology units or GEO3 (2115 or 2915) and BIOL (2018 or 2918), Department permission required for enrolment. Note: Department permission required for enrolment. A distinction average in prior Geography, Geology or Marine Science units of study is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator. | N GEO33014, MARS3104 | Semester 2
GEO33918 Rivers: Science and Management (Adv) | 6 | P Distinction average in (24 credit points of Intermediate units of study including 6 credit points of Intermediate Geography units of study) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906)) | N GEO33018 | Semester 1

Core intermediate units of study

18 credit points from the following units of study:

- MATH (2070 or 2970); and
- (i) STAT (2011 or 2911) and STAT (2012 or 2912)

Unit of study	**Credit points**	**A: Assumed knowledge**	**P: Prerequisites**	**C: Corequisites**	**N: Prohibition**	**Session**
MATH2070 Optimisation and Financial Mathematics | 6 | A MATH (1003 or 1903 or 1907) and MATH (1011 or 1001 or 1901 or 1906) and MATH(1014 or 1002 or 1902) | N MATH2010, MATH2033, MATH2933, MATH2970, ECM3510 | Students may enrol in both MATH2070 and MATH3075 in the same semester | Semester 2
MATH2970 Optimisation & Financial Mathematics Adv | 6 | A MATH (1003 or 1903) or Credit in MATH1003 | N MATH(1001 or 1901 or 1906) and MATH (1002 or Credit in 1002) | N MATH2010, MATH2033, MATH2933, MATH2970 | Students may enrol in both MATH2970 and MATH3975 in the same semester | Semester 2
STAT2011 Statistical Models | 6 | P MATH (1001 or 1901 or 1906 or Credit in 1001) and MATH (1002 or Credit in 1002) | N STAT2001, STAT2001, STAT2911 | Semester 1
STAT2911 Probability and Statistical Models (Adv) | 6 | P MATH (1003 or 1907 or Credit in 1003) and MATH (1905 or 1904 or Credit in 1005) | N STAT2001, STAT2011, STAT2901 | Semester 2
STAT2012 Statistical Tests | 6 | P MATH (1005 or 1905 or 1915) | N STAT2004, STAT2912 | Semester 2
STAT2912 Statistical Tests (Advanced) | 6 | A STAT (2911 or 2901) | P MATH1905 or Credit in MATH1005 | N STAT2004, STAT2012 | Semester 2

Senior units of study

At least 24 credit points comprising the following units of study:

- (i) MATH(3075 or 3975) and STAT(3011 or 3911) and STAT(2012 or 3912)

Unit of study	**Credit points**	**A: Assumed knowledge**	**P: Prerequisites**	**C: Corequisites**	**N: Prohibition**	**Session**
MATH3075 Financial Mathematics | 6 | P 12 credit points of Intermediate Mathematics | N MATH3975, MATH 3015, MATH3933 | Semester 2
3. Bachelor of Science, BSc(Adv), BSc(Adv Maths), BSc(Adv)/MBBS

Geospatial Information Systems

#### Unit of study	Credit points	A: Assumed knowledge	P: Prerequisites	C: Corequisites	N: Prohibition	Session
MATH3975 | 6 | P 12 credit points of Intermediate Mathematics with at least Credit average in MATH3933, MATH3935, MATH3975 | N | | | Semester 2
STAT3011 | 6 | P STAT(2011 or 2911 or 2001 or 2901) and MATH(1003 or 1903 or 1907) | N STAT(2011, STAT3003, STAT3903, STAT3905) | | | Semester 1
STAT3911 | 6 | P (STAT2911 or credit in STAT2011) and MATH(1003 or 1903 or 1907) | N STAT3011, STAT3003, STAT3903, STAT3905 | | | Semester 1
STAT3012 | 6 | P STAT(2012 or 2912 or 2004) and MATH1002 or 1014 or 1902 | N STAT3912, STAT3002, STAT3902, STAT3004, STAT3904 | | | Semester 1
STAT3912 | 6 | P (STAT2912 or Credit in STAT2004 or Credit in STAT2012) and MATH(2061 or 2961 or 1902) | N STAT3912, STAT3002, STAT3902, STAT3004, STAT3904 | | | Semester 1

Junior units of study

GEOS1001 Earth, Environment and Society | 6 | N GEOS1901, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902 | | | | Semester 1 Summer Late

GEOS1002 Introductory Geography | 6 | N GEOS1902, GEOG1001, GEOG1002 | | | | Semester 2

GEOS1901 Earth, Environment and Society Advanced | 6 | P Departmental permission is required for enrolment. A UAI (or ATAR equivalent) above 93 is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator. | N GEOS1001, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902 | | | Semester 1

GEOS1902 Introductory Geography (Advanced) | 6 | P Departmental permission is required for enrolment. A UAI (or ATAR equivalent) above 93 is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator. | N GEOS1002, GEOG1001, GEOG1002 | | | Semester 2
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG2321 Fluvial and Groundwater Geomorphology</td>
<td>6</td>
<td>P GEOG(2311 or 2001) or 6 credit points of Junior study including GEOS(1001 or 1901) or GEOG1001 or ENVI(1001 or 1002) or GEOL1501. Students in the Bachelor of Resource Economics should have 36 credit points of study in Biology (or Land and Water Science), Chemistr and Mathematics. Students in the Bachelor of Land and Water Science should have 6 credit points of Junior Geoscience, 12 credit points of Chemistry, 6 credit points of Biology, BIOM1002.</td>
<td>N GEOG (2002 or 2302 or 2303) or MARS2002 or MARS2006</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2111 Natural Hazards: a GIS Approach</td>
<td>6</td>
<td>P 24 credit points of Junior units of study including 6 credit points of Junior Geoscience</td>
<td>N GEOG2411, GEOG2911</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2112 Economic Geography of Global Development</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including 6 credit points of Junior Geoscience or ECOP1001 or ECOP1002</td>
<td>N GEOS2912, GEOG2911</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2113 Making the Australian Landscape</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including GEOES1002 or GEOES1003 or GEOES1902 or GEOES1903 or GEOG1001 or ENVI1002 or GEOL1001 or GEOL1002 or GEOL1902</td>
<td>N GEOS2913</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2115 Oceans, Coasts and Climate Change</td>
<td>6</td>
<td>A At least one of (GEOG1001, GEOL1001, GEOL1002, GEOS1003, GEOS1903, ENVI1002, GEOL1902, GEOL1501)</td>
<td>P 48 credit points from Junior Units of Study N GEOS2915, MARS2006</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2121 Environmental and Resource Management</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including 6 credit points of Junior Geoscience or ECOP1001 or ECOP1002</td>
<td>N GEOG2421, GEOI2002, GEOS2921</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2122 Urban Geography</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including 6 credit points of Junior Geoscience or ECOP1001 or ECOP1002 N GEOS2922, GEOG2921</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2911 Natural Hazards: a GIS Approach Advanced</td>
<td>6</td>
<td>P 24 credit points of junior units of study including a distinction in 6 credit points of Junior Geoscience N GEOG2411, GEOG2911</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2915 Oceans, Coasts and Climate Change (Adv)</td>
<td>6</td>
<td>A (GEOG1001, GEOL1001, GEOL1002, GEOS1003, GEOS1903, ENVI1002, GEOL1902, GEOL1901) P Distinction average in 48 credit points from Junior units of study</td>
<td>N GEOS2115, MARS2006</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2912 Economic Geography of Global Dev. Adv.</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including a distinction in 6 credit points of Junior Geoscience or in ECOP1001 or ECOP1002 N GEOS2112, GEOG2911</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2921 Environmental & Resource Management Adv</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including a distinction in 6 credit points of Junior Geoscience or in ECOP1001 or ECOP1002. This requirement may be varied and students should consult the unit of study coordinator. N GEOG2421, GEOI2002, GEOS2921</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2922 Urban Geography (Advanced)</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including a distinction in 6 credit points of Junior Geoscience or in ECOP1001 or ECOP1002 N GEOS2122</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3009 Coastal Environments and Processes</td>
<td>6</td>
<td>P (6 credit points of Intermediate Geoscience units) and (6 further credit points of Intermediate Geoscience or 6 further credit points of Physics or Mathematics or Information Technology or Engineering units) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906) or (GEOG(2311 or 2001) or 6 credit points of Physics, Mathematics, Information Technology or Engineering units) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906)))</td>
<td>N GEOS3009, MARS3003, MARS3105</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3009 Coastal Environments and Processes (Adv)</td>
<td>6</td>
<td>P Distinction average in (6 credit points of Intermediate Geoscience units) and (6 further credit points of Intermediate Geoscience or 6 credit points of Physics, Mathematics, Information Technology or Engineering units) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906)))</td>
<td>N GEOS3009, MARS3003, MARS3105</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3014 GIS in Coastal Management</td>
<td>6</td>
<td>P MARS(2005 or 2905) and MARS(2006 or 2906), or 12 credit points of Intermediate Geoscience* units, or (GEOG2115 or 2915) and BIOL(2018 or 2918))</td>
<td>N GEOS3914, MARS3104</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3914 GIS in Coastal Management (Advanced)</td>
<td>6</td>
<td>P Distinction average in 12 credit points of Intermediate geography or geology units or GEOS 2115 or 2915 and BIOL(2018 or 2918), Department permission required for enrolment</td>
<td>N GEO30014, MARS1014</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3015 Environmental Geomorphology</td>
<td>6</td>
<td>A Intermediate geomorphology/physical geography/geology P 24 credit points of Intermediate units, including 6 credit points of Intermediate Geoscience</td>
<td>N GEOG3915</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3915 Environmental Geomorphology (Advanced)</td>
<td>6</td>
<td>P Distinction average in 24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience units of study.</td>
<td>N GEO3015</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3018 Rivers: Science, Policy and Management</td>
<td>6</td>
<td>P (24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906))</td>
<td>N GEO3918</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3918 Rivers: Science and Management (Adv)</td>
<td>6</td>
<td>P Distinction average in (24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience units of study) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906))</td>
<td>N GEO3018</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>GEOS3953 Asia-Pacific Field School-Assessment A</td>
<td>6</td>
<td>P 6 credit points of Intermediate units of study in Geography. Department permission is required.</td>
<td>GEOS2954</td>
<td>N GEOS3953</td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment. Students must contact the unit coordinator no later than the end of May in the year before taking this Unit.</td>
<td>N GEOS3954</td>
<td>N GEOS3053</td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td>GEOS3953 Asia-Pacific Field School-A (Adv)</td>
<td>6</td>
<td>P Distinction average in 24 credit points of Intermediate units of study including 6 credit points of Intermediate Geography units of study. Department permission required for enrolment.</td>
<td>GEOS3053</td>
<td>N GEOS3954</td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment. Students must contact the unit coordinator no later than the end of May in the year before taking this Unit.</td>
<td>N GEOS3954</td>
<td>N GEOS3054</td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td>GEOS3954 Asia-Pacific Field School-Assessment B</td>
<td>6</td>
<td>P 6 credit points of Intermediate units of study in Geography. Department permission required for enrolment.</td>
<td>GEOS2954</td>
<td>N GEOS3053</td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment. Students must contact the unit coordinator no later than the end of May in the year before taking this Unit.</td>
<td>N GEOS3054</td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td>GEOS3513 Regional Development and Environment</td>
<td>6</td>
<td>P 24 credit points of intermediate and/or senior units of study including 6 credit points of Intermediate units of study in Geography.</td>
<td>N ENVI3113, GEOS3511, GEOS3911, GEOS3913</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS3913 Regional Development & Environment (Adv)</td>
<td>6</td>
<td>P 24 credit points of intermediate and/or senior units of study including 6 credit points of Intermediate units of study in Geography with a grade of Credit or better</td>
<td>N ENVI3113, GEOS3511, GEOS3913</td>
<td>GEOS3053</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS3522 Cities and Citizenship</td>
<td>6</td>
<td>P 6 credit points of Intermediate Geoscience</td>
<td>GEOS3052</td>
<td>N GEOS3054</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3922 Cities and Citizenship (Advanced)</td>
<td>6</td>
<td>P Distinction average in 24 credit points of Intermediate Units of study including 6 credit points of Intermediate Geoscience units of study.</td>
<td>GEOS3522</td>
<td>N GEOS3522</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOG3521 Sustainable Cities</td>
<td>6</td>
<td>P 24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience</td>
<td>N GEOS3921, GEOS3202</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOG3921 Sustainable Cities (Adv)</td>
<td>6</td>
<td>P Distinction average in 24 credit points of Intermediate Units of study including 6 credit points of Intermediate Geoscience units of study.</td>
<td>N GEOS3521, GEOS3202</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3911 Understanding Australia’s Regions (Adv)</td>
<td>6</td>
<td>P Distinction average in 24 credit points of Intermediate Units of study including 6 credit points of Intermediate Geography units of study - one of GEOG2311, GEOG2321, GEOG2411, GEOG2421, GEOG2431, GEOG2511, GEOG2521, GEOG2551, GEOG2611, GEOG2621, GEOG2631, GEOG2651, GEOG2711, GEOG2721, GEOG2751, GEOG2811, GEOG2821, GEOG2851, GEOG2911, GEOG2921, GEOG2951, GEOG2991</td>
<td>N GEOS3511</td>
<td>GEOS3051</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Geology & Geophysics

For a major in Geology & Geophysics, the minimum requirement is 24 credit points from Senior units listed in this subject area, which must include GEOS(3008 or 3908) and GEOS(3101 or 3801)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS1901 Earth, Environment and Society</td>
<td>6</td>
<td>N GEOS1901, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902</td>
<td>GEOS1903, GEOL1002, GEOL1902, GEOL1501</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS1003 Introduction to Geology</td>
<td>6</td>
<td>N GEOS1903, GEOL1002, GEOL1902, GEOL1501</td>
<td>GEOS1003, GEOL1002, GEOL1902, GEOL1501</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS1901 Earth, Environment and Society Advanced</td>
<td>6</td>
<td>P Departmental permission is required for enrolment. A UAI (or ATAR equivalent) above 93 is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.</td>
<td>GEOS1001, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902</td>
<td>GEOS1003, GEOL1002, GEOL1902, GEOL1501</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS1903 Introduction to Geology (Advanced)</td>
<td>6</td>
<td>P Departmental permission is required for enrolment. A UAI (or ATAR equivalent) above 93 is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.</td>
<td>GEOS1001, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902</td>
<td>GEOS1003, GEOL1002, GEOL1902, GEOL1501</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Intermediate units

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS2111 Natural Hazards: a GIS Approach</td>
<td>6</td>
<td>P 24 credit points of Junior units of study including 6 credit points of Junior Geoscience</td>
<td>GEOS2954</td>
<td>GEOS3051</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS2114 Volcanoes, Hot Rocks and Minerals</td>
<td>6</td>
<td>P One of (GEOG1001, GEOG1002, GEOL1002, GEOS1003, GEOS1903, ENVI1002, GEOL1902, GEOL1501) and 24 credit points of Junior Science units of study.</td>
<td>GEOL2111, GEOL2911, GEOS2914</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS2121 Environmental and Resource Management</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including 6 credit points of Junior Geoscience or ECOP1001 or ECOP1002</td>
<td>N GEOS2421, GEOL2202, GEOS2921</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS2124 Fossils and Tectonics</td>
<td>6</td>
<td>P 24 credit points of Junior units of study, including GEOS1003 or GEOS1903 or GEOL1002 or GEOL1902 or GEOL1501</td>
<td>N GEOS2624, GEOL2123, GEOL2124</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>GEOS2115 Oceans, Coasts and Climate Change</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS2915 Oceans, Coasts and Climate Change (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS2911 Natural Hazards: a GIS Approach Advanced</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS2914 Volcanoes, Hot Rocks and Minerals Adv</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS2921 Environmental & Resource Management Adv</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2a</td>
</tr>
<tr>
<td>GEOS2924 Fossils and Tectonics (Advanced)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3008 Field Geology and Geophysics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2a</td>
</tr>
<tr>
<td>GEOS3101 Earth's Structure and Evolution</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS3102 Global Energy and Resources</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS3103 Environmental and Sedimentary Geology</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3104 Geophysical Methods</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3908 Field Geology and Geophysics (Advanced)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3901 Earth's Structure and Evolutions (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS3902 Global Energy and Resources (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOS3903 Environmental & Sedimentary Geology (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3904 Geophysical Methods (Advanced)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3803 Environmental & Sedimentary Geology</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3804 Geophysical Methods (Advanced)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

History and Philosophy of Science

For a major in History and Philosophy of Science, the minimum requirement is 24 credit points from senior units of study listed in this subject area. Students must include the core unit of HPSC3022 Science and Society (6cp) or HPSC3003 social Relations of Science (4cp) (last offered in 2003 and now superseded by HPSC3022).

Junior units of study

- **HPSC1000 Bioethics**
 - 6 units
 - Note: Department permission required for enrolment
 - Semester 1

- **HPSC1900 Bioethics (Advanced)**
 - 6 units
 - Note: Department permission required for enrolment
 - Semester 1
Intermediate units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPSC2002 The Birth of Modern Science</td>
<td>6</td>
<td>A HPSC (2001 and 2002) or HPSC (2100 and 2101)</td>
<td>P At least 12 credit points of Intermediate HPSC units of study or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate or Senior units</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC2016 The Scientific Revolution</td>
<td>6</td>
<td>A HPSC (2100 and 2101) or HPSC (2001 and 2002)</td>
<td>P At least 12 credit points of Intermediate HPSC units of study or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate or Senior units.</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC2021 Philosophy and Sociology of Biology</td>
<td>6</td>
<td>A HPSC (2100 and 2101) or HPSC (2001 and 2002)</td>
<td>P At least 12 credit points of Intermediate HPSC units of study or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate or Senior units.</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC2022 Science and Society</td>
<td>6</td>
<td>A HPSC (2100 and 2101) or HPSC (2001 and 2002)</td>
<td>P At least 12 credit points of Intermediate HPSC units of study or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate or Senior units.</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC2023 Psychology & Psychiatry: History & Phil</td>
<td>6</td>
<td>A Basic knowledge about the history of modern science as taught in HPSC2100 AND the principles of philosophy of science as taught in HPSC2101 OR knowledge of the various sub-disciplines within Psychology.</td>
<td>P At least 12 credit points of Intermediate HPSC Units of study OR (a CR or above in one HPSC intermediate Unit of Study) OR (12 intermediate credit points in psychology).</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC2024 Science and Ethics</td>
<td>6</td>
<td>P At least 12 credit points of Intermediate or Senior units of study</td>
<td>N HPSC3003 This unit is a requirement for HPS majors.</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPSC3002 History of Biological/Medical Sciences</td>
<td>6</td>
<td>A HPSC (2001 and 2002) or HPSC (2100 and 2101)</td>
<td>P At least 12 credit points of Intermediate HPSC units of study or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate or Senior units</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC3016 The Scientific Revolution</td>
<td>6</td>
<td>A HPSC (2100 and 2101) or HPSC (2001 and 2002)</td>
<td>P At least 12 credit points of Intermediate HPSC units of study or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate or Senior units.</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC3021 Philosophy and Sociology of Biology</td>
<td>6</td>
<td>A HPSC (2100 and 2101) or HPSC (2001 and 2002)</td>
<td>P At least 12 credit points of Intermediate HPSC units of study or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate or Senior units.</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC3022 Science and Society</td>
<td>6</td>
<td>A HPSC (2100 and 2101) or HPSC (2001 and 2002)</td>
<td>P At least 12 credit points of Intermediate HPSC units of study or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate or Senior units.</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC3023 Psychology & Psychiatry: History & Phil</td>
<td>6</td>
<td>A Basic knowledge about the history of modern science as taught in HPSC2100 AND the principles of philosophy of science as taught in HPSC2101 OR knowledge of the various sub-disciplines within Psychology.</td>
<td>P At least 12 credit points of Intermediate HPSC Units of study OR (a CR or above in one HPSC intermediate Unit of Study) OR (12 intermediate credit points in psychology).</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC3024 Science and Ethics</td>
<td>6</td>
<td>P At least 12 credit points of Intermediate or Senior units of study</td>
<td>N HPSC3003 This unit is a requirement for HPS majors.</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Immunobiology

For a major in Immunobiology, the minimum requirement is 24 credit points comprising:

(a) IMMJ3102 Cellular and Molecular Immunology and IMMJ3202/3902 Immunology in Human Disease; and

(b) a minimum of 12 credit points from the following senior elective units of study: BCHM 3071/3971, BCHM 3081/3981, BCHM 3072/3972, BCHM 3082/3982, BIOL3018/3918, BIOL3026/3926, BIOL3027/3927, CPAT3201, CPAT3202, MCR 3011/3911/PHSI3005/3905, PHSI 3006/3906, VIRO3001/3901, VIRO3002

Intermediate units of study

The completion of MBLG (2001 or 2101 or 2901) is highly recommended.

Senior core units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMMU101 Introductory Immunology</td>
<td>6</td>
<td>A Junior Biology and Junior Chemistry,</td>
<td>P 24 credit points of Junior units of study from any of the Science discipline areas.</td>
<td>N IMMU2001, BMED2506, BMED2807 This is a prerequisite unit of study for IMMU3102 and IMMU3202. The completion of 6 credit points of MBLG units of study is highly recommended.</td>
<td>Semester 1</td>
<td></td>
</tr>
</tbody>
</table>

Senior elective units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCHM3071 Molecular Biology & Biochemistry-Genes</td>
<td>6</td>
<td>P MBLG (1001 or 1001) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BMED2072/2972) or 4CP of Intermediate BMED units including Distinction in BMED2802</td>
<td>N IMMU3002</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM3971 Molecular Biology & Biochem-Genes (Adv)</td>
<td>6</td>
<td>P MBLG (1501 or 1901) and Distinction in 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BMED2072/2972) or 42CP of Intermediate BMED units, with Distinction in BMED2802 and BMED2804.</td>
<td>N BCHM3071, BCHM3001, BCHM3901</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>BCHM3081 Mol Biology & Biochemistry-Proteins</td>
<td>6</td>
<td>P MBLG (1001 or 1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972) or 42CP of Intermediate BMEDSc units, including BMED2802 and BMED2804, N BCHM3981, BCHM3001, BCHM3901</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM3082 Medical and Metabolic Biochemistry</td>
<td>6</td>
<td>P MBLG (1001 or 1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972) or 42CP of Intermediate BMEDSc units, including BMED2802 and BMED2804, N BCHM3982, BCHM3002, BCHM3902, BCHM3904, ExSc/BSc(Nutrition) students successfully progressing though the combined degree meet the pre-requisites for this unit of study</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOI3018 Applications of Recombinant DNA Tech</td>
<td>6</td>
<td>P Distinction average in 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMEDSc students: 36 credit points of Intermediate BMED units including BMED 2802, N BIOL3918</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOI3026 Developmental Genetics</td>
<td>6</td>
<td>P Distinction average in 12 credit points from MBLG (2071/2971) and MBLG (2072/2972), For BMEDSc students: 36 credit points of Intermediate BMED units including BMED2802. N BIOL3926</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOI3027 Bioinformatics and Genomics (Advanced)</td>
<td>6</td>
<td>P Distinction average in 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMEDSc students: 36 credit points of Intermediate BMED units including BMED2802. N BIOL3927</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPAT3201 Pathogenesis of Human Disease 1</td>
<td>6</td>
<td>P At least 6cp intermediate of one of the following: ANAT or BCHM or MBLG or BIOL or HPSC</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPAT3202 Pathogenesis of Human Disease 2</td>
<td>6</td>
<td>P At least 6cp intermediate of one of the following: ANAT or BCHM or MBLG or BIOL or HPSC</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIRC3011 Microbes in Infection</td>
<td>6</td>
<td>P At least 6 credit points of MBLG units and MIRC (2022 or 2922 or 2002 or 2902), For BMEDSc students: 42 credit points of Intermediate BMED units including BMED 2807 and 2808. For BScAgr students: PLNT (2001 or 2001) and MIRC (2002 or 2022). N MIRC3911, MICR3001, MICR3901</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MIRC3911 Microbes in Infection (Advanced)</td>
<td>6</td>
<td>P At least 6 credit points of MBLG units and Distinction in MIRC (2022 or 2922 or 2002 or 2902), For BMEDSc students: 42 credit points of Intermediate BMED units including BMED 2807 and 2808 with a Distinction in one of these two. For BScAgr students: PLNT (2001 or 2001 and MIRC (2022 or 2922) including one Distinction. N MICR3011, MICR3001, MICR3901</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHSI3005 Human Cellular Physiology: Theory</td>
<td>6</td>
<td>A 6 credit points of MBLG</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHSI3005 Human Cellular Physiology: Theory</td>
<td>6</td>
<td>A 6 credit points of MBLG, P Exempt for BMedSc students: PHSI(2005 or 2905) and PHSI(2006 or 2906) for BMEDSc: BMED (2801 and 2802), N PHSI3905, PHSI3004, PHSI3904 It is highly recommended that this unit of study be taken in conjunction with PHSI3206.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHSI3905 Human Cellular Physiology (Adv): Theory</td>
<td>6</td>
<td>A 6 credit points of MBLG, P Credit average in PHSI(2005 or 2905) and PHSI(2006 or 2906) or in BMED (2801 and 2802), Students enrolling in this unit should have a WAM of at least 70. N PHSI3005, PHSI3004, PHSI3904 Note: Department permission required for enrolment It is highly recommended that this unit of study be taken in combination with PHSI3906</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHSI3906 Human Cellular Physiology: Research</td>
<td>6</td>
<td>P Exempt for BMedSc students: PHSI (2005 or 2905) and PHSI (2006 or 2906) For BMEDSc: BMED (2801 and 2802), C PHSI3005 N PHSI3906, PHSI3004, PHSI3904</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Information Systems

For a major in Information Systems, the minimum requirement is 24 credit points chosen from the senior units of study listed for this subject area.

Students enrolled in non-IT degrees or majors are eligible (upon application) for a Minor in Information Technology if they complete at least 18 credit points of intermediate or above units of study offered by the School of IT, within a completed degree. For further information, please refer to: http://www.it.usyd.edu.au/future_students/undergrad/minor.shtml

Students should note that applications for special consideration on the basis of illness or misadventure for INFO, ISYS, COMP, ELEC units should be lodged with

Junior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO1003 Foundations of Information Technology</td>
<td>6</td>
<td>N INFO1000 or INF1000</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INFO1103 Introduction to Programming</td>
<td>6</td>
<td>A HSC Mathematics</td>
<td>N SOFT (1001 or 1901) or COMP (1001 or 1901) or DECC0211</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INFO1903 Informatics (Advanced)</td>
<td>6</td>
<td>A HSC Mathematics</td>
<td>P UAI (or ATAR equivalent) sufficient to enter BCST(Adv), BIT or BSc(Adv), or portfolio of work suitable for entry</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INFO1105 Data Structures</td>
<td>6</td>
<td>A Programming, as for INFO1103</td>
<td>N INFO1105 or SOFT (1002 or 1902) or COMP (1002 or 1902 or 2160 or 2860 or 2111 or 2811 or 2092)</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INFO1905 Data Structures (Advanced)</td>
<td>6</td>
<td>P Distinction-level performance in INFO1103 or INFO1103 or SOFT1001 or SOFT1901.</td>
<td>N INFO1105 or SOFT (1002 or 1902) or COMP (1002 or 1902)</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Intermediate units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP2007 Algorithms and Complexity</td>
<td>6</td>
<td>A INFO1105, MATH1004 or MATH1904</td>
<td>N COMP (2007 or 3309 or 3609 or 3111 or 3811)</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>COMP2007 Algorithms and Complexity (Advanced)</td>
<td>6</td>
<td>A INFO1105, MATH1904</td>
<td>P Distinction level result in INFO1105 or MATH1004 or MATH1904</td>
<td>N COMP (2007 or 3309 or 3609 or 3111 or 3811)</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>COMP2125 Operating Systems and Machine Principles</td>
<td>6</td>
<td>A Programming, as from INFO1103</td>
<td>N SOFT (2130 or 2830 or 2804 or 2094) or COMP (2004 or 2904)</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INFO2110 Systems Analysis and Modelling</td>
<td>6</td>
<td>A Experience with a data model as in INFO1103 or INFO1103 or INF1000</td>
<td>N INFO (2810 or 2800 or 2900)</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INFO2120 Database Systems 1</td>
<td>6</td>
<td>A Some exposure to programming and some familiarity with data model concepts such as taught in INFO1103 or INFO1103 or INF1000 or INFO1903</td>
<td>N INFO (2820 or 2055 or 2905)</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INFO2820 Database Systems 1 (Advanced)</td>
<td>6</td>
<td>P Distinction-level result in INFO1003 or INFO1003 or INF1000 or INFO1903</td>
<td>N INFO (2120 or 2055 or 2905)</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INFO2315 Introduction to IT Security</td>
<td>6</td>
<td>A Computer literacy</td>
<td>N NITS (3305 or 3605 or 3916 or 3916) or ELEC (5610 or 5616)</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ISYS2140 Information Systems</td>
<td>6</td>
<td>A INFO1103 or INF1000</td>
<td>N ISYS (2006 or 2007)</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Senior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC3610 E-Business Analysis and Design</td>
<td>6</td>
<td>P INFO2120</td>
<td>N EBUS3003 E-Business System Design, EBUS3001 Introduction to e-Commerce Systems</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
Marine Biology

For a major in Marine Biology, the minimum requirement is 24 credit points from senior units listed in this subject area. Intermediate units leading to a major in Marine Biology are 12 credit points of Intermediate BIOL units that include BIOL2018 or 2918.

Biol3006 Ecological Methods

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO2110, INFO3105</td>
<td>6</td>
<td>N SOFT (3301 or 3601 or 3101 or 3801) or COMP (3008 or 3908)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Biol3009 Ecological Methods (Advanced)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO2110, INFO3105</td>
<td>6</td>
<td>N MULT (3307 or 3607 or 3018 or 3918) or SOFT (3102 or 3902) or COMP (3102 or 3902)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Biol3007 Ecology

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3906, MARS3102</td>
<td>6</td>
<td>P Distinction average in 12 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 6 credit points of Intermediate MARS units, including MARS2006</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Biol3007 Ecology (Advanced)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3906, MARS3102</td>
<td>6</td>
<td>P Distinction average in 12 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 6 credit points of Intermediate MARS units, including MARS2006. These requirements may be varied and students with lower averages should consult the Unit Executive Officer.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Biol3009 Marine Field Ecology

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3906, MARS3102</td>
<td>6</td>
<td>P Distinction average in 12 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 6 credit points of Intermediate MARS units, including MARS2006</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Biol3011 Marine Biology

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2018 or MARS2006</td>
<td>6</td>
<td>P Distinction average in 12 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 6 credit points of Intermediate MARS units, including MARS2006.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Biol3913 Marine Biology (Advanced)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL2018 or MARS2006</td>
<td>6</td>
<td>P Distinction average in 12 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 6 credit points of Intermediate MARS units, including MARS2006.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>---------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Marine Geoscience</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For a major in Marine Geoscience, the minimum requirement is 24 credit points from senior units listed in this subject area. Intermediate units leading to a major in Marine Geoscience are 12 credit points of Intermediate GEOS units OR 6 credit points of Intermediate GEOS units and 6 credit points of either BIOL2018 or 2918.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3009 Coastal Environments and Processes</td>
<td>6 P</td>
<td>(6 credit points of Intermediate Geoscience units) and (6 further credit points of Intermediate Geoscience or 6 credit points of Physics or Mathematics or Information Technology or Engineering units) or ([MARS2005 or MARS2905) and (MARS2006 or MARS2906)]</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3909 Coastal Environments and Processes (Adv)</td>
<td>6 P</td>
<td>Distinction average in (6 credit points of Intermediate Geoscience or 6 credit points of Physics, Mathematics, Information Technology or Engineering units) or ([MARS2005 or MARS2905] and [MARS2006 or MARS2906])</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3014 GIS in Coastal Management</td>
<td>6 P</td>
<td>MARS(2005 or 2905) and MARS(2006 or 2906), or 12 credit points of Intermediate Geoscience* units, or (GEOS(2115 or 2915) and BIOL(2018 or 2918))</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3914 GIS in Coastal Management (Advanced)</td>
<td>6 P</td>
<td>Distinction average in 12 credit points of Intermediate geography or geology units or GEOS (2115 or 2915) and BIOL (2018 or 2918), Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3015 Environmental Geomorphology</td>
<td>6 A</td>
<td>intermediate geomorphology/ physical geography/ geology</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3915 Environmental Geomorphology (Advanced)</td>
<td>6 P</td>
<td>Distinction average in 24 credit points of Intermediate units of study including 6 credit points of Intermediate Geophysics units of study.</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3018 Rivers: Science, Policy and Management</td>
<td>6 P</td>
<td>(24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience) or ([MARS2005 or MARS2905) and (MARS2006 or MARS2906)]</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3918 Rivers: Science and Management (Adv)</td>
<td>6 P</td>
<td>Distinction average in (24 credit points of Intermediate units of study including 6 credit points of Intermediate Geophysical units of study)</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3103 Environmental and Sedimentary Geology</td>
<td>6 A</td>
<td>GEOS(1003, GEOS2124) and GEOS(2111 or 2911) or GEOS(2114 or 2914) or GEOS(2134 or 2913); or GEOS(1003 or 1903) and 24 credit points of Intermediate Science units of study with permission of the Head of School</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3803 Environmental & Sedimentary Geology(Adv)</td>
<td>6 P</td>
<td>Distinctions in GEOS(2114 or 2914) and GEOS(2124 or 2924); Students who have a credit average for all Geoscience units may enrol in this unit with permission of the Head of School</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3104 Geophysical Methods</td>
<td>6 A</td>
<td>GEOS2114 and GEOS2124</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3804 Geophysical Methods (Advanced)</td>
<td>6 P</td>
<td>Distinction in GEOS (2114 or 2921) and GEOS2124 or GEOS2924; Students who have a credit average for all Geoscience units may enrol in this unit with the permission of the Head of School</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For a major in Marine Science, the minimum requirement is 24 credit points of senior units listed under the major in Marine Geoscience and the major in Marine Biology, which must include at least 6 credit points of GEOSXXX and at least 6 credit points BIOLXXX from the units listed below.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2018 Introduction to Marine Biology</td>
<td>6 A</td>
<td>12 credit points of Junior Biology; MARS2005,</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL2918 Introduction to Marine Biology (Adv)</td>
<td>6 A</td>
<td>12 credit points of Junior Biology (BIOL1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics).</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS2115 Oceans, Coasts and Climate Change</td>
<td>6 A</td>
<td>At least one of (GEOG1001, GEOL1001, GEOL1002, GEOS1003, GEOS1903, ENVI1002, GEOL1902, GEOL1501) or 48 credit points from Junior Units of Study</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Geoscience is the disciplines of Geography, Geology and Geophysics.
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS2915 Oceans, Coasts and Climate Change (Adv)</td>
<td>6</td>
<td>(GEOS1001, GEOL1001, GEOL1002, GEOS1003, GEOS1903, ENV1002, GEOL1902, GEOL1901)</td>
<td>Distinction average in 48 credit points from Junior units of study</td>
<td>N GEOS2115, MARS2006</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Senior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3006 Ecological Methods</td>
<td>6</td>
<td>BIOL (2011 or 2911 or 2012 or 2912) or PLNT (2002 or 2002)</td>
<td>12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL units and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N BIOL3906, MARS3102</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>BIOL3007 Ecology</td>
<td>6</td>
<td>Although not prerequisites, knowledge obtained from BIOL3006/3906, and BIOL3008/3908</td>
<td>12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of MARS units, including MARS2006.</td>
<td>N BIOL3907, MARS3102</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>BIOL3008 Marine Field Ecology</td>
<td>6</td>
<td>BIOL (3006 or 3906)</td>
<td>Prior completion of one of these units is very strongly recommended.</td>
<td>P 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>S2 Intensive Sessions 1, 2</td>
<td></td>
</tr>
<tr>
<td>BIOL3011 Ecophysiology</td>
<td>6</td>
<td>BIOL (2012 or 2912 or 2016 or 2916) or PLNT (2003 or 2003)</td>
<td>12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N BIOL3911</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>BIOL3013 Marine Biology</td>
<td>6</td>
<td>BIOL 2018 or MARS2006</td>
<td>12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N BIOL3913</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>GEOS3103 Environmental and Sedimentary Geology</td>
<td>6</td>
<td>GEOS1003, GEOS2124</td>
<td>P GEOS(2124/2924) and GEOS(2111 or 2911 or 2114 or 2914 or 2113 or 2913); or GEOS(1003 or 1903) and 24 credit points of Intermediate Science units of study with permission of the Head of School</td>
<td>N GEOS3803</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>GEOS3104 Geophysical Methods</td>
<td>6</td>
<td>GEOS2114 and GEOS2124</td>
<td>P 24 credit points of Intermediate Science units of study or (GEOS(2114/2914) and GEOS(2124/2924))</td>
<td>N GEOS3804, GEOS3003, GEOS 3903, GEOS3006, GEOS3906, GEOS3016, GEOS3916, GEOS3017, GEOS3917</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>GEOS3009 Coastal Environments and Processes</td>
<td>6</td>
<td>P (6 credit points of Intermediate Geoscience units) and (6 further credit points of Intermediate Geoscience or 6 credit points of Physics or Mathematics or Information Technology or Engineering units) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906))</td>
<td>N GEOS3909, MARS3003, MARS3105</td>
<td>* Geoscience is the disciplines of Geography, Geology and Geophysics.</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>GEOS3014 GIS in Coastal Management</td>
<td>6</td>
<td>MARS(2005 or 2905) and MARS(2006 or 2906), or 12 credit points of Intermediate Geoscience units, or ((GEOS(2115 or 2915) and BIOL(2018 or 2918))</td>
<td>N GEOS3914, MARS3104</td>
<td>* Geoscience is the disciplines of Geography, Geology and Geophysics.</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>GEOS3018 Rivers: Science, Policy and Management</td>
<td>6</td>
<td>P (24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906))</td>
<td>N GEOS3918</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3906 Ecological Methods (Advanced)</td>
<td>6</td>
<td>BIOL (2011 or 2911 or 2012 or 2912) or PLNT (2002 or 2002)</td>
<td>Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006. These requirements may be varied and students with lower averages should consult the Unit Executive Officer.</td>
<td>N BIOL3906, MARS3102</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>BIOL3907 Ecology (Advanced)</td>
<td>6</td>
<td>Although not prerequisites, knowledge obtained from BIOL3006/3906, and BIOL3008/3908</td>
<td>12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N BIOL3907, MARS3102</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>BIOL3908 Marine Field Ecology (Advanced)</td>
<td>6</td>
<td>BIOL (3006 or 3906)</td>
<td>Prior completion of one of these units is very strongly recommended.</td>
<td>P Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>S2 Intensive Sessions 1, 2</td>
<td></td>
</tr>
<tr>
<td>BIOL3911 Ecophysiology (Advanced)</td>
<td>6</td>
<td>BIOL (2012 or 2912 or 2016 or 2916) or PLNT (2003 or 2003)</td>
<td>Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N BIOL3911</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>BIOL3913 Marine Biology (Advanced)</td>
<td>6</td>
<td>BIOL2018 or MARS2008</td>
<td>Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N BIOL3913</td>
<td>Semester 1</td>
<td></td>
</tr>
</tbody>
</table>
Mathematics

For a major in Mathematics, the minimum requirement is 24 credit points from senior units of study listed in this subject area.

Junior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH1011 Applications of Calculus</td>
<td>3</td>
<td>A HSC Mathematics</td>
<td>N MATH1111, MATH1001, MATH1901, MATH1906, BIOM1003</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1014 Introduction to Linear Algebra</td>
<td>3</td>
<td>A HSC Mathematics</td>
<td>N MATH1012, MATH1002, MATH1902</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1013 Mathematical Modelling</td>
<td>3</td>
<td>A HSC Mathematics</td>
<td>N MATH1003, MATH1903, MATH1907</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1015 Biostatistics</td>
<td>3</td>
<td>A HSC Mathematics</td>
<td>N MATH1005, MATH1905, STAT1021, STAT1022, ECMT1010, BIOM1003</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1001 Differential Calculus</td>
<td>3</td>
<td>A HSC Mathematics</td>
<td>N MATH1011, MATH1901, MATH1906, MATH1111</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1002 Linear Algebra</td>
<td>3</td>
<td>A HSC Mathematics</td>
<td>N MATH1012, MATH1014</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1003 Integral Calculus and Modelling</td>
<td>3</td>
<td>A HSC Mathematics</td>
<td>N MATH1013, MATH1903, MATH1907</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1004 Discrete Mathematics</td>
<td>3</td>
<td>A HSC Mathematics</td>
<td>N MATH1904, MATH2011</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1005 Statistics</td>
<td>3</td>
<td>A HSC Mathematics</td>
<td>N MATH1015, MATH1905, STAT1021, STAT1022, ECMT1010</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1901 Differential Calculus (Advanced)</td>
<td>3</td>
<td>A HSC Mathematics Extension 2</td>
<td>N MATH1111, MATH1011, MATH1001, MATH1906</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1902 Linear Algebra (Advanced)</td>
<td>3</td>
<td>A HSC Mathematics Extension 2</td>
<td>N MATH1002, MATH1012, MATH1014</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1903 Integral Calculus and Modelling (Advanced)</td>
<td>3</td>
<td>A HSC Mathematics Extension 2</td>
<td>N MATH1003, MATH1013, MATH1907</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1905 Statistics (Advanced)</td>
<td>3</td>
<td>A HSC Mathematics Extension 2</td>
<td>N MATH1015, MATH1005, STAT1021, STAT1022, ECMT1010</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1906 Mathematics (Special Studies Program) A</td>
<td>3</td>
<td>P UAI (or ATAR equivalent) of at least 98.5 and result in Band E4 HSC Mathematics Extension 2; by invitation</td>
<td>N MATH1111, MATH1001, MATH1011, MATH1901</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1907 Mathematics (Special Studies Program) B</td>
<td>3</td>
<td>P Distinction in MATH1906; by invitation</td>
<td>N MATH1003, MATH1013, MATH1903</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Intermediate units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2061 Linear Mathematics and Vector Calculus</td>
<td>6</td>
<td>A MATH1111 or 1011 or 1001 or 1901 or 1906 and MATH1014 or 1002 or 1902 and MATH1003 or 1903 or 1907</td>
<td>N MATH2001, MATH2001, MATH2002, MATH2902, MATH2902, MATH2902,</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH2063 Math Computing and Nonlinear Systems</td>
<td>6</td>
<td>A MATH1011 or 1001 or 1901 or 1906 and MATH1014 or 1002 or 1902 and MATH1003 or 1903 or 1907</td>
<td>N MATH2003, MATH2903, MATH2906, MATH2906, MATH2963</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unit of study | Credit points | A: Assumed knowledge | P: Prerequisites | C: Corequisites | N: Prohibition | Session
--- | --- | --- | --- | --- | --- | ---
MATH2069 Discrete Mathematics and Graph Theory | 6 | P 6 credit points of Junior level Mathematics | N MATH1011, MATH1009, MATH2969 | Semester 1
MATH2961 Linear Mathematics & Vector Calculus Adv | 6 | P MATH (1901 or 1906 or Credit in 1001) and MATH (1902 or Credit in 1002) and MATH (1903 or 1907 or Credit in 1003) | N MATH2001, MATH2901, MATH2002, MATH2902, MATH2061, MATH2067 | Semester 1
MATH2962 Real and Complex Analysis (Advanced) | 6 | P MATH (1901 or 1906 or Credit in 1001) and MATH (1902 or Credit in 1002) and MATH (1903 or 1907 or Credit in 1003) | N MATH2007, MATH2907 | Semester 1
MATH2963 Math Computing & Nonlinear Systems (Adv) | 6 | P MATH (1901 or 1906 or Credit in 1001) and MATH (1902 or Credit in 1002) and MATH (1903 or 1907 or Credit in 1003) | N MATH2003, MATH2903, MATH2006, MATH2906, MATH2063 | Semester 1
MATH2969 Discrete Mathematics & Graph Theory Adv | 6 | P 9 credit points of Junior Mathematics (advanced level or Credit at the normal level) | N MATH2011, MATH2009, MATH2969 | Semester 1
MATH2916 Working Seminar A (SSP) | 3 | P By invitation, High Distinction average over 12 credit points of Advanced Junior Mathematics | Note: Department permission required for enrolment | Semester 2
MATH2005 Partial Differential Equations (Intro) | 6 | P MATH(1011 or 1001 or 1901 or 1906) and MATH(1014 or 1002 or 1902) and MATH(1003 or 1903 or 1907) | N MATH2005, MATH2905, MATH2965, MATH2067 | Semester 2
MATH2068 Number Theory and Cryptography | 6 | A MATH(1014 or 1902) | P 6 credit points of Junior level Mathematics | N MATH3024, MATH3009, MATH2988 | Semester 2
MATH2988 Number Theory and Cryptography Advanced | 6 | P At least 9cp from MATH (1901 or Credit in 1001), MATH (1902 or Credit in 1002), MATH (1903 or Credit in 1003), MATH (1904 or Credit in 1004), MATH (1905 or Credit in 1005), MATH1906, MATH1907, MATH2961, MATH2962 or MATH (2969 or Credit in MATH2969) | N MATH2068 | Semester 2
MATH2070 Optimisation and Financial Mathematics | 6 | A MATH (1003 or 1903 or Credit in 1003) | P MATH(1011 or 1001 or 1901 or 1906) and MATH(1014 or 1002 or 1902) | N MATH2010, MATH2033, MATH2993, MATH2970, ECMT3310 | Students may enrol in both MATH2070 and MATH2975 in the same semester | Semester 2
MATH2965 Partial Differential Equations Intro Adv | 6 | P MATH (2961 or Credit in 2961) or (MATH (2901 or Credit in 2001) and MATH (2902 or Credit in 2002) | N MATH2005, MATH 2905, MATH2065, MATH2067 | Semester 2
MATH2968 Algebra (Advanced) | 6 | P 9 credit points of Junior Mathematics (advanced level or Credit at normal level) including (MATH1902 or Credit in MATH1002) | N MATH2908, MATH2918, MATH2008 | Semester 2
MATH2970 Optimisation & Financial Mathematics Adv | 6 | A MATH (1903 or 1907) or Credit in MATH1003 | P MATH (1901 or 1906 or Credit in 1001) and MATH (1902 or Credit in 1002) | N MATH2010, MATH2033, MATH2993, MATH2070 | Students may enrol in both MATH2970 and MATH2975 in the same semester | Semester 2
MATH2917 Working Seminar B (SSP) | 3 | P By invitation, High Distinction average over 12 credit points of Advanced Junior Mathematics | Note: Department permission required for enrolment | Semester 2

Senior units of study

MATH3063 Differential Equations and Biomaths | 6 | A MATH2061 | P 12 credit points of Intermediate Mathematics | N MATH3020, MATH3920, MATH3003, MATH3923, MATH3963 | Semester 1
MATH3005 Logic and Foundations | 6 | P 6 credit points of Intermediate Mathematics | N MATH3005 | Semester 1
MATH3076 Mathematical Computing | 6 | P 12 credit points of Intermediate Mathematics and one of MATH(1001 or 1003 or 1901 or 1903 or 1906 or 1907) | N MATH3976, MATH3016, MATH3916 | Semester 1
MATH3961 Metric Spaces (Advanced) | 6 | A MATH2961 or MATH2962 | P 12 credit points of Intermediate Mathematics units | N MATH3901, MATH3001 | Semester 1
MATH3962 Rings, Fields and Galois Theory (Adv) | 6 | A MATH2961 | P 12 credit points of Intermediate Mathematics | N MATH3062, MATH3902, MATH3002 | Students are advised to take MATH2968 before attempting this unit. | Semester 1
MATH3963 Differential Equations & Biomaths (Adv) | 6 | A MATH2961 | P 12 credit points of Intermediate Mathematics | N MATH3020, MATH3920, MATH3003, MATH3923, MATH3063 | Semester 1
MATH3974 Fluid Dynamics (Advanced) | 6 | A MATH2961, MATH2965 | P 12 credit points of Intermediate Mathematics with average grade of at least Credit | N MATH3914 | Semester 1
MATH3976 Mathematical Computing (Advanced) | 6 | P 12 credit points of Intermediate Mathematics and one of MATH(1903 or 1907) | P Credit in MATH1003 | N MATH3076, MATH3016, MATH3916 | Semester 1
MATH3061 Geometry and Topology | 6 | P 12 credit points of Intermediate Mathematics | N MATH3001, MATH3906 | Semester 2
MATH3062 Algebra and Number Theory | 6 | P 12 credit points of Intermediate Mathematics | N MATH3962, MATH3902, MATH3002, MATH3009 | Students are advised to take MATH2068 or 2968 before attempting this unit. | Semester 1
MATH3067 Information and Coding Theory | 6 | P 12 credit points of Intermediate Mathematics | N MATH3007, MATH3010 | Semester 2
MATH3068 Analysis | 6 | P 12 credit points of Intermediate Mathematics | N MATH3008, MATH2007, MATH2907, MATH2962 | Semester 2

This unit of study is not available in 2010
3. Bachelor of Science, BSc(Adv), BSc(Adv Maths), BSc(Adv)/MBBS

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH3075 Financial Mathematics</td>
<td>6</td>
<td>P 12 credit points of Intermediate Mathematics</td>
<td>N MATH3975, MATH 3015, MATH3933</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3078 PDEs and Waves</td>
<td>6</td>
<td>P 12 credit points of Intermediate Mathematics A MATH(2061/2961) and MATH(2065/2965)</td>
<td>N MATH3978, MATH3018, MATH3921</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3964 Complex Analysis with Applications (Adv)</td>
<td>6</td>
<td>P 12 credit points of Intermediate Mathematics A MATH2962</td>
<td>N MATH3904, MATH3915</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3966 Modules and Group Representations (Adv)</td>
<td>6</td>
<td>P 12 credit points of Intermediate Mathematics A MATH3962</td>
<td>N MATH3906, MATH3907</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3968 Differential Geometry (Advanced)</td>
<td>6</td>
<td>P at least 6 credit points of Advanced Mathematics units of study at Intermediate or Senior level</td>
<td>N MATH3953</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3969 Measure Theory & Fourier Analysis (Adv)</td>
<td>6</td>
<td>P at least 6 credit points of Advanced Mathematics units of study at Intermediate or Senior level</td>
<td>N MATH3959</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3975 Financial Mathematics (Advanced)</td>
<td>6</td>
<td>P 12 credit points of Intermediate Mathematics with at least Credit average</td>
<td>N MATH3953, MATH3015, MATH3075</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3977 Lagrangian & Hamiltonian Dynamics (Adv)</td>
<td>6</td>
<td>P 12 credit points of Intermediate Mathematics with at least Credit average</td>
<td>N MATH2904, MATH2904, MATH3917</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH3978 PDEs and Waves (Advanced)</td>
<td>6</td>
<td>P 12 credit points of Intermediate Mathematics A MATH(2061/2961) and MATH(2065/2965)</td>
<td>N MATH3078, MATH3018, MATH3921</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medicinal Chemistry

For a major in Medicinal chemistry, the minimum requirement is 24 credit points comprising:

(i) PCCOL301/3911 and PCCOL301/3912; and

(ii) 12 credit points from senior Chemistry units of study.

Note that there are intermediate prerequisites for the core senior units of study. Junior and intermediate units of study should be selected to permit progression to the required senior units of study.

Microbiology

For a major in Microbiology, the minimum requirement is 24 credit points from senior units of study listed in the subject area.

MICR2021 Microbial Life	6	P 6cp of Junior Biology and 6cp of MBLG (1001 or 1901) or MBLG2901 or PLNT2001 or PLNT2901 and 6cp of Junior Chemistry N MICR2921, MICR2924, MICR2901, MICR2901, MICR2903, MICR2907, MICR2907, MICR2911, MICR2909 Students are very strongly recommended to complete MICR (2021 or 2921 or 2024) before enrolling in MICR2022 in Semester 2. For progression on to Senior Microbiology units, students must also complete MBLG (1001 or 1901) or PLNT (2001 or 2901).	Semester 1	
MICR2921 Microbial Life (Advanced)	6	P 6 credit points of Junior Biology and 6 credit points of MBLG (1001 or 1901) or MBLG2901 or PLNT2001 or PLNT2901 and 6 credit points of Junior Chemistry. Distinction grade required in at least one of Junior Biology or MBLG1001 or MBLG1901 or PLNT2001 or PLNT2911. N MICR2921, MICR2924, MICR2901, MICR2901, MICR2903, MICR2907, MICR2911, MICR2909	Semester 1	
MICR2022 Microbes in Society	6	P 6 of Junior Biology and (6 of MBLG (1001 or 1901) or PLNT2001 or PLNT2911) and 6 of Junior Chemistry. N MICR2922, MICR2924, MICR2902, MICR2904, MICR2908, MICR2912, MICR2909 Students are very strongly advised to complete MICR (2021 or 2921 or 2024) before enrolling in MICR2022 in Semester 2. For progression on to Senior Microbiology units, students must also complete MBLG (1001 or 1901) or PLNT (2001 or 2901).	Semester 2	
MICR2922 Microbes in Society (Advanced)	6	P MICR (2021 or 2024 or 2026)	N MICR2903, MICR2904, MICR2908, MICR2912, MICR2909	Semester 2
MICR2024 Microbes in the Environment	6	P 12 credit points of first year Biology	N MICR2001, MICR2901, MICR2903, MICR2907, MICR2911, MICR2921, MICR2912	Semester 2

Senior units of study

| MICR3011 Microbes in Infection | 6 | P at least 6 credit points of MBLG units and MICR (2022 or 2622 or 2002 or 2902). For BMEdSc Students: 42 credit points of Intermediate BMED units including BMED (2807 and 2808). For BScAgr students: PLNT (2001 or 2901) and MICR (2002 or 2922). N MICR2901, MICR3001, MICR3901 | Semester 1 |
| MICR3911 Microbes in Infection (Advanced) | 6 | P at least 6 credit points of MBLG units and Distinction in MICR (2022 or 2622 or 2002 or 2902). For BMEdSc students: 42 credit points of Intermediate BMED units including in BMED (2807 or 2808) with a Distinction in one of these two. For BScAgr students: PLNT (2001 or 2901) and MICR (2002 or 2922) including one Distinction. N MICR2901, MICR3001, MICR3901 | Semester 1 |
Unit of study

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
<th>Assumed Knowledge</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virology</td>
<td>Virology</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
<tr>
<td>Virology (Advanced)</td>
<td>Virology (Advanced)</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
<tr>
<td>Molecular Biology of Pathogens</td>
<td>Molecular Biology of Pathogens</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
<tr>
<td>Medical and Applied Virology</td>
<td>Medical and Applied Virology</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
<tr>
<td>Medical and Applied Virology (Advanced)</td>
<td>Medical and Applied Virology (Advanced)</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
<tr>
<td>Medical and Applied Virology</td>
<td>Medical and Applied Virology</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
<tr>
<td>Medical and Applied Virology (Advanced)</td>
<td>Medical and Applied Virology (Advanced)</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
</tbody>
</table>

Molecular Biology and Genetics

It is not possible to obtain a major in Molecular Biology and Genetics. However, Molecular Biology and Genetics units of study are highly recommended to be studied in conjunction with all Life Science subject areas. They are particularly relevant to students intending to major in Biology, Biochemistry or Microbiology.

Junior unit of study

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
<th>Assumed Knowledge</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Biology and Genetics (Intro)</td>
<td>Molecular Biology and Genetics (Intro)</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
<tr>
<td>Molecular Biology and Genetics</td>
<td>Molecular Biology and Genetics</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
</tbody>
</table>

Intermediate units of study

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
<th>Assumed Knowledge</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Biology and Genetics A</td>
<td>Molecular Biology and Genetics A</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
<tr>
<td>Molecular Biology and Genetics A (Adv)</td>
<td>Molecular Biology and Genetics A (Adv)</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
<tr>
<td>Molecular Biology and Genetics B</td>
<td>Molecular Biology and Genetics B</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
<tr>
<td>Molecular Biology and Genetics B (Adv)</td>
<td>Molecular Biology and Genetics B (Adv)</td>
<td>6</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
</tr>
</tbody>
</table>

Nanoscience and Technology

A major in Nanoscience and Technology requires 24 credit points of study at senior level taken from the following:

- Materials Chemistry (CHEM3112 or CHEM312)
- Membranes, Self-Assembly & Surfaces (CHEM3116 or 3916)
- Senior physics units containing the Nanoscience lecture module (PHYS305/3952, PHYS3054/3954, 3055/3955 or 3057/3957)
Unit of Study

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A: Assumed Knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Quantum Mechanics, Condensed Matter and Physics Laboratory (PHYS3062/3962)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Mechanics of Solids 2 (MECH3361)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Materials (MECH3362)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM3112 Materials Chemistry</td>
<td>6</td>
<td>P CHEM2401 or 2911 or 2915 and CHEM2402 or 2912 or 2916.</td>
<td>N CHEM3912</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHEM3912 Materials Chemistry (Adv)</td>
<td>6</td>
<td>P WAM of 65 or greater and a Credit or better in: CHEM2401 or 2911 or 2915 and CHEM3912</td>
<td>N CHEM3112</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHEM3116 Membranes, Self Assembly and Surfaces</td>
<td>6</td>
<td>P CHEM2401 or 2911 or 2915 and CHEM2402 or 2912 or 2916.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHEM3916 Membranes, Self Assembly & Surfaces (Adv)</td>
<td>6</td>
<td>P WAM of 65 or greater and a Credit or better in: CHEM2401 or 2911 or 2915 and CHEM3912</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS3052 Nanoscience-Thermodynamics & Lab</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS3952 Nanoscience-Thermodynamics/Condens Matter (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS3054 Nanoscience/Plasma Physics & Physics Lab</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS3954 Nanoscience/Plasma Physics & Physics Lab (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS3055 Nanoscience/Plasma Thermodynamics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS3955 Nanoscience/Plasma Thermodynamics (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS3057 Nanoscience/Thermodynamic/Condens Matter</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS3957 Nanoscience/Thermodynamic/Condens Matter (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS3062 Quantum/Cond Matter Physics & Lab</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS3962 Quantum/Cond Matter Physics & Lab (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>MECH3361 Mechanics of Solids 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MECH3362 Materials 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Neuroscience

For a major in Neuroscience, students are required to complete at least 24 credit points of the senior elective units of study listed below. At least two subject areas must be chosen from NEUR, PSYC and PCOL.
Intermediate elective units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAT2010 Concepts of Neuroanatomy</td>
<td>6</td>
<td>A Background in basic cell biology and basic mammalian biology.</td>
<td>P BICL (1001 or 1901) and one of: ANAT2008 or BICL (1002 or 1902) or MBLG(1001 or 1901 or 2071 or 2971) or PSYC (1001 and 1002). Students must have a grade of credit in at least one of the prerequisite units.</td>
<td>N ANAT2003</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>MBLG2071 Molecular Biology and Genetics A</td>
<td>6</td>
<td>P MBLG1001 or MBLG1901 and 12 CP of Junior Chemistry.</td>
<td>N MBLG2971, MBLG2771, MBLG2871, MBLG2001, MBLG2101, MBLG2901, MBLG2111, PLNT2001, AGCH2001, BCHM2001, BCHM2101, BCHM2901. Students enrolled in the combined BAppSc (Exercise and Sport Science)/BSci(Nutrition) must have completed all Junior units for this course (CHEM1101, BACH1161, BIOS1159, EKSS1108, CHEM1102, BIOS1133, BIOS1160, EKSS1133, MBLG1901) prior to enrolling in this unit.</td>
<td>N ANAT2003</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>MBLG2971 Molecular Biology and Genetics A (Adv)</td>
<td>6</td>
<td>P 12 credit points of Junior Chemistry and Distinction in MBLG (1001 or 1901).</td>
<td>N MBLG2071, MBLG2771, MBLG2871, MBLG2001, MBLG2101, MBLG2901, MBLG2111, PLNT2001, AGCH2001, BCHM2001, BCHM2101, BCHM2901. Students enrolled in the combined BAppSc (Exercise and Sport Science)/BSci(Nutrition) must have completed all Junior units for this course prior to enrolling in this unit.</td>
<td>N ANAT2003</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>MBLG2072 Molecular Biology and Genetics B</td>
<td>6</td>
<td>P One of MBLG2071, MBLG2771, MBLG2871, MBLG2971, MBLG2901 or (P MBLG1001 or 1101 or 1901 or 1111) and MBLG (1001 or 1901) and 12 credit points of Junior Chemistry.</td>
<td>N MBLG2972, MBLG2102, MBLG2002, MBLG2902</td>
<td>N ANAT2003</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>MBLG2972 Molecular Biology and Genetics B (Adv)</td>
<td>6</td>
<td>P Distinction in one of MBLG2071, MBLG2771, MBLG2871, MBLG2971, MBLG2901</td>
<td>N MBLG2072, MBLG2102, MBLG2002, MBLG2902</td>
<td>N ANAT2003</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>PCCOL2011 Pharmacology Fundamentals</td>
<td>6</td>
<td>P (6 credit points of Junior Chemistry) and (6 credit points of Junior Biology or MBLG (1001 or 1901)).</td>
<td>N PCCOL2011</td>
<td>N ANAT2003</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>PCCOL2012 Pharmacology: Drugs and People</td>
<td>6</td>
<td>P (6 credit points of Junior Chemistry) and (6 credit points of Junior Biology or MBLG (1001 or 1901)).</td>
<td>N PCCOL2012, PCCOL2003</td>
<td>N ANAT2003</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>PHSI2005 Integrated Physiology A</td>
<td>6</td>
<td>P 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Semester 1 (Mathematics, Biology, Psycholoy units of study)</td>
<td>N PHSI2005, PHSI2001, PHSI2101, PHSI2901. The completion of 6 credit points of MBLG units of study is highly recommended for progression to Senior Physiology. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisites.</td>
<td>N ANAT2003</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>PHSI2905 Integrated Physiology A (Advanced)</td>
<td>6</td>
<td>P 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Semester 1 (Mathematics, Biology, Psycholoy units of study, approval of Coordinator).</td>
<td>N PHSI2005, PHSI2001, PHSI2101, PHSI2901. Note: Department permission required for enrolment. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisites.</td>
<td>N ANAT2003</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>PSYC2011 Brain and Behaviour</td>
<td>6</td>
<td>P PSYC (1001 and 1002).</td>
<td>N PSYC2111</td>
<td>N ANAT2003</td>
<td>Semester 1</td>
<td></td>
</tr>
</tbody>
</table>

Senior elective units of study

For a major in Neuroscience, 24 credit points must be chosen from any of the following units: PCCOL3022/3922, NEUR3001/3901, NEUR3002/3902, NEUR3003/3903, NEUR3004/3904, PSYC3011, PSYC3013, PSYC3014, PSYC3018.

At least two subject areas must be chosen from NEUR, PSYC and PCCOL.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCCOL3022 Neuropharmacology</td>
<td>6</td>
<td>P PCCOL2011 and PCCOL2012 or 36 credit points from intermediate BMED units of study.</td>
<td>N PCCOL3002, PCCOL3902, PCCOL3922</td>
<td>N ANAT2003</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>PCCOL3922 Neuropharmacology (Advanced)</td>
<td>6</td>
<td>P PCCOL2011 and PCCOL2012 or 36 credit points from intermediate BMED units of study.</td>
<td>N PCCOL3002, PCCOL3902, PCCOL3922</td>
<td>N ANAT2003</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>NEUR3001 Neuroscience: Special Senses</td>
<td>6</td>
<td>A It is strongly recommended that students also take unit NEUR3002, PHSI2005 and ANAT2010. Students must have a grade of credit in at least one of the prerequisite units.</td>
<td>N ANAT2003</td>
<td>N ANAT2003</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>NEUR3001 Neuroscience: Special Senses (Advanced)</td>
<td>6</td>
<td>A PHSI2005 and ANAT2010</td>
<td>N ANAT2003</td>
<td>N ANAT2003</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>NEUR3002 Neuroscience: Motor Systems & Behaviour</td>
<td>6</td>
<td>A It is strongly recommended that students also take unit NEUR3001, ANAT2010 and PHSI2005. Students must have a grade of credit in at least one of the prerequisite units.</td>
<td>N ANAT2003</td>
<td>N ANAT2003</td>
<td>Semester 1</td>
<td></td>
</tr>
</tbody>
</table>
Unit of study | Credit points | A: Assumed knowledge | P: Prerequisites | C: Corequisites | N: Prohibition | Session
---|---|---|---|---|---|---
NEUR3902
Neuroscience: Motor Systems & Behav. Adv
6 | A ANAT2010 and PHSI2005 is assumed knowledge. | P For BMEdBs: Credit average in BMED2801 and BMED2806 For other students: Credit average in (PHSI(2101 or 2001 or 2901 or 2905) or ANAT(2003 or 2010)) and 6 credit points of MBLG. | N NEUR39002, PHSI3001 Permission from the coordinators is required for entry into this course. It is strongly recommended that students also take unit NEUR39001 or NEUR3901. | Semester 1

NEUR3003
Cellular and Developmental Neuroscience
6 | A Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain. | P For BMEdSci: 42 credit points of intermediate BMEd units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology and Genetics, Physiology, Psychology or Statistics. Plus, students must have a CREDIT (or better) in NEUR3001-3901 and NEUR3002-3902. | N NEUR3003, PHSI3002, PHSI3902 Enrolment in NEUR3004 is HIGHLY RECOMMENDED. Courses are designed to be taken in conjunction with each other. | Semester 2

NEUR3903
Cellular & Developmental Neurosci. (Adv)
6 | A Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain. | P For BMEdSci: 42 credit points of intermediate BMEd units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology and Genetics, Physiology, Psychology or Statistics. Plus, students must have a CREDIT (or better) in NEUR3001-3901 and NEUR3002-3902. | N NEUR3003, PHSI3002, PHSI3902 Enrolment in NEUR3004 is HIGHLY RECOMMENDED. Courses are designed to be taken in conjunction with each other. | Semester 2

NEUR3004
Integrative Neuroscience
6 | A Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain. | P For BMEdSci: 42 credit points of intermediate BMEd units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology and Genetics, Physiology, Psychology or Statistics. Plus, students must have a CREDIT (or better) in NEUR3001-3901 and NEUR3002-3902. | N NEUR3003, PHSI3002, PHSI3902 Enrolment in NEUR3003 is HIGHLY RECOMMENDED. Courses are designed to be taken in conjunction with each other. | Semester 2

NEUR3004
Integrative Neuroscience (Advanced)
6 | A Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain. | P For BMEdSci: 42 credit points of intermediate BMEd units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology and Genetics, Physiology, Psychology or Statistics. Plus, students must have a CREDIT (or better) in NEUR3001-3901 and NEUR3002-3902. | N NEUR3003, PHSI3002, PHSI3902 Enrolment in NEUR3003 is HIGHLY RECOMMENDED. Courses are designed to be taken in conjunction with each other. | Semester 2

PSYC3011
Learning and Behaviour
6 | A PSYC (2012 or 2112) | P PSYC (2011 or 2111) and at least one other Intermediate Psychology Unit from PSYC (2012 or 2112), PSYC (2013 or 2113), PSYC (2014 or 2114), PSYC3205. | N PSYC3209 | Semester 1

PSYC3012
Cognition, Language and Thought
6 | A PSYC (2012 or 2112) | P PSYC (2013 or 2113) and at least one other Intermediate Psychology Unit from PSYC (2011 or 2111), PSYC (2012 or 2112), PSYC (2014 or 2114). | N PSYC3205 | Semester 1

PSYC3013
Perceptual Systems
6 | A PSYC2012 | P PSYC (2011 or 2111) and at least one other Intermediate Psychology Unit from PSYC (2012 or 2112), PSYC (2013 or 2113), PSYC (2014 or 2114) or ANAT2010. | N PSYC3210 | Semester 2

PSYC3014
Behavioural and Cognitive Neuroscience
6 | A PSYC (2113 or 2111) | P (PSYC (2011 or 2111) and at least one other Intermediate Psychology Unit from PSYC (2012 or 2112), PSYC (2013 or 2113), PSYC (2014 or 2114)) OR (ANAT2010 plus PCOL2011) | N PSYC3204, PSYC3215 | Semester 2

Pharmacology

For a major in Pharmacology, the minimum requirement is 24 credit points from senior units of study listed in this subject area.

Intermediate units of study

The completion of MBLG(1001 or 1901) is highly recommended.

PCOL2011
Pharmacology Fundamentals
6 | P (6 credit points of Junior Chemistry) and (6 credit points of Junior Biology or MBLG (1001 or 1901)) | N PCOL2001 | Semester 1

PCOL2012
Pharmacology: Drugs and People
6 | A PCOL2011 | P (6 credit points of Junior Chemistry) and (6 credit points of Junior Biology or MBLG (1001 or 1901)) | N PCOL2002, PCOL2003 | Semester 2

Senior units of study

PCOL3011
Toxicology
6 | P PCOL2001 or PCOL2011 and PCOL2012 or 42 credit points from Intermediate BMEd units of study. | N PCOL3001, PCOL3901, PCOL3911 | Semester 1

PCOL3012
Drug Design and Development
6 | P PCOL2001 or PCOL2011 and PCOL2012 or 42 credit points from Intermediate BMEd units of study. | N PCOL3001, PCOL3901, PCOL3912 | Semester 1
Physics

For a major in Physics, the minimum requirement is 24 credit points from senior units of study listed in this subject area which must include:

(i) One semester 1 Core unit (PHYS3040, 3940 or 3941)

(ii) One semester 2 Core unit (PHYS3060, 3960 or 3961)

(iii) Two other non-overlapping Options units (chosen from PHYS30XX and 39XX)

Note that one Senior Computational Science unit (COSC3011, 3911, 3012 or 3912) may be included in a Physics major as one of the options.

Junior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS1001 Physics 1 (Regular)</td>
<td>6</td>
<td>A HSC Physics</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS1002 Physics 1 (Fundamentals)</td>
<td>6</td>
<td>A No assumed knowledge of Physics</td>
<td>C Recommended concurrent Units of Study: MATH (1001/1901, 1002/1902)</td>
<td>N PHYS1001, PHYS1901</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS1901 Physics 1A (Advanced)</td>
<td>6</td>
<td>P UAI (or ATAR equivalent) of at least 96, or HSC Physics result in Band 6, or PHYS1902, or Semester 1 Distinction or better in PHYS (1003 or 1004) or an equivalent unit.</td>
<td>C Recommended concurrent Units of Study: MATH (1001/1901, 1002/1902).</td>
<td>N PHYS1001, PHYS1901</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS1003 Physics 1 (Technological)</td>
<td>6</td>
<td>A HSC Physics or PHYS (1001 or 1002 or 1901) or equivalent.</td>
<td>C Recommended concurrent Units of Study: MATH (1003/1903), MATH (1005/1905).</td>
<td>N PHYS1004, PHYS1902</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS1004 Physics 1 (Environmental & Life Science)</td>
<td>6</td>
<td>A HSC Physics or PHYS (1001 or 1002 or 1901) or equivalent.</td>
<td>C Recommended concurrent Units of Study: MATH (1003/1903), MATH (1005/1905).</td>
<td>N PHYS1003, PHYS1902</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS1902 Physics 1B (Advanced)</td>
<td>6</td>
<td>P UAI (or ATAR equivalent) of at least 96, or HSC Physics result in Band 6, or PHYS1901, or Semester 2 Distinction or better in PHYS (1001 or 1002) or an equivalent unit.</td>
<td>C Recommended concurrent unit of study: MATH (1003/1903), MATH (1005/1905).</td>
<td>N PHYS1003, PHYS1904</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS1500 Astronomy</td>
<td>6</td>
<td>A No assumed knowledge of Physics.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Intermediate units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS2011 Physics 2A</td>
<td>6</td>
<td>A MATH (1001/1901 and 1002/1902 and 1003/1903), MATH (1005/1905) would also be useful</td>
<td>P 12 credit points of Junior Physics (excluding PHYS1000)</td>
<td>N PHYS2001, 2901, PHYS2911, PHYS2213, PHYS2203</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS2911 Physics 2A (Advanced)</td>
<td>6</td>
<td>A MATH (1901/1902 and 1902/1903), MATH (1905/1905) would also be useful</td>
<td>P Credit or better in PHYS (1901 or 1001 or 1002) and Credit or better in PHYS (1902 or 1003 or 1004).</td>
<td>N PHYS2901, PHYS2902, PHYS2901, PHYS2101, PHYS2103, PHYS2213, PHYS2203</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS2012 Physics 2B</td>
<td>6</td>
<td>A MATH (1001/1901 and 1002/1902 and 1003/1903), MATH (1005/1905) would also be useful</td>
<td>P PHYS (1003 or 1004 or 1902) and PHYS (1001 or 1002 or 1901 or or 2011 or 2911)</td>
<td>N PHYS2102, PHYS2104, PHYS2902, PHYS2202, PHYS2912, PHYS2213, PHYS2203</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS2013 Astrophysics and Relativity</td>
<td>6</td>
<td>A MATH (1001/1901 and 1002/1902 and 1003/1903), MATH (1005/1905) would also be useful</td>
<td>P PHYS (1003 or 1004 or 1902) and PHYS (1001 or 1002 or 1901 or 1011 or 2911)</td>
<td>C PHYS (2012 or 2912)</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS2912 Physics 2B (Advanced)</td>
<td>6</td>
<td>A MATH (1001/1901 and 1002/1902 and 1003/1903), MATH (1005/1905) would also be useful</td>
<td>P Credit or better in PHYS (1003 or 1004 or 1902) and Credit or better in PHYS (1001 or 1002 or 1901 or 1011 or 2911)</td>
<td>N PHYS2102, PHYS2914, PHYS2902, PHYS2002, PHYS2102, PHYS2213, PHYS2203</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS2913 Astrophysics and Relativity (Advanced)</td>
<td>6</td>
<td>A MATH (1001/1901 and 1002/1902 and 1003/1903), MATH (1005/1905) would also be useful.</td>
<td>P Credit or better in PHYS (1003 or 1004 or 1902) and Credit or better in PHYS (1001 or 1002 or 1901 or 1011 or 2911)</td>
<td>C PHYS (2912 or 1912)</td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Senior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3015 Topics in Senior Physics A</td>
<td>6</td>
<td>A 6 credit points of Intermediate Mathematics</td>
<td>P 12 credit points of Intermediate Physics</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>Session</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **PHYS3025**
Topics in Senior Physics B | 6 | |
| **PHYS3040**
Electromagnetism and Physics Lab | 6 | Semester 2 |
| **PHYS3051**
Thermodynamics/Biophysics & Lab | 6 | Semester 1 |
| **PHYS3052**
Nanoscience/Thermodynamics & Lab | 6 | Semester 1 |
| **PHYS3054**
Nanoscience/Plasma Physics & Physics Lab | 6 | Semester 1 |
| **PHYS3055**
Nanoscience/Plasma/Thermodynamics | 6 | Semester 1 |
| **PHYS3057**
Nanoscience/Thermodynamic/Biophysics | 6 | Semester 1 |
| **PHYS3059**
Plasma/Thermodynamic/Biophysics | 6 | Semester 1 |
| **PHYS3060**
Quantum Mechanics & Physics Lab | 6 | Semester 2 |
| **PHYS3062**
Quantum/Cond Matter Physics & Lab | 6 | Semester 2 |
| **PHYS3066**
Optics/Cond. Matter and Lab | 6 | Semester 2 |
| **PHYS3069**
Optics/High Energy Physics & Lab | 6 | Semester 2 |
| **PHYS3071**
High Energy/Astrophysics & Lab | 6 | Semester 2 |
| **PHYS3074**
High Energy/Cond. Matter Physics & Lab | 6 | Semester 2 |
| **PHYS3079**
Cond. Matter/High Energy/Astrophysics | 6 | Semester 2 |

Notes:
A: Assumed knowledge
P: Prerequisites
C: Corequisites
N: Prohibition
3. Bachelor of Science, BSc(Adv), BSc(Adv Maths), BSc(Adv)/MBBS

Unit of study

Credit
points

A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition

Session

PHYS3080
Optics/Cond.Matter/High Energy
Physics

6

A Electromagnetism and Quantum Mechanics at Senior Physics level; MATH (2061 or 2961 Semester 2
or 2067)
P PHYS (2011 or 2911 or 2001 or 2901); PHYS (2012 or 2912 or 2002 or 2902); PHYS (2013
or 2913 or 2001 or 2901)
N PHYS3980, PHYS3050, PHYS3950, PHYS3053, PHYS3953, PHYS3056, PHYS3956,
PHYS3058, PHYS3958, PHYS3062, PHYS3962, PHYS3068, PHYS3968, PHYS3069,
PHYS3969, PHYS3070, PHYS3970, PHYS3071, PHYS3971, PHYS3073, PHYS3973,
PHYS3074, PHYS3974, PHYS3075, PHYS3975, PHYS3076, PHYS3976, PHYS3077,
PHYS3977, PHYS3078, PHYS3978, PHYS3079, PHYS3979, PHYS3081, PHYS3981,
PHYS3082, PHYS3982

PHYS3081
Optics/Cond. Matter/Astrophysics

6

A Electromagnetism and Quantum Mechanics at Senior Physics level; MATH (2061 or 2961
or 2067)
P PHYS (2012 or 2912 or 2002 or 2902); PHYS (2013 or 2913 or 2001 or 2901)
N PHYS3981, PHYS3050, PHYS3950, PHYS3053, PHYS3953, PHYS3056, PHYS3956,
PHYS3058, PHYS3958, PHYS3062, PHYS3962, PHYS3068, PHYS3968, PHYS3069,
PHYS3969, PHYS3070, PHYS3970, PHYS3071, PHYS3971, PHYS3072, PHYS3972,
PHYS3074, PHYS3974, PHYS3075, PHYS3975, PHYS3076, PHYS3976, PHYS3077,
PHYS3977, PHYS3078, PHYS3978, PHYS3079, PHYS3979, PHYS3080, PHYS3980,
PHYS3082, PHYS3982

PHYS3082
Optics/High Energy/Astrophysics

6

A Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Semester 2
P PHYS (2011 or 2911 or 2001 or 2901); PHYS (2012 or 2912 or 2002 or 2902); PHYS (2013
or 2913 or 2001 or 2901)
N PHYS3982, PHYS3050, PHYS3950, PHYS3053, PHYS3953, PHYS3056, PHYS3956,
PHYS3058, PHYS3958, PHYS3068, PHYS3968, PHYS3069, PHYS3969, PHYS3071,
PHYS3971, PHYS3072, PHYS3972, PHYS3073, PHYS3973, PHYS3074, PHYS3974,
PHYS3075, PHYS3975, PHYS3076, PHYS3976, PHYS3077, PHYS3977, PHYS3078,
PHYS3978, PHYS3079, PHYS3979, PHYS3080, PHYS3980, PHYS3081, PHYS3981

PHYS3915
Topics in Senior Physics A
(Advanced)

6

A 6 credit points of Intermediate Mathematics
P 12 credit points of Intermediate Physics.
Note: Department permission required for enrolment

Semester 1

PHYS3925
Topics in Senior Physics B
(Advanced)

6

P 12 credit points of Intermediate Physics with a Credit average and 6 credit points of
Intermediate Mathematics.
Note: Department permission required for enrolment

Semester 2

PHYS3940
Electromagnetism and Physics Lab
(Adv)

6

P PHYS (2011 or 2911 or 2001 or 2901) with a grade of at least Credit; PHYS (2012 or 2912 Semester 1
or 2002 or 2902) with a grade of at least Credit; MATH (2061 or 2961 or 2067)
N PHYS3040, PHYS3941, PHYS3011, PHYS3014, PHYS3016, PHYS3017, PHYS3911,
PHYS3914, PHYS3916, PHYS3917

PHYS3941
Electromagnetism & Special Project
(Adv)

6

P PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or Semester 1
2902) with at least Credit; MATH (2061 or 2961 or 2067)
N PHYS3040, PHYS3940, PHYS3961, PHYS3011, PHYS3911, PHYS3918, PHYS3928
Note: Department permission required for enrolment
Approval for this unit must be obtained from the School of Physics Senior Coordinator.

PHYS3951
Thermodynamics/Biophysics & Lab
(Adv)

6

P PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or Semester 1
2902) with at least Credit
N PHYS3051, PHYS3052, PHYS3952, PHYS3053, PHYS3953, PHYS3055, PHYS3955,
PHYS3056, PHYS3956, PHYS3057, PHYS3957, PHYS3058, PHYS3958, PHYS3059,
PHYS3959

PHYS3952
Nanoscience/Thermodynamics & Lab
(Adv)

6

P PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or Semester 1
2902) with at least Credit
N PHYS3052, PHYS3050, PHYS3051, PHYS3053, PHYS3056, PHYS3950, PHYS3951,
PHYS3953, PHYS3956, PHYS3013, PHYS3021, PHYS3913, PHYS3921, PHYS3057,
PHYS3957, PHYS3058, PHYS3958

PHYS3954
Nanoscience/Plasma Physics & Lab
(Adv)

6

A Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Semester 1
P PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or
2902) with at least Credit
N PHYS3054, PHYS3050, PHYS3950, PHYS3052, PHYS3952, PHYS3055, PHYS3955,
PHYS3056, PHYS3956, PHYS3057, PHYS3957, PHYS3059, PHYS3959, PHYS3070,
PHYS3970, PHYS3072, PHYS3972, PHYS3073, PHYS3973, PHYS3076, PHYS3976,
PHYS3077, PHYS3977, PHYS3078, PHYS3978

PHYS3955
Nanoscience/Plasma/Thermodynamics
(Adv)

6

A Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Semester 1
P PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or
2902) with at least Credit
N PHYS3055, PHYS3050, PHYS3950, PHYS3051, PHYS3951, PHYS3052, PHYS3952,
PHYS3053, PHYS3953, PHYS3054, PHYS3954, PHYS3056, PHYS3956, PHYS3057,
PHYS3957, PHYS3058, PHYS3958, PHYS3059, PHYS3959, PHYS3070, PHYS3970,
PHYS3072, PHYS3972, PHYS3073, PHYS3973, PHYS3076, PHYS3976, PHYS3077,
PHYS3977, PHYS3078, PHYS3978

PHYS3957
Nanoscience/Thermodynamic/Biophys.(Adv)

6

P PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or Semester 1
2902) with at least Credit
N PHYS3057, PHYS3050, PHYS3950, PHYS3051, PHYS3951, PHYS3052, PHYS3952,
PHYS3053, PHYS3953, PHYS3054, PHYS3954, PHYS3055, PHYS3955, PHYS3056,
PHYS3956, PHYS3058, PHYS3958, PHYS3059, PHYS3959

PHYS3959
Plasma/Thermodynamics/Biophysics
(Adv)

6

A Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Semester 1
P PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or
2902) with at least Credit
N PHYS3059, PHYS3051, PHYS3951, PHYS3052, PHYS3952, PHYS3053, PHYS3953,
PHYS3054, PHYS3954, PHYS3055, PHYS3955, PHYS3056, PHYS3956, PHYS3057,
PHYS3957, PHYS3058, PHYS3958, PHYS3070, PHYS3970, PHYS3072, PHYS3972,
PHYS3073, PHYS3973, PHYS3076, PHYS3976, PHYS3077, PHYS3977, PHYS3078,
PHYS3978

PHYS3960
Quantum Mechanics and Physics Lab
(Adv)

6

P PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or Semester 2
2902) with at least Credit; MATH (2061 or 2961 or 2067)
N PHYS3060, PHYS3961, PHYS3011, PHYS3024, PHYS3026, PHYS3027, PHYS3911,
PHYS3924, PHYS3926, PHYS3927

PHYS3961
Quantum Mechanics & Special
Project(Adv)

6

P PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or Semester 2
2902) with at least Credit; MATH (2061 or 2961 or 2067)
N PHYS3060, PHYS3960, PHYS3941, PHYS3011, PHYS3911, PHYS3918, PHYS3928
Note: Department permission required for enrolment
Approval for this unit must be obtained from the School of Physics Senior Coordinator

Semester 2

81


<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3962 Quantum Cond Matter Physics & Lab (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>P PHYSYS2012 or PHYSYS2013 with result of credit or better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N PHYSYS3068, PHYSYS3069, PHYSYS3070, PHYSYS3071, PHYSYS3072, PHYSYS3073, PHYSYS3074, PHYSYS3075, PHYSYS3076, PHYSYS3077, PHYSYS3078, PHYSYS3079, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3968 Optics/Cond. Matter and Lab (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>P PHYSYS2011 or PHYSYS2012 or PHYSYS2013 with at least Credit or better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N PHYSYS3068, PHYSYS3069, PHYSYS3070, PHYSYS3071, PHYSYS3072, PHYSYS3073, PHYSYS3074, PHYSYS3075, PHYSYS3076, PHYSYS3077, PHYSYS3078, PHYSYS3079, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3969 Optics/High Energy Physics & Lab (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>P PHYSYS2011 or PHYSYS2012 or PHYSYS2013 with at least Credit or better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N PHYSYS3068, PHYSYS3069, PHYSYS3070, PHYSYS3071, PHYSYS3072, PHYSYS3073, PHYSYS3074, PHYSYS3075, PHYSYS3076, PHYSYS3077, PHYSYS3078, PHYSYS3079, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3971 High Energy/Astrophysics and Lab (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>P PHYSYS2011 or PHYSYS2012 or PHYSYS2013 with at least Credit or better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N PHYSYS3068, PHYSYS3069, PHYSYS3070, PHYSYS3071, PHYSYS3072, PHYSYS3073, PHYSYS3074, PHYSYS3075, PHYSYS3076, PHYSYS3077, PHYSYS3078, PHYSYS3079, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3974 High Energy/Cond. Matter Phys. & Lab(Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>P PHYSYS2011 or PHYSYS2012 or PHYSYS2013 with at least Credit or better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N PHYSYS3068, PHYSYS3069, PHYSYS3070, PHYSYS3071, PHYSYS3072, PHYSYS3073, PHYSYS3074, PHYSYS3075, PHYSYS3076, PHYSYS3077, PHYSYS3078, PHYSYS3079, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3979 Cond. Matter/High Energy/Astrophys (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>P PHYSYS2011 or PHYSYS2012 or PHYSYS2013 with at least Credit or better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N PHYSYS3068, PHYSYS3069, PHYSYS3070, PHYSYS3071, PHYSYS3072, PHYSYS3073, PHYSYS3074, PHYSYS3075, PHYSYS3076, PHYSYS3077, PHYSYS3078, PHYSYS3079, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>P PHYSYS2011 or PHYSYS2012 or PHYSYS2013 with at least Credit or better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N PHYSYS3068, PHYSYS3069, PHYSYS3070, PHYSYS3071, PHYSYS3072, PHYSYS3073, PHYSYS3074, PHYSYS3075, PHYSYS3076, PHYSYS3077, PHYSYS3078, PHYSYS3079, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3981 Optics/Cond. Matter/Astrophysics (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>P PHYSYS2011 or PHYSYS2012 or PHYSYS2013 with at least Credit or better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N PHYSYS3068, PHYSYS3069, PHYSYS3070, PHYSYS3071, PHYSYS3072, PHYSYS3073, PHYSYS3074, PHYSYS3075, PHYSYS3076, PHYSYS3077, PHYSYS3078, PHYSYS3079, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS3982 Optics/High Energy/Astrophysics (Adv)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>P PHYSYS2011 or PHYSYS2012 or PHYSYS2013 with at least Credit or better</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>N PHYSYS3068, PHYSYS3069, PHYSYS3070, PHYSYS3071, PHYSYS3072, PHYSYS3073, PHYSYS3074, PHYSYS3075, PHYSYS3076, PHYSYS3077, PHYSYS3078, PHYSYS3079, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSC3911 Scientific Computing</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>P 12 credit points chosen from Junior Mathematics and Statistics, 12 credit points of Intermediate units in Science subject areas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N COSC3901, COSC3902, COSC3903, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COSC3911 Scientific Computing (Advanced)</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td>P 12 credit points chosen from Junior Mathematics and Statistics, 12 credit points of Intermediate units in Science subject areas with a credit average.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N COSC3901, COSC3902, COSC3903, PHYSYS3080, PHYSYS3081</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Physiology

For a major in Physiology, the minimum requirement is 24 credit points from senior units of study listed in this subject area.
Unit of study	**Credit points**	**A: Assumed knowledge**	**P: Prerequisites**	**C: Corequisites**	**N: Prohibition**	**Session**
Intermediate units of study

PHSI2005
Integrated Physiology A
6 P 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Mathematics, Biology, Psychology units of study
N PHSI2905, PHSI2001, PHSI2101, PHSI2901
The completion of 6 credit points of MBLG units of study is highly recommended for progression to Senior Physiology. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisites.

PHSI2905
Integrated Physiology A (Advanced)
6 P 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Mathematics, Biology, Psychology units of study, approval of Coordinator
N PHSI2005, PHSI2901, PHSI2001, PHSI2101
Note: Department permission required for enrolment
Permission from the coordinators is required for entry into this course. It is available only to selected students who have achieved a WAM of 75 (or higher) in their Junior units of study. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisites.

PHSI2006
Integrated Physiology B
6 P 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Mathematics, Biology, Psychology units of study
N PHSI2906, PHSI2002, PHSI2102, PHSI2902
The completion of Molecular Biology and Genetics A is highly recommended for progression to Senior Physiology. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisites.

PHSI2906
Integrated Physiology B (Advanced)
6 P 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Mathematics, Biology, Psychology units of study, approval of coordinator
N PHSI2006, PHSI2902, PHSI2002, PHSI2102
Note: Department permission required for enrolment
Permission from the coordinators is required for entry into this course. It is available only to selected students who have achieved a WAM of 75 (or higher) in their Junior units of study. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisites.

Senior units of study

PHSI3005
Human Cellular Physiology: Theory
6 A 6 credit points of MBLG
P Except for BMedSc students: PHSI(2005 or 2905) and PHSI(2006 or 2906) For BMedSc:
BMED (2801 and 2802).
N PHSI3905, PHSI3004, PHSI3904
It is highly recommended that this unit of study be taken in conjunction with PHSI3006.

PHSI3905
Human Cellular Physiology (Adv): theory
6 A 6 credit points of MBLG
P Credit average in PHSI(2005 or 2905) and PHSI(2006 or 2906) or in BMED (2801 and 2802). Students enrolling in this unit should have a WAM of at least 70.
N PHSI3005, PHSI3004, PHSI3904
Note: Department permission required for enrolment
It is highly recommended that this unit of study be taken in conjunction with PHSI3906.

PHSI3006
Human Cellular Physiology: Research
6 P Except for BMedSc students: PHSI (2005 or 2905) and PHSI(2006 or 2906) For BMedSc:
BMED (2801 and 2802).
C PHSI3005
N PHSI3006, PHSI3004, PHSI3904

PHSI3906
Human Cellular Physiology (Adv): Research
6 A 6 credit points of MBLG
P PHSI (2005 or 2905) and PHSI(2006 or 2906) or in BMED (2801 and 2802). Students enrolling in this unit should have a WAM of at least 70.
C PHSI3905
N PHSI3006, PHSI3004, PHSI3904
Note: Department permission required for enrolment

NEUR3001
Neuroscience: Special Senses
6 A It is strongly recommended that students also take unit NEUR3002. PHSI2005 and ANAT2010 Semester 1 are assumed knowledge.
P For BMedSc students: BMED(2801 or 2503) and BMED(2806 or 2505). For other students: (PHSI(2101 or 2001 or 2901 or 2005 or 2905) or ANAT(2003 or 2010)) and 6 credit points of MBLG.
N PHSI3001, NEUR3901

NEUR3901
Neuroscience: Special Senses (Advanced)
6 A PHSI2005 and ANAT2010
P For BMedSc students: Credit average in BMED(2801 or 2503) and BMED(2806 or 2505)
For other students: Credit average in (PHSI(2101 or 2001 or 2901 or 2005 or 2905) or ANAT(2003 or 2010)) and 6 credit points of MBLG.
N NEUR3001, PHSI3001, PHSI3901
Permission from the coordinators is required for entry into this course. It is strongly recommended that students also take unit NEUR3002 or NEUR3902.

NEUR3002
Neuroscience: Motor Systems & Behaviour
6 A It is strongly recommended that students also take unit NEUR3001. ANAT2010 and PHSI2005 Semester 1 is assumed knowledge.
P For BMedSc students: BMED2801 and BMED2806 For other students: (PHSI(2101 or 2001 or 2005 or 2905) or ANAT(2003 or 2010)) and 6 credit points of MBLG.
N PHSI2001, NEUR3902

NEUR3902
Neuroscience: Motor Systems & Behav. Adv
6 A ANAT2010 and PHSI2005 is assumed knowledge.
P For BMedSc students: Credit average in BMED2801 and BMED2806 For other students: Credit average in (PHSI(2101 or 2001 or 2901 or 2005 or 2905) or ANAT(2003 or 2010)) and 6 credit points of MBLG.
N NEUR3002, PHSI3001
Permission from the coordinators is required for entry into this course. It is strongly recommended that students also take unit NEUR3001 or NEUR3901.

PHSI3007
Heart and Circulation: Normal Function
6 A 6 credit points of MBLG
P Except for BMedSc students: PHSI(2005 or 2905) and PHSI(2006 or 2906) plus at least 12 credit points of intermediate Science Units of Study For BMedSc: BMED (2801 and 2803).
N PHSI3907, PHSI3003, PHSI3903
It is recommended that students take PHSI3007 ONLY in combination with PHSI3008.
Plant Science

For a major in Plant Science, the minimum requirement is 24 credit points from senior units of study listed in this subject area, including a minimum of 12 credit points of senior PLNT units.

Intermediate units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT2001 Plant Biochemistry and Molecular Biology</td>
<td>6</td>
<td>P 12 credit points of Junior Chemistry and 12 credit points of Junior Biology (or with the Dean's permission BIOL1201 and BIOL1202)</td>
<td>N PLNT2201, AGCH2201</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PLNT2901 Plant Biochem & Molecular Biology (Adv)</td>
<td>6</td>
<td>P A Distinction average in 12 credit points of Junior Chemistry and 12 credit points of Junior Biology (or with the Dean's permission BIOL1201 and BIOL1202)</td>
<td>N PLNT2201, AGCH2201</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PLNT2002 Aust Flora: Ecology and Conservation</td>
<td>6</td>
<td>P 6 credit points of a Junior unit of study</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PLNT2902 Aust Flora: Ecology & Conservation (Adv)</td>
<td>6</td>
<td>A The contents of BIOL1002 (or 1902) is assumed knowledge. Students wishing to enroll in Intermediate Biology (BIOL) and Plant Science (PLNT) units of study using BIOL1003 or 1903 will need to do some preparatory reading</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PLNT2003 Plant Form and Function</td>
<td>6</td>
<td>A 12 credit points of Junior Biology, or equivalent eg BIOL (1001 or 1101 or 1901 or 1911) and BIOL (1002 or 1902 or 1903 or 1903).</td>
<td>N PLNT2903, BIOL2003, BIOL2903, CRNP2001</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Unit of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLNT2903 Plant Form and Function (Advanced)</td>
<td>6</td>
<td>A 12 credit points of Junior Biology, or equivalent eg BIOL (1001 or 1101 or 1901 or 2011) and BIOL (1002 or 1902 or 1003 or 1903)</td>
<td>N PLNT2003, BIOL2003, BIOL2903, CROP2001</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLNT3001 Plant, Cell and Environment</td>
<td>6</td>
<td>P 12 credit points of Intermediate Biology, Plant Science and Genetics or equivalent with average grade of distinction</td>
<td>N PLNT3001</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>PLNT3901 Plant, Cell and Environment (Advanced)</td>
<td>6</td>
<td>P 12 credit points of Intermediate Biology, Plant Science, Molecular Biology and Genetics or equivalent with average grade of distinction</td>
<td>N PLNT3001</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>PLNT3902 Plant Growth and Development</td>
<td>6</td>
<td>P 12 credit points of Intermediate PLNT, BIOL, ASCH or CROP units of study including at least one of PLNT2001, PLNT2901, PLNT2003, PLNT2903, BIOL2006, BIOL2906, CROP2001, AGCH2002 or equivalent</td>
<td>N PLNT3902, BIOL3021, BIOL3901</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLNT3902 Plant Growth and Development (Advanced)</td>
<td>6</td>
<td>P 12 credit points of Intermediate PLNT, BIOL, ASCH or CROP units of study including at least one of PLNT2001, PLNT2901, PLNT2003, PLNT2903, BIOL2006, BIOL2906, CROP2001, AGCH2002 or equivalent. These requirements may be varied and students with lower averages should consult the Unit Executive Officer.</td>
<td>N PLNT3002, BIOL3021, BIOL3901</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLNT3903 Systematics and Evolution of Plants Adv</td>
<td>6</td>
<td>P 6 credit points of any Intermediate unit of study from BIOL, PLNT, LWSC, HORT, GEOS, GEOG, ENVI, SOIL</td>
<td>N PLNT3003, BIOL3015/3915</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL3009 Terrestrial Field Ecology</td>
<td>6</td>
<td>A BIOL (3006 or 3906), Prior completion of one of these units is very strongly recommended.</td>
<td>P 12 credit points of Intermediate Biology or ANSC2004 and BIOM2001</td>
<td>N BIOL3909</td>
<td>S2 Intensive</td>
<td>Semester 1</td>
</tr>
<tr>
<td>BIOL3909 Terrestrial Field Ecology (Advanced)</td>
<td>6</td>
<td>A BIOL (3006 or 3906), Prior completion of one of these units is very strongly recommended.</td>
<td>P Distinction in 12 credit points of Intermediate Biology or ANSC2004 and BIOM2001</td>
<td>N BIOL3909</td>
<td>S2 Intensive</td>
<td>Semester 2</td>
</tr>
<tr>
<td>BIOL3917 Fungi in the Environment</td>
<td>6</td>
<td>P 12 credit points of Intermediate Biology or Plant Science, or 6 credit points of Intermediate Biology, or Plant Science, and 6 Intermediate credit points of either Microbiology or Geography.</td>
<td>N BIOL3917</td>
<td>Dates: 15-26 February 2010. The completion of 6 credit points of MBLG units is highly recommended.</td>
<td>S1 Intensive</td>
<td>Semester 1</td>
</tr>
<tr>
<td>BIOL3917 Fungi in the Environment (Advanced)</td>
<td>6</td>
<td>P Distinction in average of 12 credit points of Intermediate Biology and Plant Science, or 6 credit points of Intermediate Biology, or Plant Science, and 6 Intermediate credit points of either Microbiology or Geography.</td>
<td>N BIOL3917</td>
<td>The completion of 6 credit points of MBLG units is highly recommended.</td>
<td>S1 Intensive</td>
<td>Semester 1</td>
</tr>
<tr>
<td>PPAT3003 Plant Disease</td>
<td>6</td>
<td>P MICR2024</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPAT4004 Advanced Mycology and Plant Pathology</td>
<td>6</td>
<td>P PPAT3003 or BIOL3017</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PPAT4005 Soil Biology</td>
<td>6</td>
<td>P MICR2024 or 6cp intermediate microbiology</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGRO3002 Agronomy 3</td>
<td>6</td>
<td>A CROP1001 or HORT1001 or LWSC1001</td>
<td>P PLNT2902 or PLNT2903</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td></td>
</tr>
</tbody>
</table>

Psychology

For a major in Psychology, the minimum requirement is 48 credit points across intermediate and senior psychology units of study including PSYC (2111 or 2011), PSYC (2112 or 2012), PSYC (2113 or 2013) and PSYC (2114 or 2014). No other intermediate psychology units can be counted towards the major. You must complete at least 24 (30 for BPysch) credit points of Senior Psychology for a major. The senior units must include PSYC3018 and at least one of PSYC3011, 3012, 3013 and 3014. Students who want to be eligible for entry to the Honours program must also include PSYC3010.

*Note: HPSC3023 Psychology & Psychiatry: History & Phi is available for senior Psychology students and will count towards a major in Psychology. Successful completion of this unit of study is essential for students intending to take the Theoretical Thesis option in Psychology Honours.

Junior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>P: Prerequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC1001 Psychology 1001</td>
<td>6</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PSYC1002 Psychology 1002</td>
<td>6</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Intermediate units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>P: Prerequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC2011 Brain and Behaviour</td>
<td>6</td>
<td>PSYC (1001 and 1002), N PSYC2111</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PSYC2012 Statistics & Research Methods for Psych</td>
<td>6</td>
<td>A Recommended: HSC Mathematics, any level PSYC (1001 and 1002), N PSYC2112</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>PSYC2013 Cognitive and Social Psychology</td>
<td>6</td>
<td>PSYC (1001 and 1002), PSYC2113</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC2014 Personality and Intelligence 1</td>
<td>6</td>
<td>PSYC (1001 and 1002), PSYC2114</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC3011 Learning and Behaviour</td>
<td>6</td>
<td>PSYC (2012 or 2112)</td>
<td>PSYC (2011 or 2111) and at least one Intermediate Psychology Unit from PSYC2012</td>
<td>PSYC (2013 or 2113), PSYC2113, PSYC2014 or 2114.</td>
</tr>
<tr>
<td>PSYC3012 Cognition, Language and Thought</td>
<td>6</td>
<td>PSYC (2012 or 2112)</td>
<td>PSYC (2013 or 2113) and at least one Intermediate Psychology Unit from PSYC2011</td>
<td>PSYC (2012 or 2112), PSYC (2014 or 2114).</td>
</tr>
<tr>
<td>PSYC3015 Personality and Intelligence 2</td>
<td>6</td>
<td>PSYC(2012 or 2112), PSYC(2013 or 2113)</td>
<td>PSYC (2014 or 2114) and PSYC(2011 or 2111 or 2012 or 2112 or 2013 or 2113).</td>
<td></td>
</tr>
<tr>
<td>PSYC3016 Developmental Psychology</td>
<td>6</td>
<td>PSYC (2012 or 2112), PSYC (2013 or 2113)</td>
<td>PSYC (2012 or 2112), PSYC (2014 or 2114).</td>
<td></td>
</tr>
<tr>
<td>PSYC3017 Social Psychology</td>
<td>6</td>
<td>PSYC (2012 or 2112), PSYC (2013 or 2113)</td>
<td>PSYC (2012 or 2112), PSYC (2014 or 2114).</td>
<td></td>
</tr>
<tr>
<td>HPSC3023 Psychology & Psychiatry: History & Phil</td>
<td>6</td>
<td>Basic knowledge about the history of modern science as taught in HPSC2100 AND the</td>
<td>Principles of philosophy of science as taught in HPSC2101 OR knowledge of the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>principles of philosophy of science as taught in HPSC2101 OR knowledge of the</td>
<td>various sub-disciplines within Psychology.</td>
<td></td>
</tr>
<tr>
<td>PSYC3010 Advanced Statistics for Psychology</td>
<td>6</td>
<td>PSYC (2012 or 2112)</td>
<td>PSYC (2012 or 2112), PSYC (2013 or 2113), PSYC (2014 or 2114).</td>
<td></td>
</tr>
<tr>
<td>PSYC3013 Perceptual Systems</td>
<td>6</td>
<td>PSYC (2012 or 2112), PSYC (2013 or 2113)</td>
<td>PSYC (2012 or 2112), PSYC (2014 or 2114).</td>
<td></td>
</tr>
<tr>
<td>PSYC3014 Behavioural and Cognitive Neuroscience</td>
<td>6</td>
<td>PSYC (2113 or 2013); PSYC (2011 or 2111)</td>
<td>PSYC (2011 or 2111) and at least one Intermediate Psychology Unit from PSYC2012</td>
<td>PSYC (2013 or 2113), PSYC (2014 or 2114) OR (ANAT2010 plus PCOL2011)</td>
</tr>
<tr>
<td>PSYC3018 Abnormal Psychology</td>
<td>6</td>
<td>PSYC (2012 or 2112), PSYC (2014 or 2114)</td>
<td>PSYC (2012 or 2112), PSYC (2013 or 2113).</td>
<td></td>
</tr>
<tr>
<td>PSYC3020 Applications of Psychological Science</td>
<td>6</td>
<td>12 credit points of junior psychology and 12 credit points in Intermediate Psychology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Soil Science

For a major in soil science, the minimum requirement is completion of ENVX3001, SOIL3009, SOIL3010 and one of (AGCH3032 or LWSC3006 or PPAT4005)

Intermediate units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL2003 Soil Properties and Processes</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SOIL2004 The Soil Resource</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Senior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENVX3001 Environmental GIS</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SOIL3009 Contemporary Field and Lab Soil Science</td>
<td>6</td>
<td>SOIL2003</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SOIL3010 The Soil at Work</td>
<td>6</td>
<td>SOIL2003, SOIL3009</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Note: At least one of these units must be taken for a major in Soil Science.

Statistics

For a major in Statistics, the minimum requirement is 24 credit points from senior units of study listed below.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGCH3032 Land and Water Ecochemistry</td>
<td>6</td>
<td>AGCH2003 or AGCH2004 or PLNT2001 or CHEM24XX or BCHM2XXX or ENV2001</td>
<td>AGCH3030, AGCH3031</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>LWSC3006 Landscape Hydrology and Management</td>
<td>6</td>
<td>LWSC3005, LWSC2002 or GEOG2321</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PPAT4005 Soil Biology</td>
<td>6</td>
<td>MIRC2024 or 6cp intermediate microbiology</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
Intermediate units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT2011 Statistical Models</td>
<td>6</td>
<td></td>
<td>P MATH (1001 or 1901 or 1906 or 1011) and [MATH (1005 or 1905 or 1015) or STAT1021]</td>
<td>N STAT2901, STAT2001, STAT2911</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT2012 Statistical Tests</td>
<td>6</td>
<td></td>
<td>P MATH (1005 or 1905 or 1015)</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>STAT2911 Probability and Statistical Models</td>
<td>6</td>
<td></td>
<td>P MATH (1903 or 1907 or Credit in 1003) and MATH (1905 or 1904 or Credit in 1005)</td>
<td>N STAT2001, STAT2011, STAT2901</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT2912 Statistical Tests (Advanced)</td>
<td>6</td>
<td>A STAT (2911 or 2901)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>STAT2004, STAT2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Senior units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT3011 Stochastic Processes and Time Series</td>
<td>6</td>
<td></td>
<td>P STAT (2011 or 2911 or 2001 or 2901) and MATH (1003 or 1903 or 1907).</td>
<td>N STAT3911, STAT3003, STAT3903, STAT3005, STAT3905</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT3012 Applied Linear Models</td>
<td>6</td>
<td></td>
<td>P STAT(2012 or 2912 or 2004) and MATH1002 or 1014 or 1902).</td>
<td>N STAT3912, STAT3002, STAT3902, STAT3004, STAT3904</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT3013 Statistical Inference</td>
<td>6</td>
<td></td>
<td>P STAT(2012 or 2912 or 2003 or 2903) and STAT (2011 or 2911)</td>
<td>N STAT3913, STAT3001, STAT3901</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>STAT3014 Applied Statistics</td>
<td>6</td>
<td>A STAT(3012 or 3912), P STAT(2012 or 2912 or 2004)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>STAT3014 Applied Statistics Advanced</td>
<td></td>
<td></td>
<td>A STAT(3012 or 3912), P STAT(2012 or 2912 or 2004)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT3911 Stochastic Processes and Time Series Adv</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT3012 Applied Linear Models (Advanced)</td>
<td>6</td>
<td></td>
<td>P (STAT2912 or Credit in STAT2011) and MATH(1003 or 1903 or 1907).</td>
<td>N STAT3011, STAT3003, STAT3903, STAT3005, STAT3905</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT3912 Applied Linear Models (Advanced)</td>
<td>6</td>
<td></td>
<td>P (STAT2912 or Credit in STAT2004 or Credit in STAT2012) and MATH(2061 or 2961 or 1902).</td>
<td>N STAT3012, STAT3002, STAT3902, STAT3004, STAT3904</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT3913 Statistical Inference Advanced</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>STAT3914 Applied Statistics Advanced</td>
<td>6</td>
<td>A STAT3912, P STAT2912 or credit or better in (STAT2004 or STAT2012),</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BIOM3006 Statistics for the Natural Sciences</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Study in other Faculties

A total of 48 credit points of units of study from non-Science discipline areas may be counted towards the Bachelor of Science degree. Students should consult the Handbooks from other faculties to determine any prerequisites, corequisites or other requirements relating to enrolment in units of study offered by departments in these faculties. Students may not enrol in General Statistical Methods 1 (STAT1021) or Econometrics first year units, or any other unit of study deemed mutually exclusive with units of study listed in this Table. Students enrolled in the combined BSc/BCom program may enrol in Econometrics 1A (ECMT1010). Students may not enrol in LAWS units of study, unless enrolled in the combined BSc/Llb degree.
Bachelor of Science, BSc(Adv), BSc(Adv Maths), BSc(Adv)/MBBS
This chapter is intended to give enrolment advice to undergraduate students in the Faculty of Science enrolling in specialist Bachelor of Science degrees. You will find answers to frequently asked questions covering all students. Following this are specific summaries of the requirements for each degree including examples of how unit of study choices can be made over the duration of the degree. With some degrees there is information on recommended combinations of units of study, especially in first year, to help guide you to your goals.

It should be stressed that the information in this chapter is intended to be a rough guide only. All students will have to decide for themselves how to plan their degree to suit their own particular interests and situation.

All students are expected to read the degree resolutions for their course before they commence their studies, and from time to time during their studies. Undergraduate degree resolutions appear in chapter 2. The tables of undergraduate units of study available for each degree and unit descriptions appear in this chapter, and Table 1 of the Bachelor of Science degree in chapter 3.

Students enrolled in units of study offered by the Faculty of Science are required to familiarise themselves with the following key policies:

Special Arrangements
Students who are experiencing difficulty in meeting their assessment requirements due to competing essential community commitments may apply for Special Arrangements for examination and assessment.

Special Consideration
Students who have a serious illness or who have experienced misadventure which may affect their academic performance in a course or unit of study may request that they be given Special Consideration in relation to the determination of their results.

At Risk
To progress through a degree course, students are required to:

1. achieve the minimum Progression Rate specified by the Faculty; in the Faculty of Science, students must pass more than 50 per cent of the units attempted in each semester
2. pass any field or clinical work, practicum, or other unit of study mandated by the faculty (listed in your degree requirements).

If you do not meet the progress requirements, you will be identified as a student at risk. The At Risk policy is read in addition to specific degree progression requirements.

Code of Conduct for Students
The University has clear expectations of students in respect of academic matters and personal behaviour.

Student Plagiarism: Coursework Policy and Procedure
The University of Sydney expects high standards of academic honesty in all student work. In particular, the University is opposed to and will not tolerate plagiarism.

Details on Special Arrangements, Special Consideration, Code of Conduct for Students, and Student Plagiarism Policy are provided elsewhere in this handbook.

Inside the back cover of this handbook is a planner to help you map out your degree. It is recommended that you plan your studies carefully with an eye to your final years, so that you take the correct prerequisites in the preceding years. It will be useful to revisit this planner during your studies as your interests take more detailed shape.

Enrolment day FAQs

What is a 'major'?
Some degrees in the Faculty of Science require you to complete a major. A major is a specialisation in the senior year of your degree. Specialist Bachelor of Science degrees have been designed to develop your knowledge and skills in a particular area. Students enrolling in specialist degree programs do not have majors, but do have a specialisation.

How many credit points should I take per semester?
You should take 24 credit points each semester if you are a full-time student. There is an upper limit of 30 credit points per semester. If you take fewer than 18 credit points in each semester you will automatically become part-time.

To finish your degree in the recommended minimum time you will have to take 48 credit points per year, or 24 per semester. If you enrol part time you can take as few credit points as you like. You must keep in mind however that you have a 10 year limit to finish your degree.

Students wishing to accelerate their degree programs may consider undertaking units offered at Summer School or undertaking up to 30 credit points each semester. The degree summaries and sample programs in this chapter assume you will enrol full-time.

Do I need to be full-time?
International students must enrol full-time in a minimum of 24 credit points per semester unless there are exceptional circumstances. Failure to enrol in 24 credit points per semester may have serious ramifications for your visa.

Australian citizens and permanent residents are considered full-time if they are enrolled in 18 or more credit points per semester.

If you receive any financial support, whether from a University scholarship or from the government, you may well need to enrol as a full-time student. You should carefully check the terms and conditions of that support before going part-time. Australian citizens and permanent residents who wish to receive a transport concession card must be full-time students.

Can I take units of study from other faculties?
Students in specialist degrees may have room for some electives. In some instances, these electives may be taken from other faculties. Consult your degree resolutions and sample degree table.

Can I receive credit for previous tertiary study?
Yes. The amount of credit you receive depends on your individual circumstances, but in general the total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points from degrees that have been completed.

On the day that you enrol you must lodge an application for credit from previous study. Because of the large numbers of applications received at enrolment there can be a considerable delay in processing your application, but all credit offers will be sent to students well in advance of the last day to add a unit of study for the semester in which they enrol.

The faculty must sight originals of your academic transcripts, as well as detailed descriptions of prior units of study completed, as at the time of completion of the units. Descriptions will normally be an extract from a handbook or a unit of study syllabus/outline, and should include the credit point value, learning outcomes, assessment details, texts
and references, and contact details for each unit of study. You must bring this information with you on the day that you enrol. On enrolment day you will have to make unit of study choices as if you have had no previous university study. Alternatively, you may be able to obtain special permission to enrol in intermediate or senior units of study by taking a copy of your transcript and unit of study descriptions to academic advisers for each individual unit of study. Unit of study academic advisers are listed under unit of study descriptions in this handbook.

Information on the current application process for credit, including the application form, is available from the Faculty of Science website.

Are any bridging courses available?
There are bridging courses in Biology, Chemistry, Mathematics and Physics, designed to cover the assumed knowledge that students would normally cover in the HSC. They run in February each year after enrolment and are recommended for students who either did not take a subject at the HSC or feel they need some revision.

Who can enrol in advanced units of study?
Advanced units of study are available to those students enrolled in any program in the Faculty of Science who have performed at a high level in science subjects in the HSC or who perform well in their studies at the University.

Consult a departmental adviser about your eligibility to enrol in advanced-level subjects in the first year of study. You must obtain special permission to enrol in any advanced unit of study except Software. For advanced Software units of study, you must meet the criteria listed on the permission form for advanced units of study. The departmental advisers have copies of the permission form.

You should consult the unit of study tables for assumed and prerequisite marks in the HSC required to enrol in Advanced units of study.

For students in an Advanced degree it is recommended that you enrol in no more than 24 credit points of Advanced units of study in a year. Advanced units of study are very demanding and students are required to perform at a higher standard than in the normal units of study.

What is the Talented Student Program?
The Talented Student Program (TSP) is unique to the University of Sydney. It is tailored to meet students’ individual needs and is restricted to the very top students.

Students may be able to bypass some first year study and enrol directly in a second year course. If you have outstanding results in any of your HSC science subjects you may wish to negotiate a special program of study with one of the departments in the Faculty of Science.

The Talented Student Program is available in most areas of Science. Students receive special supervision by academic staff and often engage in studies on an individual basis with small numbers of fellow students, all of whom have a special interest in the same subject.

Am I eligible for the Talented Student Program?
Entry to the TSP is by invitation from the Dean which you should have received by the time you enrol. The following guidelines apply generally, although departments may have additional (and sometimes more stringent) requirements for entry into the program.

To get into the program in your first year, you should normally have an ATAR (or equivalent) of at least 99.00 and a result in band 6 in at least one HSC Science subject area and/or a mark of 95 or better in HSC Mathematics Extension 2.

For entry into the program in your second and third years, you should normally have a weighted average mark of 85 or over and a high distinction grade in the relevant subject area.
Bachelor of Science (Environmental)

Degree code: LH017

Note: this degree is not available to new students from 2007. A major in Environmental Studies is available to students enrolling in the Bachelor of Science degree.

Summary of requirements
The requirements for the degree are set out in Table IB: Bachelor of Science (Environmental) (see below) and the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree.

Enrolment guide
In your junior year you should complete:

- ENVI1002 and GEOL 1002
- 12 credit points from the science subject areas of Mathematics and Statistics
- 12 credit points of junior units of study in the science subject area of Biology
- 12 credit points of junior units of study in the science subject area of Chemistry.

The study of some Biology, Chemistry or Mathematics at the Advanced level is recommended but not compulsory.

To complete your degree you must gain credit for at least 144 credit points as specified in Table IB: Bachelor of Science (Environmental). The 144 credit points required for the degree must include:

- the intermediate Environmental Science units of study, ENVI2111 and ENVI2112
- the senior Environmental Science units of study, ENVI3111, ENVI3112, and ENVI3114.

Sample Bachelor of Science (Environmental)

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>ENVI1002</td>
<td>BIOL1X01/1911</td>
<td>CHEM1X01</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>ENVI2X11</td>
<td>SOIL/CHEM elective</td>
<td>Science elective</td>
<td>Science elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENVI2112</td>
<td>GEOS elective</td>
<td>BIOL/MICR/PLNT elective</td>
<td>Science Elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>ENVI3111</td>
<td>ENVI3113</td>
<td>Table 1B elective</td>
<td>Table 1B elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENVI3112</td>
<td>ENVI3114</td>
<td>Table 1B elective</td>
<td>Table 1B elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credit points: 144

Require: 144cp total, and units of study as per Table IB.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program below. See the Bachelor of Science entry for additional information. There is also a degree planner inside the back cover.

See the Environmental Science website (www.usyd.edu.au/envsci) for further information.

Units of study
The Science units of study available for this degree are set out in Table IB: Bachelor of Science (Environmental) and in Table I: Bachelor of Science in chapter 3.

Honours
There are Honours courses in Science subject areas suitable for Environmental Science students. Please refer to ‘Honours in the Faculty of Science’ and “Honours units of study” in chapter 11.

Discontinuation
In some circumstances, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Transferring into the BSc (Environmental)
This degree is not available for transfer.

Degree resolutions
See chapter 2.
Table 1B: Bachelor of Science (Environmental)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) ENVI1002 and GEOL1002;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) 12 credit points of Junior units of study from the Science Subject Area of Biology;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) 12 credit points of Junior units of study from the Science Subject Area of Chemistry; and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) 12 credit points of Junior units of study from the Science Subject Area of Mathematics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVI1002</td>
<td>6</td>
<td>This unit of study is available to students in the Bachelor of Science (Environmental) and the Bachelor of Land & Water Science only.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geomorphic Environments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>This unit of study is not available in 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some study of BIOL, CHEM, MATHS at the Advanced level is recommended but not compulsory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Intermediate units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) ENV2111/2911 and ENV2112;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) at least 6 credit points from SOIL2003 or CHEM2404;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) at least 6 credit points from GEOG2321 or GEOS2121;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) at least 6 credit points from MICR2024, BIOL2017, PLNT(2003 or 2903), BIOL(2012 or 2912); and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v) up to 18 credit points of Junior or Intermediate units of study from the Science Subject Areas of Agricultural Chemistry, Biology, Chemistry, Geography, Geology and Geophysics, Marine Science, Microbiology, Physics and Soil Science. Units of study in History and Philosophy of Science may be taken on approval of the Chair of the Program Committee for Environmental Science.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV2111</td>
<td>6</td>
<td>P BIOL (1001 or 1101) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH).</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation Biology and Applied Ecology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV2911</td>
<td>6</td>
<td>P Distinction average in BIOL (1001 or 1101 or 1101 or 1001) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). These requirements may be varied and students with lower averages should consult the Unit Executive Officer.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV2112</td>
<td>6</td>
<td>P 24 credit points of Junior Science units, including 12 credit points of Junior Chemistry or Physics</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric Processes and Climate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N ENV2102</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Senior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) ENV3111 and ENV3112 and ENV3114; and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) at least 24 credit points of Intermediate or Senior units of study from the Science Subject Areas of Agricultural Chemistry, Biology, Chemistry, Geography, Geology and Geophysics, Marine Science, Microbiology, Physics and Soil Science. Units of study in History and Philosophy of Science may be taken on approval of the Director of Environmental Science.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB: enrolment in at least 6 credit points of the following units of study is highly recommended: - AGCH3030 Rural Environmental Chemistry A, AGCH3031 Rural Environmental Chemistry B, BIOL3006 Ecological Methods, GEOS3014 GIS in Coastal Management.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV3111</td>
<td>6</td>
<td>A Intermediate Environmental Science.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Law and Ethics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P 12 credit points of Intermediate Science or Agriculture units.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N ENV3001, ENV3003.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV3112</td>
<td>6</td>
<td>A Intermediate Environmental Science.</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P 12 credit points of Intermediate Science or Agriculture units.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N ENV3002, ENV3004.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENV3114</td>
<td>6</td>
<td>A Junior Physics or Intermediate Environmental Science.</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy and the Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P 12 credit points of Intermediate Science or Agriculture units.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N ENV3001, PHYS3600.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3513</td>
<td>6</td>
<td>P 24 credit points of intermediate and/or senior units of study including 6 credit points of Intermediate units of study in Geography.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional Development and Environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N ENVI3113, GEOS3511, GEOS3911, GEOS3913</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS3913</td>
<td>6</td>
<td>P 24 credit points of intermediate and/or senior units of study including 6 credit points of Intermediate units of study in Geography with a grade of Credit or better.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regional Development & Environment (Adv)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science (Marine Science)

Degree code: LH021

Note: this award course is not available to new students from 2009.

Summary of requirements
The requirements for the degree are set out in Table IC: Bachelor of Science (Marine Science) (see this chapter) and the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree.

Enrolment guide
In your junior year you should complete:
- 12 credit points from the science subject areas of Mathematics and Statistics
- 12 credit points of junior units of study in the science subject area of Biology
- 12 credit points of junior units of study in the science subject areas of Geosciences
- PHYS1001 or 1002 or 1901, and
- CHEM1001 or 1101 or 1901.

Some study at the Advanced level is recommended but not compulsory.

To complete your degree you must gain credit for at least 144 credit points as specified in Table IC: Bachelor of Science (Marine Science). The 144 credit points required for the degree must include:
- 6 credit points from GEOS2115 or GEOS2915
- 6 credit points from BIOL2018 or 2918
- 36 credit points from senior Marine Science units of study, and
- no more than 48 credit points from junior units of study.

Plans of study

Sample Bachelor of Science (Marine Science)

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>1</td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>PHYS1XXX</td>
<td>BIOL1XXX</td>
<td>1911</td>
<td>GEOS1XXX</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>CHEM1XXX</td>
<td>BIOL1XXX</td>
<td>1911</td>
<td>GEOS1XXX</td>
</tr>
</tbody>
</table>

| Year 2 | 1 | GEOS2X15 | GEOS2XXX | BIOL2XXX | Science elective | 24 |
| | 2 | BIOL2X18 | GEOS2XXX | BIOL2XXX | Science elective | 24 |

| Year 3 | 1 | Table 1C elective | Table 1C elective | Table 1C elective | Science elective | 24 |
| | 2 | Table 1C elective | Table 1C elective | Table 1C elective | Science elective | 24 |

Total credit points: 144

Require: 144cp total, and units of study as per Table IC.
Table 1C: Bachelor of Science (Marine Science)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) 12 credit points of Junior units of study from the Science Subject Area of Biology;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) 12 credit points of Junior units of study from the Science Subject Areas of Geography and/or Geology;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) 12 credit points of Junior units of study from the Science Subject Area of Mathematics;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) PHYS1001 or 1002; and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v) CHEM1001 or 1101.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Some study of Biology, Chemistry, Mathematics or Physics at the Advanced level is recommended but not compulsory.

B. Intermediate units of study

Candidates are required to enrol in and complete:

(i) GEOS2115 or 2915 and BIOL2018 or 2918; or, for students who completed the intermediate year prior to 2008, MARS2005 or 2905 and MARS2006 or 2906 and MARS2007 or 2907;

(ii) 12 credit points of Intermediate units of study from the Science Subject Area of Biology (students in this course may take any Intermediate Biology unit of study which requires 12 credit points of Junior Chemistry as a prerequisite, provided they have passed at least 6 credit points of Junior Chemistry and at least 6 credit points of Junior Physics); and

(iii) 18 credit points of Intermediate units of study from Science Subject Areas and/or Civil Engineering units of study CIVL3401 and CIVL3402.

C. Senior units of study

Candidates are required to enrol in and complete:

(i) at least 36 credit points of Senior units of study from GEOS and/or BIOL units from this table, which must include at least one BIOL and one GEOS unit;

(ii) at least 12 credit points of Intermediate or Senior units of study from the Science subject areas of Biology, Environmental Science, Geography, Geology, Geophysics, and Marine Science units.
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL3908 Marine Field Ecology (Advanced)</td>
<td>6</td>
<td>A BIOL (3006 or 3906). Prior completion of one of these units is very strongly recommended.</td>
<td>P: Distinction average in 12 credit points of Intermediate Biology: or 6 credit points of Intermediate Biology and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N: BIOL3008, MARS3102. Dates: 3 - 10 July 2010.</td>
<td>Semester 2</td>
<td>S2 Intensive</td>
</tr>
<tr>
<td>BIOL3011 Ecophysiology</td>
<td>6</td>
<td>A BIOL (2012 or 2016 or 2916) or PLNT (2003 or 2903).</td>
<td>P: 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N: BIOL3911 The completion of 6 credit points of MBLG units is highly recommended.</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>BIOL3911 Ecophysiology (Advanced)</td>
<td>6</td>
<td>A BIOL (2012 or 2016 or 2916) or PLNT (2003 or 2903)</td>
<td>P: Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006. These requirements may be varied and students with lower averages should consult the Unit Executive Officer.</td>
<td>N: BIOL3011 The completion of 6 credit points of MBLG units is highly recommended.</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>BIOL3013 Marine Biology</td>
<td>6</td>
<td>A BIOL 2018 or MARS2006</td>
<td>P: 12 credit points of Intermediate Biology, or 6 credit points of Intermediate BIOL and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N: BIOL3913</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>BIOL3913 Marine Biology (Advanced)</td>
<td>6</td>
<td>A BIOL2018 or MARS2006</td>
<td>P: Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENVI2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.</td>
<td>N: BIOL3013 The completion of 6 credit points of MBLG units is highly recommended.</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>GEOS3009 Coastal Environments and Processes</td>
<td>6</td>
<td>P (6 credit points of Intermediate Geoscience units) and (6 further credit points of Intermediate Geoscience or 6 credit points of Physics or Mathematics or Information Technology or Engineering units) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906))</td>
<td>N: GEOS3909, MARS3003, MARS3105 * Geoscience is the disciplines of Geography, Geology and Geophysics.</td>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>GEOS3009 Coastal Environments and Processes (Adv)</td>
<td>6</td>
<td>P Distinction average in (6 credit points of Intermediate Geoscience* units) and (6 further credit points of Intermediate Geoscience or 6 credit points of Physics, Mathematics, Information Technology or Engineering units) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906))</td>
<td>N: GEOS3909, MARS3003, MARS3105 A distinction average in prior Geography or Geology units is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.</td>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>GEOS3014 GIS in Coastal Management</td>
<td>6</td>
<td>P MARS(2005 or 2905) and MARS(2006 or 2906), or 12 credit points of Intermediate Geoscience* units, or (GEOS(2115 or 2915) and BIOL(2018 or 2918))</td>
<td>N: GEOS3914, MARS3104. * Geoscience is the disciplines of Geography, Geology and Geophysics.</td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>GEOS3914 GIS in Coastal Management (Advanced)</td>
<td>6</td>
<td>P Distinction average in 12 credit points of Intermediate geography or geology units or GEOS 2115 (2015 or 2915) and BIOL 2018 (2018 or 2918), Department permission required for enrolment</td>
<td>N: GEOS3014, MARS3104 Note: Department permission required for enrolment A distinction average in prior Geography, Geology or Marine Science units of study is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.</td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>GEOS3918 Rivers: Science, Policy and Management</td>
<td>6</td>
<td>P (24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906))</td>
<td>N: GEOS3918</td>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>GEOS3918 Rivers: Science and Management (Adv)</td>
<td>6</td>
<td>P Distinction average in (24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience units of study) or ((MARS2005 or MARS2905) and (MARS2006 or MARS2906))</td>
<td>N: GEOS3018</td>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>GEOS3103 Environmental and Sedimentary Geology</td>
<td>6</td>
<td>A GEOS1003, GEOS2124</td>
<td>P GEOS(2124 or 2924) and GEOS(2111 or 2911 or 2114 or 2914 or 2113 or 2913); or GEOS(1003 or 1903) and 24 credit points of Intermediate Science units of study with permission of the Head of School</td>
<td>N: GEOS3803</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3803 Environmental & Sedimentary Geology(Adv)</td>
<td>6</td>
<td>A GEOS1003, GEOS2124</td>
<td>P Distinctions in GEOS(2114 or 2914) and GEOS(2124 or 2924); Students who have a credit average for all Geoscience units may enrol in this unit with permission of the Head of School</td>
<td>N: GEOS3103</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3104 Geophysical Methods</td>
<td>6</td>
<td>A GEOS2114 and GEOS2124</td>
<td>P 24 credit points of Intermediate Science units of study or (GEOS(2114/2914) and GEOS(2124/2924))</td>
<td>N: GEOS3804, GEOS3003, GEOS3903, GEOS3006, GEOS3906, GEOS3016, GEOS3916, GEOS3017, GEOS3917</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOS3804 Geophysical Methods (Advanced)</td>
<td>6</td>
<td>P Distinction in GEOS2114 or GEOS2124 and GEOS2914 or GEOS2924; Students who have a credit average for all Geoscience units may enrol in this unit with the permission of the Head of School</td>
<td>N: GEOS3104, GEOS3003, GEOS3903, GEOS3006, GEOS3906, GEOS3016, GEOS3916, GEOS3017, GEOS3917</td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>NTMP3001 Coral Reef Ecosystems</td>
<td>6</td>
<td>A General concepts in Biology</td>
<td>P MARS(2005 or 2905), plus 12 credit points from Intermediate Science units of study which must include at least 6 credit points of Biology. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>S2 Intensive</td>
</tr>
<tr>
<td>NTMP3003 Fisheries Biology and Management</td>
<td>6</td>
<td>A General concepts in Biology</td>
<td>P MARS(2005 or 2905), plus 12 credit points from Intermediate Science units of study which must include at least 6 credit points of Biology. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>S2 Intensive</td>
</tr>
</tbody>
</table>
4. Bachelor of Science specialist degree programs

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTMP3004 Aquaculture</td>
<td>6</td>
<td>A General concepts in Biology.</td>
<td>12 credit points from Intermediate Science units of study which must include at least 6 credit points of Biology.</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td>S2 Intensive</td>
</tr>
<tr>
<td>NTMP3005 Coastal Management</td>
<td>6</td>
<td>A General concepts in Biology.</td>
<td>12 credit points from Intermediate Science units of study which must include at least 6 credit points of Biology.</td>
<td></td>
<td>Note: Department permission required for enrolment These units are only available to BSc (Marine Science) students. Department permission required for enrolment</td>
<td>S2 Intensive</td>
</tr>
</tbody>
</table>
Bachelor of Science (Molecular Biology and Genetics)

Degree code: LH018

Summary of requirements
The requirements for the degree are set out in Table ID: Bachelor of Science (Molecular Biology and Genetics) (see below) and the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree.

Enrolment guide
In your Junior year you should complete:
• 12 credit points from the science subject areas of Mathematics and Statistics (it is recommended that students take units that assume completion of HSC Mathematics Extension 1 or 2 and include some statistics)
• 12 credit points of any junior BIOL units of study (BIOL1911 and BIOL1902 is the preferred option)
• 12 credit points of junior units of study in the science subject area of Chemistry (CHEM1108 and 1109 is the preferred option)
• MBLG1001 or 1901, and
• 6 credit points of elective junior science units of study (Physics or Computer Science are recommended).

To complete your degree you must gain credit for at least 144 credit points as specified in Table ID: Bachelor of Science (Molecular Biology and Genetics). All students in the Bachelor of Science (Molecular Biology and Genetics) must complete:
• at least 48 credit points of intermediate units of study, and
• at least 48 credit points of senior units of study of which at least 24 credit points are in a single science subject area.

Progression requirements
You should note that you must maintain in units of study in Science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the BSc.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program below. See the Bachelor of Science entry for additional information. There is also a degree planner inside the back cover.

Units of study
The Science units of study available for this degree are set out in Table ID: Bachelor of Science (Molecular Biology and Genetics) and in Table I: Bachelor of Science in chapter 3.

Honours
There are Honours courses in Science subject areas suitable for Molecular Biology and Genetics students. Please refer to 'Honours in the Faculty of Science' and "Honours units of study" in chapter 11.

Discontinuation
If you wish to discontinue a unit of study it is important to talk to staff in the Faculty Office. In some circumstances, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Transferring into the BSc (Molecular Biology and Genetics)
Students who have completed at least 48 credit points may, with the permission of the Dean, be permitted to transfer to the BSc (Molecular Biology and Genetics) from the BSc or any of its streams if their mark averaged over all attempted units of study is 75 or greater.

Australian Tertiary Admission Rank (ATAR)
The minimum ATAR for admission into the course varies every year.

Degree resolutions
See chapter 2.

Sample Bachelor of Science (Molecular Biology and Genetics)

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>BIOL1XXX</td>
<td>CHEM1108</td>
<td>Science elective</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>BIOL1XXX</td>
<td>CHEM1109</td>
<td>MBLG1901</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>MBLG2X71</td>
<td>BCHM2X71</td>
<td>MICR2X21</td>
<td>Science elective</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MBLG2X72</td>
<td>BCHM2X72</td>
<td>CHEM2403</td>
<td>Science elective</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>BCHM3X71</td>
<td>BCHM3X81</td>
<td>BIOL3X18</td>
<td>BIOL3X27</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Table ID elective</td>
<td>Table ID elective</td>
<td>Table ID elective</td>
<td>Table ID elective</td>
<td>MBLG3999</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credit points: 144

Require: 144cp total, and units of study as per Table ID.
Table 1D: Bachelor of Science (Molecular Biology and Genetics)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) 12 credit points of any Junior BIOL units of study (BIOL1911 and BIOL1902 is the preferred option); and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) CHEM(1101 or 1901 or 1903 or 1108) and CHEM(1102 or 1902 or 1904 or 1109) (The combination of CHEM 1108 and 1109 is the preferred option. The combination of CHEM 1001 and 1002 is available with special permission.);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) MBLG1901 (MBLG1001 and MBLG1999 for students who commenced prior to 2008);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) 12 credit points of Junior units of study from the Science Subject Area of Mathematics (it is recommended that students take units requiring HSC Mathematics Extension 1 or 2 and include some statistics in their choice of Mathematics units of study), and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v) 6 credit points of other Junior units of study from BSc units of study (Table I).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>It is recommended that the extra 6 credit points be selected from Junior units of study in Physics or in Computer Science.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBLG1901 Molecular Biology and Genetics (Adv)</td>
<td>6</td>
<td>A HSC Chemistry and Biology OR 6 credit points of Junior Biology and 6 cp of Junior Chemistry</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P UAI (or ATAR equivalent) of 95 or minimum Band 5 in HSC chemistry and biology or by invitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBLG1999 Molecular Biology & Genetics Seminar A</td>
<td>Only available in the BSc(MBG) and MBLG1901</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>

B. Intermediate units of study						
In order to proceed to the Intermediate year, candidates for the BSc (Molecular Biology and Genetics) must achieve a Credit average in Junior units of study. Candidates who fail to maintain the required Credit average will be transferred to candidature for the Bachelor of Science degree in their next year of enrolment with full credit for the units of study completed as Bachelor of Science (Molecular Biology and Genetics) candidates. Candidates who fail to achieve the required average across all units of study attempted in the year in which they have otherwise completed the requirements for the degree will be awarded the Bachelor of Science.						
In the Intermediate year candidates are required to enrol in and complete:						
(i) MBLG(2071 or 2971) and(2072 or 2972);						
(ii) CHEM(2403 or 2913);						
(iii) BCHM(2071 or 2971) and BCHM(2072 or 2972);						
(iv) MICR(2021 or 2921); and						
(v) 12 Credit points of Intermediate Science units of study. (In 1st Semester, CHEM2401/2911/2915 or BIOL(2016/2916) and in 2nd Semester, MICR(2022 or 2922) and CHEM402/2921/2916, are strongly recommended as the Science options.)						
Note: Students wishing to proceed to the Senior units of Chemistry or Microbiology must complete 12 credit points of Intermediate units in the appropriate discipline area.						

C. Senior units of study						
In order to proceed to the Senior year, candidates for the BSc (Molecular Biology and Genetics) must achieve a Credit average in Intermediate units of study. Candidates who fail to maintain the required Credit average will be transferred to candidature for the Bachelor of Science degree in their next year of enrolment with full credit for the units of study completed as Bachelor of Science (Molecular Biology and Genetics) candidates. Candidates who fail to achieve the required average across all units of study attempted in the year in which they have otherwise completed the requirements for the degree will be awarded the Bachelor of Science.						
In the Senior year candidates are required to enrol in and complete:						
(i) MBLG3999; and						
(ii) BCHM(3071 or 3971) and BCHM(3081 or 3981); and						
(iii) BIOL(3018 or 3918) and (3027 or 3927); and						
(iv) Semester 2 elective units of study; Select 24 credit points from BCHM(3072 or 3972), BCHM(3082 or 3982), BCHM(3092 or 3992), BIOL(3025 or 3925), BIOL(3026 or 3926), CHEM(3114 or 3914), CHEM(3115 or 3915), CHEM(3116 or 3916), CHEM(3117 or 3917), MICR(3012 or 3912), MICR(3022 or 3922).						
NOTE: The July semester enrolment must include a unit of study which incorporates the seminar and discussion program. Other suitable options incorporating molecular biology and genetics would be considered by the Program Committee.						
MBLG3999 Molecular Biology & Genetics Seminar B	Only available to students enrolled in the BSc(MBG) degree or the BCHM3972 course				Semester 2	

Honours units of study

Candidates for the Honours degree in Molecular Biology and Genetics shall complete an Honours program incorporating research in molecular biology and genetics in a Department or School in the Faculty of Science.
Bachelor of Science (Molecular Biotechnology)

Degree code: LH022

Note: this degree is not available to new or transferring students in 2010.

Summary of requirements
This degree program is taught mainly by departments in the Faculty of Science and includes industry participation.

The requirements for the degree are set out in Table IE: Bachelor of Science (Molecular Biotechnology) (see this chapter) and the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree.

Enrolment guide
In your junior year you should complete:

- 12 credit points from the science subject areas of Mathematics and Statistics
- 12 credit points of junior units of study in the science subject area of Biology
- 12 credit points of junior units of study in the science subject area of Chemistry (preferred combination is CHEM1108 and CHEM1109)
- MBLG1001 or 1901, and
- 6 credit points of elective units of study from Science, Agriculture, Arts, Economics and Business, Engineering and Information Technologies or other faculties.

To complete your degree you must gain credit for at least 144 credit points as specified in Table IE: Bachelor of Science (Molecular Biotechnology).

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program below. See the Bachelor of Science entry for additional information. There is also a degree planner inside the back cover.

Sample Bachelor of Science (Molecular Biotechnology)

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>BIOL1X01/1911</td>
<td>CHEM1XXX</td>
<td>Elective</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>BIOL1XXX</td>
<td>CHEM1XXX</td>
<td>MBLG1X01</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>BCHM2X71</td>
<td>MBLG2X71</td>
<td>CHEM2401/2911/2915</td>
<td>Table IE elective</td>
<td>2XXX</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MEBT2102</td>
<td>MBLG2X72</td>
<td>CHEM2402/2912/2916</td>
<td>Table IE elective</td>
<td>2XXX</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>MOBT3101</td>
<td>BIOL3X27</td>
<td>Table IE Elective</td>
<td>Table IE elective</td>
<td>3XXX</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOBT3202</td>
<td>CHEM3XXX</td>
<td>BCHM/MICR 3XXX</td>
<td>Table IE elective</td>
<td>3XXX</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>

Require: 144cp total, and units of study as per Table IE.
Table 1E: Bachelor of Science (Molecular Biotechnology)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) at least 12 credit points of Junior units of study from the Science Subject Area of Biology;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) CHEM1108 and CHEM1109 or at least 12 credit points of Junior units of study from the Science Subject Area of Chemistry (with special permission);</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) at least 12 credit points of Junior units of study from the Science Subject Area of Mathematics;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) MBLG1001 or 1901; and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v) at least 6 credit points of elective units of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHEM1108
Chemistry 1A Life Sciences
- **Credit points**: 6
- **A**: HSC Chemistry and Mathematics
- **P**: CHEM1102, CHEM1102, CHEM1902, CHEM1904
- **C**: Recommended concurrent units of study: 6 credit points of Junior Mathematics
- **N**: CHEM1002, CHEM1102, CHEM1901, CHEM1903
- **Semester 1**

CHEM1109
Chemistry 1B Life Sciences
- **Credit points**: 6
- **P**: CHEM1108
- **C**: Recommended concurrent units of study: 6 credit points of Junior Mathematics
- **N**: CHEM1001, CHEM1101, CHEM1901, CHEM1903
- **Semester 2**

B. Intermediate units of study

Candidates are required to enrol in and complete 48 credit points of Intermediate units of study including:

(i) MOBT2102;
(ii) MBLG(2071 or 2971) and MBLG(2072 or 2972);
(iii) CHEM(2401/2911/2915) and CHEM(2402/2912/2916);
(iv) BCHM(2071 or 2971); and
(v) at least 12 credit points chosen from Intermediate units of study in the Subject Areas of Animal Science, Biochemistry, Biological Sciences, Chemical Engineering, Chemistry, Computational Science, Computer Science and Information Systems, Immunology, Mathematics and Statistics, Microbiology, Pharmacology and Plant Science.

MOBT2102
Molecular Biotechnology 2
- **Credit points**: 6
- **P**: 12 credit points of Junior Biology and 12 credit points of Junior Chemistry
- **N**: MOBT2001
- **Semester 2**

C. Senior units of study

Candidates are required to enrol in and complete 48 credit points of Senior units of study including:

(i) MOBT3101 and MOBT3202;
(ii) BIOL3027/3927;
(iii) 6 credit points of CHEM from CHEM3111/3911 or CHEM3110/3910 or CHEM3114/3914 or CHEM3115/3915 or CHEM3116/3916
(iv) 6 credit points of BCHM or MICRO (Highly recommended: BCHM3092/3982 or MICRO3022/3922 or BCHM3091/3981)
(v) at least 18 credit points from Senior units of study in the Subject Areas of Agricultural Chemistry, Animal Science, Biochemistry, Biological Sciences, Chemical Engineering, Chemistry, Computational Science, Computer Science and Information Systems, Immunology, Mathematics and Statistics, Microbiology, Pharmacology and Plant Sciences.

MOBT3101
Molecular Biotechnology 3A
- **Credit points**: 6
- **A**: MBLG (2072 or 2972).
- **P**: MOBT2102
- **N**: MOBT2002, MOBT3101
- **Semester 1**

MOBT3202
Molecular Biotechnology 3B Project
- **Credit points**: 6
- **P**: MOBT2002 or MOBT3101
- **N**: MOBT3002, MOBT3102
- **Semester 2**
Bachelor of Science (Nutrition)

Degree code: LH020

This degree is not available to new students in 2010. Students interested in completing a Nutrition degree should consider the BSc/MND double degree.

Summary of requirements

The requirements for the degree are set out in Table IF: Bachelor of Science (Nutrition) (see this chapter) and the Senate and Faculty Resolutions (see chapter 2) which should be read by all candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree.

Enrolment guide

In your junior year you should complete:

- 12 credit points in the science areas of Maths and Statistics
- 12 credit points in the science subject area of Biology
- 12 credit points in the science subject area of Chemistry (CHEM1108 and CHEM1109 preferred option)
- 6 credit points in the science subject areas of Computer Science, Physics or Psychology, and
- MBLG1001.

To complete your degree you must gain credit for at least 192 credit points in total as specified in Table IF: Bachelor of Science (Nutrition).

Plans of study

It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program below.

Units of study

Units of study for this degree appear in Table IF: Bachelor of Science (Nutrition) and in Table I: Bachelor of Science in chapter 3.

Progression requirements

A minimum requirement for progression in the BSc (Nutrition) will be set annually and will be based on AAM and performance in the NUTR units of study according to table 1F. Students who do not meet progression requirements will be transferred to the BSc.

To proceed to the Honours year, students must:-

- achieve a SCIWAM of at least 65; and
- a minimum average of 65 in NUTR3XXX units of study; and
- achieve a minimum mark of 65 in at least three NUTR3XXX units of study.

Students who are unable to proceed to Honours but otherwise complete requirements for the BSc pass degree will graduate with the BSc with a major in Nutrition.

Honours

Please refer to ‘Honours units of study in this Chapter. Candidates for the honours degree in Nutrition shall complete an honours program in either (1) clinical strand or (2) by research. Students who enrol in the BSc (Nutrition) in order to achieve accreditation as a dietitian will need to complete the clinical strand.

Discontinuation

In some cases, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal/discontinuation are shown on page i of this handbook.

Special permission

You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Transferring into the BSc (Nutrition)

Students may no longer apply for internal transfer into the BSc(Nutrition) degree without written special permission from the Head of the School of Molecular and Microbial Biosciences. Note that only students with a previous enrolment in the combined Exercise Sports Science/Nutrition degree will be considered for transfer into the BSc(Nutrition) degree.

Degree resolutions

See chapter 2.

Sample Bachelor of Science (Nutrition)

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>1 MATH1XXX</td>
<td>MATH1XXX</td>
<td>BIOL 1X01/1911*</td>
<td>CHEM1XXX</td>
<td>BIOL1X03* or SOFT/INFO/ PHYS/ PSYC elective</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 MATH1XXX</td>
<td>MATH1XXX</td>
<td>BIOL1X02* or SOFT/INFO/ PHYS/ PSYC elective</td>
<td>CHEM1XXX</td>
<td>MBLG1X01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>1 NUTR2911</td>
<td>MBLG2X71</td>
<td>PHSI2005</td>
<td>MICR2021/ CHEM/ PCOL elective</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 NUTR2912</td>
<td>BCHM2X72</td>
<td>PHSI2006</td>
<td>MICR 2022/ CHEM/ PCOL elective</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>1 NUTR3911</td>
<td>NUTR 3921</td>
<td>AQCH3025/Table 1F Senior elective</td>
<td>AQCH3026/Table 1F Senior elective</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 NUTR3912</td>
<td>NUTR3922</td>
<td>BCHM3X72</td>
<td>BCHM3X82</td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>1 NUTR4001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 NUTR4002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
4. Bachelor of Science specialist degree programs

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 4 (Research*)</td>
<td>NUTR4101</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NUTR4103</td>
<td>NUTR4014</td>
<td>12</td>
<td>12</td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credit points: 192

Required: 192cp total, and units of study as per Table IF

* Students complete honours in either a clinical or a research strand.

Honours (clinical strand)

<table>
<thead>
<tr>
<th>Year 5</th>
<th>Unit of study & credit points</th>
<th>Total credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NUTR4001</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>NUTR4002</td>
<td>24</td>
</tr>
</tbody>
</table>

Total credit points: 240

Required: 240cp total, min. 138cp Science, min. 12cp Maths, min. 102cp Exercise and Sport Science, 48cp Honours units in Nutrition.

Honours (research strand)

<table>
<thead>
<tr>
<th>Year 5</th>
<th>Unit of study & credit points</th>
<th>Total credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NUTR4101</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>NUTR4103</td>
<td>NUTR4104</td>
</tr>
</tbody>
</table>

Total credit points: 240

Required: 240cp total, min. 138cp Science, min. 36cp Junior Science incl. 12cp Mathematics, min. 102cp Exercise and Sport Science, 48cp Honours units in Nutrition.

Table 1F: Bachelor of Science (Nutrition)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Bachelor of Science (Nutrition) is a 4 year degree. To complete the degree, a candidate must gain Credit for at least 192 credit points including the Honours course in either the clinical or research strand.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A. Junior units of study

Candidates are required to enrol in and complete:

1) BIOL(1001 or 1101 or 1901 or 1911) and BIOL(1002 or 1902 or 1003 or 1903);

2) 12 credit points of Junior Chemistry;

3) 12 credit points of Junior units of study from the Science Subject Area of Mathematics;

4) 6 credit points of other Junior units of study from the Science Subject Areas of Computer Science, Physics or Psychology; and

5) MBLG1001 or 1901

B. Intermediate units of study

In order to proceed to the Intermediate year, candidates for the BSc (Nutrition) must achieve an AAM of 60 in their Junior year. Candidates who fail to maintain the required average will be transferred to candidature for the Bachelor of Science degree in their next year of enrolment with full credit for the units of study completed as Bachelor of Science (Nutrition) candidates.

In the Intermediate year candidates are required to enrol in and complete:

1) NUTR2911 and NUTR2912;

2) MBLG 2071 or 2971;

3) BCHM2072 or 2972;

4) PHSI2005 and PHSI2006; and

5) Either (MICR2021 and MICR2022) or (at least 12 credit points of Intermediate units of study - 6 credit points each semester - from the Science Subject Areas of Chemistry or Pharmacology).

C. Senior units of study

In order to proceed to the Senior year, candidates for the BSc (Nutrition) must:
In order to proceed to the Honours year, candidates must satisfy all of the following conditions:

(i) Achieve a SCIWAM of at least 65 (Credit); and
(ii) Achieve a credit average across all NUTR3XXX units; and
(iii) Obtain a minimum mark of 65 (Credit) in at least three of the NUTR3XXX units.

Candidates who fail to achieve the required results across the Senior units of study will be transferred to candidature for the Bachelor of Science degree, and if they have otherwise completed the requirements for the BSc Pass degree, will be awarded the Bachelor of Science with a major in Nutrition.

Candidates enrol in and complete either:

(i) Bachelor of Science (Nutrition) Honours (clinical strand): NUTR4001 and NUTR4002 and NUTR4999; OR
(ii) Bachelor of Science (Nutrition) Honours (research strand): NUTR4101, NUTR4102, NUTR4103 and NUTR4104.

For information on units from the BAppSc (ExSpSc), please refer to the Handbook of the Faculty of Health Sciences.
4. Bachelor of Science specialist degree programs

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii) MBLG2071 Molecular Biology & Genetics A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>(iii) NUTR2911 Food Science Introductory (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>(iv) EXSS2019 Exercise Physiology - Acute Responses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Year 3

In order to proceed to Year 3 and the following years of the program a candidate must achieve (i) an AAM of 65 and (ii) an average of at least 68 in NUTR 2911, NUTR 2912. Candidates who fail to maintain the required results will be transferred to either the BSc(LH000), the BAppSc(ExSpSc)(SH088) or the BAppSc(ExSpSc&Nutr)(SH115).

Candidates are required to enrol in and complete in their third year:

Semester 1

(i) EXSS3024 Exercise, Health & Disease
(ii) EXSS3023 Exercise Testing & Prescription
(iii) EXSS2018 Biomechanical Analysis of Human Movement
(iv) MATH1015 Biostatistics and; MATH1011 Life Sciences Calculus

Semester 2

(i) EXSS3027 Exercise & Rehabilitation
(ii) EXSS2026 Growth, Development & Ageing
(iii) EXSS2025 Motor Control & Learning
(iv) STAT2012 Statistical Tests

Year 4

In order to proceed from third to fourth year candidates must achieve an AAM of 65. Candidates who fail to maintain the required results in any year will be transferred to either the BSc(LH000), the BAppSc(ExSpSc)(SH088) or the BAppSc(ExSpSc&Nutr)(SH115).

Candidates are required to enrol in and complete in their fourth year:

Semester 1

(i) NUTR3911 Nutritional Assessment Methods
(ii) NUTR3921 Methods in Nutrition Practice
(iii) EXSSXXX Nutrition for Health Exercise & Sport unit
(iv) EXSS3037 Exercise Pharmacology & Immunology

Semester 2

(i) NUTR3912 Community and Public Health
(ii) NUTR3922 Nutrition and Chronic Disease
(iii) BCHM3072 Human Molecular Cell Biology
(iv) BCHM3082 Medical and Metabolic Biochemistry

Students can exit here with BAppSc(Exercise, Sports Science and Nutrition).

Year 5

Honours units of study

In order to proceed to the Honours year (Dietetics in year 5), candidates must satisfy all of the following:

(i) Achieve an AAM of at least 60 in year 1 and an AAM of at least 65 in years 2-4; and
(ii) Achieve a Credit average of at least 65 in (NUTR 2911 and NUTR 2912); and
(iii) Achieve a Credit average of at least 65 in (NUTR 3911, NUTR 3912, NUTR 3921 and NUTR 3922); and
(iv) Achieve a SCIWAM of at least 65 (Credit).

Students who do not meet these criteria will be transferred to either the BSc (LH020), the BAppSc (ExSpSc) (SH088) or the BAppSc(ExSpSc&Nutr) (SH115).

Candidates intending to graduate with Honours in Nutrition and Dietetics are required to enrol in and complete in their fifth year:

(i) NUTR4001 and NUTR4002 and NUTR4999

Candidates intending to graduate with Honours in Nutrition are required to enrol in and complete in their fifth year:

(i) NUTR4101 and NUTR4102 and NUTR4103 and NUTR4104
Bachelor of Science/ Master of Nutrition and Dietetics

Degree code: LH026

Summary of requirements
The requirements for the degree are set out in Table IG: Bachelor of Science/ Master of Nutrition and Dietetics (see this chapter) and the Senate and Faculty Resolutions (see chapter 2) which should be read by all candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree.

Enrolment guide
In your junior year you should complete:
• 12 credit points in the science areas of Maths and Statistics, including 3 credit points of Statistics
• 12 credit points in the science subject area of Chemistry
• 6 credit points in the science subject area of Biology, selected from Concepts in Biology, Concepts in Biology (Adv) or Human Biology or Human Biology (Adv) (BIOL1001 or 1901 or 1003 or 1903)
• MBLG1001 and PSYC1001
• 6 credit points as an elective in a science subject area

To complete the Bachelor of Science component of the double degree you must gain credit for at least 144 credit points in total as specified in Table IG: Bachelor of Science (Nutrition)/ Master of Nutrition and Dietetics.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program below.

Units of study
Units of study for this degree appear in Table IG: Bachelor of Science/ Master of Nutrition and Dietetics and in Table I: Bachelor of Science in chapter 3.

Progression requirements
A minimum requirement for progression from the Bachelor of Science to the Master of Nutrition and Dietetics will be the completion of all requirements for the Bachelor of Science degree and a Weighted Average Mark of 65 for the Bachelor of Science degree.

Candidates who fail to achieve this Weighted Average Mark will be transferred to the Bachelor of Science and graduate with that degree only.

Honours
Please refer to the Honours chapter.

Discontinuation
In some cases, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal/discontinuation are shown on page i of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate).

Transferring into the BSc (Nutrition)
There shall be no transfer into this degree without special permission from the Head of the School of Molecular and Microbial Biosciences. Transfer is competitive on the basis of academic merit. Students will not be considered for transfer unless they have a minimum Weighted Average Mark of 65.

Degree resolutions
See chapter 2.

Sample Bachelor of Science/ Master of Nutrition and Dietetics

<table>
<thead>
<tr>
<th>Semester</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>BIOL1001 or 1911 or 1X03</td>
<td>PSYC1001</td>
<td>CHEM1XXX</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>MBLG1X01</td>
<td>Science elective</td>
<td>CHEM1XXX</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>MBLG2X71</td>
<td>PHSI2X05</td>
<td>Science intermediate elective</td>
<td>Science intermediate elective</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCHM2X72</td>
<td>PHSI2X06</td>
<td>Science intermediate elective</td>
<td>Science intermediate elective</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>12 credit points towards a major in Biochemistry or Physiology or Microbiology or Psychology</td>
<td>Senior Science elective</td>
<td>Senior Science elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 credit points to complete major chosen in semester 1</td>
<td>Senior Science elective</td>
<td>Senior Science elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Years 4 & 5</td>
<td>All units for the Master of Nutrition and Dietetics degree, listed in the postgraduate Nutrition chapter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>
Table 1G: Bachelor of Science/ Master of Nutrition and Dietetics Double Degree

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>First year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students are required to complete:--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) BIOL1001 or 1911 or 1003 or 1903</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) 12 credit points of junior Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) 12 credit points of junior Mathematics, which must include 3 credit points of statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) MBLG1001 or 1901</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v) A junior science elective chosen from Table 1: Bachelor of Science degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units available in compulsory areas in Year 1 are listed here. Lists of elective units may be found in Table 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1001 Concepts in Biology</td>
<td>6</td>
<td>A: None. However, students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N: BIOL 1911</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is recommended that BIOL (1001 or 1911) be taken concurrently with either BIOL1003 or BIOL1903. Students who have completed HSC Biology and scored 80+ should enrol in BIOL1911. Students who lack 80+ in HSC Biology but have a UAI of at least 93 may enrol in BIOL1911 with permission from the UEO. The completion of MBLG 1001 is highly recommended.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1911 Concepts in Biology (Advanced)</td>
<td>6</td>
<td>P: 80+ in HSC 2-unit Biology (or equivalent) or Distinction or better in a University level Biology unit, or by invitation.</td>
<td></td>
<td>N: BIOL 1001.</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL1902 Human Biology</td>
<td>6</td>
<td>A: Students who have not completed HSC biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N: BIOL1903, EDUH1016.</td>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It is recommended that BIOL (1001 or 1911) be taken concurrently with this unit of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM1001 Fundamentals of Chemistry 1A</td>
<td>6</td>
<td>A: There is no assumed knowledge of chemistry for this unit of study, but students who have not undertaken an HSC chemistry course are strongly advised to complete a chemistry bridging course before lectures commence.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N: CHEM1101, CHEM1901, CHEM1902, CHEM1904</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM1002 Fundamentals of Chemistry 1B</td>
<td>6</td>
<td>P: CHEM (1001 or 1101) or equivalent</td>
<td></td>
<td>N: CHEM1102, CHEM1108, CHEM1902, CHEM1904</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM1101 Chemistry 1A</td>
<td>6</td>
<td>A: HSC Chemistry and Mathematics</td>
<td></td>
<td>C: Recommended concurrent units of study; 6 credit points of Junior Mathematics</td>
<td>N: CHEM1001, CHEM1109, CHEM1901, CHEM1903</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C: CHEM1101, CHEM1901, CHEM1902, CHEM1904</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM1102 Chemistry 1B</td>
<td>6</td>
<td>P: CHEM (1101 or 1901) or Distinction in CHEM1001 or equivalent</td>
<td></td>
<td>C: Recommended concurrent units of study; 6 credit points of Junior Mathematics</td>
<td>N: CHEM1002, CHEM1108, CHEM1902, CHEM1904</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C: CHEM1101, CHEM1901, CHEM1902, CHEM1904</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM1901 Chemistry 1A (Advanced)</td>
<td>6</td>
<td>P: CHEM (1101 or 1901) or Distinction in CHEM1001 or equivalent</td>
<td></td>
<td>C: Recommended concurrent unit of study; 6 credit points of Junior Mathematics</td>
<td>N: CHEM1101, CHEM1901, CHEM1902, CHEM1904</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C: CHEM1101, CHEM1901, CHEM1902, CHEM1904</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM1902 Chemistry 1B (Advanced)</td>
<td>6</td>
<td>P: CHEM (1901 or 1903) or Distinction in CHEM101 or equivalent</td>
<td></td>
<td>C: Recommended concurrent unit of study; 6 credit points of Junior Mathematics</td>
<td>N: CHEM1002, CHEM1102, CHEM1108, CHEM1904</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C: CHEM1101, CHEM1109, CHEM1901, CHEM1904</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM1903 Chemistry 1A (Special Studies Program)</td>
<td>6</td>
<td>P: CHEM (1101 or 1901) or Distinction in CHEM1001 or equivalent</td>
<td></td>
<td>C: Recommended concurrent unit of study; 6 credit points of Junior Mathematics</td>
<td>N: CHEM1100, CHEM1101, CHEM1109, CHEM1901</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C: CHEM1101, CHEM1109, CHEM1901, CHEM1904</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM1904 Chemistry 1B (Special Studies Program)</td>
<td>6</td>
<td>P: Distinction in CHEM1903</td>
<td></td>
<td>C: Recommended concurrent units of study; 6 credit points of Junior Mathematics.</td>
<td>N: CHEM1012, CHEM1102, CHEM1108, CHEM1902</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N: CHEM1011, CHEM1101, CHEM1901, CHEM1902</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td>Entry is by invitation. This unit of study is deemed to be an Advanced unit of study.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1011 Applications of Calculus</td>
<td>3</td>
<td>A: HSC Mathematics</td>
<td></td>
<td>N: MATH1111, MATH1001, MATH1901, MATH1906, BIOM1003</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH1011, MATH1002, MATH1902</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1014 Introduction to Linear Algebra</td>
<td>3</td>
<td>A: HSC Mathematics or MATH1111</td>
<td></td>
<td>N: MATH1002, MATH1012</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH1111, MATH1902</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1111 Introduction to Calculus</td>
<td>6</td>
<td>A: At least Year 10 Mathematics</td>
<td></td>
<td>N: MATH1010, MATH1901, MATH1111, MATH1906</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Students who have previously studied calculus at any level are prohibited from enrolling in this unit. In particular, students with HSC Mathematics Extension 1/Extension 2 (or equivalent) are prohibited.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1013 Mathematical Modelling</td>
<td>3</td>
<td>A: HSC Mathematics or MATH1111</td>
<td></td>
<td>N: MATH1003, MATH1903, MATH1907</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MATH1115</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1015 Biostatistics</td>
<td>3</td>
<td>A: HSC Mathematics</td>
<td></td>
<td>N: MATH1005, MATH1905, STAT1021, STAT1022, ECMT1010, BIOM1003</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>MATH1001 Differential Calculus</td>
<td>3</td>
<td>A HSC Mathematics Extension 1</td>
<td>N MATH1011, MATH1901, MATH1906, MATH1111</td>
<td>Semester 1 Summer Main</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1002 Linear Algebra</td>
<td>3</td>
<td>A HSC Mathematics Extension 1</td>
<td>N MATH1012, MATH1902, MATH1014</td>
<td>Semester 1 Summer Main</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1003 Integral Calculus and Modelling</td>
<td>3</td>
<td>A HSC Mathematics Extension 2 or MATH1001 or MATH1011 or MATH1111</td>
<td>N MATH1013, MATH1903, MATH1907</td>
<td>Semester 2 Summer Main</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1004 Discrete Mathematics</td>
<td>3</td>
<td>A HSC Mathematics Extension 1</td>
<td>N MATH1904, MATH2011</td>
<td>Semester 2 Summer Main</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1005 Statistics</td>
<td>3</td>
<td>A HSC Mathematics</td>
<td>N MATH1015, MATH1905, STAT1021, STAT1022, ECM1010</td>
<td>Semester 2 Summer Main</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1901 Differential Calculus (Advanced)</td>
<td>3</td>
<td>P HSC Mathematics Extension 2</td>
<td>This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator.</td>
<td>N MATH1111, MATH1011, MATH1001, MATH1906</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>MATH1902 Linear Algebra (Advanced)</td>
<td>3</td>
<td>P HSC Mathematics Extension 2</td>
<td>This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator.</td>
<td>N MATH1002, MATH1012, MATH1014</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>MATH1903 Integral Calculus and Modelling Advanced</td>
<td>3</td>
<td>A HSC Mathematics Extension 2 or Credit or better in MATH1001 or MATH1901</td>
<td>P HSC Mathematics Extension 2</td>
<td>This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator.</td>
<td>N MATH1003, MATH1013, MATH1907</td>
<td>Semester 2</td>
</tr>
<tr>
<td>MATH1905 Statistics (Advanced)</td>
<td>3</td>
<td>P HSC Mathematics Extension 2</td>
<td>This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator.</td>
<td>N MATH1015, MATH1005, STAT1021, STAT1022, ECM1010</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>MATH1906 Mathematics (Special Studies Program) A</td>
<td>3</td>
<td>P UAI (or ATAR equivalent) of at least 98.5 and result in Band E4 HSC Mathematics Extension 2</td>
<td>by invitation</td>
<td>N MATH1111, MATH1001, MATH1011, MATH1901</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td>MATH1907 Mathematics (Special Studies Program) B</td>
<td>3</td>
<td>P Distinction in MATH1906; by invitation</td>
<td>N MATH1003, MATH1013, MATH1903</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBLG1001 Molecular Biology and Genetics (Intro)</td>
<td>6</td>
<td>A 6 credit points of Junior Biology and 6 cp of Junior Chemistry</td>
<td>N AGCH2001, BCHM2001, BCHM2101, BCHM2901, MBLG2901, MBLG2901, MBLG2001, MBLG2111, MBLG2771, MBLG2871, MBLG1901</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC1001 Psychology 1001</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Summer Main</td>
<td></td>
</tr>
</tbody>
</table>

Second year

Students must complete:
1. **(i)** MBLG2071 or 2971
2. **(ii)** BCHM2072 or 2972
3. **(iii)** PHSI2005 or 2905
4. **(iv)** PHSI2006 or 2906

(v) An additional 12 credit points of Science electives from Table 1
(vi) A further 12 credit points of intermediate Science electives from Table 1

MBLG2071 Molecular Biology and Genetics A	6	P MBLG1001 or MBLG1901 and 12 CP of Junior Chemistry.	N MBLG2971, MBLG2771, MBLG2871, MBLG2001, MBLG2101, MBLG2901, MBLG2111, MBLG2201, AGCH2001, BCHM2001, BCHM2101, BCHM2901	Students enrolled in the combined BAppSc (Exercise and Sport Science)/BSc(Nutrition) must have completed all Junior units for this course (CHEM1101, BACH1161, BIOS1159, EXSS1018 CHEM1102, BIOS1133, BIOS1165, EXSS1033, MBLG1001) prior to enrolling in this unit.	Semester 1
MBLG2071 Molecular Biology and Genetics A (Adv)	6	P 12 credit points of Junior Chemistry and Distinction in MBLG (1001 or 1901)	N MBLG2071, MBLG2771, MBLG2871, MBLG2001, MBLG2101, MBLG2901, MBLG2111, MBLG2201, AGCH2001, BCHM2001, BCHM2101, BCHM2901	Students enrolled in the combined BAppSc (Exercise and Sport Science)/BSc(Nutrition) must have completed all Junior units for this course prior to enrolling in this unit.	Semester 1
BCHM2072 Human Biochemistry	6	P Either MBLG1001 (or 1901) and 12 credit points of Junior Chemistry or either either MBLG2071 or MBLG2971	N BCHM2972, BCHM2002, BCHM2102, BCHM2902, BCHM2112	Semester 2	
BCHM2972 Human Biochemistry (Advanced)	6	P Distinction in one of (BCHM (2071 or 2971) or MBLG(2071 or 2971)) or (Distinction in MBLG 2001 (or 1901) and Distinction average in all other Junior Science Units of Study undertaken).	N BCHM2072, BCHM2002, BCHM2102, BCHM2902, BCHM2112	Semester 2	
PHSI2005 Integrated Physiology A	6	P 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Semester 1 Mathematics, Biophysics units of study	N PHSI2005, PHSI2006, PHSI2101, PHSI2901	The completion of 6 credit points of MBLG units of study is highly recommended for progression to Senior Physiology. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisites. The completion of 6 credit points of MBLG units of study is highly recommended for progression to Senior Physiology.	Semester 1
PHSI2905 Integrated Physiology A (Advanced)	6	P 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Semester 1 Mathematics, Biophysics units of study, approval of Coordinator	N PHSI2005, PHSI2006, PHSI2101, PHSI2901	Note: Department permission required for enrolment	Semester 1
Unit of study
PHSI2006 Integrated Physiology B
Credit points: 6
A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition
- 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Mathematics, Biology, Psychology units of study
- **Session**: Semester 2
- **N**: PHSI2906, PHSI2002, PHSI2102, PHSI2902
 - The completion of Molecular Biology and Genetics A is highly recommended for progression to Senior Physiology. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisites.

Unit of study
PHSI2906 Integrated Physiology B (Advanced)
Credit points: 6
A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition
- 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Mathematics, Biology, Psychology units of study, approval of coordinator
- **Session**: Semester 2
- **N**: PHSI2006, PHSI2902, PHSI2002, PHSI2102
 - **Note**: Department permission required for enrolment
 - The completion of Molecular Biology and Genetics A is highly recommended for progression to Senior Physiology.

Third year
Students must complete
1. a major in Biochemistry or Physiology or Microbiology or Psychology
2. Up to an additional 24 senior credit points which may constitute a second major, or electives chosen from Table 1.

Years 4 & 5
Students who successfully complete progression requirements enrol in the Master of Nutrition and Dietetics degree.
Students complete requirements for the Master of Nutrition and Dietetics degree as set out in the relevant postgraduate chapter.
5. Bachelor of Medical Science and BMedSc/MBBS

This chapter is intended to give enrolment advice to undergraduate Bachelor of Medical Science students in the Faculty of Science. You will find answers to frequently asked questions covering all students.

Following this are specific summaries of the requirements for each degree including examples of how unit of study choices can be made over the duration of the degree. With some degrees there is information on recommended combinations of units of study, especially in first year, to help guide you to your goals.

It is stressed that the information in this chapter is intended to be a rough guide only. All students will have to decide for themselves how to plan their degree to suit their own particular interests and situation.

All students are expected to read the degree resolutions for their course before they commence their studies, and from time to time during their studies. Undergraduate degree resolutions appear in chapter 2. The tables of undergraduate units of study available for each degree appear towards the end of this chapter. Unit of study descriptions may be found in Chapter 9.

Students enrolled in units of study offered by the Faculty of Science are required to familiarise themselves with the following key policies:

Special Arrangements
Students who are experiencing difficulty in meeting their assessment requirements due to competing essential community commitments may apply for Special Arrangements for examination and assessment.

Special Consideration
Students who have a serious illness or who have experienced misadventure which may affect their academic performance in a course or unit of study may request that they be given Special Consideration in relation to the determination of their results.

At Risk
To progress through a degree course, students are required to:

1. achieve the minimum Progression Rate specified by the faculty; in the Faculty of Science students must pass more than 50 per cent of the units attempted in each semester
2. pass any field or clinical work, practicum, or other unit of study mandated by the faculty (listed in your degree requirements).

If you do not meet the progress requirements, you will be identified as a student at risk.

Code of Conduct for Students
The University has clear expectations of students in respect of academic matters and personal behaviour.

Student Plagiarism: Coursework Policy and Procedure
The University of Sydney expects high standards of academic honesty in all student work. In particular, the University is opposed to and will not tolerate plagiarism.

Details on Special Arrangements, Special Consideration, Code of Conduct for Students, and Student Plagiarism Policy are provided in Chapter 1 of this handbook.

Inside the back cover of this handbook you will find a planner to help you map out your degree. It is recommended that you plan your studies carefully with an eye to your final years, so that you take the correct prerequisites in the preceding years. It will be useful to revisit this planner during your studies as your interests take more detailed shape.

Enrolment day FAQs

What is a 'major'?
Some degrees in the Faculty of Science require you to complete a major. A major is a specialisation in the senior year of your degree. A major is usually defined as 24 credit points of study at the senior level in a single science Area.

The Bachelor of Medical Science does not have majors.

How many credit points should I take per semester?
You should take 24 credit points each semester if you are a full-time student. There is an upper limit of 30 credit points per semester. If you take fewer than 18 credit points in each semester you will automatically become part-time.

To finish your degree in the recommended minimum time you will have to take 48 credit points per year, or 24 per semester. If you enrol part time you can take as few credit points as you like. You must keep in mind however that you have a 10 year limit to finish your degree. Students wishing to accelerate their degree programs may consider undertaking units offered at Summer School or undertaking up to 30 credit points each semester. The degree summary and sample program in this chapter assume you will enrol full-time.

Do I need to be full-time?
International students must enrol full-time in a minimum of 24 credit points per semester unless there are exceptional circumstances. Failure to enrol in 24 credit points per semester may have serious ramifications for your visa.

Australian citizens and permanent residents are considered full-time if they are enrolled in 18 or more credit points per semester. Australian citizens and permanent residents who wish to receive a transport concession card must be full-time students.

If you receive any financial support, whether from a University scholarship or from the government, you may well need to enrol as a full-time student. You should carefully check the terms and conditions of that support before going part-time.

Can I take units of study from other faculties?
Yes. Students may take up to 12 credit points of non-Medical Science electives in the third year of the degree. You may take any unit in the faculties of Arts or Economics and Business for which you have the prerequisites. Each faculty website has links to departmental and unit of study information.

Also available are undergraduate units from any other faculty at the University. The onus is on you to get written permission from the relevant department and bring it to the Faculty of Science.

There are limits, and exclusions. You should refer to the degree summary sections of this chapter for specific information about your particular degree.

I have an offer for the Bachelor of Medical Science (first year entry) – can I apply for credit for previous tertiary study?
Yes. However, students enrolling as new students into the Bachelor of Medical Science award course are advised that credit will not enable you to proceed directly into core Intermediate BMED units of study. Prerequisites for Intermediate BMED units of study are such that anything less than 42 credit points of junior units of study specified in the resolutions for the degree will not enable students to undertake these units on entry to the award course. Only students admitted into
second year entry for the Bachelor of Medical Science (UAC code: 512081/522081) will be able to proceed directly into second-year units of study.

No more than 48 credit points of credit can be offered towards the Bachelor of Medical Science. Credit will only be offered at junior level.

On the day that you enrol you must lodge an application for credit for previous study. Because of the large numbers of applications received at enrolment there can be a considerable delay in processing your application, but all credit offers will be sent to students well in advance of the last day to add a unit of study for the semester in which they enrol.

The faculty must sight originals of your academic transcripts, as well as detailed descriptions of prior units of study completed, as at the time of completion of the units. Descriptions will normally be an extract from a Handbook or a unit of study syllabus or outline, and should include the credit point value, learning outcomes, assessment details, texts and references, and contact details for each unit of study. You must bring this information with you on the day that you enrol.

On enrolment day you will have to make unit of study choices as if you had no previous university study. Alternatively, you may be able to obtain special permission to enrol in intermediate or senior units of study by taking a copy of your transcript and unit of study descriptions to academic advisers for each individual unit of study. Unit of study Academic advisers are listed under unit of study descriptions in this Handbook.

Information on the application process for credit, including the application form, is available from the Faculty of Science website.

I have an offer for Bachelor of Medical Science (second year entry): do I need to apply for credit?
No, credit will be granted upon enrolment. You will enrol in second year units of study on the day of enrolment.

Are there any bridging courses available?
There are bridging courses in Biology, Chemistry, Mathematics and Physics, designed to cover the assumed knowledge that students would normally cover in the HSC. They run in February each year after enrolment and are recommended for students who either didn’t take a subject at the HSC or feel they need some revision.

Who can enrol in Advanced units of study?
Advanced units of study are available to those students enrolled in any program in the Faculty of Science who have performed at a high level in science subjects in the HSC or who perform well in their studies at the University.

Consult a departmental adviser about your eligibility to enrol in advanced level subjects in the first year of study.

Students should also consult the unit of study Tables for assumed and prerequisite marks in the HSC required to enrol in Advanced units of study.

It is recommended that you enrol in no more than 24 credit points of Advanced units of study in a year. Advanced units of study are very demanding and students are required to perform at a higher standard than in the normal units of study.

What is the Talented Student Program?
The Talented Student Program (TSP) is unique to the University of Sydney. It is tailored to meet students’ individual needs and is restricted to the very top students.

Students may be able to bypass some first year study and enrol directly in a second year course. If you have outstanding results in any of your HSC science subjects you may wish to negotiate a special program of study with one of the departments in the Faculty of Science.

The Talented Student Program is available in most areas of Science. Students receive special supervision by academic staff and often engage in studies on an individual basis with small numbers of fellow students, all of whom have a special interest in the same subject.

Am I eligible for the Talented Student Program?
Entry to the TSP is by invitation from the Dean, which you should have received by the time you enrol. The following guidelines apply generally, although departments may have additional (and sometimes more stringent) requirements for entry into the program. To get into the program in your first year, you should normally have an ATAR (or equivalent) of at least 99.00 and a result in band 6 in at least one HSC Science subject area and/or a mark of 95 or better in HSC Mathematics.

For entry into the program in your second and third years, you should normally have a weighted average mark of 85 or over and a high distinction grade in the relevant subject area.

Bachelor of Medical Science (BMedSc)

Degree code: LH010

Summary of requirements
The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. The Resolutions should be consulted for any clarification of the summary points.

Enrolment guide
To complete your degree you must gain credit for at least 144 credit points. The 144 credit points required for the degree must include:

- at least 48 credit points from junior units of study, comprising MBLG1001 and 12 credit points each from Chemistry, Mathematics and Physics (other than PHYS 1500) or Computational Science and 6 credit points from Biology
- no more than 60 credit points from junior units of study
- 48 credit points of intermediate core units of study listed in Table IV
- at least 36 credit points of Senior units of study taken from the subject areas of Anatomy/Histology, Biology (Genetics), Biochemistry, Cell Pathology, Immunology, Infectious Diseases, Microbiology, Pharmacology and Physiology
- no more than 12 credit points from units of study other than core units of study.

Students are required to have completed at least 42 credit points of the core intermediate units of study prior to enrolment in any senior units of study. It is possible for students to ‘carry’ up to 6 credit points of core or elective units from the intermediate year into the senior year, provided that these units of study are not prerequisites for electives they may wish to undertake in the senior year.

You should also note the following:
- you cannot count any unit of study with the grade Pass (Concessional) toward the degree
- units of study completed at the University of Sydney Summer School which correspond to units of study in the table of undergraduate units of study may be credited towards the course requirements.
• a standard full time enrolment is 24 credit points per semester; less than 18 credit points per semester is considered to be part time
• you may not enrol in more than 30 credit points in any one semester without permission
• in order to enrol in a unit of study, you have to meet any prerequisites and corequisites for that unit of study
• advanced units of study are indicated by a 9 (or 8) as the second digit of the unit of study code. Entry to these units of study is limited (details can be obtained from departments)
• once the award course requirements of 144 credit points have been satisfied a student may not enrol in additional units of study without first obtaining permission from the Dean
• if a student fails or discontinues enrolment in one unit of study twice, a warning will be issued that if the unit is failed a third time, the student may be asked to show good cause why he or she should be allowed to re-enrol in that unit of study. This is in addition to the University’s At Risk policy
• students should note that BMED units are mandated units. Failure in a mandated unit is a trigger for the University’s At Risk policy.

The combination MATH1003 and 1004 or 1903 and 1904 is not recommended in this degree. Students wishing to study Statistics/Calculus are advised to select from MATH1003, 1005, 1903, 1905, 1013, 1015.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program below and a degree planner inside the back cover.

Units of study
The Science units of study available for this degree are set out in Table IV: Bachelor of Medical Science and in Table I: Bachelor of Science in chapter 3.

Honours
There will be honours courses in Anatomy, Biochemistry, Biology (Genetics), Cell Pathology, Histology and Embryology, Immunology, Infectious Diseases, Microbiology, Pharmacology and Physiology. Please refer to "Honours units of study" in this chapter, and "Honours in the Faculty of Science" in chapter 11.

Discontinuation
In some cases discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Transferring into the BMedSc degree program
A limited number of students may be permitted to transfer into the BMedSc course at the beginning of the Intermediate year from other degrees offered by the faculty, from other degrees offered by The University of Sydney or from other institutions. In order to transfer, students must achieve a Pass or better in all of the qualifying units of study, or units of study deemed equivalent by the faculty. Selection is based solely on performance in the first year subjects. Applicants should anticipate a WAM of about 75 as being necessary to gain admission. Students who wish to transfer must apply for admission to the BMedSc course through the Universities Admission Centre (domestic students) or the International Office (international students).

Australian Tertiary Admission Rank (ATAR)
The minimum ATAR for admission to the course varies every year.

BMedSc degree resolutions
See chapter 2.

Sample Bachelor of Medical Science

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>CHEM1XXX</td>
<td>PHYS1XXX</td>
<td>BIOL1XXX</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y2</td>
<td>BMED2801</td>
<td>BMED2802</td>
<td>BMED2803</td>
<td>BMED2806</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BMED2804</td>
<td>BMED2805</td>
<td>BMED2807</td>
<td>BMED2808</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Senior core 3XXX or elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y3</td>
<td></td>
<td></td>
<td>Senior core 3XXX or elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Senior core 3XXX or elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

Total credit points: 144

Require: 144cp total, min 48cp Junior, min 48cp Intermediate core, min 36cp Senior core, no more than 12cp from units of study outside Table IV.
Combined BMedSc/MBBS degree

Degree codes: LH033/LH034

Summary of requirements
The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates.

A student may proceed through the degree of Bachelor of Science (Advanced) or the Bachelor of Medical Science to the degrees of Bachelor of Medicine and Bachelor of Surgery.

Enrolment guide
To qualify for the award of the degrees a student shall complete units of study to a total value of at least 336 credit points, and

- satisfactorily complete three SMTP units in the first three years of the program
- meet the requirements of the BSc (Adv) or BMedSc degree outlined above, and
- complete 192 credit points towards the MBBS degree as required by the Resolutions of the Faculty of Medicine.

Progression requirements
Students are required to maintain a minimum AAM of 65 or above and to satisfactorily complete three SMTP units of study in the first three years of the program. Students who fail to satisfy these requirements will be transferred to the BSc (Adv) or BMedSc.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. See the Bachelor of Science (Advanced) or Bachelor of Medical Science entry for information about recommended first year combinations of units of study and the sample degree program. There is a degree planner inside the back cover. Consultation with a Faculty adviser is always recommended.

Units of study
The Science units of study available for this degree are set out in Table I: Bachelor of Science in chapter 3 and Table IV: Bachelor of Medical Science in this chapter. Unit descriptions appear in chapter 9. The Medicine units of study available for this degree are set out in the Faculty of Medicine handbook.

Honours
Students who qualify to undertake Honours in the BSc (Adv) or BMedSc degree may elect to do so by either suspending their candidature from the MBBS degree for one year, or after completion of the combined course. Please refer to “Honours units of study” in this chapter, and “Honours in the Faculty of Science” in chapter 11.

Abandoning and discontinuing
Students may abandon the combined degree course and elect to complete the BSc (Adv) or BMedSc degree.

In some circumstances, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Supervision
Students will be under the general supervision of the Faculty of Science until the end of the semester in which they complete the requirements for the BSc (Adv) or BMedSc degree. After that they will be under the general supervision of the Faculty of Medicine.

Australian Tertiary Admission Rank (ATAR)
The minimum ATAR for admission into the course varies every year.

Degree resolutions
See chapter 2.

Honours in the BSc (Including all streams and combined degrees), BMedSc, BST

Admission
To qualify to enrol in an honours course, students shall:

1. (a) have qualified for the award of a relevant pass degree from the Faculty of Science, or
(b) be a pass graduate of the Faculty of Science, or
(c) be a pass graduate holding an equivalent qualification from another institution
2. have completed a minimum of 24 credit points of senior units of study relating to the intended honours course (or equivalent at another institution)
3. have achieved either
(a) a credit average in the relevant Senior units of study, or
(b) a SCWAM of at least 65 (or equivalent at another institution)
4. satisfy any additional criteria set by the relevant Head of Department.

You should also note the following:

- Students shall complete the requirements for the honours course full-time over two consecutive semesters. If the faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half-time over four consecutive semesters.
- Not all departments offer students part time enrolment in honours, or honours enrolment commencing in the July semester. Students considering these types of honours enrolment are urged to contact the Department concerned.
- A student may not re-attempt an honours course in a single subject area. A student who is qualified to enrol in two honours courses may either complete the honours courses in the two subject areas separately and in succession, or complete a joint honours course, equivalent to an honours course in a single subject area, in the two subject areas. A joint honours course shall comprise such parts of the two honours courses as may be decided by the Dean.
- An interdisciplinary honours course shall comprise such parts as determined by the Coordinating Committee for the interdisciplinary course.
Table IV – Bachelor of Medical Science

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) MBLG1X01;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) 12 credit points of Junior units of study from the Science Subject Area of Chemistry;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) 12 credit points of Junior units of study from the Science Subject Area of Mathematics;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) 12 credit points of Junior units of study from the Science Subject Area of Physics (excluding PHYS1500) or Computational Science; and</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(v) 6 credit points of Junior units of study from the Science Subject Area of Biology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Intermediate units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to complete 48 credit points of Intermediate core units of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMED2801 Cell Structure and Function</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BMED2802 Molecular Basis of Medical Sciences</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BMED2803 Cardiac, Respiratory and Renal Function</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BMED2804 Digestion, Absorption and Metabolism</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BMED2805 Hormones, Reproduction and Development</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BMED2806 Sensory and Motor Functions</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BMED2807 Microbes and Body Defences</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BMED2808 Disease in Society</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>C. Senior units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Students may complete their Senior year by taking 48 credit points of Senior core units from the subject areas of Anatomy and Histology, Biology (Genetics) (ie. BIOL3018/3918, 3025/3925, 3026/3926, 3027/3927), Biochemistry, Cell Pathology, Immunology, Infectious Diseases, Microbiology, Pharmacology and Physiology. The unit listed in the table below is available only to students enrolled in the Bachelor of Medical Science. Details of the other units available are listed in Table I. Candidates may elect to take 36 credit points of Senior core units and 12 credit points of elective units. The electives may be chosen from any units of study available in the university, and in which the candidate is permitted to enrol by the relevant Faculty or School.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFD3012 Infectious Diseases</td>
<td>6</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>D. Honours units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Where honours units of study are designated A, B, C, D the units should be taken in that order, whether a student enrols full-time, part-time or mid-year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAT4011 Anatomy Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANAT4012 Anatomy Honours B</td>
<td>12</td>
<td>C</td>
<td>ANAT4011</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ANAT4013 Anatomy Honours C</td>
<td>12</td>
<td>C</td>
<td>ANAT4012</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ANAT4014 Anatomy Honours D</td>
<td>12</td>
<td>C</td>
<td>ANAT4013</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Biochemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM4011 Biochemistry Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BCHM4012 Biochemistry Honours B</td>
<td>12</td>
<td>C</td>
<td>BCHM4011</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BCHM4013 Biochemistry Honours C</td>
<td>12</td>
<td>C</td>
<td>BCHM4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Biochemistry Honours D</td>
<td>12</td>
<td>C BCHM4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biology (Genetics)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Research in Biology</td>
<td>6</td>
<td>P Pass degree in an area of Life Sciences or Equivalent</td>
<td>N BIOL4016, BIOL4010</td>
<td>Note: Department permission required for enrolment</td>
<td>BIOL4016 corequisite not required by Bioinformatics Masters Research Stream students.</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biology Honours A</td>
<td>6</td>
<td>C BIOL4015</td>
<td>N BIOL4011</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biology Honours B</td>
<td>12</td>
<td>C BIOL4011 or (BIOL4015 and BIOL4016)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biology Honours C</td>
<td>12</td>
<td>C BIOL4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biology Honours D</td>
<td>12</td>
<td>C BIOL4013</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Cell Pathology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Pathology Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Cell Pathology Honours B</td>
<td>12</td>
<td>C CPAT4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Cell Pathology Honours C</td>
<td>12</td>
<td>C CPAT4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Cell Pathology Honours D</td>
<td>12</td>
<td>C CPAT4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Histology and Embryology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immunology Honours A</td>
<td>12</td>
<td>N BMED4011</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Immunology Honours B</td>
<td>12</td>
<td>C IMMU4011</td>
<td>N BMED4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Immunology Honours C</td>
<td>12</td>
<td>C IMMU4012</td>
<td>N BMED4013</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Immunology Honours D</td>
<td>12</td>
<td>C IMMU4013</td>
<td>N BMED4014</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Infectious Diseases</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infectious Diseases Honours A</td>
<td>12</td>
<td>N BMED4021</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Infectious Diseases Honours B</td>
<td>12</td>
<td>C INFD4011</td>
<td>N BMED4022</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Infectious Diseases Honours C</td>
<td>12</td>
<td>C INFD4012</td>
<td>N BMED4023</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Infectious Diseases Honours D</td>
<td>12</td>
<td>C INFD4013</td>
<td>N BMED4024</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Microbiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiology Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Entry into the School Honours program normally requires a credit average in a major relevant to the chosen project or relevant 24 credit points of senior study. The School will consider entry to students who do not have this requirement if their overall academic performance indicates an equivalent performance in other subject areas or if their SCIWAM exceeds 65.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Microbiology Honours B</td>
<td>12</td>
<td>P Department permission required for enrolment</td>
<td>C MICR4011</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Microbiology Honours C</td>
<td>12</td>
<td>C MICR4012</td>
<td></td>
<td>Entry into the School Honours program normally requires a credit average in a major relevant to the chosen project or relevant 24 credit points of senior study. The School will consider entry to students who do not have this requirement if their overall academic performance indicates an equivalent performance in other subject areas or if their SCIWAM exceeds 65.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Microbiology Honours D</td>
<td>12</td>
<td>C MICR4013</td>
<td></td>
<td>Entry into the School Honours program normally requires a credit average in a major relevant to the chosen project or relevant 24 credit points of senior study. The School will consider entry to students who do not have this requirement if their overall academic performance indicates an equivalent performance in other subject areas or if their SCIWAM exceeds 65.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Pharmacology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>PCOL4012 Pharmacology Honours B</td>
<td>12</td>
<td>C PCOL4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PCOL4013 Pharmacology Honours C</td>
<td>12</td>
<td>C PCOL4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PCOL4014 Pharmacology Honours D</td>
<td>12</td>
<td>C PCOL4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Physiotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHSI4011 Physiology Honours A</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHSI4012 Physiology Honours B</td>
<td>12</td>
<td>C PHSI4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHSI4013 Physiology Honours C</td>
<td>12</td>
<td>C PHSI4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHSI4014 Physiology Honours D</td>
<td>12</td>
<td>C PHSI4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
5. Bachelor of Medical Science and BMedSc/MBBS
6. Bachelor of Psychology

This chapter is intended to give enrolment advice to undergraduate students in the Bachelor of Psychology. You will find answers to frequently asked questions covering all students. Following this is a specific summary of the requirements for the Bachelor of Psychology, including examples of how unit of study choices can be made over the duration of the degree. There is information on recommended combinations of units of study, especially in first year, to help guide you to your goals.

It should be stressed that the information in this chapter is intended to be a rough guide only. All students will have to decide for themselves how to plan their degree to suit their own particular interests and situation.

All students are expected to read the degree resolutions for their course before they commence their studies, and from time to time during their studies. Undergraduate degree resolutions appear in chapter 2. The undergraduate units of study available for the Bachelor of Psychology degree are listed in Table 1, in Chapter 3. They are the same as those offered in the Bachelor of Science degree.

Students enrolled in units of study offered by the faculty of Science are required to familiarise themselves with the following key policies:

Special Arrangements
Students who are experiencing difficulty in meeting their assessment requirements due to competing essential community commitments may apply for Special Arrangements for examination and assessment.

Special Consideration
Students who have a serious illness or who have experienced misadventure which may affect their academic performance in a course or unit of study may request that they be given Special Consideration in relation to the determination of their results.

At Risk
To progress through a degree course, students are required to:
1. achieve the minimum Progression Rate specified by the faculty; in the Faculty of Science, students must pass more than 50 per cent of the units attempted in each semester
2. pass any field or clinical work, practicum, or other unit of study mandated by the faculty (listed in your degree requirements).

If you do not meet the progress requirements, you will be identified as a student at risk.

Code of Conduct for Students
The University has clear expectations of students in respect of academic matters and personal behaviour.

Student Plagiarism: Coursework Policy and Procedure
The University of Sydney expects high standards of academic honesty in all student work. In particular, the University is opposed to and will not tolerate plagiarism.

Details on Special Arrangements, Special Consideration, Code of Conduct for Students, and Student Plagiarism Policy are provided elsewhere in this handbook.

Inside the back cover of this handbook you will find a planner to help you map out your degree. It is recommended that you plan your studies carefully with an eye to your final years, so that you take the correct prerequisites in the preceding years. It will be useful to revisit this planner during your studies as your interests take more detailed shape.

Enrolment day FAQs

What is a ‘major’?
Some degrees in the Faculty of Science require you to complete a major. A major is a specialisation in the senior year of your degree. Students enrolled in the Bachelor of Psychology will complete a major in Psychology, and an honours year in Psychology.

How many credit points should I take per semester?
You should take 24 credit points each semester if you are a full-time student. There is an upper limit of 30 credit points per semester. If you take fewer than 18 credit points in each semester you will automatically become part-time.

To finish your degree in the recommended minimum time you will have to take 48 credit points per year, or 24 per semester. If you enrol part time you can take as few credit points as you like. You must keep in mind however that you have a 10 year limit to finish your degree.

Students wishing to accelerate their degree programs may consider undertaking units offered at Summer School or undertaking up to 30 credit points each semester.

The degree summaries and sample programs in this chapter assume you will enrol full-time.

Do I need to be full-time?
International students must enrol full-time in a minimum of 24 credit points per semester unless there are exceptional circumstances. Failure to enrol in 24 credit points per semester may have serious ramifications for your visa.

Australian citizens and permanent residents are considered full-time if they are enrolled in 18 or more credit points per semester. Australian citizens and permanent residents who wish to receive a transport concession card must be full-time students.

If you receive any financial support, whether from a University scholarship or from the government, you may well need to enrol as a full-time student. You should carefully check the terms and conditions of that support before going part-time.

Can I take units of study from other faculties?
Yes. Generally you can take any unit of study offered by the Faculty of Arts and the Faculty of Economics and Business, up to 48 credit points in accordance with your degree resolutions. Lists of available units of study will be available on enrolment day, or in each faculty’s handbook. Each faculty website has links to departmental and unit of study information.

Also available are undergraduate units from any other faculty at the University. The onus is on you to get written permission from the relevant department and bring it to the Faculty of Science.

There are limits, and exclusions. You should refer to the degree summary sections of this chapter for specific information about your particular degree.

Can I receive credit for previous tertiary study?
Yes. The amount of credit you may receive depends on your individual circumstances, but in general the total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points from degrees that have been completed.
On the day that you enrol you must lodge an application for credit from previous study. Because of the large numbers of applications received at enrolment there can be a considerable delay in processing your application, but all credit offers will be sent to students well in advance of the last day to add a unit of study for the semester in which they enrol.

The faculty must sight originals of your academic transcripts, as well as detailed descriptions of prior units of study completed, as at the time of completion of the units. Descriptions will normally be an extract from a handbook or a unit of study syllabus or outline, and should include the credit point value, learning outcomes, assessment details, texts and references, and contact details for each unit of study. You must bring this information with you on the day that you enrol.

On enrolment day you will have to make unit of study choices as if you have had no previous university study. Alternatively, you may be able to obtain special permission to enrol in intermediate or senior units of study by taking a copy of your transcript and unit of study descriptions to academic advisers for each individual unit of study. Unit of study academic advisers are listed under unit of study descriptions in this handbook.

Information on the current application process for credit, including the application form, is available from the Faculty of Science website.

Are there any bridging courses available?

There are bridging courses in Biology, Chemistry, Mathematics and Physics, designed to cover the assumed knowledge that students would normally cover in the HSC. They run in February each year after enrolment and are recommended for students who either didn’t take a subject at the HSC or feel they need some revision.

Who can enrol in advanced units of study?

Advanced units of study are available to those enrolled in any program in the Faculty of Science who have performed at a high level in science subjects in the HSC or who perform well in their studies at the University.

Bachelor of Psychology (BPsych)

Degree code: LH013

Summary of requirements

The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 2) which should be read by all candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. The Resolutions should be consulted for any clarification of the summary points.

Note that at the time of enrolment candidates will be required to nominate the Science or the Art stream of the BPsych in which they plan to complete the requirements for the degree. Different requirements apply to the two streams.

Enrolment guide

To complete your degree you must gain credit for at least 122 credit points including completing the honours course in Psychology and maintaining the required average grade in each year of study in the Science Subject Area of Psychology. The 192 credit points required for the degree must include:

- PSYC1001 and PSYC1002 at an average of Credit or better
- At least 30 credit points from senior units of study in the science subject area of Psychology with an average grade of Distinction or better. The senior units must include PSYC3010, 3018 and at least one of PSYC3011, 3012, 3013 and 3014. HPSY3023 may be included as a senior unit in the 24 senior credit points and is required by students who wish to complete the theoretical thesis option in Psychology honours.
- 48 credit points of honours Psychology units of study with a grade of honours (H3 or better).
- Consult a departmental adviser about your eligibility to enrol in advanced level subjects in the first year of study. Students should also consult the unit of study tables for assumed and prerequisite marks in the HSC required to enrol in advanced units of study.

For students in an advanced degree it is recommended that you enrol in no more than 24 credit points of advanced units of study in a year. Advanced units of study are very demanding and students are required to perform at a higher standard than in the normal units of study.

What is the Talented Student Program?

The Talented Student Program (TSP) is unique to the University of Sydney. It is tailored to meet students’ individual needs and is restricted to the very top students.

Students may be able to bypass some first year study and enrol directly in a second year course. If you have outstanding results in any of your HSC science subjects you may wish to negotiate a special program of study with one of the departments in the Faculty of Science.

The Talented Student Program is available in most areas of Science. Students receive special supervision by academic staff and often engage in studies on an individual basis with small numbers of fellow students, all of whom have a special interest in the same subject.

Am I eligible for the Talented Student Program?

Entry to the TSP is by invitation from the Dean, which you should have received by the time you enrol. The following guidelines apply generally, although departments may have additional (and sometimes more stringent) requirements for entry into the program.

To get into the program in your first year, you should normally have an ATAR of at least 99.00 and a result in band 6 in at least one HSC Science subject area and/or a mark of 95 or better in HSC Mathematics Extension 2. For entry into the program in your second and third years, you should normally have a weighted average mark of 85 or over and a high distinction grade in the relevant subject area.

AND Either

a Science Stream consisting of:
- at least 12 credit points of units of study in the Science subject areas of Mathematics and Statistics
- at least 12 credit points of Junior units of study from Science subject areas other than Psychology and Mathematics and Statistics
- at least 96 credit points from Science subject areas

Or

an Arts Stream consisting of:
- a minimum of 60 credit points from Part A of the Table of units of study for the Bachelor of Arts degree (included in Chapter 10 in this Handbook); including a major consisting of 36 senior credit points in a single subject area, or cross-listed between subject areas, as outlined in the Faculty of Arts Resolutions, Section 3.

You should also note the following:

- units of study completed at The University of Sydney Summer School which correspond to units of study in the table of undergraduate units of study may be credited towards the course requirements.
- a standard full time enrolment is 24 credit points per semester; less than 18 credit points per semester is considered to be part time.
- you may not enrol in more than 30 credit points in any one semester without permission.
- you may not enrol in more than 60 credit points of junior units of study.
- before being admitted to enrol in a unit of study, you must have met any prerequisites and corequisites for that unit of study.
• once the award course requirements of 192 credit points have been satisfied a student may not enrol in additional units of study without first obtaining permission from the Dean.
• if a student fails or discontinues enrolment in one unit of study twice, a warning will be issued that if the unit is failed a third time, the student may be asked to show good cause why he or she should be allowed to re-enrol in that unit of study.

Progression requirements
A minimum requirement for progression in the BPsych is as follows:

• Credit average in junior Psychology units of study
• Distinction average in intermediate and senior Psychology units of study.

A student who fails to meet progression requirements will be transferred to either the BSc (those who are meeting the Science stream requirements) or the BA (those meeting the Arts stream requirements).

A student may not enrol in Psychology honours until they have completed 144 credit points of units of study and have satisfied all requirements for the BPsych except those related to honours.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program below and a degree planner inside the back cover.

Units of study
Units of study for the BPsych are listed in Table I of the Faculty of Science Handbook and in Part A of the Faculty of Arts Handbook.

Honours
Students shall complete the requirements for the honours course full-time over two consecutive semesters. If the faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half–time over four consecutive semesters.

A student may not re-attempt the Psychology honours course. Please refer to ‘Honours in the Faculty of Science’ and “Honours units of study” in chapter 11.

Discontinuation
In some cases, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Transferring into the BPsych
Students may transfer from any degree into the BPsych. Applications are competitive on the basis of academic merit. Applications should be made through UAC (Domestic Students) or the International Office (International Students).

Transferring Between Science and Arts streams in the BPsych
Students may transfer between Science and Arts streams. In deciding whether to transfer, you should consider that you must meet the requirements for either of the streams in totality - no ‘mixing and matching’ of stream requirements is permitted.

Australian Tertiary Admission Rank (ATAR)
The minimum ATAR for admission to the course varies from year to year.

Degree Resolutions
See chapter 2.

Sample Bachelor of Psychology - Science Stream

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>1 PSYC1001</td>
<td>6</td>
<td>MATH1XXX</td>
<td>6</td>
<td>MATH1XXX</td>
<td>6</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>2 PSYC1002</td>
<td>6</td>
<td>MATH1XXX</td>
<td>6</td>
<td>MATH1XXX</td>
<td>6</td>
<td>CHEM1XXX</td>
</tr>
<tr>
<td>Year 2</td>
<td>1 PSYC2011</td>
<td>6</td>
<td>Science Elective</td>
<td>6</td>
<td>Science Elective</td>
<td>6</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>2 PSYC2013</td>
<td>6</td>
<td>Science Elective</td>
<td>6</td>
<td>Science Elective</td>
<td>6</td>
<td>Elective</td>
</tr>
<tr>
<td>Year 3</td>
<td>1 PSYC3018</td>
<td>6</td>
<td>PSYC301X</td>
<td>6</td>
<td>PSYC3XXX</td>
<td>6</td>
<td>PSYC3XXX or Elective</td>
</tr>
<tr>
<td></td>
<td>2 PSYC3010</td>
<td>6</td>
<td>PSYC301X</td>
<td>6</td>
<td>PSYC3XXX or Elective</td>
<td>6</td>
<td>PSYC3XXX or Elective</td>
</tr>
<tr>
<td>Year 4</td>
<td>1 PSYC4011</td>
<td>6</td>
<td>PSYC401X</td>
<td>6</td>
<td>PSYC4012</td>
<td>6</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td>2 PSYC4013</td>
<td>6</td>
<td>PSYC401X</td>
<td>6</td>
<td>PSYC4012</td>
<td>6</td>
<td>Elective</td>
</tr>
</tbody>
</table>

Total credit points: 192 Require: 192cp total, min. 12 cp Junior Psychology, min. 24cp Intermediate Psychology, min. 30cp Senior Psychology (incl. PSYC3010, PSYC3018 and at least one of PSYC 3011, 3012, 3013, 3014), min. HPSC3023 may be included as a senior Psychology unit. 48cp Honours Psychology, min. 12cp Maths, max 60cp Junior.
6. Bachelor of Psychology
7. Bachelor of Science and Technology

Note: This degree is not available to new students from 2010.

This chapter is intended to give enrolment advice to undergraduate students in the Faculty of Science. You will find answers to frequently asked questions covering all students.

Following this are specific summaries of the requirements for each degree including examples of how unit of study choices can be made over the duration of the degree. With some degrees there is information on recommended combinations of units of study, especially in first year, to help guide you to your goals.

It is stressed that the information in this chapter is intended to be a rough guide only. All students will have to decide for themselves how to plan their degree to suit their own particular interests and situation.

All students are expected to read the degree resolutions for their course before they commence their studies, and from time to time during their studies. Undergraduate degree resolutions appear in chapter 2. The unit descriptions appear in chapter 9.

Students enrolled in units of study offered by the Faculty of Science are required to familiarise themselves with the following key policies:

Special Arrangements
Students who are experiencing difficulty in meeting their assessment requirements due to competing essential community commitments may apply for Special Arrangements for examination and assessment.

Special Consideration
Students who have a serious illness or who have experienced misadventure which may affect their academic performance in a course or unit of study may request that they be given Special Consideration in relation to the determination of their results.

At Risk
To progress through a degree course, students are required to:
1. achieve the minimum Progression Rate specified by the faculty; in the Faculty of Science, students must pass more than 50 per cent of the units attempted in each semester
2. pass any field or clinical work, practicum, or other unit of study mandated by the faculty (listed in your degree requirements).

If you do not meet the progress requirements, you will be identified as a student at risk.

Code of Conduct for Students
The University has clear expectations of students in respect of academic matters and personal behaviour.

Student Plagiarism: Coursework Policy and Procedure
The University of Sydney expects high standards of academic honesty in all student work. In particular, the University is opposed to and will not tolerate plagiarism.

Details on Special Arrangements, Special Consideration, Code of Conduct for Students, and Student Plagiarism Policy are provided elsewhere in this handbook.

Inside the back cover of this handbook you will find a planner to help you map out your degree. It is recommended you plan your studies carefully with an eye to your final years, so that you take the correct prerequisites in the preceding years. It will be useful to revisit this planner during your studies as your interests take more detailed shape.

Enrolment day FAQs

What is a 'major'?
Some degrees in the Faculty of Science require you to complete a major. A major is a specialisation in the senior year of your degree. It is useful to have an idea of what major, or group of majors, interest you now, so that you can plan your junior and intermediate years properly.

The Bachelor of Science majors Neuroscience, and Nanoscience and Technology require earlier planning than most others. If you are interested in these then read Table I (Bachelor of Science: Chapter 3) carefully and/or seek advice.

A major is usually defined as 24 credit points of study at the senior level in a single science Area. Neuroscience and Psychology both have additional requirements. Depending on the majors chosen, it is possible to complete more than one major in your degree.

Degrees where you choose a major are the Bachelor of Science (including the Advanced stream of the BSc), Bachelor of Computer Science and Technology (including the Advanced stream of the BCST), Bachelor of Information Technology and the Bachelor of Liberal Studies (including both the Advanced and International streams of the BLibStud).

How many credit points should I take per semester?
You should take 24 credit points each semester if you are a full-time student. There is an upper limit of 30 credit points per semester. If you take fewer than 18 credit points in each semester you will automatically become part-time.

To finish your degree in the recommended minimum time you will have to take 48 credit points per year, or 24 per semester. If you enrol part time you can take as few credit points as you like. You must keep in mind however that you have a 10 year limit to finish your degree.

Students wishing to accelerate their degree programs may consider undertaking units offered at Summer School or undertaking up to 30 credit points each semester. The degree summaries and sample programs in this chapter assume you will enrol full-time.

Do I need to be full-time?
International students must enrol full-time in a minimum of 24 credit points per semester unless there are exceptional circumstances. Failure to enrol in 24 credit points per semester may have serious ramifications for your visa.

Australian citizens and permanent residents are considered full-time if they are enrolled in 18 or more credit points per semester. Australian citizens and permanent residents who wish to receive a transport concession card must be full-time students.

If you receive any financial support, whether from a University scholarship or from the government, you may well need to enrol as a full-time student. You should carefully check the terms and conditions of that support before going part-time.

Can I take units of study from other faculties?
Yes. Generally you can take any unit of study offered by the Faculty of Arts and the Faculty of Economics and Business. Lists of available units of study will be available on enrolment day, or in each faculty’s
handbook. Each faculty website has links to departmental and unit of study information.

Also available are undergraduate units from any other faculty at the University. The onus is on you to get written permission from the relevant department and bring it to the Faculty of Science.

There are limits, and exclusions. You should refer to the degree summary sections of this chapter for specific information about your particular degree.

Can I receive credit for previous tertiary study?
Yes. The amount of credit you may receive depends on your individual circumstances, but in general the total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points from degrees that have been completed.

On the day that you enrol you must lodge an application for credit from previous study. Because of the large numbers of applications received at enrolment there can be a considerable delay in processing your application, but all credit offers will be sent to students well in advance of the last day to add a unit of study for the semester in which they enrol.

The faculty must sight originals of your academic transcripts, as well as detailed descriptions of prior units of study completed, and at the time of completion of the units. Descriptions will normally be an extract from a Handbook or a unit of study syllabus or outline, and should include the credit point value, learning outcomes, assessment details, texts and references, and contact details for each unit of study. You must bring this information with you on the day that you enrol.

On enrolment day you will have to make unit of study choices as if you have had no previous university of study. Alternatively, you may be able to obtain special permission to enrol in intermediate or senior units of study by taking a copy of your transcript and unit of study descriptions to academic advisers for each individual unit of study. Unit of study academic advisers are listed under unit of study descriptions in this Handbook.

Information on the current application process for credit, including the application form, is available from the Faculty of Science website.

Are there any bridging courses available?
Yes. There are bridging courses in Biology, Chemistry, Mathematics and Physics, designed to cover the assumed knowledge that students would normally cover in the HSC. They run in February each year and are recommended for students who either didn’t take a subject at the HSC or feel they need some revision.

Who can enrol in advanced units of study?
Advanced units of study are available to those students enrolled in any program in the Faculty of Science who have performed at a high level in science subjects in the HSC or who perform well in their studies at the University.

Consult a departmental adviser about your eligibility to enrol in advanced level subjects in the first year of study. You must obtain special permission to enrol in any advanced unit of study except Software. For Software advanced units of study, you must meet the criteria listed on the permission form for advanced units of study. The departmental advisers have copies of the permission form for advanced units of study.

Students should also consult the unit of study tables for assumed and prerequisite marks in the HSC required to enrol in advanced units of study.

For students in an advanced degree it is recommended that you enrol in no more than 24 credit points of advanced units of study in a year. Advanced units of study are very demanding and students are required to perform at a higher standard than in the normal units of study.

What is the Talented Student Program?
The Talented Student Program (TSP) is unique to the University of Sydney. It is tailored to meet students’ individual needs and is restricted to the very top students.

Students may be able to bypass some first year study and enrol directly in a second year course. If you have outstanding results in any of your HSC science subjects you may wish to negotiate a special program of study with one of the departments in the Faculty of Science.

The Talented Student Program is available in most areas of Science. Students receive special supervision by academic staff and often engage in studies on an individual basis with small numbers of fellow students, all of whom have a special interest in the same subject.

Am I eligible for the Talented Student Program?
Enter to the TSP by invitation from the Dean, which you should have received by the time you enrol. The following guidelines apply generally, although departments may have additional (and sometimes more stringent) requirements for entry into the program.

To get into the program in your first year, you should normally have a ATAR (or equivalent) of at least 99.00 and a result in band 6 in at least one HSC Science subject area and/or a mark of 95 or better in HSC Mathematics Extension 2. For entry into the program in your second and third years, you should normally have a weighted average mark of 85 or over and a high distinction grade in the relevant subject area.

Bachelor of Science and Technology (BST)

Degree code: LH035

Summary of requirements
The requirements for the degree are set out in the Senate and Faculty Resolutions (see Chapter 2) which should be read by all intending candidates. It is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. The Resolutions should be consulted for any clarification of the summary points.

Enrolment guide
In your junior year, you should complete:

• 12 credit points from the science subject areas of Mathematics and Statistics
• 12 credit points of junior units of study from the subject areas of Experimental Science (from Table VIIb)

To complete your degree you must gain credit for at least 144 credit points, comprising:

• a minimum of 12 credit points in the subject area of Mathematics and Statistics
• a minimum of 12 credit points in Experimental Science units of study from those specified in Table VIIb
• a minimum of 12 credit points in Science/Technology associated Humanities and Social Sciences units of study from those specified in Table VIIc
• a minimum of 12 credit points in Technology/Applied Science units of study from those specified in Table VIId
• a minimum of 72 credit points in senior or intermediate units of study, or in units of study normally taken at second or third year level or higher
• a major, as specified in Table I of the Bachelor of Science, or as listed in Table VIIe. A major in the BST requires a minimum of 36 credit points at intermediate (2000) and senior (3000) levels, including a minimum of 12 credit points at senior level, except in the case of a major in a science subject area, which normally requires the completion of 24 credit points of senior-level units of study, in addition to any other units of study specified in the table as compulsory for that major.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program in this section. See the Bachelor of Science entry for information about majors.

Units of study
The Science units of study available for this degree are set out in Table VII: Bachelor of Science and Technology, and in Table 1: Bachelor of Science, in chapter 3. Unit of study descriptions can be found in chapter 9.

Honours
There are honours courses in the following subject areas:
- Agricultural Chemistry
- Anatomy and Histology
- Biochemistry
- Biology
- Cell Pathology
- Chemistry
- Computational Science
- Computer Science
- Environmental Studies
- Geography
- Geology and Geophysics
- History and Philosophy of Science
- Immunobiology
- Information Systems
- Marine Science
- Mathematics
- Medicinal Chemistry
- Microbiology
- Nanoscience and Technology
- Neuroscience
- Pharmacology
- Physics
- Physiology
- Psychology
- Soil Science
- Statistics

Students should note that honours is not available in the following subject areas: Design Technology, Electronic Engineering, General Engineering, and Information Technology. Please refer to ‘Honours in the Faculty of Science’ and “Honours units of study” in chapter 11.

Discontinuation
In some cases discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Australian Tertiary Admission Rank (ATAR)
The minimum ATAR for admission into the course varies from year to year.

Degree resolutions
See chapter 2.

Sample Bachelor of Science and Technology

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of Study 1 & credit points</th>
<th>Unit of Study 2 & credit points</th>
<th>Unit of Study 3 & credit points</th>
<th>Unit of Study 4 & credit points</th>
<th>Unit of Study 5 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>1</td>
<td>MATH1XXX (3cp) or MATH</td>
<td>MATH1XXX (3cp)</td>
<td>Tech/Appl Sci (Table VIId) (6cp)</td>
<td>Expmtl Sci (Table VIId) (6cp)</td>
<td>Elective* (6cp)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MATH1XXX (3cp)</td>
<td>MATH1XXX (3cp)</td>
<td>Tech/Appl Sci (Table VIId) (6cp)</td>
<td>Expmtl Sci (Table VIId) (6cp)</td>
<td>Elective* (6cp)</td>
</tr>
<tr>
<td>Year 2</td>
<td>1</td>
<td>Major 1 (Table VIIb) (6cp)</td>
<td>Major 1 or 2, or elective (6cp)</td>
<td>Major 1 or 2, or elective (6cp)</td>
<td>Humanities UoS (Table VIIc) (6cp)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Major 1 (Table VIIb) (6cp)</td>
<td>Major 1 or 2, or elective (6cp)</td>
<td>Major 1 or 2, or elective (6cp)</td>
<td>Humanities UoS (Table VIIc) (6cp)</td>
<td>24</td>
</tr>
<tr>
<td>Year 3</td>
<td>1</td>
<td>Major 1 (6cp)</td>
<td>Major 2 (6cp)</td>
<td>Major 2 (6cp)</td>
<td>Elective (6cp)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Major 1 (6cp)</td>
<td>Major 2 (6cp)</td>
<td>Major 2 (6cp)</td>
<td>Elective (6cp)</td>
<td>24</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>

* Students intending to major in a Science subject area should enrol in the appropriate junior level of units of study. For more information, refer to the Faculty of Science Handbook, Chapter 3: Enrolment Guide by Major for the Bachelor of Science degree. Students may take their Humanities Table VIIc requirements instead of an elective in their junior year.
Enrolment guide by major

The following is a list of recommended combinations of junior units of study if you are intending to complete a major in a non-science subject area.

Majors in science subject areas

12 credit points of junior units of study in Mathematics + 12 credit points Applied Technology from Table VIIa + at least 12 credit points of Experimental Science from Table I + 12 credit points of other science units of study as required to progress to major(s) of choice. Students should also consult the ‘Enrolment Guide by Major’ for the Bachelor of Science in chapter 3 of this handbook for the recommended combinations of junior units of study for a major in a science subject area. Consultation with an academic adviser is also recommended.

Design Technology

12 credit points of junior units of study in Mathematics (Table VIIa) + 12 credit points INFO1003 and INFO1103 (Table VIId) + 12 credit points of Experimental Science from Table I (except Mathematics and Statistics, Computer Science, Computational Science, History and Philosophy of Science and Information Systems - Table VIIb) + 12 credit points Science/Technology Humanities (Table VIIc). Instead of 12 credit points INFO1003 and INFO1103 (Table VIId) + 12 credit points Science/Technology Humanities (Table VIIc), students may choose 24 credit points DECO1100 from Table VIId and enrol in 12 credit points of Table VIIc Science/Technology Humanities in their second year. Note: students who wish to undertake a sequence of units of study in 3D Animation should take DECO1012 and DECO1008 in place of INFO1003 and INFO1103 in their first year of studies.

Electronic Engineering

12 credit points of junior units of study in Mathematics + 12 credit points of ELEC1601 and ELEC1103 + 12 credit points of Experimental Science from Table I (except Mathematics and Statistics, Computer Science, Computational Science, History and Philosophy of Science and Information Systems) + 12 credit points Applied Technology electives of your choice from units of study offered by the Faculties of Science, Architecture, Design and Planning, Engineering and Information Technologies and Agriculture, Food and Natural Resources.

General Engineering

12 credit points of junior units of study in Mathematics + 12 credit points of ENGG1800 and ENGG1803 + 12 credit points of Experimental Science from Table I (except Mathematics and Statistics, Computer Science, Computational Science, History and Philosophy of Science and Information Systems) + 12 credit points of Applied Technology electives of your choice from units of study offered by the Faculties of Science, Architecture, Design and Planning, Engineering and Information Technologies and Agriculture, Food and Natural Resources.

Information Technology

12 credit points of junior units of study in Mathematics + 12 credit points of INFO1103 and INFO1105 + 12 credit points Applied Technology from Table I (except Mathematics and Statistics, Computer Science, Computational Science, History and Philosophy of Science and Information Systems) + 12 credit points of Applied Technology electives of your choice from Table 1 or Table VII.

Table VII - Bachelor of Science and Technology

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Mathematics and Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete a minimum of 12 credit points from the science subject areas Mathematics and Statistics.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACCT1003 Financial Accounting Concepts</td>
<td>6</td>
<td>N ACCT1001, ACCT1002</td>
<td>Terminating unit.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ACCT1004 Management Accounting Concepts</td>
<td>6</td>
<td>N ACCT1001, ACCT1002</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>DECO1006 Understanding Design and Cognition</td>
<td>6</td>
<td>N DECO1004</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>EDUF1018 Education, Teachers and Teaching</td>
<td>6</td>
<td>N EDUF1011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>EDUF1019 Human Development and Education</td>
<td>6</td>
<td>N EDUF1012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL1000 Academic Writing</td>
<td>6</td>
<td>P This unit is available to all enrolled students and will count for credit across all faculties. There are no specific pre-requisites, co-requisites or prohibitions, but students are expected to have native or near native competence in written English. Students not meeting this requirement should enrol in appropriate remedial English courses before undertaking ENGL1000. From 2008, ENGL1000 can be counted towards the junior credit points required to enrol in senior units of English.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGL1000 Academic Writing</td>
<td>6</td>
<td>P This unit is available to all enrolled students and will count for credit across all faculties. There are no specific pre-requisites, co-requisites or prohibitions, but students are expected to have native or near native competence in written English. Students not meeting this requirement should enrol in appropriate remedial English courses before undertaking ENGL1000. From 2008, ENGL1000 can be counted towards the junior credit points required to enrol in senior units of English.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPS1000 Bioethics</td>
<td>6</td>
<td>N HPS1000</td>
<td>This Junior unit of study is highly recommended to Intermediate and Senior Life Sciences students.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHIL1013 Society, Knowledge and Self</td>
<td>6</td>
<td>N PHIL1010</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SLS1001 Introduction to Socio-Legal Studies</td>
<td>6</td>
<td>Available to Bachelor of Arts and Sciences and Bachelor of Socio-Legal Studies only</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CIVL3010 Engineering and Society</td>
<td>6</td>
<td>A ENGG1803 Professional Engineering</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ENGG3005 Engineering & Industrial Management Fund</td>
<td>6</td>
<td>N ELEC3702, MECH3661</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HPSC3024 Science and Ethics</td>
<td>6</td>
<td>P At least 24 credit points of Intermediate or Senior units of study</td>
<td>N HPSC3007</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGG4061 Innovation/Technology Commercialisation</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

(d) Technology/Applied Science units of study

Candidates are required to enrol in and complete at least 12 credit points from the units of study listed below:

For a major in Design Technology:

1. INFO1003 and INFO1103 or DECO1012 and DECO1008;

For a major in Electronic Engineering

1. ELEC1103 Fundamentals of Elec and Electronic Eng
2. ELEC1601 Foundations of Computer Systems

For a major in General Engineering

1. ENGG1803 and ENGG1800

For a major in Information Technology

1. INFO1103 and INFO1105

Progression to Years 2 and 3

In order to proceed to Year 2 and 3 of the degree, candidates for the Bachelor of Sciences and Technology must either have completed 12 credit points of Technology/Applied Science units of study in a single group designated in Table VII(d) or have completed Science units of study that are prerequisite for a chosen 2000 or 3000-level Science subject areas. Candidates who have completed the 12 credit points of Engineering units of study designated in Table VII(d)(iii) or Table VII(d)(iv) and who wish to complete a major in either General Engineering or Electronic Engineering are in addition required to complete 12 credit points of Junior Mathematics including MATH1003 before proceeding to Year 2.

(e) Requirements for a Major

Science major

Candidates are required to complete a major in a Science subject area (Table I) or one of the following majors in Technology/Applied Science.

(i) Design Technology Major

For a major in Design Technology the minimum requirement is the completion of at least 36 credit points from units of study shown in the following Table, including:

1. a minimum of 12 credit points of DECO units at 3000-level from the Table.
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>DECO2013</td>
<td>6</td>
<td>P DECO2010 or SOFT1001</td>
<td>N DECO2601, DECO2602, DECO2603</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Generative Design Systems</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td>This unit will not run beyond 2009. Bachelor of Design Computing students only.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECO2101</td>
<td>6</td>
<td>P DECO2101, DECO2102, DECO2102</td>
<td>N DECO2100, DECO2100</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Digital Image Design & Representation</td>
<td></td>
<td>Places in this unit are limited by teaching resources. If your attempt to enrol online is unsuccessful, please seek permission from the Faculty of Architecture, Design and Planning Student Administration Centre. Bachelor of Design Architecture students will receive preference.</td>
<td>Not available in the Bachelor of Design Computing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECO2102</td>
<td>6</td>
<td>P DECO2101</td>
<td>N DECO2100, DECO2102, DECO2100</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Interactive Multimedia Design</td>
<td></td>
<td>Places in this unit are limited by teaching resources. If your attempt to enrol online is unsuccessful, please seek permission from the Faculty of Architecture, Design and Planning Student Administration Centre. Bachelor of Design Architecture students will receive preference.</td>
<td>Not available in the Bachelor of Design Computing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECO2204</td>
<td>6</td>
<td>P DECO2200</td>
<td>N DECO2200, DECO2200</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Principles of AutoCAD</td>
<td></td>
<td>Places in this unit are limited by teaching resources. If your attempt to enrol online is unsuccessful, please seek permission from the Faculty of Architecture, Design and Planning Student Administration Centre. Bachelor of Design Architecture students will receive preference.</td>
<td>Not available in the Bachelor of Design Computing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECO2205</td>
<td>6</td>
<td>P DECO2200</td>
<td>N DECO2200, DECO2200</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Principles of ArchiCAD</td>
<td></td>
<td>Places in this unit are limited by teaching resources. If your attempt to enrol online is unsuccessful, please seek permission from the Faculty of Architecture, Design and Planning Student Administration Centre. Bachelor of Design Architecture students will receive preference.</td>
<td>Not available in the Bachelor of Design Computing.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECO2606</td>
<td>6</td>
<td>P DECO(1008 or 2103) and (SOFT1001 or DECO(1012 or 2011))</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Real Time Multimedia</td>
<td></td>
<td>Enrollment numbers limited by teaching resources. If your attempt to enrol online is unsuccessful, please seek permission from the Faculty of Architecture, Design and Planning Student Administration Centre.</td>
<td>First preference to Bachelor of Design Computing students.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECO3003</td>
<td>6</td>
<td>P MATH2061, DECO2100</td>
<td>N DECO2100, DECO2100</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Design Computing Research Opportunity</td>
<td></td>
<td>A Computer programming.</td>
<td>P 96 credit points and minimum WAM of 65.</td>
<td>Note: Department permission required for enrolment Students from other faculties may apply directly to the Faculty of Architecture, Design and Planning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECO3005</td>
<td>6</td>
<td>P DECO(1200 or 2200 or 2102)</td>
<td>N DESCR14</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Advanced Interaction Design</td>
<td></td>
<td>Enrollment numbers limited by teaching resources. If your attempt to enrol online is unsuccessful, please seek permission from the Faculty of Architecture, Design and Planning Student Administration Centre. First preference to Bachelor of Design Computing students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECO3006</td>
<td>6</td>
<td>P DECO</td>
<td>N DESCR19, DESCR141</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Principles of Animation</td>
<td></td>
<td>Enrollment numbers limited by teaching resources. If your attempt to enrol online is unsuccessful, please seek permission from the Faculty of Architecture, Design and Planning Student Administration Centre. First preference to Bachelor of Design Computing students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DECO3100</td>
<td>12</td>
<td>P DECO(1000 and 2100) and (SOFT1001 or DECO2100 and 2010) or DECO(2101 and 2102)</td>
<td>N DECO3001, DECO3001</td>
<td>Core unit for Bachelor of Design Computing, BST students by permission. Enrollment is limited by teaching resources.</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Information Visualisation Design Studio</td>
<td></td>
<td>Note: Department permission required for enrolment. Please seek permission from the Faculty of Architecture, Design and Planning Student Administration Centre. First preference to Bachelor of Design Computing students.</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>DECO3200</td>
<td>12</td>
<td>P DECO3200 or (DECO2101 and DECO2102) or (DECO(1012 or 2011) or SOFT1001)</td>
<td>N DECO3001, DECO3001</td>
<td>Core unit for Bachelor of Design Computing, BST students by permission. Enrollment is limited by teaching resources.</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Human-Computer Experience Design Studio</td>
<td></td>
<td>Note: Department permission required for enrolment. Please seek permission from the Faculty of Architecture, Design and Planning Student Administration Centre. First preference to Bachelor of Design Computing students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ii) General Engineering Major

For a major in General Engineering the minimum requirement is the completion of at least 36 credit points from units of study shown in the following Table, including:

(i) MATH2061; and
(ii) a minimum of 12 credit points at the 3000-level.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH2061</td>
<td>6</td>
<td>P MATH1111 or 1011 or 1001 or 1901 or 2007</td>
<td>N MATH1001, MATH1001, MATH1001, MATH1001</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Linear Mathematics and Vector Calculus</td>
<td></td>
<td>and MATH1014 or 1002 or 2002 and MATH1003 or 1903 or 1907</td>
<td>and MATH1002, MATH1002, MATH1002, MATH1002, MATH1002, MATH1002, MATH1002, MATH1002, MATH1002</td>
<td>Semester 1</td>
<td></td>
<td>Summer Main</td>
</tr>
<tr>
<td>AMME2200</td>
<td>6</td>
<td>P MATH1003</td>
<td>N MATH1003, MATH1003</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Thermodynamics and Fluids</td>
<td></td>
<td>A MATH1001,MATH1002,MATH1003.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMME2301</td>
<td>6</td>
<td>P MATH1001 or MATH1001 or MATH1001</td>
<td>N MATH1001, MATH1001, MATH1001</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Mechanics of Solids</td>
<td></td>
<td>(MATH1002 or MATH1002), (MATH1003 or MATH1003)</td>
<td>(ENGG1802 or PHYS1001 or PHYS1001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMME2302</td>
<td>6</td>
<td>P MATH1001</td>
<td>N MATH1001, MATH1001, MATH1001</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Materials 1</td>
<td></td>
<td>CIVIL2111</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMME2500</td>
<td>6</td>
<td>P MATH1001 or MATH1001 or MATH1001</td>
<td>N MATH1001, MATH1001, MATH1001</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Engineering Dynamics</td>
<td></td>
<td>(MATH1002 or MATH1002), (AMME1550 or PHYS1001 or PHYS1001)</td>
<td>(MATH1002 or MATH1002), (AMME1550 or PHYS1001 or PHYS1001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG2801</td>
<td>6</td>
<td>P MATH1001</td>
<td>N MATH1001, MATH1001, MATH1001</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Conservation and Transport Processes</td>
<td></td>
<td>A Calculus Computations (Matlab, Excel) Mass and Energy Balances</td>
<td>P All core 1st year engineering units of study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG2802</td>
<td>6</td>
<td>P MATH1001</td>
<td>N MATH1001, MATH1001, MATH1001</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Applied Maths for Chemical Engineers</td>
<td></td>
<td>A Calculus Computations (Matlab, Excel) Mass and Energy Balances</td>
<td>P All core 1st year engineering units of study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG2804</td>
<td>6</td>
<td>P MATH1001</td>
<td>N MATH1001, MATH1001, MATH1001</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Chemical & Biological Systems Behaviour</td>
<td></td>
<td>AAbility to conduct mass and energy balances, and the integration of these concepts to solve real chemical engineering problems Ability to understand basic principles of physical chemistry, physics, and mechanics Ability to use mathematics of calculus (including vector calculus) and linear algebra, and carry out computations with MATLAB and MS EXCEL.</td>
<td>P All core 1st year engineering units of study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C CHNG 2803 (Analysis Practice 1) CHNG 2801 (Conservation and Transport Processes)</td>
<td>C CHNG 2805 (Industrial Systems and Sustainability) CHNG 2806 (Analysis Practice 2 - Treatment, Purification and Recovery Systems) CHEM 2403 (Chemistry of Biological Molecules)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Bachelor of Science and Technology

(ii) a minimum of 12 credit points at the 3000-level.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHNG2505 Industrial Systems and Sustainability</td>
<td>6</td>
<td>A: Ability to conduct mass and energy balances, and the integration of these concepts to solve real chemical engineering problems. Ability to understand basic principles of physical chemistry, physics and mechanics. Ability to use mathematics of calculus (including vector calculus) and linear algebra, and carry out computations with MATLAB and MS EXCEL. Ability to read widely outside of the technical literature, and to synthesise arguments based on such literature. Ability to write coherent reports and essays based on qualitative information.</td>
<td>P: All core 1st year engineering units of study.</td>
<td>C: CHNG2804 (Chemical and Biological Systems Behaviour) CHNG2806 (Analysis Practice 2 - Treatment, Purification & Recovery Systems) CHEM2403 (Chemistry of Biological Molecules)</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CIVL2110 Structural Mechanics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CIVL2201 Structural Mechanics</td>
<td>6</td>
<td>P: ENGG1802 Engineering Mechanics</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CIVL2330 Intro to Structural Concepts and Design</td>
<td>6</td>
<td>A: ENGG1802 Engineering Mechanics, CIVL2110 Materials CIVL2201 Structural Mechanics</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CIVL2410 Soil Mechanics</td>
<td>6</td>
<td>A: CIVL2201 Structural Mechanics</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CIVL2810 Engineering Construction and Surveying</td>
<td>6</td>
<td>A: MATH1001, MATH1002, MATH1003, MATH1005</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MECH2400 Mechanical Design 1</td>
<td>6</td>
<td>A: ENGG1802, AMME2301</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>AMME3500 System Dynamics and Control</td>
<td>6</td>
<td>P: AMME2500; MATH2061 or MATH2961 or MATH2067</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNG3801 Process Design</td>
<td>6</td>
<td>A: Enrolment in this unit of study assumes that all (six) core chemical engineering UoS in second year have been successfully completed.</td>
<td>P: CHNG2801; CHNG2802; CHNG2803; CHNG2804; CHNG2805; CHNG2806</td>
<td>C: CHNG2803; CHNG2802</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNG3802 Operating/Improving Industrial Systems</td>
<td>6</td>
<td>A: Enrolment in this unit of study assumes that all (six) core chemical engineering UoS in second year have been successfully completed.</td>
<td>P: CHNG2801; CHNG2802; CHNG2803; CHNG2804; CHNG2805; CHNG2806</td>
<td>C: CHNG3803 (Process Design) CHNG3803 (Design Practice 1 - Chemical & Biological Processes)</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNG3805 Product Formulation and Design</td>
<td>6</td>
<td>A: Mass and Energy Balances Conservation and Transport Phenomena Applied Mathematics (for Chemical Engineering) Process Design Concepts Process Control and Optimisation Concepts</td>
<td>P: CHNG2801; CHNG2802; CHNG2803; CHNG2804; CHNG2805; CHNG2806</td>
<td>C: CHNG3806 (Management of Industrial Systems) CHNG3807 (Design Practice 2 - Products and Value Chains)</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNG3806 Management of Industrial Systems</td>
<td>6</td>
<td>A: Ability to conduct mass and energy balances, and the integration of these concepts to solve real chemical engineering problems. Ability to understand basic principles of physical chemistry, physics and mechanics. Ability to use mathematics of calculus (including vector calculus) and linear algebra, and carry out computations with MATLAB and MS EXCEL. Ability to read widely outside of the technical literature, and to synthesise arguments based on such literature. Ability to write coherent reports and essays based on qualitative information.</td>
<td>P: CHNG2801; CHNG2802; CHNG2803; CHNG2804; CHNG2805; CHNG2806</td>
<td>C: CHNG3806 (Process Formulation and Design) CHNG3807 (Design Practice 2 - Products and Value Chains)</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CIVL3411 Foundation Engineering</td>
<td>6</td>
<td>A: CIVL2410 Soil Mechanics</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>MECH3260 Thermal Engineering</td>
<td>6</td>
<td>A: Fundamentals of thermodynamics are needed to begin this more advanced course.</td>
<td>P: AMME2200</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>MECH3261 Fluid Mechanics</td>
<td>6</td>
<td>P: AMME2200</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MECH3361 Mechanics of Solids 2</td>
<td>6</td>
<td>P: AMME2301 and AMME2302</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MECH3460 Mechanical Design 2</td>
<td>6</td>
<td>A: Properties of engineering materials including fatigue failure theories. Statics and dynamics properties of machines. Practical use of Word and Excel including the use of the ‘solver’ and graphing capabilities built into the spreadsheet. The use of a spreadsheet is mandatory.</td>
<td>P: MECH2400 and AMME2301</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>MATH2061 Linear Mathematics and Vector Calculus</td>
<td>6</td>
<td>P: MATH1111 or 1011 or 1001 or 1901 or 1906 and MATH1014 or 1002 or 1902 and MATH1003 or 1903 or 1907</td>
<td>N: MATH2001, MATH2901, MATH2002, MATH2902, MATH2961, MATH2067</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
7. Bachelor of Science and Technology

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC2104 Electronic Devices and Circuits</td>
<td>6</td>
<td>ELEC1102 Foundations of Electronic Circuits or ELEC1103 Professional Electronic Engineering.</td>
<td>N ELEC2401 Introductory Electronics.</td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ELEC2304 Power Electronics and Applications</td>
<td>6</td>
<td>A differential equations, linear algebra, complex variables, analysis of linear circuits, Fourier theory applied to periodic and non-periodic signals. Software such as MATLAB to perform signal analysis and filter design. Familiarity with the use of basic laboratory equipment such as oscilloscope, function generator, power supply, etc.</td>
<td>P ELEC2104</td>
<td>N ELEC3202 Power Electronics and Drives.</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>ELEC3304 Control</td>
<td>6</td>
<td>Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, Physics; solution of linear differential equations, Matrix Theory, eigenvalues and eigenvectors; linear electrical circuits, ideal op-amps; continuous linear time-invariant systems and their time and frequency domain representations, Laplace transform, Fourier transform.</td>
<td>P MATH2061 and ELEC2302</td>
<td>N ELEC3202 Fundamentals of Feedback Control, AMME3500 System Dynamics and Control.</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ELEC3305 Digital Signal Processing</td>
<td>6</td>
<td>Specifically the following concepts are assumed knowledge for this unit: familiarity with basic Algebra, Differential and Integral Calculus, continuous linear time-invariant systems and their time and frequency domain representations, Fourier transform, sampling of continuous time signals.</td>
<td>P ELEC2302</td>
<td>N ELEC3203 Digital Signal Processing.</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>ELEC3404 Electronic Circuit Design</td>
<td>6</td>
<td>A background in basic electronics and circuit theory is assumed.</td>
<td>N ELEC3401 Electronic Circuits and Devices.</td>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>ELEC3405 Communications Electronics and Photonics</td>
<td>6</td>
<td>ELEC22401 Introductory Electronics or ELEC2104 Electronic Devices and Basic Circuits.</td>
<td>N ELEC3402 Communications Electronics.</td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ELEC3505 Communications</td>
<td>6</td>
<td>Confidence in mathematical operation usually needed to handle telecommunications problems such as Fourier transform, fundamental in signals and systems theory, convolution, and similar techniques.</td>
<td>N ELEC3503 Introduction to Digital Communications.</td>
<td></td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>ELEC3802 Fundamentals of Biomedical Engineering</td>
<td>6</td>
<td>A knowledge of basic electrical engineering is required: Ohm’s law, Thevenin and Nortons’ Theorem, basic circuit theory involving linear resistors, capacitors and inductors, a basic knowledge of bipolar and field effect transistor theory, simplified theoretical mechanism of operation of transformers.</td>
<td>N ELEC3801 Fundamentals of Biomedical Engineering.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(iv) Information Technology Major

For a major in Information Technology, the minimum requirement is the completion of at least 36 credit points at 2000 level and above from the Bachelor of Information Technology degree (table to be found in Faculty of Engineering and Information Technologies Handbook) - excluding any units which are not available in the BST degree, which must contain:

(i) INFO2110 and INFO2120/2820 and

(ii) INFO3402 and (ISYS3400 or COMP3615)
8. Combined degrees

This chapter is intended to give enrolment advice to undergraduate students in the Faculty of Science enrolling in combined degrees. You will find answers to frequently asked questions covering all students.

Following this are specific summaries of the requirements for each degree including examples of how unit of study choices can be made over the duration of the degree. With some degrees there is information on recommended combinations of units of study, especially in first year, to help guide you to your goals.

It should be stressed that the information in this chapter is intended to be a rough guide only. All students will have to decide for themselves how to plan their degree to suit their own particular interests and situation.

All students are expected to read the degree resolutions for their course before they commence their studies, and from time to time during their studies. Undergraduate degree resolutions appear in chapter 2. The tables of undergraduate units of study available for each degree and unit descriptions appear in chapter 9.

Students enrolled in units of study offered by the Faculty of Science are required to familiarise themselves with the following key policies:

Special Arrangements
Students who are experiencing difficulty in meeting their assessment requirements due to competing essential community commitments may apply for Special Arrangements for examination and assessment.

Special Consideration
Students who have a serious illness or who have experienced misadventure which may affect their academic performance in a course or unit of study may request that they be given Special Consideration in relation to the determination of their results.

Students should note that you apply for special consideration with the Faculty that offers the particular unit of study.

At Risk
To progress through a degree course, students are required to:

1. achieve the minimum Progression Rate specified by the faculty; in the Faculty of Science, students must pass more than 50 per cent of the units attempted in each semester
2. pass any field or clinical work, practicum, or other unit of study mandated by the faculty (listed in your degree requirements).

If you do not meet the progress requirements, you will be identified as a student at risk.

Code of Conduct for Students
The University has clear expectations of students in respect of academic matters and personal behaviour.

Student Plagiarism: Coursework Policy and Procedure
The University of Sydney expects high standards of academic honesty in all student work. In particular, the University is opposed to and will not tolerate plagiarism.

Details on Special Arrangements, Special Consideration, Code of Conduct for Students, and Student Plagiarism Policy are provided elsewhere in this handbook.

Inside the back cover of this handbook you will find a planner to help you map out your degree. It is recommended you plan your studies carefully with an eye to your final years, so that you take the correct prerequisites in the preceding years. It will be useful to revisit this planner during your studies as your interests take more detailed shape.

Enrolment day FAQs

What is a ‘major’?
Some degrees in the Faculty of Science require you to complete a major. A major is a specialisation in the senior year of your degree. It is useful to have an idea of what major, or group of majors, interest you now, so that you can plan your junior and intermediate years properly.

The Bachelor of Science majors Neuroscience, and Nanoscience and Technology require earlier planning than most others. If you are interested in these then read Table I (Bachelor of Science: chapter 3) carefully and/or seek advice.

A major is usually defined as 24 credit points of study at the senior level in a single science area. Neuroscience and Psychology both have additional requirements. Depending on the majors chosen, it is possible to complete more than one major in your degree.

Degrees where you choose a major are the Bachelor of Science (including the advanced stream of the BSc), Bachelor of Science and Technologies (BST) and the Bachelor of Liberal Studies (including both the advanced and international streams of the BLibStud).

How many credit points should I take per semester?
You should take 24 credit points each semester if you are a full-time student. There is an upper limit of 30 credit points per semester. If you take fewer than 18 credit points in each semester you will automatically become part-time.

To finish your degree in the recommended minimum time you will have to take 48 credit points per year, or 24 per semester. If you enrol part time you can take as few credit points as you like. You must keep in mind however that you have a 10 year limit to finish your degree.

Students wishing to accelerate their degree programs may consider undertaking units offered at Summer School or undertaking up to 30 credit points each semester. The degree summaries and sample programs in this chapter assume you will enrol full-time.

Do I need to be full-time?
International students must enrol full-time in a minimum of 24 credit points per semester unless there are exceptional circumstances. Failure to enrol in 24 credit points per semester may have serious ramifications for your visa.

Australian citizens and permanent residents are considered full-time if they are enrolled in 18 or more credit points per semester. Australian citizens and permanent residents who wish to receive a transport concession card must be full-time students.

If you receive any financial support, whether from a University scholarship or from the government, you may well need to enrol as a full-time student. You should carefully check the terms and conditions of that support before going part-time.

Can I take units of study from other faculties?
It is possible in some combined degrees. There are limits, and exclusions. You should refer to the degree summary sections of this chapter for specific information about your particular degree.
Can I receive credit for previous tertiary study?
Yes. The amount of credit you may receive depends on your individual circumstances, but in general the total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points from degrees that have been completed.

On the day that you enrol you must lodge an application for credit from previous study with the Faculty that administers your degree. Because of the large numbers of applications received at enrolment there can be a considerable delay in processing your application, but all credit offers will be sent to students well in advance of the last day to add a unit of study for the semester in which they enrol.

The faculty must sight originals of your academic transcripts, as well as detailed descriptions of prior units of study completed, as at the time of completion of the units. Descriptions will normally be an extract from a Handbook or a unit of study syllabus or outline, and should include the credit point value, learning outcomes, assessment details, texts and references, and contact details for each unit of study. You must bring this information with you on the day that you enrol.

On enrolment day you will have to make unit of study choices as if you have had no previous university study. Alternatively, you may be able to obtain special permission to enrol in intermediate or senior units of study by taking a copy of your transcript and unit of study descriptions to academic advisers for each individual unit of study. Unit of study academic advisers are listed under unit of study descriptions in this Handbook.

Information on the current application process for credit, including the application form, is available from the Faculty of Science website.

Are there any bridging courses available?
There are bridging courses in Biology, Chemistry, Mathematics and Physics, designed to cover the assumed knowledge that students would normally cover in the HSC. They run in February each year after enrolment and are recommended for students who either didn’t take a subject at the HSC or feel they need some revision.

Who can enrol in advanced units of study?
Advanced units of study are available to those students enrolled in any program in the Faculty of Science who have performed at a high level in science subjects in the HSC or who perform well in their studies at the University. Consult a departmental adviser about your eligibility to enrol in Advanced level subjects in the first year of study.

For students in an advanced degree it is recommended that you enrol in no more than 24 credit points of advanced units of study in a year. Advanced units of study are very demanding and students are required to perform at a higher standard than in the normal units of study.

What is the Talented Student Program?
The Talented Student Program (TSP) is tailored to meet students’ individual needs and is restricted to the very top students.

Students may be able to bypass some first year study and enrol directly in a second year course. If you have outstanding results in any of your HSC science subjects you may wish to negotiate a special program of study with one of the departments in the Faculty of Science.

The Talented Student Program is available in most areas of Science. Students receive special supervision by academic staff and often engage in studies on an individual basis with small numbers of fellow students, all of whom have a special interest in the same subject.

Am I eligible for the Talented Student Program?
Enter to the TSP is by invitation from the Dean, which you should have received by the time you enrol. The following guidelines apply generally, although departments may have additional (and sometimes more stringent) requirements for entry into the program.

To get into the program in your first year, you should normally have a ATAR (or equivalent) of at least 99.00 and a result in band 6 in at least one HSC Science subject area and/or a mark of 95 or better in HSC Mathematics Extension 2. For entry into the program in your second and third years, you should normally have a weighted average mark of 85 or over and a high distinction grade in the relevant subject area.

Combined BAappSc (Exercise and Sport Science)/BSc (Nutrition) degrees

Degree code: SH115

This degree is not available to new students from 2010. Please see the BSc (Nutrition) requirements and table in Chapter 4 of this Handbook. See also the Health Sciences Handbook.
Combined Science/Law degrees (BSc/LLB)

Degree code: LH006

Summary of requirements
The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. The Resolutions should be consulted for any clarification of the summary points.

A student may proceed concurrently to the degrees of Bachelor of Laws and Bachelor of Science, Bachelor of Science (Advanced) or Bachelor of Science (Advanced Mathematics).

Enrolment guide
In your junior year you should complete:

- 12 credit points from the science subject areas of Mathematics and Statistics
- 24 credit points of junior units of study from at least two science subject areas other than Mathematics and Statistics
- LAWS1006, LAWS1012 and LAWS1013.

To qualify for the award of the BSc degree a student must complete 96 credit points from Science units of study set out in Table I: Bachelor of Science, and 48 credit points from units set out in Table II: Law units of study, including:

- at least 12 credit points from the science subject areas of Mathematics and Statistics
- 24 credit points of junior units of study from at least two science subject areas other than Mathematics or Statistics
- 60 credit points of intermediate/senior units of study in science subject areas
- a major in a science area.

The order in which Law units of study are taken is specified in the Resolutions of the Senate and Faculty for the Bachelor of Laws.

For commencing 2009 students, Law units of study are taken in the following sequence:

- in the first year of attendance the student will take LAWS1006, LAWS1013 and LAWS1012
- in the second year of attendance the student will take LAWS1014, LAWS1015 and LAWS1016
- in the third year of attendance the student will take LAWS1017, LAWS1018, LAWS1021 and LAWS1019.

Full details of the units of study to be completed during this time are contained in the Faculty of Law handbook. General enquiries about the combined Science/Law course can be directed to staff in the Faculty of Science Office.

Advanced streams
To qualify for the award of the BSc degree in an advanced stream, a student shall complete the requirements for the BSc degree outlined above and in addition (except with the permission of the Dean):

- include at least 12 credit points of intermediate science units of study at either the advanced level or as TSP units (for BSc (Advanced Mathematics) at least 12 credit points from the science subject areas of Mathematics and Statistics at either the advanced level or as TSP units)
- include at least 24 credit points of senior science units of study at the advanced level or as TSP units in the science subject areas of Mathematics and Statistics (for the BSc (Advanced Mathematics)).

You should note that you must maintain in intermediate and senior units of study in science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the BSc.

Plans of study
When choosing units of study at any stage of your University career, please consider your overall degree program. See the sample degree program below and the Bachelor of Science entry for information about each major and recommended first year combinations of units of study. A degree planner is inside the back cover.

Units of study
The Science units of study available for this degree are set out in Table I: Bachelor of Science, and Table II: Laws units of study in this chapter. You may also wish to refer to the Faculty of Law handbook for higher year law options.

Honours
For students interested in graduating with honours:

1. Students in the combined Law course who wish to take an honours program in Science may elect to spend an additional year in Science after the 3rd year of the combined course. The Faculty of Law generally permits only 1 year of suspension of candidature from the Bachelor of Laws degree (including the combined degree). It may be possible for students to defer an honours year in Science until after the completion of the entire combined course.
2. Students entering the final year of the LLB have the opportunity of enrolling in an honours program. While there is no separate honours year, the completion of an honours dissertation is required, and entry will be on a competitive basis.

Discontinuation
In some cases, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation are on the second page of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Australian Tertiary Admission Rank (ATAR)
The minimum ATAR for course admission varies every year.

Degree resolutions: See chapter 2.
Students should note that at the time of the Faculty of Science Handbook going to print, Law units of study had not been finalised for 2010.

Table II: Law units of study

Students should note that at the time of the Faculty of Science Handbook going to print, Law units of study had not been finalised for 2010.

<table>
<thead>
<tr>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1XXX</td>
<td>MATH 1XXX</td>
<td>Science elective A 1XXX</td>
<td>Science elective B 1XXX</td>
<td>LAWS1006</td>
<td>LAWS1013</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1XXX</td>
<td>MATH 1XXX</td>
<td>Science elective A 1XXX</td>
<td>Science elective B 1XXX</td>
<td>LAWS1012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major 2XXX</td>
<td>Intermediate Science elective</td>
<td>LAWS1014</td>
<td>LAWS1015</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major 2XXX</td>
<td>Intermediate Science elective</td>
<td>LAWS1016</td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major 3XXX</td>
<td>Major 3XXX</td>
<td>Science elective</td>
<td>LAWS1018</td>
<td>LAWS1019</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major 3XXX</td>
<td>Major 3XXX</td>
<td>LAWS1017</td>
<td>LAWS1021</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credit points: 144
Combined Science/Arts degree

Degree code: LH011 Science/Arts
*Note: This degree is not available to new students from 2010. See 2009 Science Handbook for degree requirements.
See also Summary of Requirements of the BSc.*

Degree code: LH039 Science/Arts
Note: From 2010, students will be enrolled in LH039 - the 4 year combined degree program

Summary of requirements

The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. The Resolutions should be consulted for any clarification of the summary points.

A student may proceed concurrently to the degrees of Bachelor of Arts and Bachelor of Science, Bachelor of Science (Advanced) or Bachelor of Science (Advanced Mathematics) within the BSc/BA course.

Enrolment guide

To qualify for the award of the pass degrees in the BSc/BA course a student shall complete units of study to a total value of at least 192 credit points including:

- at least 96 credit points from science subject areas
- at least 12 credit points from the science subject areas of Mathematics and Statistics
- at least 24 credit points of junior units of study from at least two science subject areas other than Mathematics or Statistics;
- no more than 96 credit points from junior units of study
- no more than 18 junior credit points from the same Arts subject area
- a major in a science area, and
- at least 72 credit points of senior units of study in Arts subject areas, including a major from Part A of the table of undergraduate units of study in the Faculty of Arts.

- a Part A major consisting of 36 senior credit points in a single subject area listed in Part A of the table of units of study for the Bachelor of Arts or of at least 18 senior credit points from a Part A subject area combined with no more than 18 senior credit points from units of study approved by the Dean of Arts for cross-listing with the major, except in the case of Medieval Studies, Film Studies, European Studies and Asian Studies where the entire major may be cross-listed, and in such other subject areas as may be approved by the Dean of Arts.
- no more than 60 senior credit points from the same Arts subject area
- a student may not count a unit of study toward more than one major

Advanced streams

To qualify for the award of the pass degree in the BSc (Advanced) stream, a student shall complete the requirements for the BSc and in addition:

- at least 12 credit points of intermediate science units of study at either the advanced level or as TSP units
- at least 24 credit points of senior units of study at the advanced level or as TSP units in a single science subject area
- maintain in intermediate and senior units of study in science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the non-advanced stream.

To qualify for the award of the pass degree in the BSc (Advanced Mathematics) stream, a student shall complete the requirements for the BSc degree as outlined above and in addition:

- include at least 12 credit points of intermediate units of study at either the advanced level or as TSP units in the science subject areas of Mathematics and Statistics, and
- include at least 24 credit points of senior units of study at the advanced level or as TSP units in the science subject areas of Mathematics and Statistics.

You should note that you must maintain in intermediate and senior units of study in science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the non-advanced stream.

Plans of study

It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program below. See the Bachelor of Science entry for information about each major and recommended first year combinations of units of study. There is also a degree planner inside the back cover.

Units of study

The science units of study available for this degree are set out in Table I: Bachelor of Science in chapter 3. Unit descriptions are found in Chapter 9. The Arts units of study available for this degree are set out in Chapter 10 of this handbook. Full descriptions of Arts units of study may be found in the Faculty of Arts Handbook.

Honours

Students who are qualified to do so may undertake honours courses in either or both degrees or a joint honours course at the completion of the combined degrees. Please refer to ‘Honours in the Faculty of Science’ and to “Honours units of study” in chapter 11.

Abandoning and discontinuing

Students may abandon the combined degree course and elect to complete either a BSc or a BA in accordance with the Resolutions governing those degrees.

In some cases, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission

You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Supervision

Supervision of all students in the combined degrees will be the responsibility of the Faculty of Science and the Faculty of Arts.

Australian Tertiary Admission Rank (ATAR)

The minimum ATAR for admission into the course varies every year.

Degree resolutions

See chapter 2.
8. Combined degrees

Sample Bachelor of Science/Bachelor of Arts

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>1 MATH1XXX</td>
<td>MATH1XXX</td>
<td>Science elective A 1XXX</td>
<td>Science elective B 1XXX</td>
<td>Arts elective 1XXX</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>MATH1XXX</td>
<td>MATH1XXX</td>
<td>Science elective A 1XXX</td>
<td>Science elective B 1XXX</td>
<td>Arts elective 1XXX</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Year 2</td>
<td>1 Science major Intermediate 2XXX</td>
<td>Intermediate Science elective 2XXX</td>
<td>Intermediate Science elective 2XXX</td>
<td>Arts elective 1XXX</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Science major Intermediate 2XXX</td>
<td>Intermediate Science elective 2XXX</td>
<td>Intermediate Science elective 2XXX</td>
<td>Arts elective 1XXX</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Year 3</td>
<td>1 Science major 3XXX</td>
<td>Science major 3XXX</td>
<td>Elective</td>
<td>Arts elective 1XXX</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Science major 3XXX</td>
<td>Science major 3XXX</td>
<td>Elective</td>
<td>Arts elective 1XXX</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>Year 4</td>
<td>1 Elective</td>
<td>Arts Senior elective</td>
<td>Arts Senior elective</td>
<td>Arts major Senior elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>Int/Senior elective</td>
<td>Arts Senior elective</td>
<td>Arts Senior elective</td>
<td>Arts major Senior elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>24</td>
</tr>
</tbody>
</table>

Total credit points: 192

Require: 192cp total, max 96cp Junior, min. 96cp Science, no more than 18 cp junior cp from the same Arts area, min 36cp Junior Science incl. 12cp Maths, one Science major, min 72cp Senior Arts including one Arts major.

Combined Engineering/Science degrees

Degree code: HH015

See also Summary of Requirements of the BSc. Students should note that this degree is administered by the Faculty of Engineering

Summary of requirements

The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. The Resolutions should be consulted for any clarification of the summary points.

A student may proceed concurrently to the degrees of Bachelor of Science, Bachelor of Science (Advanced) or Bachelor of Science (Advanced Mathematics) and any stream of the Bachelor of Engineering.

Enrolment guide

To qualify for the award of the pass degrees a student shall complete units of study to a total value of at least 240 credit points including:

- 96 credit points from science subject areas
- units of study as prescribed in the BE Specialisation Requirement tables for the specialisation that the student is pursuing, and
- a major in a science area.

Advanced streams

To qualify for the award of the pass degree in the advanced or advanced Mathematics stream of the BSc a student must:

- complete at least 54 credit points of intermediate/senior science units of study of which at least 36 credit points shall be completed at the advanced level or as TSP units, and
- complete at least 24 credit points of senior science units of study at the advanced level or as TSP units in a single science subject area (for the BSc (Advanced)) or 24 credit points of senior units of study at the advanced level or as TSP units in the science subject areas of Mathematics and Statistics (for the BSc (Advanced Mathematics)).

You should note that you must maintain in intermediate and senior units of study in science subject areas an average mark of 65 or greater in each year of enrolment, or be awarded the Bachelor of Science.

Plans of study

It is important when choosing units of study at any stage of your university career that you consider your overall degree program. See the Bachelor of Science entry for information about each major and recommended first year combinations of units of study. There is a degree planner inside the back cover.

Units of study

The Science units of study available for this degree are set out in Table I. Bachelor of Science in chapter 3. Unit descriptions appear in chapter 9. The Engineering units of study available for this degree are set out in tables in the Faculty of Engineering and Information Technologies handbook.

Honours

Students who are so qualified may be awarded honours in the BE degree or undertake an honours course in the BSc degree. Please refer to ‘Honours in the Faculty of Science’ and to “Honours units of study” in chapter 11.

Abandoning and discontinuing

Students may abandon the combined degree course and elect to complete either a BSc or a BE in accordance with the Resolutions governing those degrees.
In some cases, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission
You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Double degree in Science/Engineering

Degree code: LH000

Admission requirements
This degree is administered by the Faculty of Science. A student enrolled for a Bachelor of Engineering degree may be permitted to transfer to a BSc degree if:

- at least 96 credit points from units of study in Engineering have been completed with the grade of Pass or better, and
- the student is qualified to enrol in a major in a science area.

For admission to the advanced and advanced Mathematics streams a student must have completed at least 48 credit points of units of study from the BSc with a mark averaged over all attempted units of study of 75 or greater and have met the prerequisites to be able to enrol in the required number of advanced level units or TSP units.

Enrolment guide
To qualify for the award of the pass degree a student shall complete units of study to a value of at least 48 credit points including:

- 42 credit points of intermediate/senior units of study in science subject areas, and
- a major in a science area.

Advanced streams
To qualify for the award of the pass degree in the advanced or advanced Mathematics stream of the BSc a student shall, in addition:

- include at least 72 credit points of intermediate/senior science units of study, and
- include at least 24 credit points of senior science units of study at the advanced level or as TSP units in a single science subject area (for the BSc (Advanced) or 24 credit points of senior units of study at the advanced level or as TSP units in the science subject areas of Mathematics and Statistics (for the BSc (Advanced Mathematics)).

You should note that you must maintain in intermediate and senior units of study in science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the Bachelor of Science.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. See the Bachelor of Science entry for information about each major and recommended first year combinations of units of study. There is a degree planner inside the back cover.

Units of study
The Science units of study available for this degree are set out in Table I: Bachelor of Science in chapter 3. Units of study descriptions appear in Chapter 9. The Engineering units of study available for this degree are set out in tables in the Faculty of Engineering and Information Technologies handbook.

Method of candidature
The requirements outlined above must be completed in one year of full-time study or two years of part-time study. Students who complete at least 42 but less than 48 credit points in the prescribed time limits may in the following year of enrolment in the BE complete the remaining units to satisfy the requirements of the BSc. Students who complete less than 42 credit points may apply to be readmitted to the degree, subject to Resolutions relating to credit transfer.

Applications
Bachelor of Engineering students should apply to the Faculty of Science before 15 November in the year prior to candidature.

Honours
Students who are qualified may be awarded honours in the BE degree or undertake an honours course in the BSc. Please refer to ‘Honours in the Faculty of Science’ and “Honours units of study” in chapter 11.

Discontinuing
If you wish to discontinue a unit of study it is important to talk to staff in the Faculty Office. In some circumstances, discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission
You should note that the Faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Degree resolutions
See chapter 2.
Combined Science/Commerce degrees

Course code: FH034

See also Summary of Requirements of the BSc.

Note that from 2006, students will be admitted to the Bachelor of Commerce/Bachelor of Science course only, which is administered by the Faculty of Economics and Business. Please consult that faculty’s handbook for information on that degree.

The following summary is relevant to students who first enrolled in the Bachelor of Science/Bachelor of Commerce course prior to 2006.

Summary of requirements

The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 5) which should be read by all candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. Consult the Resolutions for clarification of the summary points.

A student may proceed concurrently to the degrees of Bachelor of Commerce and Bachelor of Science, Bachelor of Science (Advanced) or Bachelor of Science (Advanced Mathematics).

Enrolment guide

In your junior year you should complete:

- 12 credit points from the science subject areas of Mathematics and Statistics
- 24 credit points of junior units of study from at least two science subject areas other than Mathematics and Statistics, and
- 12 credit points of junior units of study from either Economics, Accounting or the combination ECMT 1010 and INFS 1000.

To qualify for the pass degree a student must complete successfully units of study amounting to a total of 240 credit points, comprising:

1. In the first six semesters of enrolment, at a grade of Pass or better:
 (a) 12 credit points of units of study from the science subject areas of Mathematics and Statistics listed in Table I: Bachelor of Science
 (b) at least 24 credit points of junior units of study from at least two science subject areas other than Mathematics or Statistics
 (c) 12 credit points in junior units of study from each of Accounting and Economics
 (d) ECMT 1010, except that a student shall complete an alternative junior Economics and Business unit of study other than those in (c) and (e) if MATH1105/1005/1905 has been completed
 (e) INFS 1000, and
 (f) a minimum of 60 credit points from intermediate and senior units of study from subject areas.

2. No more than 100 credit points from junior units of study.

3. At least 96 credit points of units of study taught by the Faculty of Economics and Business.

4. No more than 48 credit points of junior units of study taught by the Faculty of Economics and Business.

5. A major in a science area, and a major or double major in Economics and Business from the list of approved majors for the Bachelor of Commerce.

Advanced streams

To qualify for the award of the pass degree in the BSc (Advanced) stream, a student shall complete the requirements for the BSc and in addition:

- include at least 12 credit points of intermediate science units of study at either the advanced level or as TSP units, and
- include at least 24 credit points of senior units of study at either the advanced level or as TSP units in a single science area.

You should note that you must maintain in intermediate and senior units of study in science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the non-advanced stream.

To qualify for the award of the pass degree in the BSc (Advanced Mathematics) stream, a student shall complete the requirements for the BSc degree and in addition:

- include at least 12 credit points of intermediate units of study at either the advanced level or as TSP units in the science subject areas of Mathematics and Statistics, and
- include at least 24 credit points of senior units of study at either the advanced level or as TSP units in the science subject areas of Mathematics and Statistics.

You should note that you must maintain in intermediate and senior units of study in science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the non-advanced stream.

Plans of study

It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There is a sample degree program below. See the Bachelor of Science entry for information about each major and recommended first year combinations of units of study. There is also a degree planner inside the back cover.

Units of study

The Science units of study available for this degree are set out in Table I: Bachelor of Science in chapter 3. The Commerce units of study available for this degree are set out in the Faculty of Economics and Business handbook. You may also wish to refer to the handbooks of other faculties as the degree resolutions allow.

Honours

Students who are qualified to do so may undertake honours courses in either or both degrees or a joint honours course on completion of the combined degree. Please refer to ‘Honours in the Faculty of Science’ and ‘Honours units of study’ in chapter 11.

Abandoning and discontinuing

Students may abandon the combined degree course and elect to complete either a BSc or a BCom in accordance with the Resolutions governing those degrees.

In some cases discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission

You should note that the faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean (Undergraduate) after discussion with staff in the Faculty Office.

Supervision

The Faculty of Science is the Supervising Faculty for the Bachelor of Science/Commerce. However, for student matters related to the Bachelor of Commerce component (eg, credit, graduation and progression advice) students should refer to the Faculty of Economics and Business Student Information Office.

Australian Tertiary Admission Rank (ATAR)

The minimum ATAR for admission into the course varies every year.

Degree resolutions

See chapter 2.
Sample Bachelor of Science/Bachelor of Commerce

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>1</td>
<td>MATH 1XXX</td>
<td>MATH 1XXX</td>
<td>Science elective A 1XXX</td>
<td>Science elective B 1XXX</td>
<td>Commerce Junior core 1XXX</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>MATH 1XXX</td>
<td>MATH 1XXX</td>
<td>Science elective A 1XXX</td>
<td>Science elective B 1XXX</td>
<td>Commerce Junior core 1XXX</td>
<td>24</td>
</tr>
<tr>
<td>Year 2</td>
<td>1</td>
<td>Science major Intermediate 2XXX</td>
<td>Intermediate Science elective 2XXX</td>
<td>Intermediate Science elective 2XXX</td>
<td>Commerce Junior core 1XXX</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Science major Intermediate 2XXX</td>
<td>Intermediate Science elective 2XXX</td>
<td>Intermediate Science elective 2XXX</td>
<td>Commerce Junior core 1XXX</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>1</td>
<td>Science major 3XXX</td>
<td>Science major 3XXX</td>
<td>Commerce/Science elective</td>
<td>Commerce Junior core 1XXX</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Science major 3XXX</td>
<td>Science major 3XXX</td>
<td>Commerce/Science elective</td>
<td>Commerce Junior core 1XXX</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>1</td>
<td>Elective</td>
<td>Commerce Senior elective</td>
<td>Commerce Senior elective</td>
<td>Commerce major Senior elective</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Elective</td>
<td>Commerce Senior elective</td>
<td>Commerce Senior elective</td>
<td>Commerce major Senior elective</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Year 5</td>
<td>1</td>
<td>Int/Senior elective</td>
<td>Commerce Senior elective</td>
<td>Commerce major Senior elective</td>
<td>Commerce major Senior elective</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Int/Senior elective</td>
<td>Commerce Senior elective</td>
<td>Commerce major Senior elective</td>
<td>Commerce major Senior elective</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Total credit points: 240

Require: 240cp total, max. 100cp Junior. min. 96cp Science, min. 36cp Junior Science incl. 12cp Maths, one Science major. min. 96cp Commerce, max. 48cp Junior Commerce units, either a Commerce major (32cp) or a Commerce double major (48cp).

Combined Nursing/Science degrees

Degree code: GN010

See also Summary of Requirements of the BSc.

Summary of requirements

The requirements for the degree are set out in the Senate and Faculty Resolutions.

Degree resolutions

This degree is administered by the Faculty of Nursing.

Combined Education/Science degrees

See also Summary of Requirements of the BSc.

Summary of requirements

The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. The Resolutions should be consulted for any clarification of the summary points.

Please note that there is no new intake in the BEd/BSc(Psychology) degree from 2006.

Enrolment guide

BEd (Secondary: Science)/BSc

To qualify for the award of the pass degrees a student shall complete units of study to a total value of at least 240 credit points including:

- at least 96 credit points from science subject areas and 132 credit points from prescribed Education units of study
- at least 12 credit points from the science subject areas of Mathematics and Statistics
- at least 24 credit points of Junior units of study from at least two science subject areas other than Mathematics or Statistics
- a major in a science area
- a major in Education, and
- at least 84 credit points of units of study in Curriculum and Professional Studies in Secondary Education.
8. Combined degrees

BEd (Secondary: Mathematics)/BSc

To qualify for the award of the pass degrees a student shall complete units of study to a total value of at least 240 credit points including:

- at least 96 credit points from science subject areas and 132 credit points from prescribed Education units of study
- at least 12 credit points from the science subject areas of Mathematics and Statistics
- at least 24 credit points of junior units of study from at least two science subject areas other than Mathematics or Statistics
- a major in the science subject area of Mathematics or Statistics
- a major in Education, and
- at least 84 credit points of units of study in Curriculum and Professional Studies in Secondary Education.

Advanced streams

To qualify for the award of the pass degree in the BSc (Advanced) stream, a student shall complete the requirements for the BSc and in addition:

- include at least 12 credit points of intermediate units of study at either the advanced level or as TSP units, and
- include at least 24 credit points of senior units of study at either the advanced level or as TSP units in a single science subject area.

You should note that you must maintain in intermediate and senior units of study in science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the Bachelor of Science.

To qualify for the award of the pass degree in the BSc (Advanced Mathematics) stream, a student shall complete the requirements for the BSc degree and in addition:

- include at least 12 credit points of intermediate units of study at either the advanced level or as TSP units in the science subject areas of Mathematics and Statistics, and
- include at least 24 credit points of senior units of study at either the advanced level or as TSP units in the science subject areas of Mathematics and Statistics.

You should note that you must maintain in intermediate and senior units of study in science subject areas an average mark of 65 or greater in each year of enrolment, or be transferred to the Bachelor of Science.

BEd (Secondary)/BSc (Psychology)

There is no new intake for this degree in 2007.

To qualify for the award of the pass degrees a student shall complete units of study to a total value of at least 244 credit points including:

Year I

- junior units of study in Education, as specified in the table of units of study, total of 12 credit points, and
- specified junior units of study in Psychology, 12 credit points, and
- junior units of study in science, 24 credit points, of which 12 credit points must be in Mathematics and 12 in Chemistry.

Year II

- units of study in Education, as specified in the table of units of study, total of 18 credit points, and
- specified intermediate level units of study in Psychology, 18 credit points, and
- intermediate level units of study selected from Science Table 1, 12 credit points, which must be in the selected science teaching subject.

Year III

- units of study in Education, as specified in the table of units of study, total of 18 credit points, and
- specified senior units of study in Psychology, 30 credit points.

Year IV

- units of study in Education, as specified in the table of units of study, including professional experience, 24 credit points, and
- specified units of study in Psychology, 24 credit points.

Year V

- units of study in Education, as specified in the table of units of study, including professional experience, 16 credit points, and
- specified units of study in Psychology, 20 credit points, and
- senior units of study selected from Science Table 1, 12 credit points, to complete study in the science teaching subject.

The Bachelor of Science (Psychology) is not available at an advanced level.

Planes of study

It is important when choosing units of study at any stage of your university career that you consider your overall degree program. See the Bachelor of Science entry for information about each major and recommended first year combinations of units of study. There is a degree planner inside the back cover.

Units of study

The Science units of study available for this degree are set out in Table I: Bachelor of Science in chapter 3. Unit descriptions appear in chapter 9. The Education units of study available for this degree are set out in the Faculty of Education handbook.

Honours

Students who are qualified to do so may undertake honours courses in either degree or both degrees or a joint honours course on completion of the combined degree. Please refer to ‘Honours in the Faculty of Science’ and ‘Honours units of study’ in chapter 11.

Abandoning and discontinuing

Students may abandon the combined degree course and elect to complete either a BSc or a BEd in accordance with the Resolutions governing those degrees.

In some cases discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Supervision

Students will be under the general supervision of the Faculty of Education.

Australian Tertiary Admission Rank (ATAR)

The minimum ATAR for admission into the course varies every year.

Degree resolutions

See chapter 2.
Bachelor of Liberal Studies (BLibStud)

Degree codes: AH010 and AH030

Note: these degrees are administered by the Faculty of Arts.

These degrees are not available to new students in 2010. Intending students should consider the Bachelor of Liberal Arts and Science (Degree Code: LH056). Existing students wishing to transfer to the new Bachelor of Liberal Arts and Science should contact the Faculty of Science.

Summary of requirements

In the Bachelor of Liberal Studies students will undertake a broad liberal education which emphasises communication and problem-solving skills. The degree is available in two streams – the Bachelor of Liberal Studies and the Bachelor of Liberal Studies (International).

The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates. In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. The Resolutions should be consulted for any clarification of the summary points.

Enrolment guide

B Liberal Studies

To qualify for the award of the degree a student shall complete units of study having a total value of at least 192 credit points, including:

- at least 120 intermediate or senior credit points
- at least one Arts major and one Science major
- at least 30 credit points, including 18 intermediate or senior credit points, from units of study in one language subject area other than English from Part A of the tables of units of study for the degree of Bachelor of Arts
- a 6 credit point unit of study in communication and analytical skills or in other academic skills as may be prescribed from time to time (currently ENGL1000, ENGL1007 and LNGS1001), and
- a minimum of 6 credit points from units of study in Mathematics and Statistics.

Sample Bachelor of Liberal Studies

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Unit of study 5 & credit points</th>
<th>Unit of study 6 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Science Junior elective A</td>
<td>Arts/Science Junior elective B</td>
<td>Language Junior elective</td>
<td>Maths or ENGL1000/1007 or LNGS1001</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>Science Junior elective A</td>
<td>Arts/Science Junior elective B</td>
<td>Language Junior elective</td>
<td>Maths or ENGL1000/1007 or LNGS1001</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>Science major Intermediate elective</td>
<td>Arts/Science Junior elective</td>
<td>Language Intermediate elective</td>
<td>Intermediate/Senior elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>Science major Intermediate elective</td>
<td>Arts/Science Junior elective</td>
<td>Language Intermediate elective</td>
<td>Language Intermediate/Senior elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>Science major Senior elective</td>
<td>Science major Senior elective</td>
<td>Arts major Senior elective</td>
<td>Intermediate/Senior elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>Arts/Science Intermediate/Senior elective</td>
<td>Intermediate/Senior elective</td>
<td>Arts major Senior elective</td>
<td>Arts major Senior elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>Arts/Science Intermediate/Senior elective</td>
<td>Intermediate/Senior elective</td>
<td>Arts major Senior elective</td>
<td>Arts major Senior elective</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credit points: 192

Require: 192cp total, min. 120cp Intermediate and/or Senior, one Arts major and one Science major, min. 30cp non-English language incl. min. 18cp Intermediate and/or Senior, min. 6cp Mathematics and Statistics, 6cp communication skills.
Combined Engineering/Medical Science degrees

Degree code: HH021

Summary of requirements
The requirements for the degree are set out in the Senate and Faculty Resolutions (see chapter 2) which should be read by all intending candidates.

Students should note that this degree is administered by the Faculty of Engineering.

A student may proceed concurrently to the degrees of Bachelor of Engineering (in any specialisation except Civil Engineering) and Bachelor of Medical Science.

Enrolment guide
To qualify for the award of the pass degrees a student shall complete units of study to a total value of at least 240 credit points including:

- at least 160 credit points from prescribed Engineering units of study (this total to include the 12 credit points from the Interdisciplinary Thesis)
- 48 credit points of intermediate core units of study listed in Table IV: Bachelor of Medical Science
- at least 24 credit points of senior units of study from the subject areas listed in Table IV: Bachelor of Medical Science
- 12 credit points from the Interdisciplinary Thesis.

Students who are so qualified may be awarded honours in the BE degree or undertake an honours course in the BMedSc degree.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. See the Bachelor of Medical Science entry for information about recommended first year combinations of units of study and the sample degree program. There is a degree planner inside the back cover.

Units of study
The Science units of study available for this degree are set out in Table IV: Bachelor of Medical Science in chapter 3. Unit of study descriptions appear in chapter 9. The Engineering units of study available for this degree are set out in the Faculty of Engineering and Information Technologies handbook.

Abandoning and discontinuing
Students may abandon the combined degree course and elect to complete either a BMedSc or a BE in accordance with the Resolutions governing those degrees.

In some cases discontinuation can affect your access to units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Supervision
Students will be under the general supervision of the Faculty of Engineering and Information Technologies.

Australian Tertiary Admission Rank (ATAR)
The minimum ATAR for admission into the course varies every year.

Degree resolutions
See chapter 2.
9. Undergraduate units of study

This chapter provides information on each of the undergraduate units of study offered by the Faculty of Science, as well as additional information on each of the teaching Schools and Departments and interdisciplinary subject areas.

Organisation of unit of study information

The units of study are generally organised alphabetically by School or Departments. EMHU and HSTO units can be found under the entry for Anatomy and Histology. NEUR can be found in the Anatomy or Physiology entries, depending on the principle teaching department for the individual unit. COMP, INFO, ISYS, NETS, MULT AND SOFT can be found under the Information Technologies entry. Further information on Information Technology units can be found in the Faculty of Engineering and Information Technologies Handbook and website. NTMP can be found under the Marine Science entry. STAT can be found under the Mathematics and Statistics entry. VIRO can be found under the Microbiology entry.

Aerospace, Mechanical and Mechatronic Engineering

The School of Aerospace, Mechanical and Mechatronic Engineering is part of the Faculty of Engineering and Information Technologies. In addition to providing professional training in aerospace, mechanical, biomedical and mechatronic engineering, units of study in the School are available to students in the Faculty of Science who meet any prerequisite requirements for a particular unit.

Registration

Timetable information on alternative lecture/tutorial/laboratory/practical classes is available in the General Office of the School.

Tutorials and laboratories

All students are required to undertake the tutorial and laboratory work associated with the chosen units of study, details of which are provided in the timetables. The experimental and tutorial work, an integral part of the unit of study, complements the lecture material.

Double degree

Science graduates may obtain up to two years advanced standing towards a Bachelor of Engineering degree in Aerospace, Mechanical, Mechatronic or Biomedical Engineering. Students wishing to undertake this option must apply through UAC and compete on the basis of academic merit. Information about application procedures is available from the Engineering Faculty Office in the Engineering and Information Technologies Building.

Agricultural Chemistry and Soil Science

Study in the discipline of Agricultural Chemistry is offered by the Faculty of Agriculture, Food and Natural Resources. Units of study in Agricultural Chemistry for Science students cover aspects of chemistry and biochemistry which are relevant in basic and applied biological sciences including agriculture, the environment and food science. The unit of study, Introductory Rural Environmental Chemistry (AGCH2003) introduces students to basic analytical and environmental chemistry. Senior units of study include Chemistry and Biochemistry of Foods A and B (AGCH3025 and AGCH3026) and Land and Water Ecochemistry (AGCH3032). These senior units of study introduce students to the applied aspects of food chemistry science or to applied environmental chemistry. Emphasis is placed on the chemistry of both naturally occurring molecules of biological, agricultural and environmental significance (eg in foods and natural fibres), and chemically synthesised (eg insecticides and herbicides). Agricultural Chemistry Honours is available to students who wish to further their studies in food chemistry or environmental chemistry.

AGCH2003

Rural Environmental Chemistry

Credit points: 6 Teacher/Coordinator: Dr Robert Caldwell, Prof Ivan Kennedy Session: Semester 1 Classes: 3 lec/wk; 24 hrs lab Prerequisites: 12 credit points of Junior Chemistry Prohibitions: AGCH2001, AGCH2002 and CHEM2404 Assessment: One 2 hr exam, laboratory reports, theory of laboratory test, lecture quiz.

This introductory unit of study consists of aspects of chemistry relevant in studies of basic and applied biological sciences including agriculture, food and the rural environment. Lecture topics include an introduction to quantitative aspects of biophysical, environmental and aquatic chemistry with particular reference to protocols for specimen sampling and maintenance of specimen quality; the principles of basic analytical methods such as spectroscopy, chromatography and electrochemistry; environmental aspects of water such as thermal properties and its behaviour as a solvent of hydrophobic solutes, surfactants, neutral hydrophilic solutes, salts and other electrolytes, and gases. The lectures will also include environmental nutrient cycling (C, N, S, O, P, micronutrients) with reference to pesticides, herbicides, organic and inorganic pollutants affecting agricultural produce and the environment, and gases of environmental concern. Ten laboratory sessions will demonstrate aspects of analytical chemistry including: elemental analysis of foods and natural waters, spectrophotometry, chromatographic techniques, preparation of buffers, fundamentals of pH and conductance measurement, water as a solvent including the effect of surfactants and electrolytes. Students will analyze natural water samples using the skills acquired in earlier laboratory sessions and write an environmental assessment from their findings. An on-line tutorial on safety procedures in a chemistry laboratory is a pre-requisite for commencement of laboratory experiments.

AGCH3025

Chemistry and Biochemistry of Foods

Credit points: 6 Teacher/Coordinator: Dr Meredith Wilkes, Dr Robert Caldwell, Prof Les Copeland Session: Semester 1 Classes: 3 lec/wk; 24 hrs lab Prerequisites: AGCH2003 or AGCH2004 or PLNT2001 or PLNT2901 or BCHM2071 or BCHM2072 or 6 credit points of Intermediate units in Chemistry Prohibitions: AFNR5102 Assessment: One 2-hr theory exam, practical reports, lecture quizzes.

This unit of study aims to give students an understanding of the properties of food constituents, and the interactions between these constituents during food processing, storage and digestion. The unit will develop an understanding of the relationship between form and functionality of constituents and the concept of fitness-for-purpose (ie, quality) in converting agricultural products into foods. Students will gain an appreciation of the relationship between chemical composition and properties of macronutrients (carbohydrates, proteins, lipids) and microconstituents (vitamins, minerals, flavour and antinutritional chemicals) and their functions in plant and animal based foods. The material presented in lectures and practical classes will enable students to develop research and inquiry skills and an analytical approach in understanding the biochemistry of foods, food processing and storage. On completing this unit, students will be able to describe the chemical and biochemical properties of major food constituents, and demonstrate an understanding of the functionality of these constituents in food processing and nutrition. Students will have gained experience in laboratory techniques used in industry for the analysis
of some food products, and information literacy and communication skills from the preparation of practical reports.

Textbooks
Laboratory notes will be available for purchase from the Copy Centre in the first week of semester and lecture notes and readings will be made available through WebCT. There is no recommended textbook.

AGCH3026
Food Biotechnology
Credit points: 6
Teacher/Coordinator: Dr Meredith Wilkes, Dr Robert Caldwell, Prof Les Copeland
Session: Semester 1
Classes: 3 lec/wk; 24 hrs lab
Prerequisites: AGCH2003 or AGCH2004 or PLNT2001 or PLNT2901 or BHST2071 or 6 credit points of Intermediate units in Chemistry
Corequisites: AGCH3025
Prohibitions: AGCH3027
Assessment: One 2-hr exam, practical reports, oral and written presentation on a case study.

This unit aims to give students an understanding of the chemistry, biochemistry and biotechnology of analytical and diagnostic methods and manufacturing processes used in the conversion of raw products into foods. Knowledge of food constituents gained in AGCH3025 will be applied to develop an understanding of: the use of enzymes in food processing and diagnostic technologies; processing of cereal, legume and oilseed grains, and livestock products, into foods; doughs and baking technologies; the evaluation of foods and food quality. Emphasis is placed on current issues faced by the food industry (including GM technology, organic production, and food safety) through a series of special guest lectures from people connected with the food industry. On completing this unit, students will have gained an enhanced understanding of food processing and manufacturing systems, the processing of raw ingredients into food products, and food analysis and evaluation. Students will have gained experience in laboratory techniques used in industry for the analysis of some food products, and information literacy and communication skills from the preparation of a case study and practical reports.

Textbooks
Laboratory notes will be available for purchase from the Copy Centre in the first week of semester and lecture notes and readings will be made available through WebCT. There is no recommended textbook.

AGCH3032
Land and Water Ecochemistry
Credit points: 6
Teacher/Coordinator: Professor Ivan Kennedy, Dr Robert Caldwell
Session: Semester 2
Classes: 5-day field trip in AVCC common break; 20 hr lectures/tutorials, 25 hr laboratory classes and project during semester
Prerequisites: AGCH2003 or AGCH2004 or PLNT2001 or CHEM24XX or BCHM2XXX or ENVI2001
Prohibitions: AGCH3030, AGCH3031
Assessment: One 2-hr exam, field trip report and presentation, prac and project reports.

This field-oriented unit will develop professional expertise in rural ecochemistry, measuring impacts on sustainability and seeking solutions to chemical problems at the catchment scale. AGCH3032 is an elective unit suitable for the BSc, BScAgr, BLWSc, BHortSc, BResEc and BAgrVetBioSc degrees, building on intermediate units in chemistry or biochemistry. It will promote knowledge and professional skills related to key chemical processes in ecosystems causing risks to soil and water resources, the quality of agricultural produce and to ecological biodiversity. These will be examined by quantitative risk analysis, targeted monitoring and remediation, seeking innovative solutions (e.g. IPM and genetic modification).

A field trip in the AVCC break and professional report on a chosen topic will investigate relevant case studies at selected centres in eastern Australia doing innovative research on global warming and climate change, soil and water quality and environmental protection. Lectures will provide knowledge in the environmental C, N and S cycles important for sustaining action in ecosystems, the nature of greenhouse gases and mitigation of their production including C sequestration, risks to biota (soil, water, plants, animals) from acidification and innovative means of remediation, environmental risk from pesticides and other pollutants, monitoring and their remediation. In laboratory exercises, students will gain skills in relevant analyses using GC, LC, mass spectrometry and ELISA. The assessment procedures are designed to provide students with skills in definition of research problems and risk assessment, quality in analyses, risk management and remediation, and effective communication of outputs.

Agricultural Chemistry Honours
Honours in Agricultural Chemistry aims to provide students with problem-solving and communication skills required by professional chemists in enterprises concerned with agricultural production and processing, foods and beverages, and environmental science; enable students to learn to work independently in a laboratory environment; familiarise students with the research literature and methodology of biological chemistry; and provide a basis for students who wish to proceed to postgraduate research. Candidates should consult the department as soon as possible after results in senior units of study are obtained. The unit of study consists of a research project and four 6 credit point units of study. The research project component includes oral as well as written forms of assessment. Projects are usually available in one of the following areas of current research interest in the department: carbohydrate and nitrogen metabolism in plants, biological nitrogen fixation and biofortifiers, greenhouse gas production, the biochemistry and environmental chemistry of pesticides and herbicides, environmental risk assessment, acidification of ecosystems, residue analysis in foods, aspects of food science including oil seed and cereal chemistry and biochemistry.

Soil Science
The Soil Science units of study aim primarily at giving students an introduction to the three major branches of soil science, namely soil physics, soil chemistry, and pedology, and at providing the basis for a professional career in each of these divisions for students wishing to specialise. The introductory unit of study is particularly relevant for students interested in the environmental and geological sciences and in land-use management. For a major in Soil Science, the minimum requirement is completion of SOIL2003, 3009 and 3010 and one of AGCH3032 or LWSC3006 or PPTAT4005.

SOIL2003
Soil Properties and Processes
Credit points: 6
Teacher/Coordinator: A/Prof Balwant Singh (Coordinator), Prof Alex McBratney, Dr Stephen Cattle
Session: Semester 1
Classes: 5 lec & 3 hr prac/wk, and a compulsory field excursion
Assessment: Soil description report (10 %), Quizzes (or Essay) (15 %), Practical exercise book (20 %), Practical exam (15 %) and Written exam (40 %).

This unit of study is designed to introduce students to the fundamental concepts within pedology, soil physics and soil chemistry. These concepts are part of the grounding principles that underpin crop and animal production, nutrient and water cycling, and environmental sustainability taught by other units of study in the Faculty. Students will participate in a two-day field excursion in the first week of semester to examine some common soils of the Sydney Basin, they will also learn to describe soil, and measure soil chemical and physical properties in the field. Referring to common soil profiles of the Sydney Basin, students will concentrate on factors affecting soil formation, the rudiments of soil description, and analysis of soil properties that are used in soil classification. Students will also develop knowledge of the physics of water and gas movement, soil strength, soil chemical properties, inorganic and organic components, nutrient cycles and soil acidity in an agricultural context. At the end of this unit students will become familiar with the factors that determine a soil's composition and behaviour, and will have an understanding of the most important soil physical and chemical properties. Students will develop communication skills through essay, report and practical exercises. The final report and laboratory exercise questions are designed to develop team work and collaborative efforts.

Textbooks
Credit points: 6 Teacher/Coordinator: Dr Stephen Catle (Coordinator), Prof Alex McBratney (Advocate). Prerequisite:放置为文字内容

This unit will familiarize students with the description and mapping of soil types in the Australian landscape, with common analytical methods for investigating soil properties and various forms of degradation that may alter the quality and function of soil. It is an applied soil science unit which builds on the fundamental soil science concepts learned in the SOIL2003 unit. The first practical component of the unit, a five-day soil survey, will give students experience in soil description and classification in the field, and soil samples collected during this survey will be subsequently analysed for a variety of attributes by the students in laboratory practicals. In the lecture series, topics including soil type distribution, soil quality, soil function, soil fertility and soil degradation will be discussed and linked to practical sessions. By the end of this unit, students will be able to construct maps of soil properties and soil type distribution, describe primary soil functions, soil attributes and types of soil degradation in an agricultural context, and be able to recognize and communicate the ability of a soil profile to sustain plant growth. Students will gain research and inquiry skills by collecting, analyzing and interpreting soil survey data, and will gain communication skills by having to prepare and present a poster.

Textbooks

SOIL3008
Rural Spatial Information Systems
This unit of study is not available in 2010

Credit points: 6 Teacher/Coordinator: Dr 1 Odeb Session: Semester 1 Classes: (2 lec, 1 prac) wk. Four-day field trip Assessment: One 15 min presentation (10%), 3500w prac report (35%), 1500w report on field exc (15%), one 2 hr exam (40 %)

This unit is designed to impart knowledge and skills in spatial analysis and geographical information science (GISc) for decision-making in rural context. The unit of study is intended to introduce students to methods of geospatial analysis and GIS technologies. It is offered as a core unit for BLWSc students and as an elective for BScAg, B HortSc, B Sc and BResEc students. The lecture material will present several themes: principles of GISc, fundamentals of remote sensing and geo-image analysis, geospatial data sources and acquisition methods, processing of geospatial data and spatial statistics. Practical exercises will focus on learning geographical information systems (GIS) and how to apply them to land resource assessment, including digital terrain modelling, land-cover assessment, catchment modelling, and soil quality assessment for decisions regarding sustainable land use and management. A 4 day field excursion during the mid-semester break will involve a day GPS fieldwork at Arthursleigh University farm and three days in Canberra visiting various government agencies which research and maintain GIS coverages of major rural environments. By the end of this UoS, students should be able to: differentiate between spatial data and spatial information; source geospatial data from government and private agencies; apply conceptual models of spatial phenomena for practical decision-making in rural context; apply critical analysis of situations to apply the concepts of spatial analysis to solving environmental and land resource problems; communicate effectively results of GIS and remote sensing investigations through various means- oral, written and essay formats; and use a major GIS software package such as ArcGIS

Textbooks

SOIL3009
Contemporary Field and Lab Soil Science
Credit points: 6 Teacher/Coordinator: Prof Alex McBratney (coordinator), A/Prof Balwant Singh, Dr Stephen Catle, Dr Budiman Minasny Session: Semester 1 Classes: (2 lec, 2 prac) wk, 6 day field excursion. Prerequisites: SOIL2003 Assessment: One 2hr exam; pedology, soil physics and soil chemistry written assessments; group presentation, synthesis paper

This is a theoretical and empirical unit providing specialised training in three important areas of contemporary soil science, namely pedology, soil chemistry and soil physics. The key concepts of these sub-disciplines will be outlined and strengthened by hands-on training in essential field and laboratory techniques. All of this is synthesized by placing it in the context of soil distribution and use in North-Western New South Wales. The unit is motivated by the teaching team's research in this locale. It builds on students existing soil science knowledge gained in SOIL2003. After completion of the unit, students should be able to articulate the advantages and disadvantages of current field & laboratory techniques for gathering necessary soil information, and simultaneously recognise key concepts and principles that guide contemporary thought in soil science. Students will be able to synthesise soil information from a multiplicity of sources and have an appreciation of the cutting edge areas of soil research. By investigating the contemporary nature of key concepts, students will develop their skills in research and inquiry. Students will develop their communication skills through report writing and oral presentations and will also articulate an openness to new ways of thinking which augments intellectual autonomy. Teamwork and collaborative efforts are encouraged in this unit.

Textbooks
students will develop their research and inquiry skills and enhance their intellectual autonomy. By producing reports and seminars that enables understanding by an end-user students will improve the breadth of their communication skills.

Textbooks

AGCH3032
Land and Water Ecochemistry
Credit points: 6 Teacher/Coordinator: Professor Ivan Kennedy, Dr Robert Caldwell Session: Semester 2 Classes: 5-day field trip in AVCC common break; 20 hr lectures/tutorials, 25 hr laboratory classes and project during semester Prerequisites: AGCH2003 or AGCH2004 or PLNT2001 or CHEM24XX or BCHM2XXX or ENVZ2001 Prohibitions: AGCH3030, ASCH3031 Assessment: One 2 hr exam, field trip report and presentation, prac and project reports.

This field-oriented unit will develop professional expertise in rural ecochemistry, measuring impacts on sustainability and seeking solutions to chemical problems at the catchment scale. AGCH3032 is an elective unit suitable for the BSc, BScAgr, BLWSc, BHortSc, BResEc and BanVetBioSc degrees, building on intermediate units in chemistry or biochemistry. It will promote knowledge and professional skills related to key chemical processes in ecosystems causing risks to soil and water resources, the quality of agricultural produce and to ecological biodiversity. These will be examined by quantitative risk analysis, targeted monitoring and remediation, seeking innovative solutions (e.g. IPM and genetic modification).

A field trip in the AVCC break and professional report on a chosen topic will investigate relevant case studies at selected centres in eastern Australian doing innovative research on global warming and climate change, soil and water quality and environmental protection. Lectures will provide knowledge in the environmental C, N and S cycles important for sustaining action in ecosystems, the nature of greenhouse gases and mitigation of their production including C sequestration, risks to biota (soil, water, plants, animals) from acidification and innovative means of remediation, environmental risk from pesticides and other pollutants, monitoring and their remediation. In laboratory exercises, students will gain skills in relevant analyses using GC, LC, mass spectrometry and ELISA. The assessment procedures are designed to provide students with skills in definition of research problems and risk assessment, quality in analyses, risk management and remediation, and effective communication of outputs.

LWSC3006
Landscape Hydrology and Management
Credit points: 6 Teacher/Coordinator: Dr Willem Vervoort Session: Semester 1 Classes: 2 hr lect, 0.6 lab, 2.4 prac/h/week. Prerequisites: LWSC2002 or GEG2321 Assumed knowledge: LWSC3005 Assessment: On-line activities 10%; oral presentation 10%; practical reports 50%; 2 hr exam 30%.

This unit of study is designed to allow students to examine catchment-scale hydrological modeling and groundwater hydrogeochemistry as an investigative tool for water quality and policy making at the catchment level.

It is a core unit for students in BLWSc and builds on the theoretical knowledge gained in GEG2321 and LWSC2002. In the first part, students will learn how to develop their own simulation model of catchment hydrological processes in R and review the possibilities and impossibilities of using simulation models for catchment management. In the second part students will apply hydrogeochemical techniques to investigate groundwater quality and review recent developments in catchment-based management strategies to control salinity and pollution. At the end of this unit, students will be able to build their own catchment model and calibrate this model, articulate advantages and disadvantages of using simulation models for catchment management, justify the choice of a simulation model for a particular catchment management problem, identify issues in relation to uncertainty, apply hydrogeochemical investigation techniques for groundwater and describe innovative strategies for salinity and pollution control. The students will gain research and inquiry skills through research based group projects, information literacy and communication skills through on-line discussion postings, laboratory reports and a presentation and personal and intellectual autonomy through working in groups.

PPAT4005
Soil Biology
Credit points: 6 Teacher/Coordinator: Prof David Guest Session: Semester 1 Classes: 5 h/wk. Prerequisites: MICR2024 or 6cp intermediate microbiology Assessment: Tutorial papers (30%), project proposal and report (50%), peer review (20%).

This unit investigates the diversity of organisms living in the soil, their biology, interactions and ecology, and their roles in soil function. The unit builds on the knowledge introduced in MICR2301, PPAT3003 and BIOL3017 and complements soil science studies. Undertaking this unit will develop skills in monitoring soil microbes, designing, conducting and analysing experiments. At the completion of this unit, students will be able to exercise problem-solving skills (developed through practical experiments, projects and tutorial discussions), think critically, and organise knowledge (from consideration of the lecture material and preparation of project reports), and expand from theoretical principles to practical explanations (through observing and reporting on project work). Students will consolidate their teamwork skills, develop self-directed study skills and plan effective work schedules, use statistical analysis in research, keep appropriate records of laboratory research, work safely in a research laboratory and operate a range of scientific equipment. Students will gain research and inquiry skills through group research projects, information literacy and communication skills through assessment tasks and personal and intellectual autonomy through working in groups.

Textbooks

Soil Science Honours
The honours program consists of several parts:(i) supplementary lectures and seminars;(ii) topics of study selected from Agricultural Chemistry, Biometry, Botany, Geology, Physical Chemistry, Mathematics, Soil Mechanics, Soil Microbiology, etc;(iii) a small amount of field work performed under direction; and(iv) a project in one branch of soil science.

Anatomy and Histology
The Discipline of Anatomy and Histology teaches topographical and neuroanatomy, histology and cell biology, developmental biology and physical anthropology to students in the Faculties of Science, Medicine and Dentistry.

Location
The office is in the Anderson Stuart Building. The Discipline Office is on the first floor, Room S463.

Noticeboards
The noticeboards are situated near Room S463. Students are advised to consult the noticeboard regularly. Timetables for lectures and practical classes will be posted, where possible, in the week before the beginning of each semester.

Advice on units of study and enrolment
Students wishing to enrol in units of study in Anatomy and Histology must consult the Discipline advisers in the Enrolment Centre during re-enrolment week prior to enrolling in the units of study. Information will be available at this time on the units of study offered by the Discipline and on the advisability of various combinations of subjects.

Registration
All students should register with the Discipline. Please consult the Discipline's noticeboards for details.
Vaccinations
All students studying gross anatomy or neurosciences who may also be exposed to human tissues or fluids should contact the University Health Service regarding vaccinations.

Protective clothing
All students studying gross anatomy or neurosciences must wear a laboratory coat or gown in tutorial rooms and a gown in dissection rooms and must wear gloves when handling cadaveric material. Closed footwear must be worn in both tutorial rooms and dissection rooms.

Website
The Department's website is www.anatomy.usyd.edu.au.

ANAT2008
Principles of Histology
Credit points: 6 Teacher/Coordinator: Dr Laura Lindsay Session: Semester 1 Courses: Two 1-hour lectures and one 2-hour practical per week; online and museum exercises (6 hours per week total) Prerequisites: 6 credit points of Junior Biology or Junior Psychology Prohibitions: ANAT2001 Assumed knowledge: General concepts in human biology Assessment: One 1-hour theory exam, one 1 hour practical exam, four quizzes

This unit of study covers the principles of cell biology and study of the structure of cells, tissues and organ systems at the light and electron microscopic levels. The focus is on human systems. Extension exercises introduce students to the connection between histology and anatomy. Modern practical applications of histological techniques and analysis for research are also presented.

Textbooks

ANAT2009
Comparative Primate Anatomy
Credit points: 6 Teacher/Coordinator: Dr Denise Donlon Session: Semester 2 Courses: Two 1-hour lectures and one 2-hour practical per week; museum project Prerequisites: 36 credit points, including 12 credit points of Junior Biology (BIOL) or Junior Psychology or Junior Archaeology. Prohibitions: ANAT2002 Assumed knowledge: Knowledge of basic vertebrate biology Assessment: One 1-hour theory exam, one 30 min prac exam, two quizzes, one 2000 word essay

This unit of study covers the musculo-skeletal anatomy of the human body with particular emphasis on human evolution and comparisons with apes and fossil hominids. The topics covered include the versatility of the human hand, in manipulation and locomotion, bipedalism, climbing and brachiation in apes, and the change in pelvic anatomy associated with bipedalism and obstetric consequences.

Textbooks

ANAT2010
Concepts of Neuroanatomy
Credit points: 6 Teacher/Coordinator: Dr Karen Cullen Session: Semester 2 Courses: Two 1-hour lectures and one 2-hour practical per week. Prerequisites: BIOL (1003 or 1903) and one of: ANAT2008 or BIOL (1002 or 1902) or MBLG(1001 or 1901 or 2071 or 2971) or PSYC (1001 and 1002). Students must have a grade of credit in at least one of the prerequisite units. Prohibitions: ANAT2003 Assumed knowledge: Background in basic cell biology and basic mammalian biology. Assessment: One 1.5-hour theory exam, one 1 hour practical exam, 2000 word essay, practical reports

Students are introduced to the structure and organisation of the central and peripheral nervous system. The course begins with an exploration into the make-up of the individual cells, followed by an examination of the different regions of the nervous system. A final theme of the course touches on the organisation of various systems (sensory and motor), together with aspects of higher-order function (memory). In essence, the course covers general concepts of organisation, structure and function of the brain and its different areas. The practicals offer students the unique opportunity to examine specimens in the Anatomy labs and museum. This course will be of considerable interest to students studying science and related disciplines, as well as those wishing to pursue further study in Neuroscience at senior levels.

Textbooks

ANAT3004
Cranial and Cervical Anatomy
Credit points: 6 Teacher/Coordinator: Dr Robin Arnold Session: Semester 2 Courses: One 1-hour lecture and one 2-hour practical per week. Prerequisites: ANAT2010 or BIEMD2807 or BIEMD3204 or BIEMD3205 or BIEMD2806 Prohibitions: ANAT3004 Assumed knowledge: General knowledge of biology. Assessment: Theory exam, prac exam, continuous assessment

Note: The completion of 6 credit points of MBLG is highly recommended.

This unit of study covers skull, muscles of facial expression, muscles of jaw and neck, ear, eye, nose, oral cavity and larynx and pharynx as well as peripheral distribution of cranial nerves in the head and neck. The functional components of the cranial nerves and their relationship to the special senses and special motor functions such as facial gesture and speech are also studied. Tutorials are designed to encourage students to develop their own approach to the understanding and organisation of subject material. Communication of key concepts and presentation of subject material in an academic context are encouraged and assessed in a major assignment.

Textbooks

ANAT3904
Cranial & Cervical Anatomy (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Robin Arnold, Dr Laura Lindsay Session: Semester 2 Courses: Two lectures per week, one 1-hour tutorial per week. Prerequisites: For Medical Science: Credit in BIEMD2803 or 2804 or 2805 or 2806). For BSc and other students Credit in ANAT(3007 or 2010 or 2009). Prohibitions: ANAT3004 Assessment: Theory exam, practical spot test, participation in dissection practicals and production of detailed weekly reports of the dissection carried out that week. Practical field work: One 3-hour dissection per week

Note: Department permission required for enrolment. Note: Students must receive permission from the coordinators for enrolment. Course is subject to availability of donor material for dissection.

This unit of study is an alternative to ANAT3004 Cranial & Cervical for talented students with a special interest in and need for dissection experience. The lecture/tutorial component of the course is run in conjunction with ANAT3004. Students in the advanced course will study the anatomy of the skull, muscles of face, jaw and neck, eye, ear, nose oral cavity, larynx and pharynx as well as the peripheral distribution of cranial nerves in the neck. Dissection will allow students to find these structures in donated human cadavers for themselves and to study and to understand at least some of the many anomalies and variations which characterise human cranial and cervical anatomy.

Textbooks
An Anatomy atlas such as Rohan, Yokochi, Luljen-dreccoll. Colour Atlas of Human Anatomy.

ANAT3306
Forensic Osteology
Credit points: 6 Teacher/Coordinator: Dr Denise Donlon Session: Semester 1 Courses: One 2-hour lecture, one 1-hour tutorial and one 1-hour practical per week. Prerequisites: ANAT2008 and a credit in ANAT2009 or in ANAT2002 Assumed knowledge: An understanding of basic musculoskeletal anatomy. Assessment: One 1.5-hour theory exam, one 30 min prac exam, continuous assessment, case study

Note: The completion of 6 credit points of MBLG is highly recommended.

This unit of study aims to introduce students to the area of forensic osteology, which is the study of human skeletal remains within the legal context. Thus the unit of study aims to help students learn about human morphology and variation through the investigation and identification of human bones. It will also help students gain skills in
observation and rigorous record taking and in analysis and interpretation. Production of case reports and practice in acting as 'expert witness' will improve students written and oral skills. An additional objective will be to assist students in learning to deal with legal and ethical issues.

Textbooks

ANAT3007
Visceral Anatomy
Credit points: 6 Teacher/Coordinator: Dr Robin Arnold Session: Semester 1 Classes: Two 1-hour lectures and two 2-hour practicals per week. Prerequisites: ANAT2009 or ANAT2010 Assumed knowledge: General knowledge of biology. Assessment: Theory exam, prac exam, continuous assessment

This unit of study aims to provide an understanding of the anatomy of the viscera of the thorax, abdomen and pelvis. Structures covered include the heart and associated great vessels, lungs, mediastinum and the abdominal viscera, the alimentary organs and the genitourinary system. The structure of anterior thoracic and abdominal walls and pelvis along with the nerve supply to the viscera and relevant endocrine structures is also covered. Emphasis is placed on the relationship of structure to function especially with respect to the important functions of breathing, digestion, excretion and reproduction. Students will also be encouraged to relate their understanding of the structures studied to current research into these structures in related fields such as molecular biology and physiology.

Textbooks

ANAT3008
Musculoskeletal Anatomy
Credit points: 6 Teacher/Coordinator: Dr Richard Ward Session: Semester 2 Classes: Two 1-hour lectures, two 2-hour tutorials/practicals per week. Prerequisites: ANAT2009 or ANAT2002 (for students who completed Intermediate study before 2005) or BMED2803 or BMED2804 or BMED2805 or BMED2806 Prohibitions: ANAT3005 Assumed knowledge: Some knowledge of basic mammalian biology. Assessment: One assignment, one 1-hour prac exam, one 1.5-hour theory exam.

The unit provides an opportunity for students to study the topographical and systems anatomy of the upper limb, lower limb and the back regions. Emphasis is placed upon the identification and description of structures and the correlation of structure with function. This includes for the upper limb, its role in manipulation, for the lower limb standing and walking and for the back flexible support and protection. Emphasis is also given to the innervation of the limbs. The unit also aims to develop the general skills of observation, description, drawing, writing and discussion as applying to biological structure.

EMHU3001
Electron Microscopy and Imaging/Theory
Credit points: 6 Teacher/Coordinator: Dr Anne Swan, Dr Alan Jones Session: Semester 2 Classes: Four 1-hour lectures and one 1-hour tutorial per week Prerequisites: At least 12 cp of Intermediate Science units from any of the following: Anatomy & Histology, Biochemistry, Biology, Chemistry, Mathematics, Microbiology, Molecular Biology & Genetics, Pharmacology, Physics, Physiology or Statistics. For BMED2802 students: 42 cp of BMed Intermediate units including (2801, 2802, 2803 & 2806) Assumed knowledge: General concepts in Biology, and in Biochemistry or in Chemistry. Assessment: Two 1-hour exams, theoretical research assignment as a PowerPoint (TM) submission and protocol.

The course is run conjointly by the Department of Anatomy & Histology and the Electron Microscope Unit. The course will provide hands-on training in the operation of transmission and scanning electron microscopes, processing biological samples for electron microscopy, ultrathin sectioning, cryo-ultramicrotomy, freeze-fracture, electron diffraction, digital imaging, immunological and other techniques required in modern research and hospital electron microscope laboratories. Students will also learn the operation of laser scanning confocal microscopes, including the use of fluorescent probes to visualize cellular organelles and cellular processes. Students will undertake a theoretical research project of their choice which is of relevance to the course.

Textbooks

EMHU3002
Electron Microscopy and Imaging/Prac
Credit points: 6 Teacher/Coordinator: Dr Anne Swan, Dr Alan Jones Session: Semester 2 Classes: Two 2-hour practicals and one 1-hour tutorial per week Prerequisites: 12 cp of Intermediate Science units of study including ANAT2008. For BMED2802 students: 42 cp of BMed Intermediate units including BMED (2801, 2802, 2803 & 2806) Corequisites: EMHU3001 Assumed knowledge: General concepts in Biology, Histology and in Biochemistry or in Chemistry. Assessment: Two 1-hour exams, practical reports, practical project assignment by PowerPoint (TM) submission and presentation (10 min).

The course is run conjointly by the Department of Anatomy & Histology and the Electron Microscope Unit. The course will provide hands-on training in the operation of transmission and scanning electron microscopes, processing biological samples for electron microscopy, ultrathin sectioning, cryo-ultramicrotomy, freeze-fracture, electron diffraction, digital imaging, immunological and other techniques required in modern research and hospital electron microscope laboratories. Students will also learn the operation of laser scanning confocal microscopes, including the use of fluorescent probes to visualize cellular organelles and cellular processes. Students will apply their knowledge to complete a project of their choice on electron microscopy of a biological sample, from fixation of the sample to interpretation of the resulting electron micrographs.

Textbooks

HSTO3001
Microscopy & Histochemistry Theory
Credit points: 6 Teacher/Coordinator: Robin Arnold, Prof Chris Murphy Session: Semester 1 Classes: Usually four 1-hour lectures per week plus some tutorials Prerequisites: ANAT2008 or BMED 2803 or 2804 or 2805 or 2806 Corequisites: HSTO3002 Assumed knowledge: Basic understanding of biology. Assessment: One 2-hour theory exam.

The aims of this unit of study are to provide a theoretical understanding of why biological tissues need to be specifically prepared for microscopic examination, how differing methods yield different types of morphological information; to allow students to study the theory of different types & modalities of microscopes, how they function & the differing information they provide; to develop an understanding of the theory of why biological material needs to be stained for microscopic examination; to allow students to understand how biological material becomes stained; to develop an understanding of the chemical information provided by biological staining - dyes, enzymes & antibodies.

Textbooks

HSTO3002
Microscopy & Histochemistry Practical
Credit points: 6 Teacher/Coordinator: Robin Arnold, Prof Chris Murphy Session: Semester 1 Classes: Usually 5.5-hour practical per week Prerequisites: ANAT2008 or BMED 2803 or 2804 or 2805 or 2806 Corequisites: HSTO3001 Assumed knowledge: Basic understanding of biology. Assessment: One 1.5-hour practical exam, 1 practical report, essay.

The aims of this unit of study are to provide an practical understanding of why biological tissues need to be specifically prepared for microscopic examination, to apply different methods to gain different types of morphological information; to allow students to learn to use the different types & modalities of microscopes: to gain first hand experience of how they function & see for themselves the differing information they provide; to learn to stain biological material for microscopic examination; applying their theoretical knowledge &
allow students to develop practical skills in diverse histochemical staining procedures - dyes, enzymes and antibodies.

Textbooks

HSTO3003
Cells and Development: Theory
Credit points: 6 Teacher/Coordinator: A/Prof Frank Lovicu Session: Semester 2 Classes: Four 1-hour theory lectures and one 1-hour tutorial per week. Prerequisites: For BSc students: ANAT2008 For BMedSc students: 42 credit points of Intermediate BMED units, including: BMED2801, 2802, 2805. Assumed knowledge: (i) An understanding of the basic structure of vertebrates; (ii) An understanding of elementary biochemistry and genetics. Assessment: One 2-hour exam, tutorial research papers.

The main emphasis of this unit of study concerns the mechanisms that control animal development. Fertilisation, cleavage, gastrulation and the formation of the primary germ layers are described in a range of animals, mainly vertebrates. Much of the emphasis will be placed on the parts played by inductive cell and tissue interactions in cell and tissue differentiation, morphogenesis and pattern formation. This will be studied at both cellular and molecular levels. Note that for some weeks of the course, specialised lectures will be given at the Westmead campus.

Textbooks

HSTO3004
Cells and Development: Practical (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Frank Lovicu Session: Semester 2 Classes: One 1-hour tutorial and two 2-hour practicals per week. Prerequisites: Note: This advanced unit of study is only available to select students who have achieved a mark of 65 or above in the following prerequisite units of study. For BSc students: ANAT2008, For BMedSc students: 42 credit points of Intermediate BMED units, including: BMED2801, 2802, 2805. Corequisites: HSTO3003 Assessment: One 1-hour exam, Practical class reports.

This advanced unit of study complements HSTO3003 (Cells and Development:Theory) and is catered to provide students with laboratory research experience leading to Honours and higher degrees. It will primarily cover the design and application of experimental procedures involved in cell and developmental biology, using appropriate molecular and cellular techniques to answer developmental questions raised in HSTO3003. This unit of study will promote hands on experience with different animal models, allowing students to observe and examine developing and differentiating tissues at the macroscopic and microscopic level. The main emphasis of this unit of study will concentrate on practical approaches to understanding the mechanisms that control animal development. Fertilization, cleavage, gastrulation and the formation of the primary germ layers are covered. The parts played by inductive cell and tissue interactions in differentiation, morphogenesis and pattern formation are examined at cellular and molecular levels. Note that for some weeks of the course, specialised practical classes will be carried out at the Westmead campus.

Textbooks

NEUR3002
Neuroscience: Motor Systems & Behav. Adv
Credit points: 6 Teacher/Coordinator: Dr Vladimir Balcar Session: Semester 1 Classes: Two 1-hour lectures per week, one 3-hour practical and one 3-hour tutorial per fortnight. Advanced students may be exempt from attending some of these classes to permit meetings with supervisor. Prerequisites: For BMEDSc students: Credit average in BMED2801 and BMED2806. For other students: Credit average in (PHSI(2101 or 2001 or 2005 or 2905) or ANAT(2003 or 2010)) and 6 credit points of MBLG. Prohibitions: NEUR3002, PHSI3001 Assumed knowledge: ANAT2100 and PHSI2005 is assumed knowledge. Assessment: Two 1-hour exams, neuroanatomy practical test, prac report, paper discussion sessions, one research or review essay (research essay will replace some other assessment items from regular course). Note: Permission from the coordinator is required for entry into this course. It is strongly recommended that students also take unit NEUR3003 or NEUR3901.

This unit of study is an extension of NEUR3002 for talented students with an interest in Neuroscience and research in this field. The lecture/practical component of the course is run in conjunction with NEUR3002. The aim of this course is to provide students with an introduction to the structure and function of the nervous system. Our current knowledge of how the brain works is based on the analysis of the normal structure of the nervous system and its pathways, the functional effects of lesions and neurological diseases in different parts of the nervous system, and the way that nerve cells work at the molecular, cellular and integrative level. This course focuses on the neural circuits and the mechanisms that control somatic and autonomic motor systems, motivated behaviours, emotions, and other higher order functions. The lecture series addresses the different topics, each of which offers special insight into the function of the nervous system in health and disease.

Textbooks

NEUR3004
Integrative Neuroscience
Credit points: 6 Teacher/Coordinator: Dr Kevin Keay, Dr Catherine Leamey Session: Semester 2 Classes: One 0-1 hour lecture, one 2-hour tutorial plus 1-2 hours small meeting/laboratory session per week. Prerequisites: For BMEdSci: 42 credit points of Intermediate BMEd units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology and Genetics, Physiology, Psychology or Statistics. Prohibitions: NEUR3904, PHSI3002, PHSI3902 Assumed knowledge: Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain. Assessment: Mid-semester exam. 1-hour final exam. Major essay/report. Tutorial participation. Note: Enrolment in NEUR3003 is HIGHLY RECOMMENDED. Courses are designed to be taken in conjunction with each other. This second semester unit is designed to introduce students to "cutting edge" issues in the neurosciences and to be taken in conjunction with NEUR3003. This course is a combination of small group lectures on current issues in neuroscience, seminar groups and a research-based library project. Suitable qualified students may have the option of replacing the library project with a laboratory project. Seminars will be held on topics including imaging pain, emotions, cortical development & plasticity, colour vision, stroke and hypertension, long-term regulation of blood pressure, auditory hallucinations and the "cocktail party effect".

Textbooks

NEUR3004
Integrative Neuroscience (Advanced)
Credit points: 6
Teacher/Coordinator: Dr Kevin Keay, Dr Catherine Leamey
Session: Semester 2
Classes: One 1-hour lecture, one 2-hour tutorial and 1-2 hour small meeting/laboratory per week.
Prerequisites: For BMedSCI: 42 credit points of intermediate BMed units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology and Genetics, Physiology. Psychology or Statistics. Plus, students must have a CREDIT (or better) in NEUR3001/3901 and NEUR3002/3902.
Prohibitions: NEUR3004, PHSI3002, PHSI3902
Assumed knowledge: Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain.
Note: Department permission required for enrolment. Note: Enrolment in NEUR3003/3903 is HIGHLY RECOMMENDED. Courses are designed to be taken in conjunction with each other. Students must receive permission from the coordinators for enrolment.

This unit encompasses the material taught in NEUR3004. Advanced students perform a research project and present a mini-lecture on a current topic in neuroscience research.

Textbooks

For other NEUR units of study, see the entry under the School of Physiology.

Anatomy and Histology Honours and Graduate Diploma
Taking an Honours or Graduate Diploma provides the opportunity for students to do research on a project supervised by a member of staff. Assessment is based on a thesis summarising the results of the year's research, along with additional studies. To qualify for admission to Honours or the Graduate Diploma the student must obtain an appropriate standard in Senior Anatomy or Histology or Neuroscience.

Anatomy and Histology Higher Degrees
The award courses of Master of Science and Doctor of Philosophy by research are offered in the Faculty of Science by the Discipline of Anatomy and Histology.

Biochemistry
The discipline teaches Biochemistry and Molecular Biology to Science and Medical Science students at the Junior, Intermediate and Senior levels. This discipline area includes the fundamental principles governing the structure, function and interactions of biological molecules, the nature of genetic material and control of its expression and leads to an understanding of the molecular nature of living systems.

Junior program
The junior program has the introductory faculty unit of study Molecular Biology and Genetics Intro (MBLG1001).

Intermediate program
The comprehensive Intermediate program in Biochemistry and Molecular Biology includes Protein Biochemistry (BCHM2071/2971), Human Biochemistry (BCHM2072/2972) and the faculty unit of study Molecular Biology and Genetics A (MBLG2071/2971). Students wishing to progress to the Senior units of study in Biochemistry and Molecular Biology need to have completed MBLG1001 and 12 CP of Intermediate BCH/MBLG units of study.

Senior program
The Senior program consists of Molecular Biology and Biochemistry - Genes (BCHM3071/3971), Molecular Biology and Biochemistry - Protein (BCHM3081/3981), Human Molecular Cell Biology (BCHM3072/3972), Medical and Metabolic Biochemistry, (BCHM3082/3982), Proteomics and Functional Genomics (BCHM3092/3992). Any four of these units of study constitute a major in Biochemistry. Students seeking further information should consult the relevant Tables in earlier Enrolment Advice chapters.

BCHM2071
Protein Biochemistry
Credit points: 6
Teacher/Coordinator: A/Prof Charles Collyer
Session: Semester 1
Classes: Two 2-hour lectures per week, one 1-hour tutorial and one 4-hour practical per fortnight.
Prerequisites: 12 credit points of Junior Chemistry and MBLG (1001 or 1901).
Recommended concurrent units of study: MBLG2071 and BCHM2072 for progression to Senior Biochemistry.
Prohibitions: BCHM2011, BCHM2971
Assumed knowledge: CHEM (101 and 1102). Assessment: One 2-hour theory and theory of practical exam, 2 prac reports.

This unit of study introduces biochemistry by describing the physical and chemical activities of proteins and their functions in cells. The details of protein interactions with other cellular components are presented and the relationship of protein structure and function is discussed. Techniques in protein chemistry and analysis, including proteomics are introduced together with key experiments which reveal the physical basis of the functioning of proteins. This course builds on the protein science presented in MBLG1001 and is ideally suited to students studying intermediate Chemistry together with Biochemistry. The practical course will nurture technical skills in biochemistry and will include protein preparation, the analysis of protein structure and enzymatic assays.

Textbooks

BCHM2971
Protein Biochemistry (Advanced)
Credit points: 6
Teacher/Coordinator: A/Prof Charles Collyer
Session: Semester 1
Classes: Two 2-hour lectures per week, one 1-hour tutorial and one 4-hour practical per fortnight.
Prerequisites: 12 credit points of Junior Chemistry and Distinction in MBLG1001 or MBLG1901.

This advanced unit of study introduces biochemistry by describing the physical and chemical activities of proteins and their functions in cells. The details of protein interactions with other cellular components are presented and the relationship of protein structure and function is discussed. Techniques in protein chemistry and analysis, including proteomics are discussed together with key experiments which reveal the physical basis of the functioning of proteins. This course builds on the protein science presented in MBLG1001 and is ideally suited to students studying Intermediate Chemistry together with Biochemistry. The advanced practical course will nurture technical skills in protein biochemistry and will include protein preparation, the interpretation of protein structure, enzymatic assays and biochemical analysis.

Textbooks

BCHM2072
Human Biochemistry
Credit points: 6
Teacher/Coordinator: A/Prof Gareth Denyer
Session: Semester 2
Classes: Two lectures per week, one tutorial per fortnight and one 4-hour practical per fortnight.
Prohibitions: Either MBLG (1001 or 1901) and 12 credit points of Junior Chemistry or either MBLG2071 or MBLG2971.
Prohibitions: BCHM2972, BCHM2002, BCHM2102, BCHM2902, BCHM2112
Assessment: One 3-hour exam, practical reports

This unit of study aims to describe how cells work at the molecular level, with special emphasis on human biochemistry. The chemical reactions which occur inside cells are described in the first series of lectures, Cellular Metabolism. Aspects of the molecular architecture of cells which enable them to transduce messages and communicate are described in the second half of the unit of study. At every stage there is emphasis on the ‘whole body’ consequences of reactions, pathways and processes. Cellular Metabolism describes how cells extract energy from fuel molecules like fatty acids and carbohydrates,
how the body controls the rate of fuel utilisation and how the mix of fuels is regulated (especially under different physiological circumstances such as starvation and exercise). The metabolic inter-relationships of the muscle, brain, adipose tissue and liver and the role of hormones in coordinating tissue metabolic relationships is discussed. The unit also discusses how the body lays down and stores vital fuel reserves such as fat and glycogen, how hormones modulate fuel partitioning between tissues and the strategies involved in digestion and absorption and transport of nutrients. Signal Transduction covers how communication across membranes occurs (i.e., via surface receptors and signaling cascades). This allows detailed molecular discussion of the mechanism of hormone action and intracellular processes targeting. The practical component complements the lectures by exposing students to experiments which investigate the measurement of glucose utilisation using radioactive tracers and the design of biochemical assay systems. During the unit of study, generic skills are nurtured by frequent use of computers and problem solving activities. However, student exposure to generic skills will be extended by the introduction of exercises designed to teach oral communication, instruction writing and feedback articulation skills.

BCHM2972

Human Biochemistry (Advanced)

Credit points: 6
Teacher/Coordinator: A/Prof Gareth Denyer
Session: Semester 2
Classes: Two lectures per week, one tutorial per fortnight, and one 4-hour practical per fortnight.
Prerequisites: Distinction in one of (BCHM (2071 or 2971) or MBLG (2071 or 2971)) or (Distinction in MBLG (1001 or 1901)) and Distinction average in all other Junior Science Units of Study undertaken.
Prohibitions: BCHM2072, BCHM2002, BCHM2102, BCHM2902, BCHM2112
Assessment: One 2-hour exam, practical reports

This advanced unit aims to describe how cells work at the molecular level, with special emphasis on human biochemistry. The chemical reactions which occur inside cells are described in the first series of lectures. Cellular Metabolism. Aspects of the molecular architecture of cells which enable them to transduce messages and communicate are described in the second half of the unit of study. At every stage there is emphasis on the 'whole body' consequences of reactions, pathways and processes. Cellular Metabolism describes how cells extract energy from fuel molecules like fatty acids and carbohydrates, how the body controls the rate of fuel utilisation and how the mix of fuels is regulated (especially under different physiological circumstances such as starvation and exercise). The metabolic inter-relationships of the muscle, brain, adipose tissue and liver and the role of hormones in coordinating tissue metabolic relationships is discussed. The unit also discusses how the body lays down and stores vital fuel reserves such as fat and glycogen, how hormones modulate fuel partitioning between tissues and the strategies involved in digestion and absorption and transport of nutrients. Signal Transduction covers how communication across membranes occurs (i.e., via surface receptors and signaling cascades). This allows detailed molecular discussion of the mechanism of hormone action and intracellular processes targeting. The practical component complements the lectures by exposing students to experiments which investigate the measurement of glucose utilisation using radioactive tracers and the design of biochemical assay systems. During the unit of study, generic skills are nurtured by frequent use of computers and problem solving activities. However, student exposure to generic skills will be extended by the introduction of exercises designed to teach oral communication, instruction writing and feedback articulation skills.

BCHM3071

Molecular Biology & Biochemistry- Genes (Adv)

Credit points: 6
Teacher/Coordinator: Mrs Jill Johnston, Prof Merlin Crossley
Session: Semester 1
Classes: Two 1-hour lectures per week and one 2-hour practical per fortnight.
Prerequisites: MBLG (1001 or 1901) and 12 CP of Intermediate BCHM/MBLG units (taken from BCHM2071/2971 or BCHM2071/2971 or BCHM2072/2972 or 24CP of Intermediate BMedSc units, including BME2D802 and BME2D804.
Prohibitions: BCHM3971, BCHM3001, BCHM3901
Assessment: One 2.5-hour exam, practical work

This unit of study is designed to provide a comprehensive coverage of the activity of genes in living organisms, with a focus on eukaryotic and particularly human systems. The lecture component covers the arrangement and structure of genes, how genes are expressed, promoter activity and enhancer action. This leads into discussions on the biochemical basis of expression and manipulation will be covered.

Textbooks

BCHM3081

Molecular Biology & Biochemistry- Proteins

Credit points: 6
Teacher/Coordinator: Mrs Jill Johnston, A/Prof Joel Mackay
Session: Semester 1
Classes: Two 2-hour lectures per week and one 6-hour practical per fortnight.
Prerequisites: MBLG (1001 or 1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972) or 24CP of Intermediate BMedSc units, including BME2D802 and BME2D804.
Prohibitions: BCHM3981, BCHM3001, BCHM3901
Assessment: One 2.5-hour exam, practical work

This unit of study is designed to provide a comprehensive coverage of the functions of proteins in living organisms, with a focus on eukaryotic and particularly human systems. Its lecture component deals with how proteins adopt their biologically active forms, including discussions of protein structure, protein folding and how recombinant DNA technology can be used to design novel proteins with potential medical or biotechnology applications. Particular emphasis is placed
on how modern molecular biology and biochemical methods have led to our current understanding of the structure and functions of proteins. It also covers physiologically and medically important aspects of proteins in living systems, including the roles of chaperones in protein folding inside cells, the pathological consequences of misfolding of proteins, how proteins are sorted to different cellular compartments and how the biological activities of proteins can be controlled by regulated protein degradation. The practical course is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in molecular biology and protein biochemistry laboratories.

Textbooks

BCHM3981

Mol Biology & Biochemistry- Proteins Adv

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, A/Prof Joel Mackay

Session: Semester 1 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: MBLG (1001 or 1901) and Distinction in 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972) or 42CP of Intermediate BMedSc units, with Distinction in BMED2802 and BMED2804. Prohibitions: BCHM3081, BCHM2001, BCHM3901 Assessment: One 2.5-hour exam, practical work.

This unit of study is designed to provide a comprehensive coverage of the functions of proteins in living organisms, with a focus on eukaryotic and particularly human systems. Its lecture component deals with how proteins adopt their biologically active forms, including discussions of protein structure, protein folding and how recombinant DNA technology can be used to design novel proteins with potential medical or biotechnology applications. Particular emphasis is placed on how modern molecular biology and biochemical methods have led to our current understanding of the structure and functions of proteins. It also covers physiologically and medically important aspects of proteins in living systems, including the roles of chaperones in protein folding inside cells, the pathological consequences of misfolding of proteins, how proteins are sorted to different cellular compartments and how the biological activities of proteins can be controlled by regulated protein degradation. The practical course is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in molecular biology and protein biochemistry laboratories.

The lecture component of this unit of study is the same as BCHM3081. Qualified students will attend seminars/practical classes in which more sophisticated topics in protein biochemistry will be covered.

Textbooks

BCHM3072

Human Molecular Cell Biology

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, Prof Iain Campbell

Session: Semester 2 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: MBLG (1001 or 1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/MBLG2971 or BCHM2071/2971 or BCHM2072/2972) or 42CP of Intermediate BMedSc units, including BMED2802 and BMED2804. Prohibitions: BCHM3972, BCHM3002, BCHM3902, BCHM3004, BCHM3904 Assessment: One 2.5-hour exam, practical work.

This unit of study will explore the responses of cells to changes in their environment in both health and disease. The lecture course consists of four integrated modules. The first will provide an overview of the role of signalling mechanisms in the control of human cell biology and then focus on cell surface receptors and the downstream signal transduction events that they initiate. The second will examine how cells detect and respond to pathogenic molecular patterns displayed by infectious agents and injured cells by discussing the roles of relevant cell surface receptors, cytokines and signal transduction pathways. The third and fourth will focus on the life, death and differentiation of human cells in response to intra-cellular and extra-cellular signals by discussing the eukaryotic cell cycle under normal and pathological circumstances and programmed cell death in response to abnormal extra-cellular and intra-cellular signals. In all modules emphasis will be placed on the molecular processes involved in human cell biology, how modern molecular and cell biology methods have led to our current understanding of them and the implications of them for pathologies such as cancer. The practical component is designed to complement the lecture course, providing students with experience in a wide range of techniques used in modern molecular cell biology.

The lecture component of this unit of study is the same as BCHM3072. Qualified students will attend seminars/practical classes in which more sophisticated topics in modern molecular cell biology will be covered.

Textbooks

BCHM3972

Human Molecular Cell Biology (Advanced)

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, Prof Iain Campbell

Session: Semester 2 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: MBLG (1001 or 1901) and Distinction in 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/MBLG2971 or BCHM2071/2971 or BCHM2072/2972) or 42CP of Intermediate BMedSc units, with Distinction in BMED2802 and BMED2804. Corequisites: MBLG3999 Prohibitions: BCHM3072, BCHM3002, BCHM3004, BCHM3902, BCHM3904 Assessment: One 2.5-hour exam, practical work.

This unit of study will explore the responses of cells to changes in their environment in both health and disease. The lecture course consists of four integrated modules. The first will provide an overview of the role of signalling mechanisms in the control of human cell biology and then focus on cell surface receptors and the downstream signal transduction events that they initiate. The second will examine how cells detect and respond to pathogenic molecular patterns displayed by infectious agents and injured cells by discussing the roles of relevant cell surface receptors, cytokines and signal transduction pathways. The third and fourth will focus on the life, death and differentiation of human cells in response to intra-cellular and extra-cellular signals by discussing the eukaryotic cell cycle under normal and pathological circumstances and programmed cell death in response to abnormal extra-cellular and intra-cellular signals. In all modules emphasis will be placed on the molecular processes involved in human cell biology, how modern molecular and cell biology methods have led to our current understanding of them and the implications of them for pathologies such as cancer. The practical component is designed to complement the lecture course, providing students with experience in a wide range of techniques used in modern molecular cell biology.

The lecture component of this unit of study is the same as BCHM3072. Qualified students will attend seminars/practical classes in which more sophisticated topics in modern molecular cell biology will be covered.

Textbooks

BCHM3082

Medical and Metabolic Biochemistry

Credit points: 6 Teacher/Coordinator: Mrs Jill Johnston, Prof Philip Kuchel

Session: Semester 2 Classes: Two 1-hour lectures per week and one 6-hour practical per fortnight. Prerequisites: MBLG (1001 or 1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/MBLG2971 or BCHM2071/2971 or BCHM2072/2972) or 42CP of Intermediate BMedSc units, including BMED2802 and BMED2804. Prohibitions: BCHM3982, BCHM3002, BCHM3902, BCHM3904 Assessment: One 2.5-hour exam, practical work.

Note: BExSci/BSc(Nutrition) students successfully progressing through the combined degree meet the pre-requisites for this unit of study.

This unit of study will explore the biochemical processes involved in the operation of cells and how they are integrated in tissues and in the whole human body in normal and diseased states. These concepts will be illustrated by considering whole-body aspects of energy utilisation, fat and glycogen storage and their regulation under normal conditions compared to obesity and diabetes. Key concepts that will
be discussed include energy balance, regulation of metabolic rate, control of food intake, tissue interactions in fuel selection, the role of adipose tissue and transport of fuel molecules from storage organs and into cells. Particular emphasis will be placed on how the modern concepts of metabolomics, coupled with molecular biology methods and studies of the structure and function of enzymes, have led to our current understanding of how metabolic processes are normally integrated and how they become deranged in disease states. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in modern medical and metabolic biochemistry.

Textbooks

BCHM3982 Medical and Metabolic Biochemistry (Adv)

Credit points: 6
Teacher/Coordinator: Mrs Jill Johnston, Prof Philip Kuchel
Session: Semester 2
Class: Two 1-hour lectures per week and one 6-hour practical per fortnight.
Prerequisites: MBLG (1001 or 1901) and Distinction in 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972) or 42CP of Intermediate BMedSc units, with Distinction in BMED2802 and BMED2804.
Prohibitions: BCHM3082, BCHM3002, BCHM3004, BCHM3902, BCHM3904
Assessment: One 2.5-hour exam, practical work.

This unit of study will explore the biochemical processes involved in the operation of cells and how they are integrated in tissues and in the whole human body in normal and diseased states. These concepts will be illustrated by considering whole-body aspects of energy utilisation, fat and glycogen storage and their regulation under normal conditions compared to obesity and diabetes. Key concepts that will be discussed include energy balance, regulation of metabolic rate, control of food intake, tissue interactions in fuel selection, the role of adipose tissue and transport of fuel molecules from storage organs and into cells. Particular emphasis will be placed on how the modern concepts of metabolomics, coupled with new methods, including magnetic resonance techniques and molecular biology methods, as well as studies of the structure and function of enzymes, have led to our current understanding of how metabolic processes are normally integrated and how they become deranged in disease states. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in modern medical and metabolic biochemistry.

Qualified students will attend some lectures/practical classes in common with BCHM3082 and some separate lectures/practical classes in which more sophisticated topics in metabolic biochemistry will be covered.

Textbooks

BCHM3092 Proteomics and Functional Genomics

Credit points: 6
Teacher/Coordinator: Dr Stuart Cordwell, Mrs Jill Johnston
Session: Semester 2
Class: Two 1-hour lectures per week and one 3-hour practical per week.
Prerequisites: MBLG (1001 or 1901) and 12 CP of Intermediate BCHM/MBLG units (taken from MBLG2071/2971 or BCHM2071/2971 or BCHM2072/2972) or 42CP of Intermediate BMedSc units, including BMED2802 and BMED2804.
Prohibitions: BCHM3992, BCHM3098
Assessment: One 2.5-hour exam, practical work.

This unit of study will focus on the high throughput methods for the analysis of gene structure and function (genomics) and the analysis of proteins (proteomics) which are at the forefront of discovery in the biomedical sciences. The course will concentrate on the hierarchy of gene-protein-structure-function through an examination of modern technologies built on the concepts of genomics versus molecular biology, and proteomics versus biochemistry. Technologies to be examined include DNA sequencing, nucleic acid and protein microarrays, two-dimensional gel electrophoresis of proteins, uses of mass spectrometry for high throughput protein identification, isotope tagging for quantitative proteomics, high-performance liquid chromatography, high-throughput functional assays, affinity chromatography and modern methods for database analysis. Particular emphasis will be placed on how these technologies can provide insight into the molecular basis of changes in cellular function under both physiological and pathological conditions as well as how they can be applied to biotechnology for the discovery of biomarkers, diagnostics, and therapeutics. The practical component is designed to complement the lecture course and will provide students with experience in a wide range of techniques used in proteomics and genomics.

The lecture component of this unit of study is the same as BCHM3092. Qualified students will attend seminars/practical classes in which more sophisticated topics in proteomics and genomics will be covered.

Textbooks

Biochemistry Honours

An honours program of study designed for those wishing to enter research or to undertake work leading to a higher degree is conducted in the fourth year. The program runs from early February until mid-November. It provides the opportunity for laboratory research on a project supervised by a staff member, culminating in the production of a research thesis. During the year each student is also required to undertake a coursework program that involves six tutorials and an exam based on the critical evaluation of scientific manuscripts. Assessment of the year's work is based largely on the student's performance on the research project, and a written report on that project.

Honours Research Areas

Biochemistry Honours is conducted within the School of Molecular and Microbial Biosciences. The School offers projects in a wide range of research areas including Physical Biochemistry and Structural Biology, Microbiology, Proteomics and Biotechnology, Nutrition and Metabolism and Molecular Biology and Genetics. Specific research topics currently offered include: Anticancer drugs: synthesis and mechanism of action; Biochemistry of cellular signal transduction; The causes of diabetes and/or obesity; Chaperones and amyloid formation; X-ray crystallography of proteins and drug DNA complexes; NMR...
studies of membrane transport and metabolism in cells; Antibiotic resistance mechanisms in microbial pathogens; Eukaryotic transcription factors; Protein structure modeling; Molecular biology of humans and yeasts; Gene expression in transgenic mice; Glycaemic index of foods; oligosaccharides in human milk.

Applying for admission to Honours

An application form providing the list of possible research projects is provided to interested students and is available from the honours coordinator. Students must arrange to speak with potential supervisors and should choose two discipline areas and three supervisors in order of preference on the application form. A decision on honours entry is made in December. Attempts will be made where possible to assign students to the supervisor of their choice but this will not always be possible. In such cases the School will work with students to find an available project. Students should note that some supervisors cannot accommodate mid-year entrants. The usual requirement for acceptance into the Honours program is a credit average in a major relevant to the project of interest; any student with an undergraduate background relevant to specific projects (including Chemistry, Biochemistry, Nutrition and Dietetics, Microbiology, Immunobiology, Physiology, Neuroscience, Mathematics, Physics, Biology or other related Medical Sciences) may be admitted. It should be noted that the number of students accepted into the Honours program may be limited because of resource restrictions (availability of a supervisor and/or laboratory space) and that, in the event of there being more applicants than resources will allow, offers will be made on the basis of academic merit. The honours unit of study codes are listed in the Honours chapter of this handbook - chapter 11. The Honours year coordinator is Dr Stuart Cordwell.

Bioinformatics

Bioinformatics is an interdisciplinary area of science, involving Computer Science, Computational Science, Mathematics, Statistics, and the Life Sciences (ie. biology, medicine, etc). It is responsible for the development and use of computer systems, databases, software, networks, and hardware to solve scientific problems in a wide variety of areas ranging from biology to medicine. Due to its interdisciplinary nature, the BSc (Bioinformatics) degree is composed of units of study that are offered also to students enrolled in other degrees, the general aim being to equip the students enrolled in the BSc (Bioinformatics) degree with knowledge in key areas of relevance to Bioinformatics.

First Year

In the first year of their study, students devote time to units of study offered by the School of Biological Sciences, School of Chemistry, School of Information Technologies, School of Mathematics and Statistics, and School of Molecular and Microbial Biosciences (see Table 1A in chapter 4).

Second Year

In the second and third year of their study, students divide time equally between the Life Sciences and the mathematical, statistical, and computational sciences, choosing units of study from those offered by the School of Biological Sciences, School of Information Technologies, School of Mathematics and Statistics, School of Molecular and Microbial Biosciences, School of Physics, and the Department of Pharmacology (see Table 1A).

Third Year

In the third year of their study, the students are highly recommended to enrol in BIOC3027/3028 (Bioinformatics and Genomics) and BCHM3922/3922 (Proteomics and Functional Genomics). Furthermore, the students complete a unit of study - BINF3101 (Bioinformatics Project) - that is designed specifically to give them an opportunity to do real research, supervised by scientists from the bio-medical disciplines. For further information regarding third year requirements see Table 1A.

BINF3101

Bioinformatics Project

Credit points: 6 Teacher/Coordinator: Dr Michael Charleston, Dr Nathan Lo Session: Semester 2 Classes: Meeting with academic supervisor 1hour per week & class meeting 1 hour per week. Prerequisites: 12 credit points from Intermediate Biology, Molecular Biology and Genetics, Biochemistry, Microbiology, Pharmacology, Prohibitions: COMP2000, COMP2100, INF5000, INF6000, SOFT3300, SOFT3600, SOFT3900, Assumed knowledge: INF2011 and (INFO1103 or INFO1903) Assessment: Oral group presentations, individual and group reports.

This unit will provide students an opportunity to apply the knowledge and practice the skills acquired in the prerequisite and qualifying units, in the context of designing and building a substantial bioinformatics application. Working in groups, students will carry out the full range of activities including requirements capture, analysis and design, coding, testing and documentation.

Biological Sciences

Advice on units of study

Any student needing advice before enrolling should make an appointment to see an adviser from the School of Biological Sciences. Phone 9351 5819 (First Year Biology Office) for enquiries about junior units; or 9351 2484 for enquiries about Intermediate and Senior units. Units of study in Biology include those with the prefixes BIOC (Biology), PLNT (Plant Sciences) and MLBG (Molecular Biology and Genetics), as well as ENV1211. Refer to the relevant section of this handbook for details of PLNT, MLBG and ENVI units of study. For information on how to major in Biology or Plant Sciences, with advice on units of study, see www.bio.usyd.edu.au/futurestudents/future Ug.html.

Assistance during semester

The offices of junior year Biology staff and the Biology Learning Centre are on the 5th floor of Carslaw. Staff are available for consultation throughout semester. The School maintains a website that provides access to resources for students: www.bio.usyd.edu.au.

Summer School: January-February

The School of Biological Sciences offers some junior units of study in the Sydney Summer School. Consult The Sydney Summer School website for more information: www.summer.usyd.edu.au. Students may enrol in junior units of study offered at Summer School before their first semester of university enrolment.

Biology Bridging Course

Students who have not completed HSC Biology or equivalent are strongly encouraged to attend the Biology Bridging Course before commencing any Biology study at university. Details are available each year from the School of Biological Sciences website: www.bio.usyd.edu.au/futurestudents/future html.

Junior units of study

Students may take up to four units of study in Junior Biology: BIOC1001 or 111 (Concepts in Biology); BIOC1003 or 1003 (Human Biology); BIOC1002 or 1902 (Living Systems); and MLBG1001 (Molecular Biology and Genetics).

BIOC1001

Concepts in Biology

Credit points: 6 Session: Semester 1, Summer Main Classes: Three 1 hour lectures and one 4 hour practical per fortnight. Prohibitions: BIOC 1911 Assumed knowledge: None. However, students who have not completed HSC Biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February). Assessment: One 2 hour exam, assignments, quizzes. Note: It is recommended that BIOC (1001 or 111) be taken concurrently with either BIOC 1003 or BIOC 1903. Students who have completed HSC Biology and scored 80+ should enrol in BIOC1911. Students who lack 80+ in HSC Biology but have a UAI of at least 93 may enrol in BIOC1911 with permission from the UEO. The completion of MLBG 1001 is highly recommended.

Concepts in Biology is an introduction to the major themes of modern biology. The unit emphasizes how biologists carry out scientific
investigations, from the cellular/molecular level to the level of ecosystems. Topics covered in lectures and practicals include: introductory cell biology, with particular emphasis on how cells obtain and use energy; the diversity and biology of microorganisms; an introduction to molecular biology through the role of DNA in protein synthesis, including current developments in DNA technology; genetics or organisms; theories of evolution and phylogenetic analysis, and how they are used to interpret the origins of the diversity of modern organisms; and interactions between organisms in biological communities, with emphasis on Australian ecology.

Textbooks

BIOL1911
Concepts in Biology (Advanced)
Credit points: 6 Session: Semester 1 Classes: Three lectures and one 4 hour practical per fortnight. Prerequisites: 80+ in HSC 2-Unit Biology (or equivalent) or Distinction or better in a University level Biology unit, or by invitation. Prohibitions: BIOL 1001 Assessment: One 2 hour exam, assignments, quizzes.

Note: Department permission required for enrolment. Note: It is recommended that BIOL (1001 or 1911) be taken concurrently with all other Junior units of study in Biology. The completion of MBLG1001 is highly recommended.

Concepts in Biology (Advanced) builds on the main themes introduced in HSC Biology, with emphasis on current research in biology. Topics covered in lectures and practicals include: cell biology, with particular emphasis on how cells obtain and use energy; the diversity and biology of microorganisms; current developments in molecular biology, including recombinant DNA technology and the human genome project; inheritance, genetics and the origins of diversity of modern organisms; and interactions between organisms in biological communities, with emphasis on Australian ecology. Research-based lectures will expand on the general lecture topics and include current investigations of such diverse topic areas as cancer therapies, metabolic malfunction, anarchy in beehives, evolutionary studies of snake reproductive strategies, plant phylogeny and global environmental change.

Textbooks
As for BIOL1001.

BIOL1003
Human Biology
Credit points: 6 Session: Semester 1, Summer Main Classes: Two 1 hour lectures per week (3 lectures in some weeks). One 3 hour practical class and 6-9 hours HBOnline work every two weeks covering online practical activities, prework and homework. Prohibitions: BIOL1903, EDUH1016. Assumed knowledge: HSC 2-unit Biology. Students who have not completed HSC biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February). Assessment: One 2 hour exam, assignments and quizzes.

Note: It is recommended that BIOL (1001 or 1911) be taken concurrently with this unit of study.

This Unit of Study has three main components: lectures, practicals and HBOnline activities. The unit of study provides an introduction to human evolution and ecology, cell biology, physiology and anatomy, through lectures and practical work. The unit of study includes human nutrition, distribution of essential requirements to and from cells, control, body functions and defence mechanisms. After discussion of reproduction and development, it concludes with modern studies and research prospects in biotechnology and human genetics.

This unit of study, together with BIOL (1001 or 1911 or 1002 or 1902), provides entry to Intermediate units of study in Biology, but the contents of BIOL (1002 or 1902) is assumed knowledge for BIOL (2011 or 2012) and PLNT 2003, and students entering these units with BIOL (1003 or 1903) will need to do some preparatory reading.

Textbooks

BIOL1903
Human Biology (Advanced)
Credit points: 6 Session: Semester 1 Classes: Two 1 hour lectures per week (3 lectures in some weeks). One 3 hour practical class and 6-9 hours HBOnline work every two weeks covering online practical activities, prework and homework. Prerequisites: UAI (or ATAR equivalent) of at least 93 and HSC Biology result in at least 80+, or Distinction or better in a University level Biology unit, or by invitation. Prohibitions: BIOL1003, EDUH1016 Assessment: One 2 hour exam, assignment, group project presentation, discussion activities and quizzes.

This unit of study is the same as BIOL1003 except for the addition of 3 special seminars from guest speakers, a three hour ethics and bioscience component and three student peer group case study presentations.

Textbooks
As for BIOL1003

BIOL1002
Living Systems
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 3 hour practical per week. Prohibitions: BIOL1902 Assumed knowledge: HSC 2-unit Biology. Students who have not completed HSC biology (or equivalent) are strongly advised to take the Biology Bridging Course (in February). Assessment: One 2 hour exam, assignments, quizzes.

Note: It is recommended that BIOL (1001 or 1911) be taken before this unit of study. This unit of study, together with BIOL (1001 or 1911) provides entry to all Intermediate units of study in biology in the School of Biological Sciences.

Living Systems deals with the biology of organisms, from bacteria to large plants and animals, and emphasises the ways in which they can live in a range of habitats. The importance of energy in living systems, and how elements are used and recycled in biological communities, are described. The unit of study includes lectures and laboratory classes on the physiology of nutrition and growth, basic physiological processes of animals and plants, the ways in which organisms control and integrate their activities, and their reproduction. Finally applications of knowledge of genetics and ecology to practical problems in agriculture and conservation are introduced.

Textbooks

BIOL1902
Living Systems (Advanced)
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 3 hour practical per week. Prerequisites: UAI (or ATAR equivalent) of at least 93 and HSC Biology result in at least 80+, or Distinction or better in a University level Biology unit, or by invitation. Prohibitions: BIOL1002 Assessment: One 2 hour exam, assignments, quizzes, independent project.

Note: Department permission required for enrolment.

This unit of study shares lectures and practical classes with BIOL1002 but also includes more demanding alternative components of Living Systems.

Textbooks
As for BIOL1002.

MBLG1001
Molecular Biology and Genetics (Intro)
Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 2 Classes: Two 1-hour lectures per week; one 1-hour tutorial and one 4-hour practical per fortnight Prohibitions: AGCH2001, BCHM2001, BCHM2101, BCHM2901, MBLG2101, MBLG2901, MBLG2001, MBLG2111, MBLG2771, MBLG2871, MBLG1901 Assumed knowledge: 6 credit points of Junior Biology and 6 cp of Junior Chemistry Assessment: One 2.5-hour exam, in-semester skills test and assignments.

The lectures in this unit of study introduce the "Central Dogma" of molecular biology and genetics -i.e., the molecular basis of life. The course begins with the information macro-molecules in living cells: DNA, RNA and protein, and explores how their structures allow them to fulfill various biological roles. This is followed by a review of how DNA is organised into genes leading to discussion of replication and gene expression (transcription and translation). The unit concludes with an introduction to the techniques of molecular biology and, in particular, how these techniques have led to an explosion of interest and research in Molecular Biology. The practical component complements the lectures by exposing students to experiments which
explore the measurement of enzyme activity, the isolation of DNA and the ‘cutting’ of DNA using restriction enzymes. However, a key aim of the practicals is to give students higher level generic skills in computing, communication, criticism, data analysis/evaluation and experimental design.

Textbooks
TBA

MBLG1001
Molecular Biology and Genetics (Adv)

Credit points: 6
Teacher/Coordinator: Dr Dale Hancock
Session: Semester 2

Classes: Two 1-hour lectures per week; one 1-hour tutorial and one 4-hour practical per fortnight; four 1-hour seminars per semester. Prerequisites: UAI (or ATAR equivalent) of 95 or minimum Band 5 in HSC chemistry and biology or by invitation. Prohibitions: AGCH2001, BCHM2001, BCHM2101, BCHM2901, MBLG2101, MBLG2901, MBLG2201, MBLG2111, MBLG2771, MBLG2871, MBLG1001
Assumed knowledge: HSC Chemistry and Biology OR 6 credit points of Junior Biology and 6 cp of Junior Chemistry
Assessment: One 2.5-hour exam, in-semesters skills test and assignments

The lectures in this unit of study introduce the "Central Dogma" of molecular biology and genetics, i.e., the molecular basis of life. The course begins with the information machineries in living cells: DNA, RNA and protein, and explores how their structures allow them to fulfill their various biological roles. This is followed by a review of how DNA is organised into genes leading to discussion of replication and gene expression (transcription and translation). The unit concludes with an introduction to the techniques of molecular biology and, in particular, how these techniques have led to an explosion of interest and research in Molecular Biology. The practical component complements the lectures by exposing students to experiments which explore the measurement of enzyme activity, the isolation of DNA and the 'cutting' of DNA using restriction enzymes. However, a key aim of the practicals is to give students higher level generic skills in computing, communication, criticism, data analysis/evaluation and experimental design.

The advanced component is designed for students interested in continuing in molecular biology. It consists of 7 advanced lectures (replacing 7 regular lectures) and 3 advanced laboratory sessions (replacing 3 regular practical classes). The advanced lectures will focus on the experiments which led to key discoveries in molecular biology. The advanced practical sessions will give students the opportunity to explore alternative molecular biology experimental techniques. Attendance at MBLG1999 seminars is strongly encouraged.

Textbooks
TBA

Intermediate units of study

Students who wish to take Intermediate Biology units of study should refer to the booklet ‘Information for Students Considering Intermediate Biology Units of Study’ which is available at the website www.bio.usyd.edu.au/currentstudents/second.html and from the School Office (Science Rd Cottage, A10). Students should discuss their unit of study choices, together with the other units of study they propose to study, with a Biology staff member before enrolling. If you are considering going on to study Senior Biology you must satisfy the Intermediate qualifying and prerequisite units of study for the units of study you intend taking. Units of study in Intermediate Biology include those with the prefixes BIOL (Biology), PLNT (Plant Sciences) and MBLG (Molecular Biology and Genetics), as well as ENV2111 (Conservation Biology). Refer to the relevant sections of this handbook for details of PLNT (Plant Science), MBLG (Molecular Biology and Genetics) and ENVI (Environmental Studies) units of study.

Note that MBLG (2071 or 2971) and MBLG (2072 or 2972) are qualifying units for BIOL (3001, 3025, 3026, 3027). Note also that MBLG (2071 or 2971) is assumed knowledge for students wishing to enrol in MBLG (2072 or 2972). The following Intermediate units of study are offered:

Semester 1 units of study

Semester 2 units of study

Note:
Only one version of each unit of study may be credited towards the degree (e.g. only one of BIOL2011 or 2911 can be taken). Qualifying units of study for certain Senior Biology units of study are defined as combinations of 6 credit points of Intermediate Biology units of study (see the Senior unit of study descriptions or Information for Students booklets). For details of PLNT units please refer to the Plant Science entry in this chapter.

BIOL2011

Invertebrate Zoology

Credit points: 6
Teacher/Coordinator: Dr E May
Session: Semester 1

Classes: Two 1 hour lectures, one 1 hour tutorial and one 2 hour practical per week, or three 1 hour lectures and one 2 hour practical per week. Prerequisites: BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for students in the BSc[Marine Science] stream) 6 credit points of Junior Chemistry and 6 credit points of Junior Physics. Prohibitions: Prohibitions: BIOL2911
Assumed knowledge: BIOL (1002 or 1902).
Assessment: Mid-semester test, one 2 hour theory exam, one 1.5 hour prac exam, one essay, tutorial work.

Note: This unit of study may be taken alone or when taken with BIOL2012 provides entry into certain Senior Biology units of study. The content of BIOL (1002 or 1902) is assumed knowledge and students entering without BIOL (1002 or 1902) will need to do some preparatory reading. The completion of 6 credit points of MBLG units of study is highly recommended.

This unit of study provides a thorough grounding in the diversity of animals by lectures and detailed laboratory classes, which include dissections and demonstrations of the functional anatomy of invertebrates. The material is presented within the conceptual framework of evolution and the principles and use of phylogeny and classification. Tutorials further explore concepts of phylogeny, animal structure and function, and provide opportunity to develop oral and written communication skills. The unit of study is designed to be taken in conjunction with BIOL2012 Vertebrates and their Origins; the two units of study together provide complete coverage of the diversity of animals at the level of phylum.

BIOL2911

Invertebrate Zoology (Advanced)

Credit points: 6
Teacher/Coordinator: Dr E May
Session: Semester 1

Classes: See BIOL2011 Prerequisites: Distinction average in BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for students in BSc[Marine Science] stream) 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). These requirements may be varied and students with lower averages should consult the Unit Executive Officer Prohibitions: BIOL2011.
Assumed knowledge: BIOL (1002 or 1902).
Assessment: See BIOL2011

Note: The completion of 6 credit points of MBLG units of study is highly recommended.

Qualified students will participate in alternative components of BIOL2011 Invertebrate Zoology. The content and nature of these components may vary from year to year.

BIOL2012

Vertebrates and their Origins

Credit points: 6
Teacher/Coordinator: Dr E L May
Session: Semester 2

Classes: Two 1 hour lectures, one 1 hour tutorial and one 2 hour practical per week, or three 1 hour lectures and one 2 hour practical per week; one field trip. Prerequisites: BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for students in the BSc[Marine Science] stream) 6 credit points of Junior Chemistry and 6 credit points of Junior Physics. Prohibitions: BIOL 2912.
Assumed knowledge: The content of BIOL (1002 or 1902) is assumed knowledge and students who have not completed BIOL (1002 or 1902) will need to do some preparatory reading. Assessment: Mid-semester test, one 2 hour theory exam, one 1.5 hour prac exam, one assignment, one essay, tutorial work.
Note: This unit of study may be taken alone, but when taken with BIOL2011 provides entry into certain Senior Biology units of study. The completion of MBLG1001 is highly recommended.

This unit of study completes the grounding in the diversity of animals at the level of phylum introduced in BIOL2011 Invertebrate Zoology, by lectures and detailed laboratory classes, which include dissections and demonstrations of the functional anatomy of vertebrates and invertebrate phyla not covered in BIOL2011. Tutorials further explore concepts of phylogeny, animal structure and function, and provide opportunity to develop oral and written communication skills. Students may choose to attend an intensive 3.5 day field trip, which takes place in the July break preceding Semester 2. (Contact Dr May during Semester 1 if you wish to attend).

BIOL2912 Vertebrates and their Origins (Advanced)
Credit points: 6 Teacher/Coordinator: Dr E May Session: Semester 2 Classes: See BIOL2012 Prerequisites: Distinction average in BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for students in BSc[Marine Science] stream: 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). These requirements may be varied and students with lower averages should consult the Unit Executive Officer. Prohibitions: BIOL2012. Assumed knowledge: The content of BIOL (1002 or 1902) is assumed knowledge and students who have not completed BIOL (1002 or 1902) will need to do some preparatory reading. Assessment: See BIOL2012. Note: The completion of MBLG1001 is highly recommended.

Qualified students will participate in alternative components of BIOL2012 Vertebrates and their Origins. The content and nature of these components may vary from year to year.

BIOL2016 Cell Biology
Credit points: 6 Teacher/Coordinator: Dr M Thomson. Session: Semester 1 Classes: Two 1 hour lectures and one 4 hour practical per week. Prerequisites: 12 credit points of Junior Biology, e.g. any combination of 2 units made from the following options, BIOL (1001 or 1911), BIOL (1002 or 1902), BIOL (1003 or 1903), MBLG (1001 or 1901), EDUH1016, and 12 credit points of Junior Chemistry. For students in the BSc (Marine Science) 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics. Prohibitions: BIOL2196. Assessment: One 3 hour theory exam, one project assignment, one prac report. Note: The completion of MBLG1001 is highly recommended.

This unit of study focuses on contemporary principles in cell biology and development in plant and animals, with emphasis on cellular functions and favouring the molecular perspective. Topics include cancer and control of cell division and migration, pre-programmed cell death, molecular signaling and transport systems, cellular endocrinology and embryonic development. The practical component provides students with hands-on training in key industry techniques using modern equipment and is therefore of immense benefit to students contemplating honours study or a career in molecular and cellular research. The unit of study is designed to complement intermediate Molecular Biology and Genetics units and leads ideally to various senior units of study in biology, including Plant Growth & Development, Applications of Recombinant DNA Technology, Evolutionary Genetics & Animal Behaviour, Fungi in the Environment, Animal Physiology, Bioinformatics and Genomics, as well as senior units of study in biochemistry. Textbooks: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. 2002. Molecular Biology of the Cell. 4th Edition. Garland Science.

BIOL2916 Cell Biology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Murray Thomson. Session: Semester 1 Classes: Two 1 hour lectures and one 4 hour practical per week. Prerequisites: Distinction average in 12 credit points of Junior Biology or equivalent, e.g. any combination of 2 units made from the following options, BIOL (1001 or 1911), BIOL (1002 or 1902), BIOL (1003 or 1903), MBLG (1001 or 1901), EDUH1016, and 12 credit points of Junior Chemistry. For students in the BSc (Marine Science) 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics. Prohibitions: BIOL2016. Assessment: One 3 hour exam, one practical report and one project assignment.

Note: The completion of MBLG1001 is highly recommended.

Qualified students will participate in alternative components of BIOL2016 Cell Biology. Textbooks: As for BIOL2016.

BIOL2017 Entomology
Credit points: 6 Teacher/Coordinator: Dr Dieter Hochuli. Session: Semester 2 Classes: Two 1 hour lecture and one 3 hour practical per week. Prerequisites: BIOL (1001 or 1101 or 1101 or 1901) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics. Prohibitions: BIOL2917. Assumed knowledge: BIOL (2011 or 2911). Assessment: Two hour theory exam, two practical reports, spot test, review and an insect collection. Practical field work: The practical classes give students a working knowledge of the major orders of insects and species of importance, as well as principles of collection, preservation and identification. Project work considers forensic entomology, learning in social insects and insect behaviour. Field trips to the Australian Museum and Taronga Zoo will also consider insect husbandry and the role of insects in education. There will also be an introduction to entomological databases and an assignment that involves the making and presentation of a small collection of insects.

This is a general but comprehensive introduction to Insect Biology taught in 3 integrated modules. The first module examines morphology, classification, life histories and development, physiology, ecology, behaviour, conservation, and the biology of prominent members of major groups. The other two modules examine new developments in entomological research, focusing on research strengths at the University of Sydney, the biology of social insects and insect behaviour.

BIOL2917 Entomology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Dieter Hochuli. Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour practical per week. Prerequisites: Distinction average in BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for BSc (Marine Science) students: 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics. These requirements may be varied and students with lower averages should consult the Unit Executive Officer. Prohibitions: BIOL2017. Assumed knowledge: BIOL (2011 or 2911). Assessment: Two hour theory exam, two practical reports, spot test, review and an insect collection.

Qualified students will participate in alternative components of BIOL2017 Entomology. The content and nature of these components may vary from year to year.

BIOL2018 Introduction to Marine Biology
Credit points: 6 Teacher/Coordinator: A/Professor R Coleman. Session: Semester 2 Classes: 2x1hr lectures per week, 8x1hr tutorials, 1x8hr field trip, 3x4hr field trips and 1x3hr practical. Prerequisites: BIOL (1001 or 1101) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH), 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics). Prohibitions: BIOL2918, MARS (2006 or 2906 or 2007 or 2907). Assumed knowledge: 12 credit points of Junior Biology; MARS2905. Assessment: Two hour theory exam, four written reports.

This unit will describe some of the ways in which the properties of the oceans affect marine organisms. It also introduces coral reefs and other marine ecosystems, together with their productivity, biological oceanography, the reproductive biology of marine organisms, and marine biological resources. The practical elements will provide the core skills and techniques that will equip students to perform laboratory and field studies in marine biology. The unit will introduce appropriate methodologies for the collection, handling and analysis of data; the scientific principles underlying experimental design; and the effective communication of scientific information. Textbooks: Levinton, J. (2009) Marine Biology: Function, Biodiversity and Ecology (3rd ed). Oxford University Press.
BIO2918 Introduction to Marine Biology (Adv)

Credit points: 6
Teacher/Coordinator: A/Professor R Coleman
Session: Semester 2
Classes: 2 lectures per week, 6 x 1 hr tutorials, 1 x 8 hr field trip, 3 x 8 hr field trips and 1 x 3 hr practical.
Prerequisites: Distinction average in BIOL (1001 or 1191) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH).
Assumed knowledge: Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics.
Assessment: Two hour theory exam, four written reports.
Note: Entry is restricted and selection is made from applicants on the basis of previous performance.

This unit has the same objectives as BIO2018, Introduction to Marine Biology, and is suitable for students wishing to pursue aspects of the unit in greater depth. Students taking this unit will participate in alternatives to some elements of the ordinary level course and will be required to pursue the unit objectives by more independent means. Specific details of the unit will be announced in meetings, during the first week of teaching.

Textbooks
As for BIO2018

Refer to the relevant sections of this handbook for details on the following units of study:

Senior units of study

Students who intend to proceed from Intermediate to Senior Biology should refer to the booklet Information for Students Considering Senior Biology Units of Study, which is available from the School Office (The Cottage, A10 Science Road) and at www.bio.usyd.edu.au/currentstudents/third.html. Students should discuss their unit of study choices with a Biology Staff member before enrolling. A major in Biology comprises 24 credit points of Senior Biology units of study. Units of study followed by (MS) may be used to count towards a major in Marine Science.

Senior units of study offered: Pre-semester 1

BIO3010 Tropical Wildlife Biology and Management (Pre-Semester 1 intensive). BIO3017 Fungi in the Environment – (Summer Break and Semester 1). (Plus Advanced versions of the above – BIO39xx)

BIO3006 Ecological Methods

Credit points: 6
Teacher/Coordinator: Dr Clare McArthur
Session: Semester 1
Classes: Two 1 hour lecture and one 3 hour laboratory per week.
Prerequisites: 12 credit points of Intermediate Biology or 6 credit points of Intermediate BIOL units and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.
Prohibitions: BIO3006, MARS3102.
Assumed knowledge: BIO (2011 or 2911 or 2012 or 2912) or PLNT (2002 or 2902).
Assessment: One, 2 hour exam 40%, practical assignments (including calculations, reports and reviews) 60%.

This unit will consider ecology as a quantitative, experimental and theoretical science. It is concerned with the practical skills and philosophical background required to explore questions and test hypotheses in the real world. Application of ecological methods and theory to practical problems will be integrated throughout the unit of study. Lectures will focus on sound philosophical and experimental principles, drawing on real examples for demonstration of concepts, and will be useful as one basis for informed conservation and management of natural populations and habitats. Practical sessions will be used to gain experience in effective sampling, determining patterns of distribution and abundance, estimating ecological variables, and statistically analysing ecological data. Computer simulations and statistical packages for analyses will be used where appropriate.

Textbooks

BIO3006 Ecological Methods (Advanced)

Credit points: 6
Teacher/Coordinator: Dr C McArthur
Session: Semester 1
Classes: Two 1 hour lectures and one 3 hour laboratory per week.
Prerequisites: Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.
Prohibitions: BIO3006, MARS3102.
Assumed knowledge: BIO (2011 or 2911 or 2012 or 2912) or PLNT (2002 or 2902).
Assessment: One 2 hour exam 40%, practical assignments (including calculations, reports and reviews) 60%.

This unit has the same objectives as BIO3006 Ecological Methods, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from the applicants on the basis of their previous performance. Students taking this unit will participate in alternatives to some elements of the standard course and will be required to pursue the objectives by more independent means. Specific details of this unit of study and

Further information

Details of lectures and practical classes are given in the booklet: Information for Students Considering Senior Biology Units of Study. Any combination of units may be chosen subject to timetable and prerequisite constraints. Units of study are offered subject to student numbers, availability of staff and resources. Quotas exist on BIOL 3008/3908 Marine Field Ecology, and BIOL 3009/3909 Terrestrial Field Ecology. When necessary, selection is based on academic merit. Students majoring in Marine Science must enrol in 24 credit points of Senior Marine Science, including at least 6 credit points of Senior Biology (from those marked MS) and 6 credit points from GEOS units. If these credit points are taken as part of Marine Science major they may not be counted towards a Biology major.

Selecting units of study

Select your units of study after checking (a) that you have passed the qualifying units of study stated for each unit of study, and (b) checking your timetable. You are strongly advised to check the most up-to-date information (including details of quotas in Marine modules) in the booklet: Information for Students Considering Senior Biology Units of Study, available from the School Office (The Cottage, A10, Science Road).

Textbooks

A list of textbooks and reference books is provided in the booklet: Information for Students Considering Senior Biology Units of Study.
assessment will be announced in meetings with students in week 1 of semester 1. This unit of study may be taken as part of the BSc (Advanced) program.

Textbooks
As for BIOL3006

BIOL3007 Ecology

Credit points: 6 Teacher/Coordinator: Dr D Hochuli Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour laboratory per week. Prerequisites: 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV1211 or MARS2006; or 12 credit points of MARS units, including MARS2006. Prohibitions: BIOL3907, MARS3102. Assumed knowledge: Although not prerequisites, knowledge obtained from BIOL3006/3906, and BIOL3008/3908 and/or BIOL3009/3909, is strongly recommended. Assessment: One 2hr exam, presentations, essay, project report.

This unit explores the dynamics of ecological systems, and considers the interactions between individual organisms and populations, organisms and the environment, and ecological processes. Lectures are grouped around four dominant themes: Interactions, Evolutionary Ecology, The Nature of Communities, and Conservation and Management. Emphasis is placed throughout on the importance of quantitative methods in ecology, including sound planning and experimental designs, and on the role of ecological science in the conservation, management, exploitation and control of populations. Relevant case studies and examples of ecological processes are drawn from marine, freshwater and terrestrial systems, with plants, animals, fungi and other life forms considered as required. Students will have some opportunity to undertake short term ecological projects, and to take part in discussions of important and emerging ideas in the ecological literature.

Textbooks

BIOL3907 Ecology (Advanced)

Credit points: 6 Teacher/Coordinator: Dr G Wardle Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour laboratory per week. Prerequisites: Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV1211 or MARS2006; or 12 credit points of MARS units, including MARS2006. Prohibitions: BIOL3907, MARS3102. Assumed knowledge: Although not prerequisites, knowledge obtained from BIOL3006/3906, and BIOL3008/3908 and/or BIOL3009/3909, is strongly recommended. Assessment: One 2hr exam, presentations, essay, project report.

This unit has the same objectives as BIOL3007 Ecology, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted and selection is made from applicants on the basis of previous performance. Students taking this unit of study will be expected to take part in a number of additional tutorials after the field course on advanced aspects of experimental design and analysis and will be expected to incorporate these advanced skills into their analyses and project reports. This unit may be taken as part of the BSc(Advanced).

Textbooks
As for BIOL 3008.

BIOL3009 Terrestrial Field Ecology

Credit points: 6 Teacher/Coordinator: Dr G Wardle Session: S2 Intensive Classes: Note: One 6 day field trip held in the pre-semester break and 4 practical classes during weeks 1-4 in Semester 2. Prerequisites: 12 credit points of Intermediate Biology or ANSC2004 and BIOM2001. Prohibitions: BIOL3909. Assumed knowledge: BIOL (3006 or 3906). Prior completion of one of these units is very strongly recommended. Assessment: Discussions and quiz (10%), research project proposal and brief presentation (10%), sampling project report (20%), specimen collection (10%), research project report (50%). Note: Dates: 3 - 10 July 2010.

This field course provides practical experience in terrestrial ecology suited to a broad range of careers in ecology, environmental consulting and wildlife management. Students learn a broad range of ecological sampling techniques and develop a detailed understanding of the logical requirements necessary for manipulative ecological field experiments. The field work incorporates survey techniques for plants, small mammals and invertebrates and thus provides a good background for ecological consulting work. Students attend a week-long field course and participate in a large-scale research project as well as conducting their own research project. Invited experts contribute to the lectures and discussions on issues relating to the ecology, conservation and management of Australia's terrestrial flora and fauna.

Textbooks
As for BIOL3008.

BIOL3008 Marine Field Ecology

Credit points: 6 Teacher/Coordinator: A/Prof Ross Coleman Session: S2 Intensive Classes: Intensive 8-day-field course held in the pre-semester break. Prerequisites: 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV1211 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006. Prohibitions: BIOL3908, MARS3102. Assumed knowledge: BIOL (3006 or 3906). Prior completion of one of these units is very strongly recommended. Assessment: Discussion groups, research project proposal, biodiversity survey report, data analysis and checking, research project report. Note: Dates: 3 - 10 July 2010.

This field course provides a practical introduction to the experimental analysis of marine populations and assemblages. Students gain experience using a range of intertidal sampling techniques and develop a detailed understanding of the logical requirements necessary for manipulative ecological field experiments. No particular mathematical or statistical skills are required for this subject. Group experimental research projects in the field are the focus of the unit during the day, with lectures and discussion groups about the analysis of experimental data and current issues in experimental marine ecology occurring in the evening.

Textbooks
This unit has the same objectives as BIOL3009 Terrestrial Field Ecology, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from applicants on the basis of previous performance. Students taking this unit of study will complete an individual research project on a topic negotiated with a member of staff. It is expected that much of the data collection will be completed during the field trip but some extra time may be needed during semester 2. Specific details of this unit of study and assessment will be announced in meetings with students at the beginning of the unit. This unit of study may be taken as part of the BSc (Advanced) program.

BIOL3010

Tropical Wildlife Biology and Management

Credit points: 6
Teacher/Coordinator: Dr J Webb
Session: S1 Intensive
Classes: 5 day Field School, followed by 5 days of classes at Sydney University.
Prerequisites: 12 credit points of Intermediate Biology (BIOL/ENV/LPLNT), or equivalent.
Prohibitions: BIOL3910 Assumed knowledge: None, although BIOL2012/2912 (Vertebrates and their Origins) would be useful.
Assessment: One 2 hour exam, one 1 hour practical exam, a two page report, a 2000 word paper and a 15 minute oral presentation.
Note: Dates: 14 February - 19 February 2010 Northern Territory, followed by tutorials and practical classes at the University of Sydney 22 February - 26 February 2010.

Due to its isolation from the rest of the world and unique evolutionary history, the Australian terrestrial vertebrate fauna (amphibians, reptiles, birds and mammals) is highly unusual, and hence has a lot to offer in the study of evolutionary processes. The rarity of some species and Australia's unusual climate and landforms present special challenges for the management of our native wildlife. This unit of study addresses the evolution, ecology and management of Australia's terrestrial fauna. The subject comprises a five-day field course in the Northern Territory, near Darwin, where students will learn field-based techniques in wildlife management, combined with lectures given by experts in the evolution, ecology and management of wildlife.

BIOL3910

Tropical Wildlife Biol & Management Adv

Credit points: 6
Session: S1 Intensive
Classes: 5 day Field School followed by 5 days of classes at Sydney University.
Prerequisites: Distinction average in 12 credit points of Intermediate Biology (BIOL/ENV/LPLNT).
Prohibitions: BIOL3010 Assumed knowledge: None, although BIOL2012/2912 (Vertebrates and their Origins) would be useful.
Assessment: One 2 hour exam, one 1 hour practical exam, a 2000 word practical report, one 15 minute oral presentation.
Note: Department permission required for enrolment.
Note: Dates: 14 - 19 February 2010 Northern Territory followed by tutorials and practical classes at the University of Sydney 22 - 26 February 2010.

This unit has the same objectives as BIOL3010 Tropical Wildlife Biology and Management, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from the applicants on the basis of their previous performance. Students taking this unit of study will participate in alternatives to some elements of the standard course and will be required to pursue the objectives by more independent means. Specific details of this unit of study and assessment will be announced in meetings with students at the beginning of the unit. This unit of study may be taken as part of the BSc(Advanced) program.

BIOL3011

Ecophysiology

Credit points: 6
Teacher/Coordinator: A/Prof Seebacher
Session: Semester 1
Classes: Two 1 hour lectures and one 4 hour laboratory per week.
Prerequisites: 12 credit points of Intermediate Biology or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.
Prohibitions: BIOL3911 Assumed knowledge: BIOL (2012 or 2912 or 2016 or 2916) or PLNT (2003 or 2903).
Assessment: One 1.5 hour exam, field trip seminar, laboratory report.
Note: The completion of 6 credit points of MBLG units is highly recommended.

Ecophysiology is a conceptually based unit of study that covers physiological interactions between organisms and their environments. The unit focuses on the evolution of physiological capacities and how these may explain the ecology and biogeography of organisms. Lectures are based on the current primary literature. Lecturers have active research programs on the topics they cover and will present original research findings where appropriate. Examples are mainly from insects, vertebrates, and marine organisms. As part of the practical component, students design their own original research projects to be conducted during a week-end long field trip, and during self-directed laboratory sessions.

BIOL3911

Ecophysiology (Advanced)

Credit points: 6
Teacher/Coordinator: A/Prof Seebacher
Session: Semester 1
Classes: Two 1 hour lectures and one 4 hour laboratory per week.
Prerequisites: Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.
Assessment: One 1.5 hour exam, field trip seminar, independent project report.
Note: The completion of 6 credit points of MBLG units is highly recommended.

Ecophysiology (Advanced) shares the same lectures as BIOL 3011 Ecophysiology, but it includes an independent project in place of the laboratory report (equivalent of 30% of Ecophysiology). The content and nature of the independent project varies and students are encouraged to design their own project.

BIOL3012

Animal Physiology

Credit points: 6
Teacher/Coordinator: Dr M Thomson
Session: Semester 1
Classes: Two 1 hour lectures and one 4 hour laboratory per week.
Prerequisites: Distinction average in 12 credit points of Intermediate Biology including BIOL (2012 or 2912 or 2016 or 2916) or PLNT (2003 or 2903).
Prohibitions: BIOL3912 Assessment: One 1.5 hour exam, laboratory/library reports.
Assessment: One 1.5 hour exam, laboratory reports, independent project report.
Note: The completion of 6 credit points of MBLG units is highly recommended.

Animal Physiology (Advanced) shares the same lectures as Animal Physiology, but it includes an independent project in place of one or more components of the laboratory classes to the equivalent of 30% of Animal Physiology. The content and nature of the independent project may vary from year to year.

BIOL3013

Marine Biology

Credit points: 6
Teacher/Coordinator: Dr W Figueira
Session: Semester 1
Classes: Two 1 hour lectures and one 4 hour laboratory per week.
Prerequisites: 12 credit points of Intermediate Biology, or 6 credit points of Intermediate BIOL and ENV2111 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.
Prohibitions: BIOL3913 Assumed knowledge: BIOL 2018 or MARS2006 Assessment: Practical reports, paper criticisms and other assignments
Assessment: One 6 credit points of MBLG units is highly recommended.

We will examine in detail processes that are important for the establishment and maintenance of marine communities. Lectures will...
expose students to the key ideas, researchers and methodologies within selected fields of marine biology. Laboratory sessions will complement the lectures by providing students with hands-on experience with the organisms and the processes that affect them. Students will develop critical analysis and scientific writing skills while examining the current literature.

Biol3913 Marine Biology (Advanced)
Credit points: 6
Teacher/Coordinator: Dr W Figueira
Session: Semester 1
Classes: Two 1 hour lectures and one 4 hour laboratory per week.
Prerequisites: Distinction average in 12 credit points of Intermediate Biology; or 6 credit points of Intermediate BIOL and ENV1211 or MARS2006; or 12 credit points of Intermediate MARS units, including MARS2006.
Assessment: Practical reports, paper criticisms and other assignments.
Note: The completion of 6 credit points of MBLG units is highly recommended.

Qualified students will participate in alternative components of the BIOL3013 Marine Biology unit. The content and nature of these components may vary from year to year.

Biol3017 Fungi in the Environment
Credit points: 6
Teacher/Coordinator: A/Prof P McGee
Session: S1 Intensive
Classes: 40 hours of practicals in a two week intensive program held immediately prior to semester one (laboratory component each morning from 15-26 February 2010), plus the equivalent of 30 hours self-guided study during the semester.
Prerequisites: 12 credit points of Intermediate Biology or Plant Science, or 6 credit points of Intermediate Biology, or Plant Science, and 6 Intermediate credit points of either Microbiology or Geography.
Prohibitions: BIOL3917.
Assessment: Selected from one 2 hour take home exam, laboratory and written assignments.
Note: Dates: 15-26 February 2010. The completion of 6 credit points of MBLG units is highly recommended.

The unit is designed to develop understanding of fungal ecology in relation to environmental and rehabilitation biology, biological control of pests and pathogens, and soil microbiology. Emphasis will be placed on the function of fungi, and the benefit provided by fungi in symbiotic interactions with plants, including mycorrhizal fungi and shoot-borne endophytes. Physiological and ecological implications of the interactions will also be considered. Each student will design and implement a research project. Analytical thinking and research-led activity will be encouraged. Using broad scientific approaches, each student will gain the capacity to work cooperatively to find and analyse information from primary sources, develop approaches to test their understanding, and to present their work in a scientifically acceptable manner. Students will develop a deeper understanding of one area of fungal biology through independent study. Part of the learning material will be available on the internet.

Biol3917 Fungi in the Environment (Advanced)
Credit points: 6
Teacher/Coordinator: A/Prof P McGee
Session: S1 Intensive
Classes: 40 hours of practical work in a two week intensive program immediately prior to semester one (laboratory component each morning from 15-26 February 2010), plus the equivalent of 30 hours self-guided study during the semester.
Prerequisites: Distinction average in 12 credit points of Intermediate Biology and Plant Science, or 6 credit points of Intermediate Biology, or Plant Science, and 6 Intermediate credit points of either Microbiology or Geography.
Prohibitions: BIOL3017.
Assessment: Selected from one 2 hour take home exam, laboratory and written assignments.
Note: The completion of 6 credit points of MBLG units is highly recommended.

Qualified students will be encouraged to develop a research project under supervision. The content and nature of the research will be agreed on with the executive officer.

Biol3018 Applications of Recombinant DNA Tech
Credit points: 6
Teacher/Coordinator: Dr B Lyon
Session: Semester 1
Classes: Two 1 hour lectures per week; up to 4 hours laboratory per week.
Prerequisites: 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMedSc students: 36 credit points of Intermediate BMED units including BMED2802.
Prohibitions: BIOL3918.
Assessment: One 2 hour exam, practical reports, assignment/seminar

A unit of study with lectures, practicals and tutorials on the application of recombinant DNA technology and the genetic manipulation of prokaryotic and eukaryotic organisms. Lectures cover the applications of molecular genetics in biotechnology and consider the impact and implications of genetic engineering. Topics include techniques and expression of foreign genes in bacteria, yeast, animal and plant cells, novel human and animal therapeutics and vaccines including human gene therapy, new diagnostic techniques for human and veterinary disease, the transformation of animal and plant cells, the genetic engineering of animals and plants, and the environmental release of genetically-modified (transgenic) organisms. Practical work may include nucleic acid isolation and manipulation, gene cloning and PCR amplification, DNA sequencing and computer analysis of gene sequences, immunological detection of proteins, and the genetic transformation and assay of plants.

Biol3918 Applications of Recombinant DNA Tech Adv
Credit points: 6
Teacher/Coordinator: Dr B Lyon
Session: Semester 1
Classes: Two 1 hour lectures per week, and up to 4 hours laboratory per week.
Prerequisites: Distinction average in 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMedSc students: 36 credit points of Intermediate BMED units including BMED2802.
Prohibitions: BIOL3018.
Assessment: One 2 hour exam, assignment/seminar

Qualified students will participate in alternative components of Biol3018 Applications of Recombinant DNA Technology. The content and nature of these components may vary from year to year.

Biol3025 Evolutionary Genetics & Animal Behaviour
Credit points: 6
Teacher/Coordinator: Prof Oldroyd, A/Prof Beekman
Session: Semester 2
Classes: Two 1 hour lectures and up to 4 hours of laboratory per week.
Prerequisites: 12 credit points from (MBLG 2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMedSc students: 36 credit points of Intermediate BMED units including BMED2802.
Prohibitions: BIOL3025.
Assessment: One 1.5 hour exam, assignments, seminar

The unit of study covers the main themes of modern evolutionary theory including population genetics. In the practicals, students use molecular methods to quantify genetic variation in natural populations. Using these skills we will search for population subdivision and discuss how this can lead to speciation. Lectures will cover how the evolution of traits can be tracked using the comparative method. We will consider how studies of sex ratios, sexual selection, kin selection, game theory and quantitative genetics can illuminate the mechanisms by which animals have evolved, and explain why they behave as they do. We will then consider if these themes have any relevance to human sociobiology. The unit also covers the role of genetics in conservation. There will be a field trip to collect organisms for population genetic analysis. There will be plenty of opportunity in the student seminars to examine the more controversial aspects of modern evolutionary thought.

Biol3025 Evolutionary Gen. & Animal Behaviour Adv
Credit points: 6
Teacher/Coordinator: Prof B Oldroyd, A/Prof Beekman
Session: Semester 2
Classes: Two 1 hour lectures and up to 4 hours of laboratory per week.
Prerequisites: Distinction average in 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMedSc students: 36 credit points of Intermediate BMED units including Distinction in BMED2802.
Prohibitions: BIOL3025.
Assessment: One 1.5 hour exam, assignments, seminar.

Qualified students will participate in alternative components of Biol3025 Evolutionary Genetics and Animal Behaviour. The content and nature of these components may vary from year to year. Some assessment will be in an alternative format to components of Biol3025.

Biol3026 Developmental Genetics
Credit points: 6
Teacher/Coordinator: Dr J Saleeba
Session: Semester 2
Classes: Two 1 hour lectures and up to 3 hours laboratory per week.
Prerequisites: 12 credit points from MBLG (2071/2971) and MBLG (2072/2972). For BMedSc students: 36 credit points of Intermediate BMED units including

159

9. Undergraduate units of study
This unit discusses current understanding of developmental genetics with emphasis on molecular genetics. The developmental genetics of model plants and animals will be investigated. In particular, the molecular genetics of vertebrate development, pattern formation and gene expression, the study of mutants in development, plant specific processes such as root formation and flowering, will be covered making reference to modern techniques such as transgenics, recombinant DNA technology, and tissue-specific expression analysis. Various methods of genetic mapping will be covered. Practical work complements the theoretical aspects and develops important genetical skills.

BIOL3026 Developmental Genetics (Advanced)

Credit points: 6
Teacher/Coordinator: Dr J Saleeba
Session: Semester 2
Classes: Two 1 hour lectures and up to 3 hours of laboratory per week.

Prerequisites: Distinction average in 12 credit points from MBLG (2071/2971), and MBLG (2072/2972). For BMEDSc students: 36 credit points of Intermediate BMED units including Distinction in BMED2802.
Prohibitions: BIOL3026
Assessment: One 2 hour exam, assignments.

Qualified students will participate in alternative components to BIOL3026 Developmental Genetics. The content and nature of these components may vary from year to year. Some assessment will be in an alternative format to components of BIOL3026.

BIOL3027 Bioinformatics and Genomics

Credit points: 6
Teacher/Coordinator: Dr N Firth
Session: Semester 1
Classes: Two 1 hour lectures and up to 3 hours laboratory per week.

Prerequisites: 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMEDSc students: 36 credit points of Intermediate BMED units including BMED 2802.
Prohibitions: BIOL3027
Assessment: One 2 hour exam, assignments.

A unit of study comprising lectures, practical assignments and tutorials on the application of bioinformatics to the storage, retrieval and analysis of biological information, principally in the form of nucleotide and amino acid sequences. Although the main emphasis is on sequence data, other forms of biological information are considered. The unit begins with the assembly and management of nucleotide sequence data and an introduction to the databases that are normally used for the storage and retrieval of biological data, and continues with signal detection and analysis of deduced products, sequence alignment, and database search methods. Phylogenetic reconstruction based on distance-based methods, parsimony methods and maximum-likelihood methods is described and students are introduced to the idea of tree-space, phylogenetic uncertainty, and taught to evaluate phylogenetic trees and identify factors that will confound phylogenetic inference. Finally, whole genome analysis and comparative genomics are considered. The unit gives students an appreciation of the significance of bioinformatics in contemporary biological science by equipping them with skills in the use of a core set of programs and databases for "in silico" biology, and an awareness of the breadth of bioinformatics resources and applications.

BIOL3927 Bioinformatics and Genomics (Advanced)

Credit points: 6
Teacher/Coordinator: Dr N Firth
Session: Semester 1
Classes: Two 1 hour lectures and one 3 hour laboratory per week.
Prerequisites: Distinction average in 12 credit points from MBLG (2071/2971), MBLG (2072/2972) and Intermediate Biology units. For BMEDSc students: 36 credit points of Intermediate BMED units including Distinction in BMED 2802.
Prohibitions: BIOL3027
Assessment: One 2 hour exam, assignments.

Qualified students will participate in alternative components of BIOL3027 Bioinformatics and Genomics. The content and nature of these components may vary from year to year. Some assessment will be in an alternative format.

Refer to the relevant sections of this handbook for details on the following Plant Science units of study

Biology Honours

A single Honours program in Biology accommodates students who have completed 24 credit points of Senior Biology Life Sciences units and have a minimum WAM of 65. Information about qualifications for entry into Honours is available from the School Office (Science Road Cottage, A10), or on the School of Biological Sciences website. During the honours year the principles established in the first three years of the undergraduate award course are further developed, and students are introduced to a wider field of biology and biological techniques. Students may elect to specialise in any of the aspects of biology that are studied in the School. Projects jointly supervised by staff in other Schools or Departments within the University may also be considered. Students who have indicated their intention of entering the Honours program will be notified of acceptance after the publication of the second semester Senior examination results. Honours students start their academic year in late January, or in July.

The honours year comprises:

1. A project in which the student investigates a problem and presents oral and written accounts of his or her research.
2. A coursework unit – BIOL4015 Scientific Research in Biology, instruction in experimental design, and other technical training. The degree will be awarded on the basis of: (a) written assignments from coursework units; (b) marks awarded for a thesis on the subject of the project.

Graduate Diploma in Science (Biology)

The Graduate Diploma program in Biology is available as a one year full-time or two year part-time course. The course is intended for students wishing to progress beyond a pass degree but not via the honours degree, or who are ineligible for admission to honours. Students enrolled in the one year course will follow the same program as Biology honours students and be assessed using similar criteria. Students may therefore elect to specialise in any area within the research interests of the School. Projects jointly supervised by staff in other Schools or Departments within the University may also be considered. Students undertaking the two year course (part-time) will follow the same curriculum but will satisfactorily complete the instructed elements of the course before progressing to the project element at the end of the first year. Students who have signified their intention to enter the Graduate Diploma program will be notified of acceptance after the publication of the second semester senior examination results. Graduate Diploma students are expected to start their academic year in late January, or in July. The composition of the Graduate Diploma course is identical to that for honours (see Biology Honours).

Postgraduate study in Biology

MSc and PhD degrees by research are available in the School. On completion of an honours degree (at first or second class level), MSc Preliminary course or Graduate Diploma in Science, students may pursue candidature for MSc degrees by research. The range of research fields offered and the fields of each member of academic staff are listed on the School’s website at www.bio.usyd.edu.au.

Cell Pathology

Cell Pathology is taught by the Discipline of Pathology, located on Level 5 of the Blackburn Building (phone 9351 2414). The discipline maintains a website to help students access information and resources: www.pathology.usyd.edu.au.

CPAT3201 Pathogenesis of Human Disease 1

Credit points: 6
Teacher/Coordinator: A/Prof Bob Bao
Session: Semester 2
Classes: Three 1 hour lectures and one 3 hour tutorial per week.

Prerequisites: At least 6cp intermediate of one of the following: ANAT or BCHM
or MBLG or BIOL or HPSC or MICR or PCOL or PSII, or as the head of department determines. **Assessment:** One 2 hour exam (60%), one major research essay (1500w) (20%) generation of detractors for MCQ stems with referenced support texts for these (20%).

The Pathogenesis of Human Disease 1 unit of study modules will provide a theoretical background to the scientific basis of the pathogenesis of disease. Areas covered in theoretical modules include: tissue responses to exogenous factors, adaptive responses to foreign agents, cardiovascular/pulmonary/gut responses to disease, forensic science, neuropathology and cancer.

The aim of the course is
- To give students an overall understanding of the fundamental biological mechanisms governing disease pathogenesis in human beings.
- To introduce to students basic concepts of the pathogenesis, natural history and complications of common human diseases.
- To demonstrate and exemplify differences between normality and disease.
- To explain cellular aspects of certain pathological processes.

Together with CPAT3202, the unit of study would be appropriate for those who intend to proceed to Honours research, to professional degrees or to careers in biomedical areas such as hospital science. Together with CPAT3202, it fulfills the Pathology requirements for the Centre for Chiropractic at Macquarie University.

Textbooks

CPAT3202 Pathogenesis of Human Disease 2

Credit points: 6
Teacher/Coordinator: A/Prof Bob Bai
Session: Semester 2
Classes: One 2 hour practical per week and one 2 hour museum practical.
Prerequisites: At least 6cp intermediate of one of the following: ANAT or BCHM or MBLG or BIOL or HPSC or PCOL or PSII, or as the head of department determines.
Corequisites: CPAT3201
Assessment: One 2 hour exam (70%), Museum Practical Reports (30%).

The Pathogenesis of Human Disease 2 unit of study modules will provide a practical background to the scientific basis of the pathogenesis of disease. Areas covered in practical modules include disease specimen evaluation on a macroscopic and microscopic basis.

The aim of the course is
- To enable students to gain an understanding of how different organ systems react to injury and to apply basic concepts of disease processes.
- To equip students with skills appropriate for careers in the biomedical sciences and for further training in research or professional degrees.

At the end of the course students will:
- Have acquired practical skills in the use of a light microscope.
- Have an understanding of basic investigative techniques for disease detection in pathology.
- Be able to evaluate diseased tissue at the macroscopic and microscopic level.
- Have the ability to describe, synthesise and present information on disease pathogenesis.
- Transfer problem-solving skills to novel situations related to disease pathogenesis.

The unit of study would be appropriate for those who intend to proceed to Honours research, to professional degrees or to careers in biomedical areas such as hospital science. Together with CPAT3201, it fulfills the Pathology requirements for the Centre for Chiropractic at Macquarie University.

Textbooks

Chemical Engineering

The School of Chemical and Biomolecular Engineering is part of the Faculty of Engineering and Information Technologies. In addition to providing professional training in this branch of engineering it offers CHNG1103 Introduction to Material and Energy Transformations to students enrolled in the Faculty of Science. Details regarding this unit of study can be obtained from the Faculty of Engineering and Information Technologies Handbook. This unit of study is intended to give a science student some insight into the principles which control the design and performance of large scale industrial processing plants. Faculty of Science students are invited to enrol in any other chemical engineering unit of study, provided they have the appropriate prerequisites and have consulted with the Head of School.

Advanced standing for Science students transferring to BEng(Chemical Engineering)

Science graduates may obtain up to two years advanced standing towards a Bachelor of Engineering degree in Chemical Engineering. Students wishing to undertake this option must seek academic advice from the School of Chemical and Biomolecular Engineering. Further details regarding admission to the BE in Chemical Engineering may be obtained from the Engineering and Information Technologies Faculty Office.

Chemistry

Junior units of study

The School of Chemistry offers a number of 6 credit point units of study to cater for the differing needs of students. These units of study are: CHEM1001 Fundamentals of Chemistry 1A, CHEM1002 Fundamentals of Chemistry 1B, CHEM1101 Chemistry 1A, CHEM1102 Chemistry 1B, CHEM1108 Chemistry 1 Life Sciences A, CHEM1109 Chemistry 1 Life Sciences B, CHEM1901 Chemistry 1A (Advanced), CHEM1902 Chemistry 1B (Advanced), CHEM1903 Chemistry 1A (Special Studies Program), CHEM 1904 Chemistry 1B (Special Studies Program).

Obtaining detailed information about units

Details on Chemistry Junior Units of Study is available at the Chemistry First Year website (http://firstyear.chem.usyd.edu.au). This information is also provided in a booklet: 'Information for Students', which is distributed to students at the time of enrolment, and is also available from the Chemistry First Year Office. The coordinator for all Junior Chemistry units of study is A/Prof Adam Bridgeman.

CHEM1001 Fundamentals of Chemistry 1A

Credit points: 6
Session: Semester 1
Classes: Three 1 hour lectures and one 1 hour tutorial per week; one 3 hour practical per week for 10 weeks.
Prerequisites: CHEM1101, CHEM1901, CHEM1109, CHEM1903
Assumed knowledge: There is no assumed knowledge of chemistry for this unit of study, but students who have not undertaken an HSC chemistry course are strongly advised to complete a chemistry bridging course before lectures commence.
Assessment: Theory examination (70%), laboratory exercises and continuous assessment quizzes (30%).
Practical field work: A series of 10 three-hour laboratory sessions, one per week for 10 weeks of the semester.

The aim of the unit of study is to provide those students whose chemical background is weak (or non-existent) with a good grounding in fundamental chemical principles together with an overview of the relevance of chemistry. There is no prerequisite or assumed knowledge for entry to this unit of study. Lectures: A series of 39 lectures, three per week throughout the semester.

Textbooks
A booklet is contained in the booklet Junior Chemistry distributed at enrolment. Further information can be obtained from the School.

CHEM1002 Fundamentals of Chemistry 1B

Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week; one 3 hour practical per week for 10 weeks.
Prerequisites: CHEM (1001 or 1101) or equivalent
Assumptions: CHEM1102, CHEM1108, CHEM1902, CHEM1904
Assessment: Theory examination (70%), laboratory exercises and continuous assessment quizzes (30%).
Practical field work: A series of 10 three-hour laboratory sessions, one per week for 10 weeks of the semester.
CHEM1002 builds on CHEM1001 to provide a sound coverage of inorganic and organic chemistry. Lectures: A series of 39 lectures, three per week throughout the semester.

Textbooks
A booklist is contained in the booklet Junior Chemistry distributed at enrolment. Further information can be obtained from the School.

CHEM1101
Chemistry 1A
Credit points: 6 Session: Semester 1, Semester 2, Sumner Main Classes: Three 1 hour lectures and one 1 hour tutorial per week; one 3 hour practical per week for 10 weeks. Prerequisites: CHEM1001, CHEM1002, CHEM1108, CHEM1904 Assumed knowledge: HSC Chemistry and Mathematics Assessment: Theory examination (70%), laboratory exercises and continuous assessment quizzes (30%). Practical field work: A series of 10 three-hour laboratory sessions, one per week for 10 weeks of the semester.

Chemistry 1A is built on a satisfactory prior knowledge of the HSC Chemistry course. A brief revision of basic concepts of the high school course is given. Chemistry 1A covers chemical theory and physical chemistry. Lectures: A series of 39 lectures, three per week throughout the semester.

Textbooks
A booklist is contained in the booklet Junior Chemistry distributed at enrolment. Further information can be obtained from the School.

CHEM1102
Chemistry 1B
Credit points: 6 Session: Semester 1, Semester 2, Sumner Main Classes: One 3 hour lecture and 1 hour tutorial per week; one 3 hour practical per week for 10 weeks. Prerequisites: CHEM1101 or a Distinction in CHEM1001 or equivalent Corequisites: Recommended concurrent units of study: 6 credit points of Junior Mathematics Prohibitions: CHEM1002, CHEM1108, CHEM1904 Assessment: Theory examination (70%), laboratory exercises and continuous assessment quizzes (30%). Practical field work: A series of 10 three-hour laboratory sessions, one per week for 10 weeks of the semester.

Chemistry 1B is built on a satisfactory prior knowledge of Chemistry 1A and covers inorganic and organic chemistry. Successful completion of Chemistry 1B is an acceptable prerequisite for entry into Intermediate Chemistry units of study. Lectures: A series of 39 lectures, three per week throughout the semester.

Textbooks
A booklist is contained in the booklet Junior Chemistry distributed at enrolment. Further information can be obtained from the School.

CHEM1108
Chemistry 1A Life Sciences
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures and one 1 hour tutorial per week; one 3 hour practical per week for 10 weeks. Corequisites: Recommended concurrent units of study: 6 credit points of Junior Mathematics Prohibitions: CHEM1002, CHEM1102, CHEM1108, CHEM1904 Assumed knowledge: HSC Chemistry and Mathematics Assessment: Theory examination (70%), laboratory exercises and continuous assessment quizzes (30%). Practical field work: A series of 10 three-hour laboratory sessions, one per week for 10 weeks of the semester.

Note: This unit of study is available to students enrolled in the Bachelor of Medical Science, the Bachelor of Science (Molecular Biology and Genetics), the Bachelor of Science (Nutrition) and the Bachelor of Science (Molecular Biotechnology) only.

Lectures (39 hrs): A strong background in junior chemistry is essential for understanding molecular structures and processes. This unit of study provides the basis for understanding fundamental chemical processes and structures at an advanced level, with particular emphasis on how these apply to the life sciences. Topics to be covered include: chemical equilibria, solutions, acids and bases, ions in solution, redox reactions, colloids and surface chemistry, the biological periodic table, chemical kinetics and radiochemistry with applications to life sciences.

Tutorials (12 hrs): These will provide aspects of problem solving relevant to the unit of study.

Textbooks
A booklist is contained in the booklet Junior Chemistry distributed at enrolment. Further information can be obtained from the School.

CHEM1109
Chemistry 1B Life Sciences
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorial per week; one 3 hour practical per week for 10 weeks. Prerequisites: CHEM1108 Corequisites: Recommended concurrent units of study: 6 credit points of Junior Mathematics Prohibitions: CHEM1001, CHEM1101, CHEM1901, CHEM1903 Assessment: Theory examination (70%), laboratory exercises and continuous assessment quizzes (30%). Practical field work: A series of 10 three-hour laboratory sessions, one per week for 10 weeks.

Note: This unit of study is available to students enrolled in the Bachelor of Medical Science, the Bachelor of Science (Molecular Biology and Genetics), the Bachelor of Science (Nutrition) and the Bachelor of Science (Molecular Biotechnology) only.

Lectures (39 hrs): A strong background in junior chemistry is essential for understanding molecular structures and processes. This unit of study provides the basis for understanding fundamental chemical processes and structures at an advanced level, with particular emphasis on how these apply to the life sciences. Topics to be covered include: chemical equilibria, solutions, acids and bases, ions in solution, redox reactions, colloids and surface chemistry, the biological periodic table, chemical kinetics and radiochemistry with applications to life sciences.

Tutorials (12 hrs): These will provide aspects of problem solving relevant to the unit of study.

Textbooks
A booklist is contained in the booklet Junior Chemistry distributed at enrolment. Further information can be obtained from the School.
A booklet is contained in the booklet Junior Chemistry distributed at enrolment. Further information can be obtained from the School.

CHEM1903
Chemistry 1A (Special Studies Program)
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lecture, one 4 hour tutorial per week and one 3 hour practical per week. Prerequisites: UAI or ATAR equivalent or at least 35.7 and HSC Chemistry result in Band 6. Corequisites: Recommended concurrent unit of study: 6 credit points of Junior Mathematics. Prohibitions: CHEM1001, CHEM1101, CHEM1109, CHEM1901. Assessment: Theory examination (70%), laboratory exercises and continuous assessment quizzes (30%). Note: Department permission required for enrolment. Note: Entry is by invitation.

Entry to Chemistry 1A (Special Studies Program) is restricted to students with an excellent school record in Chemistry. The practical work syllabus for Chemistry 1A (Special Studies Program) is very different from that for Chemistry 1A and Chemistry 1B (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1A (Advanced). A Distinction in Chemistry 1A (Special Studies Program) is an acceptable prerequisite for entry into Chemistry 1B (Special Studies Program).

CHEM1904
Chemistry 1B (Special Studies Program)
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lecture, one 4 hour tutorial per week and one 3 hour practical per week. Prerequisites: Distinction in CHEM1903. Corequisites: Recommended concurrent units of study: 6 credit points of Junior Mathematics. Prohibitions: CHEM1002, CHEM1102, CHEM1108, CHEM1902. Assessment: Theory examination (70%), laboratory exercises and continuous assessment quizzes (30%). Note: Department permission required for enrolment. Note: Entry is by invitation.

Entry to Chemistry 1B (Special Studies Program) is restricted to students who have gained a Distinction in Chemistry 1A (Special Studies Program). The practical work syllabus for Chemistry 1B (Special Studies Program) is very different from that for Chemistry 1B and Chemistry 1B (Advanced) and consists of special project-based laboratory exercises. All other unit of study details are the same as those for Chemistry 1B (Advanced). Successful completion of Chemistry 1B (Special Studies Program) is an acceptable prerequisite for entry into Intermediate Chemistry units of study.

Intermediate units of study
The School of Chemistry offers a number of units of study to cater for the differing needs and interests of students. The following 6 credit point units of study are offered: CHEM2401 Molecular Reactivity and Spectroscopy, CHEM2402 Chemical Structure and Stability, CHEM2403 Chemistry of Biological Molecules, CHEM2404 Forensic and Environmental Chemistry, CHEM2901 Molecular Reactivity and Spectroscopy (Adv), CHEM2912 Chemical Structure and Stability (Adv), CHEM2915 Molecular Reactivity and Spectroscopy (SSP), CHEM2916 Chemical Structure and Stability (SSP). Note: The core Intermediate Chemistry units CHEM (2401 or 2911 or 2915) and CHEM (2402 or 2912 or 2916) are prerequisites for all Senior Chemistry units of study.

CHEM2401
Molecular Reactivity and Spectroscopy
Credit points: 6 Teacher/Coordinator: Dr P J Rutledge Session: Semester 1 Classes: Three 1 hour lectures per week, seven 1 hour tutorials per semester, eight 4 hour practicals per semester. Prerequisites: CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1109) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics. Prohibitions: CHEM2001, CHEM2002, CHEM2003, CHEM2004, CHEM2901, CHEM2902, CHEM2903, CHEM2904, CHEM2915. Assessment: One 3 hour examination, quizzes, lab reports. Note: This is a required chemistry unit of study for students intending to major in chemistry.

This is one of the two core units of study for students considering majoring in chemistry, and for students of other disciplines who wish to acquire a good general background in chemistry. The unit considers fundamental questions of molecular structure, chemical reactivity, and molecular spectroscopy: What are chemical reactions and what makes them happen? How can we follow and understand them? How can we exploit them to make useful molecules? This course includes the organisation and medicinal chemistry of aromatic compounds, organic reaction mechanisms, vibrational and electronic spectroscopy and their applications, quantum chemistry, and molecular orbital theory.

CHEM2911
Molecular Reactivity & Spectroscopy Adv
Credit points: 6 Teacher/Coordinator: Dr P J Rutledge Session: Semester 1 Classes: Three 1 hour lectures per week, seven 1 hour tutorials per semester, eight 4 hour practicals per semester. Prerequisites: Credit average or better in CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics. Prohibitions: CHEM2001, CHEM2012, CHEM2301, CHEM2302, CHEM2303, CHEM2304, CHEM2901, CHEM2902, CHEM2903, CHEM2904, CHEM2915. Assessment: One 3 hour examination, quizzes, lab reports.

The syllabus for this unit is the same as that of CHEM2401 together with special Advanced material presented in the theory and practical programs. The lectures cover fundamental consideration of molecular electronic structure and its role in molecular reactivity and spectroscopy and include applications of spectroscopy, the organic chemistry of aromatic systems, molecular orbital theory and quantum chemistry.

CHEM2915
Molecular Reactivity & Spectroscopy SSP
Credit points: 6 Teacher/Coordinator: Dr P J Rutledge Session: Semester 1 Classes: Three 1 hour lectures per week, twelve 1 hour SSP seminars per semester, eight 4 hour practicals per semester. Prerequisites: By invitation. High WAM and a Distinction average in CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics. Prohibitions: CHEM2001, CHEM2012, CHEM2301, CHEM2311, CHEM2401, CHEM2502, CHEM2901, CHEM2903, CHEM2911. Assessment: One 3 hour examination, quizzes, assessments, lab reports. Note: Department permission required for enrolment. Note: The number of places in this unit of study is strictly limited and entry is by invitation only. Enrolment is conditional upon available places.

The lectures for this unit comprise the lectures for CHEM2401 and the Advanced practical program together with additional SSP seminars. Two streams of SSP seminars are offered: Series One comprises three seminar series on state of the art topics in chemistry (in 2009, these included Advanced Kinetics, Quantum Theory and Palladium in organic synthesis), Series Two is devoted to Advanced Theoretical Chemistry.

CHEM2402
Chemical Structure and Stability
Credit points: 6 Teacher/Coordinator: Dr P J Rutledge Session: Semester 2 Classes: Three 1 hour lectures per week, seven 1 hour tutorials per semester, eight 4 hour practicals per semester. Prerequisites: Credit average or better in CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics. Prohibitions: CHEM2202, CHEM2302, CHEM2902, CHEM2912, CHEM2916. Assessment: One 3 hour examination, quizzes, lab reports. Note: This is a required chemistry unit of study for students intending to major in chemistry.

This is the second core unit of study for students considering majoring in chemistry, and for students seeking a good general background in chemistry. The unit continues the consideration of molecular structure and chemical reactivity. Topics include the structure and bonding of inorganic compounds, the properties of metal complexes, statistical thermodynamics, the organic chemistry of carbonyl compounds and organometallic reagents, and the art of synthesis.

CHEM2912
Chemical Structure and Stability (Adv)
Credit points: 6 Teacher/Coordinator: Dr P J Rutledge Session: Semester 2 Classes: Three 1 hour lectures per week, seven 1 hour tutorials per semester, eight 4 hour practicals per semester. Prerequisites: CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109), 6 credit points of Junior Mathematics. Prohibitions: CHEM2202, CHEM2302, CHEM2402, CHEM2902, CHEM2916. Assessment: One 3 hour examination, quizzes, lab reports.
Practical sessions per semester.

Prerequisites:

Experimental investigations of iron binding proteins, organic and inorganic chemical analysis, and the characterisation of anti-inflammatory drugs.

Senior units of study

The School of Chemistry offers a choice of 6 credit point units of study to cater for the differing needs and interests of students. Each unit involves two lectures and 4 hours of lab each week.

CHEM2916

Chemical Structure and Stability (SSP)

Credit points: 6
Teacher/Coordinator: Dr P J Rutledge
Session: Semester 2
Classes: Two 1 hour lectures per week, twelve 1 hour SSP seminars per semester, eight 4 hour practicals per semester. Prerequisites: By invitation. High WAM and a Distinction average in CHEM (1101 or 1901 or 1903 or 1907 or 1908 or 1108) and CHEM (1102 or 1902 or 1904 or 1909 or 1109). 6 credit points of Junior Mathematics. Prohibitions: CHEM2202, CHEM2302, CHEM2402, CHEM2902, CHEM2912. Assessment: One 3 hour examination, quizzes, assignments, lab reports.

Note: Department permission required for enrolment. Note: The number of places in this unit of study is strictly limited and entry is by invitation only. Enrolment is conditional upon available places.

The lectures for this unit comprise the lectures for CHEM2402 and the Advanced practical program together with additional SSP seminars comprising three seminar series on state of the art topics in chemistry (in 2009, these included molecular nanomaterials and organofluorine chemistry).

CHEM2404

Forensic and Environmental Chemistry

Credit points: 6
Teacher/Coordinator: Dr P J Rutledge
Session: Semester 1
Classes: Three 1 hour lectures per week, six 1 hour tutorials and five 4 hour practical sessions per semester. Prerequisites: 12 credit points of Junior Chemistry. 6 credit points of Junior Mathematics. Prohibitions: CHEM3107, CHEM3197. Assessment: One 3 hour examination, quizzes, lab reports.

Note: To enrol in Senior Chemistry students are required to have completed CHEM (2401 or 2911 or 2915) and CHEM (2402 or 2912 or 2916). Students are advised that combinations of Intermediate Chemistry units that do not meet this requirement will generally not allow progression to Senior Chemistry.

The identification of chemical species and quantitative determination of how much of each species is present are the essential first steps in solving all chemical puzzles. In this course students learn analytical techniques and chemical problem solving in the context of forensic and environmental chemistry. The lectures on environmental chemistry will cover two main topics: atmospheric chemistry (covering air pollution, global warming and ozone depletion), and water and soil chemistry (including bio-geochemical cycling, chemical speciation, catalysis and green chemistry). The forensic component of the course examines the gathering and analysis of evidence, using a variety of chemical techniques, and the development of specialised forensic techniques in the analysis of trace evidence. Students will also study forensic analyses of inorganic, organic and biological materials (dust, soil, inks, paints, documents, etc) in police, customs and insurance investigations and learn how a wide range of techniques are used to examine forensic evidence.

CHEM2403

Chemistry of Biological Molecules

Credit points: 6
Teacher/Coordinator: Dr P J Rutledge
Session: Semester 2
Classes: Three 1 hour lectures per week, six 1 hour tutorials per semester, five 4 hour practical sessions per semester. Prerequisites: 6 credit points of Junior Chemistry. 6 credit points of Junior Mathematics. Prohibitions: CHEM2001, CHEM2901, CHEM3211, CHEM2903, CHEM2913. Assessment: One 3 hour examination, quizzes, lab reports

Note: To enrol in Senior Chemistry, students are required to have completed CHEM (2401 or 2911 or 2915) and CHEM (2402 or 2912 or 2916). Students are advised that combinations of Intermediate Chemistry units that do not meet this requirement will generally not allow progression to Senior Chemistry.

Life is chemistry, and this unit of study examines the key chemical processes that underlie all living systems. Lectures cover the chemistry of carbohydrates, lipids and DNA, the mechanisms of organic and biochemical reactions that occur in biological systems, chemical analysis of biological systems, the inorganic chemistry of metalloproteins, biomineralisation, biopolymers and biocatalysts, and the application of spectroscopic techniques to biological systems. The practical course includes the chemical characterisation of biopolymers, experimental investigations of iron binding proteins, organic and inorganic chemical analysis, and the characterisation of anti-inflammatory drugs.

CHEM3110

Biomolecules: Properties and Reactions

Credit points: 6
Session: Semester 1
Classes: Two 1 hour lectures and one 4 hour practical per week. Prerequisites: CHEM2401 or 2911 or 2915) and CHEM(2402 or 2912 or 2916). Prohibitions: CHEM3910 Assessment: One 2 hour exam, prac reports.

DNA, proteins and carbohydrates represent three classes of essential biomolecules present in all biological systems. This unit will cover the structure, reactivity and properties of biomolecules and the building blocks from which these molecules are assembled, their interactions with metal ions and small molecules, and highlight the chemical tools used to study the behaviour of biomolecules. The final section of the unit will illustrate how chemists apply the same principles used by nature in these systems to produce molecular sensors and switches for applications in medicine and industry.

CHEM3910

Biomolecules: Properties & Reactions Adv

Credit points: 6
Session: Semester 1
Classes: Two 1 hour lectures, one 1 hour seminar and one 4 hour practical per week. Prerequisites: WAM of 65 or greater and a Credit or better in: CHEM (2401 or 2911 or 2915) and CHEM (2402 or 2912 or 2916). Prohibitions: CHEM3110 Assessment: One 2 hour exam, prac reports.

DNA, proteins and carbohydrates represent three classes of essential biomolecules present in all biological systems. This unit will cover the structure, reactivity and properties of biomolecules and the building blocks from which these molecules are assembled, their interactions with metal ions and small molecules, and highlight the chemical tools used to study the behaviour of biomolecules. The final section of the unit will illustrate how chemists apply the same principles used by nature in these systems to produce molecular sensors and switches for applications in medicine and industry. CHEM3910 students attend the same lectures as CHEM3110 students but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.

CHEM3111

Organic Structure and Reactivity

Credit points: 6
Session: Semester 1
Classes: Two 1 hour lectures and one 4 hour practical per week. Prerequisites: CHEM(2401 or 2911 or 2915) and CHEM(2402 or 2912 or 2916). Prohibitions: CHEM3111 Assessment: One 2 hour exam, prac reports.

The structure and shape of organic molecules determines their physical properties, their reaction chemistry as well as their biological/medicinal activity. The determination of this structure and understanding its chemical consequences is of fundamental importance in chemistry, biochemistry, medicinal and materials chemistry. This course examines the methods and techniques used to establish the structure of organic molecules as well as the chemistry which dictates the shapes that they adopt. The first part of the course examines the use of modern spectroscopic methods (nuclear magnetic resonance spectroscopy, infrared spectroscopy and mass spectroscopy) which are used routinely to identify organic compounds. The second part of the course examines the chemical consequences of molecular shapes in more depth and looks at how different molecular shapes arise as a consequence of the mechanism of chemical reactions used to synthesise them.

CHEM3911

Organic Structure and Reactivity (Adv)

Credit points: 6
Session: Semester 1
Classes: Two 1 hour lectures, one 1 hour seminar and one 4 hour practical per week. Prerequisites: WAM of 65 or greater and a Credit or better in: CHEM (2401 or 2911 or 2915) and CHEM (2402 or 2912 or 2916). Prohibitions: CHEM3111 Assessment: One 2 hour exam, prac reports.
The structure and shape of organic molecules determines their physical properties, their reaction chemistry as well as their biological/medical activity. The determination of this structure and understanding its chemical consequences is of fundamental importance in chemistry, biochemistry, medicinal and materials chemistry. This course examines the methods and techniques used to establish the structure of organic molecules as well as the chemistry which dictates the shapes that they adopt. The first part of the course examines the use of modern spectroscopic methods (nuclear magnetic resonance spectroscopy, infrared spectroscopy and mass spectroscopy) which are used routinely to identify organic compounds. The second part of the course examines the chemical consequences of molecular shapes in more depth and looks at how different molecular shapes arise as a consequence of the mechanism of chemical reactions used to synthesize them. CHEM3911 students attend the same lectures as CHEM3111 students, but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.

CHEM3112
Materials Chemistry
Credit points: 6 Session: Semester 1 Classes: Two 1 hour lectures and one 4 hour practical per week. Prerequisites: CHEM(2401 or 2911 or 2915) and CHEM(2402 or 2912 or 2916). Prohibitions: CHEM3912 Assessment: One 2 hour exam, written assignments, prac reports.

This course concerns the inorganic chemistry of solid-state materials: compounds that possess ‘infinite’ bonding networks. The extended structure of solid materials gives rise to a wide range of important chemical, mechanical, electrical, magnetic and optical properties. Consequently, such materials are of enormous technological significance as well as fundamental curiosity. In this course you will learn how chemistry can be used to design and synthesise novel materials with desirable properties. The course will start with familiar molecules such as C60 and examine their solid states to understand how the nature of chemical bonding changes in the solid state, leading to new properties such as electronic conduction. This will be the basis for a broader examination of how chemistry is related to structure, and how structure is related to properties such as catalytic activity, mechanical strength, magnetism, and superconductivity. The symmetry of solids will be used explain how their structures are classified, how they can transform between related structures when external conditions such as temperature, pressure and electric field are changed, and how this can be exploited in technological applications such as sensors and switches. Key techniques used to characterise solid-state materials will be covered, particularly X-ray diffraction, microscopy, and physical property measurements.

CHEM3912
Materials Chemistry (Adv)
Credit points: 6 Session: Semester 1 Classes: Two 1 hour lectures, one 1 hour seminar and one 4 hour practical per week. Prerequisites: WAM of 65 or greater and a Credit or better in: CHEM (2401 or 2911 or 2915) and CHEM (2402 or 2912 or 2916). Prohibitions: CHEM3112 Assessment: One 2 hour exam, written assignments, prac reports.

This course concerns the inorganic chemistry of solid-state materials: compounds that possess ‘infinite’ bonding networks. The extended structure of solid materials gives rise to a wide range of important chemical, mechanical, electrical, magnetic and optical properties. Consequently, such materials are of enormous technological significance as well as fundamental curiosity. In this course you will learn how chemistry can be used to design and synthesise novel materials with desirable properties. The course will start with familiar molecules such as C60 and examine their solid states to understand how the nature of chemical bonding changes in the solid state, leading to new properties such as electronic conduction. This will be the basis for a broader examination of how chemistry is related to structure, and how structure is related to properties such as catalytic activity, mechanical strength, magnetism, and superconductivity. The symmetry of solids will be used explain how their structures are classified, how they can transform between related structures when external conditions such as temperature, pressure and electric field are changed, and how this can be exploited in technological applications such as sensors and switches. Key techniques used to characterise solid-state materials will be covered, particularly X-ray diffraction, microscopy, and physical property measurements. CHEM3912 students attend the same lectures as CHEM3112 students, but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.

CHEM3113
Catalysis and Sustainable Processes
Credit points: 6 Session: Semester 1 Classes: Two 1 hour lectures and one 4 hour practical per week. Prerequisites: CHEM(2401 or 2911 or 2915) and CHEM(2402 or 2912 or 2916). Prohibitions: CHEM3913 Assessment: One 2 hour exam, written assignments, prac reports.

Almost 90% of manufactured chemicals (from fuels through polymers to drugs) involve at least one catalytic step in their production. Catalysis by enzymes is fundamental to all chemical pathways in living things. This course provides the foundation for a molecular-scale understanding of even the most complex catalysts. It begins by showing how organometallic fundamentals can be used to understand and design transition-metal catalysts. Making use of these concepts, the chemistry involved in surface catalysts will be examined. The course will address two main applications of catalysis. Synthetic polymers (plastics, woven materials, films, coatings, etc.) are the most ubiquitous and diverse of modern materials. These are synthesized by a range of catalytic processes, whose chemistry will be described. It will be shown how the mechanisms of these reactions in turn control the molecular weights of the resulting polymers, as well as other aspects of molecular architecture such as degree of branching. The other major application is the use of porous solids (zeotypes) as acid/base and redox catalysts. Confinement-induced selectivity changes are discussed and related to similar phenomena in enzymatic catalysis. In both applications students will also examine the overall process and look at the reasons behind choice of product, catalyst and reaction design with a specific focus on economy and environmental sustainability.

CHEM3913
Catalysis and Sustainable Process (Adv)
Credit points: 6 Session: Semester 1 Classes: Two 1 hour lectures, one 1 hour seminar and one 4 hour practical per week. Prerequisites: WAM of 65 or greater and a Credit or better in: CHEM (2401 or 2911 or 2915) and CHEM (2402 or 2912 or 2916). Prohibitions: CHEM3913 Assessment: One 2 hour exam, written assignments, prac reports.

Almost 90% of manufactured chemicals (from fuels through polymers to drugs) involve at least one catalytic step in their production. Catalysis by enzymes is fundamental to all chemical pathways in living things. This course provides the foundation for a molecular-scale understanding of even the most complex catalysts. It begins by showing how organometallic fundamentals can be used to understand and design transition-metal catalysts. Making use of these concepts, the chemistry involved in surface catalysts will be examined. The course will address two main applications of catalysis. Synthetic polymers (plastics, woven materials, films, coatings, etc.) are the most ubiquitous and diverse of modern materials. These are synthesized by a range of catalytic processes, whose chemistry will be described. It will be shown how the mechanisms of these reactions in turn control the molecular weights of the resulting polymers, as well as other aspects of molecular architecture such as degree of branching. The other major application is the use of porous solids (zeotypes) as acid/base and redox catalysts. Confinement-induced selectivity changes are discussed and related to similar phenomena in enzymatic catalysis. In both applications students will also examine the overall process and look at the reasons behind choice of product, catalyst and reaction design with a specific focus on economy and environmental sustainability. CHEM3913 students attend the same lectures as CHEM3113 students, but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.
CHEM3114

Metal Complexes: Medicines and Materials

Credit points: 6 Session: Semester 2 Classes: Two 1 hour lectures and one 4 hour practical per week. Prerequisites: CHEM2401 or 2911 or 2915 and CHEM(2402 or 2912 or 2916) Prohibitions: CHEM3914 Assessment: One 2 hour exam, written assignments, prac reports.

Coordination compounds, with bonds between a central metal atom and surrounding ligands, play critical roles in biology, biochemistry and medicine, controlling the structure and function of many enzymes and their metabolism. They play similarly vital roles in many industrial processes and in the development of new materials with specifically designed properties. Building on the foundation of crystal field theory, this course offers a comprehensive treatment of the structures and properties of coordination compounds, with a qualitative molecular orbital description of metal-ligand bonds, and their spectroscopic, magnetic and dynamic effects. The exploitation of these properties in medicine and materials will be emphasized.

CHEM3914

Metal Complexes: Medic. & Mater. (Adv)

Credit points: 6 Session: Semester 2 Classes: Two 1 hour lectures, one 1 hour seminar and one 4 hour practical per week. Prerequisites: WAM of 65 or greater and a Credit or better in: CHEM (2401 or 2911 or 2915) and CHEM (2402 or 2912 or 2916) Prohibitions: CHEM3114 Assessment: One 2 hour exam, written assignments, prac reports.

Coordination compounds, with bonds between a central metal atom and surrounding ligands, play critical roles in biology, biochemistry and medicine, controlling the structure and function of many enzymes and their metabolism. They play similarly vital roles in many industrial processes and in the development of new materials with specifically designed properties. Building on the foundation of crystal field theory, this course offers a comprehensive treatment of the structures and properties of coordination compounds, with a qualitative molecular orbital description of metal-ligand bonds, and their spectroscopic, magnetic and dynamic effects. The exploitation of these properties in medicine and materials will be emphasized. CHEM3914 students attend the same lectures as CHEM3114 students, but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.

CHEM3115

Synthetic Medicinal Chemistry

Credit points: 6 Session: Semester 2 Classes: Two 1 hour lectures and one 4 hour practical per week. Prerequisites: CHEM2401 or 2911 or 2915 and CHEM(2402 or 2912 or 2916) Prohibitions: CHEM3915 Assessment: One 2 hour exam, written assignments, prac reports.

The development of new pharmaceuticals fundamentally relies on the ability to design and synthesize new compounds. Synthesis is an enabling discipline for medicinal chemistry - without it, the development of new drugs cannot progress from design to implementation, and ultimately to a cure. This unit will tackle important factors in drug design, and will highlight the current arsenal of methods used in the discovery of new drugs, including rational drug design, high throughput screening and combinatorial chemistry. We will develop a logical approach to planning a synthesis of a particular target structure. The synthesis and chemistry of heterocycles, which comprise some 40% of all known organic compounds and are particularly common in pharmaceuticals, will be outlined. Examples will include important ring systems present in biological systems, such as pyrimidines and purines (DNA and RNA), imidazole and thiazole (amino acids and vitamins) and porphyrins (natural colouring substances and oxygen carrying component of blood). Throughout the course, the utility of synthesis in medicinal chemistry will be illustrated with case studies such as anti-influenza (Relenza), anaesthetic (benzocaine), anti-inflammatory (Vioxx), antihypertensive (pinacidil) and cholesterol-lowering (Lovastatin) drugs. CHEM3915 students attend the same lectures as CHEM3115 students, but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.

CHEM3116

Membranes, Self Assembly and Surfaces

Credit points: 6 Session: Semester 2 Classes: Two 1 hour lectures and one 4 hour practical per week. Prerequisites: CHEM(2401 or 2911 or 2915) and CHEM(2402 or 2912 or 2916) Prohibitions: CHEM3916 Assessment: One 2 hour exam, written assignments, prac reports.

Away from the covalent and ionic interactions that hold molecules and solids together is the world of fragile objects - folded polymers, membranes, surface adsorption and stable molecular aggregates - held together by weak forces such as van der Waals and the hydrophobic effect. The use of molecules rather than atoms as building blocks means that there are an enormous number of possibilities for stable aggregates with interesting chemical, physical and biological properties, many of which still wait to be explored. In this course we will examine the molecular interactions that drive self assembly and the consequences of these interactions in supramolecular assembly, lipid membrane formations and properties, microemulsions, polymer conformation and dynamics and range of fundamental surface properties including adhesion, wetting and colloidal stability.

CHEM3916

Membranes, Self Assembly & Surfaces(Adv)

Credit points: 6 Session: Semester 2 Classes: Two 1 hour lectures, one 1 hour seminar and one 4 hour practical per week. Prerequisites: WAM of 65 or greater and a Credit or better in: CHEM (2401 or 2911 or 2915) and CHEM (2402 or 2912 or 2916) Prohibitions: CHEM3116 Assessment: One 2 hour exam, written assignments, prac reports.

Away from the covalent and ionic interactions that hold molecules and solids together is the world of fragile objects - folded polymers, membranes, surface adsorption and stable molecular aggregates - held together by weak forces such as van der Waals and the hydrophobic effect. The use of molecules rather than atoms as building blocks means that there are an enormous number of possibilities for stable aggregates with interesting chemical, physical and biological properties, many of which still wait to be explored. In this course we will examine the molecular interactions that drive self assembly and the consequences of these interactions in supramolecular assembly, lipid membrane formations and properties, microemulsions, polymer conformation and dynamics and range of fundamental surface properties including adhesion, wetting and colloidal stability. CHEM3916 students attend the same lectures as CHEM3916 students, but attend an additional advanced seminar series comprising one lecture a week for 12 weeks.
Further information is available from the Honours Coordinator, or at www.chem.usyd.edu.au/future/honours.html.

The School of Civil Engineering is part of the Faculty of Engineering and Information Technologies. In addition to providing professional training in this branch of engineering it offers units of study to students enrolled in the Faculty of Science majoring in Mathematics, Physics, Chemistry, Geology, Computer Science or Soil Science. The most relevant units of study are CIVL2201 - Structural Mechanics, CIVL2230 - Introduction to Structural Concepts and Design, CIVL2410 Soil Mechanics, and CIVL2611 Fluid Mechanics. Details regarding these units of study can be obtained from the Faculty of Engineering and Information Technologies Handbook. These units of study are intended first to demonstrate the application of scientific principles in an engineering context. The second intention is to introduce the application of this understanding to analysis and design in civil engineering. As well as the above units of study, Faculty of Science students are invited to enrol in other civil engineering units of study, provided they have the appropriate pre-requisites and assumed knowledge.

Civil Engineering

Chemistry Honours

The honours program in the School of Chemistry gives students the opportunity to get involved in a research program in an area that is of interest to them. It provides training in research techniques and experience using modern research instrumentation. The honours program adds a new dimension to the skills that the students have acquired during their undergraduate years and enhances their immediate employment prospects and, more significantly, their future career potential. All students with a sound record in Chemistry are encouraged to apply for entry to the honours program. The School of Chemistry offers a wide range of possible projects in all areas of contemporary chemistry including Biological and Medicinal Chemistry, Synthesis and Catalysis, Physical and Theoretical Chemistry, Supramolecular Chemistry, Polymers and Colloids and Chemical Spectroscopy. Details of available projects are contained in the School’s Honours Booklet that is available from the School’s Information Desk. In the honours year, each student undertakes a research project under the supervision of a member of staff; writes a thesis which explains the problem; outlines the research undertaken and the results obtained; attends advanced lecture courses, normally given by leaders in their field from overseas or Australia; attends research seminars and undertakes additional written assessment. Further information is available from the Honours Coordinator, or at www.chem.usyd.edu.au/future/honours.html.

Double Degree

BSc graduates, who have passed all four of the above four units of study within the School of Civil Engineering, may obtain a Bachelor of Engineering degree in Civil Engineering after an additional two years’ study, following the award of the BSc. Students wishing to undertake this option must apply through UAC and compete on the basis of academic merit. Prospective students are advised to discuss their plans with the School of Civil Engineering before enrolment. Further details regarding admission to the BE in Civil Engineering may be obtained from the Engineering Faculty Office in the Engineering and Information Technologies Faculty Building.

Civil Engineering

The School of Civil Engineering is part of the Faculty of Engineering and Information Technologies. In addition to providing professional training in this branch of engineering it offers units of study to students enrolled in the Faculty of Science majoring in Mathematics, Physics, Chemistry, Geology, Computer Science or Soil Science. The most relevant units of study are CIVL2201 - Structural Mechanics, CIVL2230 - Introduction to Structural Concepts and Design, CIVL2410 Soil Mechanics, and CIVL2611 Fluid Mechanics. Details regarding these units of study can be obtained from the Faculty of Engineering and Information Technologies Handbook. These units of study are intended first to demonstrate the application of scientific principles in an engineering context. The second intention is to introduce the application of this understanding to analysis and design in civil engineering. As well as the above units of study, Faculty of Science students are invited to enrol in other civil engineering units of study, provided they have the appropriate pre-requisites and assumed knowledge.

Computational Science

Coordinator
Dr Mike Wheatland

Junior units of study

COSC1001

Computational Science in Matlab

Credit points: 3 Session: Semester 2 Classes: One 1 hour lecture and one 2 hour practical per week. Prohibitions: COSC1901 Assumed knowledge: HSC Mathematics Assessment: One assignment, practical work, including practical exams, theory exam.

This unit of study focuses on scientific problem solving and data visualisation using computers and is complementary to COSC1002. Students will learn how to solve problems arising in the natural sciences and mathematics using core features of the problem solving environment MATLAB, with a choice of problems from various areas of science at each stage. Emphasis will be placed on graphical display and visualisation of data and solutions to problems. No previous knowledge of programming is assumed.

COSC1901

Computational Science in Matlab (Adv)

Credit points: 3 Session: Semester 2 Classes: One 1 hour lecture and one 2 hour practical per week. Prohibitions: UAI (or ATAR equivalent) of at least 90, or COSC1902, or a distinction or better in COSC1002, INFO1003 or INFO1903. Prohibitions: COSC1001 Assumed knowledge: HSC Mathematics Assessment: One assignment, practical work, including practical exams, theory exam.

This unit of study is the advanced version of COSC1001 and is complementary to COSC1902. The subject matter is very similar but more challenging problems will be covered and some additional programming and visualisation techniques will be used.

COSC1002

Computational Science in C

Credit points: 3 Session: Semester 2 Classes: One 1 hour lecture and one 2 hour practical per week. Prohibitions: COSC1902 Assumed knowledge:
HSC Mathematics
Assessment: One assignment, practical work, including practical exams, theory exam.

This unit of study focuses on scientific problem-solving using computers and is complementary to COSC1001. Students will learn how to solve problems arising in the natural sciences and mathematics using core features of the language C, with a choice of problems from various areas of science at each stage. No previous knowledge of programming is assumed.

COSC1902
Computational Science in C (Adv)
Credit points: 3
Session: Semester 2
Classes: One 1 hour lecture and one 2 hour practical per week.
Prerequisites: UAI (or ATAR equivalent) of at least 90, or COSC1901, or a distinction or better in COSC1001, INFO1003 or INFO1903.
Prohibitions: COSC1002
Assumed knowledge: HSC Mathematics
Assessment: One assignment, practical work, including practical exams, theory exam.

This unit of study is the advanced version of COSC1002 and is complementary to COSC1901. The subject matter is very similar, but more challenging problems will be covered and some additional programming techniques will be used.

Senior units of study

For a major in Computational Science, the minimum requirement is 24 credit points chosen from the core or elective senior units of study listed for this subject area, of which at least 12 credit points must be from the following core senior units of study: COSC3011 Scientific Computing; COSC3911 Scientific Computing (Advanced); MATH3076 Mathematical Computing; MATH3976 Mathematical Computing (Advanced). For Senior elective units see Table 1.

Notes
* Refer to Mathematics listing in this chapter for descriptions of these units of study. Senior elective units of study for a major in Computational Science are listed in Table 1 in chapter 3.

COSC3011
Scientific Computing
Credit points: 6
Session: Semester 2
Classes: Two 1 hour lectures and one 3 hour practical per week.
Prerequisites: 12 credit points chosen from Junior Mathematics and Statistics, 12 credit points of Intermediate units in Science subject areas.
Prohibitions: COSC3911, COSC3901, COSC3901, PHYS3301, PHYS3901
Assumed knowledge: Programming experience in MATLAB
Assessment: Assignments, lab, project work and written exam

This unit of study provides a senior-level treatment of scientific problem solving using computers. Students will understand and apply a wide range of numerical schemes for solving ordinary and partial differential equations. Linear algebra is used to provide detailed insight into stability analysis, relaxation methods, and implicit integration. A variety of scientific problems are considered, including planetary motion, population demographics, heat diffusion, traffic flow and quantum mechanics. All coding is performed with MATLAB, and basic programming experience is assumed.

Textbooks

COSC3911
Scientific Computing (Advanced)
Credit points: 6
Session: Semester 2
Classes: Two 1 hour lectures and one 3 hour practical per week.
Prerequisites: 12 credit points chosen from Junior Mathematics and Statistics, 12 credit points of Intermediate units in Science subject areas with a credit average.
Prohibitions: COSC3011, COSC3001, COSC3901, PHYS3301, PHYS3901
Assumed knowledge: Programming experience in MATLAB
Assessment: Assignments, lab, project work and written exam

This is the Advanced version of COSC3011. The subject matter is very similar, but more challenging problems will be covered.

Textbooks

MATH3076
Mathematical Computing
Credit points: 6
Teacher/Coordinator: Dr D J Ivers
Session: Semester 1
Classes: Three 1 hour lectures and one 1 hour laboratory per week.
Prerequisites: 12 credit points of Intermediate Mathematics and one of MATH(1001 or 1003 or 1901 or 1903 or 1906 or 1907)
Prohibitions: MATH3976, MATH3016, MATH3916
Assessment: One 2 hour exam, assignments, quizzes

This unit of study provides an introduction to Fortran 95 programming and numerical methods. Topics covered include computer arithmetic and computational errors, systems of linear equations, interpolation and approximation, solution of nonlinear equations, quadrature, initial value problems for ordinary differential equations and boundary value problems.

MATH3976
Mathematical Computing (Advanced)
Credit points: 6
Teacher/Coordinator: Dr D J Ivers
Session: Semester 1
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics and one of MATH(1903 or 1907) or Credit in MATH1003
Prohibitions: MATH3076, MATH3016, MATH3916
Assessment: One 2 hour exam, assignments, quizzes

See entry for MATH3076 Mathematical Computing.

Electrical Engineering

The School of Electrical and Information Engineering is part of the Faculty of Engineering and Information Technologies. In addition to providing professional training in this branch of engineering it offers many units of study that are available to students enrolled in the Faculty of Science. Details regarding these units of study can be obtained from the Faculty of Engineering and Information Technologies Handbook or from the school website: www.ee.usyd.edu.au/ugrad

Double Degree

Science graduates may obtain up to two years advanced standing towards a Bachelor of Engineering degree in Computer, Electrical, Software or Telecommunications Engineering. Students wishing to undertake this option must seek academic advice from the School of Electrical and Information Engineering. Further details regarding admission to the BE may be obtained from the Engineering and Information Technologies Faculty Office. The School of Engineering is located in Building J03.

Environmental Science

Environmental Science is an applied interdisciplinary field concerned with the environment around us, regardless of whether it is natural or human-made, and how we can utilize or manage it for our benefit. It draws on a wide range of science-based disciplines and applications, from ecology to solar power, analytical chemistry to geomorphology. Environmental Science is also concerned with the social issues involved, including environmental law and policy, sustainability, resource economics, urban planning, and environmental ethics. Environmental scientists and managers need to have a broad knowledge base and the ability to be flexible and innovative in their application of such knowledge. Consequently, the emphasis of the Environmental Science program is placed upon studies that span and integrate several disciplines, involve adaptive problem solving, and develop new skills and expertise. In particular, the Environmental Science program looks to supplement studies in the science disciplines with units that provide complimentary information on environmental issues that not only show how the sciences interact in the environment but how humans impact upon it. Prior to 2007, students wanting to Study Environmental Science did so through the specialist BSc (Environmental) degree - see Table 1B. Now students wanting to take Environmental Science can only do so by taking a double major in the BSc, one major in Environmental Studies and the other in a Science discipline of the students' choice. For descriptions of the ENVI units of study, refer to the entries under Environmental Studies.
Honours in the Bachelor of Science (Environmental)

Students of sufficient merit may be admitted to an Honours course in the Bachelor of Science (Environmental). In the Honours year, a student will undertake an interdisciplinary research exercise in association with one or more supervising members of the academic staff at the University of Sydney, write a thesis based upon the research, and attend advanced lecture units of study and seminars as required by their supervisor(s). The honours year is not only rewarding but enjoyable as well, and marks the transition period where a student becomes a research collaborator. Eligible students can choose to complete Honours in the following Science Subject Areas: Agricultural Chemistry, Biology, Chemistry, Geography, Geology, Marine Science, Microbiology, or Soil Science. (Please note that there are no honours units of study entitled ‘Environmental Science’).

Environmental Studies

Environmental Studies is the examination of the human interactions with the natural and built environment. It encapsulates the fundamental social aspects of sustainability, environmental impact, law, ethics, development, energy use, economics and politics. In order to properly cover this material, the ENVI units are taught by various staff from within the Faculties of Science, Architecture and Law. Consequently, the ENVI units are complimentary to studies not only in the physical and natural Science disciplines but also to the social disciplines.

Obtaining a major in Environmental studies

A major in Environmental Studies constitutes the completion of 24 credit points of Senior units as listed in Table 1, including at least 12 credit points of Senior ENVI units of study listed below. Study of at least one Intermediate ENVI unit is highly recommended.

ENV2111 Conservation Biology and Applied Ecology

Credit points: 6
Teacher/Coordinator: Dr C Taylor
Session: Semester 1
Classes: Two 1 hour lectures and one 2 hour practical per week, plus one 2 day field trip during the semester.
Prerequisites: BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). Prohibitions: ENVI2911, ENV2001.
Assessment: Essays, tutorial papers, exam.

This topic examines the role of conservation biology and applied ecology in environmental science, examining pattern and process in natural systems and evaluating how these are being affected by pervasive anthropogenic impacts. Focusing on the conservation, assessment of impacts and the restoration of natural systems, we consider the range of ecological issues environmental scientists must address. We examine the extent of environmental problems; derive explanations of why and how they are occurring and address management options for resolving them. We will derive general principles for these by addressing case studies, chosen from Australian examples when possible. The aim of this unit is for you to understand the processes that go into solving environmental problems from an ecological perspective and how to identify management options.

Credit points: 6
Teacher/Coordinator: Dr Charlotte Taylor
Session: Semester 1
Classes: Two 1 hour lectures and one 2 hour practical per week, plus one 2 day field trip during the semester.
Prerequisites: Distinction average in BIOL (1001 or 1911 or 1101 or 1901) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and 6 credit points of Junior Physics). These requirements may be varied and students with lower averages should consult the Unit Executive Officer.
Assessment: One 2 hour exam, field report, briefing paper, oral presentation.

Qualified students will participate in alternative components of ENV2111, Conservation Biology, including an independent research project.

Textbooks

ENV2112 Atmospheric Processes and Climate

Credit points: 6
Teacher/Coordinator: Edwina Tanner
Session: Semester 2
Classes: Three 1 hour lectures and one 2 hour practical per week.
Prerequisites: 24 credit points of Junior Science units, including 12 credit points of Junior Chemistry or Physics. Prohibitions: ENV2002
Assessment: Assignments, tutorial papers, exam.

This unit of study investigates the physical and chemical characteristics of our atmosphere, as well as the natural processes that occur within it and how these contribute to the climate we live in. Topics such as atmospheric structure, photochemical processes, and weather will be examined. The effects of ocean circulation are investigated, particularly examining the ocean's importance as a source/sink for atmospheric constituents and as a heat regulator. The impact of glaciation is also examined, including sources, quantity, magnitude of threat, and the potential impact to our climate, are then explored. Finally, the unit examines issues surrounding climate change and the modelling of these changes.

ENV3111 Environmental Law and Ethics

Credit points: 6
Teacher/Coordinator: Dr Gerry Bates Dr Jane Johnson
Session: Semester 1
Classes: Two 2 hour lectures per week.

This unit of study covers topics in environmental law and ethics. The environmental law component provides an overview of all laws in Australia pertaining to environmental matters and looks at a number of environmental issues at the various levels of analysis, policy making, implementation of policy, enforcement, and dispute resolution. It also provides a broad background to the political and economical issues as they relate to the legal issues involved. It also examines international environmental law, particularly examining how these influence and affect our local policies. The ethics component helps students develop thoughtful and informed positions on issues in environmental ethics using arguments derived from traditional ethics as well as environmentally specific theories. Ethical conflicts are often inevitable and difficult to resolve but using the resources of philosophical ethics and regular reference to case studies, students can learn to recognize the values and considerations at stake in such conflicts, acknowledge differing viewpoints and defend their own well considered positions.

ENV3112 Environmental Assessment

Credit points: 6
Teacher/Coordinator: Dr John Dee Dr Scott Kable
Session: Semester 2

This unit of study is composed of two components: environmental impact assessment and risk assessment. The former is generally concerned with issues related to environmental impact assessment and builds toward the process of producing an EIS/EIA. More specifically it seeks to establish a critical understanding of the theory and practice of environmental impact studies/statements (EIS) and environmental impact assessment processes (EIA) from both the positive (scientific and normative (value) perspectives. Emphasis is placed on gaining skills in writing and producing an assessment report, which contains logically ordered and tightly structured argumentation that can stand rigorous scrutiny by political processes, the judiciary, the public and the media. The risk assessment component considers a more chemical approach to the assessment of risk and issues of safety with respect to chemicals, ecotoxicology and the environment.
9. Undergraduate units of study

ENV3114 Energy and the Environment
Credit points: 6
Teacher/Coordinator: Dr Chris Dey
Session: Semester 2
Classes: Two 1 hour lectures and one 1 hour tutorial per week and three field trips.
Prerequisites: 12 credit points of Intermediate Science or Agriculture units.
Prohibitions: ENVS3001, PHYS3600.
Assumed knowledge: Junior Physics or Intermediate Environmental Science.
Assessment: Essays, tutorial papers, field reports, exam.

This unit covers the following aspects of energy and the environment: energy use; electrical power generation including alternate methods such as wind turbines; the environmental impact of energy use and power generation including the enhanced greenhouse effect; transportation and pollution; energy management in buildings; solar thermal energy, photovoltaics, and nuclear energy; and, socio-economic and political issues related to energy use and power generation.

GEOS3513 Regional Development and Environment
Credit points: 6
Teacher/Coordinator: Dr Bill Pritchard, Dr Timothir Ancev
Session: Semester 1
Classes: 2 hours of lectures per week and 2 hours of tutorials/practicals per week.
Prerequisites: 24 credit points of intermediate arts/soc/comm units of study, including 6 credit points of intermediate units of study in Geography.
Prohibitions: ENV3113, GEOS3511, GEOS3911, GEOS3913
Assessment: Two in-class tests, one 1500 word essay, one GIS report.

This unit of study acquaints students with debates and tools associated with regional development and the economic analysis of environmental issues. It provides a useful preparation for professional employment in the field of regional development, environmental policy and management, and is relevant for students interested in economic and social issues in regional Australia. Co-taught by a geographer and an economist, the unit addresses four key areas of relevance: (i) regional development theory and practice; (ii) the economics of efficiently utilising and managing the environment; (iii) debates on regional development in Australia (including consideration of the farm sector, Indigenous communities and environmental sustainability), and (iv) the use of GIS to analyse population census data. The unit requires no prior knowledge of economic theory or GIS software.

GEOS3913 Regional Development & Environment (Adv)
Credit points: 6
Teacher/Coordinator: Dr Bill Pritchard, Dr Timothir Ancev
Session: Semester 1
Classes: 2 hours of lectures per week and 2 hours of tutorials/practicals per week.
Prerequisites: 24 credit points of intermediate and/or senior units of study including 6 credit points of intermediate units of study in Geography with a grade of Credit or better.
Prohibitions: ENV3113, GEOS3511, GEOS3513, GEOS3911
Assessment: In-class tests, essay, report.

This unit of study is a more advanced version of GEOS3513. It includes more challenging assessment tasks.

Financial Mathematics and Statistics

This is an interdisciplinary major offered in the Faculty of Science consisting of several core units and a number of elective units from mathematics, statistics and information technologies. The program is designed to meet the need for high level quantitative and modelling skills in the banking, insurance, stockbroking and finance industries without constraining students to a full major in mathematics or statistics. Graduates with specifically strong mathematical and statistics backgrounds are in very high demand. The core units Optimisation and Financial Mathematics (MATH2070/2970) and Financial Mathematics (MATH3075/3975) are the backbone of the program and introduce the student to important financial concepts within a mathematical and statistical framework. The core mathematics and statistics units provide the technical base that is required by a quantitative analyst, while the elective units offer the student increased flexibility and additional opportunities to develop related skills. Students completing the program at the Advanced Level may continue into Fourth Year Honours where a number of further Financial Mathematics and Statistics units are on offer. It is envisaged that students completing the Honours program will not only be highly trained in quantitative finance, but will also be well prepared for active research in the field. Students should refer to Table 1 for an enrolment guide and to entries under the contributing Schools for unit of study descriptions.

Geosciences

The School of Geosciences offers units of study in the discipline areas of Geography, Geology and Geophysics. Students may take a major in either of these disciplines, and many Geoscience units are key components of the Environmental Studies, marine Geoscience and Marine Science majors. The junior units GEOS1001, GEOS1002 and GEOS1003 provide a comprehensive introduction to both Geography and Geology and Geophysics. A major can be included within many undergraduate degree programs, including the Bachelors of Science, Arts, Liberal Studies, Liberal Arts and Sciences, Arts and Sciences, Science and Technology, Economics and Social Sciences.

Geography

Geography is the study of earth as the home of people. As the need to find solutions to issues of environmental sustainability, population change and globalisation have become more challenging, the skills and knowledge of geographers have come to the forefront. Students of Geography are interested in their world, and are taught to think critically about the relationships between people, environments and places. The knowledge and skills gained from studying Geography at the University of Sydney provide a launch pad to a professional career in an array of fields including environmental management, planning, overseas development and consulting research. Our Geography program has strong linkages with various national and international organisations that provide pathways for further studies at Honours and post-graduate levels, and into the work force. It differs from High School Geography in that it provides more opportunities for independent learning, introduces new techniques and skills, offers flexibility for you to follow your interests and is tailored to real world events and issues.

Geology and Geophysics

Geology and Geophysics provides a unifying context for understanding the surface and internal planetary processes that determine how the earth functions as a system. Global climate change, an increasing population and shrinking mineral and energy resources have heightened our sense of dependence on our earth's complex natural systems and increased our need to understand the dynamic structural relationships between the continents and oceans which provide the physical habitat for the earth's various ecosystems. Geology and Geophysics provides students with an understanding of change on Earth, its origin, plate tectonics, surface processes, evolution of life and geologic time. Intermediate units highlight the role of the earth system in all natural phenomena, including those of concern to humans such as geo-biodiversity, salinity, seismicity, volcanic hazards, climate and sea level change. Senior units of study cover methods of field data collection and provide access to cutting edge computing and data resources used for turning such observations into knowledge. Students will acquire the skills necessary for employment in all areas of sustainable exploration and management of our natural, mineral and energy resources.

Geosciences Advice

As a Geoscience student at the University of Sydney, you will participate in an array of learning environments that complement traditional lecture and tutorial classes; for example, studies can include field trips to destinations in Australia and overseas. Students who wish to obtain advice concerning the units of study described below should approach School advisors during the enrolment week or the unit coordinators during semester. Further information is available at www.geosci.usyd.edu.au, as well as in the Geosciences’ student handbook available from the School's administrative office (Room 348, Madsen Building).

Website

The School of Geosciences website is: www.geosci.usyd.edu.au.
9. Undergraduate units of study

Location
The School of Geosciences is located in the Madsen Building (F09). All student enquiries can be made at the Madsen Building, Room 348 - 9 am to 4.30pm, Mon to Fri.

Further information
Further information is available at www.geosci.usyd.edu.au, as well as in the Geosciences’ student handbook available from the School’s administrative office.

Geosciences junior units of study
Students are encouraged to commence their studies of Geography, Geology and Geophysics, Environmental Studies or Marine Science by enrolling in GEOS1001 (Earth, Environment and Society) (February semester). This unit of study provides an overarching introduction to issues and themes taught across the School of Geosciences. In the second (July) semester, students intending to major in Geography should enroll in GEOS1002 (Introductory Geography); students intending to major in Geology and Geophysics or Marine Geoscience should enrol in GEOS1003 (Introduction to Geology). Entry into any of these units of study does not require any prior knowledge.

GEOS1001 Earth, Environment and Society
Credit points: 6
Teacher/Coordinator: Dr Jody Webster, Dr Bill Pritchard, Ms Edwina Tanner
Session: Semester 1, Summer Late
Classes: Two 1 hour lectures and one 2 hour practical per week.
Prohibitions: GEOS1901, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902
Assessment: One 2 hour exam, 2000 word essay, field and prac reports

This is the gateway unit of study for Human Geography, Physical Geography and Geology. Its objective is to introduce the big questions relating to the origins and current state of the planet: climate change, environment, landscape formation, and the growth of the human population. During the semester you will be introduced to knowledge, theories and debates about how the world’s physical and human systems operate. The first module investigates the system of global environmental change, specifically addressing climate variability and human impacts on the natural environment. The second module presents Earth as an evolving and dynamic planet, investigating how changes take place, the rate at which they occur and how they have the potential to dramatically affect the way we live. Finally, the third module, focuses on human-induced challenges to Earth’s future. This part of the unit critically analyses the relationships between people and their environments, with central consideration to debates on population change and resource use.

GEOS1002 Introductory Geography
Credit points: 6
Teacher/Coordinator: Dr Kurt Iveson
Session: Semester 2
Classes: Two 1 hour lectures and one 2 hour practical per week.
Prohibitions: GEOS1902, GEOG1001, GEOG1002
Assessment: One 2 hour exam, one 2000 word essay, five practical reports

This unit of study provides an introduction to the ways that human and physical landscapes are produced. It begins with an investigation of Earth’s surface features, exploring the distribution of landforms across Earth and interpreting their evolutionary histories. Several landscapes will be examined including those formed by rivers, wind, oceans and glaciers. But physical landscapes evolve under the influence of and affect human operations. Therefore, the unit of study will also consider the political, economic, cultural and urban geographies which shape contemporary global society. Each of these themes will be discussed with reference to key examples, in order to consider the ways in which the various processes (both physical and human) interact in the shaping of places. The unit of study will also include short field trips to localities surrounding the university to observe processes of spatial change and conflict. The unit of study is designed to attract and interest students who wish to pursue geography as a major within their undergraduate degree, but also has relevance to students who wish to consider the way geographers understand the contemporary world.

GEOS1003 Introduction to Geology
Credit points: 6
Teacher/Coordinator: Dr Tom Hubble, Prof Geoff Clarke
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour practical per week.
Prohibitions: GEOS1903, GEOL1002, GEOL1902, GEOL1501
Assessment: One 2 hour exam, practical reports, field report

The aim of this unit of study is to examine the chemical and physical processes involved in mineral formation, the interior of the Earth, surface features, sedimentary environments, volcanoes, and metamorphism. Lectures and laboratory sessions on mountain building processes and the formation of mineral deposits will lead to an understanding of the forces controlling the geology of our planet. Processes such as weathering, erosion and nature of sedimentary environments are related to the origin of the Australian landscape. In addition to laboratory classes there is a two-day excursion to the western Blue Mountains and Lithgow to examine geological objects in their setting.

Textbooks

GEOL1501 Engineering Geology 1
Credit points: 6
Teacher/Coordinator: Dr Tom Hubble
Session: Semester 1
Classes: 39 hours lectures, 26 hours laboratory. Field excursions in the Sydney region, as appropriate.
Prohibitions: GEOS1001, GEOG1001, GEOL1001, GEOL1903
Assumed knowledge: No previous knowledge of Geology assumed
Assessment: Practical laboratory work, assignment, and a combined theory and practical exam.

Course objectives: To introduce basic geology and the principles of site investigation to civil engineering students.

Expected outcomes: Students should develop an appreciation of geologic processes as they influence civil engineering works, acquire knowledge of the most important rocks and minerals and be able to identify them, and interpret geological maps with an emphasis on making construction decisions.

Syllabus summary: Geological concepts relevant to civil engineering and the building environment. Introduction to minerals; igneous, sedimentary and metamorphic rocks, their occurrence, formation and significance. General introduction to physical geology and geomorphology, structural geology, plate tectonics, and hydrogeology. Associated laboratory work on minerals, rocks and mapping.

Textbooks
Approved readings will be provided via WebCT.

GEOS1901 Earth, Environment and Society Advanced
Credit points: 6
Teacher/Coordinator: Dr Bill Pritchard, Ms Edwina Tanner
Session: Semester 1
Classes: Three 1 hour lectures and one 1 hour practical per week.
Prohibitions: GEOS1901, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902
Assessment: One 2 hour exam, 2000 word essay, field and prac reports

Note: Department permission required for enrolment.

Advanced students will complete the same core lecture material as for GEOS1001, but will be required to carry out more challenging practical assignments.

GEOS1902 Introductory Geography (Advanced)
Credit points: 6
Teacher/Coordinator: Dr Mel Neave, Dr Kurt Iveson
Session: Semester 2
Classes: Two 1 hour lectures and one 2 hour practica per week.
Prohibitions: GEOS1902, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902
Assessment: One 2 hour exam, one 2000 word essay, five practical reports

Note: Department permission required for enrolment.
Advanced students will complete the same core lecture material as for GEOS1002, but will be required to carry out more challenging practical assignments.

GEOS1003
Introduction to Geology (Advanced)
Credit points: 8 Teacher/Coordinator: Dr Tom Hubble, Prof Geoff Clarke Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour practical per week. Prerequisites: Departmental permission is required for enrolment. A UAI (or ATAR equivalent) above 93 is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator. Prohibitions: GEOL1002, GEOL1902, GEOS1003 Assessment: One 2 hour exam, field report. Note: Department permission required for enrolment.

This unit has the same objectives as GEOS1003 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their UAI and/or their university performance at the time of enrolment. Students that elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. This unit may be taken as part of the BSc (Advanced).

Geosciences intermediate units of study
Geoscience intermediate units of study are listed below. All intermediate students are encouraged to enrol in GEOS2111 (Natural Hazards: a GIS Approach) which covers concepts and skills relevant to all Geoscience disciplines. Students interested in different areas of the Geoscience disciplines might select intermediate units of study as follows: physical and environmental Geography; GEOS2111 and/or GEOS2113 (Feb semester); GEOS2121 and/or GEOG2321 (July semester), human and environmental Geography; GEOS2112 and/or GEOS2111 (Feb semester); GEOS2122 and/or GEOS2121 (July semester); Geology and Geophysics; GEOS2111, GEOL2112 and/or GEOS2114 (Feb semester); GEOS2124 and/or GEOS2121 (July semester). Regardless, subject to the prerequisites for each individual unit of study, students may vary their enrolment across these streams. The School of Geosciences encourages students to construct a sequential ordering of units that best meets their interests and aspirations.

GEOS2321
Fluvial and Groundwater Geomorphology
Credit points: 6 Teacher/Coordinator: Dr Melissa Neave Session: Semester 2 Classes: Two 1 hour lectures and one 2 hour practical per week. Prerequisites: GEOG2311 or 2001 or 36 credit points of Junior study including GEOG1901 or GEOL1001 or ENV1001 or 1002 or GEOL1501. Students in the Bachelor of Resource Economics should have 36 credit points of Junior units of study, including 12 credit points of Junior Geoscience, 12 credit points of Chemistry, 6 credit points of Biology, BIOM1002. Prohibitions: GEOG2321 Assessment: One 2 hr exam, one quiz, one field report, practical exercises.

This unit of study provides an introduction to the fundamentals of fluvial geomorphology (the study of surface water as an agent of landscape change) and groundwater hydrology. The fluvial geomorphology section of the unit will describe the movement of water in stream channels and investigate the landscape change associated with that movement. Topics to be covered will include open channel flow hydraulics, sediment transport processes and stream channel morphology. Practical work will focus on the collection and analysis of field data. The quantity and quality of the groundwater resources are closely linked to geology and fluvial geomorphology. The groundwater section of this unit is based around four common groundwater issues: contamination, extraction, dryland salinity and groundwater-surface water interaction. In the practical component, common groundwater computer models such as FLOWTUBE and MODFLOW will be used to further explore these problems.

Textbooks

GEOS2111
Natural Hazards: a GIS Approach
Credit points: 6 Teacher/Coordinator: Dr Patrice Rey and others Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour practical per week. Prerequisites: 24 credit points of Junior units of study including 6 credit points of Junior Geoscience Prohibitions: GEOS2411, GEOS2911 Assessment: One 2 hour exam, one assignment, report.

The geosciences provide an essential framework for understanding the environmental response to short- and long-term geologic, oceanic and atmospheric processes. This unit of study introduces students to a variety of natural phenomena that affect society with impact ranges from nuisance to disastrous. The discussion of each hazard focuses on: (1) the process mechanisms, (2) hazards and risk, and (3) methods for mitigation. Geographic Information Systems (GIS) are used by scientists, planners, policy-makers and the insurance industry alike to address many issues relating to natural hazards. This unit of study will introduce students to the major concepts relating to GIS and provide practical experience in the application of GIS techniques to hazard mapping, risk assessment and mitigation.

GEOS2112
Economic Geography of Global Development
Credit points: 6 Teacher/Coordinator: Dr Bill Pritchard, Dr Jeff Neilson Session: Semester 1 Classes: Two 1 hour lectures and one 2 hour practical per week. Prerequisites: 24 credit points of Junior units of study, including 6 credit points of Junior Geoscience or ECOP1001 or ECOP1002. Prohibitions: GEOS2912, GEOS2911 Assessment: One 2 hour exam, 2000 word essay, tutorial papers, practical report.

In this unit of study, students will be introduced to the sub-discipline of economic geography by way of debates on the spatial character of global development. We focus on questions relating to who are the winners and losers from contemporary patterns of global economic change. This includes the analysis of relevant conceptual approaches to these questions (including comparative advantage, global commodity chain theory, regionalism, economic governance etc), plus 'hands-on' examination of the key institutions (such as the WTO and ADB) driving these changes. In general, issues are tailored to themes being played out in Asia-Pacific countries. Students are expected to participate in a variety of practical class exercises throughout the semester, which will include presenting the fruits of independent research activities. This unit provides an especially relevant feeder-unit into GEOS3053/ GEOS3054, the Asia-Pacific Field School.

GEOS2113
Making the Australian Landscape
Credit points: 6 Teacher/Coordinator: Dr S.J. Gale Session: Semester 1 Classes: Two or three 1-hour lectures and one or two 1-hour practicals per week. Prerequisites: 24 credit points of Junior units of study. prohibited: GEOS2111, GEOS1002 or GEOS1902 or GEOS1903 or GEOL1001 or ENVI1002 or GEOL1001 or GEOL1902 or GEOL1903 Assessment: One 2 hour examination, practical reports.

The shifts in the nature of the Earth's environment over time and the resultant changes in process regimes have had dramatic impacts on the way the Australian physical landscape has evolved. We consider here the effects of these changes on the broad pattern of the landscape, focusing particularly on slopes and soils. We follow this by investigating the environmental changes that have taken place since the end of the last glacial, the time when the continent's climates and environments first took on a recognisably modern form. We deal specifically with the impact of human activity on the Australian biophysical environment, emphasising both pre-European impacts and those changes that have taken place since European contact.

GEOS2114
Volcanoes, Hot Rocks and Minerals
Credit points: 6 Teacher/Coordinator: Dr Derek Wyman, Dr Patrice Rey, Prof Geof Clarke Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour practical per week. Prerequisites: One of (GEOG1001, GEOL1001, GEOL1002, GEOG1901, GEOG1902, ENVI1002, GEOL1002, GEOL1902, GEOL1901) and 24 credit points of Junior Science units of study. Prohibitions: GEOL2111, GEOL2911, GEOS2914 Assessment: One 2 hour exam, practical reports, field trip report, group presentation.
This unit of study relates the plate tectonics of subduction zones to a) volcanoes and their hazards; b) geological processes in the deep crust; and c) the formation of precious metal and gemstone ores around the Pacific Rim. A problem solving approach is used to develop the skills required to understand the history of individual volcanoes and predict their future activity and hazards. The unit includes a two to three day field trip to study an extinct volcano in NSW. Practical work includes independent study of igneous systems, rocks and minerals employing both microscope-based techniques and computer modelling. The unit provides relevant knowledge for GEOS3006/3906 - Mineral Deposits and Spatial Data Analysis.

GEOS2115 Oceans, Coasts and Climate Change
Credit points: 6 Teacher/Coordinator: Ass/Prof Dietmur Müller, A/Prof Peter Cowell Session: Semester 1: 26 one-hour lecturers, 6 one-hour workshops, 1 eight-hour field work, 1 24-hour field school (3 days, Easter break) Prerequisites: 48 credit points from Junior Units of Study Prohibitions: GEOS2915, MARS2006 Assumed knowledge: At least one of (GEOG1001, GEOL1001, GEO1002, GEOL1002, GEOL1003, ENV11002, GEOL1002, GEOL1501) Assessment: Three web-based on-line reports (30% of total marks), one seminar presentation, field school (20% of total marks), One 2-hour exam (50% of total marks)

This unit of study introduces core concepts about how the formation of ocean basins and their influence on climate govern the development of coasts and continental margins. These concepts provide a framework for understanding the geographic variation of coasts, continental shelves and sediment accumulation in the deep ocean. Ocean-basin evolution is explained in terms of movements within the Earth's interior and how these movements determine the geometry of ocean basins, and their alpine counterparts, which interact with the global circulation of the ocean and atmosphere. Affects of this interaction on energy regimes and hydrology are described in accounting for regional controls that govern supply and dispersal of sediments on continental margins and in ocean basins. These controls include effects on wave climates, wind-driven currents and tidal regimes. These controls also govern environmental conditions determining development of coral reefs and other ecosystems that play a key role in marine sedimentation. The Unit of Study systematically outlines how these factors have played out with climate change to produce the beaches, dunes, estuaries and deltas we see today, as well as the less familiar deposits hidden beneath the sea. The Unit also outlines how knowledge of responses to climate change in the past allow us to predict responses of coasts to accelerated climate change occurring now and in the future due to the industrial greenhouse effect. Overall therefore, the Unit aims to provide familiarity with fundamental phenomena central to the study of marine geoscience, introduced through process-oriented explanations. The Unit of Study is structure around problem-based project work, for which lectures provide the theoretical background.

Textbooks

GEOS2121 Environmental and Resource Management
Credit points: 6 Teacher/Coordinator: A/Prof Phil McManus Session: Semester 2: 20 one hour lectures and one 1 hour tutorial per week, one fieldtrip. Prerequisites: 24 credit points of junior units of study, including 6 credit points of Junior Geoscience or ECON1001 or ECON1002 Prohibitions: GEOG2421, GEO2L2002, GEO2S291 Assessment: One 2 hour exam, one 2000 word essay, tutorial papers, one fieldtrip report

This unit of study explores cultural constructions of nature and resources, the evolution of environmental thought and the debates about sustainable development. It integrates environmental, economic, cultural and social considerations, with particular regard to water, mining, forestry and fishing industries in Australia and other countries. The unit includes a fieldtrip to the Hunter Valley to look at geological and geographical issues pertaining to minerals, wines and the thoroughbred breeding industries in this region. The unit of study enables students to learn about the economics of resource extraction and the social, cultural and environmental considerations that must be taken into account when developing and implementing environmental and resource management policies.

GEOS2122 Urban Geography
Credit points: 6 Teacher/Coordinator: Dr Kurt Iveson Session: Semester 2: Two 1 hour lectures and one 2 hour practical per week. Prerequisites: 24 credit points of Junior units of study, including 6 credit points of Junior Geoscience or ECON1001 or ECON1002 Prohibitions: GEOS2922, GEOZ2521 Assessment: One 2 hour exam, 2000 word essay, tutorial papers, practical reports

Cities are full of different people doing all sorts of different things. Developing an understanding of these processes necessitates attention to the geographical principles that underlie varied social practices (work, leisure, sport, music etc) and social categories such as ethnicity, gender, sexuality and race. We will investigate how different people perceive space and construct space, primarily in Western contexts and thereby seek to understand the cultural and political dimensions of everyday life in cities.

GEOS2124 Fossils and Tectonics
Credit points: 6 Teacher/Coordinator: A/Prof Dietmur Müller Session: Semester 2: Two 1 hour lectures plus one 3 hour practical per week. Prerequisites: 24 credit points of Junior units of study, including GEOS1003 or GEOS1903 or GEO1002 or GEO1902 or GEOL1501 Prohibitions: GEOS2924, GEO2L2123, GEO2L2124 Assessment: One 2 hour exam, practical reports, field report

The unit aims to convey how fossils, stratigraphic and structural data are used together to determine ages and environments and the deformation history of rock layers. It covers an introduction to historical geology and the evolution of the major fossils groups. Methods of stratigraphic age determination include litho-, bio-, chemo-, magneto-stratigraphy, as well as radiometric geochronology and the stratigraphic characteristics of the main geological time intervals. Structural methods are focused on brittle deformation in the upper crust and sediments. Students will gain familiarity with the most important fossil groups and how to identify them, and with the most important types of faults and folds. The formation of fossil fuels such as coal, oil and gas will also be covered in an earth history and resource exploration context. The simultaneous use of fossils, stratigraphy and structure to unravel the geological history of a set of exposed rock layers is demonstrated during a field excursion to Yass.

Textbooks
Classnotes available in co-op bookshop

GEOS2911 Natural Hazards: a GIS Approach Advanced
Credit points: 6 Teacher/Coordinator: Dr Patrice Rey and others. Session: Semester 1: Two 1 hour lectures and one 3 hour practical per week. Prerequisites: 24 credit points of Junior units of study including a distinction in 6 credit points of Junior Geoscience Prohibitions: GEOG2411, GEOS2111 Assessment: One 2 hour exam, one assignment, practical report

The geosciences provide an essential framework for understanding the environmental response to short- and long-term geologic, oceanic and atmospheric processes. This unit of study introduces students to a variety of natural phenomena that affect society with impact levels ranging from nuisance to disasters. The discussion of each hazard focuses on: (1) the process mechanics, (2) hazards and risk, and (3) methods for mitigation. Geographic Information Systems (GIS) are used by scientists, planners, policy-makers and the insurance industry alike to address many issues relating to natural hazards. This unit of study will introduce students to the major concepts relating to GIS and provide practical experience in the application of GIS techniques to hazard mapping, risk assessment and mitigation.

Credit points: 6 Teacher/Coordinator: Dr Bill Pritchard, A/Prof Phil Hirsch Session: Semester 1: Two 1 hour lectures and one 2 hour practical per week. Prerequisites: 24 credit points of Junior units of study, including a distinction in 6 credit points of Junior Geoscience or in ECON1001 or ECON1002
Prohibitions: GEOS2112, GEOS2511 Assessment: One 2 hour exam, 2000 word essay, tutorial papers, practical reports.

This is an Advanced version of GEOS2112. In this unit of study, students will be introduced to the sub-discipline of economic geography by way of debates on the spatial character of global development. We focus on questions relating to who are the winners and losers from contemporary patterns of global economic change. This includes the analysis of relevant conceptual approaches to these questions (including comparative advantage, global commodity chain theory, regionalism, economic governance etc), plus ‘hands-on’ examination of the key institutions (such as the WTO and ADB) driving these changes. In general, issues are tailored to themes being played out in Asia-Pacific countries. Students are expected to participate in a variety of practical class exercises throughout the semester, which will include presenting the fruits of independent research activities. This unit provides an especially relevant feeder-unit into GEOS3053/GEOS3054, the Asia-Pacific Field School.

GEOS2921 Volcanoes, Hot Rocks and Minerals Adv
Credit points: 6 Teacher/Coordinator: Dr Derek Wyman, Dr Patrice Rey, Prof Peter Hatherley Session: Semester 2 Classes: One 2 hour lectures plus one 3 hour practical per week. Prerequisites: 24 credit points of Junior Science units of study and Distinction in one of GEOL1002 or GEOS1002 or ENV1002 or GEOL1501 or GEOL1902 or GEOS1003 or GEOS1903. This requirement may be varied and students should consult the unit of study coordinator. Prohibitions: GEOL2001, GEOS2114 Assessment: One 2 hour exam, practical reports, field trip report, group presentation. This unit has the same objectives as GEOS2114 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance to date. Students that elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. This unit may be taken as part of the BSc (Advanced).

Textbooks
No required textbook. Course notes available.

GEOS2922 Environmental & Resource Management Adv
Credit points: 6 Teacher/Coordinator: A/Prof Phil McManus Session: Semester 2 Classes: Two 1 hour lectures, one 1 hour tutorial per week and one fieldtrip. Prerequisites: 24 credit points of Junior units of study, including a distinction in 6 credit points of Junior Geoscience or in ECOP1001 or ECOP1002. This requirement may be varied and students should consult the unit of study coordinator. Prohibitions: GEOG2421, GEOL2022, GEOS2121 Assessment: One 2 hour exam, 2000 word essay, one 2500 word essay, one fieldtrip report.

Advanced students will complete the same core lecture materials as for GEOS2121 but are required to complete an essay in place of the regular tutorial reports prepared in GEOS2121.

GEOS2924 Fossils and Tectonics (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Dietmar Müller, Dr Patrice Rey, Prof Peter Hatherley Session: Semester 2 Classes: Two 1 hour lectures plus one 3 hour practical each week. Prerequisites: Distinction in GEOS1003 or Distinction average in 12 credit points of Junior Geoscience units (Geoscience is the disciplines of Geography, Geology and Geophysics). Prohibitions: GEOS2124, GEOL2123, GEOL2124 Assessment: One 2 hour exam, practical reports, field report.

This unit has the same objectives as GEOS2124 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance to date. Students that elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. This unit may be taken as part of the BSc (Advanced).

Textbooks
Classnotes by available in co-op bookshop.

Geosciences senior units of study
Geosciences Senior units of study provide specialist themes or topics relevant to ongoing studies or professions. Students may select from any of the units listed below.

Geography Major
The requirements for a Major in Geography are defined in Table 1. Students are required to complete 24 credit points from Senior units of study in Geography that must include either GEOS3015 and GEOS3018 or at least 12 credit points from the following: GEOS5513, GEOS5514, GEOG5521, GEOG5522.

Geology and Geophysics Major
The requirements for a major in Geology and Geophysics are defined in Table 1. Students are required to take two compulsory units, GEOS3101/3801 and the field studies unit GEOS3008/3908, as well as two of GEOS3102/3802, GEOS3103/3803, GEOS3104/3804. These units provide students with a foundation training that prepares them for further study in an Honours or postgraduate coursework program as well as enabling them to enter the main professional fields of the discipline, e.g. Resource and Energy Exploration, Engineering Geology, and Environmental Geology.

GEOS3008 Field Geology and Geophysics
Credit points: 6 Teacher/Coordinator: Dr Patrice Rey, Prof Peter Hatherley Session: Semester 2a Classes: (weeks 1-7) 14 days of field work. Prerequisites: 12 credit points of Intermediate Geosciences units. Prohibitions: GEOL3103, GEOS3908 Assessment: The field work will be assessed by written reports (up to 30 pages in total) and field exercises.

This unit is considered an essential component all Geology and Geophysics majors. All students will undertake a range of exercises, but concentrate on aspects that emphasise their chosen major: (1) field mapping and the analysis of geological objects in the field, in weakly to completely deformed sedimentary and volcanic sequences; (2) field investigations of mineral deposits and their relationships to host rocks; and (3) the practical application of magnetic and electrical methods commonly employed in the search for mineral deposits. The field course complements other subject areas in Geology & Geophysics and will give students experience in the field identification of rocks and minerals, regional geology, stratigraphy, structure and rock relationships. Students will be required to pay the cost of hostel-style accommodation during field work, which may involve camping.

GEOS3009 Coastal Environments and Processes
Credit points: 6 Teacher/Coordinator: A/Prof Gavin Birch, Dr Ana Vila-Concejo Session: Semester 1 Classes: One 2 hour lectures and one 2 hour practical per week; weekend excursion. Prerequisites: (6 credit points of Intermediate Geoscience units) and (6 further credit points of Intermediate Geoscience or 6 credit points of Physics or Mathematics or Information Technology or Engineering units) or (MARS2005 or MARS2905) and
Australian coastal environments are dynamic systems responding to input sediments and processes as well as solid boundary conditions. The unit focuses on high-energy wave and wind dominated coastal systems that include the beach-surf zone, dunes, barriers, carbonate (coral reef) environments and their Holocene/Quaternary evolution. The regional impact of waves, tides, embayments, and other environmental parameters in controlling morphology and deposits are addressed. The practical program uses real data sets collected during recent research programs and during two field excursions which address issues specifically relevant to Australia’s coastline. The excursions include a 2-day weekend field trip and one 5-day field trip to the Great Barrier Reef in the mid-semester break. Note: Students will incur costs in attending the excursions. Alternative work will be provided if students cannot attend the 5-day field trip.

Textbooks
Recommended:

Course notes will be available from the Photocopy Centre.

GEOS3014
GIS in Coastal Management
Credit points: 6
Teacher/Coordinator: Dr Eleanor Bruce, A/Prof Peter Cowell
Session: Semester 2
Classes: Two 1 hour lectures and one 3 hour practical per week.
Prerequisites: MARS(2005 or 2905) and MARS(2006 or 2906), or 12 credit points of Intermediate Geoscience* units, or (GEOS(2115 or 2915) and BIOC(2108 or 2918)).
Prohibitions: GEOS3914, MARS3104.
Assessment: One 2 hour exam, two project reports, quizzes.
Note: * Geoscience is the disciplines of Geography, Geology and Geophysics.

Coastal Management is about how scientific knowledge is used to support policy formulation and planning decisions in coastal environments. The course links coastal science to policy and practice in management of estuaries, beaches and the coastal ocean. The principles are exemplified through specific issues, such as coastal erosion, pollution, and impacts of climate-change. The issues are dealt with in terms of how things work in nature, and how the issues are handled through administrative mechanisms. These mechanisms involve planning strategies like Marine Protected Areas and setback limits on civil development in the coastal zone. At a practical level, the link between science and coastal management is given substance through development and use of ‘decision-support models’. These models involve geocomputing methods that entail application of simulation models, remotely sensed information, and Geographic Information Systems (GIS). The course therefore includes both principles and experience in use of these methods to address coastal management issues. (It thus also involves extensive use of computers.) Although the focus is on the coast, the principles and methods have broader relevance to environmental management in particular, and to problem-solving in general. That is, the course has vocational relevance in showing how science can be exploited to the benefit of society and nature conservation.

Textbooks

GEOS3015
Environmental Geomorphology
Credit points: 6
Teacher/Coordinator: Dr Stephen Gale
Session: Semester 2
Classes: Two 1 hour lectures, one 1 hour tutorial and one 2 hour practical per week or equivalent.
Prerequisites: 24 credit points of Intermediate units, including 6 credit points of Intermediate Geoscience. Prohibitions: GEOS3915.
Assumed knowledge: Intermediate geomorphology/physical geography.
Assessment: One 2 hour exam, practical & field reports.

The first part of this unit deals with the effects of weathering on the physical and the built environment, and considers the relationship between soil and landforms. The second part investigates the environmental changes that have taken place since the end of the last glacial, the time when the world’s climates and environments first took on a recognisably modern form. It deals specifically with changes to the Australian biophysical environment and will focus on human-environmental impacts, both under pre-European and post-contact conditions.

GEOS3018
Rivers: Science, Policy and Management
Credit points: 6
Teacher/Coordinator: Dr Mel Neave
Session: Semester 1
Classes: Two 1 hour lectures, one 1 hour tutorial, two 4 hour practicals per week. Fieldwork.
Prerequisites: 24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience or (MARS2005 or MARS2905) and (MARS2006 or MARS2906).
Prohibitions: GEOS3918.
Assessment: One 2 hour exam, two 1500 word essays.

The unit of study is concerned with understanding the functioning of river catchments from both natural science and social science perspectives, at a variety of scales. The catchment as a morphodynamic process-response system is addressed with an emphasis on the relationships between processes and landform entities. Similarly, relationships within social, economic, and political systems are explored within the catchment context, with particular emphasis on the interactions between the social system and bio-physical system. Empirical context for the unit will primarily be drawn from the Murray-Darling, Mekong, and Hawkesbury-Nepean catchments. Fieldwork in the latter is integral to the unit of study.

Textbooks

GEOS3513
Regional Development and Environment
Credit points: 6
Teacher/Coordinator: Dr Bill Pritchard, Dr Timothir Ancev
Session: Semester 1
Classes: Two 2 hours of lectures per week and 2 hours of tutorials/practicals per week.
Prerequisites: 24 credit points of Intermediate units of study and/or senior units of study including 6 credit points of Intermediate units of study in Geography.
Prohibitions: ENV3113, GEOS3511, GEOS3911, GEOS3913.
Assessment: Two in-class tests, one 1500 word essay, one GIS report.

This unit of study acquaints students with debates and tools associated with regional development and the economic analysis of environmental issues. It provides a useful preparation for professional employment in the field of regional development, environmental policy and management, and is relevant for students interested in economic and social issues in regional Australia. Co-taught by a geographer and an economist, the unit addresses four key areas of relevance: (i) regional development theory and practice; (ii) the economics of efficiently utilising and managing the environment; (iii) debates on regional development in Australia (including consideration of the farm sector, Indigenous communities and environmental sustainability), and (iv) the use of GIS to analyse population census date. The unit requires no prior knowledge of economic theory or GIS software.

GEOS3513
Regional Development & Environment (Adv)
Credit points: 6
Teacher/Coordinator: Dr Bill Pritchard, Dr Timothir Ancev
Session: Semester 1
Classes: Two 2 hours of lectures per week and 2 hours of tutorials/practicals per week.
Prerequisites: 24 credit points of intermediate and/or senior units of study including 6 credit points of intermediate units of study in Geography with a grade of Credit or better.
Prohibitions: ENV3113, GEOS3511, GEOS3513, GEOS3911, GEOS3913.
Assessment: In-class tests, essay, report.

This unit of study is a more advanced version of GEOS3513. It includes more challenging assessment tasks.

GEOG3521
Sustainable Cities
Credit points: 6
Teacher/Coordinator: A/Prof Phil McManus
Session: Semester 2
Classes: Two 1 hour lectures and one 2 hour practical/tutorial per week.
Prerequisites: 24 credit points of Intermediate units of study including 6 credit points of Intermediate Geoscience.
Prohibitions: GEOG3921, GEOG3302.
Assessment: One 2 hour exam, 2000 word essay, tutorial papers, practical reports.

Are cities sustainable? Why or why not? This unit of study develops themes introduced in Intermediate units in Geography relating to sustainability, focusing on the ways we manage urban regions. This
involves discussion of topics including utopian visions for cities, urban history, ecological footprint analysis, biogeochemical transport operations, urban form and urban policy, with reference to sustainable futures. The unit of study looks at different Australian cities and includes practical work on a current sustainability issue in Sydney.

GEOS3522

Cities and Citizenship

Credit points: 6
Teacher/Coordinator: Dr Kurt Iveson
Session: Semester 2
Classes: One 2 hour lecture, one 1 hour tutorial and one 2 hour practical per week.
Prerequisites: GEOS(2114 or 2914) and GEOS2114 or GEOS2124 or GEOS2115 or GEOS2125; or 24 credit points of Intermediate Geoscience units of study with permission of the Head of School
Prohibitions: GEOS(2124 or 2924) and GEOS2111 or GEOS2114 or GEOS2125 or GEOS2124 or GEOS2126; or GEOS(1003 or 1903) and GEOS(2111 or 2911 or 2114 or 2914 or 2113 or 2913); or GEOS(1003 or 1903) and 24 credit points of Intermediate Science units of study with permission of the Head of School
Prohibitions: GEOS2103, GEOS2124
Assessment: One 2 hour exam, one 2000 word essay, one 3000 word practical report, tutorial participation

What does it mean to be a ‘citizen’, and what has this got to do with cities? This unit explores the urban dimension of contests over the meaning of citizenship. The first half will consider historical configurations of urban citizenship, from the Greek city-states of antiquity through to imperial, colonial and industrial cities. The second half will then focus on contemporary globalising cities. A series of case studies will consider the production of new configurations of urban citizenship across a range of cities in the world, looking at issues such as: asylum-seekers and the city; children and the city; homelessness in the city; ‘culture jamming’ and new forms of urban protest; trans-national social movements. The module will involve a substantial practical component, encouraging students to draw on their own experiences of city life to reflect on the meanings of citizenship.

GEOS3101

Earth’s Structure and Evolution

Credit points: 6
Teacher/Coordinator: Dr Patrice Rey, Prof Geoff Clarke
Session: Semester 1
Classes: Two 1 hour lectures and one 3 hour tutorial/practical class per week.
Prerequisites: GEOS2114 or GEOS2124; or 24 credit points of Intermediate Science units of study and GEOS1003 with permission of the Head of School
Prohibitions: GEOS2103, GEOS2124
Assessment: One 2 hour exam, practical and field reports

The Earth’s crust and upper mantle, or lithosphere, are a consequence of dynamic and thermal processes operating since the beginning of the Archaean. This unit focuses on information and techniques that enable an understanding of these processes. The main topics presented in this unit include: the formation and evolution of oceanic and continental lithosphere; structural deformation, magnatism and metamorphism at plate boundaries; and the mesoscopic and microscopic analysis of igneous and metamorphic rocks. Practical classes are designed to enable students to competently and independently identify the common crystalline rocks in hand-specimen; and to gather and interpret the structural field data which enables the determination of the structural style and deformational history presented in particular tectonic settings. The concepts and content presented in this unit are generally considered to be essential knowledge for geologists and geophysicists and provide a conceptual framework for their professional practice. Students wishing to specialise in the field and become professional geologists will normally need to expand upon the knowledge gained from this unit and either complete an honours project or progress to postgraduate coursework in this field.

GEOS3102

Global Energy and Resources

Credit points: 6
Teacher/Coordinator: Dr Derek Wyman, A/Prof Gavin Birch
Session: Semester 1
Classes: Two 1-hour lectures and one 2-hour tutorial/practicals per week.
Prerequisites: GEOS(2114 or 2914) and GEOS2114 or GEOS2124; or 24 credit points of Intermediate Science units of study and GEOS1003 with permission of the Head of School
Prohibitions: GEOS2103, GEOS2124
Assumed knowledge: GEOS2114, GEOS2124
Assessment: One 2-hour exam, practical and field reports

This unit examines the processes that form energy and mineral resources, outlines the characteristics of major fossil fuel and metal ore deposits and introduces the principles that underpin exploration strategies used to discover and develop geological resources. The unit will focus on a variety of topics including: coal; petroleum formation and migration, hydrocarbon traps and maturation; precious metal, base metal and gemstone deposit types; and exploration strategies. An integrated approach will relate tectonic processes through time to the formation of fossil fuel and mineral provinces. Practical exercises will introduce students to the techniques used to identify economically viable geological resources using a variety of exercises based on actual examples of resource exploration drawn from both the petroleum and minerals industry. An excursion to active and historic mining sites in NSW will complement the practical studies.

GEOS3103

Environmental and Sedimentary Geology

Credit points: 6
Teacher/Coordinator: Dr Tom Hubble, Dr Adriana Dutkiewicz
Session: Semester 2
Classes: Two 1 hour lectures and one 3 hour tutorial/practical class per week.
Prerequisites: GEOS(2124 or 2924) and GEOS2111 or GEOS2114 or GEOS2125 or GEOS2124 or GEOS2126; or GEOS(1003 or 1903) and 24 credit points of Intermediate Science units of study with permission of the Head of School
Prohibitions: GEOS2103, GEOS2124
Assessment: One 2-hour exam, practical and field reports

Sediments and sedimentary rocks cover most of the Earth’s surface, record much of the Earth’s geological history and host important resources such as petroleum, coal, water and mineral ores. The aim of this unit is to provide students with the skills required to examine, describe and interpret sediments and sedimentary rocks for a variety of different purposes. Specific focuses of the unit will be on identifying the recent or ancient environment in which sedimentary materials were deposited; the techniques used to identify anthropogenic pollution of modern sediments; and an assessment of natural hazards commonly associated with the formation of sediment bodies such as landslides and deep marine slides. On completion of this unit students will be familiar with the natural processes that form, modify, pollute and lithify sediments and the recognition and management of the environmental hazards associated with sediment bodies. A variety of sedimentary settings will be examined including fluvial, alluvial, lacustrine, marginal marine and deep marine environments. The various controls on the sedimentary record such as climate and sea-level change, as well as diagenesis and geochemical cycles will also be discussed. Practical exercises will require students to examine global datasets, determine the properties of sedimentary rocks, as well as collect and interpret their own field data. The course is relevant to students interested in petroleum or mineral exploration, environmental and engineering geology as well as marine geoscience.

Textbooks

Course notes will be available from the Copy Centre and an appropriate set of reference texts will be placed on special reserve in the library.

GEOS3104

Geophysical Methods

Credit points: 6
Teacher/Coordinator: Prof Peter Halley, A/Prof Dietmar Müller
Session: Semester 2
Classes: Two 1 hour lectures and one 3 hour tutorial/practical class per week.
Prerequisites: 24 credit points of Intermediate Science units of study or (GEOS(2114/2914) and GEOS(2124/2924))
Prohibitions: GEOS2104, GEOS3103, GEOS3105, GEOS3106, GEOS3106, GEOS2106, GEOS3106, GEOS3107, GEOS3107
Assumed knowledge: GEOS2114 and GEOS2124
Assessment: One 2-hour exam, practical and field reports

This unit introduces the common geophysical methods used to investigate the interior of the Earth and focuses on the techniques used for mineral and hydrocarbon exploration and production. Applications of these methods to problems in global geophysics will also be examined with an emphasis on their use in marine and terrestrial environments. On completion of this unit students will have developed a thorough understanding of the commonly used geophysical methods and will be able to evaluate and critically assess most forms of geophysical data as well as be able to actively participate in geophysical explorations. The unit is aimed at students with interests in land-based and marine resource exploration, plate tectonics, internal earth structure, and near-surface investigations of groundwater resources and environmental pollution. Students wishing
to specialise in the field and become professional geophysicists will
normally need to expand upon the geophysics knowledge gained from
this unit and either complete an honours project or progress to
postgraduate coursework in this field.

Textbooks
Class notes will be supplied through the University copy Centre. Geophysical
textbooks held in the library provide adequate additional information that supports
the class notes.

GEOS3053
Asia-Pacific Field School-Assessment A
Credit points: 6 Teacher/Coordinator: Prof Phil Hirsch. Session: S1 Intensive
Classes: Six weeks intensive, eight modules of 3 lectures each, ten full days
equivalent fieldwork, 20 hours small group work. Prerequisites: 6 credit points of
Intermediate units of study in Geography. Department permission required
for enrolment. Corequisites: GEOS3054 Prohibitions: GEOS3201, GEOS3953
Assessment: One tutorial paper, one extended field report, one exam
Note: Department permission required for enrolment. Note: Students must contact
the unit coordinator no later than the end of May in the year before
taking this Unit.

The unit of study can be taken only in coincidence with GEOS3054 and
with prior permission from the unit of study coordinator. It constitutes a Field School run over a six-week period in
January-February, prior to the commencement of the semester. In 2010 the Field School will be held in China, Thailand, Laos, Cambodia
and Viet Nam. In other years it may be held in the South Pacific (Vanuatu and Fiji). GEOS3053 will focus on the use, development and
management of the Mekong River at various scales from village to international river basin. The Field School is run in close association
with local universities, whose staff and students participate in some
components of the course. Places are limited, and students interested in
the 2010 Field School should indicate expression of interest to
philip.hirsch@usyd.edu.au before the end of May 2009.

GEOS3054
Asia-Pacific Field School-Assessment B
Credit points: 6 Teacher/Coordinator: Prof Phil Hirsch. Session: S1 Intensive
Classes: Six weeks intensive, eight modules of 3 lectures each, ten full days
equivalent fieldwork, 20 hours small group work. Prerequisites: 6 credit points of
Intermediate units of study in Geography. Department permission required
for enrolment. Corequisites: GEOS3053 Prohibitions: GEOS3201, GEOS3954
Assessment: One tutorial paper, one extended field report, one exam
Note: Department permission required for enrolment. Note: Students must contact
the unit coordinator no later than the end of May in the year before
taking this Unit.

The unit of study can be taken only in coincidence with GEOS3053 and
with prior permission from the unit of study coordinator. It constitutes a Field School run over a six-week period in
January-February, prior to the commencement of the semester. In 2010 the Field School will be held in China, Thailand, Laos, Cambodia
and Viet Nam. In other years it may be held in the South Pacific (Vanuatu and Fiji). GEOS3054 will focus on economic development and
regional integration in the Greater Mekong Subregion and their social & environmental implications at various scales from village to transnational region. It is run in close association with local universities, whose staff and students participate in some components of the course. Places are limited, and students interested in the 2010 Field School should indicate expression of interest to
philip.hirsch@usyd.edu.au before the end of May 2009.

GEOS3801
Earth's Structure and Evolutions (Adv)
Credit points: 6 Teacher/Coordinator: Dr Patrice Rey, Prof Geoff Clarke
Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour
tutorial/practical class per week. Prerequisites: Distinction in GEOS2114 or
GEOS2124 or GEOS2129 and GEOS2124 or GEOS2924; Students who have a credit average for all Geoscience units may enrol in this unit with the permission of the Head of School
Prohibitions: GEOS3101, GEOS2903, GEOS3003, GEOS3904, GEOS3906, GEOS3017 and GEOS3917 Assumed knowledge: GEOS2114, GEOS2124
Assessment: One 2 hour exam, practical and field reports
This unit has the same objectives as GEOS3101 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week 1 of semester.

GEOS3802
Global Energy and Resources (Adv)
Credit points: 6 Teacher/Coordinator: Dr Derek Wyman, A/Prof Gavin Birch
Session: Semester 1 Classes: Two 1 hour lectures and one 3 hour
tutorial/practical class per week. Prerequisites: Distinction in GEOS2114 or
GEOS2124 or GEOS2924; Students who have a credit average for all Geoscience units may enrol in this unit with the permission of the Head of School
Prohibitions: GEOS3102, GEOS3003, GEOS3903, GEOS3004, GEOS3904, GEOS3006, GEOS3906, GEOS3017, and GEOS3917 Assumed knowledge: GEOS2114 and GEOS2124
Assessment: One 2 hour exam, practical and field reports
This unit has the same objectives as GEOS3102 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week 1 of semester.

GEOS3803
Environmental & Sedimentary Geology (Adv)
Credit points: 6 Teacher/Coordinator: Dr Tom Hubble, Dr Adriana Dutkiewicz
Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour
tutorial/practical class per week. Prerequisites: Distinctions in GEOS2114 or
GEOS2124 or GEOS2924; Students who have a credit average for all Geoscience units may enrol in this unit with the permission of the Head of School
Prohibitions: GEOS3103 Assumed knowledge: GEOS1003, GEOS2124
Assessment: One 2 hour exam, practical and field reports
This unit has the same objectives as GEOS3103 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week 1 of semester.

GEOS3804
Geophysical Methods (Advanced)
Credit points: 6 Teacher/Coordinator: Prof Peter Hatherly, A/Prof Dietmar Müller
Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour
tutorial/practical class per week. Prerequisites: Distinction in GEOS2114 or
GEOS2914 and GEOS2124 or GEOS2924; Students who have a credit average for all Geoscience units may enrol in this unit with the permission of the Head of School
Prohibitions: GEOS3104, GEOS3003, GEOS3903, GEOS3006, GEOS3906, GEOS3016, GEOS3916, GEOS3017, GEOS3917 Assumed knowledge: GEOS2114, GEOS2124 Assessment: One 2 hour exam, practical and field reports
This unit has the same objectives as GEOS3104 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week 1 of semester.

Textbooks
Course notes will be available from the copy centre and appropriate set of
reference texts will be placed on special reserve in the library.

GEOS3805
Geophysics (Adv)
Credit points: 6 Teacher/Coordinator: Dr Tom Hubble, Dr Adriana Dutkiewicz
Session: Semester 2 Classes: Two 1 hour lectures and one 3 hour
tutorial/practical class per week. Prerequisites: Distinction in GEOS2114 or
GEOS2124 or GEOS2924; Students who have a credit average for all Geoscience units may enrol in this unit with the permission of the Head of School
Prohibitions: GEOS3105 Assumed knowledge: GEOS3901, GEOS2124
Assessment: One 2 hour exam, practical and field reports
This unit has the same objectives as GEOS3105 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week 1 of semester.

Textbooks
Course notes will be supplied through the University Copy Centre. Geophysical
textbooks held in the library provide adequate additional information that supports
the class notes.

GEOS3908
Field Geology and Geophysics (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Patrice Rey, Prof Peter Hatherly
Session: Semester 2 Classes: 14 days of fieldwork. Prerequisites: Distinction
in the class notes.
average in 12 credit points of Intermediate GEOS units. Department permission required for enrolment. Prohibitions: GEOS3008 Assessment: Written reports and field exercises

Note: Department permission required for enrolment. Note: A Distinction average in prior Geology units of study is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.

This unit has the same objectives as GEOS3008 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance at the time of enrolment. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives. Specific details for this unit of study will be announced in meetings with students in week prior to the field camp which is usually in the break between semester 1 and 2. This unit of study may be taken as part of the BSc (Advanced).

GEOS3009 Coastal Environments and Processes (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Gavin Birch, Dr Ana Vila Concejo Session: Semester 1 Classes: Three 1 hour lectures, two 3 hour practicals per week, fieldwork. Prerequisites: Distinction average in (6 credit points of Intermediate Geoscience* units) and (6 further credit points of Intermediate Geoscience or 6 credit points of Physics, Mathematics, Information Technology or Engineering units) or (MARIS2005 or MARIS2905) and (MARIS2006 or MARIS2906)) Prohibitions: GEOS3009, MARIS3003, MARIS3105 Assessment: One 2 hour exam, two 1500 word reports.

Note: A distinction average in prior Geography or Geology units is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.

Advanced students will complete the same core lecture material as for GEOS3009 but will carry out more challenging projects, practicals, assignments and tutorials.

GEOS3914 GIS in Coastal Management (Advanced)
Credit points: 6 Teacher/Coordinator: A/Prof Peter Cowell, Dr Eleanor Bruce Session: Semester 2 Classes: Two hours of lectures, one 3 hour practical per week comprising one 1 hour practical demonstration and one 2 hour practical. Prerequisites: Distinction average in 12 credit points of Intermediate geography or geology units or GEOS (2115 or 2915) and BCL (2018 or 2018). Department permission required for enrolment. Prohibitions: GEOS3014, MAR3104 Assessment: One 2 hour exam, project work, two practical-based project reports, fortnightly progress quizzes

Note: Department permission required for enrolment. Note: A distinction average in prior Geoscience or Marine Science units of study is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator.

Advanced students will complete the same core lecture material as for GEOS3014 but will carry out more challenging projects, practicals, assignments and tutorials.

GEOS3915 Environmental Geomorphology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Stephen Gale Session: Semester 2 Classes: 3 hours lectures, 6 hours practical per week, fieldwork Prerequisites: Distinction average in 24 credit points of Intermediate units of study including 6 credit points of Intermediate Geography units of study. Prohibitions: GEOS3015 Assessment: One 2 hour exam, two 1500 word essays, prac and field reports Note: Department permission required for enrolment.

Advanced students will complete the same core lecture material as for GEOS3015, but will carry out more challenging projects, practicals, and field reports.

GEOS3918 Rivers: Science and Management (Adv)
Credit points: 6 Teacher/Coordinator: Dr Nicole Neave Session: Semester 1 Classes: Two 1 hour lectures, two 1 hour tutorials, two 4 hour practicals per week, fieldwork Prerequisites: Distinction average in (24 credit points of Intermediate units of study including 6 credit points of Intermediate Geography units of study) or (MARIS2005 or MARIS2905) and (MARIS2006 or MARIS2906) Prohibitions: GEOS3018 Assessment: One 2 hour exam, two 1500 word essays

Advanced students will complete the same core lecture material as for GEOS3018, but will carry out more challenging projects, practicals, assignments and tutorials.

GEOS3921 Sustainable Cities (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Phil McManus Session: Semester 2 Classes: Two 1 hour lectures and one 2 hour practical/tutor per week. Prerequisites: Distinction average 24 credit points of Intermediate Units of study including 6 credit points of Intermediate Geography units of study. Prohibitions: GEOS3921, GEOS3302 Assessment: One 2 hour exam; 2000 word essay, tutorial papers, practical reports

Advanced students will complete the same core lecture material as for GEOS3921, but will carry out more challenging projects, practicals, assignments and tutorials.

GEOS3922 Cities and Citizenship (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Kurt Iveson Session: Semester 2 Classes: Two 1 hour lectures and one 2 hour practical per week. Prerequisites: Distinction average in 24 credit points of Intermediate Units of study including 6 credit points of Intermediate Geography units of study. Prohibitions: GEOS3522 Assessment: One 2 hour exam; e-Sim assignments, tutorial papers

Advanced students will complete the same core lecture material as for GEOS3022, but will carry out more challenging projects, assignments and tutorials.

GEOS3953 Asia-Pacific Field School-A (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Phil Hirsch. Session: S1 Intensive Classes: Six weeks intensive, eight modules of 3 lectures each, 10 full days equivalent fieldwork, 20 hours small group work. Prerequisites: Distinction average in 24 credit points of Intermediate units of study including 6 credit points of Intermediate Geography units of study. Department permission required for enrolment. Corequisites: GEOS3954 Prohibitions: GEOS3053 Assessment: One tutorial paper, one extended field report, one exam

Note: Department permission required for enrolment. Note: Students must contact the unit coordinator no later than the end of May in the year before taking this Unit.

The unit of study can be taken only in coincidence with GEOS 3954 and with prior permission from the unit of study coordinator. It constitutes a Field School run over a six-week period in January-February, prior to the commencement of the semester. In 2010 the Field School will be held in China, Thailand, Laos, Cambodia and Viet Nam. In other years it may be held in the South Pacific (Vanuatu and Fiji). GEOS3953 will focus on the use, development and management of the Mekong River at various scales from village to international river basin. The Field School is run in close association with local universities, whose staff and students participate in some components of the course. Places are limited, and students interested in the 2010 Field School should indicate expression of interest to philip.hirsch@usyd.edu.au before the end of May 2009. Advanced students will carryout more challenging fieldwork reports.

GEOS3954 Asia-Pacific Field School-B (Adv)
Credit points: 6 Teacher/Coordinator: Prof Phil Hirsch. Session: S1 Intensive Classes: Six weeks intensive, eight modules of 3 lectures each, 10 full days equivalent fieldwork, 20 hours small group work. Prerequisites: Distinction average in 24 credit points of Intermediate units of study including 6 credit points of Intermediate Geography units of study. Department permission required for enrolment. Corequisites: GEOS3953 Prohibitions: GEOS3054 Assessment: One tutorial paper, one extended field report, one exam

Note: Department permission required for enrolment. Note: Students must contact the unit coordinator no later than the end of May in the year before taking this Unit.

The unit of study can be taken only in coincidence with GEOS 3953 and with prior permission from the unit of study coordinator. It constitutes a Field School run over a six-week period in January-February, prior to the commencement of the semester. In 2010 the Field School will be held in China, Thailand, Laos, Cambodia and Viet Nam. In other years it may be held in the South Pacific...
(Vanuatu and Fiji). GEOS3954 will focus on the use, development and management of the Mekong River at various scales from village to international river basin. The Field School is run in close association with local universities, whose staff and students participate in some components of the course. Places are limited, and students interested in the 2010 Field School should indicate expression of interest to philip.hirsch@usyd.edu.au before the end of May 2009. Advanced students will carry out more challenging fieldwork reports.

Geography and Geology and Geophysics Honours

Offered February and July. Information sessions about Geography or Geology and Geophysics Honours are held for interested third year students during Second Semester. Students contemplating Honours in their fourth year should consider possible thesis topics and discuss these with potential staff supervisors. Entry into fourth year Honours will require completion of units in Intermediate and Senior Geoscience units (to be passed at the level of credit or better) and a satisfactory WAM. In some years when the number of applicants exceeds resources (availability of supervisors, laboratory space etc.) offers will be made according to academic merit. Students will be notified in January of their formal acceptance into the Honours program. Honours students are required to undertake formal coursework during their first semester, and to participate in seminars throughout the year as arranged. They will be required to study original problems, working as appropriate in the field, the laboratory, libraries, and in some instances in conjunction with other university or government departments. A dissertation of not more than 20,000 words must be submitted during the second semester, followed by an examination that may include both written and oral work. Further details relating to Geography or Geology and Geophysics Honours are available from the Honours Coordinator.

Geosciences Postgraduate Study

Details concerning fields of postgraduate study in Geology and Geophysics may be obtained from Dr Derek Wyman or the Head of School. Details concerning Geography may be obtained from A/Prof Deirdre Dragovich or the Head of School.

History and Philosophy of Science

History and Philosophy of Science (HPS) allows students to enrich and deepen their knowledge of science and stand back from the specialised concerns of their other subjects by gaining a broader perspective on what science is, how it acquired its current form and how it fits into contemporary society. HPS is particularly relevant for students hoping to make careers in science policy, science administration, science education and science journalism. Any student with a genuine interest in science will derive benefit from study in HPS.

Course Advice

An advisor will be available in the Unit for History and Philosophy of Science during the enrolment period. The Unit is located on Level 4 of the Carslaw Building. More detailed information on courses is available either in a handbook from the Unit office or electronically via the Unit website http://www.usyd.edu.au/hps/. The Unit for History and Philosophy of Science offers the Junior unit of study Bioethics (HPSC1000), which analyses and discusses the ethical concerns raised by the scientific achievements in modern society. Students interested in relevant topics should consider taking the unit Concepts and Issues in Physical Science (PHYS1600) offered in the School of Physics. This unit serves as useful background for further studies in HPS and is offered as an Arts unit for all students, including students enrolled in the Faculty of Science.

Junior units of study

HPSC1000

Bioethics

Credit points: 6 Teacher/Coordinator: Dr Catherine Mills Session: Semester 1 Classes: One 1 hour and one 2 hour lecture and one 1 hour tutorial per week. Prohibitions: HPSC1900 Assessment: Short essays, tutorial work, tests.

Note: This Junior unit of study is highly recommended to Intermediate and Senior Life Sciences students.

Science has given us nearly infinite possibilities for controlling life. Scientists probe the origins of life through research with stem cells and embryos. To unlock the secrets of disease, biomedicine conducts cruel experiments on animals. GM crops are presented as the answer to hunger. Organ transplantation is almost routine. The international traffic in human body parts and tissues is thriving. The concept of brain death makes harvesting organs ethically more acceptable. It may also result in fundamental changes in our ideas about life. Science has provided new ways of controlling and manipulating life and death. As a consequence, difficult ethical questions are raised in increasingly complex cultural and social environments. This course will discuss major issues in the ethics of biology and medicine, from gene modification to Dolly the sheep. This unit will be introductory, but a small number of topical issues will be studied in depth. No scientific background beyond School Certificate level will be assumed.

Textbooks

Course reader

HPSC1900

Bioethics (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Catherine Mills Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial per week. Prohibitions: HPSC1000 Assessment: Tutorial work, essays, exam, tutorial participation. Note: Department permission required for enrolment.

The topics covered by HPSC1000 - Bioethics will be treated in more depth, in a special tutorial set aside for Advanced students.

Textbooks

Course reader

Intermediate units of study

There are two Intermediate units of study offered by the Unit for History and Philosophy of Science. They provide a broad background in the history and philosophy of science, and a solid background for students in arts and science who wish to acquaint themselves with principles and methods in the history and philosophy of science. For students who wish to major in HPS, they provide essential background knowledge.

HPSC2100

The Birth of Modern Science

Credit points: 6 Teacher/Coordinator: Dr Ofer Gal Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial per week. Prohibitions: 24 credit points of Junior units of study Assessment: Short essays, tutorial work, tests.

Modern culture is a culture of science. Modern Western science is the outcome of a historical process of 2,500 years. In this course we investigate how Western knowledge-theoretical, technological and medical-acquired the characteristics of modern science: its specific social structure, contents, values and methods. We will look at some primary chapters of this process, from antiquity to the end of the seventeenth century, and try to understand their implications to understanding contemporary science in its culture. Special emphasis will be given to the scientific revolution of the seventeenth century, which is often described as the most important period in the history of science and as one of the most vital stages in human intellectual history.

Textbooks

HPSC2101

What Is This Thing Called Science?

Credit points: 6 Teacher/Coordinator: Dr Dominic Murphy Session: Semester 2, Summer Main Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prohibitions: 24 credit points of Junior units of study Assessment: Short essays, tutorial work, tests.
Philosophers of science aim to define what distinguishes creationism from evolutionary theory, or astrology from astronomy. They give reasons why we can believe that today's theories are improvements over those that preceded them and how we know that what we see and do in scientific practice reflects the nature of reality. This course critically examines the most important attempts to define the scientific method, to draw a line dividing science from non-science, and to justify the high status generally accorded to scientific knowledge. The philosophies of science studied include Karl Popper's idea that truly scientific theories are falsifiable, Thomas Kuhn's proposal that science consists of a series of paradigms separated by scientific revolutions; and Feyerabend's anarchist claim that there are no objective criteria by which science can be distinguished from pseudo-science. This unit of study also explores contemporary theories about the nature of science and explores ideas about the nature of the experimental method and concepts such as underdetermination, the nature of scientific explanation, theory confirmation, realism, the role of social values in science, sociological approaches to understanding science, and the nature of scientific change.

Textbooks
Alan F Chalmers. What Is This Thing Called Science? 3rd edition. Course reader

HPSC2900
The Birth of Modern Science (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Ofer Gal Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prerequisites: Enrolment in the Talented Student Program or 24 credit points of Junior study with a Distinction average. Prohibitions: HPSC2002, HPSC2100 Assessment: Short essays, tutorial work, tests. Note: Department permission required for enrolment.

The topics covered in 'The Birth of Modern Science' will be covered in more depth, in a special tutorial set aside for advanced students.

Textbooks

HPSC2901
What Is This Thing Called Science? (Adv)
Credit points: 6 Teacher/Coordinator: Dr Dominic Murphy Session: Semester 1 Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prerequisites: Enrolment in the Talented Student Program or 24 credit points of Junior study with a Distinction average. Prohibitions: HPSC2002, HPSC2100 Assessment: Short essays, tutorial work. Note: Department permission required for enrolment.

The topics covered in 'What Is This Thing Called Science?' will be covered in more depth, in a special tutorial set aside for advanced students.

Textbooks
Alan F Chalmers. What Is This Thing Called Science? 3rd edition. Course reader

Senior units of study
Students wishing to major in History and Philosophy of Science in either the BSc, BA or BLibSt must take 24 credit points from the following Senior units of study. Our Intermediate courses provide students with a background in the history and philosophy of science. HPSC3022 Science and Society, provides students with an essential background in the sociology of science. This unit of study is compulsory for majors in history and philosophy of science.

HPSC3002
History of Biological/Medical Science
Credit points: 6 Teacher/Coordinator: Dr Hans Pols Session: Semester 2 Classes: Two 1 hour lectures and two 1 hour tutorials per week. Prerequisites: At least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate or Senior units. Assumed knowledge: HPSC (2001 and 2002) or HPSC (2100 and 2101) Assessment: Short essays, presentation, tutorial work, final essay.

Throughout the ages people have been born, have died, and in between have lived in various stages of sickness or health. In this unit of study we shall look at how these states of being were perceived in different times and places throughout history, while at the same time noting the increasing medicalisation of everyday life, together with the irony that the "miracles" of modern medicine appear to have created a generation of the "worried well". Using this historical perspective, we shall ask how perceptions of sickness, health and the related provision of health care have been intertwined with social, political and economic factors and, indeed still are today.

Textbooks
Course reader

HPSC3016
The Scientific Revolution
Credit points: 6 Teacher/Coordinator: Dr Ofer Gal Session: Semester 2 Classes: Two 1 hour lectures and two 1 hour tutorials per week. Individual student consultation as required. Prerequisites: At least 12 credit points of Intermediate HPSC units or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate or Senior units. Prohibitions: HPSC3001, HPSC3106 Assumed knowledge: HPSC (2100 and 2101) or HPSC (2001 and 2002) Assessment: Take-home tests, short essays, tutorial participation.

Modern Western science has a number of characteristics which distinguish it from other scientific cultures. It ascribes its tremendous success to sophisticated experiments and meticulous observation. It understands the universe in terms of tiny particles in motion and the forces between them. It is characterised by high-powered mathematical theorising and the rejection of any intention, value or purpose in Nature. Many of these characteristics were shaped in the 17th century, during the so called scientific revolution. We will consider them from an integrated historical-philosophical perspective, paying special attention to the intellectual motivations of the canonical figures of this revolution and the cultural context in which they operated. Topics will include: experimentation and instrumentation, clocks, mechanistic philosophy, and the changing role of mathematics.

Textbooks
Course reader

HPSC3021
Philosophy and Sociology of Biology
Credit points: 6 Teacher/Coordinator: Dr Dominic Murphy Session: Semester 1 Classes: Two 1 hour lectures and two 1 hour tutorials per week Prerequisites: At least 12 credit points of Intermediate HPSC units or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate of Senior units. Prohibitions: HPSC3103 Assumed knowledge: HPSC (2100 and 2101) or HPSC (2001 and 2002) Assessment: Essays, take-home tests, tutorial assessment.

The first part of this class examines the development of evolutionary theory from Darwin and Mende1 up to the modern synthetic theory. We will investigate the various conceptual changes and important empirical breakthroughs that have contributed to contemporary biology. The second part of the course will discuss disputed concepts in current biological thinking. We will explore the different understandings of the gene within evolutionary biology and molecular biology and rival understandings of the nature and importance of natural selection.

No previous study of biology is assumed.

Textbooks
Course reader

HPSC3022
Science and Society
Credit points: 6 Teacher/Coordinator: Dr Chris Degeling Session: Semester 1 Classes: Two 1 hour lectures and two 1 hour tutorials per week. Prerequisites: At least 12 credit points of Intermediate HPSC units or Credit or better in at least 6 credit points of Intermediate HPSC units, and at least 24 credit points of Intermediate of Senior units. Prohibitions: HPSC3003 Assumed knowledge: HPSC (2100 and 2101) or HPSC (2001 and 2002) Assessment: Short essays, tutorial work, presentation. Note: This unit is a requirement for HPS majors.

Science has become an essential element of Western societies. It is impossible to imagine our lives today without the achievements of science, technology, and medicine. Many scientists and laypeople think that scientific knowledge transcends political, social, cultural,
and economic conditions. Sociologists of science think otherwise. In this unit, we will investigate the nature of science, the position of science in society, and the internal dynamics of science. Sociologists of science have compared scientific knowledge to a ship in a bottle: if you see the finished product, you can’t understand how it came about, and you can’t believe that it is not what it claims to be: the empirically-determined truth about the world. In this unit, we will have a close look at some of these ships in bottles and examine how they got there. When observing science-in-the-making, rather than the finished product, the factors that influence science become much clearer. We will introduce some of the most exciting and innovative ideas about what science is and how it works by examining the sociological and anthropological approaches to science that have become the basis for research in the social studies of science, technology, and medicine, including: the norms of science, scientists’ images of themselves, the boundaries between science and other subjects, the rhetoric of scientific writing, laboratory work, science museums and science in the media.

Textbooks
S. Sismondo, An Introduction to Science and Technology Studies

HPSC3023
Psychology & Psychiatry: History & Phil
Credit points: 6 Teacher/Coordinator: Dr Hans Pols and Dr Fiona Hibberd Session: 1 Semester 1 Classes: Two 1 hour lectures and one 2 hour tutorial per week. Prerequisites: At least 12 credit points of Intermediate HPSC Units of study OR (a CR or above in one HPSC Intermediate Unit of Study) OR (12 intermediate credit points in psychology). Prohibitions: PSYC3202 Assumed knowledge: Basic knowledge about the history of modern science as taught in HPSC2100 AND the principles of philosophy of science as taught in HPSC2101 OR knowledge of the various sub-disciplines within Psychology. Assessment: Take-home essay (2500 words), one 2 hour exam, tutorial work.

Across the unit we examine one of the most interesting aspects of the history and philosophy of science, viz., the scientific practices and assumptions involved in making human beings an object of study. We will examine the ways in which psychologists and psychiatrists have investigated human nature, the kinds of experimental approaches they have developed to that end, the major controversies in this field, and the basic philosophical assumptions that have been made in the sciences of human nature. We investigate the developments of psychological theories and investigative methods as well as the development of psychiatric theory, treatment methods, and institutions.

Textbooks
Course reader
Leahy, TH (2004), A History of Psychology: Main currents in Psychological Thought, Pearson, Upper Saddle River, N.J.

HPSC3024
Science and Ethics
Credit points: 6 Teacher/Coordinator: Dr Jane Johnson Session: 2 Semester 2 Classes: Two 1 hour lectures and two 1 hour tutorials per week. Prerequisites: At least 24 credit points of Intermediate or Senior units of study Prohibitions: HPSC3007 Assessment: Short essays, tutorial work, tests.

Science is a powerful institution but its reputation as a noble pursuit of truth was tarnished by a number of developments in the twentieth century, like the dropping of the atomic bombs in WWII and the involvement of doctors in Nazi medicine. These incidents shook the faith of many scientists and others in the direction of science and the ethics of its practitioners. While science can furnish a strong factual account of the world, it lacks the internal resources to deal with the many normative questions it raises. On its own science cannot answer questions about right and wrong, about how we ought to make decisions and act. Instead it must appeal to ethics to help formulate adequate responses. Throughout the semester we will use the lens of scientific responsibility to frame and explore a number of questions intended to help expose important ethical issues in science, and to help you develop and articulate thoughtful answers and arguments. Such questions will include: Is science objective and value free? What is scientific fraud and does the very nature of the practice of science make fraud more likely? Do scientists have an obligation to disseminate their findings, and how does the increasing role of commercialization affect the responsibilities of scientists? Can we separate out science from its applications and thereby absolve scientists of ethically problematic outcomes? Should some scientific questions simply not be pursued, i.e. do they constitute forbidden knowledge? Can the methods of scientists be unethical and does unethical practice equate to bad science?

Textbooks
Course reader

History and Philosophy of Science Honours
An Honours course in HPS is available to students of sufficient merit who have satisfied the requirements for the degree of BSc or BA or BLibSt with a major in HPS or another relevant area. Students who have obtained the TSP Certificate in HPS are also eligible for the Honours program. The Honours course consists of 48 points of Honours level units of study, which must include HPSC4201 HPS Research Project 1, HPSC4202 HPS Research Project 2, HPSC4203 HPS Research Project 3 and HPSC4204 HPS Research Project 4. In their final semester all students must also enrol in the zero credit point non-assessable unit HPSC4999. Students intending to proceed to Honours or to enrol in the Graduate Diploma in Science (HPS) are strongly advised to contact the Unit towards the end of the previous academic year to discuss thesis topic and supervision. Note: Honours level (4000) Units of Study are available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. A number of our Honours-level courses are also open to students in the medical humanities and liberal studies.

HPSC4101
Philosophy of Science
Credit points: 6 Teacher/Coordinator: Dr Dean Rickles Session: 2 Semester 1 Classes: One 2 hour seminar per week, individual consultation. Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. Assessment: Written assignment, seminar participation. Note: Department permission required for enrolment.

In this course we explore a range of issues from within the philosophy of physics. We focus on the interpretation of the theories physics provides, examining how these theories might describe our world. The course will assume some basic mathematical literacy, but most technical matters will be introduced in class.

Textbooks
Course reader

HPSC4102
History of Science
Credit points: 6 Teacher/Coordinator: Dr Ofer Gal Taught by HPS staff and guest lecturers. Session: Semester 1, Semester 2 Classes: One 2 hour seminar per week. Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. Assessment: Essays, seminar participation. Note: Department permission required for enrolment.

This unit explores major episodes in the history of science from the 18th century until the present as well as introducing students to historiographic methods. Special attention is paid to developing practical skills in the history and philosophy of science.

Textbooks
Course reader

HPSC4103
Sociology of Science
Credit points: 6 Teacher/Coordinator: Dr Hans Pols Session: 2 Semester 2 Classes: One 2 hour seminar per week, individual consultation. Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. Assessment: Essays, fieldwork report, seminar participation mark. Note: Department permission required for enrolment.
This unit explores recent approaches in the social studies of scientific knowledge. Students evaluate various sociological approaches by conducting their own research on topics relevant to their own major thesis.

The unit starts with an overview of the development of history and philosophy of science since 1945, to put the emergence of the sociology of science into perspective, before moving on to a selection of readings from the field. Topics will include: the strong program critique of traditional philosophy of science, the sociology of technology, the impact of feminism on the study of science, and the actor-network approach developed by Bruno Latour and Michel Callon.

Textbooks

Course reader

HPSC4104

Recent Topics in HPS

Credit points: 6
Teacher/Coordinator: HPS Staff
Session: Semester 1, Semester 2
Classes: One 2 hour seminar per week, individual consultation.

Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission.

Assessment: Essays, seminar participation.

Note: Department permission required for enrolment.

An examination of one area of the contemporary literature in the history and philosophy of science. Special attention will be paid to development of research skills in the history and philosophy of science.

Textbooks

Course reader

HPSC4105

HPS Research Methods

Credit points: 6
Teacher/Coordinator: Dr Hans Pols
Session: Semester 1, Semester 2
Classes: One 2 hour seminar per week, individual consultation.

Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission.

Assessment: Literature review, archival research project, seminar participation mark, short essays.

Note: Department permission required for enrolment.

Adopting a seminar style, this unit provides students with an advanced knowledge of the skills necessary to conduct their own original research in the sociology, history and philosophy of science. Participants will be given a weekly set of core readings, and specialists from within the Unit and from outside will present their views on the topic in question. This presentation will form the basis for a discussion involving the students, the academic members of the Unit, and invited speakers.

Topics will include: the use of case studies in the philosophy of science, how to conduct oral history projects, institutional history, and sociological methodology.

Textbooks

Course reader

HPSC4108

Core topics: History & Philosophy of Science

Credit points: 6
Teacher/Coordinator: HPS staff
Session: Semester 1, Semester 2
Classes: One 2 hour seminar per week.
Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or equivalent program of study at another institution.

Assessment: Essays, seminar presentations, seminar participation mark.

Note: Department permission required for enrolment.

An intensive reading course, supported by discussion seminars, into core topics in HPS.

HPSC4201

HPS Research Project 1

Credit points: 6
Teacher/Coordinator: HPS Staff
Session: Semester 1, Semester 2
Classes: Weekly individual supervision, fortnightly 90-minute research seminars.
Prerequisites: Available only to students admitted to HPS Honours and Graduate Diploma or Certificate in Science (History and Philosophy of Science).

Prohibitions: HPSC4106, HPSC4107
Assumed knowledge: HPSC (2001 and 2002) or HPSC (2100 and 2101)
Assessment: HPSC4201, HPSC4202, HPSC4203 and HPSC4204 are jointly assessed by a research thesis of up to 15,000 words.

Note: Department permission required for enrolment.

Research into a topic in history, philosophy or sociology of science under the supervision of one or more members of the HPS staff.

HPSC4202

HPS Research Project 2

Credit points: 6
Teacher/Coordinator: HPS Staff
Session: Semester 1, Semester 2
Classes: Weekly individual supervision, fortnightly 90-minute research seminars.
Prerequisites: Available only to students admitted to HPS Honours and Graduate Diploma or Certificate in Science (History and Philosophy of Science).

Prohibitions: HPSC4106, HPSC4107
Assumed knowledge: HPSC (2001 and 2002) or HPSC (2100 and 2101)
Assessment: HPSC4201, HPSC4202, HPSC4203 and HPSC4204 are jointly assessed by a research thesis of up to 15,000 words.

Note: Department permission required for enrolment.

Research into a topic in history, philosophy or sociology of science under the supervision of one or more members of the HPS staff.

HPSC4203

HPS Research Project 3

Credit points: 6
Teacher/Coordinator: HPS Staff
Session: Semester 1, Semester 2
Classes: Weekly individual supervision, fortnightly 90-minute research seminars.
Prerequisites: Available only to students admitted to HPS Honours and Graduate Diploma or Certificate in Science (History and Philosophy of Science).

Prohibitions: HPSC4106, HPSC4107
Assumed knowledge: HPSC (2001 and 2002) or HPSC (2100 and 2101)
Assessment: HPSC4201, HPSC4202, HPSC4203 and HPSC4204 are jointly assessed by a research thesis of up to 15,000 words.

Note: Department permission required for enrolment.

Research into a topic in history, philosophy or sociology of science under the supervision of one or more members of the HPS staff.

HPSC4204

HPS Research Project 4

Credit points: 6
Teacher/Coordinator: HPS Staff
Session: Semester 1, Semester 2
Classes: Weekly individual supervision, fortnightly 90-minute research seminars.
Prerequisites: Available only to students admitted to HPS Honours and Graduate Diploma or Certificate in Science (History and Philosophy of Science).

Prohibitions: HPSC4106, HPSC4107
Assumed knowledge: HPSC (2001 and 2002) or HPSC (2100 and 2101)
Assessment: HPSC4201, HPSC4202, HPSC4203 and HPSC4204 are jointly assessed by a research thesis of up to 15,000 words.

Note: Department permission required for enrolment.

Research into a topic in history, philosophy or sociology of science under the supervision of one or more members of the HPS staff.

HPSC4999

History & Philosophy of Science Honours

Session: Semester 1, Semester 2
Prerequisites: Available only to students admitted to HPS Honours.

Note: Department permission required for enrolment.

All students in History and Philosophy of Science Honours must enrol in this non-assessable unit of study in their final semester.

Immunobiology major

The Discipline of Infectious Diseases and Immunology administers the Immunobiology Major. Our location is on Level 6, Blackburn Building D06. Further information from Dr Allison Abendroth (phone: (02) 93516867, email: a.abendroth@usyd.edu.au) or Dr Scott Byrne (phone: (02)93517308, email: scottb@med.usyd.edu.au).

A major in Immunobiology requires successful completion of 12 credit points of Senior study in Immunology plus 12 credit points from the elective Senior units of study in Biochemistry, Biology, Cell Pathology, Molecular Biology and Genetics, Microbiology, Physiology or Virology listed in Table I. Participants in the Immunobiology major will select accompanying Senior units according to their particular interest. Concurrent study in the life science disciplines will add a depth of understanding in a particular aspect of immunology. Participants are
invited to consult with either Dr Allison Abendroth or Dr Scott Byrne as well as with elective unit of study co-ordinators before selecting concurrent study units and should note that a unit of study taken as part of the Immunobiology Major cannot count towards a major in another Science discipline area.

Immunology

Immunology is offered as Introductory Immunology (IMMU2101) at Intermediate level, Molecular and Cellular Immunology (IMMU3102) and Immunology in Human Disease (IMMU3202) at Senior level, and Immunology Honours. Further information can be obtained from Dr Allison Abendroth (phone: (02) 93516867, email: a.abendroth@usyd.edu.au) or Dr Scott Byrne (phone: (02) 93517308, email: scottb@med.usyd.edu.au).

Immunology intermediate units of study

IMMU2101 Introductory Immunology

Credit points: 6
Teacher/Coordinator: Dr Scott Byrne
Session: Semester 1
Classes: Two 1 hour lectures per week, one 2 hour tutorial or practical or independent study per week
Prerequisites: 24 credit points of Junior units of study from any of the Science discipline areas.
Prohibitions: IMMU2001, BMED2506, BMED2807
Assumed knowledge: Junior Biology and Junior Chemistry.
Assessment:
- Progressive assessment: (50%): includes written practical and oral based assessments;
- Formal assessment (50%): one 2 hour examination (60%).

Note: This is a prerequisite unit of study for IMMU3102 and IMMU3202. The completion of 6 credit points of MBLG units of study is highly recommended.

This unit of study will provide an overview of the human immune system and essential features of immune responses. The lecture course begins with a study of immunology as a basic research science. This includes the nature of the cells and molecules that recognise antigens and how these cells respond at the cellular and molecular levels. Practical/tutorial sessions will illustrate particular concepts introduced in the lecture program. Further lectures and self-directed learning sessions will integrate this fundamental information into studies of mechanisms of host defence against infection, transplantation as well as dysfunction of the immune system including allergy, immunodeficiency and autoimmune diseases and cancer.

Textbooks

IMMU3102 Molecular and Cellular Immunology

Credit points: 6
Teacher/Coordinator: Dr Allison Abendroth
Session: Semester 2
Classes: Three 1 hour lectures, one tutorial and one practical per fortnight.
Prerequisites: BMED2807 or IMMU2101 and 6cp of Intermediate units of study from Biochemistry or Biology or Microbiology or Molecular Biology and Genetics or Pharmacology or Physiology.
Prohibitions: IMMU3002, BMED3003
Assumed knowledge: Intermediate biochemistry and molecular biology and genetics.
Assessment:
- Progressive assessment: 40% includes practical assignment, portfolio of case studies, poster presentation, tutorial presentation.
- Formal examination: 60% one 2 hour exam.

Note: The completion of 6CP of MBLG units of study is highly recommended.
Concurrent study of IMMU3102 Molecular and Cellular Immunology is very strongly recommended.

This study unit builds on the series of lectures that outlined the general properties of the immune system, effector lymphocytes and their functions, delivered in the core courses, IMMU2101 - Introductory Immunology and BMED2807 - Microbes & Body Defences (formerly IMMU2101 and BMED2506). In this unit the molecular and cellular aspects of the immune system are investigated in detail. We emphasise fundamental concepts to provide a scientific basis for studies in clinical immunology; dysfunctions of the immune system e.g. autoimmune disease, immunodeficiencies, and allergy, and immunity in terms of host - pathogen interactions. This unit has a strong focus on significant clinical problems in immunology and the scientific background to these problems. The unit includes lectures from research scientists and clinicians covering areas such as allergy, immunodeficiency, autoimmune disease and transplantation. This course provides challenging information from the forefront of clinical immunology and helps the student develop an understanding of immune responses in human health and disease. Three lectures (1 hour each) will be given each fortnight: 2 lectures in one week and one lecture the following week, for the duration of the course. This unit directly complements the unit "Molecular and Cellular Immunology" and students are strongly advised to undertake these study units concurrently.

Textbooks

IMMU3202 Immunology in Human Disease

Credit points: 6
Teacher/Coordinator: Dr Allison Abendroth
Session: Semester 2
Classes: Three 1 hour lectures, one tutorial and one practical per fortnight.
Prerequisites: BMED2807 or IMMU2101 and 6cp of Intermediate units of study from Biochemistry, or Biology or Microbiology or Molecular Biology and Genetics or Pharmacology or Physiology.
Prohibitions: IMMU3002, BMED3003
Assumed knowledge: Intermediate biochemistry and molecular biology and genetics.
Assessment:
- Progressive assessment: 40% includes practical assignment, portfolio of case studies, poster presentation, tutorial presentation.
- Formal examination: 60% one 2 hour exam.

Note: This study unit builds on the series of lectures that outlined the general properties of the immune system, effector lymphocytes and their functions, delivered in the core courses, IMMU2101 - Introductory Immunology and BMED2807 - Microbes & Body Defences (formerly IMMU2101 and BMED2506). We emphasise fundamental concepts to provide a scientific basis for studies in clinical immunology; dysfunctions of the immune system e.g. autoimmune disease, immunodeficiencies, and allergy, and immunity in terms of host - pathogen interactions. This unit has a strong focus on significant clinical problems in immunology and the scientific background to these problems. The unit includes lectures from research scientists and clinicians covering areas such as allergy, immunodeficiency, autoimmune disease and transplantation. This course provides challenging information from the forefront of clinical immunology and helps the student develop an understanding of immune responses in human health and disease. Three lectures (1 hour each) will be given each fortnight: 2 lectures in one week and one lecture the following week, for the duration of the course. This unit directly complements the unit "Molecular and Cellular Immunology" and students are very strongly advised to undertake these study units concurrently.

Textbooks

IMMU3902 Molecular and Cellular Immunology (Adv)

Credit points: 6
Teacher/Coordinator: Dr Allison Abendroth
Session: Semester 2
Classes: Three lectures, 1 special seminar/tutorial (2 hours), 1 practical (4 hours) every 2 weeks
Prerequisites: Distinction in Intermediate Immunology IMMU2101 and 6CP of Intermediate units of study from Biochemistry or Biology or Microbiology or Molecular Biology and Genetics or Pharmacology or Physiology.
Prohibitions: IMMU3002 and IMMU3102
Assumed knowledge: Intermediate biochemistry and molecular biology and genetics.
Assessment:
- Progressive assessment: 40% includes practical work and assignment, essay, tutorial presentation

Note: This unit is available to students who have performed well in Intermediate Immunology (IMMU2101). Advanced students will complete the same core lecture material as students in IMMU3102 but carry out advanced level practical work and a series of specialized seminar based tutorial classes.

Textbooks

Immunology Honours
The Honours program in Immunology provides the opportunity for full-time research on a proposed project supervised by a staff member expert in that field. Experimental research, a seminar and a thesis constitute the major part of the program and of assessment. Guidance in research techniques is given in training programs covering experimental design, data analysis, written and oral communication and critical appraisal of the literature. Student contributions to this program are also assessed. In addition, a supplementary seminar program keeps students informed and abreast of wider issues in immunology.

Applying for Honours
Students are invited to apply for Honours enrolment during semester two of the year preceding Honours. Applicants should consult the Honours coordinator in the first instance. A list of possible research topics is provided, and students select projects of interest, speak with prospective supervisors and apply for permission to enrol, before the end of semester two. Within the constraints of availability, an attempt is made to assign students to the project of their choice.

General Requirements for Admission
Usually Honours candidates will have achieved a Credit in Senior Immunology units of study and will also have successfully completed Senior study in Biochemistry, Biology, Cell Pathology, Microbiology, Physiology or Virology. BSc candidates will have gained a major in Immunobiology, or a related discipline such as Biochemistry, Biology, Cell Pathology, Microbiology or Physiology. Usually Honours candidates will have an overall SCIWAM of 65 or greater. Departmental permission is required for enrolment.

Honours coordinators
The Immunology Honours coordinator is Dr Allison Abendroth (a.abendroth@usyd.edu.au, 93516867).

Information Technologies

Information Technologies in the Bachelor of Science degree
The School of Information Technologies is part of the Faculty of Engineering and Information Technologies. In addition to providing professional training in Computer Science and Information Systems leading toward bachelor level degrees, it offers many units of study that students who are enrolled in the Faculty of Science may take as a part of a major in either Information Systems or Computer Science or a minor in Information Technology. Details regarding the units of study required for the award of a Science major in Information Systems or Computer Science can be obtained from the Faculty of Science Handbook or from the website www.it.usyd.edu.au.

Special consideration applications for illness or misadventure
Students should note that applications for special consideration on grounds of illness or misadventure for COMP, INFO, ISYS or ELEC units are processed by the Faculty of Engineering.

Minor in IT
Students enrolled in non-IT degrees or majors who, are eligible (upon application) for a Minor in Information Technology if they complete at least 18 credit points of intermediate or above units of study offered by the School of IT, within a completed degree. For further information see www.it.usyd.edu.au/future_students/undergrad/minor.shtml.

Advanced standing for Science students transferred to BIT, BCST or BCST (Advanced)
Students enrolled in Science degrees or Science graduates may obtain advanced standing towards the Bachelor of Computer Science and Technology or Bachelor of Computer Science and Technology (Advanced) degrees. Students wishing to undertake this option must seek academic advice from the School of Information Technologies. Further details regarding admission to the BIT, BCST or BCST(Advanced) may be obtained from the Engineering and Information Technologies handbook or from the Faculty Office.

Computer Science
The requirements for a major in Computer Science are defined in Table 1. Computer Science is a scientific discipline which has grown out of the use of computers to manage and transform information. It is concerned with the design of computers, their applications in science, government and business, and the formal and theoretical properties which can be shown to characterise these applications. The current research interests in the School include algorithms, bioinformatics, data management, data mining and machine learning, internet working, wireless networks, network computing, biomedical image processing, parallel and distributed computing, user-adaptive systems and information visualisation. The School has a range of computers and specialised laboratories for its teaching and research.

Information Systems
The requirements for a major in Information Systems are defined in Table 1. Information Systems is the study of people and organisations in order to determine, and deliver solutions to meet, their technological needs. Hence Information Systems deals with the following type of issues: strategic planning, system development, system implementation, operational management, end-user needs and education. Information Systems study is related to Computer Science but the crucial distinction is that the Information Systems is about the architecture of computer systems and making them work for people, whereas much of Computer Science is about developing and improving the performance of computers. The School's research in Information Systems encompasses natural language processing, IT economics, social networking analysis, ontologies design, data mining and knowledge management and open source software.

Summer School: January-February
This School sometimes offers some units of study in The Sydney Summer School. Consult The Sydney Summer School web site for more information: www.summer.usyd.edu.au/

Computer Science and Information Systems junior units of study
See the School web site www.it.usyd.edu.au for advice on choosing appropriate units of study from this list.

INFO1003 Foundations of Information Technology
Credit points: 6 Session: Semester 1, Semester 2 Classes: (Lec 2hrs & Prac 3hrs) per week Prohibitions: INFO1000 or INF81000 Assessment: In-course involvement, assignments, quizzes and written exam.

This unit prepares students from any academic discipline to develop the necessary knowledge, skills and abilities to be competent in the use of information technology for solving a variety of problems. The main focus of this unit is on modelling and problem solving through the effective use of IT. Students will learn how to navigate independently to solve their problems on their own, and to be capable of fully applying the power of IT tools in the service of their goals in their own domains while not losing sight of the fundamental concepts of computing.

Students are taught core skills related to general purpose computing involving a range of software tools such as spreadsheets, database management systems, internet search engines, HTML, and JavaScript. Students will undertake practical tasks including authoring an interactive website using HTML and JavaScript and building a small scale application for managing information. In addition, the course will address the many social, ethical, and intellectual property issues arising from the wide-spread use of information technology in our society.

INFO1103 Introduction to Programming
Credit points: 6 Session: Semester 1, Semester 2 Classes: (Lec 2hrs & Lab 2hrs) per week Prohibitions: SOFT (1001 or 1901) or COMP (1001 or 1901)
This unit provides an introduction to programming using Java. The main aims are (i) to develop basic programming skills and (ii) learn how to express algorithms using computer programming and (iii) develop basic algorithmic problem solving skills.

INFO1903 Informatics (Advanced)

Credit points: 6 Session: Semester 1 Classes: (Lec 3hrs & Prac 3hrs) per week
Prerequisites: UAI (or ATAR equivalent) sufficient to enter BCST(Adv), BIT or BSc(Adv), or portfolio of work suitable for entry
Assumed knowledge: HSC Mathematics Assessment: In-course involvement, assignments, quizzes and written exam

Note: Department permission required for enrolment.

This unit covers advanced data processing and management, integrating the use of existing productivity software, e.g. spreadsheets and databases, with the development of custom software using the powerful general-purpose Python scripting language. It will focus on skills directly applicable to research in any quantitative domain. The unit will also cover presentation of data through written publications and dynamically generated web pages, visual representations, and oral presentation skills. The assessment, a long project, involves the demonstration of these skills and techniques for processing and presenting data in a choice of domains.

INFO1105 Data Structures

Credit points: 6 Session: Semester 2 Classes: (Lec 2hrs & Prac 3hrs) per week
Prohibitions: INFO1105 or SOFT (1002 or 1002) or COMP (1002 or 1902 or 2160 or 2860 or 2111 or 2002 or 2902) Assumed knowledge: Programming, as for INFO1103 Assessment: In-course involvement, assignments, quizzes and written exam

The unit will teach some powerful ideas that are central to quality software: data abstraction and recursion. It will also show how one can analyse the scalability of algorithms using mathematical tools of asymptotic notation. Contents include: both external "interface" view, and internal "implementation" details, for commonly used data structures, including lists, stacks, queues, priority queues, search trees, hash tables, and graphs; asymptotic analysis of algorithm scalability, including use of recurrence relations to analyse recursive code. This unit covers the way information is represented in each structure, algorithms for manipulating the structure, and analysis of asymptotic complexity of the operations. Outcomes include: ability to write code that recursively performs an operation on a data structure; experience designing an algorithmic solution to a problem using appropriate data structures, coding the solution, and analysing its complexity.

INFO1905 Data Structures (Advanced)

Credit points: 6 Session: Semester 2 Classes: (Lec 2hrs & Prac 3hrs) per week
Prohibitions: Distinction-level performance in INFO1103 or INFO1903 or SOFT1101 or SOFT1901. Prohibitions: INFO1105 or SOFT (1002 or 1002) or COMP (1002 or 1902) Assessment: In-course involvement, assignments, quizzes and written exam

An advanced alternative to INFO1105; covers material at an advanced and challenging level. See the description of INFO1105 for more information.

Computer Science and Information Systems intermediate units of study

It is important to choose second year subjects appropriately to keep options open for further study. See www.it.usyd.edu.au for advice.

COMP2007 Algorithms and Complexity

Credit points: 6 Session: Semester 2 Classes: (Lec 2hrs & Prac 2hrs) per week
Prohibitions: COMP (2907 or 3309 or 3608 or 3111 or 3811) Assumed knowledge: INFO1105, MATH1004 or MATH1904 Assessment: In-course involvement, assignments, quizzes and written exam

This unit provides an introduction to the design and analysis of algorithms. The main aims are (i) to learn how to develop algorithmic solutions to computational problem and (ii) to develop understanding of algorithm efficiency and the notion of computational hardness.

COMP2007 Algorithms and Complexity (Advanced)

Credit points: 6 Session: Semester 2 Classes: (Lec 2hrs & Prac 2hrs) per week
Prohibitions: Distinction level result in INFO (1105 or 1195) or SOFT (1002 or 1902) Prohibitions: COMP (2007 or 3309 or 3608 or 3111 or 3811) Assumed knowledge: INFO1905, MATH1904 Assessment: In-course involvement, assignments, quizzes and written exam

An advanced alternative to COMP2007; covers material at an advanced and challenging level. See the description of COMP2007 for more information.

COMP2129 Operating Systems and Machine Principles

Credit points: 6 Session: Semester 2 Classes: (Lec 2hrs & Prac 2hrs) per week
Prohibitions: COMP (2130 or 2304 or 2804 or 2190 or 2904) or COMP (2004 or 2804) Assumed knowledge: Programming, as from INFO1103 Assessment: In-course involvement, assignments, quizzes and written exam.

In this unit of study elementary methods for developing robust, efficient and re-usable software will be covered. The unit is taught in C, in a Unix environment. Specific coding topics include memory management, the pragmatic aspects of implementing data structures such as lists and hash tables and managing concurrent threads. Debugging tools and techniques are discussed and common programming errors are considered along with defensive programming techniques to avoid such errors. Emphasis is placed on using common Unix tools to manage aspects of the software construction process, such as version control and regression testing. The subject is taught from a practical viewpoint and it includes a considerable amount of programming practice, using existing tools as building blocks to complete a large-scale task.

INFO2110 Systems Analysis and Modelling

Credit points: 6 Session: Semester 2 Classes: (Lec 2hrs & Prac 2hrs) per week
Prohibitions: INFO (2810 or 2000 or 2900) Assumed knowledge: Experience with a data model as in INFO1103 or INFO1105 or INF5100 Assessment: In-course involvement, assignments, quizzes and written exam

This unit provides a comprehensive introduction to the analysis of computer systems. Key topics are the determination and expression of system requirements (both functional and non-functional), and the representation of structural and behavioural models of the system in UML notations. Students will be expected to evaluate requirements documents and models as well as producing them. This unit covers essential topics from the ACM/IEEE SE2004 curriculum, especially from MAA Software Modelling and Analysis.

INFO2120 Database Systems 1

Credit points: 6 Session: Semester 2 Classes: (Lec 2hrs & Prac 2hrs) per week
Prohibitions: INFO (2820 or 2005 or 2905) Assumed knowledge: Some exposure to programming and some familiarity with data model concepts such as taught in INFO1103 or INFO1105 or INF5100 or INFO1903 Assessment: In-course involvement, assignments, quizzes and written exam.

The proper management of data is essential for all data-centric applications and for effective decision making within organizations. This unit of study will introduce the basic concepts of database designs at the conceptual, logical and physical levels. Particular emphasis will be placed on introducing integrity constraints and the concept of data normalization which prevents data from being corrupted or duplicated in different parts of the database. This in turn helps in the data remaining consistent during its lifetime. Once a database design is in place, the emphasis shifts towards querying the data in order to extract useful information. The unit will introduce different query languages with a particular emphasis on SQL, which is industry standard. Other topics covered will include the important concept of transaction management, application development with a backend database, an
overview of data warehousing and online analytic processing, and the
use of XML as a data integration language.

INFO2820
Database Systems 1 (Advanced)
Credit points: 6 Session: Semester 1 Classes: (Lec 2hrs & Prac 2hrs) per week
Prerequisites: Distinction-level result in INFO (1003 or 1103 or 1105 or 1109) or SOFT (1001 or 1001 or 1002 or 1902) Prohibitions: INFO (2120 or 2005 or 2905) Assessment: In-course involvement, assignments, quizzes and written exam.

An advanced alternative to INFO2120; covers material at an advanced and challenging level. See the description of INFO2120 for more information.

INFO2315
Introduction to IT Security
Credit points: 6 Session: Semester 2 Classes: (Lec 2hrs & Prac 2hrs) per week
Prerequisites: NETS (3305 or 3605 or 3016 or 3916) or ELEC (5610 or 5616) Assumed knowledge: Computer literacy Assessment: In-course involvement, assignments, quizzes and written exam.

This unit provides a broad introduction to the field of IT security. We examine secure and insecure programs, secure and insecure information, secure and insecure computers, and secure and insecure network infrastructure. Key content includes the main threats to security; how to analyse risks; the role in reducing risk that can be played by technical tools (such as encryption, signatures, access control, firewalls, etc); the limitations of technical defences; and the simple process and behavioural changes that can reduce risk.

ISYS2140
Information Systems
Credit points: 6 Session: Semester 1 Classes: (Lec 2hrs & Prac 2hrs) per week
Prerequisites: ISYS (2006 or 2007) Assumed knowledge: INFO1003 or INF1000 Assessment: In-course involvement, assignments, quizzes and written exam.

This unit of study will provide a comprehensive conceptual and practical introduction to information systems (IS) in contemporary organisations. Content: General Systems Theory; Basic concepts of organisations, systems and information; The role of information systems in operating and managing organisations; How IS and the Internet enables organisations to adopt more competitive business models, including e-Commerce; The technologies that underpin IS; Distributed systems, including security, networking principles, the client server model and how distributed components locate and communicate with each other; The integration of disparate systems both within the organisation and between organisations, including the role of XML; Behavioural, managerial and ethical issues in implementing and managing IS.

Computer Science and Information Systems senior units of study in the BSc
Students are advised that doing less than 24 Senior credit points is not regarded as adequate preparation for a professional career in computing or for further study. Students are advised to balance their workload between semesters. It is important to choose second year subjects appropriately to keep options open for further study. See www.it.usyd.edu.au for advice.

COMPS308
Introduction to Artificial Intelligence
Credit points: 6 Session: Semester 1 Classes: (Lec 2hrs & Tut 2hrs) per week
Prerequisites: COMP (3608 or 3002 or 3902) Assumed knowledge: COMP2007 Assessment: Assignments, written exam.

Artificial Intelligence (AI) is all about programming computers to perform tasks normally associated with intelligent behaviour. Classical AI programs have played games, proved theorems, discovered patterns in data, planned complex assembly sequences and so on. This unit of study will introduce representations, techniques and architectures used to build intelligent systems. It will explore selected topics such as heuristic search, game playing, machine learning, and knowledge representation. Students who complete it will have an understanding of some of the fundamental methods and algorithms of AI, and an appreciation of how they can be applied to interesting problems. The unit will involve a practical component in which some simple problems are solved using AI techniques.

COMPS608
Intro. to Artificial Intelligence (Adv)
Credit points: 6 Session: Semester 1 Classes: (Lec 2hrs & Prac 2hrs) per week
Prerequisites: Distinction-level results in some 2nd year COMP or MATH or SOFT units. Prohibitions: COMP (3308 or 3002 or 3902) Assessment: Assignments, written exam.

An advanced alternative to COMP3308; covers material at an advanced and challenging level. See the description of COMP3308 for more information.

COMPS319
Graphics and Multimedia
Credit points: 6 Session: Semester 1 Classes: (Lec 2hrs & Prac 2hrs) per week
Prerequisites: MULT (3306 or 3606 or 3019 or 3919 or 3004 or 3904) or COMP (3004 or 3904) Assumed knowledge: COMP2007, MATH1002 Assessment: In-course involvement, assignments, quizzes and written exam.

Computer Graphics and Multimedia are core technologies to support an interdisciplinary computing and communication environment. This unit provides a broad introduction to the field of multimedia to meet the diverse requirements of application areas such as entertainment, industrial design, virtual reality, intelligent media management, medical imaging and remote sensing. The unit covers both the underpinning theories and the practices of manipulating and enhancing digital media including image, computer graphics, audio, computer animation, and video. It introduces principles and cutting-edge techniques such as multimedia data processing, content analysis, media retouching, media coding and compression. It elaborates on various multimedia coding standards. A particular focus is on principles and the state-of-the-art research and development topics of Computer Graphics such as modelling, rendering and shading, and texturing.

COMPS456
Computational Methods for Life Sciences
Credit points: 6 Session: Semester 2 Classes: (Lec 2hrs & Prac 2hrs) per week
Prerequisites: INFO1105 and (COMP2007 or INFO2120) and 6 credit points from BIOL or MBLG Assessment: In-course involvement, assignments, quizzes and written exam.

This unit introduces the algorithmic principles driving advances in the life sciences. It discusses biological and algorithmic ideas together, linking issues in computer science and biology and thus is suitable for students in both disciplines. Students will learn algorithm design and analysis techniques to solve practical problems in biology.

COMPS320
Operating Systems Internals
Credit points: 6 Session: Semester 1 Classes: (Lec 2hrs & Prac 2hrs) per week
Prerequisites: NETS (3304 or 3604 or 3009 or 3909) or COMP (3009 or 3909) Assumed knowledge: COMP2129, INFO1105 Assessment: In-course involvement, assignments, quizzes and written exam.

This unit will provide a comprehensive discussion of relevant OS issues and principles and describe how these principles are put into practice in real operating systems. The contents include internal
structure of OS; several ways each major aspect (process scheduling, inter-process communication, memory management, device management, file systems) can be implemented; the performance impact of design choices; case studies of common OS (Linux, MS Windows NT, etc). The contents also include concepts of distributed systems: naming and binding, time in distributed systems, resource sharing, synchronization models (distributed shared memory, message passing), fault-tolerance, and case study of distributed file systems.

COMP3615 Software Development Project

Credit points: 6
Session: Semester 2
Classes: (Meeting with academic supervisor 1hr & Class meeting 1hr) per week
Prerequisites: INF03402
Prohibitions: INF03600 or SOFT (3300 or 3600 or 3200 or 3700)
Assessment: Individual presentation, oral examination and group report.

This unit will provide students an opportunity to apply the knowledge and practice the skills acquired in the prerequisite and qualifying units, in the context of designing and building a substantial software development system in diverse application domains including life sciences. Working in groups students will need to carry out the full range of activities including requirements capture, analysis and design, coding, testing and documentation.

INFO3220 Object Oriented Design

Credit points: 6
Session: Semester 1
Classes: (Lec 2hrs & Prac 2hrs) per week
Prohibitions: SOFT (3301 or 3601 or 3101 or 3801) or COMP (3008 or 3009)
Assumed knowledge: INFO2110, INFO1105
Assessment: In-course involvement, assignments, quizzes and written exam.

This unit covers essential design methods and language mechanisms for successful object-oriented design and programming. C++ is used as the implementation language and a special emphasis is placed on those features of C++ that are important for solving real-world problems. Advanced software engineering features, including exceptions and name spaces are thoroughly covered.

INFO3315 Human-Computer Interaction

Credit points: 6
Session: Semester 2
Classes: (Lec 2hrs & Prac 2hrs) per week
Prohibitions: MULT (3307 or 3607 or 3018 or 3918) or COMP (3008 or 3009)
Assumed knowledge: INFO2110, INFO1105
Assessment: In-course involvement, assignments, quizzes and written exam.

This unit will introduce techniques to evaluate software user interfaces using heuristic evaluation and user observation techniques. Students will (i) learn how to design formal experiments to evaluate usability hypothesis and (ii) apply user centered design and usability engineering principles to design software user interfaces. A brief introduction to the psychological aspects of human-computer interaction will be provided.

INFO3402 Management of IT Projects and Systems

Credit points: 6
Session: Semester 1
Classes: (Lec 2hrs & Prac 2hrs) per week
Prohibitions: ISYS (3000 or 3012) or ELEC3606
Assumed knowledge: INFO (2000 or 2110 or 2810 or 2900)
Assessment: In-course involvement, assignments, quizzes and written exam.

This course introduces the basic processes and techniques for managing IT projects, systems and services, throughout the IT lifecycle. It addresses both the technical and behavioural aspects of IT management at the enterprise level. Major topics include: organisational strategy and IT alignment, IT planning, project planning, tracking, resource estimation, time management, software testing, delivery and support of IT services, service level agreements, change and problem management, cost effectiveness and quality assurance.

INFO3404 Database Systems 2

Credit points: 6
Session: Semester 2
Classes: (Lec 2hrs & Prac 2hrs) per week
Prohibitions: INFO (3504 or 3005 or 3009) or COMP (3005 or 3009)
Assumed knowledge: Introductory database study such as INFO2120 or INFO2280 or INFO2005 or INFO2905. Students are expected to be familiar with SQL and the relational data model, and to have some programming experience.
Assessment: In-course involvement, assignments, quizzes and written exam.

This unit of study provides a comprehensive overview of the internal mechanisms of Database Management Systems (DBMS) and other systems that manage large data collections. These skills are needed for successful performance tuning, to understand the scalability challenges faced by the information age. Topics include: the internal components of a DBMS engine, physical data organization and disk-based index structures, query processing and optimisation, locking and logging, database tuning, distributed and replicated databases, web search engines, and indices and processing when doing information retrieval from textual data. This unit will be valuable to those pursuing such careers as Software Engineers, Database Experts, Database Administrators, Web Developers and e-Business Consultants.

INFO3504 Database Systems 2 (Adv)

Credit points: 6
Teacher/Coordinator: -
Session: Semester 2
Classes: (Lec 2hrs & Prac 2hrs) per week
Prohibitions: INF03402
Assessment: Distinction-level result in INFO (2120 or 2920) or COMP (2007 or 2907)
Prohibitions: INFO (3404 or 3005 or 3095) or COMP (3005 or 3095)
Assessment: In-course involvement, assignments, quizzes and written exam.

An advanced alternative to INFO3404; covers material at an advanced and challenging level. See the description of INFO3404 for more information.

INFO3600 Major Development Project (Advanced)

Credit points: 12
Session: Semester 2
Classes: no formal classes
Prerequisites: INF03402
Prohibitions: COMP3615 or ISYS3400 or SOFT (3300 or 3600 or 3200 or 3700)
Assessment: Individual presentation, oral examination and group report.

Note: Only available to students in BIT, BCST(Adv) or BSc(Adv)

This unit will provide students an opportunity to carry out substantial aspects of a significant software development project. The project will be directed towards assisting a client group (from industry or with strong industry links). The student's contribution could cover one or more aspects such as requirements capture, system design, implementation, change management, upgrades, operation, and/or tuning. Assessment will be based on the quality of the delivered outputs, the effectiveness of the process followed, and the understanding of the way the work fits into the client's goals, as shown in a written report.

ISYS3400 Information Systems Project

Credit points: 6
Session: Semester 2
Classes: (Meeting with academic supervisor 1hr & Class meeting 1hr) per week
Prohibitions: INF03402 or ISYS3012 and (ISYS3401 or ISYS3015)
Prohibitions: INF03600 or ISYS3207
Assumed knowledge: INFO2120
Assessment: Individual presentation, oral examination, group report

This unit will provide students an opportunity to apply the knowledge and practice the skills acquired in the prerequisite and qualifying units, in the context of a substantial information systems research or development project and to experience in a realistic way many aspects of analysing and solving information systems problems. Since information systems projects are often undertaken by small teams, the experience of working in a team is seen as an important feature of the unit. Students often find it difficult to work effectively with others and will benefit from the opportunity provided by this unit to further develop this skill.

ISYS3401 Analytical Methods & Information Systems

Credit points: 6
Session: Semester 1
Classes: (Lec 2hrs & Prac 1hr) per week
Prohibitions: ISYS3015
Assumed knowledge: INFO2110, ISYS2140
Assessment: In-course involvement, assignments, quizzes and written exam.

This course will provide an introduction to the scientific approach to basic research methods that are relevant for conceptualizing and solving complex problems encountered Information Systems practice.
A collection of different methods for collecting and analyzing information will be studied in the context of a few typical information system projects. These methods include surveys, controlled experiments, questionnaire design and sampling.

Computer Science or Information Systems Honours in the BSc

To be awarded Honours in Computer Science, a student must complete units of study (as specified below) to a total of 48 credit points. Note that the Faculty requires that Honours be completed in two consecutive semesters of full-time study, or four consecutive semesters of part-time study; a single final grade and mark is given for the Honours course, as determined by the Faculty based on performance in Honours and in prior undergraduate study.

Honours units of study in Computer Science in the BSc

COMP4011
Computer Science Honours A
Credit points: 12
Session: Semester 1, Semester 2
Note: Department permission required for enrolment.

Students enrolled in the Honours programs study various advanced aspects of Computer Science. The program may include lectures, tutorials, seminars and practicals. They will undertake a research project. Assessment will include the project and may include examinations and coursework.

COMP4012
Computer Science Honours B
Credit points: 12
Session: Semester 1, Semester 2
Corequisites: COMP4011

Students enrolled in the Honours programs study various advanced aspects of Computer Science. The program may include lectures, tutorials, seminars and practicals. They will undertake a research project. Assessment will include the project and may include examinations and coursework.

COMP4013
Computer Science Honours C
Credit points: 12
Session: Semester 1, Semester 2
Corequisites: COMP4012

Students enrolled in the Honours programs study various advanced aspects of Computer Science. The program may include lectures, tutorials, seminars and practicals. They will undertake a research project. Assessment will include the project and may include examinations and coursework.

COMP4014
Computer Science Honours D
Credit points: 12
Session: Semester 1, Semester 2
Corequisites: COMP4013

Students enrolled in the Honours programs study various advanced aspects of Computer Science. The program may include lectures, tutorials, seminars and practicals. They will undertake a research project. Assessment will include the project and may include examinations and coursework.

ISYS4301
Information Systems Honours A
Credit points: 12
Session: Semester 1, Semester 2
Note: Department permission required for enrolment.

Students enrolled in the Honours programs study various advanced aspects of Information Systems. The program may include lectures, tutorials, seminars and practicals. They will undertake a research project. Assessment will include the project and may include examinations and coursework.

ISYS4302
Information Systems Honours B
Credit points: 12
Session: Semester 1, Semester 2
Corequisites: ISYS4301

See ISYS4301

ISYS4303
Information Systems Honours C
Credit points: 12
Session: Semester 1, Semester 2
Corequisites: ISYS4302

See ISYS4301

ISYS4304
Information Systems Honours D
Credit points: 12
Session: Semester 1, Semester 2
Corequisites: ISYS4303

See ISYS4301

Law units of study

The following units of study are only available to students in the Bachelor of Science/Bachelor of Laws degree. Please consult degree information in chapter 8, and the relevant Departments/Schools entries in this chapter for descriptions of other units of study required for this degree.

Curriculum Review

The Faculty of Law is undertaking a curriculum review, anticipated to be completed in 2007/2008. Combined law students are expected to complete 48 credit points of Law units of study in the first three years of the combined degree. Third year combined law students who are not able to accumulate 48 credit points of Law units of study using the unit of study codes in Table 2 as it appears in Chapter 8 must contact the Faculty of Law for alternative unit of study codes for Federal Constitutional Law and Law, Lawyers and Justice.

LAWS1006 Foundations of Law
Credit points: 6
Teacher/Coordinator: Professor David Kinley (Combined), Mr Fady Aoun (Graduate)
Session: Semester 1
Classes: 1 x 1hr lecture and 1 x 2hr seminar/wk
Graduate: The unit is taught to Graduate Law 1 students on an intensive basis over four weeks. The aim of this is to give students a good grounding in the basic legal skills needed for law studies before undertaking other Semester 1 units. The course commences two weeks prior to the start of semester in the University calendar. Preparation for and attendance at the intensive is essential for completion of the course. No other law classes are taught for the duration of the intensive.
Prohibitions: LAWS1000
Assessment: Combined: class participation (20%), 1 x essay (50%); Graduate: class participation (20%), 1 x essay analysis (30%), 1 x class project (20%), 1 x class project exam (50%) This is subject to change.

This unit of study provides a foundation core for the study of law. We aim to provide a practical overview of the Australian legal system, an introduction to the skills of legal reasoning and analysis which are necessary to complete your law degree, and an opportunity for critical engagement in debate about the role of law in our lives. The course will introduce students to issues such as: (i) the development of judge made and statute law, with a particular focus on English legal history; (ii) the relationship between courts and parliament; (iii) the role and function of courts, tribunals and other forms of dispute resolution; (iv) understanding and interrogating principles of judicial reasoning and statutory interpretation; (v) the relationship between law, government and politics; (vi) what are rights in Australian law, where do they come from and where are they going; (vii) the development and relevance of international law. The course focus may be subject to change.

LAWS1010 Torts
This unit of study is not available in 2010
Credit points: 6
Teacher/Coordinator: Mr Ross Anderson
Session: Semester 2
Classes: (1 x 2hr seminar and 1 x 1hr seminar)/wk
Prerequisites: LAWS1006
Prohibitions: LAWS1005, LAWS1012, LAWS3001
Assessment: 2 x class tests (15% each) and 1 x 2hr exam (70%)
Note: Department permission required for enrolment. Note: Available to Combined Law candidates who commenced prior to 2007.
This is a general introductory unit of study concerned with liability for civil wrongs. The unit seeks to examine and evaluate, through a critical and analytical study of primary and secondary materials, the function and scope of modern tort law and the rationale and utility of its governing principles. Particular topics on which the unit will focus include:

(a) The relationship between torts and other branches of the common law including contract and criminal law;
(b) The role of fault as the principal basis of liability in the modern law;
(c) Historical development of trespass and the action on the case and the contemporary relevance of this development;
(d) Trespass to the person (battery, assault, and false imprisonment);
(e) Interference with goods (trespass, detinue and conversion);
(f) Trespass to land and private nuisance;
(g) The action on the case for intentional injury;
(h) Defences to trespass, including consent, intellectual disability, childhood, necessity and contributory negligence;
(i) Development and scope of the modern tort of negligence, including detailed consideration of duty of care and breach of duty with particular reference to personal and psychiatric injury;
(j) Injuries to relational interests, including compensation to relatives of victims of fatal accidents;
(k) Defences to negligence.

LAWS1012 Torts

Credit points: 6
Teacher/Coordinator: Prof Barbara McDonald
Prerequisites: LAWS1006
Prohibitions: LAWS1001, LAWS3001
Assessment: hearty welcome, 1x2hr exam (25%), tutorial participation (10%) and 1x2hr exam (60%).
Note: Available to candidates proceeding under the new LLB resolutions.

This is a general introductory unit of study concerned with liability for civil wrongs. The unit seeks to examine and evaluate, through a critical and analytical study of primary and secondary materials, the function and scope of modern tort law and the rationale and utility of its governing principles. Particular topics on which the unit will focus include:

(a) The relationship between torts and other branches of the common law including contract and criminal law;
(b) The role of fault as the principal basis of liability in the modern law;
(c) Historical development of trespass and the action on the case and the contemporary relevance of this development;
(d) Trespass to the person (battery, assault, and false imprisonment);
(e) Interference with goods (trespass, detinue and conversion);
(f) Trespass to land and private nuisance;
(g) The action on the case for intentional injury;
(h) Defences to trespass, including consent, intellectual disability, childhood, necessity and contributory negligence;
(i) Development and scope of the modern tort of negligence, including detailed consideration of duty of care and breach of duty with particular reference to personal and psychiatric injury;
(j) Injuries to relational interests, including compensation to relatives of victims of fatal accidents;
(k) Defences to negligence.

LAWS1013 Legal Research I

Teacher/Coordinator: Mr Graeme Coss
Session: Semester 1
Prerequisites: LAWS1006
Prohibitions: LAWS1008
Assessment: Satisfactory attendance, WebCT-based quizzes and 1x in-class test
Note: Department permission required for enrolment in the following sessions: Semester 1.

This unit of study aims to introduce students to civil and criminal procedure. It is concerned with the procedures relating to civil dispute resolution and criminal justice which are separate to the substantive hearing. The unit will consider the features of an adversarial system of justice and its impact on process. Recent reforms to the adversarial system of litigation will be explored. The civil dispute resolution part of the unit will cover alternative dispute resolution, the procedures for commencing a civil action, case management, gathering evidence and the rules of privilege. Criminal process will be explored by reference to crime and society, police powers, bail and sentencing. International dispute resolution will also be introduced. The course focuses on practical examples with consideration of ethics, and contextual and theoretical perspectives.

LAWS1015 Contracts

Credit points: 6
Teacher/Coordinator: Dr Greg Tolhurst
Session: Semester 1, Semester 2
Prerequisites: LAWS1006, LAWS3001
Prohibitions: LAWS1001, LAWS1007, LAWS3002, LAWS3004, LAWS2006
Assessment: Combined Law: class participation (10%), 1x take-home assignment (30%), 1x2hr final exam (60%); Graduate Law: 1x take-home assignment (40%) and 1x2hr exam (60%).
Note: Available to candidates proceeding under the new LLB resolutions.

Contract law provides the legal background for transactions involving the supply of goods and services and is, arguably the most significant means by which the ownership of property is transferred from one person to another. It vitally affects all members of the community and a thorough knowledge of contract law is essential to all practising lawyers. In the context of the law curriculum as a whole, Contracts provides background which is assumed knowledge in many other units. The aims of the course are composite in nature. The course examines the rules that regulate the creation, terms, performance, breach and discharge of a contract. Remedies and factors that may vitiate a contract such as misrepresentation are dealt with in Torts and Contracts II. The central aim of the course is to provide an understanding of the basic principles of contract law and how those principles are applied in practice to solve problems. Students will develop the skills of rules based reasoning and case law analysis. A second aim is to provide students an opportunity to critically evaluate and make normative judgments about the operation of the law. Successful completion of this unit of study is a prerequisite to the elective unit Advanced Contracts.

LAWS1016 Criminal Law

Credit points: 6
Teacher/Coordinator: Prof Mark Findlay
Session: Semester 1, Semester 2
Prerequisites: LAWS1006, LAWS3001
Prohibitions: LAWS1003, LAWS3001, LAWS1014
Assessment: Class participation (10%), 1x research problem (30%) and 1x3hr open book exam (60%).
Note: Available to candidates proceeding under the new LLB resolutions.

This is a compulsory unit taught on a pass/fail basis. The aim of the unit is to introduce you to finding and citing primary and secondary legal materials and introduce you to legal research techniques. These are skills which are essential for a law student and which you will be required to apply in other units.
This unit of study is designed to introduce the general principles of criminal law in context as they operate in NSW, and to critically analyse these in their contemporary social and political relevance. In order to achieve these goals, the unit will consider a range of theoretical literatures as well as critical commentary, and will focus on particular substantive legal topics in problem-centred contexts. Although the topic structure is necessarily selective, it is intended that students will gain a broad understanding of crime and justice issues, as well as of the applications of the criminal law. Students will encounter problem-based learning and will be encouraged to challenge a range of conventional wisdom concerning the operation of criminal justice.

This unit of study is designed to assist students in developing the following understandings: (1) A critical appreciation of certain key concepts which recur throughout the substantive criminal law. (2) A knowledge of the legal rules in certain specified areas of criminal law and their application. (3) A preliminary knowledge of how the criminal law operates in its broader societal context. (4) Through following the process of proof in a criminal prosecution and its defense, to understand the determination of criminal liability. The understandings referred to in the foregoing paragraphs will have a critical focus and will draw on procedural, substantive, theoretical and empirical sources. The contradictions presented by the application of legal principle to complex social problems will be investigated.

LAWS1017

Torts and Contracts II

Credit points: 6
Teacher/Coordinator: Assoc Prof Barbara McDonald (Combined), Mr Ross Anderson (Graduate)
Session: Semester 2
Main Classes: 1x2hr lecture and 1x2hr tutorial/wk (combined), 3x4hr seminars/wk for 3 weeks, and 1x3hr seminar in week 13 (graduate)
Prerequisites: LAWS1010 or LAWS1012 and LAWS1015
Assessment: Graduate Law: 1x1hr class test (25%) and 1x2hr exam (75%) (Graduate); Combined Law: 1x2000 word assignment (30%), tutorial participation (10%) 1x 2 hour exam (60%).
Note: Available to students proceeding under the new LLB resolutions.

The laws of tort and contract frequently overlap in practice and are increasingly regulated by statute. This unit aims to develop the integrated study of the law of obligations and remedies. It builds on the introduction to tort and contract law which students have acquired in Torts and Contracts. It will include the study of more advanced topics in both areas and the impact of related statutory liability and remedies. Topics:
(a) Concurrent, proportionate and vicarious liability;
(b) The role of statutory duties and powers in tort law;
(c) Liability for economic loss in tort, including some comparative study;
(d) Detailed consideration of causation and remoteness of damage in tort and contract;
(e) Damages for breach of contract;
(f) Unfair dealing in contracts and vitiating factors: mistake, misrepresentation, duress, undue influence, unconscionable conduct.
This topic includes a study of equitable principles and statutory rights.

LAWS1018

International Law

Credit points: 6
Teacher/Coordinator: Dr Timothy Stephens (Combined), Mr Ross Anderson (Graduate)
Session: Semester 1, Semester 2
Main Classes: 2x2hr lectures or seminars/wk
Prerequisites: LAWS1006
Assessment: Combined Law: 1x2000 word assignment (30%), tutorial participation (pass/fail), 1x2hr final exam (70%); Graduate: 1x1hr class test (25%), 1x2hr exam (75%).
Note: Available to candidates proceeding under the new LLB resolutions.

The unit of study is a general introduction to private international law and public international law and the relationship between these disciplines. The following private international law topics receive detailed treatment: (1) Nature, function and scope of private international law; (2) Jurisdiction, including discretionary non-exercise of jurisdiction; (3) Substance and procedure; (4) Proof of foreign law; (5) Exclusionary doctrines; and (6) Choice of law in tort. The following public international law topics receive detailed treatment: (1) Nature, function and scope of public international law, including the relationship between public international law and municipal law; (2) Sources of public international law; (3) State jurisdiction, including civil and criminal jurisdiction and jurisdictional immunities; and (4) State responsibility, including diplomatic protection, nationality of claims and exhaustion of local remedies. Available to candidates proceeding under the new LLB resolutions.

LAWS1019

Legal Research II

Teacher/Coordinator: Mr Graeme Coss
Session: Semester 1, Semester 2
Classes: Combined Law: 3x2hr seminars
Prerequisites: LAWS1013
Prohibitions: LAWS1008, LAWS1022
Assessment: Satisfactory attendance and 1x assignment
Note: Available to students proceeding under the new LLB resolutions.

This is a compulsory unit taught on a pass/fail basis. It is a continuation of Legal Research I and covers advanced searching techniques and the use of Lexis.com, Westlaw and other complex commercial databases. The purpose of this unit is to further develop the skills you will need as a law student and to introduce you to the legal research skills you will need after graduation.

LAWS2008

Contracts

Credit points: 6
Teacher/Coordinator: Dr Gregory Tolhurst
Session: Semester 1
Classes: 2x2hr lectures or seminars/wk
Prerequisites: LAWS1006
Prohibitions: LAWS1015
Assessment: class participation (10%), 1x take-home assignment (30%), 1x2hr final exam (60%)
Note: Department permission required for enrolment. Note: Available to Combined Law candidates proceeding under the old LLB resolutions.

Contract law provides the legal background for transactions involving the supply of goods and services and is, arguably the most significant means by which the ownership of property is transferred from one person to another. It vitally affects all members of the community and a thorough knowledge of contract law is essential to all practising lawyers. In the context of the law curriculum as a whole, Contracts provides background which is assumed knowledge in many other units. The aims of the unit are composite in nature. The central aim is to provide an understanding of the basic principles of the common law, equity and statutes applicable to contracts. A second aim is to provide students an opportunity to critically evaluate and make normative judgments about the operation of the law. As Contracts is basically a case law unit, the final aim of the unit of study is to provide experience in problem solving through application of the principles derived from decided cases. Successful completion of this unit of study is a prerequisite to the elective unit Advanced Contracts.

LAWS2009

Criminal Law

Credit points: 6
Teacher/Coordinator: Prof Mark Findlay
Session: Semester 2
Classes: 2x2hr seminars/wk
Prerequisites: LAWS1006
Prohibitions: LAWS1003, LAWS1016
Assessment: class participation (10%), 1x research problem (30%) and 1x 3hr open book exam (60%)
Note: Department permission required for enrolment. Note: Available to Combined Law candidates proceeding under the old LLB resolutions.

This unit of study is designed to introduce the general principles of criminal law and process as they operate in NSW, and to critically analyse these in their contemporary social context. In order to achieve these goals, the unit will consider a range of socio-legal literature, and will focus on particular substantive legal topics. Although the topic structure is necessarily selective, it is intended that students will gain a broad understanding of crime and justice issues, as well as of the applications of the criminal law. Students will encounter problem-based learning and will be encouraged to challenge a range of conventional wisdom concerning the operation of criminal justice. This unit of study is designed to assist students in developing the following understandings: (1) A critical appreciation of certain key concepts
which recur throughout the substantive criminal law. (2) A knowledge of the legal rules in certain specified areas of criminal law and their application. (3) A preliminary understanding of the working criminal justice system as a process and the interaction of that process with the substantive criminal law. (4) A preliminary knowledge of how the criminal law operates in its broader societal context. (5) Through following the process of proof in a criminal prosecution and its defense, to understand the determination of criminal liability. The misunderstandings referred to in the foregoing paragraphs will have a critical focus and will draw on procedural, substantive, theoretical and empirical sources. The contradictions presented by the application of legal principle to complex social problems will be investigated.

LAWS3003
Federal Constitutional Law
Credit points: 12 Teacher/Coordinator: Assoc Prof Peter Gerangelos Session: Semester 1 Classes: 2x2hr seminars/wk Prerequisites: LAWS1006 Prohibitions: LAWS1004, LAWS2011, LAWS3000 Assessment: 2 x mid-semester assignments and 1x exam Note: Department permission required for enrolment. Note: Available to Combined Law candidates proceeding under the old LLB resolutions. Students will attend classes for LAWS2011.

This unit of study aims to achieve an understanding of the principles of Australian constitutional law. The unit commences with an overview of the Commonwealth Constitution within the Australian legal and political framework. Substantive topics include, but are not confined to, the division of power, the marriage power, the external affairs power, federalism (including state constitutions and the relationship between Commonwealth and state laws); economic and fiscal power and relations (including the corporations power, the trade and commerce power, freedom of interstate trade, and excise); the judicial power of the Commonwealth; express and implied constitutional rights and freedoms; and principles of constitutional interpretation. Other topics may be covered, especially if a constitutional power becomes controversial or topical. The unit aims to develop a capacity to evaluate the principles of constitutional law critically, from the perspective of both doctrine and policy.

LAWS3004
Law, Lawyers and Justice
Credit points: 12 Teacher/Coordinator: Dr Rita Shackel Session: Semester 1 Classes: 2x2hr seminars/wk Prerequisites: LAWS1006 Prohibitions: LAWS1001, LAWS1007, LAWS2013, LAWS3002 Assessment: 1x2500w assignment (pass/fail), 1x mid-term exam (40%), 1x open book exam (60%) Note: Department permission required for enrolment. Note: Available to Combined Law candidates proceeding under the old LLB resolutions. Students attend classes for LAWS2013 The Legal Profession.

Law, Lawyers and Justice has a distinct intellectual focus. It is the only unit in the curriculum that concentrates on the regulation of the legal profession and legal practice. Part 1 of Law, Lawyers and Justice examines the nature and structure of the legal profession, historical struggles to regulate the profession, and the current regulatory regime in New South Wales. Part 2 explores specific forms of legal practice, highlights the major cultural and economic forces that challenge attempts to regulate the profession and canvasses alternative ways of organising legal practice and providing legal services. Part 3 investigates the adversary system and considers its advantages and limitations. More specifically, the material in Part 3 addresses how the adversary system moulds lawyers' behaviour within and outside the judicial process and analyses current regulatory measures aimed at curbing the undesirable aspects of an adversarial culture. Part 4 evaluates the way clients are treated by lawyers and suggests strategies to change their conduct in the interests of both equality and effective communication. Furthermore, it examines lawyers' duties to their clients and the ways in which the rules and principles of confidentiality, legal professional privilege and conflicts of interest shape the advice and representation lawyers provide for their clients.

Liberal Studies units of study
Note: this degree is not available to new students from 2010. Existing students interested in the new Bachelor of Liberal Arts and Sciences should contact the Faculty of Science. Although the degree is no longer offered, units associated with the degree may still be offered.

The degree
The Bachelor of Liberal Studies degree is offered jointly by the Faculties of Science and Arts. The Faculty of Arts administers the degree program. Liberal Studies students should consider the Faculty of Arts their home Faculty for administrative purposes. The following units of study form part of the requirements of the Bachelor of Liberal Studies degree. Please consult degree information in Chapters 2 and 8 and the relevant Departments/Schools entries in this chapter for descriptions of other units of study required for this degree.

ENGL1007
Language, Texts and Time
Credit points: 6 Teacher/Coordinator: Dr N Riimer Session: Semester 2 Classes: Two 1 hour lectures and one 1 hour tutorial per week Assessment: Two 500 word assignments, one 2000 word essay and one 1.5 hour exam This course equips students with some general tools for the close analysis of literary language. Grammatical concepts will be introduced and applied to the description of prose, poetry and drama, and students will explore the changing relations between form and meaning in English from the earliest times up to the present. A number of key strands in contemporary language study will also be presented, including semiotic theory, rhetoric and discourse studies and theorizations of the relationship between texts and subjectivity.

Textbooks
Collins, Peter & Carmella Hollo: English Grammar, An Introduction (Palgrave, 2000) A course reader will be available from the University Copy Centre.

LNGS1001
Structure of Language
Credit points: 6 Teacher/Coordinator: Prof B Foley Session: Semester 1 Classes: Two 1 hour lectures and one 1 hour tutorial per week Prohibitions: LNGS1004, LNGS1005 Assessment: Ten short problem based assignments, each about 150 words, for a total of 1500 words; one 1 hour mid-term exam (equivalent to 1000 words); one 2 hour formal final examination (equivalent to 2000 words)

This unit is a comparative look at the general structure of human language. It looks at the sounds of human language: how the speech organs make them and their variety, in particular, a detailed description of English consonants and vowels and how to transcribe them. It investigates what is a possible word in English and other languages. It looks at the way speakers put words together to form sentences and how and why is English different from Japanese or even Irish.

Textbooks

Marine Science
The University of Sydney Institute of Marine Science (USIMS) provides for undergraduate units of study of a transdisciplinary nature in the marine sciences at the Intermediate, Senior and Honours levels. Staff from the School of Biological Sciences and the School of Geosciences teach these units. For further information on all units of study, please refer to the Marine Science website (www.usyd.edu.au/marine)

Marine Science Intermediate units of study
GEOS2115
Oceans, Coasts and Climate Change
Credit points: 6 Teacher/Coordinator: Ass/Prof Dietmur Müller, A/Prof Peter Cowell Session: Semester 1 Classes: 26 one-hour lectures, 6 one-hour workshops, 1 eight-hour field work, 1 24-hour field school (3 days. Easter break) Prerequisites: 48 credit points from Junior Units of Study. Prohibitions: GEOS2915, MARS2009 Assumed knowledge: At least one of (GEOG1001, GEOL1001, GEO41002; GEOL1003, GEOS1903, ENV10002, GEOL1902, GEOL1501) Assessment: Three web-based on-line reports (30% of total marks). One seminar presentation: field school (20% of total marks). One 2-hour exam (50% of total marks)

This unit of study introduces core concepts about how the formation of ocean basins and their influence on climate govern the development
of coasts and continental margins. These concepts provide a framework for understanding the geographic variation of coasts, continental shelves and sediment accumulations in the deep ocean. Ocean-basin evolution is explained in terms of movements within the Earth's interior and these movements determine the geometry of ocean basins, and their alpine counterparts, which interact with the global circulation of the ocean and atmosphere. Affects of this interaction on energy regimes and hydrology are described in accounting for regional controls that govern supply and dispersal of sediments on continental margins and in ocean basins. These controls include effects on wave climates, wind-driven currents and tidal regimes. These controls also govern environmental conditions determining development of coral reefs and other ecosystems that play a key role in marine sedimentation. The Unit of Study systematically outlines how these factors have played out with climate change to produce the beaches, dunes, estuaries and deltas we see today, as well as the less familiar deposits hidden beneath the sea. The Unit also outlines how knowledge of responses to climate change in the past allow us to predict responses of coasts to accelerated climate change occurring now and in the future due to the industrial greenhouse effect. Overall therefore, the Unit aims to provide familiarity with fundamental phenomena central to the study of marine geoscience, introduced through process-oriented explanations. The Unit of Study is structured around problem-based project work, for which lectures provide the theoretical background.

Textbooks

GEOS2915
Oceans, Coasts and Climate Change (Adv)
Credit points: 6 Teacher/Coordinator: Ass/Prof Dietmur Müller, A/Prof Peter Cowell
Session: Semester 1 Classes: 26 x 1 hour lectures, 1 x 16 hour field school (2 days, Easter break), 2 x 1 hour workshops, 1 x 4 hour field work, 1 x 4 hour field work, 5 x 3 hours lab work Prerequisites: Distinction average in 48 credit points from Junior units of study Prohibitions: GEOS2115, MARS2006
Assumed knowledge: (GEOS1001, GEOI1001, GEOI1002, GEOI1003, GEOI1903, ENV11002, GEOI1902, GEOI1501), Assessment: Field School Report (20%), Field and Lab report (45%), 2 web based online reports (15% of total marks), one 1 hour exam: subset of GEOS2115 (20% of total marks)

This unit has the same objectives as GEOS2115 and is suitable for students who wish to pursue aspects of the subject in greater depth. Entry is restricted and selection is made from the applicants on the basis of their performance to date. Students who elect to take this unit will participate in alternatives to some aspects of the standard unit and will be required to pursue independent work to meet unit objectives.

Textbooks
None: Online reading materials are provided via Fisher Library.

BIOL2018
Introduction to Marine Biology
Credit points: 6 Teacher/Coordinator: A/Professor R Coleman Session: Semester 2 Classes: 2x1hr lectures per week, 6x1hr tutorials, 1x8hr field trip, 3x4hr field trips and 1x3hr practical. Prerequisites: BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics). Prohibitions: BIOL2918, MARS (2006 or 2007 or 2007 or 2007 or 2007 or 2007). Assumed knowledge: Distinction average in BIOL, MARS2005. Assessment: Two hour theory exam, four written reports.

This unit will describe some of the ways in which the properties of the oceans affect marine organisms. It also introduces coral reefs and other marine ecosystems, together with their productivity, biological oceanography, the reproductive biology of marine organisms, and marine biological resources. The practical elements will provide the core skills and techniques that will equip students to perform laboratory and field studies in marine biology. The unit will introduce appropriate methodologies for the collection, handling and analysis of data; the scientific principles underlying experimental design; and the effective communication of scientific information.

Textbooks

BIOL2918
Introduction to Marine Biology (Adv)
Credit points: 6 Teacher/Coordinator: A/Professor R Coleman Session: Semester 2 Classes: 2x1hr lectures per week, 6x1hr tutorials, 1x8hr field trip, 3x4hr field trips and 1x3hr practical. Prerequisites: Distinction average in BIOL (1001 or 1911) and 6 additional credit points of Junior Biology (BIOL/MBLG/EDUH). 12 credit points of Junior Chemistry (or for BSc (Marine Science) students 6 credit points of Junior Chemistry and either an additional 6 credit points of Junior Chemistry or 6 credit points of Junior Physics. These requirements may be varied and students with lower averages should consult the Unit Executive Officer. Prohibitions: BIOL2018, MARS (2006 or 2007 or 2007 or 2007). Assumed knowledge: 12 credit points of Junior Biology. Assessment: Two hour theory exam, four written reports.

Note: Entry is restricted and selection is made from applicants on the basis of previous performance.

This unit has the same objectives as BIOL2018, Introduction to Marine Biology, and is suitable for students wishing to pursue aspects from the unit in greater depth. Students taking this unit will participate in alternatives to some elements of the ordinary level course and will be required to pursue the unit objectives by more independent means.

Specific details of the unit will be announced in meetings, during the first week of teaching.

Textbooks
As for BIOL2018

Marine Science senior units of study
Students can major in Marine Science, Marine Geoscience and Marine Biology by completing Senior units of study to a total worth of 24 credit points from the units listed in Table 1 for the respective majors. The marine science major is interdisciplinary so it must include at least one BIOL and one GEOS unit. Students in the specialist BSc (Marine Science) degree must enrol in a minimum of 36 credit points of Senior Marine Science units of study, which may include up to 3 Tropical Marine Science (NTMP) units, and which must include at least one BIOL and one GEOS unit. Students are encouraged to select those electives in which they have a particular interest, subject to certain conditions (see Table 1). Because of limited facilities available for some units of study, particularly in marine biology, it may be necessary to restrict number of students taking these electives. If this need arises selection will be based on academic merit and/or other courses completed. Students intending to enrol in any of the biology options must consult the booklist for Students Considering Senior Biology Units of Study available from the School of Biological Sciences Office during the last few weeks of the academic year prior to this enrolment. Such students should also complete a preliminary enrolment form in the School of Biological Sciences before first semester commences.

Descriptions of senior Marine Science options
Students should consult electives as listed in this chapter under Biological Sciences and Geosciences in this handbook, BIOL3006 Ecological Methods; BIOL3007 Ecology; BIOL3008 Marine Field Ecology; BIOL3011 Ecophysiology; BIOL3013 Marine Biology; GEOS3009 Coastal Environments and Processes; GEOS3014 GIS in Coastal Management; GEOS3015 Environmental Geomorphology; GEOS3018 Rivers: Science, Policy and Management; GEOS3103 Environmental & Sedimentary Geology; GEOS3104 Geophysical Methods (and equivalent versions of these units).

Marine Science Honours
The structure of Honours in Marine Science will be about one third formal coursework, seminars and reading, and about two thirds devoted to preparation of a thesis on a topic with a clear marine or estuarine orientation. The formal coursework may comprise units of study mainly chosen from existing Honours options offered in the Department of the student's principal interest. Background study in a subsidiary field of interest may be required. Students may commence Honours in either semester 1 or semester 2. Generally, Honours enrolments will be with the School in which the project research is undertaken.

192
Admission to Honours
In general, a Credit average or better in Senior Marine Sciences units of study and at least a Pass in another Senior unit of study are required for entry. Arrangements for the supervision and School of primary location of students will be made in the light of their proposed thesis topic. Joint supervision involving staff of more than one School may be arranged if a thesis topic is deemed to be transdisciplinary. Upon acceptance, students should register formally with the Undergraduate Advisor of USIMS.

Tropical Marine Network Program
Students enrolled in the BSc (Marine Science) are eligible to enrol in units of study offered as part of the Tropical Marine Network Program. This is a joint program of the University of Sydney, the University of Queensland and James Cook University, which offers four units of study in tropical marine science, all taught at marine island research stations off the Queensland coast. Students majoring in Marine Science or Marine Geoscience but who are not enrolled in the BSc (Marine Science) may be eligible for enrolment in some TMNP units subject to places available.

Stations used
The following stations will be used: Lizard Island (Australian Museum field station, north of Cairns); Orpheus Island (James Cook University field station, off Townsville); Heron Island (University of Queensland field station, off Gladstone); One Tree Island (University of Sydney field station, off Gladstone); North Stradbroke Island (University of Queensland field station, off Brisbane)

Teaching and assessment
The four units of study, each worth 6 credit points, are conducted as field schools offered only during the Easter (Semester 1 mid-semester) break and the July mid-year break. Each field school will run for approximately 10 days. Assessment will be based on participation and reports completed during the field school, and an assignment to be completed following the field school. The Coral Reef Ecosystems unit and the Coastal Management unit will be offered each year, together with one of the other two units. Students may enrol in these units in academic year 2 and year 3 as part of the BSc (Marine Science). Students enrolling in these units of study will be selected from the three participating Universities, as well as some overseas Study Abroad students. Preference will however be given to students enrolled in the program at the three participating universities.

Quotas on numbers of students enrolling in NTMP units
Owing to the size of facilities and accommodation at the island research stations all units will have a quota with entry based on merit. There are no Advanced versions of these units. For further information on the availability and timing of these units please refer to the website: www.usyd.edu.au/marine.

NTMP3001 Coral Reef Ecosystems
This unit of study is not available in 2010
Credit points: 6 Teacher/Coordinator: Professor Maria Byrne Session: S2 Intensive Classes: Fieldwork, 80 hours block mode. Prerequisites: MARS(2005 or 2905), plus 12 credit points from Intermediate Science units of study which must include at least 6 credit points of Biology. Assumed knowledge: General concepts in Biology Assumption: Participation in field work and submission of a report.
Note: Department permission required for enrolment.

Coral Reef Ecosystems is an intensive unit that will be held at either the Heron Island or One Tree Island Tropical Research Stations on the Great Barrier Reef. The unit focuses on the dominant taxa in reef environments ad linkages between them. Emphasis is given to corals, other reef associated invertebrates (eg. echinoderms and plankton) and fishes. Ecological and physiological aspects of key organisms are explored. Aspects covered include; distribution of corals; coral bleaching; coral symbionts and the health of the corals based on photosynthetic activity; predation on corals; the input of plankton to reefs; and, the role of fishes and invertebrates in reef environments.

NTMP3003 Fisheries Biology and Management
This unit of study is not available in 2010
Credit points: 6 Teacher/Coordinator: Professor Maria Byrne Session: S2 Intensive Classes: Fieldwork, 80 hours block mode. Prerequisites: MARS(2005 or 2905), plus 12 credit points from Intermediate Science units of study which must include at least 6 credit points of Biology. Assumed knowledge: General concepts in Biology. Assessment: Participation in field work and submission of a report.
Note: Department permission required for enrolment.

Fisheries Biology and Management is an intensive unit that will be held at the tropical research station on Orpheus Island in the Great Barrier Reef. The unit focuses on approaches to quantitative fisheries biology in tropical marine environments. Emphasis is given to sampling design and hypothesis testing, underwater visual census surveys, fishery surveys, assessments of habitat types, and tagging and trapping of organisms. Most field aspects will be covered while diving and data storage will be dealt with at the end of each day. The assessment will focus on the manipulation of data and reporting.

NTMP3004 Aquaculture
Credit points: 6 Teacher/Coordinator: Professor Maria Byrne Session: S2 Intensive Classes: Fieldwork, 80 hours block mode. Prerequisites: 12 credit points from Intermediate Science units of study which must include at least 6 credit points of Biology. Assumed knowledge: General concepts in Biology. Assessment: Assignments and report.
Note: Department permission required for enrolment.

Aquaculture is an intensive unit that will be held at the tropical research station on Orpheus Island in the Great Barrier Reef. The unit focuses on approaches to aquaculture in tropical marine environments. Emphasis is given to aquaculture of tropical invertebrates (especially bivalves and clams) and fishes. Some aspects of the unit may also be done using the aquarium system on campus at James Cook University. Aspects covered include: the design of aquatic facilities; water quality; rearing of algae; rearing of planktonic food; stock breeding; and, growth and genetics of the target species.

NTMP3005 Coastal Management
Credit points: 6 Teacher/Coordinator: Belinda McMillen (course contact) Session: S2 Intensive Classes: Fieldwork, 80 hours block mode. Prerequisites: 12 credit points from Intermediate Science units of study which must include at least 6 credit points of Biology. Assumed knowledge: General concepts in Biology. Assessment: Assignment and report.
Note: Department permission required for enrolment. Note: These units are only available to BSc (Marine Science) students. Department permission required for enrolment.

This unit examines the impacts of human activities on coastal and marine environments. It explores the complex relationships among the ecological and social values of these environments and outlines strategies and tools for their management. This is an intensive unit that will be held at the Moreton Bay Research Station.

Mathematics and Statistics
The School of Mathematics and Statistics offers units of study in Applied Mathematics, Mathematical Statistics and Pure Mathematics. The Junior units of study cover a range of topics in mathematics and statistics and are offered at three levels, viz. Introductory, Fundamental, Normal and Advanced, to suit various levels of previous knowledge. Intermediate, Senior and Honours units of study are mostly provided within one of the subject areas of Applied Mathematics, Mathematical Statistics and Pure Mathematics.

Applied Mathematics
Applied Mathematics is concerned with the development of mathematical and computing methods and their application in particular contexts which may arise in the natural sciences, engineering, economics or the social sciences. Units of study are designed to give training to students who will specialise in other subjects, and also for training applied mathematicians. While mathematical rigour is not
neglected, particular emphasis is given to questions such as the treatment of observational models which are relevant to particular contexts.

Mathematical Statistics

Mathematical Statistics is concerned with the theory of probability and the mathematical methods of statistics applied to such problems as statistical inference, the design of experiments and sample surveys, and all problems of data analysis. The major units of study are designed to train those who wish to become professional statisticians, tertiary teachers and research workers, but there are units of study which provide a knowledge of statistical methods and techniques for students specialising in other fields.

Pure Mathematics

Pure Mathematics units of study have two main aims. One of these is to equip students with the background of mathematical knowledge, understanding and skill necessary for units of study in many branches of science. The other is the provision of training in pure mathematics necessary for those who wish to make a career in mathematics. This might be either in teaching or research or in one of the many avenues where highly developed mathematical ability and a thorough knowledge of modern mathematical techniques are required, such as computing, operations research, management, finance and economics. Website: Further information about all units of study is available at www.maths.usyd.edu.au/Teaching.html

Summer School

This School offers some units of study in The Sydney Summer School (January-February). Consult The Sydney Summer School website for more information: www.summer.usyd.edu.au/

Mathematics Junior units of study

Various combinations of Junior units of study may be taken, subject to the prerequisites listed. Often specific Junior units of study are prerequisites for Mathematics and Statistics units in the Intermediate and Senior years. Before deciding on a particular combination of Junior units of study, students are advised to check carefully the prerequisites relating to Mathematics for all units of study.

Junior introductory unit of study

Students who have not studied a calculus course in high school may enrol in the Introduction to Calculus, 6-credit point unit.

MATH1111 Introduction to Calculus

Credit points: 6 Session: Semester 1 Classes: Three 1-hour lectures and two 1-hour tutorials per week. Prohibitions: MATH1001, MATH1901, MATH1111, MATH1906 Assumed knowledge: At least Year 10 Mathematics Assessment: One 2-hour exam, assignments, quizzes

Note: Department permission required for enrolment. Note: Students who have previously studied calculus at any level are prohibited from enrolling in this unit. In particular, students with HSC Mathematics/Extension 1/Extension 2 (or equivalent) are prohibited.

This unit is an introduction to the calculus of one and two variables. Topics covered include elementary functions, differentiation, basic integration techniques and partial derivatives. Applications in science and engineering are emphasised.

Textbooks

Junior fundamental units of study

Fundamental units of study are designed to provide students with an overview of the necessary mathematical and statistical background for studies in other scientific disciplines. They are provided for students in the Faculty of Science whose major interests lies outside mathematics, but who require mathematics and statistics to support the study of other scientific disciplines. There are more details in the

Junior Mathematics Handbook, available from the school at the time of enrolment.

Assumed knowledge

Knowledge equivalent to the HSC 2-unit Mathematics course is assumed. Students who do not have this knowledge are strongly advised to attend a bridging course conducted jointly by the School and the Mathematics Learning Centre in February.

Relationship of fundamental units to other units of study and recommendations

The four fundamental units of study together give 12 credit points of mathematics, which is the minimum required by the BSc degree regulations. Students obtaining a Distinction in MATH1011 are encouraged to enrol in normal units of study in subsequent semesters. Students obtaining a Distinction or better in MATH1011, 1013 or 1014 may proceed to Intermediate units of study in the Mathematics Discipline Area. Students with a Credit or better in MATH1011 and a Pass or better in MATH1015 may proceed to Intermediate units of study in the Statistics discipline area. Students with a Pass in only MATH1015 are limited to the Intermediate Statistics units of study STAT2011 and STAT2012.

MATH1011 Applications of Calculus

Credit points: 3 Session: Semester 1, Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1001, MATH1901, MATH1906, BIOC1003 Assumed knowledge: HSC Mathematics Assessment: One 1.5 hour examination, assignments and quizzes.

This unit is designed for science students who do not intend to undertake higher year mathematics and statistics. It includes the fitting of data to various functions and demonstrates the use of calculus in optimisation problems. It extends differential calculus to functions of two variables and develops integral calculus, including the definite integral and multiple integrals.

Textbooks
As set out in the Junior Mathematics Handbook

MATH1013 Mathematical Modelling

Credit points: 3 Session: Semester 2, Summer Main Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1003, MATH1903, MATH1907 Assumed knowledge: HSC Mathematics or MATH1111 Assessment: One 1.5 hour examination, assignments and quizzes.

MATH1013 is designed for science students who do not intend to undertake higher year mathematics and statistics. This unit of study looks at the solution of equations by bisection and iteration, first and second order difference equations where chaos is met, and examples of modelling using simple first and second order differential equations.

Textbooks
As set out in the Junior Mathematics Handbook

MATH1014 Introduction to Linear Algebra

Credit points: 3 Session: Summer 2 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1012, MATH1002, MATH1902 Assumed knowledge: HSC Mathematics or MATH1111 Assessment: One 1.5 hour exam, assignments, quizzes

This unit is an introduction to Linear Algebra. Topics covered include vectors, systems of linear equations, matrices, eigenvalues and eigenvectors. Applications in life and technological sciences are emphasised.

Textbooks
Poole, David. Linear Algebra: A Modern Introduction. Thompson Brook/Cole

MATH1015 Biostatistics

Credit points: 3 Session: Semester 1 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prohibitions: MATH1005, MATH1905, STAT1021,
This unit of study introduces vectors and vector algebra, linear algebra including solutions of linear systems, matrices, determinants, eigenvalues and eigenvectors.

Textbooks
As set out in the Junior Mathematics Handbook

MATH1003
Integral Calculus and Modelling
Credit points: 3
Session: Semester 2, Summer Main
Classes: Two 1 hour lectures and one 1 hour tutorial per week.
Prohibitions: MATH1903, MATH1905, MATH1907
Assumed knowledge: HSC Mathematics Extension 2
Assessment: One 1.5 hour examination, assignments and quizzes.

MATH1003 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This unit of study first develops the idea of the definite integral from Riemann sums, leading to the Fundamental Theorem of Calculus. Various techniques of integration are considered, such as integration by parts. The second part is an introduction to the use of first and second order differential equations to model a variety of scientific phenomena.

Textbooks
As set out in the Junior Mathematics Handbook

MATH1004
Discrete Mathematics
Credit points: 3
Session: Semester 2
Classes: Two 1 hour lectures and one 1 hour tutorial per week.
Prohibitions: MATH1904, MATH2011
Assumed knowledge: HSC Mathematics Extension 1
Assessment: One 1.5 hour examination, assignments and quizzes.

MATH1004 is designed to provide a thorough preparation for further study in Mathematics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This unit provides an introduction to fundamental aspects of discrete mathematics, which deals with 'things that come in chunks that can be counted'. It focuses on the enumeration of a set of numbers, viz. Catalan numbers. Topics include sets and functions, counting principles, Boolean expressions, mathematical induction, generating functions and linear recurrence relations, graphs and trees.

Textbooks
As set out in the Junior Mathematics Handbook

MATH1005
Statistics
Credit points: 3
Session: Semester 2, Summer Main
Classes: Two 1 hour lectures and one 1 hour tutorial per week.
Prohibitions: MATH1910, MATH1905, STAT1021, STAT1022, ECMT1010
Assumed knowledge: HSC Mathematics Assessment: One 1.5 hour examination, assignments and quizzes.

MATH1005 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This unit offers a comprehensive introduction to data analysis, probability, sampling, and inference including t-tests, confidence intervals and chi-squared goodness of fit tests.

Textbooks
As set out in the Junior Mathematics Handbook

Mathematics and Statistics Junior Advanced units of study

Advanced units of study are designed for students who have a strong background and a keen interest in mathematics and who need to study mathematics at a higher level to satisfy their own aspirations or degree requirements. All students aiming for high achievement, such as an Honours degree or postgraduate study, are advised to enrol in Advanced units of study.
Content
The unit of study content is similar in outline to that of the Normal units of study above but proceeds more deeply and at a faster rate, covers more difficult material and requires more mathematical sophistication. There are more details of these units of study in the Junior Mathematics Unit of Study Handbook, available from the School at the time of enrolment.

Assumed knowledge
Knowledge equivalent to the HSC Mathematics Extension 2 course is assumed. Students who have a very good result in the equivalent of the HSC Mathematics Extension 1 course may be permitted to enrol in these units of study after discussion with a Mathematics adviser.

Relation to other units of study and recommendations
Students should take two units of study in each semester in order to meet the minimum requirement of 12 credit points of Mathematics in the BSc award course. The usual enrolment for Advanced level students is in the units MATH1901, MATH1902, MATH1903 and MATH1905. Passes in Junior units of study at this level qualify students to proceed to Intermediate units of study in Mathematics and Statistics at the Advanced level. It should be noted that some Intermediate and Senior units of study in both Mathematics and Statistics require specific Junior units of study as prerequisites. Students who are awarded at least a Credit grade in this level are encouraged to proceed to Intermediate units of study in Mathematics and Statistics at the Advanced level. Enrolment in MATH1906 or MATH1907 is by invitation only.

MATH1901
Differential Calculus (Advanced)
Credit points: 3 Session: Semester 1 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prerequisites: HSC Mathematics Extension 2. This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator. Prohibitions: MATH1911, MATH1901, MATH1906 Assessment: One 1.5 hour examination, assignments and quizzes.

This unit is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. It parallels the normal unit MATH1001 but goes more deeply into the subject matter and requires more mathematical sophistication.

Textbooks
As set out in the Junior Mathematics Handbook

MATH1902
Linear Algebra (Advanced)
Credit points: 3 Session: Semester 1 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prerequisites: HSC Mathematics Extension 2. This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator. Prohibitions: MATH1902, MATH1012, MATH1014 Assessment: One 1.5 hour examination, assignments and quizzes.

This unit is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. It parallels the normal unit MATH1002 but goes more deeply into the subject matter and requires more mathematical sophistication.

Textbooks
As set out in the Junior Mathematics Handbook

MATH1903
Integral Calculus and Modelling Advanced
Credit points: 3 Session: Semester 2 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prerequisites: HSC Mathematics Extension 2. This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator. Prohibitions: MATH1903, MATH1013, MATH1907 Assumed knowledge: HSC Mathematics Extension 2 or Credit or better in MATH1001 or MATH1901 Assessment: One 1.5 hour examination, assignments and quizzes.

MATH1903 is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This unit of study parallels the normal unit MATH1903 but goes more deeply into the subject matter and requires more mathematical sophistication.

Textbooks
As set out in the Junior Mathematics Handbook

MATH1905
Statistics (Advanced)
Credit points: 3 Session: Semester 2 Classes: Two 1 hour lectures and one 1 hour tutorial per week. Prerequisites: HSC Mathematics Extension 2. This requirement may be varied. Students with an interest in mathematics, but without HSC mathematics Extension 2, should consult the unit of study coordinator. Prohibitions: MATH1015, MATH1005, STAT1021, STAT2022, ECMT1010 Assessment: One 1.5 hour examination, assignments and quizzes.

This unit is designed to provide a thorough preparation for further study in mathematics and statistics. It is a core unit of study providing three of the twelve credit points required by the Faculty of Science as well as a Junior level requirement in the Faculty of Engineering. This Advanced level unit of study parallels the normal unit MATH1105 but goes more deeply into the subject matter and requires more mathematical sophistication.

Textbooks
As set out in the Junior Mathematics Handbook

MATH1906
Mathematics (Special Studies Program) A
Credit points: 3 Session: Semester 1 Classes: Two 1 hour lectures, one 1 hour seminar and one 1 hour tutorial per week. Prerequisites: UAI (or ATAR equivalent) of at least 98.5 and result in Band E4 HSC Mathematics Extension 2; by invitation. Prohibitions: MATH1901, MATH1011, MATH1901 Assessment: One 1.5 hour exam, assignments, classwork. Note: Department permission required for enrolment.

This is an Advanced unit of study. Entry to Mathematics (Special Studies Program) A is restricted to students with a UAI of 98.5 and an excellent school record in Mathematics. Students will cover the material in MATH1901 Differential Calculus (Advanced). In addition there will be a selection of special topics, which are not available elsewhere in the Mathematics and Statistics program.

MATH1907
Mathematics (Special Studies Program) B
Credit points: 3 Session: Semester 2 Classes: Two 1 hour lectures, one 1 hour seminar and one 1 hour tutorial per week. Prerequisites: Distinction in MATH1906; by invitation. Prohibitions: MATH1903, MATH1013, MATH1903 Assessment: One 1.5 hour exam, assignments, classwork. Note: Department permission required for enrolment.

This is an Advanced unit of study. Entry to Mathematics (Special Studies Program) B is normally restricted to students with a Distinction in MATH1906. Students will cover the material in MATH1903 Integral Calculus and Modelling (Advanced). In addition there will be a selection of special topics, which are not available elsewhere in the Mathematics and Statistics program.

Mathematics Intermediate units of study
The School of Mathematics provides a range of Intermediate units of study, each worth 6 credit points covering a variety of topics in Pure and Applied Mathematics. A normal Intermediate load in a discipline is 12 credit points and this is the minimum that should be undertaken by anyone intending to specialise in Senior Mathematics. The units of study are taught at either the Normal or the Advanced level. Entry to an Advanced unit of study usually requires a Credit or better in a Normal level prerequisite or a Pass in an Advanced level prerequisite. For ease of overview the units of study are arranged under Pure, for students wishing to specialise in Pure Mathematics, and Applied, for those wishing to specialise in Applied Mathematics. Several units of study are suitable for either. Details of each unit of study appear below whilst full details of unit of study structure, content and examination
procedures are provided in the Second Year Mathematics Handbook available from the School at the time of enrolment.

Pure units of study (each 6 credit points)

- **Algebra (Adv)** MATH2968; Discrete Maths & Graph Theory MATH2069; Discrete Maths & Graph Theory (Adv) MATH2969; Linear Mathematics & Vector Calculus MATH2061; Linear Mathematics & Vector Calculus (Adv) MATH2961; Number Theory and Cryptography MATH2068; Real and Complex Analysis (Adv) MATH2962

Applied units of study (each 6 credit points)

Relation to other units of study and recommendations

In general, 2 units of study (12 credit points) of Intermediate mathematics are needed to progress to a Senior Mathematics unit of study. If your major interest is in mathematics, then you are strongly encouraged to enrol in at least 3 units of study in Intermediate Mathematics. If you are considering doing Honours in mathematics, they should include some Advanced units of study. Students intending to specialise in Advanced Mathematics are encouraged to include MATH2061 or 2961, and MATH2065 or 2965. Students intending to specialise in Pure Mathematics should include MATH2061 or 2961. Students considering Honours in Pure Mathematics should also take MATH2962 and MATH2968. Computer Science students may like to include MATH2069 or 2969 among their choices. Physics students would be well-advised to choose MATH2061 or 2961, and MATH2065 or 2965. Prospective teachers of mathematics should consider MATH2061 and 2068.

MATH2916

Working Seminar A (SSP)

Credit points: 3 Session: Semester 1 **Classes:** One 1 hour seminar per week. **Prerequisites:** By invitation, High Distinction average over 12 credit points of Advanced Junior Mathematics **Assessment:** One 1 hour presentation, 15-20 page essay. **Note:** Department permission required for enrolment.

The main aim of this unit is to develop the students' written and oral presentation skills. The material will consist of a series of connected topics relevant to modern mathematics and statistics. The topics are chosen to suit the students' background and interests, and are not covered by other mathematics or statistics units. The first session will be an introduction on the principles of written and oral presentation of mathematics. Under the supervision and advice of the lecturer(s) in charge, the students present the topics to the other students and the lecturer in a seminar series and a written essay in a manner that reflects the practice of research in mathematics and statistics.

MATH2917

Working Seminar B (SSP)

Credit points: 3 Session: Semester 2 **Classes:** One 1 hour seminar per week. **Prerequisites:** By invitation, High Distinction average over 12 credit points of Advanced Junior Mathematics **Assessment:** One 1 hour presentation, 15-20 page essay. **Note:** Department permission required for enrolment.

The main aim of this unit is to develop the students' written and oral presentation skills. The material will consist of a series of connected topics relevant to modern mathematics and statistics. The topics are chosen to suit the students' background and interests, and are not covered by other mathematics or statistics units. The first session will be an introduction on the principles of written and oral presentation of mathematics. Under the supervision and advice of the lecturer(s) in charge, the students present the topics to the other students and the lecturer in a seminar series and a written essay in a manner that reflects the practice of research in mathematics and statistics.

MATH2061

Linear Mathematics and Vector Calculus

Credit points: 6 Session: Semester 1, Summer Main **Classes:** Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. **Prerequisites:** MATH(1901 or 1906 or Credit in 1001) and MATH(1902 or Credit in 1002) and MATH(1903 or 1907 or Credit in 1003) **Prohibitions:** MATH2001, MATH2901, MATH2002, MATH2902, MATH2961, MATH2067 **Assessment:** Two 2 hour exam, assignments, quizzes

This unit starts with an investigation of linearity: linear functions, general principles relating to the solution sets of homogeneous and inhomogeneous linear equations (including differential equations), linear independence and the dimension of a linear space. The study of eigenvalues and eigenvectors, begun in junior level linear algebra, is extended and developed. Linear operators on two-dimensional real space are investigated, paying particular attention to the geometrical significance of eigenvalues and eigenvectors. The unit then moves on to topics from vector calculus, including vector-valued functions (parametrised curves and surfaces; vector fields; div, grad and curl; gradient fields and potential functions), line integrals (arc-length; work; path-independent integrals and conservative fields; flux across a curve), iterated integrals (double and triple integrals; polar, cylindrical and spherical coordinates; areas, volumes and mass; Green's Theorem), flux integrals (flow through a surface; flux integrals through a surface defined by a function of two variables, though cylinders, spheres and parametrised surfaces), Gauss' Divergence Theorem and Stokes' Theorem.

MATH2961

Linear Mathematics & Vector Calculus Adv

Credit points: 6 Session: Semester 1 **Classes:** Four 1 hour lectures and one 1 hour tutorial per week. **Prerequisites:** MATH (1901 or 1906 or Credit in 1001) and MATH (1902 or Credit in 1002) and MATH (1903 or 1907 or Credit in 1003) **Prohibitions:** MATH2001, MATH2901, MATH2002, MATH2902, MATH2961, MATH2067 **Assessment:** Two 2 hour exam, assignments

This unit is an advanced version of MATH2061, with more emphasis on the underlying concepts and on mathematical rigour. Topics from linear algebra focus on the theory of vector spaces and linear transformations.

The connection between matrices and linear transformations is studied in detail. Determinants, introduced in first year, are revised and investigated further, as are eigenvalues and eigenvectors. The calculus component of the unit includes local maxima and minima, Lagrange multipliers, the inverse function theorem and Jacobians.

There is an informal treatment of multiple integrals: double integrals, change of variables, triple integrals, line and surface integrals, Green's theorem and Stokes' theorem.

MATH2962

Real and Complex Analysis (Advanced)

Credit points: 6 Session: Semester 1 **Classes:** Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. **Prerequisites:** MATH (1901 or 1906 or Credit in 1001) and MATH (1902 or Credit in 1002) and MATH (1903 or 1907 or Credit in 1003) **Prohibitions:** MATH2007, MATH2907 **Assessment:** Two 2 hour exam, assignments, quizzes

Analysis is one of the fundamental topics underlying much of mathematics including differential equations, dynamical systems, differential geometry, topology and Fourier analysis. Starting off with an axiomatic description of the real number system, this first course in analysis concentrates on the limiting behaviour of infinite sequences and series on the real line and the complex plane. These concepts are then applied to sequences and series of functions, looking at point-wise and uniform convergence. Particular attention is given to power series leading into the theory of analytic functions and complex analysis. Topics in complex analysis include complex functions, Cauchy’s integral theorem, Cauchy’s integral formula, residues and related topics with applications to real integrals.

MATH2063

Math Computing and Nonlinear Systems

Credit points: 6 Session: Semester 1 **Classes:** Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week (lectures in common
This unit will introduce students to techniques of mathematical computation as applied to nonlinear systems, using the numerical programming language MATLAB and, where appropriate, computer algebra. This knowledge will be applied to a number of modelling problems, particularly those involving nonlinear mappings and nonlinear ordinary differential equations (ODEs). Throughout the unit of study the essential nonlinear theory will be developed, and the resulting ideas will be explored computationally. This will allow us to explore the modern concepts of chaos using a variety of examples, including the logistic map, the Henon map and the Lorenz equations. No prior knowledge of programming or of the MATLAB language or computer algebra is required.

MATH2965
Partial Differential Equations (Intro)
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week (lectures in common with MATH2063). Prerequisites: MATH (1901 or Credit in 1901) and MATH (1902 or Credit in 1902) and MATH (1903 or Credit in 1903) or MATH2063. Assumptions: MATH2005, MATH2905, MATH2965, MATH2967 Assessment: 2 hour exam, assignments
The content of this unit of study parallels that of MATH2063, but both computational and theory components will place more emphasis on advanced topics, including Lyapunov exponents, stability, 2- and 3-cycles for mappings and concepts such as strange attractors. No prior knowledge of programming or of the MATLAB language or computer algebra is required.

MATH2065
Partial Differential Equations (Adv)
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial, one 1 hour example class per week. Prerequisites: MATH1011 or 1001 or 1901 or 1906 and MATH1014 or 1002 or 1902 and MATH (1003 or 1903 or 1907). Prohibitions: MATH2005, MATH2905, MATH2965, MATH2967 Assessment: 2 hour exam, mid-semester test, assignments
This is an introductory course in the analytical solutions of PDEs (partial differential equations) and boundary value problems. The techniques covered include separation of variables, Fourier series, Fourier transforms and Laplace transforms.

MATH2969
Discrete Mathematics and Graph Theory
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week (lectures in common with MATH2065). Prerequisites: MATH (2961 or Credit in 2061) or (MATH (2001 or Credit in 2001) and MATH (2002 or Credit in 2002)) or MATH (1901 or 1902) or MATH (1001 or 1002 or 1901 or 1902). Prohibitions: MATH2005, MATH2905, MATH2965, MATH2967 Assessment: 2 hour exam, assignments
This unit of study is essentially an Advanced version of MATH2065, the emphasis being on solutions of differential equations in applied mathematics. The theory of ordinary differential equations is developed for second order linear equations, including series solutions, special functions and Laplace transforms, and boundary-value problems including separation of variables, Fourier series and Fourier transforms.

MATH2069
Number Theory and Cryptography
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: 6 credit points of Junior level Mathematics. Prohibitions: MATH3002, MATH3009, MATH2968 Assumed knowledge: MATH (1014 or 1002 or 1902) Assessment: 2 hour exam, assignments
Cryptography is the branch of mathematics that provides the techniques for confidential information exchange via possibly insecure channels. This unit introduces the tools from elementary number theory that are needed to understand the mathematics underlying the most commonly used modern public key cryptosystems. Topics include the Euclidean Algorithm, Fermat's Little Theorem, the Chinese Remainder Theorem, Möbius Inversion, the RSA Cryptosystem, the Elgamal Cryptosystem and the Diffie-Hellman Protocol. Issues of computational complexity are also discussed.

MATH2988
Number Theory and Cryptography Advanced
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: At least 9cp from MATH (1901 or Credit in 1901), MATH (1902 or Credit in 1902), MATH (1903 or Credit in 1903), MATH (1904 or Credit in 1904), MATH (1905 or Credit in 1905), MATH1906, MATH1907, MATH (2961 or Credit in MATH2061), MATH2962 or MATH2967 or Credit in MATH2069. Prohibitions: MATH2068 Assessment: One 2 hr exam, homework assignments
This unit of study is an advanced version of MATH2068, sharing the same lectures but with more advanced topics introduced in the tutorials and computer laboratory sessions.

MATH2068
Algebra (Advanced)
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour practice class per week. Prerequisites: 9 credit points of Junior level Mathematics. Prohibitions: MATH (1902 or Credit in MATH2002). Assessment: 2 hour exam, assignments
This unit provides an introduction to modern abstract algebra, via linear algebra and group theory. It extends the linear algebra covered in Junior Mathematics and in MATH2961, and proceeds to a classification of linear operators on finite dimensional spaces. Permutation groups are used to introduce and motivate the study of abstract group theory. Topics covered include actions of groups on sets, subgroups, homomorphisms, quotient groups and the classification of finite abelian groups.
Problems in industry and commerce often involve maximising profits or minimising costs subject to constraints arising from resource limitations. The first part of this unit looks at programming problems and their solution using the simplex algorithm; nonlinear optimisation & the Kuhn Tucker conditions.

The second part of the unit deals with utility theory and modern portfolio theory. Topics covered include: pricing under the principles of expected return and expected utility; mean-variance Markowitz portfolio theory, the Capital Asset Pricing Model, log-optimal portfolios and the Kelly criterion; dynamical programming. Some understanding of probability theory including distributions and expectations is required in this part.

Theory developed in lectures will be complemented by computer laboratory sessions using MATLAB. Minimal computing experience will be required.

MATH2970
Optimisation & Financial Mathematics Adv
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week (lectures given in common with MATH2070). Prerequisites: MATH (1901 or 1906 or Credit in 1001) and MATH (1902 or Credit in 1002) Prohibitions: MATH2010, MATH2033, MATH2933, MATH2070 Assumed knowledge: MATH (1903 or 1907) or Credit in MATH1003 Assessment: One 2 hour exam, assignments, quizzes Note: Students may enrol in both MATH2970 and MATH3975 in the same semester

The content of this unit of study parallels that of MATH2070, but students enrolled at Advanced level will undertake more advanced problem solving and assessment tasks, and some additional topics may be included.

Mathematics Senior units of study
The School of Mathematics and Statistics provides a range of senior units of study in the Science Subject Area MATH. (The separate Science Subject Area STAT is dealt with in the next section.) Each unit of study is worth 6 credit points; students wishing to obtain a major in mathematics must therefore take at least 4 units of senior mathematics, while those wishing to obtain a double major must take 8. To proceed to honours in either Applied Mathematics or Pure Mathematics, students must have a major in mathematics. Honours entry is further restricted to students attaining a sufficiently high average mark in their senior year. Students interested in doing honours should consult the School to find out the precise details, and obtain advice on an appropriate senior year program. As well as majors in Mathematics and Statistics, the School offers a major in Financial Mathematics and Statistics. The precise requirements for this major can be found in Table 1. Alternatively, consult the School directly.

Normal and Advanced
Each unit of study is designated either as "Normal" or "Advanced". Advanced units have more stringent prerequisites than normal units, and are significantly more demanding. Although the precise requirements vary from unit to unit, it is generally inadvisable for a student who has not achieved a Credit average in intermediate level mathematics to attempt an advanced senior mathematics unit.

Semester 1
MATH3063 Differential Equations and Biomaths; MATH3065 Logic and Foundations; MATH3076 Mathematical Computing; MATH3961 Metric Spaces (Advanced); MATH3962 Rings, Fields and Galois Theory (Adv); MATH3963 Differential Equations and Biomaths (Adv); MATH3974 Fluid Dynamics (Advanced); MATH3976 Mathematical Computing (Advanced)

Semester 2
MATH3061 Geometry and Topology; MATH3062 Algebra and Number Theory; MATH3067 Information and Coding Theory (Not offered in 2009) MATH3075 Financial Mathematics; MATH3078 PDEs and Waves; MATH3964 Complex Analysis with Applications (Advanced) (Not offered in 2009) MATH3966 Modules and Group Representations (Adv); MATH3968 Differential Geometry (Adv); MATH3969 Measure Theory & Fourier Analysis (Adv); MATH3975 Financial Mathematics (Advanced); MATH3977 Lagrangian & Hamiltonian Dynamics (Adv); MATH3978 PDEs and Waves (Advanced)

Relation to other units of study and recommendations
In general, 4 units of study (24 credit points) are required in order to major in Mathematics and a credit average is required to progress to an Honours year. Potential Honours students are strongly encouraged to include one or more Advanced level unit(s) of study and seek advice from a Senior year coordinator. Particular combinations would be suitable for students with special interests.

Computer Science students
MATH3065, MATH3962, MATH3076/3976, MATH3062, MATH3067, MATH3966, MATH3961, MATH3075/3975.

Engineering (BSc/BE) students
MATH3961, MATH3068, MATH3063/3963, MATH3065, MATH3974, MATH3076/3976, MATH3969, MATH3078/3978, MATH3968, MATH3067, MATH3977, MATH3964, MATH3075/3975.

Physics or Chemistry students
MATH3061/3961, MATH3068, MATH3962, MATH3063/3963, MATH3065, MATH3974, MATH3076/3976, MATH3969, MATH3966, MATH3968, MATH3078/3978, MATH3964, MATH3977, 3075/3975, MATH3067.

Prospective teachers of Mathematics
MATH3065, MATH3068, MATH3063/3963, MATH3962, MATH3961, MATH3076/3976, MATH3067, MATH3062, MATH3061, MATH3078/3978.

MATH3061
Geometry and Topology
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prerequisites: 12 credit points of Intermediate Mathematics Prohibitions: MATH3001, MATH3006 Assessment: One 2 hour exam, tutorial tests, assignments.

The aim of the unit is to expand visual/geometric ways of thinking. The geometry section is concerned mainly with transformations of the Euclidean plane (that is, bijections from the plane to itself), with a focus on the study of isometries (proving the classification theorem for transformations which preserve distances between points), symmetries (including the classification of frieze groups) and affine transformations (transformations which map lines to lines). The basic approach is via vectors and matrices, emphasising the interplay between geometry and linear algebra. The study of affine transformations is then extended to the study of collineations in the real projective plane, including collineations which map conics to conics. The topology section considers graphs, surfaces and knots from a combinatorial point of view. Key ideas such as homeomorphism, subdivision, cutting and pasting and the Euler invariant are introduced first for graphs (1-dimensional objects) and then for triangulated surfaces (2-dimensional objects). The classification of surfaces is given in several equivalent forms. The problem of colouring maps on surfaces is interpreted via graphs. The main geometric fact about knots is that every knot bounds a surface in 3-space. This is proven by a simple direct construction, and this fact is used to show that every knot is a sum of prime knots.

MATH3061
Metric Spaces (Advanced)
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures and one 1 hour tutorial per week. Prerequisites: 12 credit points of Intermediate Mathematics units Prohibitions: MATH3961, MATH3001 Assumed knowledge: MATH2961 or MATH2962 Assessment: 2 hour exam, assignments, quizzes

Topology, developed at the end of the 19th Century to investigate the subtle interaction of analysis and geometry, is now one of the basic disciplines of mathematics. A working knowledge of the language and
concepts of topology is essential in fields as diverse as algebraic number theory and non-linear analysis. This unit develops the basic ideas of topology using the example of metric spaces to illustrate and motivate the general theory. Topics covered include: Metric spaces, convergence, completeness and the contraction mapping theorem; Metric topology, open and closed subsets; Topological spaces, subspaces, product spaces; Continuous mappings and homeomorphisms; Compact spaces; Connected spaces; Hausdorff spaces and normal spaces. Applications include the implicit function theorem, chaotic dynamical systems and an introduction to Hilbert spaces and abstract Fourier series.

MATH3062
Algebra and Number Theory

Credit points: 6
Session: Semester 1
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics
Prohibitions: MATH3962, MATH3902, MATH3002, MATH3009
Assessment: One 2 hour exam, quizzes and assignments
Note: Students are advised to take MATH2068 or 2968 before attempting this unit.

The first half of the unit continues the study of elementary number theory, with an emphasis on the solution of Diophantine equations (for example, finding all integer squares which are one more than twice a square). Topics include the Law of Quadratic Reciprocity, representing an integer as the sum of two squares, and continued fractions. The second half of the unit introduces the abstract algebraic concepts which arise naturally in this context: rings, fields, irreducibles and unique factorisation. Polynomial rings, algebraic numbers and constructible numbers are also discussed.

Textbooks
Herstein, IN. Topics in Algebra. Blaisdell.
Childs, LN. A Concrete Introduction to Higher Algebra. Springer.

MATH3062
Rings, Fields and Galois Theory (Adv)

Credit points: 6
Session: Semester 1
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics
Prohibitions: MATH3002, MATH3902, MATH3002
Assumed knowledge: MATH2961
Assessment: One 2 hour exam, assignments and quizzes
Note: Students are advised to take MATH2968 before attempting this unit.

This unit of study investigates the modern mathematical theory that was originally developed for the purpose of studying polynomial equations. The philosophy is that it should be possible to factorize any polynomial into a product of linear factors by working over a "large enough" field (such as the field of all complex numbers). Viewed like this, the problem of solving polynomial equations leads naturally to the problem of understanding extensions of fields. This in turn leads into the area of mathematics known as Galois theory.

The basic theoretical tool needed for this program is the concept of a ring, which generalizes the concept of a field. The course begins with examples of rings, and associated concepts such as subrings, ring homomorphisms, ideals and quotient rings. These tools are then applied to study quotient rings of polynomial rings. The final part of the course deals with the basics of Galois theory, which gives a way of understanding field extensions.

Textbooks

MATH3063
Differential Equations and Biomaths

Credit points: 6
Session: Semester 1
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics
Prohibitions: MATH3020, MATH3920, MATH3003, MATH3923, MATH3063
Assumed knowledge: MATH2061
Assessment: One 2 hour exam, assignments, quizzes

This unit of study is an introduction to the theory of systems of ordinary differential equations. Such systems model many types of phenomena in engineering, biology and the physical sciences. The emphasis will not be on finding explicit solutions, but instead on the qualitative features of these systems, such as stability, instability and oscillatory behaviour. The aim is to develop a good geometrical intuition into the behaviour of solutions to such systems. Some background in linear algebra, and familiarity with concepts such as limits and continuity, will be assumed. The applications in this unit will be drawn from predator-prey systems, transmission of diseases, chemical reactions, beating of the heart and other equations and systems from mathematical biology.

MATH3064
Complex Analysis with Applications (Adv)

Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics
Prohibitions: MATH3904, MATH3915
Assumed knowledge: MATH2962
Assessment: One 2 hour exam, assignments and quizzes

This unit continues the study of functions of a complex variable and their applications introduced in the second year unit Real and Complex Analysis (MATH2962). It is aimed at highlighting certain topics from analytic function theory and the analytic theory of differential equations that have intrinsic beauty and wide applications. This part of the analysis of functions of a complex variable will form a very important background for students in applied and pure mathematics, physics, chemistry and engineering.

The course will begin with a revision of properties of holomorphic functions and Cauchy theorem with added topics not covered in the second year course. This will be followed by meromorphic functions, entire functions, harmonic functions, elliptic functions, elliptic integrals, analytic differential equations, hypergeometric functions. The rest of the course will consist of selected topics from Greens functions, complex differential forms and Riemann surfaces.

MATH3065
Logic and Foundations

Credit points: 6
Session: Semester 1
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 6 credit points of Intermediate Mathematics
Prohibitions: MATH3005
Assessment: One 2 hour exam, tutorial tests, assignments.

This unit is in two halves. The first half provides a working knowledge of the propositional and predicate calculi, discussing techniques of proof, consistency, models and completeness. The second half discusses notions of computability by means of Turing machines (simple abstract computers). (No knowledge of computer programming is assumed.) It is shown that there are some mathematical tasks (such as the halting problem) that cannot be carried out by any Turing machine. Results are applied to first-order Peano arithmetic, culminating in Gödel's Incompleteness Theorem; any statement that includes first-order Peano arithmetic contains true statements that cannot be proved in the system. A brief discussion is given of
Zermelo-Fraenkel set theory (a candidate for the foundations of mathematics), which still succumbs to Gödel’s Theorem.

MATH3966
Modules and Group Representations (Adv)
Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics
Prohibitions: MATH3906, MATH3907
Assumed knowledge: MATH3962
Assessment: One 2 hour exam, assignments and quizzes

This unit deals first with generalized linear algebra, in which the field of scalars is replaced by an integral domain. In particular we investigate the structure of modules, which are the analogues of vector spaces in this setting, and which are of fundamental importance in modern pure mathematics. Applications of the theory include the solution over the integers of simultaneous equations with integer coefficients and analysis of the structure of finite abelian groups.

In the second half of this unit we focus on linear representations of groups. A group occurs naturally in many contexts as a symmetry group of a set or space. Representation theory provides techniques for analysing these symmetries. The component will deals with the decomposition of representation into simple constituents, the remarkable theory of characters, and orthogonality relations which these characters satisfy.

MATH3067
Information and Coding Theory
Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics
Prohibitions: MATH3007, MATH3010
Assessment: One 2 hour exam, tutorial tests, assignments.

The related theories of information and coding provide the basis for reliable and efficient storage and transmission of digital data, including techniques for data compression, digital broadcasting and broadband internet connectivity. The first part of this unit is a general introduction to the ideas and applications of information theory, where the basic concept is that of entropy. This gives a theoretical measure of how much data can be compressed for storage or transmission. Information theory also addresses the important practical problem of making data immune to partial loss caused by transmission noise or physical damage to storage media. This leads to the second part of the unit, which deals with the theory of error-correcting codes. We develop the algebra behind the theory of linear and cyclic codes used in modern digital communication systems such as compact disk players and digital television.

MATH3068
Analysis
This unit of study is not available in 2010
Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics
Prohibitions: MATH3008, MATH2007, MATH2907, MATH2962
Assessment: One 2 hour exam, tutorial tests, assignments.

Analysis grew out of calculus, which leads to the study of limits of functions, sequences and series. The aim of the unit is to present enduring beautiful and practical results that continue to justify and inspire the study of analysis. The unit starts with the foundations of calculus and the real number system. It goes on to study the limiting behaviour of sequences and series of real and complex numbers. This leads naturally to the study of functions defined as limits and to the notion of uniform convergence. Returning to the beginnings of calculus and power series expansions leads to complex variable theory: analytic functions, Taylor expansions and the Cauchy Integral Theorem.

Power series are not adequate to solve the problem of representing periodic phenomena such as wave motion. This requires Fourier theory, the expansion of functions as sums of sines and cosines. This unit deals with this theory, Parseval’s identity, pointwise convergence theorems and applications. The unit goes on to introduce Bernoulli numbers, Bernoulli polynomials, the Euler MacLaurin formula and applications, the gamma function and the Riemann zeta function. Lastly we return to the foundations of analysis, and study limits from the point of view of topology.

MATH3968
Differential Geometry (Advanced)
This unit of study is not available in 2010
Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics, including MATH2961
Prohibitions: MATH3003
Assumed knowledge: At least 6 credit points of Advanced Mathematics units of study at Intermediate or Senior level
Assessment: One 2 hour exam and 2 assignments

This unit is an introduction to Differential Geometry, using ideas from calculus of several variables to develop the mathematical theory of geometrical objects such as surfaces, curves and their higher-dimensional analogues. Differential geometry also plays an important part in both classical and modern theoretical physics. The initial aim is to develop geometrical ideas such as curvature in the context of curves and surfaces in space, leading to the famous Gauss-Bonnet formula relating the curvature and topology of a surface. A second aim is to present the calculus of differential forms as the natural setting for the key ideas of vector calculus, along with some applications.

MATH3969
Measure Theory & Fourier Analysis (Adv)
Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics
Prohibitions: MATH3909
Assumed knowledge: At least 6 credit points of Advanced Mathematics units of study at Intermediate or Senior level
Assessment: One 2 hour exam, assignments, quizzes

Measure theory is the study of such fundamental ideas as length, area, volume, arc length and surface area. It is the basis for the integration theory used in advanced mathematics since it was developed by Henri Lebesgue in about 1900. Moreover, it is the basis for modern probability theory. The course starts by setting up measure theory and integration, establishing important results such as Fubini’s Theorem and the Dominated Convergence Theorem which allow us to manipulate integrals. This is then applied to Fourier Analysis, and results such as the Inversion Formula and Plancherel’s Theorem are derived. Probability Theory is then discussed, with topics including independence, conditional probabilities, and the Law of Large Numbers.

MATH3974
Fluid Dynamics (Advanced)
Credit points: 6
Session: Semester 1
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics with average grade of at least Credit
Prohibitions: MATH3914
Assumed knowledge: MATH2961, MATH2965
Assessment: One 2 hour exam

This unit of study provides an introduction to fluid dynamics, starting with a description of the governing equations and the simplifications gained by using stream functions or potentials. It develops elementary theorems and tools, including Bernoulli’s equation, the role of vorticity, the vorticity equation, Kelvin’s circulation theorem, Helmholtz’s theorem, and an introduction to the use of tensors. Topics covered include viscous flows, lubrication theory, boundary layers, potential theory, and complex variable methods for 2-D airfoils. The unit concludes with an introduction to hydrodynamic stability theory and the transition to turbulent flow.

MATH3075
Financial Mathematics
Credit points: 6
Session: Semester 2
Classes: Two class quizzes and one 2 hour exam
Prohibitions: At least 6 credit points of Advanced Mathematics units of study at
model, discrete random walks, Brownian motion, derivation of the Black-Scholes option pricing model, extensions and introduction to pricing exotic options, credit derivatives. A strong background in mathematical statistics and partial differential equations is an advantage, but is not essential. Students completing this unit have been highly sought by the finance industry, which continues to need graduates with quantitative skills. The lectures in the Normal unit are held concurrently with those of the corresponding Advanced unit.

MATH3975

Financial Mathematics (Advanced)

Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics with at least Credit average
Prohibitions: MATH3933, MATH3015, MATH3075
Assessment: Two class quizzes and one 2 hour exam

This unit is an introduction to the mathematical theory of modern finance. Topics include: notion of arbitrage, pricing riskless securities, risky securities, utility theory, fundamental theorems of asset pricing, complete markets, introduction to options, binomial option pricing model, discrete random walks, Brownian motion, derivation of the Black-Scholes option pricing model, extensions and introduction to pricing exotic options, credit derivatives. A strong background in mathematical statistics and partial differential equations is an advantage, but is not essential. Students completing this unit have been highly sought by the finance industry, which continues to need graduates with quantitative skills. Students enrolled in this unit at the Advanced level will be expected to undertake more challenging assessment tasks. The lectures in the Advanced unit are held concurrently with those of the corresponding Normal unit.

MATH3976

Mathematical Computing

Credit points: 6
Teacher/Coordinator: Dr D J Ivers
Session: Semester 1
Classes: Three 1 hour lectures and one 1 hour laboratory per week.
Prerequisites: 12 credit points of Intermediate Mathematics and one of MATH(1001 or 1003 or 1901 or 1903 or 1906 or 1907)
Prohibitions: MATH3976, MATH3016, MATH3916
Assessment: One 2 hour exam, assignments, quizzes

This unit of study provides an introduction to Fortran 95 programming and numerical methods. Topics covered include computer arithmetic and computational errors, systems of linear equations, interpolation and approximation, solution of nonlinear equations, quadrature, initial value problems for ordinary differential equations and boundary value problems.

MATH3977

Lagrangian & Hamiltonian Dynamics (Adv)

Credit points: 6
Teacher/Coordinator: Dr Leon Poladian
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics with at least Credit average
Prohibitions: MATH2904, MATH2004, MATH3917
Assessment: One 2 hour exam and assignments and/or quizzes

This unit provides a comprehensive treatment of dynamical systems using the mathematically sophisticated framework of Lagrange and Hamilton. This formulation of classical mechanics generalizes elegantly to modern theories of relativity and quantum mechanics. The unit develops dynamical theory from the Principle of Least Action using the calculus of variations. Emphasis is placed on the relation between the symmetry and invariance properties of the Lagrangian and Hamiltonian functions and conservation laws. Coordinate and canonical transformations are introduced to make apparently complicated dynamical problems appear very simple. The unit will also explore connections between geometry and different physical theories beyond classical mechanics.

Students will be expected to solve fully dynamical systems of some complexity including planetary motion and to investigate stability using perturbation analysis. Hamilton-Jacobi theory will be used to elegantly solve problems ranging from geodesics (shortest path between two points) on curved surfaces to relativistic motion in the vicinity of black holes.

This unit is a useful preparation for units in dynamical systems and chaos, and complements units in differential equations, quantum theory and general relativity.

MATH3078

PDEs and Waves

Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics
Prohibitions: MATH3978, MATH3018, MATH3921
Assumed knowledge: MATH(2061/2961) and MATH(2065/2965)
Assessment: One 2 hour exam, one lecture quiz

This unit of study introduces Sturm-Liouville eigenvalue problems and their role in finding solutions to boundary value problems. Analytical solutions of linear PDEs are found using separation of variables and integral transform methods. Three of the most important equations of mathematical physics - the wave equation, the diffusion (heat) equation and Laplace's equation - are treated, together with a range of applications. There is particular emphasis on wave phenomena, with an introduction to the theory of sound waves and water waves.

Textbooks

MATH3978

PDEs and Waves (Advanced)

Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial per week.
Prerequisites: 12 credit points of Intermediate Mathematics with at least Credit average
Prohibitions: MATH3078, MATH3018, MATH3921
Assumed knowledge: MATH(2061/2961) and MATH(2065/2965)
Assessment: One 2 hour exam, one lecture quiz

As for MATH3078 PDEs & Waves but with more advanced problem solving and assessment tasks. Some additional topics may be included.

Textbooks

Statistics Intermediate units of study

The School of Mathematics and Statistics provides Intermediate units of study, each worth 6 credit points, in Statistics. A normal Intermediate load in a discipline is 12 credit points and students intending to specialise in Senior Statistics should take 2 units of study (12 credit points) of Intermediate Statistics. Topics are offered at Normal and Advanced levels and may not be counted together. Further information follows, whilst details of units of study structure, content and assessment procedures are provided in the Intermediate Year Unit of Study Handbook available from the School at the time of enrolment. The units of study (each 6 credit points) are listed below:

First semester

Statistical Models STAT2011; Probability and Statistical Models (Adv) STAT2911

Second semester

Statistical Tests STAT2012; Statistical Tests (Advanced) STAT2912

Relation to other units of study and recommendations

Students should note that all Senior Statistics units of study have statistics prerequisites and some require MATH1003 or 1903 or MATH1002 or 1902. MATH2061 or MATH2961 is also desirable. If your major interest is statistics, then you are encouraged to enrol in 2 units of study (12 credit points) in Intermediate Statistics. If you are considering doing Honours in Statistics, these units of study should be the Advanced units of study, and choices from Intermediate Mathematics should include at least MATH2061 or 2961. If you do
not intend to major in Statistics but want a solid introduction to Applied Statistics, you should take STAT2012 in your second semester.

STAT2011 Statistical Models
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: MATH (1001 or 1901 or 1906 or 1011) and (MATH (1005 or 1905 or 1015) or STAT2121) Prohibitions: STAT2901, STAT2001, STAT2911 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

This unit provides an introduction to univariate techniques in data analysis and the most common statistical distributions that are used to model patterns of variability. Common discrete random models like the binomial, Poisson and geometric and continuous models including the normal and exponential will be studied. The method of moments and maximum likelihood techniques for fitting statistical distributions to data will be explored. The unit will have weekly computer classes where candidates will learn to use a statistical computing package to perform simulations and carry out computer intensive estimation techniques like the bootstrap method.

STAT2911 Probability and Statistical Models (Adv)
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: MATH (1903 or 1907 or Credit in 1003) and MATH (1905 or Credit in 1005) Prohibitions: STAT2001, STAT2111, STAT2901 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

This unit is essentially an advanced version of STAT2011, with an emphasis being on the mathematical techniques used to manipulate random variables and probability models. Common random variables including the Poisson, normal, beta and gamma families are introduced. Probability generating functions and convolution methods are used to understand the behaviour of sums of random variables. The method of moments and maximum likelihood techniques for fitting statistical distributions to data will be explored. The unit will have weekly computer classes where candidates will learn to use a statistical computing package to perform simulations and carry out computer intensive estimation techniques like the bootstrap method.

STAT2012 Statistical Tests
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: MATH (1005 or 1905 or 1015) Prohibitions: STAT2004, STAT2912 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

This unit provides an introduction to the standard methods of statistical analysis of data: Tests of hypotheses and confidence intervals, including t-tests, analysis of variance, regression - least squares and robust methods, power of tests, non-parametric tests, non-parametric smoothing, tests for count data, goodness of fit, contingency tables. Graphical methods and diagnostic methods are used throughout with all analyses discussed in the context of computation with real data using an interactive statistical package.

STAT2912 Statistical Tests (Advanced)
Credit points: 6 Session: Semester 2 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week. Prerequisites: MATH1905 or Credit in MATH1105 Prohibitions: STAT2004, STAT2012 Assumed knowledge: STAT (2911 or 2901) Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

This unit is essentially an advanced version of STAT2012 with an emphasis on both methods and the mathematical derivation of these methods: Tests of hypotheses and confidence intervals, including t-tests, analysis of variance, regression - least squares and robust methods, power of tests, non-parametric methods, non-parametric smoothing, tests for count data, goodness of fit, contingency tables. Graphical methods and diagnostic methods are used throughout with all analyses discussed in the context of computation with real data using an interactive statistical package.

Statistics senior units of study
The School of Mathematics and Statistics provides several Senior units of study, each worth 6 credit points, in Statistics. Students wishing to major in Statistics should take 4 units of study (24 credit points) of Senior Statistics. Some topics are offered at Normal and Advanced levels and may not be counted together. Entry to some Advanced units of study requires a Credit or better in a Normal level prerequisite or a Pass or better in an Advanced level prerequisite. Further information follows, whilst details of unit of study structure, content, and assessment procedures are provided in the Senior Units of Study Handbook available from the School at the time of enrolment. The units of study (each 6 credit points) are listed below:

First semester
STAT3011 Stochastic Processes and Time Series; STAT3911 Stochastic Processes and Time Series Adv; STAT3012 Applied Linear Methods; STAT3912 Applied Linear Methods Advanced

Second semester
STAT3013 Statistical Inference; STAT3913 Statistical Inference Advanced; STAT3014 Applied Statistics; STAT3914 Applied Statistics Advanced

Relation to other units of study and recommendations
In general 4 units of study (24 credit points) are required in order to major in Statistics, and a Credit average is required to progress to an Honours year. Potential Honours students are expected to include at least two Advanced level units of study. Students intending to major in Statistics should choose 2 units of study of Senior Statistics each semester, making 24 credit points in total.

STAT3011 Stochastic Processes and Time Series
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures and one 1 hour tutorial per week; ten 1 hour computer laboratories per semester. Prerequisites: STAT (2011 or 2911 or 2001 or 2901) and MATH (1003 or 1903 or 1907). Prohibitions: STAT3911, STAT3003, STAT3903, STAT3005, STAT3905 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

Section I of this course will introduce the fundamental concepts of applied stochastic processes and Markov chains used in financial mathematics, mathematical statistics, applied mathematics and physics. Section II of the course establishes some methods of modeling and analysing situations which depend on time. Fitting ARMA models for certain time series are considered from both theoretical and practical points of view. Throughout the course we will use the S-PLUS (or R) statistical packages to give analyses and graphical displays.

STAT3911 Stochastic Processes and Time Series Adv
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lecture, one 1 hour tutorial per week, plus an extra 1 hour lecture per week on advanced material in the first half of the semester. Seven 1 hour computer laboratories (on time series) in the second half of the semester (one 1 hour class per week). Prerequisites: (STAT2911 or credit in STAT2011) and MATH(1003 or 1903 or 1907). Prohibitions: STAT3011, STAT3003, STAT3903, STAT3005, STAT3905 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

This is an Advanced version of STAT3011. There will be 3 lectures in common with STAT3011. In addition to STAT3011 material, theory on branching processes and birth and death processes will be covered. There will be more advanced tutorial and assessment work associated with this unit.

STAT3012 Applied Linear Models
Credit points: 6 Session: Semester 1 Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratories per week. Prerequisites:
This course will introduce the fundamental concepts of analysis of data from both observational studies and experimental designs using classical linear methods, together with concepts of collection of data and design of experiments. First we will consider linear models and regression methods with diagnostics for checking appropriateness of models. We will look briefly at robust regression methods here. Then we will consider the design and analysis of experiments considering notions of replication, randomization and ideas of factorial designs. Throughout the course we will use the R statistical package to give analyses and graphical displays.

STAT3912
Applied Linear Models (Advanced)
Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week.
Prerequisites: STAT2912 or Credit in STAT2004 or Credit in STAT2012 and MATH2061 or 2961 or 1902.
Prohibitions: STAT3012, STAT3002, STAT3004, STAT3004 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.
Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

This unit is essentially an Advanced version of STAT3012, with emphasis on the mathematical techniques underlying applied linear models together with proofs of distribution theory based on vector space methods. There will be 3 lectures per week in common with STAT3012 and some advanced material given in a separate advanced tutorial together with more advanced assessment work.

STAT3013
Statistical Inference
Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week.
Prerequisites: STAT2012 or 2912 or 2003 or 2903 and STAT2011 or 2911.
Prohibitions: STAT3012, STAT3001, STAT3004 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.
Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

In this course we will study basic topics in modern statistical inference. This will include traditional concepts of mathematical statistics: likelihood estimation, method of moments, properties of estimators, exponential families, decision-theory approach to hypothesis testing, likelihood ratio test as well as more recent approaches such as Bayes estimation, Empirical Bayes and nonparametric estimation. During the computer classes (using R software package) we will illustrate the various estimation techniques and give an introduction to computationally intensive methods like Monte Carlo, Gibbs sampling and EM-algorithm.

STAT3913
Statistical Inference Advanced
Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week.
Prerequisites: STAT(2911 or 2901).
Prohibitions: STAT3013, STAT3001, STAT3901 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.
Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

This unit is essentially an Advanced version of STAT3013, with emphasis on the mathematical techniques underlying statistical inference together with proofs based on distribution theory. There will be 3 lectures per week in common with some material required only in this advanced course and some advanced material given in a separate advanced tutorial together with more advanced assessment work.

STAT3014
Applied Statistics
Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures, one 1 hour tutorial and one 1 hour computer laboratory per week.
Prerequisites: STAT(2012 or 2912 or 2004).
Prohibitions: STAT3914, STAT3002, STAT3902, STAT3006 Assumed knowledge: STAT(2012 or 3912), Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.
Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

This unit has three distinct but related components: Multivariate analysis; sampling and surveys; and generalised linear models. The first component deals with multivariate data covering simple data reduction techniques like principal components analysis and core multivariate tests including Hotelling's T^2, Mahalanobis' distance and Multivariate Analysis of Variance (MANOVA). The sampling section includes sampling without replacement, stratified sampling, ratio estimation, and cluster sampling. The final section looks at the analysis of categorical data via generalized linear models. Logistic regression and log-linear models will be looked at in some detail along with special techniques for analyzing discrete data with special structure.

STAT3914
Applied Statistics Advanced
Credit points: 6
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour computer laboratory per week plus an extra hour each week which will alternate between lectures and tutorials.
Prerequisites: STAT2912 or credit or better in (STAT2004 or STAT2012).
Prohibitions: STAT3014, STAT3002, STAT3902, STAT3006, STAT3907 Assumed knowledge: STAT3912 Assessment: One 2 hour exam, assignments and/or quizzes, and computer practical reports.

This unit is an Advanced version of STAT3014. There will be 3 lectures per week in common with STAT3014. The unit will have extra lectures focusing on multivariate distribution theory developing results for the multivariate normal, partial correlation, the Wishart distribution and Hotelling's T^2. There will also be more advanced tutorial and assessment work associated with this unit.

BIOM3006
Statistics for the Natural Sciences
This unit of study is not available in 2010
Credit points: 6
Teacher/Coordinator: Dr Thomas Bishop
Session: Semester 2
Classes: Two 1 hour tutorials, one 3 hour practical/class
Prerequisites: BICM2001 or STAT2012 or STAT2912 Assessment: One 3 hour exam (40%), 1 major report (20%), weekly practical assignments (40%)

This unit of study is designed to introduced students to the analysis of data they may face in their future careers, in particular data that are not well behaved, they may be non-normal, there may be missing observations or they may be correlated in space and time. It is a core unit for students in BLWSc and is a prerequisite for those in BSc Agr wishing to specialise in Environmentics. It is also offered to BSc students wishing to complete an applied statistics unit. In the first part, students will learn about the generalisation of the linear regression and ANOVA model to accommodate non-normal data, mixtures of categorical and continuous data and non-linearities in the relationship between the response and predictor variables. In the second part, students will learn about stochastic processes and how to analyse (i) data that is correlated in space and time (ii) designed experiments with REML. At the end of this unit, students will have learnt a range of advanced statistical methods and be equipped to apply this knowledge to analyse data that they may encounter in their future studies and careers. The students will gain research and inquiry skills through completion of weekly computer assignments and a major report where they will analyse a 4th year research project. Information literacy and communication skills will be developed through weekly computer work and an oral presentation of the results from the major report.

Medical Science units of study

Bachelor of Medical Science junior units of study

All prerequisite and corequisite units of study, details of staff, examinations, units of study delivery and descriptions are as described under the appropriate Department or School entry in this chapter.

Bachelor of Medical Science Intermediate Core units of study

BMD2801
Cell Structure and Function
Credit points: 6
Teacher/Coordinator: Dr Vladimir Balcar
Session: Semester 1
Classes: Two 1 hour lectures per week; five hours of tutorials or practicals per week
Prerequisites: 2 credit points of Junior Bachelor of Medical Science units of study.
Prohibitions: All Intermediate level units offered by the
Schools of Molecular and Microbial Biosciences, Medical Sciences and BIOL(2006/2906) and BIOL(2016/2916) Assessment: One 2 hour theory exam; three in-semester assessments.

This unit of study begins with a discussion of the unique morphology of unicellular prokaryotic organisms (bacteria, fungi and viruses) followed by the structure and function of human cells. A strong understanding of cellular structures is essential for an appreciation of whole body function. Basic cell structure is examined by focussing on cell specialisation and tissue organisation in humans. The structure and function of excitable cells such as nerve and muscle will lead to a discussion of membrane potential, synaptic transmission and neuromuscular junction. The unit of study then gives an introduction into how gene expression is regulated during development, and how the cell cycle is controlled to coordinate programmed events such as differentiation and cell death. This allows discussion of the consequences and treatment of abnormal tissue growth (cancer).

Practical classes not only complement the lecture material but also introduce students to a wide range of technical skills, tissue processing and bacterial cultivation. In addition, the sessions are also designed to provide students with generic skills such as record keeping, data collection and presentation, protocol planning and written communication.

BMED2802

Molecular Basis of Medical Sciences

Credit points: 6 Session: Semester 1 Classes: Two 1 hour lectures per week; five hours of tutorials or practicals every fortnight. Prerequisites: 42 credit points of Junior Bachelor of Medical Science units of study. Prohibitions: All Intermediate level units offered by the Schools of Molecular and Microbial Biosciences, Medical Sciences and BIOL(2006/2906) and BIOL(2016/2916) Assessment: One 2 hour theory exam; three in-semester assessments.

This unit of study extends pre-existing understanding of the way in which genetic information is stored, transmitted and expressed. Students will be introduced to the role of enzymes in the catalysis of cellular reactions and the pharmacological strategies employed to exploit our knowledge of these mechanisms is then discussed. Intracellular signalling cascades, cell to cell signalling and pharmacological intervention in these processes is covered. The molecular basis of drug action and the use of DNA technology in drug design will be discussed. Students will then cover the application of medical genetics to the study of advanced gene expression, recombinant technology, cloning and gene products, transgenics and the linkage and mapping of genes including reference to DNA fingerprinting and the human genome project and gene therapy.

The technical skills taught in the practical classes include the use of restriction enzymes, the separation of DNA molecules using electrophoresis, the inspection of chromosomes, linkage mapping, gene transfer and the measurement of gene expression. In addition to nurturing the skills involved in the design and execution of experiments, the practical sessions will formally teach students report writing skills and will give students practice at articulating feedback to their peers.

Textbooks

Genes IX (9th edition, Jones & Bartlett, 2008)

BMED2803

Cardiac, Respiratory and Renal Function

Credit points: 6 Teacher/Coordinator: Dr Suzanne Ollerenshaw Session: Semester 1 Classes: Two 1 hour lectures per week; five hours of tutorials or practicals every fortnight. Prerequisites: 42 credit points of Junior Bachelor of Medical Science units of study. Prohibitions: All Intermediate level units offered by the Schools of Molecular and Microbial Biosciences, Medical Sciences and BIOL(2006/2906) and BIOL(2016/2916) Assessment: One 2hr theory exam; four in-semester assessments.

The maintenance of constant conditions in the human body is dependent on thousands of intricate control mechanisms. This unit of study examines many of those homeostatic processes with specific reference to major apparatus such as the respiratory, cardiovascular and renal. The structure and function of the cardiovascular system is discussed and cardiac output, blood pressure and blood flow are studied. Discussion of the respiratory system embraces the structure of the respiratory organs and description of the mechanism of the transport of gases to and from cells. Similar treatment of the renal system involves anatomical and histological investigation of kidney structure and a physiological description of kidney function.

Practical classes are designed to introduce the student to the study of the heart and blood vessels, the components of the respiratory system and the kidney - all at the cellular and organ level. Students will also conduct experiments (often on themselves) which show how heart rate and blood pressure are controlled, how breathing is regulated and how urine output is modulated in response to both physiological and pharmacological stimuli.

BMED2804

Digestion, Absorption and Metabolism

Credit points: 6 Session: Semester 2 Classes: Two 1 hour lectures per week; five hours of tutorials or practicals every fortnight. Prerequisites: 42 credit points of Junior Bachelor of Medical Science units of study. Prohibitions: All Intermediate level units offered by the Schools of Molecular and Microbial Biosciences, Medical Sciences and BIOL(2006/2906) and BIOL(2016/2916) Assessment: One 2 hour theory exam; three in-semester assignments.

This unit of study gives an introduction to the structures used to digest and absorb fuels, at both the anatomical and histological level. This is then followed by discussion of the utilisation and fate of absorbed nutrients. After an overview of the alimentary tract and associated organs in the detailed consideration of the important processes of digestion, absorption of drugs including the detoxification and excretion of xenobiotic compounds.

Practical classes give students extensive experience with inspection of the digestive system at both the cellular and gross anatomical level. The peristaltic reflex and pharmacological influences are explored. These sessions are designed to nurture observation, data analysis, record keeping and report writing skills.

BMED2805

Hormones, Reproduction and Development

Credit points: 6 Teacher/Coordinator: Dr Michael Morris Session: Semester 2 Classes: Two 1 hour lectures per week; five hours of tutorials or practicals every fortnight. Prerequisites: 42 credit points of Junior Bachelor of Medical Science units of study. Prohibitions: All Intermediate level units offered by the Schools of Molecular and Microbial Biosciences, Medical Sciences and BIOL(2006/2906) and BIOL(2016/2916) Assessment: One 2 hr theory exam; three in-semester assessments.

This unit of study examines hormonal control of human body processes. Specifically, students will investigate the structure and function of endocrine glands: such as the pituitary, thyroid and pancreas - all at the cellular and organ level. Examples of the influence of hormones on metabolic processes are provided by consideration of fuel selection during exercise and starvation, and in diabetes and obesity. The fate of the macronutrients (carbohydrate, fat and protein) is then considered by reference to their uptake, disposal and reassembly into storage fuels and cellular structures. Biochemical pathways involved in the extraction of energy from the macronutrients fuels are thus covered, with particular emphasis on the whole body integration and regulation of these metabolic processes. This leads on to discussion of performance enhancing drugs and also provides a solid background for the understanding of pharmacological intervention in these conditions. The hormones involved in reproduction, contraception, fertilisation and pregnancy are also
discussed, leading on to foetal-new-born transition and the development of the human embryo and cell differentiation.

In the practical classes, students are introduced to a wide range of technical skills. Specifically, students will investigate the structure and function of the important endocrine glands - all at the cellular and organ level. Students will design a biochemical kit for the evaluation of blood glucose and will perform a glucose tolerance test to investigate how glucose levels are regulated and modulated in response to a glucose load. In addition, sessions are designed to nurture oral presentation skills, hypothesis testing, data analysis, troubleshooting, instruction writing and feedback skills.

BMED2806

Sensory and Motor Functions

Credit points: 6

Teacher/Coordinator: Dr Richard Ward

Session: Semester 1

1 Class: Two 1 hour lectures per week; five hours of tutorials or practicals every fortnight. Prerequisites: 42 credit points of Junior Bachelor of Medical Science units of study. Prohibitions: All Intermediate level units offered by the Schools of Molecular and Microbial Biosciences, Medical Sciences and BIOL(2006/2906) and BIOL(2016/2916) Assessment: One 2 hour theory exam; three in-semester assessments.

This unit of study examines how neural and motor systems are adapted to sense and respond to changes in the external environment. After consideration of the basic anatomical organisation of the nervous and sensory systems, the way in which nerve signals are integrated and coordinated in response to external stimuli are covered in more detail. Various senses such as vision, touch and hearing are studied, together with a discussion on motor reflexes. The receptors involved in normal modes of communications are discussed before specific examples such as the fright and flight and stress responses are considered. This is complemented by discussion of the effects of drugs on the nervous system, with special reference to pain and analgesics. An appreciation is gained of how toxins and infections can perturb the normal neuromuscular co-ordination. Thus, pharmacological and pathological considerations, such as the use of poisoned arrows and muscle paralysis and viral and tetanus infections, are studied in concert with relevant physiological concepts.

In practical classes, students perform experiments (often on themselves) to illustrate the functioning of the senses and motor control and coordination involving both stretch and flexor reflexes. In addition, students extend their anatomical expertise by examining the structure and function of the nervous system and the skeleton (especially the vertebral column, the thorax and the limbs). Practical sessions also include the analysis of the effects of analgesics on experimental pain and case studies of tetanus and botulism. The practical sessions draw widely on, and nurture, the generic skills taught in preceding units of study but particularly in BMED2804 and BMED2805.

BMED2807

Microbes and Body Defences

Credit points: 6

Teacher/Coordinator: Helen Agus

Session: Semester 2

1 Class: Two 1 hour lectures per week; five hours of tutorials or practicals every fortnight. Prerequisites: 42 credit points of Junior Bachelor of Medical Science units of study. Prohibitions: All Intermediate level units offered by the Schools of Molecular and Microbial Biosciences, Medical Sciences and BIOL(2006/2906) and BIOL(2016/2916) Assessment: One 2hr theory exam; three in-semester assessments.

This unit of study begins by introducing the concepts of disease transmission, pathogenicity and virulence mechanisms of microbes. How the body deals with injury and infection is discussed by exploring host defences. Sections on wound healing, clotting and inflammation cover the response to physical damage and this is complemented by discussion of the pharmacological basis of anti-inflammatory agents and anti-coagulants.

For a full understanding of the process of infection, it is necessary to have an appreciation of the range of pathogens and injuries with which the body must cope. Therefore this unit of study examines the structure and function of pathogenic microorganisms (including bacteria, fungi, protists, and viruses, etc). The response of the body to pathogen invasion is studied by discussion of both molecular and cellular immune responses. In particular, this gives students an appreciation of the structure, production and diversity of antibodies, the processing of antigens, operation of the complement system and recognition and destruction of invading cells. This allows students to appreciate the basis of derangements of the immune system and the mechanism of action of immune-modulatory drugs.

Practical classes allow students to obtain experience in, and an understanding of, a range of techniques in classical and molecular virology, bacteriology and immunology. In addition, the practical sessions draw widely on, and nurture, the generic skills taught in preceding units of study.

BMED2808

Diseases in Society

Credit points: 6

Teacher/Coordinator: A/Prof Brett Hambly

Session: Semester 2

1 Class: Two 1 hour lectures per week; five hours of tutorials or practicals every fortnight. Prerequisites: 42 credit points of Junior Bachelor of Medical Science units of study. Prohibitions: All Intermediate level units offered by the Schools of Molecular and Microbial Biosciences, Medical Sciences and BIOL(2006/2906) and BIOL(2016/2916) Assessment: One 2hr theory exam; three in-semester assessments.

Disease in Society seeks to integrate basic knowledge of important diseases, ranging from metabolic diseases through airways and heart disease and cancer to infections. About half the unit considers infectious diseases: viral, bacterial, fungal and parasitic. The other half looks at inherited disorders, cardio-respiratory disorders such as angina, heart failure and asthma. Society's approaches to dealing with these diseases - whether by pharmacological intervention, counselling or lifestyle change are discussed. Putting the disease in the relevant social context is emphasized in all aspects of the unit. The impact of bacteria and viruses on individuals and society is taught with reference to specific infectious diseases (eg influenza, polio, herpes, STDs, etc) and this leads into an introduction of epidemiology. Included in the discussion of the way in which these organisms cause and transmit disease is a consideration of how antibiotics and anti-viral drugs work and how microbes can become drug resistant.

Practical classes are designed to complement the lectures and provide a ‘hands-on’ experience in investigating disease. Also included are tutorial sessions in which hospital microbiologists guide students though clinical case studies and in an integrated session, students examine the infection, immunity and pathology of tuberculosis. These sessions are designed to nurture an appreciation of the importance of an integrative approach to the study of disease in today's society. The generic skills taught in preceding units of study are further reinforced.

Bachelor of Medical Science Senior Core units of study

Students are required to complete at least 36 credit points of Senior units of study chosen from the core subject areas of Anatomy and Histology, Biology (Genetics), Biochemistry, Cell Pathology, Immunology, Infectious diseases, Microbiology, Pharmacology and Physiology, as listed in Table IV. Descriptions are listed here and under the relevant department headings in this chapter where the units are offered by other Schools/Departments in the faculty.

INFD3012

Infectious Diseases

Credit points: 6

Teacher/Coordinator: A/Prof Colin Harbour

Session: Semester 2

1 Class: One 1 hour lecture and one 1 hour tutorial and one 2 hour practical and one 2 hour case study or theme session a week. Prerequisites: 42 credit points of intermediate BMED units including BMED2807. Assumed knowledge: Intermediate microbiology, immunology, molecular biology and genetics. Assessment: Formal examination (60%): one 2 hour exam worth. Progressive assessment (40%): includes 2000-word essay, tutorial case presentation, poster presentation.

Note: The completion of MICR3011 is strongly recommended prior to undertaking this course.

Infectious diseases occur as a result of interactions between a host and a microbial parasite. This unit of study will explain how infectious agents interact with human hosts at the molecular, cellular, individual patient and community levels to cause diseases and how the hosts
attempt to combat these infections. The unit will be taught by the discipline of Infectious Diseases and Immunology of the Department of Medicine within the Central Clinical School, Faculty of Medicine with involvement of associated clinical and research experts who will contribute lectures and theme sessions on their own special interests. The primary learning vehicle in this unit will be the case study involving three or four cases per week on the diseases theme of the week, e.g. Pneumonia in week 1, wound infections in week 2 etc. Students are strongly recommended to complete MICR3011 before enrolling in this unit.

Textbooks

Microbiology
The discipline of Microbiology in the School of Molecular and Microbial Biosciences offers units of study that equip students for a career in Microbiology in fields of health, industry and basic research. In addition, it provides introductory units of study to students of agriculture, pharmacy and science. These units of study will help students who wish to specialise in related fields where microorganisms are often used in studying life processes, e.g. biochemistry, genetics and botany.

Microbiology Intermediate units of study

MICR2021
Microbial Life
Credit points: 6 Teacher/Coordinator: Dr Deborah Blanckenberg Session: Semester 1 Classes: Two 1-hour lectures per week, plus an additional six 1-hour tutorials per semester. Eleven 3-hour practicals per semester. Prerequisites: 6cp of Junior Biology and (6cp of MBLG (1001 or 1901) or MBLG2901 or PLNT2001 or PLNT2901) and 6cp of Junior Chemistry Prohibitions: MICR2901, MICR2024, MICR2001, MICR2901, MICR2003, MICR2007, MICR2011, MICR2909 Assessment: One 2-hour theory exam, continuous assessment in practicals, two assignments, two quizzes, practical assignment exercises. Note: Students are very strongly recommended to complete MICR (2021 or 2921 or 2024) before enrolling in MICR2022 in Semester 2. For progression on to Senior Microbiology units, students must also complete MBLG (1001 or 1901) or PLNT (2001 or 2901).

MICR2921
Microbial Life (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Deborah Blanckenberg Session: Semester 1 Classes: Two 1-hour lectures per week, plus an additional six 1-hour tutorials and three 1-hour seminars per semester. Eleven 3-hour practicals per semester. Prerequisites: (6 credit points of Junior Biology) and (6 credit points of MBLG (1001 or 1901) or MBLG2901 or PLNT2001 or PLNT2901) and 6 credit points of Junior Chemistry. Distinction grade required in at least one of Junior Biology or MBLG1001 or MBLG1901 or PLNT2001 or PLNT2911. Prohibitions: MICR2021, MICR2024, MICR2001, MICR2003, MICR2007, MICR2011, MICR2909 Assessment: One 2-hour theory exam, continuous assessment in practical, two assignments, two quizzes, practical assignment exercises, essay. Note: Students are very strongly advised to complete MICR (2021 or 2921 or 2024) before enrolling in MICR2022 or 2922 in Semester 2. For progression on to Senior Microbiology units, students must also complete MBLG (1001 or 1901) or PLNT (2001 or 2901).

This unit of study is based on MICR2021 with three additional seminars on advanced aspects of the material covered in MICR2021. The content and nature of this component may vary from year to year.

Textbooks
As for MICR2021
Pathogenic microbes cause infectious diseases of humans, animals and plants, and inflict enormous suffering and economic losses. Beneficial microbes are important contributors to food production, agriculture, biotechnology, and environmental processes. The aims of MICR2022/2922 are to explore the impacts and applications of microbes in human society and in the environment at large, and to teach skills and specialist knowledge in several key areas of microbiology. Medical Microbiology lectures will cover bacterial, viral, and fungal pathogens, and will introduce the concepts of epidemiology, transmission, pathogenicity, virulence factors, host/parasite relationships, host defences, prevention of disease, and antibiotic type and function. Lecture topics in other areas include Food (preservation, spoilage, poisoning, industrial contexts), Industrial (fermentation, traditional and recombinant products, bioprospecting), Environmental (nutrient cycles, atmosphere, wastewater, pollution, biodegradation) and Agricultural (nitrogen fixation, plant pathogens, biocontrols). The laboratory sessions are integrated with the lecture series and are designed to give students practical experience in isolating, identifying and manipulating microorganisms. BSc or BSc (Advanced) students who have completed MICR2021/2921 and MICR2022/2922 may be offered the opportunity to undertake work experience for approx one month in a local microbiology laboratory (hospital, industrial, university etc) subject to availability of places.

Textbooks

MICR2922 Microbes in Society (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Deborah Blaakenberg Session: Semester 2 Classes: Two 1-hour lectures per week, plus an additional three 1-hour tutorials, four 1-hour seminars and eleven 3-hour practicals per semester. Prerequisites: 6 credit points of Junior Biology and (6 credit points of MBLG1001 or MBLG1901 or PLNT2001 or PLNT2901) and 6 credit points of Junior Chemistry. Distinction grade required in at least one of Junior Biology or MICR1001 or MBLG1901 or PLNT2001 or PLNT2901 or PLNT2911. Prohibitions: MICR2022, MICR2002, MICR2004, MICR2008, MICR2012, MICR2092. Assumed knowledge: MICR (2021 or 2921 or 2024 or 2026). Assessment: One 2-hour theory exam, continuous assessment in practicals, two assignments, two quizzes, practical assessment exercises, essay. Note: Students are very strongly advised to complete MICR (2021 or 2921 or 2024) before enrolling in MICR2922 in Semester 2. For progression on to Senior Microbiology units, students must also complete MBLG (1001 or 1901) or PLNT (2001 or 2901).

MICR3011 Microbes in Infection
Credit points: 6 Teacher/Coordinator: Helen Agus Session: Semester 1 Classes: Two 1-hour lectures per week, eight 3-hour practical sessions and three 2-hour clinical tutorials per semester. Prerequisites: At least 6 credit points of MBLG units and MICR (2022 or 2922 or 2002 or 2902). For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2807 and 2808), For BScAg students: PLNT (2001 or 2901) and MICR (2022 or 2922). Prohibitions: MICR3911. MICR3001, MICR3901 Assessment: One 2-hour exam, practical assessment.

This unit is designed to further develop an interest in, and understanding of, medical microbiology from the introduction in Intermediate Microbiology. Through an examination of microbial structure, virulence, body defences and pathogenesis, the process of acquisition and establishment of disease is covered. The unit is divided into three themes: 1. Clinical Microbiology: host defences, infections, virulence mechanisms; 2. Public health microbiology: epidemiology, international public health, transmission, water and food borne outbreaks; 3. Emerging and re-emerging diseases: the impact of societal change with respect to triggering new diseases and causing the re-emergence of past problems, case studies. The practical component is designed to enhance students' practical skills and to complement the lecture series. Clinical tutorial sessions underpin and investigate the application of the material covered in the practical classes.

Textbooks

MICR3911 Microbes in Infection (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Deborah Blaakenberg Session: Semester 1 Classes: Two 1-hour lectures per week, plus an additional six 1-hour tutorials, eight 3-hour practical sessions and three 2-hour clinical tutorials per semester. Prerequisites: At least 6 credit points of MBLG units and Distinction in MICR (2022 or 2922 or 2002 or 2902). For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2807 and 2808) with a Distinction in one of these two. For BScAg students: PLNT (2001 or 2901) and MICR (2022 or 2922) including one Distinction. Prohibitions: MICR3911, MICR3001, MICR3901 Assessment: One 2-hour exam, practical assessment, one in-semester 1-hour essay exam on topic of choice.

This unit is available to students who have performed well in Intermediate Microbiology. MICR3911 is based on MICR3011 with a series of additional tutorials to extend students beyond the core material. Consequently, the unit of study content may vary from year to year.

Textbooks

MICR3012 Molecular Biology of Pathogens
Credit points: 6 Teacher/Coordinator: A/Prof Dee Carter Session: Semester 2 Classes: Two 1-hour lectures per week, six 5-hour practicals plus two practical-based tutorials per semester. Prerequisites: At least 6 credit points of MBLG units and MICR (2022 or 2922 or 2002 or 2902). For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2802, 2807 and 2808). For BScAg students: PLNT (2001 or 2901) and MICR2024. Prohibitions: MICR3912, MICR3002, MICR3902, MICR3503, MICR3903, MICR3004, MICR3904 Assessment: One 2-hour exam, continuous assessment, practical report.

This unit of study is designed to provide an understanding of the virulence mechanisms underlying microbial disease at the molecular level. The following topics will be covered: pathogenic processes and
the molecular basis of adhesion, toxin production, cell invasion and immune evasion in bacteria; the molecular basis of antibiotic action and resistance and modern techniques used in the study of microbial diseases.

The complementary practical course teaches fundamental techniques in molecular microbiology through a molecular epidemiological investigation of a food poisoning outbreak.

Textbooks

MICR3912
Molecular Biology of Pathogens (Adv)
Credit points: 6 Teacher/Coordinator: A/Prof Dee Carter Session: Semester 2 Classes: Two 1-hour lectures per week plus two additional 1-hour lectures per semester. Six 5-hour practicals plus two practical-based tutorials. Prerequisites: At least 6 credit points of MBLG units and Distinction in MICR (2022 or 2922 or 2002 or 2902). For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2802 or 2807 or 2808) with a Distinction in one of these three. For BScAgr students: PLNT (2001 or 2901) and MICR2024 including one Distinction. Prohibitions: MICR3012, MICR3002, MICR3902, MICR3003, MICR3903, MICR3004, MICR3904 Assessment: One 2-hour exam, continuous assessment, practical report

This unit is available to students who have performed well in Intermediate Microbiology and is based on MICR3012 with two advanced lectures related to the research interests in the Discipline of Microbiology that are relevant to the molecular biology of pathogens. The assessment component specific to MICR3922 is a presentation on a topic introduced in the advanced lecture course.

Students enrolled in both MICR3922 and MICR3912 may be eligible to undertake a research project in a Microbiology lab (School of MMB) to replace the practical component of both courses. Research projects are assessed by lab performance, lab books and an oral presentation. Allocation to a research project is based on academic merit as places are limited.

Textbooks

MICR3022
Microbial Biotechnology
Credit points: 6 Teacher/Coordinator: Dr Nick Coleman Session: Semester 2 Classes: Two 1-hour lectures per week and seven 4-hour practicals. Prerequisites: At least 6 credit points of MBLG units and 6 credit points of Intermediate MICR units. For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2802 or 2807) for BMedSc students; 42 credit points of Intermediate BMED units including BMED (2802, 2807) for BScAgr students; PLNT (2001 or 2901) and MICR2024 including one Distinction. Prohibitions: MICR3012, MICR3002, MICR3902, MICR3003, MICR3903, MICR3004, MICR3904 Assessment: One 2-hour theory exam, practical reports, lab book and skills assessment.

Microbes are central to biotechnology as chemical factories, as sources of enzymes and as cloning hosts. The lecture and prac courses in MICR3022/3922 aim to teach basic principles and methods in microbiology in the context of applications in biotechnology - including industrial, medical and environmental biotech. A special focus will be on the importance of microbial diversity as a source of enzyme diversity for biotechnology. The course revolves around three themes, summarized as metabolites, enzymes, and communities. Topic areas to be covered in lectures include production of small molecules (alcohols and antibiotics), production of macromolecules (protein expression, recombinant DNA), and management of microbial proteins in plants and animals (principles, methods, risks), and management of microbial communities (gut microbes, wastewater treatment, bioprospecting). Techniques covered in lectures include fermentation, mutation, making and screening clone libraries, directed evolution, human repeat sequence, metabolic engineering, environmental metagenomics, microarrays, and high throughput screening. In one project one student will purify DNA polymerase from recombinant E.coli cells and test the enzyme for its ability to catalyze polymerase chain reaction (PCR). In the second practical project students will isolate hydrocarbon-oxidizing bacteria from soil and assess their ability to produce a useful metabolite (the blue dye indigo).

MICR3922
Microbial Biotechnology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Nick Coleman Session: Semester 2 Classes: Two 1-hour lectures per week, plus two additional 1-hour lectures per semester. Eight 4-hour practicals per semester. Prerequisites: At least 6 credit points of MBLG units and Distinction in 6 credit points of Intermediate MICR units. For BMedSc students: 42 credit points of Intermediate BMED units including BMED (2802 and 2807) with a Distinction in at least one of these two. For BScAgr students: PLNT (2001 or 2901) and MICR2024 including one Distinction. Prohibitions: MICR3022, MICR3002, MICR3902 Assessment: One 2-hour exam, practical report, lab book, prac skills (continuous)

This unit is available to students who have performed well in Intermediate Microbiology and has the same core components as MICR3022. In addition, MICR3922 includes four advanced lectures designed to introduce students to the primary scientific literature in microbial biotechnology; these lectures will be assessed via a task involving understanding and interpreting a scientific paper. Students taking MICR3922 may be eligible to undertake a research project in a Microbiology lab (School of MMB) to replace the practical component of the course. Research projects are assessed by lab performance, lab book and an oral presentation. Availability of research projects will be assigned on academic merit as places are limited.

VIRO3001
Virology
Credit points: 6 Teacher/Coordinator: Dr Tim Newsome Session: Semester 1 Classes: Two 1-hour lectures per week, five 2-hour tutorials and six 4-hour practicals per semester. Prerequisites: At least 6 credit points of MBLG units and at least 6 credit points in Intermediate MICR or BCHM or BIOL or IMMU or PCOL or PHSI or PLNT units. For BMedSc students: 42 credit points of Intermediate BMED units including BMED2802; For BScAgr students: PLNT (2001 or 2901) and MICR2024. Prohibitions: VIRO3901 Assumed knowledge: MICR (2021 or 2921 or 2022 or 2922) Assessment: One 2-hour exam, practical work, group presentations

Note: Students are very strongly advised to complete VIRO (3001 or 3901) before enrolling in VIRO3002 Medical and Applied Virology in Session 2.

Viruses are some of the simplest biological machines known, being completely dependent on hosts for their replication, yet they are also the etiological agents for some of the most important human diseases. New technologies that have revolutionised the discovery of new viruses are also revealing a hitherto unappreciated abundance and diversity in the ecosphere, and a wider role in human health and disease. Developing new gene technologies have enabled the use of viruses as therapeutic agents, in novel vaccine approaches, gene delivery and in the treatment of cancer. This unit of study is designed to introduce students who have a basic understanding of molecular biology to the rapidly evolving field of virology. Viral infection in plant and animal cells and bacteria is covered by an examination of virus structure, genomes, gene expression and replication. Building upon these foundations, this unit progresses to examine host-virus interactions, pathogenesis, cell injury, the immune response and the prevention and control of infection. The structure and replication of sub-viral agents: viroids and prions, and their role in disease are also covered. The practical component provides hands-on experience in current diagnostic and research techniques such as molecular biology, cell culture, serological techniques, immunofluorescence and immunoblot and is designed to enhance the students’ practical skills and complement the lecture series. Tutorials cover a range of topical issues and provide a forum for students to develop their communication skills.

Textbooks

VIRO3901
Virology (Advanced)
Credit points: 6 Teacher/Coordinator: Dr Tim Newsome Session: Semester 1 Classes: Two 1-hour lectures per week, plus an additional five 1-hour lectures per semester. Five 2-hour tutorials and six 4-hour practicals per semester. Prerequisites: At least 6 credit points of MBLG units and at least 6 credit points including one Distinction in Intermediate MICR or BCHM or BIOL or IMMU or PCOL or PHSI or PLNT units. For BMedSc students: 42 credit points of Intermediate BMED units including Distinction in BMED2802. For BScAgr students: PLNT (2001 or 2901) and MICR2024 including one Distinction. Prohibitions: VIRO3001 Assumed knowledge: MICR (2021 or 2921 or 2022)
This unit is available to students who have performed well in Intermediate Microbiology and is based on VIRO3001 with a series of additional lectures related to the research interests in the Discipline. Consequently, the unit of study content may change from year to year.

Textbooks

VIRO3002
Medical and Applied Virology

Credit points: 6 Teacher/Coordinator: Dr Belinda Herring Session: Semester 2 Classes: One 2-hour lecture per week; one 2-hour tutorial and one 4-hour practical per fortnight Prerequisites: 6 CP MBLG units and at least 6 CP from Intermediate MCR or BCHM or BIOL or IMMU or PCOL or PHSI units. For BMedSc: Students: 42 credit points of Intermediate BMED units including BMED2807. Assumed knowledge: Intermediate microbiology, immunology, molecular biology and genetics. Assessment: Formal examination, progressive assessment, presentation, 2000 word essay, practical assignment

Note: Students are very strongly recommended to complete VIRO(3001 or 3901) before enrolling in VIRO3002 Medical and Applied Virology in Semester 2.

This unit of study explores the way viruses invade cells, infect individual patients and spread in the community. Host/Virus interactions will also be described with a focus on the viral mechanisms that have evolved to combat and/or evade host defence systems. These features will be used to explain the symptoms, spread and control of particular human diseases ranging from the common cold to HIV. The unit will be taught by the Infectious Diseases and Immunology Unit of the Department of Medicine with the involvement of associated clinical and research experts who will contribute lectures on their own special interests and with contributions from the discipline of Microbiology. In the practical classes students will have the opportunity to develop their skills in performing and interpreting the methods currently used in diagnostic and research virology. In the tutorials emerging problems as diverse as SARS and liver cancer will be analysed in the light of the concepts and knowledge being studied in the course.

Textbooks

VIRO3902
Medical and Applied Virology (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Belinda Herring Session: Semester 2 Classes: Two 1-hour lectures per week; one 1-hour tutorial and one 4-hour practical per week Prerequisites: VIRO3001 (Distinction) or VIRO3901 (Credit) Prohibitions: VIRO3002 Assessment: Practical report in addition to the assessment outlined for VIRO3002

This unit is available to students who have performed well in VIRO3001 and is based on the VIRO3002 course with added mentorship practical component and report, enabling students to gain practical and relevant laboratory experience. Therefore the content of this unit may change year to year.

Textbooks

Microbiology Honours

During the Honours year, students will be involved in a study program designed for those wishing to further develop their laboratory skills and critical thinking. The program is very strongly recommended for any student wishing to enter a research career or undertake further work leading to a higher degree. The program runs from early February to mid-November and provides the opportunity for individual laboratory research work under the direction of a supervisor. This project culminates in the production of a research thesis and presentation of the key findings in a seminar. During the year each student is also expected to attend research seminars and complete a coursework component that consists of six tutorials and an exam based on the critical evaluation of scientific manuscripts. Assessment is based on the research project (including laboratory performance, written report and oral presentation) and the coursework (tutorial performance and written exam). The Microbiology honours co-ordinator is Dr Andrew Holmes.

Honours research areas

Microbiology Honours is conducted within the School of Molecular and Microbial Biosciences. All honours programs within the school operate according to the same applications process, timetable and assessment format. The School offer microbiology honours projects in a wide range of research areas including molecular microbiology, microbial genetics, applied and environmental microbiology, biotechnology, and virology. An overview of research projects is available through the school office, or web site. Further information on specific research projects prospective students should consult individual academic staff members.

Applying for admission to honours

An application form providing the list of possible research projects is provided to interested students and is available from the honours coordinator. Students must arrange to speak with potential supervisors and should choose two discipline areas and three supervisors in order of preference on the application form. A decision on honours entry is made in December. Attempts will be made where possible to assign students to the supervisor of their choice but this will not always be possible. In such cases the School will work with students to find an available project. Students should note that some supervisors cannot accommodate mid-year entrants. The usual requirement for acceptance into the Honours program is a credit average in a major relevant to the project of interest; any student with an undergraduate background relevant to specific projects (including Chemistry, Biochemistry, Nutrition and Dietetics, Microbiology, Immunology, Physiology, Neuroscience, Mathematics, Physics, Biology or other related Medical Sciences) may be admitted. It should be noted that the number of students accepted into the Honours program may be limited because of resource restrictions (availability of a supervisor and/or laboratory space) and that, in the event of there being more applicants than resources will allow, offers will be made on the basis of academic merit. The honours unit of study codes are listed in the Honours chapter of this handbook - chapter 12. The Honours year coordinator is Dr Stuart Cordwell.

Molecular Biology and Genetics

Molecular Biology and Genetics units of study at the Junior and Intermediate level will be taught by staff from the School of Molecular and Microbial Biosciences and the School of Biological Sciences. The Junior unit, MBLG1001, and the Intermediate unit, MBLG2071/2971, are coordinated by the School of Molecular and Microbial Biosciences, while MBLG 2072/2972 is coordinated by the School of Biological Sciences.

MBLG1001
Molecular Biology and Genetics (Intro)

Credit points: 6 Teacher/Coordinator: Dr Dale Hancock Session: Semester 2 Classes: Two 1-hour lectures per week; one 1-hour tutorial and one 4-hour practical per fortnight Prohibitions: AGCH2001, BCHM2001, BCHM2101, BCHM2901, MBLG2101, MBLG2901, MBLG2001, MBLG2111, MBLG2771, MBLG2871, MBLG1901 Assumed knowledge: 6 credit points of Junior Biology and 6 cp of Junior Chemistry Assessment: One 2.5-hour exam, in-semester skills test and assignments

The lectures in this unit of study introduce the "Central Dogma" of molecular biology and genetics - i.e., the molecular basis of life. The course begins with the information macro-molecules in living cells: DNA, RNA and protein, and explores how their structures allow them to fulfill their various biological roles. This is followed by a review of how DNA is organised into genes leading to discussion of replication and gene expression (transcription and translation). The unit concludes with an introduction to the techniques of molecular biology and, in particular, how these techniques have led to an explosion of interest and research in Molecular Biology. The practical component complements the lectures by exposing students to experiments which explore the measurement of enzyme activity, the isolation of DNA and the "cutting" of DNA using restriction enzymes. However, a key aim of
the practicals is to give students higher level generic skills in computing, communication, criticism, data analysis/evaluation and experimental design.

Textbooks

TBA

MBLG1999
Molecular Biology & Genetics Seminar A

Session: Semester 2
Classes: Five 1-hour seminars offering different perspectives of molecular biology and genetics

Assessment: There will be no assessment for this unit

Note: Only available in the BSc(MBG) and MBLG1901

This unit consists of four introductory molecular biology and genetics research based seminars.

MBLG2071
Molecular Biology and Genetics A

Credit points: 6
Teacher/Coordinator: Ms Vanessa Gysbers
Session: Semester 1
Classes: Two 1-hour lectures per week; one 1-hour tutorial and one 4-hour practical per fortnight

Prerequisites: MBLG1001 or MBLG1901 and 12 CP of Junior Chemistry

Assessment: One 2.5-hour exam, practical work, laboratory reports.

Note: Students enrolled in the combined BAppSc (Exercise and Sport Science)/BSc(Nutrition) must have completed all Junior units for this course (CHEM1101, BACH1161, BIOS1159, EXSS1018, CHEM1102, BIOS1133, BIOS1160, EXSS1033, MBLG1001) prior to enrolling in this unit.

This unit of study extends the basic concepts introduced in MBLG1001/1901 and provides a firm foundation for students wishing to continue in the molecular biosciences as well as for those students who intend to apply molecular techniques to other biological or medical questions. The unit explores the regulation of the flow of genetic information in both eukaryotes and prokaryotes. The central focus is on the control of replication, transcription and translation and how these processes can be studied and manipulated in the laboratory. The processes of DNA replication and repair are also discussed. Experiments in model organisms are presented to illustrate current developments in the field, together with discussion of work carried out in human systems and the relevance to human genetic diseases. Tools of molecular biology are taught within the context of recombinant DNA cloning - with an emphasis on essential knowledge required to use plasmid vectors. The methods of gene introduction (examples of transgenic plants and animals) are also discussed along with recent developments in stem cell biology. Other techniques include the separation and analysis of macromolecules, like DNA, RNA and proteins, by gel electrophoresis and Southern, Northern & Western blotting. Analysis of gene expression by microarrays is also discussed. In the genomics section, topics include structure, packaging and complexity of the genome: assigning genes to specific chromosomes, physical mapping of genomes as well as DNA and genome sequencing methods and international projects in genome mapping.

The practical course complements the theory and builds on the skills learnt in MBLG1001. Specifically students will: use spectrophotometry for the identification and quantification of nucleic acids, explore the lac operon system for the investigation of gene expression control, perform plasmid isolation, and complete a PCR analysis for detection of polymorphisms. As with MBLG1001, strong emphasis is placed on the acquisition of generic and fundamental technical skills.

Textbooks

MBLG2072
Molecular Biology and Genetics B

Credit points: 6
Session: Semester 2
Classes: Two 1-hour lectures per week; one 2-3 hour practical per week

Prerequisites: One of MBLG2071, MBLG2771, MBLG2001, MBLG2871, MBLG2901, MBLG2971

Assessment: One 2-hour exam (50%), laboratory reports and quizzes (50%).

This unit of study builds on the concepts introduced in MBLG2071 and shows how modern molecular biology is being applied to the study of the genetics of all life forms from bacteria through to complex multicellular organisms including plants, animals and humans. Lecture topics include classical Mendelian genetics with an emphasis on its molecular basis, cytogenetics, bacterial genetics and evolution, molecular evolution, bioinformatics and genomics, developmental genetics and the techniques and applications of molecular genetics. Practical: In laboratory exercises you will use a variety of prokaryotic and eukaryotic organisms to illustrate aspects of the lecture material, while developing familiarity and competence with equipment used in molecular techniques, microscopes, computers and statistical tests. Generic skills are developed in report writing, oral presentation, problem solving and data analysis. This is a core Intermediate unit of study in the BSc (Molecular Biology and Genetics) degree program.

MBLG2972
Molecular Biology and Genetics B (Adv)

Credit points: 6
Session: Semester 2
Classes: Two 1-hour lectures per week; one 2-3 hour practical per week

Prerequisites: Distinction in one of MBLG2071, MBLG2771, MBLG2001, MBLG2871, MBLG2971, MBLG2901

Prohibitions: MBLG2072, MBLG2102, MBLG2002, MBLG2902

Assessment: One 2-hour exam (50%), laboratory reports and quizzes (50%).

Qualified students will participate in alternative components of MBLG2072, Molecular Biology and Genetics B. The content and nature of these components may vary from year to year.

MBLG3999
Molecular Biology & Genetics Seminar B

Session: Semester 2
Classes: Four 1-hour seminars (available by invitation only from MBLG program chair)

Assessment: There will be no assessment for this unit.

Note: Only available to students enrolled in the BSc(MBG) degree or the BCHM3972 course

This unit consists of four advanced molecular biology and genetics research based seminars.

Molecular Biotechnology

The following units of study are only available to students in the Bachelor of Science (Molecular Biotechnology) degree. Please consult degree information in chapter 4, and the relevant Departments/Schools entries in this chapter for descriptions of other units of study required for this degree.

MOBT2102
Molecular Biotechnology 2

Credit points: 6
Teacher/Coordinator: Dr Matthew Todd
Session: Semester 2
Classes: Three 1-hour lectures and one 1-hour tutorial per week

Prerequisites: 12 credit points of Junior Biology and 12 credit points of Junior Chemistry

Prohibitions: MOBT2001

Assessment: One 2-hour theory exam (70%) and in-semester assessments (30%). NB Students must pass the theory exam to pass the unit overall.

Note: This unit of study is only available to students in enrolled the BSc (Molecular Biotechnology) degree.)
The main purpose of this unit of study is to introduce students to the core concepts of modern molecular biotechnology and build a base for future study in this discipline. It assumes students will have knowledge of Molecular Biology and Genetics through previous study of MBLG1001 and MBLG3771/2971 and concurrent study of MBLG2072/2972. It commences with an introduction to the biotechnology revolution and its impact worldwide. Students are then introduced to how large biomolecules are exploited in drug discovery with discussions of structural diversity in macromolecules, the construction of synthetic peptide and oligonucleotide combinatorial libraries, the uses and screening of such libraries in drug discovery together with examples from industry. This unit proceeds with considerations of the chemical synthesis of pharmaceuticals to specific drug targets. Structure-activity relationships, the use of biomolecules such as proteins versus natural products in drug design, the role of DNA as a drug target, and the importance of metals ions are all discussed together with case studies from industry. Issues associated with pharmaceutical stability and metabolism are then described. The unit concludes with an overview of the commercialization of discoveries in science with consideration given to the role of researchers, university and industry interactions, and regulatory and patent issues. This is followed by an appreciation of the societal impact and ethics of biotechnology, including how the industry and researchers interact with, and inform, the public. Guest lecturers will contribute to these presentations to help students develop an appreciation of emerging areas in molecular biotechnology from a broad perspective.

Textbooks

MOBT3101
Molecular Biotechnology 3A
Credit points: 6 Teacher/Coordinator: Dr Neville Firth Session: Semester 1 Classes: Three 1-hour lectures and one 1-hour tutorial per week Prerequisites: MOBT2102 Prohibitions: MOBT2002 Assumed knowledge: MBLG (2072 or 2972). Assessment: One 2-hour theory exam (70%) and in-semester assessments (30%). Students must pass the theory exam to pass the unit overall.
Note: NB: This unit of study is only available to students enrolled in the BSc (Molecular Biotechnology) degree.

This unit of study builds on MOBT2102 and to expand concepts and applications of modern molecular biotechnology. It assumes students have previously been taught molecular biology and genetics through MBLG2072/2972. It commences with the synthesis of commercial products by recombinant microorganisms, including small biological molecules, antibiotics, polymers, nucleic acids and proteins, then leads onto large-scale production of products from recombinant microorganisms. Students will be introduced to scaled-up microbial growth and bioreactors, combined with typical large-scale fermentation systems and downstream processing. This will be broadened to an appreciation of yeast and mammalian cells in large-scale production. Examples of major protein-based therapeutics will be examined in detail. The unit introduces students to genome sequencing and technologies, and follows with the impact of proteomics in identifying new drug targets and therapeutics, its interplay with genomics, disease states, quantitative vs. qualitative profiles, and the role of bioinformatics in data and database management. The role of protein structure on function and the engineering of protein structures in briefly described. Agricultural and environmental biotechnology is introduced with a focus on promoting plant growth, the utilisation of starch and cellulose, the construction of synthetic peptide and oligonucleotide combinatorial libraries, the uses and screening of such libraries in drug discovery together with examples from industry. This unit proceeds with considerations of the chemical synthesis of pharmaceuticals to specific drug targets. Structure-activity relationships, the use of biomolecules such as proteins versus natural products in drug design, the role of DNA as a drug target, and the importance of metals ions are all discussed together with case studies from industry. Issues associated with pharmaceutical stability and metabolism are then described. The unit concludes with an overview of the commercialization of discoveries in science with consideration given to the role of researchers, university and industry interactions, and regulatory and patent issues. This is followed by an appreciation of the societal impact and ethics of biotechnology, including how the industry and researchers interact with, and inform, the public. Guest lecturers will contribute to these presentations to help students develop an appreciation of emerging areas in molecular biotechnology from a broad perspective.

Textbooks

MOBT3202
Molecular Biotechnology 3B Project
Credit points: 6 Teacher/Coordinator: A/Prof Kevin Downard Session: Semester 2 Classes: 75 hours industry related project over the semester Prerequisites: MOBT2002 or MOBT3101 Prohibitions: MOBT3002, MOBT3102 Assessment: Presentation, project report and essay Note: This unit of study is only available to students enrolled in the BSc (Molecular Biotechnology) degree.

This Senior unit of study builds on the knowledge gained in earlier units of modern molecular biotechnology. It emphasises applications of molecular biotechnology including product design, research and development, and the importance of recognising industry trends. This will typically involve an industry placement or a detailed industry case study, on-site visits, and interactions with industry partners in association with university staff. To maximize future opportunities, students will learn about funding and research and development. As well as industry-relevant experience, students will research biotechnology kits and technologies.

Textbooks

School of Molecular and Microbial Biosciences
The School brings together the disciplines of Biochemistry, Microbiology, Molecular Biotechnology and Nutrition, with separate study codes BCHM, MICR, MOBT [see Table IE for details of the BSc (Molecular Biotechnology)] and NUTR [see Table IF for details of the BSc (Nutrition)]. Significant contributions are also made to the Intermediate faculty units of study in Molecular Biology and Genetics with study code MBLG [see Table ID for details of the BSc (Molecular Biology and Genetics)] and to the units of study in Molecular Biotechnology [see Table IE for details of the BSc (Molecular Biotechnology)].

Location of unit descriptions
Unit descriptions are located under separate headings in this chapter: Biochemistry (BCHM); Microbiology (MICR); Molecular Biology and Genetics (MBLG); Molecular Biotechnology (MOBT); Molecular Biology and Genetics; Nutrition (NUTR).

Location
The School is located in the Biosciences Biochemistry and Microbiology Building (G08), across near City Road in the Darlington area behind the Wentworth Building.

Nanoscience and Technology
Nanoscience and Technology is an interdisciplinary major offered within the BSc. It is directed at students interested in understanding the emerging science of working and building at and near the molecular level. It incorporates study of the fundamental sciences in order to understand the structure of matter, as well as technological elements of the mechanical properties of materials. Students undertaking this major are strongly encouraged to take suitable units from the Faculty of Engineering in combination with Physics and Chemistry.

Majoring in Nanoscience and Technology
A student seeking to complete this major should study Physics and Chemistry in their Junior and Intermediate years together with some Engineering and Mathematics. In the Senior year it is possible to focus on two of the three discipline areas, or to continue to study elements of all three. This major may also be seen as a complement to a traditional major in Chemistry or Physics. Refer to Table 1 for an enrolment guide and to entries under the contributing schools and departments for unit descriptions. Engineering units are described in the Engineering Handbook.
Neuroscience

Neuroscience encompasses a diverse range of disciplines that cross traditional subject boundaries. The study of Neuroscience ranges from anatomy to neuronal function; the cellular and molecular biology of the neuron to the complex phenomena of perception; emotion and memory; from the regulation of breathing and blood pressure to movement; developing to ageing; normal cognition to neurodegeneration.

Majoring in Neuroscience

A major in Neuroscience is designed to provide a foundation in the basic biology of the brain as well as the fundamentals of cognition. Students are able to focus their cross-disciplinary studies with a molecular, cellular, anatomical and behavioural concentration. Refer to Table I for an enrolment guide and to entries in specific subject areas for Unit of Study descriptions. A cross-disciplinary major requires careful selection of subjects to fulfill the requirements of the major. Research in Neuroscience is vibrant and an international priority area.

Research in Neuroscience

There are many opportunities for high-achieving students to undertake honours study within the field of Neuroscience. Honours projects are typically undertaken within individual departments: Physiology, Anatomy, Pharmacology, Psychology, Pathology and associated institutes. Students should canvass respective departments during their senior studies for details of projects, admission criteria and enrolment details.

Neuroscience Coordinator

Dr Karen Cullen (Anatomy) is the coordinator for the Neuroscience major. Email: kcullen@anatomy.usyd.edu.au.

Nutrition

The Human Nutrition Unit in the School of Molecular and Microbial Biosciences offers units of study to students enrolled in the Bachelor of Science (Nutrition) degree. Please consult degree information in chapter 4 and Table 1F entries. Check the relevant Department/subject entries in this chapter for descriptions of other units of study required for this degree.

NUTR2911

Food Science Introductory (Advanced)

Credit points: 6 Teacher/Coordinator: Dr Kim Bell-Anderson Session: Semester 1 Classes: Three 1-hour lectures and one 2.5-hour practical per week. Prerequisites: MBLG(1001 or 1901) and CHEM (1001 or 1101 or 1901 or 1903 or 1108) and CHEM (1002 or 1102 or 1902 or 1904 or 1109) and BIOL (1001 or 1101) and BIOL (1002 or 1102 or 1902 or 1903). For Combined BAppSc (Exercise and Sport Science)/BSc(Nutrition) degree completion of all Junior units in the table of units for this course (CHEM1101, BACH1166, BACH1168, EXKS1018 CHEM1102, BIOS1169, BIOS1170, MBLG1001). Prohibitions: NUTR2902 Assumed knowledge: NUTR2911 Assessment: One 3-hour exam, one 1-hour theory of practical exam, one assignment.

This unit of study aims to give a broad appreciation of foods as commodities, that is, the origin, history, cultural and nutritional importance of the major foods for human use. Further, aspects of food processing and cooking that affect the nutritional quality of these foods will be discussed. Food groups covered include animal foods, seafood, cereals, sugars, fats and oils, dairy products, legumes, nuts, vegetables, fruits, herbs and spices and alcohol.

Topics in food science and technology include the principles of food preservation, aspects of the preparation and processing of cereals, vegetables, fruits, herbs and spices and alcohol. Food legislation is discussed as well as food additives, naturally occurring toxicants in foods, food pollutants, food safety, food hygiene and food microbiology. Practical classes investigate the nutritional and physical composition of food commodities, and demonstrate their behaviour and functional properties during normal culinary processes.

Textbooks

NUTR3901

Nutritional Assessment Methods

Credit points: 6 Teacher/Coordinator: Ms Katherine Jukic, Dr Janelle Gifford Session: Semester 1 Classes: Four 2-hour lectures/ tutorials/ labs/ workshops per week Prerequisites: NUTR2911 and NUTR2912 Prohibitions: NUTR3902 Assessment: One 1-hour exam, 3-4 assignments and in-class quizzes.

This unit of study covers Dietary Assessment Methods: purposes of dietary assessment; uses of dietary data; classical dietary assessment methods and their use, application, strengths, weaknesses, sources of measurement error; quantifying portion sizes; evaluating dietary assessment for validity and reliability; dietary reference standards; food composition databases; appraising and interpreting dietary assessment methods in published literature.

This unit of study also covers Anthropometry, Body Composition & Nutritional Biochemistry: anthropometric and body composition methods for the assessment of nutritional status; reference standards for assessing body composition; anthropometric measurements; biochemical and haematological indices for nutritional assessment.

Textbooks

NUTR3912

Community and Public Health Nutrition

Credit points: 6 Teacher/Coordinator: Ms Katherine Jukic, Ms Sue Amantidis Session: Semester 2 Classes: Two 1-hour lectures and one 3-hour workshop/tutorial/presentation, on average, per week. Prerequisites: NUTR2911 and NUTR2912 Prohibitions: NUTR3902 Assessment: One 2-hour exam and 1-2 assignments.

This unit of study covers topics such as: nutrition through the life cycle from infancy to old age; nutrition in vulnerable groups; and theories of food habits. It helps students gain skills and knowledge in planning, implementing and evaluating nutrition health promotion programs for various population groups. Topics covered include: principles of health promotion, effective nutrition promotion strategies, program evaluation and program planning. This course also looks at current public health
nourishment strategies for promoting health and preventing diet-related diseases.

Textbooks

NUTR3921 Methods in Nutrition Practice
Credit points: 6 Teacher/Coordinator: Ms Katherine Jukic, A/Prof Margaret Allman-Farinelli
Session: Semester 1 Classses: One 2-hour lecture and one 3-hour tutorial/lab/workshop on average per week Prerequisites: NUTR2911 and NUTR2912 Prohibitions: NUTR3901 Assessment: One 2.5-hour exam and 2 assignments

This unit of study covers basic concepts in: Survey & Questionnaire Design (data collection methods, designing surveys and research protocols, designing and piloting short questionnaires, focus groups); Nutritional Epidemiology (hypothesis, study designs, epidemiological measures and methods, sources of bias, critical appraisal of published data/literature); Statistics (statistical methods, statistical packages, statistics terminology).

Textbooks

NUTR3922 Nutrition and Chronic Disease
Credit points: 6 Teacher/Coordinator: Ms Katherine Jukic, A/Prof Margaret Allman-Farinelli
Session: Semester 2 Classses: Two 1-hour lectures and one 3-hour tutorial/tutorial per week Prerequisites: NUTR2911 and NUTR2912 Prohibitions: NUTR3902 Assessment: One 2.5-hour exam, one to two assignments

This unit of study examines the relationship and evidence for the role of nutrition in the etiology of chronic diseases, such as cancer, coronary heart disease, hypertension, obesity, dental caries and osteoporosis. It also investigates the current nutrition policies and guidelines that are aimed at preventing these diseases at a population level. Students will also get an opportunity to examine the current popular fad diets on the market and allows them to develop an understanding of the therapeutic potential and allows them to develop an understanding of the therapeutic potential. A/Prof Margaret Allman-Farinelli

Textbooks

NUTR3902 Research Strand
Credit points: 6 Teacher/Coordinator: Ms Katherine Jukic, A/Prof Margaret Allman-Farinelli
Session: Semester 2 Classses: Two 1-hour lectures per week; workshops and laboratory sessions. Prerequisites: (6 credit points of Junior Chemistry) and (6 credit points of Junior Biology or MBLG (1001 or 1901)). Prohibitions: PCOL2001 Assessment: One 2 hour exam, in semester quizzes and reports.

This unit of study examines four basic areas in Pharmacology: (1) principles of drug action (2) pharmacokinetics and drug metabolism (3) autonomic and endocrine pharmacology, and (4) drug design. The delivery of material involves lectures, practicals, computer-aided learning and problem-based workshops. Practical classes provide students with the opportunity of acquiring technical experience and teamwork skills. Problem-based workshops are based on real-life scenarios of drug use in the community. These workshops require students to incorporate information obtained in lectures in order to provide solutions to the problems. Online quizzes accompany each module for self assessment.

Textbooks

PCOL2011 Pharmacology Fundamentals
Credit points: 6 Teacher/Coordinator: Dr Brett McParland Session: Semester 1 Classses: Two 1 hour lectures per week; workshops and laboratory sessions. Prerequisites: (6 credit points of Junior Chemistry) and (6 credit points of Junior Biology or MBLG (1001 or 1901)). Prohibitions: PCOL2001 Assessment: One 2 hour exam, in semester quizzes and reports.

This unit of study examines four basic areas in Pharmacology: (1) principles of drug action (2) pharmacokinetics and drug metabolism (3) autonomic and endocrine pharmacology, and (4) drug design. The delivery of material involves lectures, practicals, computer-aided learning and problem-based workshops. Practical classes provide students with the opportunity of acquiring technical experience and teamwork skills. Problem-based workshops are based on real-life scenarios of drug use in the community. These workshops require students to incorporate information obtained in lectures in order to provide solutions to the problems. Online quizzes accompany each module.

Textbooks

PCOL2012 Pharmacology: Drugs and People
Credit points: 6 Teacher/Coordinator: Dr Jonathan Arnold Session: Semester 2 Classses: Two 1 hour lectures per week; workshops and laboratory sessions. Prerequisites: (6 credit points of Junior Chemistry) and (6 credit points of Junior Biology or MBLG (1001 or 1901)). Prohibitions: PCOL2002, PCOL2003 Assessment: One 2 hour exam, in semester quizzes, reports.

This unit of study examines four important areas of Pharmacology: (1) drug action in the nervous system (2) drug discovery and development (3) pharmacotherapy of inflammation, allergy and gut disorders, and (4) drugs of recreation, dependence and addiction. The delivery of material involves lectures, practicals, computer-aided learning and problem-based workshops. Practical classes provide students with the opportunity of acquiring technical experience and teamwork. Problem-based workshops are based on real-life scenarios of drug use in the community. These workshops require students to integrate information obtained in lectures in order to provide solutions to the problems. Online quizzes accompany each module.

Textbooks

PCOL255 Essentials of Pharmacology
Credit points: 6 Session: Summer Main Classes: On-line lectures and face-to-face tutorial and laboratory classes. Prohibitions: PCOL2011, PCOL2012 Assessment: on-line quizzes and a final examination

This unit of study introduces students to the principles of drug action and allows them to develop an understanding of the therapeutic
applications of drugs based on their underlying pharmacodynamic properties. It covers cardiovascular and renal drugs, chemotherapy, anaesthetics and anti-inflammatory agents, respiratory and gastro-intestinal drugs, drugs affecting peripheral and central neurotransmission and the principles of chemotherapy.

PCOL3011

Toxicology

Credit points: 6
Session: Semester 1
Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week.
Prerequisites: PCOL3001 or PCOL3901 and PCOL2012 or 42 credit points from Intermediate BMED units of study.
Prohibitions: PCOL3001, PCOL3901, PCOL3911
Assessment: One 2 hour exam, tutorial presentations, assignments.

This unit of study is designed to introduce students with a basic understanding of pharmacology to the discipline of toxicology. It considers the toxicology associated with therapeutic drugs (adverse drug reactions) and the associated issue of drug interactions. The pharmacogenetic basis of adverse reactions is also considered. The unit also considers aspects of environmental toxicology, particularly toxic reactions to environmental agents such as asbestos and pesticides, and its effects on different target organs (lung, liver, CNS). As a final consequence of exposure to toxins, the biology and causes of cancer as well as treatments for cancer are discussed. As part of the unit students are introduced to basic ideas about the collection and analysis of data from human and animal populations, both in the structured situation of clinical trials and in analysis of retrospective data.

Textbooks

PCOL3911

Toxicology (Advanced)

Credit points: 6
Session: Semester 1
Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week.
Prerequisites: Distinction average in PCOL2011 and PCOL2012 or Distinction average in 42 credit points from Intermediate BMED units of study.
Prohibitions: PCOL3001, PCOL3901, PCOL3911
Assessment: One 2 hour exam, tutorial presentations, assignments.

This unit will consist of the lecture and practical components of PCOL3011. Students will be set special advanced assignments related to the material covered in core areas. These may also involve advanced practical work or detailed investigation of a theoretical problem.

Textbooks

PCOL3012

Drug Design and Development

Credit points: 6
Session: Semester 1
Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week.
Prerequisites: PCOL2001 or PCOL2011 and PCOL2012 or 42 credit points from Intermediate BMED units of study.
Prohibitions: PCOL3001, PCOL3901, PCOL3912
Assessment: One 2 hour exam, in class quizzes, assignments.

This unit of study is designed to introduce students with a basic understanding of pharmacology to the field of medicinal chemistry associated with drug design and development. The course covers the fundamental aspects of drug discovery and development with reference to the essentials of chemistry and illustrates drug development with examples that include neuraminidase inhibitors and statins. The role of computers in drug design is emphasised by classwork and assignments on molecular modelling and structure-activity relationships. The course also extends to a section on the design of diverse pharmacological agents which include compounds for imaging by positron emission tomography (PET), as well as chemical and biological warfare agents, and riot control agents.

Textbooks

PCOL3912

Drug Design and Development (Adv)

Credit points: 6
Session: Semester 1
Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week.
Prerequisites: Distinction average in PCOL2011 and PCOL2012 or Distinction average in 42 credit points from Intermediate BMED units of study.
Prohibitions: PCOL3001, PCOL3901, PCOL3912
Assessment: One 2 hour exam, in class quizzes, assignments.

This unit will consist of the lecture and practical components of PCOL3012. Students will be set special advanced assignments related to the material covered in core areas. These may also involve advanced practical work or detailed investigation of a theoretical problem.

Textbooks

PCOL3021

Drug Therapy

Credit points: 6
Session: Semester 2
Classes: Two 1 hour lectures per week, four 1 hour tutorials, two 4 hour practical/computer laboratories, elective project (equivalent to three 4 hour practicals).
Prerequisites: PCOL2011 and PCOL2012 or 36 credit points from Intermediate BMED units of study.
Prohibitions: PCOL3002, PCOL3902, PCOL3921
Assessment: One 2 hour exam, tutorial and practical assignments and elective project.

This unit of study builds on pharmacological knowledge acquired in the intermediate PCOL and BMED units of study with a major emphasis on gaining an understanding of the scien-tific basis of drug therapy. Lecture topics, tutorials and laboratory sessions cover drug treatment of arthritis and asthma, cardiovascular disorders, microbial infections and can-cer. Elective projects relate to current research areas in Pharmacology.

Textbooks

PCOL3921

Drug Therapy (Advanced)

Credit points: 6
Session: Semester 2
Classes: Two 1 hour lectures per week, four 1 hour tutorials, two 4 hour practical/computer laboratories, elective project (equivalent to three 4 hour practicals).
Prerequisites: PCOL2011 and PCOL2012 or 36 credit points from intermediate BMED units of study.
Prohibitions: PCOL3002, PCOL3902, PCOL3921
Assessment: One 2 hour exam, tutorial and practical assignments and elective project.

Advanced students complete the same core lecture material as students in PCOL3021 but carry out advanced level elective projects, practicals and tutorials.

Textbooks

PCOL3022

Neuropharmacology

Credit points: 6
Session: Semester 2
Classes: Two 1 hour lectures per week, four 1 hour tutorials, two 3 hour practicals, one 2 hour practical workshop, elective project (equivalent to three 4 hour practicals).
Prerequisites: PCOL2011 and PCOL2012 or 36 credit points from intermediate BMED units of study.
Prohibitions: PCOL3002, PCOL3902, PCOL3922
Assessment: One 2 hour exam, tutorial and practical assignments and elective project.

This unit of study builds on pharmacological knowledge acquired in the intermediate PCOL and BMED units of study with a major emphasis on gaining an understanding of neuro-pharmacology. The neuropharmacology of the major neurotransmitters is explored to-gether with the treatment of disorders such as Alzheimer's disease, depression, epilepsy, insomnia, pain and schizophrenia. Elective projects relate to current research areas in Pharmacology.

Textbooks

PCOL3922

Neuropharmacology (Advanced)

Credit points: 6
Session: Semester 2
Classes: Two 1 hour lectures and one 3 hour tutorial/practical per week.
Prerequisites: PCOL2011 and PCOL2012
9. Undergraduate units of study

or 36 credit points from intermediate BMED units of study. **Prohibitions:** PCOL3002, PCOL3902, PCOL3022 **Assessment:** One 2 hour exam; tutorial and practical assignments and elective project.

Advanced students complete the same core lecture material as students in PCOL3022 but carry out advanced level elective projects, practicals and tutorials.

Textbooks

Pharmacology Honours
Subject to meeting the Faculty of Science entry criteria for Honours, a student may apply to conduct a research project in the Pharmacology Honours programme. Interested students are advised to contact the Honours Co-ordinator and potential supervisors listed in their area(s) of interest. Written assessments include a research proposal, literature review and 50-page thesis based on the research topic. The students will also be required to give an introductory talk and a final talk about the progress of the project.

Physics
The School of Physics provides undergraduate units of study in Physics at Junior, Intermediate, Senior and Honours levels. Appropriate unit of study choices are available for candidates who wish to major in Physics, to proceed to Honours in Physics, or to combine Physics with a major in another subject area. Several other Faculties and Departments within the Faculty of Science require that Junior Physics be taken as part of the students’ preparation for later studies in their more specialised fields. Similarly, Intermediate Physics units of study are taken by many Faculty of Engineering students, as well as many Faculty of Science students who intend to major in other subjects. The School of Physics also provides units of study in Computational Science at Junior and Senior levels. For details see the Computational Science entry.

Location

Information
On the School of Physics website: www.physics.usyd.edu.au and on noticeboards outside the Physics Student Support Office (Room 202, ground floor, Physics Building).

Registration
Junior units of study: In assigned laboratory sessions during the second week of each semester. Intermediate units of study: At first laboratory, in Room 320/321 in the Physics Building. Senior units of study: At first lecture, in the Physics Building.

Advice on units of study
A member of the Physics staff is normally present among Faculty advisers during enrolment week to advise students. The Physics Student Support Office, Room 202, Physics Building, will arrange for students to meet advisers at other times. Further information about the School of Physics and its teaching program are available at www.physics.usyd.edu.au and on unit of study eLearning sites.

Physics junior units of study
Coordinator
Doctor Joe Khachan

Units of Study
There are seven different semester length units of study offered at the Junior level. Completion of one unit of study in each semester provides a solid foundation for further studies in Physics in higher years. PHYS1500 Astronomy cannot be counted towards the 12 credit points of Junior Physics needed as a prerequisite for Intermediate Physics. Each unit of study has a laboratory component. The first semester laboratory work provides an introduction to experimental techniques while reinforcing concepts of physics introduced in lectures. In second semester the laboratory work provides an introduction to electrical circuits and offers students the opportunity to design and undertake short experimental projects.

First semester
PHYS1001 (Regular); PHYS1002 (Fundamentals); PHYS1901 (Advanced)

Second semester
PHYS1003 (Technological); PHYS1004 (Environmental and Life Sciences); PHYS1902 (Advanced); PHYS1500 (Astronomy)

Information Booklet
Further information about Junior Physics units of study is contained in a booklet for intending commencing students available at enrolment or during O-Week or from the Physics Student Support Office (Room 202, ground floor, Physics Building (A28)). It is also available on the School of Physics website at www.physics.usyd.edu.au

Progression to Intermediate Physics
Students intending to continue into Intermediate Physics are encouraged to take PHYS1003 or PHYS1902 in semester 2. Students taking PHYS1004 may continue into Intermediate Physics but are recommended to undertake supplementary reading as additional preparation.

PHYS1001
Physics 1 (Regular)

Credit points: 6 **Session:** Semester 1 **Classes:** Three 1 hour lectures, one 3 hour laboratory per week for 9 weeks and one 1 hour tutorial per week. **Corequisites:** Recommended concurrent Units of Study: MATH (1001/1901, 1002/1902) **Prohibitions:** PHYS1002, PHYS1901 **Assumed knowledge:** HSC Physics **Assessment:** 3 hour exam plus laboratories, assignments and mid-semester tests

This unit of study is for students who gained 65 marks or better in HSC Physics or equivalent. The lecture series contains three modules on the topics of mechanics, thermal physics, and oscillations and waves.

Textbooks

Course lab manual.

PHYS1002
Physics 1 (Fundamentals)

Credit points: 6 **Session:** Semester 1 **Classes:** Three 1-hour lectures, one 3-hour laboratory per week for 10 weeks and one 1-hour tutorial per week. **Corequisites:** Recommended concurrent Units of Study: MATH (1001/1901, 1002/1902) **Prohibitions:** PHYS1001, PHYS1901 **Assumed knowledge:** No assumed knowledge of Physics **Assessment:** 3 hour exam plus laboratories, assignments and mid-semester tests

This unit of study is designed for students who have not studied Physics previously or scored below 65 in HSC Physics. The lecture series contains modules on the language of physics, mechanics, and oscillations and waves.

Textbooks
College Physics: A Strategic Approach by Knight, Jones and Field, 1st edition with Mastering Physics. Addison-Wesley, 2008

Course lab manual.

PHYS1003
Physics 1 (Technological)

Credit points: 6 **Session:** Semester 2 **Classes:** Three 1-hour lectures, one 3-hour laboratory per week for 10 weeks, one 1-hour tutorial per week. **Corequisites:** Recommended concurrent Units of Study: MATH (1003/1903), MATH (1005/1905) **Prohibitions:** PHYS1004, PHYS1902 **Assumed knowledge:** HSC Physics or PHYS (1001 or 1002 or 1901) or equivalent. **Assessment:** 3 hour exam plus laboratories, tutorials, and assignments

Note: It is recommended that PHYS (1001 or 1002 or 1901) be completed before this unit
This unit of study is designed for students majoring in physical and engineering sciences and emphasis is placed on applications of physical principles to the technological world. The lecture series contains modules on the topics of fluids, electromagnetism, and quantum physics.

Textbooks

Course lab manual.

PHYS1004
Physics 1 (Environmental & Life Science)
Credit points: 6 Session: Semester 2 Classes: Three 1-hour lectures, one 3-hour laboratory per week for 10 weeks and one 1-hour tutorial per week.
Prerequisites: Recommended concurrent Units of Study: MATH (1003/1903), MATH (1005/1905). Prohibitions: PHYS1003. PHYS1902 Assumed knowledge: HSC Physics or PHYS (1001 or 1002 or 1901) or equivalent.
Assessment: 3-hour exam plus laboratories and assignments
Note: It is recommended that PHYS (1001 or 1002 or 1901) be completed before this unit

This unit of study has been designed specifically for students interested in further study in environmental and life sciences. The lecture series contains modules on the topics of properties of matter, electromagnetism, and radiation and its interactions with matter.

Textbooks

Course lab manual.

PHYS1902
Physics 1B (Advanced)
Credit points: 6 Session: Semester 2 Classes: Three 1-hour lectures, one 3-hour laboratory per week for 10 weeks and one 1-hour tutorial per week.
Prerequisites: UAI (or ATAR equivalent) of at least 96, or HSC Physics result in Band 6, or PHYS1901, or Distinction or better in PHYS (1001 or 1002) or an equivalent unit. Corequisites: Recommended concurrent unit of study: MATH (1003/1903), MATH (1005/1905). Prohibitions: PHYS1003, PHYS1004
Assessment: 3-hour exam plus laboratories, and assignments
Note: It is recommended that PHYS (1001 or 1002 or 1901) be completed before this unit

This unit of study is a continuation of the more advanced treatment of Physics 1A (Advanced). Students who have completed PHYS1001 or PHYS1002 at Distinction level may enrol. It proceeds faster than Physics 1 (Technological), covering further and more difficult material. The lecture series contains modules on the topics of fluids, electricity and magnetism, and quantum physics.

Textbooks

Course lab manual.

Physics intermediate units of study
Coordinator
Associate Professor Manjula Sharma

Units of Study
There are three units at the Normal level and three at the Advanced level: PHYS2011/2911 Physics 2A (Normal/Advanced) - Semester 1; PHYS2012/2912 Physics 2B (Normal/Advanced) - Semester 2; PHYS2013/2913 Astrophysics and Relativity (Normal/Advanced) - Semester 2. The Advanced versions can be taken by students who have achieved a Credit or better in their previous Physics units.

Progression to senior Physics
The prerequisites for Senior Physics units are PHYS2011/2911 and PHYS2012/2912. Students intending to major in Physics are strongly encouraged to take PHYS2013/2913 as well. Full details of Intermediate Physics unit of study structures, content and assessment policies are provided in the unit of study handbooks available at the start of semester on the School of Physics website at www.physics.usyd.edu.au and also on unit of study eLearning sites.

PHYS2011
Physics 2A
Credit points: 6 Session: Semester 1 Classes: Two 1-hour lectures per week for 11 weeks; one 2-hour computational laboratory and one 3-hour experimental laboratory per week for 9 weeks. Prerequisites: 12 credit points of Junior Physics (excluding PHYS1500). Prohibitions: PHYS2001, 2901, PHYS2911, PHYS2213, PHYS2203 Assumed knowledge: MATH (1001/1901 and 1002/1902 and 1003/1903). MATH (1005/1905) would also be useful.
Assessment: One 2-hour exam, one 1-hour computational test, practical work, practical report and oral presentation

In combination with two semesters of Junior Physics, this unit of study continues a first pass through the major branches of classical and modern physics, providing students with a sound basis for later Physics units or for studies in other areas of science or technology. Hence, this unit suits students continuing with the study of Physics at the Intermediate level, and those wishing to round out their knowledge of physics before continuing in other fields.

The major topics in this unit of study are:
Optics: The wave nature of light, and its interactions with matter. Applications including spectroscopy and fibre optics.
Nuclear Physics: The fundamental structure of matter.
Computational Physics: In a PC-based computing laboratory students use simulation software to conduct virtual experiments in optics, which illustrate and extend the relevant lectures. Students also gain experience in the use of computers to solve problems in physics. An introductory session is held at the beginning of semester for students who are not familiar with programming.
Practical: Experimental Physics is taught as a laboratory module and includes experiments in the areas of optics, nuclear decay and particles, properties of matter, and other topics. Assessment is based on mastery of each attempted experiment. At the end of the semester students prepare a short report on one experiment and make an oral presentation on it.

Textbooks

PHYS2012
Physics 2B
Credit points: 6
Session: Semester 2
Classes: Three 1-hour lectures per week; one 2-hour computational laboratory per week for 11 weeks.
Prerequisites: PHYS (1003 or 1004 or 1902) and PHYS (1001 or 1002 or 1901 or 2011 or 2911) Prohibitions: PHYS2102, PHYS2104, PHYS2902, PHYS2912, PHYS2213, PHYS2203
Assumed knowledge: MATH (1001/1901 and 1002/1902 and 1003/1903). MATH (1005/1905) would also be useful Assessment: One 3-hour exam, one 1-hour computational test

This unit of study is designed for students continuing with the study of Physics at the general Intermediate level, and represents the beginning of a more in-depth study of the main topics of classical and modern physics. The lecture topics are:

Quantum physics: The behaviour of matter and radiation at the microscopical level, modelled by the Schroedinger equation. Application to 1-dimensional systems including solid state physics.

Electromagnetic properties of matter: Electric and magnetic effects in materials; the combination of electric and magnetic fields to produce light and other electromagnetic waves; the effects of matter on electromagnetic waves.

Computational Physics: The computational physics component is similar to that of PHYS2011, except that the material illustrates topics in the quantum physics module.

Textbooks

PHYS2013
Astrophysics and Relativity
Credit points: 6
Session: Semester 2
Classes: Two 1-hour lectures per week for 11 weeks and one 3-hour experimental laboratory per week for 12 weeks.
Prerequisites: PHYS (1003 or 1004 or 1902) and PHYS (1001 or 1002 or 1901 or 2011 or 2911) Corequisites: PHYS (2012 or 2912) Prohibitions: PHYS2001, PHYS2901, PHYS2913, PHYS2101, PHYS2103
Assumed knowledge: MATH (1001/1901 and 1002/1902 and 1003/1903). MATH 1005/1905 would also be useful Assessment: One 2-hour exam, practical work, practical report and oral presentation

This unit of study builds on the foundation provided by Junior Physics and first semester of Intermediate Physics, to provide an introduction to Astrophysics (Structure and evolution of stars), and Special Relativity (Space and time at high velocities).

Practical: Experimental Physics is taught as a laboratory module and includes experiments in the areas of analysis of stellar images, electromagnetic phenomena, electronic instrumentation, quantum physics, and other topics. Assessment is based on mastery of each attempted experiment. At the end of the semester students may work in teams on a project. Students prepare a written report and oral presentation on their project or one experiment.

Textbooks

PHYS2011
Physics 2A (Advanced)
Credit points: 6
Session: Semester 1
Classes: Two 1-hour lectures per week for 11 weeks; one 2-hour computational laboratory and one 3-hour experimental laboratory per week for 9 weeks.
Prerequisites: Credit or better in PHYS (1001 or 1002 or 1901 or 1902) and Credit or better in PHYS (1902 or 1903 or 1904).
Prohibitions: PHYS2901, PHYS2001, PHYS2911, PHYS2101, PHYS2103, PHYS2213, PHYS2203
Assumed knowledge: MATH (1901/1901 and 1902/1902 and 1903/1903). MATH (1905/1905) would also be useful Assessment: One 2-hour exam, one 1-hour computational test, practical work, practical report and oral presentation

This unit of study is designed for students with a strong interest in Physics. The lecture topics are as for PHYS2011. They are treated in greater depth and with more rigorous attention to derivations than in PHYS2011. The assessment reflects the more challenging nature of the material presented.

Computational Physics: As for PHYS2011, but at a more advanced level.

Practical: As for PHYS2011
Textbooks

PHYS2012
Physics 2B (Advanced)
Credit points: 6
Session: Semester 2
Classes: Three 1-hour lectures per week, one-2 hour computational laboratory per week for 11 weeks.
Prerequisites: Credit or better in PHYS (1003 or 1004 or 1902) and Credit or better in PHYS (1001 or 1002 or 1901 or 2011 or 2911) Corequisites: PHYS (2912 or 2012) Prohibitions: PHYS2001, PHYS2011, PHYS2103
Assumed knowledge: MATH (1001/1901 and 1002/1902 and 1003/1903). MATH 1005/1905 would also be useful Assessment: One 3-hour exam, one 1-hour computational test

Refer to PHYS2011 for an overall description of the Advanced Intermediate Physics program. The lecture topics are as for PHYS2012 with some advanced content. Computational Physics: As for PHYS2012, but at a more advanced level.

Textbooks

PHYS2013
Astrophysics and Relativity (Advanced)
Credit points: 6
Session: Semester 2
Classes: Two 1-hour lectures per week for 11 weeks; one 3-hour experimental laboratory per week for 12 weeks.
Prerequisites: Credit or better in PHYS (1003 or 1004 or 1902) and Credit or better in PHYS (1001 or 1002 or 1901 or 2011 or 2911) Corequisites: PHYS (2912 or 2012) Prohibitions: PHYS2001, PHYS2011, PHYS2103
Assumed knowledge: MATH (1001/1901 and 1002/1902 and 1003/1903). MATH 1005/1905 would also be useful Assessment: One 3-hour exam, practical work, practical report and oral presentation

The lecture topics are as PHYS2013 with some advanced content.

Practical: as for PHYS2013.
Textbooks

Physics senior units of study

Coordinator
Professor Tim Bedding

Majoring in Physics

Students intending to major in Physics, or to proceed to Physics Honours, must take at least 24 credit points of Senior Physics, which must include a Semester 1 Core unit (PHYS3040, 3940 or 3941); a Semester 2 Core unit (PHYS3060, 3960 or 3961); two Options units (usually one in each semester). Further information concerning Senior Physics is available on the School of Physics website at www.physics.usyd.edu.au and also on unit of study eLearning sites.

Units intended for students not majoring in Physics

PHYS3015
Topics in Senior Physics A
Credit points: 6
Session: Semester 1
Classes: 40 hours per semester.
Prerequisites: 12 credit points of Intermediate Physics Assumed knowledge: 6 credit points of Intermediate Mathematics Assessment: Exams and/or practical reports.
Note: Department permission required for enrolment.

This unit is normally restricted to students not majoring in Physics, giving them the flexibility to take a combination of modules that is not offered in the standard units. Please obtain permission from the Senior Physics Coordinator.
PHYS3915
Topics in Senior Physics A (Advanced)
Credit points: 6 Session: Semester 1 Classes: 40 hours per semester
Prerequisites: 12 credit points of Intermediate Physics. Assumed knowledge: 6 credit points of Intermediate Mathematics. Assessment: Exams and/or laboratory reports.
Note: Department permission required for enrolment.

This unit of study covers the same topics as PHYS3015, with some more challenging material.

PHYS3025
Topics in Senior Physics B
Credit points: 6 Session: Semester 2 Classes: 40 hours per semester
Prerequisites: 12 credit points of Intermediate Physics. Assumed knowledge: 6 credit points of Intermediate Mathematics. Assessment: Exams and/or practical reports.
Note: Department permission required for enrolment.

This unit is normally restricted to students not majoring in Physics, giving them the flexibility to take a combination of modules that is not offered in the standard units. Please obtain permission from the Senior Physics Coordinator.

PHYS3925
Topics in Senior Physics B (Advanced)
Credit points: 6 Session: Semester 2 Classes: 40 hours per semester
Prerequisites: 12 credit points of Intermediate Physics with a Credit average and 6 credit points of Intermediate Mathematics. Assessment: Exams and/or laboratory reports.
Note: Department permission required for enrolment.

This unit of study covers the same topics as PHYS3025, with some more challenging material.

Semester 1 core units

PHYS3040
Electromagnetism and Physics Lab
Credit points: 6 Session: Semester 1 Classes: Nineteen 1 hour lectures and twelve 4 hour practicals. Prerequisites: PHYS(2011 or 2911 or 2001 or 2901), PHYS(2012 or 2912 or 2002 or 2902), MATH(2061 or 2961 or 2067) Prohibitions: PHYS3940, PHYS3941, PHYS3011, PHYS3014, PHYS3016, PHYS3017, PHYS3911, PHYS3914, PHYS3916, PHYS3917 Assessment: One 1.5 hour exam, practical reports and oral presentation

The lectures cover the theory of electromagnetism, one of the cornerstones of classical physics. They introduce Maxwell's equations in their differential form, using the power of vector calculus. The main application will be to electromagnetic waves, including reflection and absorption, which have application in fields such as optics, plasma physics and astrophysics. In the practical laboratory classes, students will choose from a range of experiments that aim to give them an appreciation of the analytical, technical and practical skills required to conduct modern experimental work.

Textbooks

PHYS3940
Electromagnetism and Physics Lab (Adv)
Credit points: 6 Session: Semester 1 Classes: Nineteen 1 hour lectures and twelve 4 hour practicals. Prerequisites: PHYS (2011 or 2911 or 2001 or 2901) with a grade of at least Credit; PHYS (2012 or 2912 or 2002 or 2902) with a grade of at least Credit; MATH (2061 or 2961 or 2067); Prohibitions: PHYS3040, PHYS3941, PHYS3011, PHYS3014, PHYS3016, PHYS3017, PHYS3911, PHYS3914, PHYS3916, PHYS3917 Assessment: One 1.5 hour exam, practical reports and oral presentation

This unit covers the same topics as PHYS3040, but with greater depth and some more challenging material.

Textbooks

PHYS3941
Electromagnetism & Special Project (Adv)
Credit points: 6 Session: Semester 1 Classes: Nineteen 1 hour lectures, 4 hours per week with a research group. Prerequisites: PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or 2902) with at least Credit; MATH (2061 or 2961 or 2067). Prohibitions: PHYS3940, PHYS3940, PHYS3961, PHYS3911, PHYS3918, PHYS3928 Assessment: One 1.5 hour exam, project report and talk
Note: Department permission required for enrolment. Note: Approval for this unit must be obtained from the School of Physics Senior Coordinator.

The lectures cover the theory of electromagnetism, one of the cornerstones of classical physics. They introduce Maxwell's equations in their differential form, using the power of vector calculus. The main application will be to electromagnetic waves, including reflection and absorption, which have application in fields such as optics, plasma physics and astrophysics. The project is carried out in a research group within the School of Physics, working on a research experiment or theoretical project supervised by a researcher. The aim is for students to acquire an understanding of the nature of research, to apply their knowledge of physics and scientific practice, and to serve as preparation for a research project at Honours level and beyond.

Textbooks

Semester 1 optional units

PHYS3951
Thermodynamics/Biophysics & Lab
Credit points: 6 Session: Semester 1 Classes: Thirty-eight 1 hour lectures and six 4 hour practicals. Prerequisites: PHYS (2011 or 2911 or 2001 or 2901); PHYS (2012 or 2912 or 2002 or 2902) Prohibitions: PHYS3951, PHYS3052, PHYS3952, PHYS3053, PHYS3059, PHYS3955, PHYS3056, PHYS3057, PHYS3957, PHYS3058, PHYS3958, PHYS3059, PHYS3959 Assessment: One 2 hour exam, practical reports

The lectures on Thermodynamics provide an introduction to the subject, emphasising the use of entropy, chemical potential, and free energy. They also introduce statistical mechanics, including the classical Boltzmann distribution and some quantum statistical mechanics. The Biological Physics component will cover applications of physics to biological systems, including topics such as molecular biology, structure and properties of polymers and proteins, thermodynamics of cells, transport of biomolecules, excitation of nerve impulses, and computer simulations of biological systems. In the practical laboratory classes, students will choose from a range of experiments that aim to give them an appreciation of the analytical, technical and practical skills required to conduct modern experimental work.

Textbooks
Schroeder, DV. An Introduction to Thermal Physics. Addison-Wesley. 2000

PHYS3951
Thermodynamics/Biophysics & Lab (Adv)
Credit points: 6 Session: Semester 1 Classes: Thirty-eight 1 hour lectures and six 4 hour practicals. Prerequisites: PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or 2902) with at least Credit Prohibitions: PHYS3951, PHYS3052, PHYS3059, PHYS3053, PHYS3056, PHYS3057, PHYS3957, PHYS3058, PHYS3958, PHYS3059, PHYS3959 Assessment: One 2 hour exam, practical reports

This unit covers the same topics as PHYS3951, but with greater depth and some more challenging material.

Textbooks
Schroeder, DV. An Introduction to Thermal Physics. Addison-Wesley. 2000

PHYS3952
Nanoscience/Thermodynamics & Lab
Credit points: 6 Session: Semester 1 Classes: Thirty-eight 1 hour lectures and six 4 hour practicals. Prerequisites: PHYS (2011 or 2911 or 2001 or 2901); PHYS (2012 or 2912 or 2002 or 2902) Prohibitions: PHYS3952, PHYS3059, PHYS3053, PHYS3956, PHYS3057, PHYS3058, PHYS3958, PHYS3059, PHYS3959 Assessment: One 2 hour exam, practical reports

Nanoscience is the study of the behaviour of light and matter as they interact with structures that have features on nanometre scales. This part of the course will cover the fundamental physics of nanoscience and the methods used for manipulating matter and creating structures on these scales. The lectures on Thermodynamics provide an
introduction to the subject, emphasising the use of entropy, chemical potential, and free energy. They also introduce statistical mechanics, including the classical Boltzmann distribution and some quantum statistical mechanics. In the practical laboratory classes, students will choose from a range of experiments that aim to give them an appreciation of the analytical, technical and practical skills required to conduct modern experimental work.

Textbooks

Schroeder, DV. An Introduction to Thermal Physics. Addison-Wesley. 2000

PHYS3952

Nanoscience/Thermodynamics & Lab (Adv)

Credit points: 6 Session: Semester 1 Classes: Thirty-eight 1 hour lectures and six 4 hour practicals Prerequisites: PHYS (2011 or 2011 or 2001 or 2091) with at least Credit; PHYS (2012 or 2012 or 2002 or 2092) with at least Credit Prohibitions: PHYS3052, PHYS3050, PHYS3051, PHYS3053, PHYS3056, PHYS3059, PHYS3095, PHYS3096, PHYS3013, PHYS3021, PHYS3913, PHYS3921, PHYS3957, PHYS3058, PHYS3958
Assessment: One 2 hour exam, practical reports

This unit covers the same topics as PHYS3052, but with greater depth and some more challenging material.

Textbooks

Schroeder, DV. An Introduction to Thermal Physics. Addison-Wesley. 2000

PHYS3054

Nanoscience/Plasma Physics & Physics Lab

Credit points: 6 Session: Semester 1 Classes: Thirty-eight 1 hour lectures and six 4 hour practicals Prerequisites: PHYS (2011 or 2011 or 2001 or 2091); PHYS (2012 or 2012 or 2002 or 2092) Prohibitions: PHYS3954, PHYS3050, PHYS3059, PHYS3052, PHYS3056, PHYS3055, PHYS3058, PHYS3056, PHYS3059, PHYS3057, PHYS3059, PHYS3059, PHYS3070, PHYS3970, PHYS3072, PHYS3972, PHYS3973, PHYS3973, PHYS3976, PHYS3976, PHYS3978, PHYS3977 Assumed knowledge: Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 2 hour exam, practical reports

Nanoscience is the study of the behaviour of light and matter as they interact with structures that have features on nanometre scales. This part of the course will cover the fundamental physics of nanoscience and the methods used for manipulating matter and creating structures on these scales. Plasma Physics is the study of ionised gases, which are collections of charged and neutral particles and form the main constituent of the Universe. The lectures cover the properties of plasmas and their applications, including nuclear fusion energy, materials synthesis and modification, environmental remediation, aerospace, nano and biomedical technologies. In the practical laboratory classes, students will choose from a range of experiments that aim to give them an appreciation of the analytical, technical and practical skills required to conduct modern experimental work.

PHYS3954

Nanoscience/Plasma Physics & Lab (Adv)

Credit points: 6 Session: Semester 1 Classes: Thirty-eight 1 hour lectures and six 4 hour practicals Prerequisites: PHYS (2011 or 2011 or 2001 or 2091) with at least Credit; PHYS (2012 or 2012 or 2002 or 2092) with at least Credit Prohibitions: PHYS3054, PHYS3050, PHYS3059, PHYS3052, PHYS3056, PHYS3055, PHYS3058, PHYS3056, PHYS3059, PHYS3057, PHYS3059, PHYS3059, PHYS3070, PHYS3970, PHYS3072, PHYS3972, PHYS3973, PHYS3973, PHYS3976, PHYS3976, PHYS3978, PHYS3977 Assumed knowledge: Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 2 hour exam, practical reports

This unit covers the same topics as PHYS3054, but with greater depth and some more challenging material.

PHYS3055

Nanoscience/Plasma/Thermodynamics (Adv)

Credit points: 6 Session: Semester 1 Classes: Fifty-seven 1 hour lectures Prerequisites: PHYS (2011 or 2011 or 2001 or 2091) with at least Credit; PHYS (2012 or 2012 or 2002 or 2092) with at least Credit Prohibitions: PHYS3055, PHYS3050, PHYS3059, PHYS3051, PHYS3059, PHYS3052, PHYS3052, PHYS3053, PHYS3054, PHYS3054, PHYS3056, PHYS3056, PHYS3055, PHYS3057, PHYS3097, PHYS3058, PHYS3098, PHYS3059, PHYS3059, PHYS3070, PHYS3079, PHYS3072, PHYS3972, PHYS3973, PHYS3973, PHYS3976, PHYS3976, PHYS3978, PHYS3977, PHYS3078, PHYS3978 Assumed knowledge: Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 3 hour exam

This unit covers the same topics as PHYS3055, but with greater depth and some more challenging material.

Textbooks

Schroeder, DV. An Introduction to Thermal Physics. Addison-Wesley. 2000

PHYS3057

Nanoscience/Thermodynamic/Biophysics

Credit points: 6 Session: Semester 1 Classes: Fifty-seven 1 hour lectures Prerequisites: PHYS (2011 or 2011 or 2001 or 2091); PHYS (2012 or 2012 or 2002 or 2092) Prohibitions: PHYS3057, PHYS3050, PHYS3059, PHYS3051, PHYS3059, PHYS3052, PHYS3052, PHYS3053, PHYS3054, PHYS3054, PHYS3056, PHYS3056, PHYS3055, PHYS3058, PHYS3059, PHYS3059, PHYS3070, PHYS3970, PHYS3072, PHYS3972, PHYS3973, PHYS3973, PHYS3976, PHYS3976, PHYS3978, PHYS3977, PHYS3978, PHYS3978 Assumed knowledge: Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 3 hour exam

Nanoscience is the study of the behaviour of light and matter as they interact with structures that have features on nanometre scales. This part of the course will cover the fundamental physics of nanoscience and the methods used for manipulating matter and creating structures on these scales. The lectures on Thermodynamics provide an introduction to the subject, emphasising the use of entropy, chemical potential, and free energy. They also introduce statistical mechanics, including the classical Boltzmann distribution and some quantum statistical mechanics.

Textbooks

Schroeder, DV. An Introduction to Thermal Physics. Addison-Wesley. 2000

PHYS3957

Nanoscience/Thermodynamic/Biophysics.(Adv)

Credit points: 6 Session: Semester 1 Classes: Fifty-seven 1 hour lectures Prerequisites: PHYS (2011 or 2011 or 2001 or 2091) with at least Credit; PHYS (2012 or 2012 or 2002 or 2092) with at least Credit Prohibitions: PHYS3057, PHYS3050, PHYS3059, PHYS3051, PHYS3059, PHYS3052, PHYS3052, PHYS3053, PHYS3054, PHYS3054, PHYS3056, PHYS3056, PHYS3055, PHYS3058, PHYS3059, PHYS3059, PHYS3070, PHYS3970, PHYS3072, PHYS3972, PHYS3973, PHYS3973, PHYS3976, PHYS3976, PHYS3978, PHYS3977, PHYS3977, PHYS3978, PHYS3978 Assumed knowledge: Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 3 hour exam

This unit covers the same topics as PHYS3057, but with greater depth and some more challenging material.

Textbooks

Schroeder, DV. An Introduction to Thermal Physics. Addison-Wesley. 2000
PHYS3059
Plasma/Thermodynamics/Biophysics
Credit points: 6 Session: Semester 1 Classes: Fifty-seven 1 hour lectures.
Prerequisites: PHYS (2011 or 2911 or 2011 or 2901), PHYS (2012 or 2912 or 2002 or 2902) Prohibitions: PHYS3959, PHYS3051, PHYS3951, PHYS3052, PHYS3952, PHYS3053, PHYS3953, PHYS3054, PHYS3954, Phys3055, PHYS3955, PHYS3056, PHYS3956, Phys3057, PHYS3957, Phys3058, PHYS3958, Phys3059, PHYS3959, Phys3060, PHYS3960, Phys3961, PHYS3062, Phys3962, PHYS3063, Phys3963, PHYS3064, Phys3964, Phys2065, PHYS2065, PHYS2965, Phys3066, PHYS3966, Phys3067, PHYS3967, Phys3068, PHYS3968, Phys2968, Phys3069, Phys3969, Phys3070, Phys3970, Phys3071, Phys3971, Phys3072, Phys3972, Phys3073, Phys3973, Phys3074, Phys3974, Phys3075, Phys3975, Phys3076, Phys3976, Phys3077, Phys3977, Phys3078, Phys3978 Assumed knowledge: Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067) Assessment: One 3 hour exam

Plasma Physics is the study of ionised gases, which are collections of charged and neutral particles and form the main constituent of the Universe. The lectures cover the properties of plasmas and their applications, including nuclear fusion energy, materials synthesis and modification, environmental remediation, aerospace, nano and biomedical technologies. The lectures on Thermodynamics provide an introduction to the subject, emphasising the use of entropy, chemical potential, and free energy. They also introduce statistical mechanics, including the classical Boltzmann distribution and some quantum statistical mechanics. The Biological Physics component will cover applications of physics to biological systems, including topics such as molecular biology, structure and properties of polymers and proteins, thermodynamics of cells, transport of biomolecules, excitation of nerve impulses, and computer simulations of biological systems.

Textbooks
Schroeder, DV. An Introduction to Thermal Physics. Addison-Wesley, 2000

PHYS3959
Plasma/Thermodynamics/Biophysics (Adv)
Credit points: 6 Session: Semester 1 Classes: Fifty-seven 1 hour lectures.
Prerequisites: PHYS (2011 or 2911 or 2011 or 2901) with at least Credit; PHYS (2012 or 2912 or 2002 or 2902) with at least Credit Prohibitions: PHYS3059, PHYS3059, PHYS3051, PHYS3951, PHYS3052, PHYS3952, Phys3053, Phys3953, Phys3054, Phys3954, Phys3055, Phys3955, Phys3056, Phys3956, Phys3057, Phys3957, Phys3058, Phys3958, Phys3059, Phys3959, Phys3060, Phys3960, Phys3961, Phys3062, Phys3962, Phys3063, Phys3963, Phys3064, Phys3964, Phys2065, Phys2065, Phys2965, Phys3066, Phys3966, Phys3067, Phys3967, Phys3068, Phys3968, Phys2968, Phys3069, Phys3969, Phys3070, Phys3970, Phys3071, Phys3971, Phys3072, Phys3972, Phys3073, Phys3973, Phys3074, Phys3974, Phys3075, Phys3975, Phys3076, Phys3976, Phys3077, Phys3977, Phys3078, Phys3978 Assumed knowledge: Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067) Assessment: One 3 hour exam

This unit covers the same topics as PHYS3059, but with greater depth and some more challenging material.

Textbooks
Schroeder, DV. An Introduction to Thermal Physics. Addison-Wesley, 2000

Semester 2 core units

PHYS3060
Quantum Mechanics & Physics Lab
Credit points: 6 Session: Semester 2 Classes: Nineteen 1 hour lectures and six 4 hour practicals. Prerequisites: PHYS(2011 or 2911 or 2011 or 2901); PHYS(2012 or 2912 or 2002 or 2002) with at least Credit; MATH(2061 or 2961 or 2067) Prohibitions: PHYS3960, PHYS3961, PHYS3030, PHYS3024, PHYS3026, PHYS3027, PHYS3911, PHYS3924, PHYS3926, PHYS3927 Assessment: One 1.5 hour exam, practical reports and oral presentation

The lectures cover the fundamental concepts and formalism of quantum dynamics, and the application to angular momentum and symmetry in quantum mechanics. The project is carried out in a research group within the School of Physics, working on a research experiment or theoretical project supervised by a researcher. The aim is for students to acquire an understanding of the nature of research, to apply their knowledge of physics and scientific practice, and to serve as preparation for a research project at Honours level and beyond.

Textbooks

PHYS3961
Quantum Mechanics & Special Project(Adv)
Credit points: 6 Session: Semester 2 Classes: Nineteen 1 hour lectures and 4 hours per week with a research group. Prerequisites: PHYS (2011 or 2911 or 2011 or 2001) with at least Credit; PHYS (2012 or 2912 or 2002 or 2002) with at least Credit; MATH (2061 or 2961 or 2067) Prohibitions: PHYS3060, PHYS3960, PHYS3961, PHYS3962, PHYS3066, PHYS3966, PHYS3067, PHYS3967, PHYS3074, PHYS3974, PHYS3075, PHYS3975, PHYS3076, PHYS3976, PHYS3077, PHYS3977, PHYS3979, PHYS3979, PHYS3080, PHYS3980, PHYS3081, PHYS3981 Assessment: One 1.5 hour exam, one 1 hour exam, practical reports

This unit must be obtained from the School of Physics Senior Coordinator.

PHYS3062
Quantum/Cond Matter Physics & Lab
Credit points: 6 Session: Semester 2 Classes: Thirty-eight 1 hour lectures plus six 4 hour practicals. Prerequisites: PHYS2012 or PHYS2912 Prohibitions: PHYS3060, PHYS3960, PHYS3961, PHYS3962, PHYS3066, PHYS3966, PHYS3067, PHYS3967, PHYS3074, PHYS3974, PHYS3075, PHYS3975, PHYS3076, PHYS3976, PHYS3077, PHYS3977, PHYS3979, PHYS3980, PHYS3080, PHYS3081, PHYS3981 Assessment: one 1.5 hour exam, one 1 hour exam, practical reports

This unit of study is intended for students majoring in Nanoscience and Technology. It should not be taken by students majoring in Physics. The lectures on Quantum Mechanics cover the fundamental concepts and formalism of quantum dynamics, and the application to angular momentum and symmetry in quantum mechanics. The lectures on Condensed Matter Physics cover the theoretical underpinning and properties of condensed matter, specifically the physics of solids. Semiconductors are investigated in detail, considering recent discoveries and new developments in nanotechnology and lattice dynamics. In the practical laboratory classes, students will choose from a range of experiments that aim to give them an appreciation of the analytical, technical and practical skills required to conduct modern experimental work.

Textbooks

PHYS3962
Quantum/Cond Matter Physics & Lab (Adv)
Credit points: 6 Session: Semester 2 Classes: Thirty-eight 1 hour lectures plus six 4 hour practicals. Prerequisites: PHYS2012 or PHYS2912 with result of credit or better. Prohibitions: PHYS3060, PHYS3960, PHYS3961, PHYS3062, PHYS3962, PHYS3966, PHYS3067, PHYS3974, PHYS3975, PHYS3075, PHYS3975, PHYS3076, PHYS3976, PHYS3077, PHYS3977, PHYS3079, PHYS3979, PHYS3080, PHYS3980, PHYS3081, PHYS3981 Assessment: One 1.5 hour exam, one 1 hour exam, practical reports

This unit of study is intended for students majoring in Nanoscience and Technology. It should not be taken by students majoring in Physics. This unit of study covers the same topics as PHYS3062, but with greater depth and some more challenging material.

Textbooks
9. Undergraduate units of study

PHYS3068

Optics/Cond. Matter and Lab

Credit points: 6
Session: Semester 2
Classes: Thirty-eight 1 hour lectures and six 4 hour practicals
Prohibitions: PHYS (2011 or 2012 or 2001 or 20001); PHYS (2012 or 2912 or 2092 or 2902)
Assumed knowledge: Electromagnetism and Quantam Mechanics at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 2 hour exam, practical reports

This unit covers the same topics as PHYS3069, but with greater depth and some more challenging material.

PHYS3069

Optics/Cond. Matter and Lab (Adv)

Credit points: 6
Session: Semester 2
Classes: Thirty-eight 1 hour lectures and six 4 hour practicals **Prohibitions:** PHYS (2011 or 2012 or 2001 or 20001); PHYS (2012 or 2912 or 2092 or 2902)
Assumed knowledge: Electromagnetism and Quantum Mechanics at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 2 hour exam, practical reports

The lectures on Optics introduce students to modern optics, using the laser to illustrate the applications in studying the properties of matter and many important optical phenomena. The lectures on Condensed Matter Physics cover the theoretical underpinning and properties of condensed matter, specifically the physics of solids. Semiconductors are investigated in detail, considering recent discoveries and new developments in nanotechnology and lattice dynamics. In the practical laboratory classes, students will choose from a range of experiments that aim to give them an appreciation of the analytical, technical and practical skills required to conduct modern experimental work.

PHYS3970

High Energy/Astrophysics & Lab

Credit points: 6
Session: Semester 2
Classes: Thirty-eight 1 hour lectures and six 4 hour practicals **Prohibitions:** PHYS (2011 or 2012 or 2001 or 20001); PHYS (2012 or 2912 or 2092 or 2902)
Assumed knowledge: Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 2 hour exam, practical reports

The lectures on High Energy Physics cover the basic constituents of matter, such as quarks and leptons, examining their fundamental properties and interactions, and their origin at the creation of the universe. The lectures on Astrophysics explore astrophysical environments inside stars and beyond (eg. the interstellar medium, the intergalactic medium and galaxies themselves) and focus on one of the most important physical processes in astrophysics: the transport of radiative energy. In the practical laboratory classes, students will choose from a range of experiments that aim to give them an appreciation of the analytical, technical and practical skills required to conduct modern experimental work.

PHYS3971

High Energy/Astrophysics and Lab (Adv)

Credit points: 6
Session: Semester 2
Classes: Thirty-eight 1 hour lectures and six 4 hour practicals **Prohibitions:** PHYS (2011 or 2012 or 2001 or 20001); PHYS (2012 or 2912 or 2092 or 2902)
Assumed knowledge: Quantum Mechanics at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 2 hour exam, practical reports

Plasma Physics is the study of ionized gases, which are collections of charged and neutral particles and form the main constituent of the Universe. The lectures cover the properties of plasmas and their applications, including nuclear fusion energy, materials synthesis and modification, environmental remediation, aerospace, nano- and biomedical technologies. The lectures on High Energy Physics cover the basic constituents of matter, such as quarks and leptons, examining their fundamental properties and interactions, and their origin at the creation of the universe. In the practical laboratory classes, students will choose from a range of experiments that aim to give them an appreciation of the analytical, technical and practical skills required to conduct modern experimental work.

PHYS3974

Credit points: 6
Session: Semester 2
Classes: Thirty-eight 1 hour lectures and six 4 hour practicals **Prohibitions:** PHYS (2011 or 2012 or 2001 or 20001); PHYS (2012 or 2912 or 2092 or 2902)
Assumed knowledge: Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 2 hour exam, practical reports

This unit covers the same topics as PHYS3069, but with greater depth and some more challenging material.

PHYS3975

High Energy/Cond. Matter Physics & Lab

Credit points: 6
Session: Semester 2
Classes: Thirty-eight 1 hour lectures and six 4 hour practicals **Prohibitions:** PHYS (2011 or 2012 or 2001 or 20001); PHYS (2012 or 2912 or 2092 or 2902)
Assumed knowledge: Electromagnetism and Quantum Mechanics at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 2 hour exam, practical reports

The lectures on Optics introduce students to modern optics, using the laser to illustrate the applications in studying the properties of matter and many important optical phenomena. The lectures on Condensed Matter Physics cover the theoretical underpinning and properties of condensed matter, specifically the physics of solids. Semiconductors are investigated in detail, considering recent discoveries and new developments in nanotechnology and lattice dynamics. In the practical laboratory classes, students will choose from a range of experiments that aim to give them an appreciation of the analytical, technical and practical skills required to conduct modern experimental work.

PHYS3976

High Energy/Astrophysics & Lab

Credit points: 6
Session: Semester 2
Classes: Thirty-eight 1 hour lectures and six 4 hour practicals **Prohibitions:** PHYS (2011 or 2012 or 2001 or 20001); PHYS (2012 or 2912 or 2092 or 2902)
Assumed knowledge: Quantum Mechanics at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 2 hour exam, practical reports

Plasma Physics is the study of ionized gases, which are collections of charged and neutral particles and form the main constituent of the Universe. The lectures cover the properties of plasmas and their applications, including nuclear fusion energy, materials synthesis and modification, environmental remediation, aerospace, nano- and biomedical technologies. The lectures on High Energy Physics cover the basic constituents of matter, such as quarks and leptons, examining their fundamental properties and interactions, and their origin at the creation of the universe. In the practical laboratory classes, students will choose from a range of experiments that aim to give them an appreciation of the analytical, technical and practical skills required to conduct modern experimental work.
knowledge: Quantum Mechanics at Senior Physics level; MATH (2061 or 2961)
Assessment: One 2 hour exam, practical reports

This unit covers the same topics as PHYS3074, but with greater depth and some more challenging material.

PHYS3079
Cond. Matter/High Energy/Astrophysics
Credit points: 6
Session: Semester 2 Classes: Fifty-seven 1 hour lectures
Prerequisites: PHYS (2011 or 2911 or 2001 or 2901); PHYS (2012 or 2012 or 2002 or 2902); PHYS (2013 or 2012 or 2002 or 2902)
Prohibitions: PHYS3979, PHYS3980, PHYS3050, PHYS3053, PHYS3953, PHYS3956, PHYS3958, PHYS3962, PHYS3968, PHYS3969, PHYS3981, PHYS3982
Assumed knowledge: Quantum Mechanics at Senior Physics level; MATH (2061 or 2961)
Assessment: One 3 hour exam

The lectures on Condensed Matter Physics cover the theoretical underpinning and properties of condensed matter, specifically the physics of solids. Semiconductors are investigated in detail, considering recent discoveries and new developments in nanotechnology and lattice dynamics. The lectures on High Energy Physics cover the basic constituents of matter, such as quarks and leptons, examining their fundamental properties and interactions, and their origin at the creation of the universe. The lectures on Astrophysics explore astrophysical environments inside stars and beyond (e.g. the interstellar medium, the intergalactic medium and galaxies themselves) and focus on one of the most important physical processes in astrophysics: the transport of radiative energy.

PHYS3079
Cond. Matter/High Energy/Astrophysics (Adv)
Credit points: 6
Session: Semester 2 Classes: Fifty-seven 1 hour lectures
Prerequisites: PHYS (2011 or 2911 or 2001 or 2901) with at least Credit; PHYS (2012 or 2012 or 2002 or 2002) with at least Credit; MATH (2061 or 2961 or 2067)
Prohibitions: PHYS3979, PHYS3980, PHYS3050, PHYS3053, PHYS3953, PHYS3956, PHYS3958, PHYS3962, PHYS3968, PHYS3969, PHYS3981, PHYS3982
Assumed knowledge: Quantum Mechanics at Senior Physics level; MATH (2061 or 2961)
Assessment: One 3 hour exam

This unit covers the same topics as PHYS3079, but with greater depth and some more challenging material.

PHYS3080
Optics/Cond.Matter/High Energy Physics
Credit points: 6
Session: Semester 2 Classes: Fifty-seven 1 hour lectures
Prerequisites: PHYS (2011 or 2911 or 2001 or 2901); PHYS (2012 or 2012 or 2002 or 2002); PHYS (2013 or 2012 or 2002 or 2002)
Prohibitions: PHYS3981, PHYS3080, PHYS3981, PHYS3082, PHYS3982
Assumed knowledge: Electromagnetism and Quantum Mechanics at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 3 hour exam

The lectures on Optics introduce students to modern optics, using the laser to illustrate the applications in studying the properties of matter and many important optical phenomena. The lectures on Condensed Matter Physics cover the theoretical underpinning and properties of condensed matter, specifically the physics of solids. Semiconductors are investigated in detail, considering recent discoveries and new developments in nanotechnology and lattice dynamics. The lectures on Astrophysics explore astrophysical environments inside stars and beyond (e.g. the interstellar medium, the intergalactic medium and galaxies themselves) and focus on one of the most important physical processes in astrophysics: the transport of radiative energy.

PHYS3081
Optics/Cond.Matter/High Energy Physics (Adv)
Credit points: 6
Session: Semester 2 Classes: Fifty-seven 1 hour lectures
Prerequisites: PHYS (2011 or 2911 or 2001 or 2901); PHYS (2012 or 2012 or 2002 or 2002); PHYS (2013 or 2012 or 2002 or 2002)
Prohibitions: PHYS3981, PHYS3080, PHYS3981, PHYS3082, PHYS3982
Assumed knowledge: Electromagnetism and Quantum Mechanics at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 3 hour exam

This unit covers the same topics as PHYS3080, but with greater depth and some more challenging material.

PHYS3082
Optics/High Energy/Astrophysics
Credit points: 6
Session: Semester 2 Classes: Fifty-seven 1 hour lectures
Prerequisites: PHYS (2011 or 2011 or 2001 or 2001); PHYS (2012 or 2012 or 2002 or 2002); PHYS (2013 or 2012 or 2002 or 2002)
Prohibitions: PHYS3982, PHYS3081, PHYS3082, PHYS3982
Assumed knowledge: Electromagnetism at Senior Physics level; MATH (2061 or 2961 or 2067)
Assessment: One 3 hour exam

The lectures on Optics introduce students to modern optics, using the laser to illustrate the applications in studying the properties of matter and many important optical phenomena. The lectures on High Energy Physics cover the basic constituents of matter, such as quarks and leptons, examining their fundamental properties and interactions, and their origin at the creation of the universe. The lectures on Astrophysics explore astrophysical environments inside stars and beyond (e.g. the interstellar medium, the intergalactic medium and galaxies themselves) and focus on one of the most important physical processes in astrophysics: the transport of radiative energy.
PHYS3982
Optics/High Energy/Astrophysics (Adv)
Credit points: 6; Session: Semester 2; Classes: Fifty-seven 1 hour lectures
Prerequisites: PHYS1001 or PHYS1901 or PHYS2901 or PHYS2001 or PHYS2907 or PHYS2007 or PHYS3007 or PHYS3008
Prohibitions: PHYS2061, PHYS2961, PHYS2067, PHYS2967, PHYS3958, PHYS3956, PHYS3955, PHYS3953, PHYS3056, PHYS3055, PHYS3053, PHYS3051, PHYS2050, PHYS2950, PHYS3959, PHYS3957, PHYS3955, PHYS3953, PHYS3951, PHYS3058, PHYS3056, PHYS3054, PHYS3052, PHYS3050
Assessment: Written exam; One or two 2 hour exams

This unit covers the same topics as PHYS3308, but with greater depth and some more challenging material.

Physics Honours
Honours Coordinator
Dr Stephen Bartlett
Qualifying
To be considered for admission to the Honours program, students must have 24 credit points of senior Physics units of study or equivalent with a SciWAM as specified in the degree resolutions.

Classes
Six lecture courses and a research project
Assessment
Coursework examinations, a 40-page Research report and oral presentation of the Research project. Physics Honours comprises formal coursework (weight 50%) and a research project (weight 50%).

Undertaking an Honours year in Physics
The Honours program in Physics provides students with an opportunity to undertake an original research project as well as attend advanced lecture courses to give students a broad understanding of modern physics at a high level. All students satisfying the qualifying requirements as set out above and in the Science Faculty Honours section of this handbook are strongly encouraged to apply for entry into Physics Honours. Fulltime enrolment is equivalent to 48 credit points for the year. Students are offered an opportunity to carry out independent research as a member of one of the active research groups in the School of Physics, under the supervision of a member of staff. Students may also study with staff from complementary disciplines, subject to the approval of the Honours coordinator. Honours students join a research group in the School of Physics and are encouraged to participate with staff and research students in activities within the School. They are provided with office accommodation, and are expected to attend colloquia and seminars. They may be employed for several hours per week in Junior teaching. Further information is available from the Physics Student Support Office, the Honours coordinator or from the website www.physics.usyd.edu.au/current/hons.shtml.

Physiology
The Department of Physiology provides introductory general intermediate units of study and for those wishing to major in the subject, in-depth Senior units of study. For Senior units the February semester offers Neuroscience and Human Cellular Physiology, and the July semester offers Heart and Circulation as well as further study in Neuroscience.

PHSI2005
Integrated Physiology A
Credit points: 6; Teacher/Coordinator: Dr Meloni Muir; Session: Semester 1
Classes: Five 1 hour lectures, one 3 hour practical and one 3 hour tutorial per fortnight.
Prerequisites: 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Mathematics, Biology, Psychology units of study
Prohibitions: PHSI2905, PHSI2001, PHSI2101, PHSI2901
Assessment: Two written exams; group and individual written and oral presentations.

Note: The completion of 6 credit points of MBLG units of study is highly recommended for progression to Senior Physiology. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisites.

This unit of study offers a basic introduction to the functions of the nervous system, including excitable cell (nerve and muscle) physiology, sensory and motor systems and central processing. It also incorporates haematology and cardiovascular physiology. The practical component involves experiments on humans and isolated tissues, with an emphasis on hypothesis generation and data analysis. Inquiry-based learning tutorial sessions develop critical thinking and generic skills while demonstrating the integrative nature of physiology. Oral and written communication skills are emphasised, as well as group learning and team work.

Textbooks

PHSI2006
Integrated Physiology B
Credit points: 6; Teacher/Coordinator: Dr Meloni Muir; Session: Semester 2
Classes: Five one-hour lectures, one 3-hour practical and one 3-hour tutorial per fortnight.
Prerequisites: 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Mathematics, Biology, Psychology units of study
Prohibitions: PHSI2906, PHSI2002, PHSI2102, PHSI2902
Assessment: Two written exams; group and individual written and oral presentations

Note: The completion of Molecular Biology and Genetics A is highly recommended for progression to Senior Physiology. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisites.

This unit of study offers a basic introduction to the functions of the remaining body systems: gastrointestinal, respiratory, endocrine, reproductive and renal. The practical component involves experiments
on humans and computer simulations, with an emphasis on hypothesis generation and data analysis. Inquiry-based learning tutorial sessions develop critical thinking and generic skills while demonstrating the integrative nature of physiology, oral and written communication skills and emphasized, as well as group learning and team work.

Textbooks

PHSI2006
Integrated Physiology B (Advanced)

Credit points: 6
Teacher/Coordinator: Dr Atomo Sawatari
Session: Semester 1
Classes: Five 1-hour lectures per week, one 3-hour practical per fortnight. Advanced students will be required to attend the designated Advanced Practical and Tutorial sessions. Students will also be exempt from all Inquiry-based learning tutorials. Prerequisites: 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Mathematics, Biology, Psychology units of study, approval of coordinator Prohibitions: PHSI2005, PHSI2002, PHSI2102 Assessment: One written exam; individual and group oral presentations, 2 practical reports (reports will replace some other assessment items from regular course)

Note: Department permission required for enrolment. Note: Permission from the coordinators is required for entry into this course. It is available only to selected students who have achieved a WAM of 75 (or higher) in their Junior units of study. Students taking combined degrees or with passes in units not listed should consult a coordinator if they do not meet the prerequisite. The completion of Molecular Biology and Genetics A is highly recommended for progression to Senior Physiology.

This unit of study is an extension of PHSI2006 for talented students with an interest in Physiology and Physiological research. The lecture component of the course is run in conjunction with PHSI2006. This unit of study gives a basic introduction to the remaining of the body systems: gastrointestinal, respiratory, endocrine, reproductive and renal. The practical component involves simple experiments on humans, isolated tissues, and computer simulations, with an emphasis on hypothesis generation and data analysis. Both oral and written communication skills are emphasized, as well as group learning. The course will provide an opportunity for students to apply the knowledge and understanding of physiological concepts by designing and conducting actual experiments. Small class sizes will provide a chance for students to interact directly with faculty members mentoring the practical sessions. Assessment for this stream will be based on oral group presentations and two practical reports. These items will replace some other assessable activities from the regular course.

Textbooks

Please note, all NEUR courses are taught and administered jointly by the Disciplines of Physiology and Anatomy & Histology and can form part of a major in Physiology, Anatomy & Histology or Neuroscience. NEUR3001/3901 and 3002/3902 are designed to be taken in conjunction with other. It is also strongly advised that NEUR3003/3903 and 3004/3904 be taken together. For information on NEUR3002 and NEUR3004 refer to the entry under Anatomy in this chapter.

NEUR3001
Neuroscience: Special Senses (Advanced)

Credit points: 6
Teacher/Coordinator: Dr Dario Protti
Session: Semester 1
Classes: Two 1 hour lectures per week; one 3 hour practical per fortnight and one 3 hour tutorial per fortnight. Advanced students will be required to attend the designated Advanced Practical and Tutorial sessions. Students will also be exempt from all Inquiry-based learning tutorials. Prerequisites: 6 credit points of Junior Chemistry plus 30 credit points from any Junior Chemistry, Physics, Mathematics, Biology, Psychology units of study, approval of coordinator Prohibitions: PHSI2005, PHSI2002, PHSI2102 Assessment: One written exam; individual and group oral presentations, 2 practical reports (reports will replace some other assessment items from regular course)

Note: Department permission required for enrolment. Note: Permission from the coordinators is required for entry into this course. It is strongly recommended that students also take unit NEUR3002 or NEUR3902.

This unit of study is an extension of NEUR3001 for talented students with an interest in Neuroscience and research in this field. The lecture/practical component of the course is run in conjunction with NEUR3001. The aim of this course is to provide students with an introduction to the structure and function of the nervous system and to the main concepts of processing of sensory information. Understanding basic sensory transduction mechanisms and the function of the sensory systems is necessary to understand how perceptual processes work in normal and disease conditions and provides a gateway to unravel the complexity of the mind. Basic aspects of low and high level sensory processing in all sense modalities will be covered, with a special emphasis on the auditory and visual systems. The relationship between sensory systems, perception and higher cognitive functions will be addressed.

Textbooks

NEUR3901
Neuroscience: Special Senses (Advanced)

Credit points: 6
Teacher/Coordinator: Dr Dario Protti
Session: Semester 1
Classes: Two 1 hour lectures per week; one 3 hour practical per fortnight and one 3 hour tutorial per fortnight. Advanced students may be exempt from attending some of these classes to permit meetings with supervisor. Prerequisites: For BMEdSc students: Credit average in BMED(2801 or 2503) and BMED(2806 or 2506) For other students: Credit average in (PHSI2101 or 2001 or 2901 or 2905 or 2906) or ANAT(2003 or 2010)) and 6 credit points of MBLG. Prohibitions: NEUR3001, PHSI3001, PHSI3901 Assumed knowledge: PHSI2005 and ANAT2010 Assessment: Two 1 hour exams, one prac report, tutorial papers, one research or library essay (research essay will replace some other assessment items from regular course).

Note: Permission from the coordinators is required for entry into this course. It is strongly recommended that students also take unit NEUR3002 or NEUR3902.

This semester unit is designed to introduce students to "cutting edge" issues in the neurosciences. This course is a combination of small lectures on current issues in cellular and developmental neuroscience and a research-based library project. Suitably qualified students may have the option of replacing the library project with a laboratory project. Issues covered in the lecture series will include the role of glial on cerebral blood flow and neural transmission, neurochemistry and psychiatric disorders and the development of central and peripheral nervous system.

Textbooks

NEUR3003
Cellular and Developmental Neuroscience

Credit points: 6
Teacher/Coordinator: Dr Kevin Keay, Dr Catherine Leamey
Session: Semester 2
Classes: Three 1 hour lectures plus one 1 hour tutorial
Prerequisites: BMedSci: 42 credit points of Intermediate BMEd units. For others: 18 credit points of Intermediate Science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology and Genetics, Physiology, Psychology or Statistics Prohibitions: NEUR3903, PHSI3002, PHSI3902 Assumed knowledge: Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain. Williams & Wilkins. 2001.

NEUR3003
Cellular and Developmental Neuroscience

Credit points: 6
Teacher/Coordinator: Dr Kevin Keay, Dr Catherine Leamey
Session: Semester 2
Classes: Three 1 hour lectures and one 1 hour tutorial
Assessment:
One 1 hour exam. Major essay/report.

Note: Enrolment in NEUR3004 is HIGHLY RECOMMENDED. Courses are designed to be taken in conjunction with each other.

This second semester unit is designed to introduce students to "cutting edge" issues in the neurosciences. This course is a combination of small lectures on current issues in cellular and developmental neuroscience and a research-based library project. Suitably qualified students may have the option of replacing the library project with a laboratory project. Issues covered in the lecture series will include the role of glial on cerebral blood flow and neural transmission, neurochemistry and psychiatric disorders and the development of central and peripheral nervous system.

Textbooks
9. Undergraduate units of study

or one 2 hour lab session per week. **Prerequisites:** For BMedSci: 42 credit points of intermediate BMed units. For others: 18 credit points of Intermediate science units of study from Anatomy & Histology, Biochemistry, Biology, Chemistry, Computer Science, Mathematics, Microbiology, Molecular Biology and Genetics, Physiology, Psychology or Statistics. Plus, students must have a **CREDIT** (or better) in NEUR3001/3002 and NEUR3002/3003. **Prohibitions:** NEUR3003, PHSI3002, PHSI3902 **Assumed knowledge:** Students should be familiar with the material in Bear, Connors & Paradiso Neuroscience: Exploring the Brain. **Assessment:** One 1-hour exam, One 3-hour exam. **Note:** Department permission required for enrolment. Note: Enrollment in NEUR3004/3904 is HIGHLY RECOMMENDED. Courses are designed to be taken in conjunction with each other. Students must receive permission from the coordinators for enrolment.

This unit encompasses the material taught in NEUR3003. Advanced students perform a research project and present a mini-lecture on a current topic in neuroscience.

Textbooks

For other NEUR units of study, see the entry for the Department of Anatomy and Histology.

PHSI3005
Human Cellular Physiology: Theory

Credit points: 6

Teacher/Coordinator: Dr William Phillips

Session: Semester 1

Classes: Three 1-hour lectures and one 1-hour tutorial slot per week.

Prerequisites: Except for BMedSci students: PHSI(3005 or 2905) and PHSI(2006 or 2005). For BMedSci: BMED (2801 and 2002). **Prohibitions:** PHSI3905, PHSI3004, PHSI3904 **Assumed knowledge:** 6 credit points of MBLG **Assessment:** One 2-hour exam and 3-5 quizzes

Note: It is highly recommended that this unit of study be taken in conjunction with PHSI3006.

The aim of this unit of study is to examine key cellular processes involved in the growth, maintenance and reproduction of human life. Processes to be studied include the regulation of cell division and differentiation in developing and adult tissues, the regulation of body fluids through ion transport across epithelia, and mechanisms of hormonal and nervous system signalling. Lectures will relate the molecular underpinnings to physiological functions: our current interpretation of how ion channels, hormone receptors and synaptic interactions mediate tissue function and human life. The significance of these molecular mechanisms will be highlighted by considering how mutations and other disorders affect key proteins and genes and how this might lead to disease states such as cancer, intestinal and lung transport disorders and osteoporosis.

Textbooks

PHSI3905
Human Cellular Physiology (Adv): Theory

Credit points: 6

Teacher/Coordinator: Dr William Phillips

Session: Semester 1

Classes: Three 1-hour lectures and one 1-hour tutorial slot per week.

Prerequisites: Credit average in PHSI(2005 or 2905) and PHSI(2006 or 2906) or in BMedSci (2801 and 2002). Students enrolling in this unit should have a WAM of at least 70. **Prohibitions:** PHSI3005, PHSI3004, PHSI3904 **Assumed knowledge:** 6 credit points of MBLG **Assessment:** One 2-hour exam, one 2000-word report and a report plan arising from a mentored research project

Note: Department permission required for enrolment.

This unit of study is to examine key cellular processes involved in the growth, maintenance and reproduction of human life. Processes to be studied include the regulation of cell division and differentiation in developing and adult tissues, the regulation of body fluids through ion transport across epithelia, mechanisms of hormonal and nervous system signalling and the regulation of muscle contraction. Lectures will relate the molecular underpinnings to physiological functions: our current interpretation of how ion channels, hormone receptors and synaptic interactions mediate tissue function and human life. The significance of these molecular mechanisms will be highlighted by considering how mutations and other disorders affect key proteins and genes and how this might lead to disease states such as cancer, intestinal and lung transport disorders and osteoporosis. Please see the Physiology website for details of mentored Advanced research topics.

Textbooks

PHSI3006
Human Cellular Physiology: Research

Credit points: 6

Teacher/Coordinator: Dr William D. Phillips

Session: Semester 1

Classes: Two small group PBL and one 1 hour lecture per week; one 3-hour practical in some weeks. **Prerequisites:** Except for BMedSci students: PHSI(2005 or 2905) and PHSI(2006 or 2906). **Prohibitions:** PHSI3005, PHSI3006, PHSI3004, PHSI3904 **Assessment:** One 1.5-hour exam, PBL assessments by oral presentations and paper summaries, prac reports.

This unit of study complements, and should be taken together with PHSI3005. PHSI3006 focuses deeply upon certain areas of cellular physiology that have particular relevance to human health and disease. In the problem-based learning (PBL) sessions groups of students work together with the support of a tutor to develop and communicate an understanding of mechanisms underlying the physiology and patho-physiology of disorders such as prostate cancer and neuromuscular disorders. Each problem runs over three weeks with two small group meetings per week. Reading lists are structured to help address written biomedical problems. Lectures provide advice on how to interpret scientific data of the type found in the research papers. Practical classes will emphasize experimental design and interpretation. Collectively, the PBL, lectures and practical classes aim to begin to develop skills and outlook needed to deal with newly emerging biomedical science.

Textbooks

PHSI3906
Human Cellular Physiology (Adv): Research

Credit points: 6

Teacher/Coordinator: Dr William D. Phillips

Session: Semester 1

Classes: Two small group PBL and one 1 hour lecture per week; one 3-hour practical in some weeks. **Prerequisites:** PHSI (2005 or 2905) and PHSI(2006 or 2906) or in BMedSci (2801 and 2802). Students enrolling in this unit should have a WAM of at least 70. **Corequisites:** PHSI3905, PHSI3906 **Prohibitions:** PHSI3006, PHSI3004, PHSI3904 **Assumed knowledge:** 6 credit points of MBLG **Assessment:** One 1.5-hour exam, PBL assessments by oral presentations and paper summaries, 1500-word research report.

Note: Department permission required for enrolment.

This unit of study complements, and should be taken together with PHSI3905. PHSI3906 focuses deeply upon certain areas of cellular physiology that have particular relevance to human health and disease. In the problem-based learning (PBL) sessions groups of students work together with the support of a tutor to develop and communicate an understanding of mechanism underlying the physiology and patho-physiology of disorders such as prostate cancer and neuromuscular disorders. Each problem runs over three weeks with two small group meetings per week. Reading lists are structured to help address written biomedical problems. Lectures provide advice on how to interpret scientific data of the type found in the research papers. Practical classes will emphasize experimental design and interpretation. Collectively, the PBL, lectures and practical classes aim to begin to develop skills and outlook needed to deal with newly emerging biomedical science. Please see the Physiology website for details of mentored Advanced research topics.

Textbooks

PHSI3007
Heart and Circulation: Normal Function

Credit points: 6

Teacher/Coordinator: Dr Steve Assinder

Session: Semester 2

Classes: Two 1-hour lectures and one 3-hour practical or one 2-hour tutorial or practical per week. **Prerequisites:** Except for BMedSci students: PHSI(2005 or 2905) and PHSI(2006 or 2906) plus at least 12 credit points of intermediate Science Units of Study For BMedSci: BMED (2801 and 2002). **Prohibitions:** PHSI3907, PHSI3903, PHSI3903 **Assumed knowledge:** 6 credit points of MBLG **Assessment:** One 2-hour exam, 3 practical assignments

Note: It is recommended that students take PHSI3007 ONLY in combination with PHSI3008.
The aim of this unit of study is to examine in depth the structure and function of the cardiovascular system at the organ system, cellular and molecular levels. There is a particular focus on exercise physiology and the way in which the heart, circulation and skeletal muscles contribute to the limits of sporting achievement. The excitability, contractility and energetics of the heart and blood vessels are studied and the regulation of these organs by local (physical and chemical) factors, hormones and the autonomic nervous system. Lectures will be complemented by practical classes and tutorials that reinforce the theory and emphasise experimental design, data interpretation and presentation.

PHSI3907 Heart & Circulation: Normal Function Adv
Credit points: 6
Teacher/Coordinator: Dr Steve Assinder
Session: Semester 2
Classes: Two 1-hour lectures and one 3-hour practical or one 2-hour tutorial per week.
Prerequisites: Exception for BMedSc students: PHSI(2005 or 2905) and PHSI(2006 or 2906) plus at least 12 credit points of intermediate Science Units of Study for BMedSc: BMED (2801 and 2803).
Assumed knowledge: PHSI3903
Credit points: 6
Assessment: 2-hour exam, 2000-word report/essay based on a mentored research project, practical assignment
Note: Department permission required for enrolment. Note: Available to selected students who have achieved an average of at least 75 in their prerequisite units of study. It is highly recommended that this unit of study be taken in combination with PHSI3908.

PHSI3008 Heart & Circulation: Dysfunction Adv
Credit points: 6
Teacher/Coordinator: Dr Steve Assinder
Session: Semester 2
Classes: Two 1-hour lectures and two 1-hour PBL sessions per week.
Prerequisites: Exception for BMedSc students: PHSI(2005 or 2905) and PHSI(2006 or 2906) plus at least 12 credit points of intermediate Science Units of Study for BMedSc: BMED (2801 and 2803).
Assummed knowledge: 6 credit points of MBLG Assessment: One 2-hour exam, 2000-word report/essay based on a mentored research project, practical assignment
Note: Department permission required for enrolment. Note: Available to selected students who have achieved an average of at least 75 in their prerequisite units of study. It is highly recommended that this unit of study be taken in combination with PHSI3007.

This unit of study complements and should be taken together with PHSI3007 which deals with the normal function of the cardiovascular system. This unit of study focuses on cardiovascular disease which is a major cause of death in western society. Lectures provide the background to understanding the disruption of normal physiological processes, (b) recent advances in cellular and molecular aspects, and (c) the physiological basis of modern approaches to treatment. Examples of diseases covered include: heart failure, heart attack, cardiac hypertrophy, atheroma and hypertension. In the seminar sessions, students will work in small groups with a tutor to further extend their understanding of cellular and molecular mechanisms underpinning cardiovascular disease. Reading lists are organised into specific topics related to a particular disease. Through analysis and discussion of the readings students develop skills necessary for interpreting and communicating science. Details of mentored Advanced research projects are available on the Physiology website.

Physiology Honours
During fourth year, no formal series of lectures is provided but students are given a relevant problem to investigate. This problem usually represents a small facet of one of the major current research projects within the Department, and the students work in collaboration with members of the staff. Students write a thesis embodying the results of their work.

Plant Science
The following units of study form part of the Plant Science program, which has been developed jointly by the Faculty of Agriculture, Food and Natural Resources and the School of Biological Sciences.

Intermediate units of study

PLNT2001 Plant Biochemistry and Molecular Biology
Credit points: 6
Teacher/Coordinator: Dr Meredith Wilkes, Prof Les Copeland, Dr Rosanne Quinnell
Session: Semester 1
Classes: Two 3 lec/week, 32 hrs total; tutorials: 5 hrs total; laboratories: 36 hrs total.
Assessment: 12 credit points of Junior Chemistry and 12 credit points of Junior Biology (or with the Dean's permission BIOL1201 and BIOL1202) Prohibitions: PLNT2901, AGCH2001 Assessment: One 2hr exam, practical reports, practical quizzes, theory of practical exam, 400 word writing assignment.

This unit of study is designed to develop an understanding of the molecular principles that underlie the structure and function of plants and how these principles relate to the use of plants by humans as a source of food and fibre.

The unit is a core unit for BScAgr and BHortSc students and an elective for BSc and other degree programs. It recognizes the specialized nature of plant biochemistry and molecular biology and is

227
a platform for students who wish to gain a sound knowledge of plant growth and development.

This unit covers the biochemistry of the main carbohydrate, lipid, protein and nucleic acid constituents of plants, metabolic pathways that regulate plant growth and development, the mobilization and deposition of storage reserves, storage and expression of genetic information and plant responses to environmental influences. The role of molecular biology in the manipulation of plant growth and development will also be explored.

At the completion of this unit students will be able to demonstrate theoretical knowledge of the biochemical structure and function of plants and how molecular biology can enhance our use of plants as food and fibres. Students will also be able to demonstrate abilities in the practice of laboratory methods used to analyse plants and the effective communication of experimental findings.

Students enrolled in this unit will gain research and enquiry skills through attendance at lectures and participation in laboratory classes and tutorials, information literacy and communication skills through the synthesis of information used to prepare practical reports, social and professional understanding by participation in groupwork and assessments that seek to understand the role of agriculture in the broader community.

Textbooks
No recommended text. A study guide/laboratory manual will be available for purchase through WebCT.

PLNT2901

Plant Biochem & Molecular Biology (Adv)
Credit points: 6 Teacher/Coordinator: Dr Meredith Wilkes, Prof Les Copeland, Dr Rosanne Quinnell Session: Semester 1 Classes: 2-3 lec/week, 32 hrs total; tutorials: 5 hrs total; research project: 36 hrs total Prerequisites: A Distinction average in 12 credit points of Junior Chemistry and 12 credit points of Junior Biology or with the Dean's permission BIOL1201 and BIOL1202 Prohibitions: PLNT2001, AGCH2001 Assessment: One 2hr exam, practical report, 400 word writing assignment.

This unit of study is designed to develop an understanding of the molecular principles that underlie the structure and function of plants and how these principles relate to the use of plants by humans as a source of food and fibre.

This unit is offered at an advanced level and is available to students in BScAgr, BHortSc, BSc and other degree programs. This unit recognizes the specialized nature of plant biochemistry and is of interest to students who wish to gain a more advanced knowledge of plant growth and development.

This unit covers the biochemistry of the main carbohydrate, lipid, protein and nucleic acid constituents of plants, metabolic pathways that regulate plant growth and development, the mobilization and deposition of storage reserves, storage and expression of genetic information and plant responses to environmental influences. The role of molecular biology in the manipulation of plant growth and development will also be explored.

At the completion of this unit students will be able to demonstrate theoretical knowledge of the biochemical structure and function of plants and how molecular biology can enhance our use of plants as food and fibres. Students will also be able to demonstrate abilities in the practice of laboratory methods used to analyse plants and the effective communication of experimental findings by completing a short research project.

Students enrolled in this unit will gain research and enquiry skills through attendance at lectures and tutorials and by completing a small research project and information literacy and communication skills through the synthesis of information used to prepare a report on the findings of the research project.

Textbooks
No recommended text. A study guide/laboratory manual will be available for purchase from the Copy Centre during the first week of semester. Lecture notes and readings will be available through WebCT.
have been critical in enhancing our understanding of the form and function of plants. The physiological and anatomical responses of plants to extreme environments such as drought and salinity will also be addressed. Attention will be paid to the anatomy and physiology of crop, horticultural and Australian native plants. This unit of study complements Plant Biochemistry and Molecular Biology, Australian Flora: ecology and conservation and Cell Biology and leads onto senior units of study in plant sciences, including Plant Growth and Development. It is essential for those seeking a career in plant molecular biology.

Textbooks

This unit of study comprises lectures/workshops and practical sessions that will explore how plants and ecosystems function. Classes will examine the central role of plants in the function of terrestrial ecosystems (e.g. global and ecosystem cycles of carbon and nutrients). Plants shape how ecosystems function, and at the same time the environment affects how plants function. Hence, we will also examine the mechanisms plants employ to adapt and acclimate to their (often stressful) environment. Adaptation and acclimation of plants to their environment will be examined at molecular to whole plant scales. You will need to draw on knowledge from intermediate units of study and explore the published literature to successfully integrate information from areas unfamiliar to yourself. The purpose of this Unit of Study is to develop an understanding of current directions in Plant Science at an advanced level. When you have successfully completed this unit of study, you should be able to:

- be familiar with modern approaches of physiology, biophysics and molecular biology in the study of plant function; understand how domains of knowledge interact to describe plant function; understand how plants function in stressful environments; carry out a small research project; craft a manuscript for publication in a peer-reviewed journal.

Textbooks

Recommended reading:

A Study Guide for the unit will be available for purchase from the Copy Centre during the first week of semester.

PLNT2903
Plant Form and Function (Advanced)

Credit points: 6
Teacher/Coordinator: A/Prof Robyn Overall, Dr Lindsay Campbell

Session: Semester 2
Classes: 24 lectures; 10 tutorials; 8 x 2hr and 2x3hr labs; 2x6 hr field trips

Assumed knowledge: 12 credit points of Junior Biology, or equivalent EG: BIOL1011 or BIOL1901 or BIOL1911 and BIOL3002 or BIOL2903 or BIOL2904 or BIOL3004 or BIOL3901

Prohibitions: PLNT2903

The content will be based on PLNT2003 but qualified students will participate in alternative components at a more advanced level. The content and nature of these components may vary from year to year.

Textbooks

A Study Guide for the unit will be available for purchase from the Copy Centre during the first week of semester.

Senior units of study

PLNT3901
Plant, Cell and Environment

Credit points: 6
Teacher/Coordinator: Dr Charles Warren and Dr Brian Jones

Session: Semester 2
Classes: Workshops and discussions 2 hr/wk; laboratories: alternate weeks 30 hr total (6 pracs; 5 hr each)

Prohibitions: PLNT3001

Assessment: One 2hr exam (40%); prac exam (20%); report and presentation (20%); laboratory quizzes and book (20%)

This unit of study is comprised of lectures, workshops and practical sessions that will explore how plants and ecosystems function. Classes will examine the central role of plants in the function of terrestrial ecosystems (e.g. global and ecosystem cycles of carbon and nutrients). Plants shape how ecosystems function, and at the same time the environment affects how plants function. Hence, we will also examine the mechanisms plants employ to adapt and acclimate to their (often stressful) environment. Adaptation and acclimation of plants to their environment will be examined at molecular to whole plant scales. You will need to draw on knowledge from intermediate units of study and explore the published literature to successfully integrate information from areas unfamiliar to yourself. The purpose of this Unit of Study is to develop an understanding of current directions in Plant Science at an advanced level. When you have successfully completed this unit of study, you should be able to:

- be familiar with modern approaches of physiology, biophysics and molecular biology in the study of plant function; understand how domains of knowledge interact to describe plant function; understand how plants function in stressful environments; carry out a small research project; craft a manuscript for publication in a peer-reviewed journal.

Textbooks

Recommended reading:

A Study Guide for the unit will be available for purchase during the first week of semester from the Copy Centre at a cost to be advised.

PLNT3002
Plant Growth and Development

Credit points: 6
Teacher/Coordinator: Dr Jan Marc (Executive Officer), Prof Robyn Overall, Prof David Guest, Dr Brian Jones

Session: Semester 2
Classes: 2-3lec per wk, one 4 hr practical (6 weeks only), one 1hr presentation of research project in week 13

Prohibitions: 12 credit points of Intermediate Biology, Plant Science, Molecular Biology and Genetics or equivalent

Assessment: PLNT3901 Assessment: One 2hr exam (30%); 2 reports (30%); two essays (30%)

This unit explores the mechanisms underlying plant growth and development from seed to maturity. It covers the process of building the plant body from embryogenesis, development and operation of meristems, polarity, patterning, controls of flowering and fruit development to programmed cell death and senescence. It includes the role of signals such as plant hormones in coordinating plant growth and development and the molecular and cellular mechanisms underlying plant responses to environmental signals such as gravity and light. There is a focus on recent plant molecular biology that has been critical in enhancing our current understanding of plant growth and development. The unit uses examples from crop, horticultural and native plants as well as the model plant Arabidopsis. Lectures are augmented by experimental work, including and independent research project. The laboratory work will include plant tissue culture, protoplast production and modern cell biological techniques used to study plant development. This unit of study complements other senior units of study in the Plant Science Major and is essential for those seeking a career in plant molecular biology.

Textbooks

Recommended reading:

A Study Guide for the unit will be available for purchase during the first week of semester from the Copy Centre at a cost to be advised.
9. Undergraduate units of study

A Study Guide for the unit will be available for purchase from the Copy Centre during the first week of semester.

PLNT3902
Plant Growth and Development (Advanced)
Credit points: 6
Teacher/Coordinator: Dr Jan Marc (Executive Officer), Prof Robyn Overall, Prof David Guest, Dr Brian Jones
Session: Semester 2
Classes: 2-3 lec per wk, one 4 hr practical (6 weeks only), one 3 hr presentation of research project in week 13
Prerequisites: 12 credit points of intermediate PLNT, BIOL AGCH or CROP units of study including at least one of PLNT2001, PLNT2901, PLNT2903, BIOL2916, BIOL2916, BIOL2003, BIOL2903, BIOL2006, BIOL2906, CROP2001, AGCH2902 or equivalent. These requirements may be varied and students with lower averages should consult the unit Executive Officer.
Prohibitions: PLNT3002, BIOL3021, BIOL3931
Assessment: One 2 hr exam (60%), project presentation and report (20%), laboratory quizzes and book (20%)

Qualified students will participate in alternative components of PLNT3002 Plant Growth and Development, representing 30% of the total assessment, as follows: the students will be exempt from one standard laboratory report and the standard independent group project. Instead, the students will conduct an advanced individual practical or theoretical research project under the supervision of a member of the academic staff. The program includes a formal presentation of the results of the project in verbal and written reports.

Textbooks
Recommended reading:
A Study Guide for the unit will be available for purchase from the Copy Centre during the first week of semester.

PLNT3003
Systematics and Evolution of Plants
Credit points: 6
Teacher/Coordinator: Dr Murray Henwood
Session: Semester 1
Classes: 2 lectures, one 3 hour practical per week, 2-day field-trip.
Prerequisites: 6 credit points of any Intermediate unit of study from BIOL, PLNT, LWSC, HORT, GEOG, GEOG, ENVI, SOIL.
Prohibitions: PLNT3903, BIOL3015/3915
Assessment: One 2 hr take-home exam (45%), oral presentation (5%), nomenclature exercise (15%), research project (35%)

This unit of study introduces students to the practical aspects of Plant Systematics and Evolution. Students will gain a working knowledge of the general techniques and approaches used in Plant Systematics (including an understanding of plant taxonomy, phylogenetics and evolutionary processes). A range of data sources (nucleotide sequences and morphology) will be used to address questions concerning the evolution, classification and historical biogeography of various plant groups. A two-day field trip will provide tuition in plant identification and an opportunity to acquire skills in field-botany. This unit of study is recommended for students with an interest in the areas of: botany, plant science, horticulture, fungal biology (including plant pathology), environmental science, bioinformatics and ecology. It is often combined with units of study offered through the School of Biological Sciences and the Faculty of Agriculture, Food and Natural Resources.

Textbooks

PLNT3903
Systematics and Evolution of Plants Adv
Credit points: 6
Teacher/Coordinator: Dr Murray Henwood
Session: Semester 1
Classes: 2 lectures & 1 practical per week.
Prerequisites: Distinction average in 6 credit points of any Intermediate unit of study from BIOL, PLNT, LWSC, HORT, GEOG, GEOG, ENVI, SOIL. These requirements may be varied and students with lower averages should consult the Unit Executive Officer.
Prohibitions: PLNT3903, BIOL3015/3915
Assessment: One 2 hr take-home exam (45%), oral presentation (5%), nomenclature exercise (15%), research project (35%)

Qualified students will participate in alternative components of PLNT3003 Systematics and Evolution of Plants. The content and nature of these components may vary from year to year.

Textbooks
Same as PLNT3003.

BIOL3009
Terrestrial Field Ecology
Credit points: 6
Teacher/Coordinator: Dr G Wardle
Session: S1 Intensive
Classes: 6 day field trip held in the pre-semester break and 4 practical classes during weeks 1-4 in Semester 2
Prerequisites: Distinction average in 12 credit points of Intermediate Biology or ANSC2004 and BIOM2001
Prohibitions: BIOL3909
Assumed knowledge: BIOL (3006 or 3906). Prior completion of one of these units is very strongly recommended.
Assessment: Discussions and quiz (10%), research project proposal and brief presentation (10%), sampling project report (20%), specimen collection (10%), research project report (50%)
Note: Note: One 6 day field trip held in the pre-semester break (18 - 23 July 2010), and 4 practical classes during weeks 1-4 in Semester 2.

This field course provides practical experience in terrestrial ecology suited to a broad range of careers in ecology, environmental consulting and wildlife management. Students learn a broad range of ecological sampling techniques and develop a detailed understanding of the logical requirements necessary for manipulative ecological field experiments. The field work incorporates survey techniques for plants, small mammals and invertebrates and thus provides a good background for ecological consulting work. Students attend a week-long field course and participate in a large-scale research project as well as conducting their own research project. Invited experts contribute to the lectures and discussions on issues relating to the ecology, conservation and management of Australia’s terrestrial flora and fauna.

BIOL3009
Terrestrial Field Ecology (Advanced)
Credit points: 6
Teacher/Coordinator: Dr G Wardle
Session: S2 Intensive
Classes: 6 day field trip held in the pre-semester break and 4 practical classes during weeks 1-4 in Semester 2
Prerequisites: Distinction average in 12 credit points of Intermediate Biology or ANSC2004 and BIOM2001
Prohibitions: BIOL3909
Assumed knowledge: BIOL (3006 or 3906). Prior completion of one of these units is very strongly recommended.
Assessment: Discussions and quiz (10%), research project proposal and brief presentation (10%), sampling project report (20%), sample and data processing (10%), research project report (50%)
Note: Note: One 6 day field trip held in the pre-semester break (18 - 23 July 2010) and 4 practical classes during weeks 1-4 in Semester 2.

This unit has the same objectives as BIOL3009 Terrestrial Field Ecology, and is suitable for students who wish to pursue certain aspects in greater depth. Entry is restricted, and selection is made from applicants on the basis of previous performance. Students taking this unit of study will complete an individual research project on a topic negotiated with a member of staff. It is expected that much of the data collection will be completed during the field trip but some extra time may be needed during semester 2. Specific details of this unit of study and assessment will be announced in meetings with students at the beginning of the unit. This unit of study may be taken as part of the BSc (Advanced) program.

BIOL3017
Fungi in the Environment
Credit points: 6
Teacher/Coordinator: A/Prof P McGe Session: S1 Intensive
Classes: 40 hours of practicals in a two week intensive program held immediately prior to semester one (laboratory component each morning from 15-26 February 2010), plus the equivalent of 30 hours self-guided study during the semester.
Prerequisites: 12 credit points of Intermediate Biology or Plant Science, or 6 credit points of Intermediate Biology, or Plant Science, and 6 Intermediate credit points of either Microbiology or Geography.
Prohibitions: BIOL3917
Assessment: Selected from one 2 hour take home exam, laboratory and written assignments.
Note: Dates: 15-26 February 2010. The completion of 6 credit points of MBLG units is highly recommended.

The unit is designed to develop understanding of fungal ecology in relation to environmental and rehabilitation biology, biological control of pests and pathogens, and soil microbiology. Emphasis will be placed on the function of fungi, and the benefit provided by fungi in symbiotic
interactions with plants, including mycorrhizal fungi and shoot-borne endophytes. Physiological and ecological implications of the interactions will also be considered. Each student will design and implement a research project. Analytical thinking and research-led activity will be encouraged. Using broad scientific approaches, each student will gain the capacity to work cooperatively to find and analyse information from primary sources, develop approaches to test their understanding, and to present their work in a scientifically acceptable manner. Students will develop a deeper understanding of one area of fungal biology through independent study. Part of the learning material will be available on the internet.

BIOI3917

Fungi in the Environment (Advanced)

Credit points: 6

Teacher/Coordinator: A/Prof P McGee

Session: S1 Intensive

Classes: 40 hours of practical work in a two week intensive program immediately prior to semester one (laboratory component each morning from 15-26 February 2010), plus the equivalent of 30 hours self-guided study during the semester.

Prerequisites: Distinction average in 12 credit points of Intermediate Biology and Plant Science, or 6 credit points of Intermediate Biology, or Plant Science, and 6 Intermediate credit points of either Microbiology or Geography.

Prohibitions: BIOI3107

Assessment: Selected from one 2 hour take home exam, laboratory and written assignments.

Note: The completion of 6 credit points of MBLG units is highly recommended.

Qualified students will be encouraged to develop a research project under supervision. The content and nature of the research will be agreed on with the executive officer.

PPAT3003

Plant Disease

Credit points: 6

Teacher/Coordinator: Prof David Guest

Session: Semester 1

Classes: (2 lec, 3h prac)/wk

Prerequisites: MICR2024

Assessment: One 2h end of semester exam (60%), one prac exam (25%), six take-home quizzes (15%).

This unit introduces the pathogens and plant diseases that damage natural ecosystems and limit food, fibre and biofuel production. The lecture component of the unit discusses the aetiology of plant disease and symptom development; diagnosis of plant disease; the biology, epidemiology and management of fungi and other microbes that cause plant disease; breeding for disease resistance; plant-parasite relationships; and disease resistance in plants. The practical component builds skills in the techniques used to handle and identify plant pathogens, and develops skills in experimental design, execution and interpretation of experimental data. At the completion of this unit, students will be able to exercise problem-solving skills (developed through practical experiments and lecture discussions), think critically, and organise knowledge (from consideration of the lecture material and preparation of practical reports), expand from theoretical principles to practical explanations (through observing and reporting on practical work), use appropriate software for analysing data and reporting on laboratory projects. Students learn to work in a research team, plan effective work schedules (to meet deadlines for submission of assessable work), use statistical analysis in research, keep appropriate records of laboratory research, work safely in a research laboratory and operate a range of scientific equipment. Students will gain research and inquiry skills through research based group projects, information literacy and communication skills through assessment tasks and personal and intellectual autonomy through working in groups.

Textbooks

Schumann GL & Darcy CJ 2006. Essential Plant Pathology. APS Press, St Paul, Minn., USA.

HORT3005

Production Horticulture

Credit points: 6

Teacher/Coordinator: Dr Jenny Jobling

Session: Semester 1

Classes: (2 lec; 1x3hr prac/workshop)/wk

Prerequisites: Two of PLNT2001, PLNT2901, PLNT2902, PLNT2903

Assumed knowledge: AFNR1001, AFNR1002 and HORT2002

Assessment: One 3 hr exam (55%), three assignments (45%).

This unit of study covers topics on the production of perennial fruit crops, wine grapes, the sustainable production of vegetables and it also covers the key aspects of the postharvest handling and quality assurance of fresh produce. At the end of this unit students are expected to have a detailed understanding of these areas of horticulture and be able to discuss related literature and the physiological principles underlying the commercial success of these horticultural enterprises. Students will also gain research and enquiry skills through research based practical sessions and assignments.

Textbooks

Reference Books:

Psychology

Psychology is the study of behaviour and it is approached on a scientific basis, with provision for professional training at the postgraduate level. The research activities of the School cover almost all of the main branches of the discipline. Extensive information about the subject and the School is available on the School web-site: www.psych.usyd.edu.au. A major in Psychology that is accredited by the Australian Psychological Society and can lead to registration as a Psychologist in NSW (upon completion of further studies) can be gained through a number of degree programs: Bachelor of Science, Bachelor of Psychology, Bachelor of Arts, Bachelor of Arts (Psychology), Bachelor of Arts and Science, Bachelor of Liberal Studies and Bachelor of Economics (Social Science). A normal three year sequence required for a major in Psychology is: PSYC 1001, 1002, 2011, 2012, 2013, 2014, 3018 and at least three Senior units of study selected from PSYC3010 (required for entry into Honours), 3011, 3012, 3013, 3014, 3015, 3016, 3017, 3020 and HPSC3023. The senior units must include at least one of PSYC 3011, 3012, 3013 and 3014. Mid-year entry is possible and involves modification of this sequence.

Enquiries

The main enquiry office of the School is Room 325, Level 3 Brennan MacCallum Building. A18. Staff members available to discuss particular courses may be contacted directly or through this office.

Honours

In order to be eligible to enter Psychology Honours, it is necessary (except as provided in the by-laws or resolutions) to gain a year average of at least Pass with Credit in Intermediate and in Senior Psychology units of study constituting a major in Psychology, and must include PSYC3010. Students wishing to graduate with Honours in Psychology are urged to discuss their choice of other subjects with a Faculty adviser as soon as practicable. There is currently a quota on entry to Psychology Honours. Entry is competitive on the basis of academic merit.

Examinations

Undergraduate units of study are examined at the end of each semester and include classwork by way of essays, reports or practical/laboratory work. At the beginning of each unit of study students are advised of the contributions of exam and classwork for assessment purposes.

Summer School: January-February

PSYC1001 and PSYC1002 are offered in the Sydney Summer School. Consult the Sydney Summer School website for more information: www.summer.usyd.edu.au.

PSYC1001

Psychology 1001

Credit points: 6

Session: Semester 1

Main Classes: Three 1 hour lectures and one 1 hour tutorial per week, plus 1 hour per week of additional web-based (self-paced) material related to the tutorial.

Assessment: One 2.5 hr exam, one 1000w essay, multiple tutorial tests, experimental participation.
Psychology 1002 is a further general introduction to the main topics and methods of psychology, and it is the basis for advanced work as well as being of use to those not proceeding with the subject. Psychology 1002 covers the following areas: human mental abilities; learning, motivation and emotion; visual perception; cognitive processes; abnormal psychology.

This unit is also offered in the Sydney Summer School. For more information consult the website:

http://www.usyd.edu.au/summerschool/

Textbooks
Psychology 1002 manual

Intermediate units of study

PSYC2011
Brain and Behaviour

Credit points: 6 Teacher/Coordinator: Dr Ian Johnston Session: Semester 1 Classes: Three 1 hour lectures and one 1 hour tutorial per week.

Prerequisites: PSYC (1001 and 1002). Prohibitions: PSYC2111

This unit of study examines a range of phenomena and principles in learning and perception and their relations to underlying neural substrates. The emphasis in learning is on instrumental conditioning and the principle of reinforcement, ranging from applications of this principle to its neural substrates. Also covered are analyses of aversive-based learning, such as punishment and avoidance, and anxiety, together with related neurochemical mechanisms and the effects of various psychopharmacological agents on these processes. A number of perceptual phenomena will be studied (e.g., motion detection, recognition of faces, identification of emotion). A series of practical classes and demonstrations allow students to gain hands-on experience of how some of these principles and phenomena may be studied experimentally.

Textbooks
See school website

PSYC2012
Statistics & Research Methods for Psych

Credit points: 6 Teacher/Coordinator: Dr Margaret Charles Session: Semester 1 Classes: Two 1 hour lectures and one 1 hour tutorial per week.

Prerequisites: PSYC (1001 and 1002). Prohibitions: PSYC2112

Assumed knowledge: Recommended: HSC Mathematics, any level

Assessment: One 2 hour exam, class tests, online quizzes, one 1500 word group project, one 45 minute mid-semester exam.

The aim is to introduce students to fundamental concepts in statistics as applied to psychological research. These include summary descriptive statistics, an introduction to the principles and practice of research design, and the use of inferential statistics. Building upon this framework, the unit of study aims to develop each student's expertise in understanding the rationale for, and application of, a variety of statistical tests to the sorts of data typically obtained in psychological research.

Textbooks
See school website

PSYC2013
Cognitive and Social Psychology

Credit points: 6 Teacher/Coordinator: Dr Karen Gonsalkorale Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorial per week.

Prerequisites: PSYC (1001 and 1002). Prohibitions: PSYC2113

Assessment: One 2 hour exam, major assignment (1500-2000 word essay/report), minor assignment (short written practical exercise and/or tutorial quizzes).

This unit expands the depth and range of topics introduced in the first year lectures on Cognitive Processes, Developmental Psychology and Social Psychology. The first section (16 lectures) on Cognitive Processes focuses on current theories of memory, attention, problem solving and decision making and discusses the methods and issues involved in investigating these processes in both healthy individuals and people with cognitive dysfunctions. The second section (6 lectures) on Developmental Psychology presents and evaluates evidence about the early influences on children's social and cognitive development. The final section (16 lectures) on Social Psychology continues an examination of social development across the lifespan from adolescence to late adulthood, followed by an examination of salient social constructs such as prejudice, group processes, altruism, affiliation and attraction.

Textbooks
Cognitive: See School website

PSYC2014
Personality and Intelligence 1

Credit points: 6 Teacher/Coordinator: Dr Niko Tilipoulos Session: Semester 2 Classes: Three 1 hour lectures and one 1 hour tutorial per week.

Prerequisites: PSYC (1001 and 1002). Prohibitions: PSYC2114

Assessment: One 2 hour exam, major assignment (1500-2000 word essay/report), minor assignment (short written practical exercise and/or tutorial quizzes).

PSYC2014 is made up of two conceptual components: Theories of Personality and Differential Psychology (Individual Differences). The aim of the Personality component is to introduce students to a number of influential theories of personality. Students will be exposed to some conceptual analysis and expected to examine critically the various theories covered. The aim of the Differential Psychology component is to introduce key topics in the study and assessment of individual differences in personality and intelligence. Students are expected to gain an understanding about the major theories of intelligence, associated research methods, and the traditional areas of group differences.

Textbooks
Theories of personality component:
Differential Psychology component:
See School website

Senior units of study

PSYC3010
Advanced Statistics for Psychology

Credit points: 6 Teacher/Coordinator: Dr Sabina Kleitman Session: Semester 1 Classes: Two 1 hour lectures and one 2 hour tutorial per week.

Prerequisites: PSYC (2012 or 2112) plus at least one other Intermediate Psychology Unit of Study from PSYC (2011 or 2111), PSYC (2013 or 2113), PSYC (2014 or 2114).

Prohibitions: PSYC3201

Assessment: One 2 hour exam, class test, 1500 word assignment, practical exercises.

This unit of study expands upon students' knowledge of the general linear model and its applications in the analysis of data from psychological research. The first half of the course is focused on research for which analysis of variance would be appropriate, and
develops students' ability to test more focused questions than can be
answered by omnibus F tests. Issues that arise in testing contrasts,
such as inflation of Type I error, will also be considered. In the second
half of the course, students will further their understanding of
multivariate techniques, such as multiple regression analysis.

Textbooks
See School website

PSYC3011
Learning and Behaviour
Credit points: 6 Teacher/Coordinator: Dr Justin Harris Session: Semester 1 Classes: Two 1 hour lectures and one 2 hour tutorial per week. Prerequisites: PSYC (2011 or 2111) and at least one other Intermediate Psychology Unit from PSYC (2012 or 2112), PSYC (2013 or 2113), PSYC (2014 or 2114). Prohibitions: PSYC3209 Assumed knowledge: PSYC (2012 or 2112) Assessment: One 2 hour exam, one 2000 word prac report, tutorial assessment.

This unit addresses the fundamental concepts and more important research findings related to contemporary theories of associative learning in animals and humans. It examines the application of such fundamental research to issues such as drug use, food choice, and learned helplessness. It is designed to foster skills in reading primary sources in this area, and provide the opportunity for hands-on experience in carrying out a research project.

Textbooks
See School website

PSYC3012
Cognition, Language and Thought
Credit points: 6 Teacher/Coordinator: Dr Bruce Burns Session: Semester 1 Classes: Two 1 hour lectures and one 2 hour practical per week. Prerequisites: PSYC (2013 or 2113) and at least one other Intermediate Psychology unit from PSYC (2011 or 2111), PSYC (2012 or 2112), PSYC (2014 or 2114). Prohibitions: PSYC3205 Assumed knowledge: PSYC (2012 or 2112) Assessment: One 2 hour exam, 2000 word prac report, practical exercise(s).

This unit extends the theories and methods of investigating memory and attentional processes discussed in PSYC2013 to consider a number of domains of higher cognitive processing. One strand of the course will focus on language processing and consider how children learn language, the processes involved in speech perception and production, language comprehension and reading. The remainder of the course will deal with the cognitive processes involved in reasoning and decision-making. The practical program will expose students to a variety of the research methods used to investigate higher cognitive processes, develop their understanding of how these methods can be used to investigate hypotheses about mental processes and consider applications of cognitive research to real-world problems and issues.

Textbooks
See School website

PSYC3013
Perceptual Systems
Credit points: 6 Teacher/Coordinator: Dr Alex Holcombe Session: Semester 2 Classes: Two 1 hour lectures and one 2 hour tutorial per week. Prerequisites: PSYC (2011 or 2111) and at least one other Intermediate Psychology Unit from PSYC (2012 or 2112), PSYC (2013 or 2113), PSYC (2014 or 2114) or ANAT2010. Prohibitions: PSYC3210 Assumed knowledge: PSYC2012 Assessment: One 2 hour exam, one 2500 word report, tutorial quiz, group presentation.

The unit covers at an advanced level selected topics in perception from the psychophysical, physiological and neuropsychological perspectives. Students are expected to gain an understanding of developing knowledge at current frontiers of research, appreciate the significance of basic perceptual research for perception in the office and on the pitch, and be able to evaluate the empirical and conceptual worth of research contributions. Topics covered include spatial and temporal limits of vision, form completion and the resolution of ambiguity, multisensory integration and neural mechanisms.

Textbooks
See School website

PSYC3014
Behavioural and Cognitive Neuroscience
Credit points: 6 Teacher/Coordinator: Dr Karen Croot Session: Semester 2 Classes: Two 1 hour lectures and one 2 hour practical per week. Prerequisites: (PSYC (2011 or 2111) and at least one other Intermediate Psychology Unit from PSYC (2012 or 2112), PSYC (2013 or 2113), PSYC (2014 or 2114)) OR (ANAT2010 plus PCCL2011) Prohibitions: PSYC3204, PSYC3215 Assumed knowledge: PSYC (2113 or 2013) Assessment: One 2 hour exam, one major essay/report 2000-2500 words, tutorial quiz and participation.

This unit of study will focus on approaches to studying neurosciences incorporating molecular, pre-clinical and clinical models of brain function. These biological models of brain function will be linked with behavioural, affective and cognitive function and dysfunction. The implications of focal cognitive deficits in neurological patients for models of normal cognitive function will also be explored. Specific topics to be covered will be selected from the following areas: appetite psychoneuroimmunology, sensorimotor integration, and the neural and molecular basis of learning and memory, attention, language, visual cognition and praxis. In addition to lectures, a practical component will cover basic neuroanatomy, histology and neuroparmacology, and will introduce students to experimental and case-study approaches to studying neurosciences.

Textbooks
See School website

PSYC3015
Personality and Intelligence 2
Credit points: 6 Teacher/Coordinator: Dr Niko Tiliopoulos Session: Semester 1 Classes: Two 1 hour lectures and one 2 hour tutorial per week. Prerequisites: PSYC (2014 or 2114) and PSYC (2011 or 2111) or PSYC (2012 or 2112 or 2113 or 2111) Assumed knowledge: PSYC (2012 or 2112); PSYC (2013 or 2113) Assessment: One 2 hour exam; one 2000 word essay; tutorial quizzes.

The aim of this unit of study is to provide an overview of different perspectives on the construct of personality, intelligence, and metacognitive abilities to build a critical platform from which both empirical evidence and theoretical propositions can be evaluated. Two broad methodological approaches will be considered, compared, and contrasted in relation to cognitive and non-cognitive attributes and their potential overlap. (a) The individual differences approach to the study of personality and intelligence broadly defined which serves as the basis of much of contemporary psychological assessment in clinical, educational, and organizational settings and (b) the experimental approach to cognitive abilities which use experimental methods to study the information-processing components that underlie intellectual performance. Metacognitive abilities will be studied through differential psychology and decision-making paradigms.

Textbooks
See school website.

PSYC3016
Developmental Psychology
Credit points: 6 Teacher/Coordinator: Dr Pauline Howie Session: Semester 2 Classes: Two 1 hour lectures and one 2 hour tutorial per week. Prerequisites: PSYC (2013 or 2113) and at least one other Intermediate Psychology unit from PSYC (2011 or 2111), PSYC (2012 or 2112), PSYC (2014 or 2114). Prohibitions: PSYC3206 Assessment: One 2 hour exam, one 2000 word report.

This unit examines various theoretical approaches to human development and selected issues within Developmental Psychology. The major issues/controversies in developmental theory are examined in relation to a number of more influential theoretical approaches. Students are expected to gain an understanding of the main theoretical influences upon current developmental research and to be able to compare and contrast theories of development. The unit introduces students to a range of issues in selected areas of contemporary Developmental Psychology. Students are expected to gain knowledge of these areas, and to develop a critical approach to the analysis of current research and theoretical issues. They are also expected to apply their knowledge in practical exercises involving observations of children.

Textbooks
9. Undergraduate units of study

PSYC3017
Social Psychology
Credit points: 6 Teacher/Coordinator: Dr Lisa Zadro Session: Semester 1 Classes: Two 1 hour lectures and one 2 hour tutorial per week. Prerequisites: PSYC (2013 or 2113) and at least one other Intermediate Psychology Unit of Study from PSYC (2011 or 2111), PSYC (2012 or 2112), PSYC (2014 or 2114). Prohibitions: PSYC3212 Assumed knowledge: PSYC (2012 or 2112). Assessment: One 2 hour exam, one 2500 word research report, tutorial presentation.

This unit continues the coverage of topics in Social Psychology begun in PSYC1001 and PSYC2013. The unit is divided into topic areas, where the emphasis is on evaluating theories and the relevant evidence. Topics areas include social relationships, antisocial behaviours, applied social psychology (effects of the physical environment on social behaviour; jury decision making), social cognition, leadership, and cross cultural psychology. Tutorials provide first hand experience of research by involving students in a range of research projects on the topics covered in the lectures. The tutorials also provide an opportunity for discussion of issues associated with these topics.

Textbooks
See School website.

PSYC3018
Abnormal Psychology
Credit points: 6 Teacher/Coordinator: Dr Marianna Szabo Session: Semester 1 Classes: Two 1 hour lectures and one 2 hour tutorial per week. Prerequisites: PSYC (2014 or 2114) and at least one other Intermediate Psychology unit of study from PSYC (2011 or 2111), PSYC (2012 or 2112), PSYC (2013 or 2113). Prohibitions: PSYC3203 Assumed knowledge: PSYC2012 Assessment: One 2 hour exam, one 2000 word essay, quiz, tutorial presentation.

This unit of study critically examines core issues in Abnormal Psychology, concerning the description, explanation and treatment of psychological disorders. The unit of study will include topics such as:

(a) Adult abnormal psychology: Anxiety disorders (specific phobias, panic disorder, generalised anxiety disorder, OCD); Addictive disorders (drug, alcohol, gambling); Eating disorders (anorexia nervosa, bulimia nervosa); Mood disorders (dysthymia, major depressive disorder, cyclothymia, bipolar disorder); Schizophrenia, Personality disorders.

(b) Child abnormal psychology: Attention Deficit Hyperactivity disorder; Conduct disorder; Anxiety disorders, Depression.

Textbooks
See School website.

PSYC3020
Applications of Psychological Science
Credit points: 6 Teacher/Coordinator: Dr Helen Paterson Session: Semester 2 Classes: Two 1 hour lectures and one 2 hour tutorial per week. Prerequisites: 12 credit points of junior psychology and 12 credit points in Intermediate Psychology Prohibitions: PSYC3019 Assessment: One 2 hour examination and one 2500 word written assignment

The main focus of this unit will be on Health Psychology, but other applied areas such as Forensic and Organizational Psychology will also be introduced. The aim of the Health Psychology component is to define health within a biopsychosocial framework and to present some of the current issues in the area. It will provide an introduction to key areas in health psychology, and demonstrate how they relate to other disciplines. Issues such as the context within which treatment takes place, the psychosocial factors involved in dealing with physical disease, the application of psychological theory to illness and preparation for hospitalization, the management of adverse psychological sequelae arising from hospitalisation and rehabilitation will be considered. Also considered are the key models and theories in health Psychology which are seen by many to be the foundations of the subject area.

Textbooks
Morrison, Bennett, Butow, Mullan and White. An Introduction to Health Psychology: An Australian perspective. Pearson Education, Australia. 2007

HPSC3023 Psychology & Psychiatry History & Phil
HPSC3023 Psychology & Psychiatry History & Phil can be counted towards a Psychology Major. Successful completion of this unit of study is essential for students intending to take the Theoretical Thesis option in Psychology Honours.

Psychology Honours
Prerequisites for admission
A Major in Psychology with a minimum Credit average or better across both the Intermediate and Senior Psychology. Units of Study comprising the 48 credit points of Intermediate and Senior Psychology Units that constitute the minimum required for the major. PSYC (3010 or 3201) must be included in the Senior Units. BPsyCh students should consult resolutions in chapter 6. School permission required. Due to restricted resources for research supervision, the intake to Psychology Honours will be limited to approximately 80 students and will be determined by academic merit in Intermediate and Senior Psychology.

Assessment
Formal exams in Ethics and Issues in Psychology and in Research Methods; report of empirical research project; theoretical thesis or assessment in two Special Fields modules. Students are required to (a) devise, conduct and report upon an empirical research project (research area dependent on interests and specialities of staff members); (b) write a theoretical thesis or attend two Special Fields seminars and complete required assessment tasks; and (c) attend one lecture series in Ethics and Issues in Psychology and two series of lectures in Research Methods.

Virology
Details for Virology units can be found under the Microbiology entry.
This chapter gives enrolment advice to undergraduate students studying towards the Bachelor of Liberal Arts and Science (BLAS) in the Faculty of Science.

Following are specific summaries of the requirements for the degree including examples of how unit of study choices can be made over the duration of the degree.

It should be stressed that the information in this chapter is intended to be a rough guide only. All students will have to decide for themselves how to plan their degree to suit their own particular interests and situation.

All students are expected to read the degree resolutions for their course before they commence their studies, and from time to time during their studies. Undergraduate degree resolutions appear in chapter 2. The table of undergraduate units of study available for the Bachelor of Science degree appears in Chapter 3. Table A which sets out undergraduate units of study offered by the Faculty of Arts appears in this chapter.

Students enrolled in degree offered by the Faculty of Science are required to familiarise themselves with the following key policies:

Special Arrangements
Students who are experiencing difficulty in meeting their assessment requirements due to competing essential community commitments may apply for Special Arrangements for examination and assessment.

Special Consideration
Students who have a serious illness or who have experienced misadventure which may affect their academic performance in a course or unit of study may request that they be given Special Consideration in relation to the determination of their results.

BLAS students should take particular note that applications for special consideration for units offered by the Faculty of Science (Table 1 units with the exception of Information Technology units) should be lodged with the Faculty of Science Office and applications for special consideration for units offered by the Faculty of Arts (Table A) should be lodged with the Faculty of Arts Office.

At Risk
In order to progress through a degree course, students must:

• achieve the minimum Progression Rate specified by the Faculty; in the Faculty of Science, students must pass more than 50% of the units attempted in each semester
• pass any field or clinical work, practicum, or other unit of study mandated by the Faculty, (ATHK1001 and WRIT1001 for BLAS students)
• avoid fail grades in repeated units of study
• maintain a weighted average mark of more than 50.

If you do not meet the progress requirements, you will be identified as a student at risk.

Code of Conduct for Students
The University has clear expectations of students in respect of academic matters and personal behaviour.

Student Plagiarism: Coursework Policy and Procedure
The University of Sydney expects high standards of academic honesty in all student work. In particular, the University is opposed to and will not tolerate plagiarism.

Details on Special Arrangements, Special Consideration, Code of Conduct for Students, and Student Plagiarism Policy are provided in chapter 1 of this handbook.

Enrolment day FAQs

What is a 'major'?
Students enrolled in the Bachelor of Liberal Arts and Science degree are required to complete at least one major. A major is a specialisation in the senior year of your degree. It is useful to have an idea of what major, or group of majors, interest you now, so that you can plan your junior and intermediate years properly. You may take majors offered by the Faculties of Arts and Science as set out in Table A and Table 1.

How many credit points should I take per semester?
You should take 24 credit points each semester if you are a full-time student. There is an upper limit of 30 credit points per semester. If you take fewer than 18 credit points in each semester you will automatically become part-time.

To finish your degree in the recommended minimum time you will have to take 48 credit points per year, or 24 per semester. If you enrol part-time you can take as few credit points as you like. You must keep in mind however that you have a 10 year limit to finish your degree.

Students wishing to accelerate their degree programs may consider undertaking units offered at Summer School or undertaking up to 30 credit points each semester. The degree summaries and sample programs in this chapter assume you will enrol full-time.

Do I need to be full-time?
International Students must enrol full-time in a minimum of 24 credit points per semester unless there are exceptional circumstances. Failure to enrol in 24 credit points per semester may have serious ramifications for your visa.

Australian citizens and permanent residents who wish to receive a transport concession card must be full-time students.

If you receive any financial support, whether from a University scholarship or from the government, you may well need to enrol as a full-time student. Check the terms and conditions of that support before going part-time.

Can I take units of study from other faculties?
You have available to you units offered by the Faculties of Science and Arts as well as units set out in the BLAS table.

Also available are undergraduate units from any other faculty at the University. The onus is on you to get written permission from the relevant department and bring it to the Faculty of Science.

You must ensure that any units fit in with the compulsory requirements of your degree.
Can I receive credit for previous tertiary study?
Yes. The amount of credit you may receive depends on your individual circumstances, but in general the total amount of credit granted may not be greater than 96 credit points and may not include more than 48 credit points from degrees that have been completed.

On the day that you enrol you must lodge an application for credit from previous study. Because of the large numbers of applications received at enrolment there can be a considerable delay in processing your application, but all credit offers will be sent to students well in advance of the last day to add a unit of study for the semester in which they enrol.

The faculty must sight originals of your academic transcripts, as well as detailed descriptions of prior units of study completed, as at the time of completion of the units. Descriptions will normally be an extract from a Handbook or a unit of study syllabus/outline, and should include the credit point value, learning outcomes, assessment details, texts and references, and contact details for each unit of study. You must bring this information with you on the day that you enrol.

On enrolment day you will have to make unit of study choices as if you have had no previous university study. Alternatively, you may be able to obtain special permission to enrol in Intermediate or Senior units of study by taking a copy of your transcript and unit of study descriptions to Academic advisers for each individual unit of study. Unit of study Academic advisers are listed under unit of study descriptions in this Handbook.

Information on the current application process for credit, including the application form, is available from the Faculty of Science website.

Are there any bridging courses available?
There are bridging courses in Biology, Chemistry, Mathematics and Physics, designed to cover the assumed knowledge that students would normally cover in the HSC. They run in February each year after enrolment and are recommended for students who either didn't take a subject at the HSC or feel they need some revision.

Who can enrol in Advanced units of study?
Advanced units of study are available to those students enrolled in any program in the Faculty of Science who have performed at a high level or who perform well in their studies at the University.

Consult a departmental adviser at in-person enrolment about your eligibility to enrol in advanced level subjects in the first year of study.

Students should also consult the unit of study tables for assumed and prerequisite marks in the HSC required to enrol in advanced units of study.

What is the Talented Student Program?
The Talented Student Program (TSP) is tailored to meet students' individual needs and is restricted to the very top students.

The Talented Student Program is available in most areas of Science. Students receive special supervision by academic staff and often engage in studies on an individual basis with small numbers of fellow students, all of whom have a special interest in the same subject.

Am I eligible for the Talented Student Program?
Entry to the TSP is by invitation from the Dean which you should have received by the time you enrol. The following guidelines apply generally, although Departments may have additional (and sometimes more stringent) requirements for entry into the program.

To get into the program in your first year, you should normally have an ATAR (or equivalent) of at least 99.00 and a result in band 6 in at least one HSC Science subject area and/or a mark of 95 or better in HSC Mathematics Extension 2.

For entry into the program in your second and third years, you should normally have a weighted average mark of 85 or over and a high distinction grade in a relevant subject area.

Summary of requirements
The requirements for the degree are set out in the Senate and Faculty Resolutions (see Chapter 2) which should be read by all intending candidates. It is important to ensure that any proposed course of study will comply with the basic requirements for the degree. Important aspects of the Resolutions are summarised below. The Resolutions should be consulted for any clarification of the summary points.

To complete your degree you must gain credit for at least 144 credit points, comprising:

- no more than 84 junior credit points
- 36 credit points from the designated Liberal Studies stream for the Bachelor of Liberal Arts and Science, including at least one unit of study from each of the three core areas: Analytical Thinking, Communication and Ethics, as specified in the Table of Liberal Studies Units. The specified units in Analytical Thinking and Communication must be taken in the first year of the degree;
- Either a major in Science and a minimum of 36 credit points from the Faculty of Arts Table A, which must include at least 12 credit points at senior level (Arts units designated by a numeric code 2xxx or 3xxx), or a major in Arts and a minimum of 36 credit points from the Faculty of Science Table 1, which must include at least 12 credit points at intermediate or senior level (Science units designated by a numeric code 2xxx or 3xxx);
- Units of study which are chosen to satisfy the Liberal Studies requirement may not be counted towards the requirements listed in the previous point.

Enrolment guide
In your first year, you must enrol in:

- ATHK1001 Analytical Thinking (6 credit points) in semester 1;
- WRIT1001 Academic English (6 credit points) in semester 2.

In addition,

- if you are intending to take a major in Arts: you should enrol in 24 credit points of junior units of study from the Faculty of Arts Table A and 12 credit points of junior units of study from the Faculty of Science Table 1;
- if you are intending to take a major in Science: you should normally enrol in 24 credit points of junior units of study from the Faculty of Science Table 1 and 12 credit points of junior units of study from the Faculty of Arts Table A. If you are unsure what your Science major will be, it may be preferable to enrol in more than 24cp of junior science units in your first year and delay some of your junior Arts units until second year. This would help to give you more choice in selecting your Science major. It is important that you are familiar with the advice for planning your Science major, given in chapter 3 of this handbook.

Plans of study
It is important when choosing units of study at any stage of your university career that you consider your overall degree program. There are two sample degree programs in this section, one illustrating a possible plan for a major in Arts and one illustrating a possible plan for a major in Science. Sample pathways are also given.

Units of study
The units of study available for this degree are set out in the Table of Liberal Studies Units for the BLAS in this chapter, in Table 1 of the Bachelor of Science units in chapter 3 of this handbook, and in Table A of the units of study for the Bachelor of Arts in the Faculty of Arts handbook and at the end of this chapter of the Science handbook.

Unit of study descriptions can be found in chapter 9 of this handbook (Science units) and in the relevant chapter of the Faculty of Arts Handbook (Arts units). Students may also take units of study from the Faculty of Economics and Business associated with B Arts and B Science.

Honours

236
Honours courses are available in the areas listed in Chapter 11 of the Faculty of Science Handbook and Chapter 8 of the Faculty of Arts Handbook.

Discontinuation

In some cases discontinuation of units of study can affect your access to later units of study, prizes and scholarships. Deadlines for withdrawal and discontinuation can be found on the second page of this handbook.

Special permission

You should note that the Faculty can, in certain circumstances, permit exceptions to the normal requirements for a degree. Applications should be made in writing to the Associate Dean.

Australian Tertiary Admissions Rank (ATAR)

The minimum ATAR for admission into the course varies from year to year.

Degree resolutions

See chapter 2.

Sample Bachelor of Liberal Arts and Science Plans

BLAS: General plan for ARTS Major, with one Liberal Studies (LS) unit per semester. Note that other arrangements are also possible.

<table>
<thead>
<tr>
<th>Year</th>
<th>Sem</th>
<th>Unit of study 1 (credit points)</th>
<th>Unit of study 2 (credit points)</th>
<th>Unit of study 3 (credit points)</th>
<th>Unit of study 4 (credit points)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Arts Junior unit (6)</td>
<td>Arts Junior unit (6)</td>
<td>Science Junior unit (6)</td>
<td>Analytical Thinking ATHK1001 (6)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Arts Junior unit (6)</td>
<td>Arts Junior unit (6)</td>
<td>Science Junior unit (6)</td>
<td>Academic English WRIT1001 (6)</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Arts Major Senior unit (6)</td>
<td>Arts Major Senior unit (6)</td>
<td>Science unit (6)</td>
<td>LS unit from Ethics area (6)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Arts Major Senior unit (6)</td>
<td>Elective unit (6)</td>
<td>Science unit (6)</td>
<td>LS elective (6)</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Arts Major Senior unit (6)</td>
<td>Arts Major Senior unit (6)</td>
<td>Science unit (6)</td>
<td>LS elective (6)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Arts Major Senior unit (6)</td>
<td>Elective unit (6)</td>
<td>Science unit (6)</td>
<td>LS elective (6)</td>
<td>24</td>
</tr>
</tbody>
</table>

Total: 144

SAMPLE BLAS PATHWAY: History Major. Note that other arrangements are also possible.

<table>
<thead>
<tr>
<th>Year</th>
<th>Sem</th>
<th>Unit of study 1 (credit points)</th>
<th>Unit of study 2 (credit points)</th>
<th>Unit of study 3 (credit points)</th>
<th>Unit of study 4 (credit points)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>History Junior unit (6)</td>
<td>Anthropology Junior unit (6)</td>
<td>Psychology PSYC1001 (6)</td>
<td>Analytical Thinking ATHK1001 (6)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>History Junior unit (6)</td>
<td>Anthropology Junior unit (6)</td>
<td>Psychology PSYC1002 (6)</td>
<td>Academic English WRIT1001 (6)</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>History Major Senior unit (6)</td>
<td>History Major Senior unit (6)</td>
<td>Psychology Intermediate unit (6)</td>
<td>Bioethics HPSC1000 (6)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>History Major Senior unit (6)</td>
<td>Anthropology Senior unit (6)</td>
<td>Psychology Intermediate unit (6)</td>
<td>Foundations of IT INFO1003 (6)</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>History Major Senior unit (6)</td>
<td>History Major Senior unit (6)</td>
<td>Psychology Intermediate unit (6)</td>
<td>Earth Environment and Society GEOS1001 (6)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>History Major Senior unit (6)</td>
<td>Anthropology unit (6)</td>
<td>Psychology Intermediate unit (6)</td>
<td>Critical Thinking PHIL2642 (6)</td>
<td>24</td>
</tr>
</tbody>
</table>

Total: 144

Students intending to major in an Arts area should consult the Faculty of Arts Handbook for information.

BLAS: General plan for SCIENCE Major, with one Liberal Studies (LS) unit per semester. Note that other arrangements are also possible.

<table>
<thead>
<tr>
<th>Year</th>
<th>Sem</th>
<th>Unit of study 1 (credit points)</th>
<th>Unit of study 2 (credit points)</th>
<th>Unit of study 3 (credit points)</th>
<th>Unit of study 4 (credit points)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Arts Junior unit (6)</td>
<td>Science Junior unit (6)</td>
<td>Science Junior unit (6)</td>
<td>Analytical Thinking ATHK1001 (6)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Arts Junior unit (6)</td>
<td>Science Junior unit (6)</td>
<td>Science Junior unit (6)</td>
<td>Academic English WRIT1001 (6)</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Arts unit (6)</td>
<td>Science Intermediate unit (in major area) (6)</td>
<td>Elective (6)</td>
<td>LS unit from Ethics area (6)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Arts unit (6)</td>
<td>Science Intermediate unit (in major area) (6)</td>
<td>Elective (6)</td>
<td>LS Elective (6)</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>Arts unit (6)</td>
<td>Science Major Senior unit (6)</td>
<td>Science Major Senior unit (6)</td>
<td>LS Elective (6)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Arts unit (6)</td>
<td>Science Major Senior unit (6)</td>
<td>Science Major Senior unit (6)</td>
<td>LS Elective (6)</td>
<td>24</td>
</tr>
</tbody>
</table>

Total: 144

Students intending to major in a Science subject area should enrol in the appropriate junior level of units of study. For more information, refer to the Faculty of Science Handbook, Chapter 3: Enrolment Guide by Major for the Bachelor of Science degree.
SAMPLE BLAS PATHWAY: Psychology Major. Note that other arrangements are also possible.

<table>
<thead>
<tr>
<th>Sem</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Sociology Junior Unit (6)</td>
<td>Psychology PSYC1001(6)</td>
<td>Mathematics Junior Units(6)</td>
<td>Analytical Thinking ATHK1001 (6)</td>
<td>24</td>
</tr>
<tr>
<td>Year 2</td>
<td>Sociology Senior Unit (6)</td>
<td>Psychology PSYC2011 (6)</td>
<td>Psychology PSYC2012 (6)</td>
<td>Australian Texts: International Contexts ENGL1008 (6)</td>
<td>24</td>
</tr>
<tr>
<td>Year 3</td>
<td>Sociology Senior Unit (6)</td>
<td>Psychology Major Senior Unit (6)</td>
<td>Psychology Major Senior Unit (6)</td>
<td>Indigenous Australia: An Introduction KOCR2600 (6)</td>
<td>24</td>
</tr>
</tbody>
</table>

Students intending to major in a Science subject area should enrol in the appropriate junior level of units of study. For more information, refer to the Faculty of Science Handbook, Chapter 3: Enrolment Guide by Major for the Bachelor of Science degree.

Liberal Studies Units for the Bachelor of Liberal Arts and Science

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATHK1001 Analytical Thinking</td>
<td>6</td>
<td>ATHK1001 is a compulsory unit within the Bachelor of Liberal Arts and Science (BLAS) degree</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS1001 Structure of Language</td>
<td>6</td>
<td>N LNGS1004, LNGS1005</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHIL1012 Introductory Logic</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 Summer Late</td>
</tr>
<tr>
<td>STAT1021 General Statistical Methods 1</td>
<td>6</td>
<td>A HSC General Mathematics</td>
<td>N MATH1005, MATH1015, MATH1905, ECMT1010</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHIL2642 Critical Thinking</td>
<td>6</td>
<td>P 12 Junior credit points in any units within the University</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 Winter Main</td>
</tr>
<tr>
<td>PHIL2650 Logic and Computation</td>
<td>6</td>
<td>P PHIL1012 or PHIL2628 or permission of instructor</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHIL2615 Intermediate Logic</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy and PHIL1012 or PHIL2203 or PHIL2628. N PHIL2215, PHIL3215</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>STAT2012 Statistical Tests</td>
<td>6</td>
<td>P MATH (1005 or 1905 or 1015)</td>
<td>N STAT2004, STAT2912</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Any junior unit of study in Mathematics from the Faculty of Science Table 1.

B. Communication

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL1007 Language, Texts and Time</td>
<td>6</td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL1008 Australian Texts: International Contexts</td>
<td>6</td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS1002 Language and Social Context</td>
<td>6</td>
<td>Semester 2</td>
</tr>
<tr>
<td>WRIT1001 Academic English</td>
<td>6</td>
<td>P Upon registration for this unit students will be directed to an online diagnostic exercise.</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>WRIT1002 Academic Writing</td>
<td>6</td>
<td>P This unit is available to all enrolled students and across all faculties. There are no specific</td>
</tr>
<tr>
<td></td>
<td></td>
<td>prerequisites but students will be required to complete a diagnostic exercise in their first tutorial. Students in this unit are assumed to have native or near native competence in written English. Students who do not have this competence would benefit from completing WRIT1001 before enrolling in WRIT1002 but WRIT1001 is NOT a pre-requisite for WRIT1002.</td>
</tr>
<tr>
<td>LNGS2617 Cross-Cultural Communication</td>
<td>6</td>
<td>P Either (two of LNGS1001, LNGS1002, LNGS1003, LNGS1004, LNGS1005) or (Credit average in 12 Senior credit points from one of the foreign languages (French, Japanese, Chinese, Italian, Arabic, Spanish, German, Latin, Modern Greek, Ancient Greek, Indonesian, Malay, Korean, Thai, Yiddish, Hebrew, Syriac, Aramaic, Sarsi(kh)), or (LNGS1006) or (N LNGS3903, LNGS3923)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This unit is available as a designated ‘Advanced’ unit for students who are already enrolled in the BA (Advanced) degree program.</td>
</tr>
<tr>
<td>ENGL2619 Semiotics of Language</td>
<td>6</td>
<td>P 12 Junior credit points of English</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This unit is available to all enrolled students and across all faculties. There are no specific</td>
</tr>
<tr>
<td>Any junior unit of study in a language subject area other than English, from the Faculty of Arts Table A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Ethics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC1000 Bioethics</td>
<td>6</td>
<td>N HPSC1900 This Junior unit of study is highly recommended to Intermediate and Senior Life Sciences students.</td>
</tr>
<tr>
<td>HPSC1900 Bioethics (Advanced)</td>
<td>6</td>
<td>N HPSC1900 Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>INFO2315 Introduction to IT Security</td>
<td>6</td>
<td>A Computer literacy N NETS (3305 or 3605 or 3016 or 3916) or ELEC (5610 or 5616)</td>
</tr>
<tr>
<td>PHIL2623 Moral Psychology</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy. N PHIL2513, PHIL3513</td>
</tr>
<tr>
<td>PHIL2617 Practical Ethics</td>
<td>6</td>
<td>P 12 junior credit points in Philosophy. N PHIL2517</td>
</tr>
<tr>
<td></td>
<td></td>
<td>New ethics unit currently being developed</td>
</tr>
<tr>
<td>D. Culture, Society and Global Citizenship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANTH1002 Anthropology and the Global</td>
<td>6</td>
<td>N ANTH1004</td>
</tr>
<tr>
<td>ASNS1601 Introduction to Asian Cultures</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ASNS1602 Modernity in Asia</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>GEOS1001 Earth, Environment and Society</td>
<td>6</td>
<td>N GEOS1901, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902</td>
</tr>
<tr>
<td>GEOS1901 Earth, Environment and Society</td>
<td>6</td>
<td>P Departmental permission is required for enrolment. A UAI (or ATAR equivalent) above 93 is normally required for admission. This requirement may be varied and students should consult the unit of study coordinator. N GEOS1001, GEOG1001, GEOG1002, GEOL1001, GEOL1002, GEOL1902 Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>GEOIT1002 Introductory Geography</td>
<td>6</td>
<td>N GEOS1902, GEOG1001, GEOG1002</td>
</tr>
<tr>
<td>GOVT1101 Australian Politics</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>HSTY1044 Twentieth Century Europe</td>
<td>6</td>
<td>N HSTY1043</td>
</tr>
<tr>
<td>JCTC1001 Palestine: Roman Rule to Islam</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ANTH2625 Culture and Development</td>
<td>6</td>
<td>P 12 Junior credit points of Anthropology</td>
</tr>
<tr>
<td>ANTH2626 The City: Global Flows and Local Forms</td>
<td>6</td>
<td>P 12 Junior credit points of Anthropology N ANTH2026</td>
</tr>
<tr>
<td>ASTR2601 Australia: Land and Nation</td>
<td>6</td>
<td>P 18 junior credit points N ASTR2001 May be cross listed to a major in Australian Literature. This unit is available as a designated ‘Advanced’ unit for students who are already enrolled in the BA (Advanced) degree program.</td>
</tr>
<tr>
<td>KOCR2600 Indigenous Australia: An Introduction</td>
<td>6</td>
<td>P 18 Junior credit points N KOCR2109</td>
</tr>
<tr>
<td>EUST2611 European & Middle Eastern Myth & Legend</td>
<td>6</td>
<td>P At least 18 junior credit points from Part A of the Table of Units of Study, of which 12 credit points are from one subject; or permission from the Director of European Studies.</td>
</tr>
<tr>
<td>HSTY2604 Popular Culture in Australia</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History, or Asian Studies N HSTY2004</td>
</tr>
<tr>
<td>HSTY2605 Contemporary Europe</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History, or Asian Studies N HSTY2005</td>
</tr>
<tr>
<td>PACS2002 History and Politics of War and Peace</td>
<td>6</td>
<td>P 18 junior credit points, of which 6 must normally be in either HSTY, GOVT, SCLG or LAWS This unit is taught jointly with the Department of History and can be counted towards a History major.</td>
</tr>
<tr>
<td>E. Scientific Enquiry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS1500 Astronomy</td>
<td>6</td>
<td>A No assumed knowledge of Physics.</td>
</tr>
</tbody>
</table>
Unit of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPSC2101 What Is This Thing Called Science?</td>
<td>6</td>
<td>P 24 credit points of Junior units of study</td>
<td>N HPSC2001, HPSC2901</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HPSC2100 The Birth of Modern Science</td>
<td>6</td>
<td>P 24 credit points of Junior units of study</td>
<td>N HPSC2002, HPSC2900</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

F. Technological Literacy

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>INFO1003 Foundations of Information Technology</td>
<td>6</td>
<td>N INFO1000 or INFS1000</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INFO1903 Informatics (Advanced)</td>
<td>6</td>
<td>A HSC Mathematics</td>
<td>P UAI (or ATAR equivalent) sufficient to enter BCST(Adv), BIT or BSc(Adv), or portfolio of work suitable for entry</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARIN2600 Technocultures</td>
<td>6</td>
<td>P 18 junior credit points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARIN2620 Cyberworlds</td>
<td>6</td>
<td>P 18 junior credit points</td>
<td></td>
<td></td>
<td>N ARIN2200</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARIN2610 Web Production</td>
<td>6</td>
<td>P 18 junior credit points</td>
<td></td>
<td></td>
<td>N ARIN2100</td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Table A
Table A lists units of study offered by the Faculty of Arts. BLAS students may undertake Arts units in accordance with their degree resolutions. Details of Arts units of study may be found in the Faculty of Arts Handbook.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMST2601 American Foundations</td>
<td>6</td>
<td></td>
<td>P 12 junior level credit points in the departments of English, and/or History and/or Art History and Film, in the Faculty of Arts</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>AMST2801 American Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>AMST2802 American Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>AMST2803 American Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>AMST2804 American Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>AMST2805 American Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>AMST2806 American Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>USSC1010 America: Rebels, Heroes & Renegades</td>
<td>6</td>
<td>This unit is available to year 11 students only.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>USSC2601 US in the World</td>
<td>6</td>
<td>P 18 junior credit points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>USSC2602 Introduction to US Politics</td>
<td>6</td>
<td>P 18 junior credit points from Table A</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Ancient History</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANHS1600 Foundations for Ancient Greece</td>
<td>6</td>
<td>N ANHST1003</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS1601 Foundations for Ancient Rome</td>
<td>6</td>
<td>N ANHS1004, ANHS1005</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ANHS1602 Greek and Roman Myth</td>
<td>6</td>
<td>N CLCV1001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS1801 Ancient History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS2607 Rome 90 BC-AD 14: Making a World City</td>
<td>6</td>
<td>P 12 junior credit points of Ancient History or History OR 6 junior credit points of Ancient History and 6 junior credit points of either Classical Studies, Latin, Greek (Ancient), or Archaeology N ANHS2007</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS2608 The World Turned Upside Down</td>
<td>6</td>
<td>P 12 junior credit points of Ancient History or History or Asian Studies OR 6 junior credit points of Ancient History or History or Asian Studies and 6 junior credit points of either Classical Studies, Latin, Greek (Ancient), or Archaeology N HSTY2024</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ANHS2612 Historiography Ancient and Modern</td>
<td>6</td>
<td>P 12 junior credit points of Ancient History or History or Asian Studies OR 6 junior credit points of Ancient History or History or Asian Studies and 6 junior credit points of either Classical Studies, Latin, Greek (Ancient), or Archaeology N ANHS2691, ANHS2692</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS2613 Ancient Greece and Rome on Film</td>
<td>6</td>
<td>P 12 junior credit points of Ancient History, Classical Studies, Ancient Greek or History OR 6 junior credit points of Ancient History and 6 junior credit points of either Latin, Greek (Ancient), Classical Studies, History, Philosophy, Archaeology (Classical) or Archaeology (Near Eastern)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ANHS2614 The Emperor in the Roman World 14-117 AD</td>
<td>6</td>
<td>P 12 junior credit points of Ancient History, Classical Studies, Ancient Greek or History OR 6 junior credit points of Ancient History and 6 junior credit points of either Latin, Greek (Ancient), Classical Studies, History, Philosophy, Archaeology (Classical) or Archaeology (Near Eastern)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ANHS2804 Ancient History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS2805 Ancient History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ANHS2806 Ancient History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS2810 Ancient History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ANHS2811 Ancient History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS3609 Herodotus and His World</td>
<td>6</td>
<td>P 12 junior credit points of Ancient History, Classical Studies, Ancient Greek or History OR 6 junior credit points of Ancient History and 6 junior credit points of either Latin, Greek (Ancient), History, or Archaeology</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Anthropology

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANHS4011 Ancient History Honours A</td>
<td>12</td>
<td>P Credit average in 48 credit points of senior Ancient History including ANHS2612 (or equivalent)</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS4012 Ancient History Honours B</td>
<td>12</td>
<td>P Refer to ANHS4011</td>
<td>C ANHS4011</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS4013 Ancient History Honours C</td>
<td>12</td>
<td>P Refer to ANHS4011</td>
<td>C ANHS4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANHS4014 Ancient History Honours D</td>
<td>12</td>
<td>P Refer to ANHS4011</td>
<td>C ANHS4013</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

ANT1001 Cultural Difference: An Introduction	6	N ANTH1003				Semester 1
ANT1002 Anthropology and the Global	6	N ANTH1004				Semester 2
ANT1801 Social Anthropology Exchange	6	Note: Department permission required for enrolment				Semester 1
ANT1802 Social Anthropology Exchange	6	Note: Department permission required for enrolment				Semester 2
ANT2601 The Ethnography of Southeast Asia	6	P 12 Junior credit points of Anthropology				Semester 1
ANT2605 Aboriginal Australia: Cultural Journeys	6	P 12 Junior credit points of Anthropology	N ANTH2010, ANTH2025			Semester 1
ANT2621 Initiation Rituals	6	P 12 Junior credit points of Anthropology	N ANTH2021			Semester 2
ANT2623 Gender: Anthropological Studies	6	P 12 Junior credit points of Anthropology	N ANTH2020, ANTH2023			Semester 1
ANT2625 Culture and Development	6	P 12 Junior credit points of Anthropology				Semester 1
ANT2626 The City: Global Flows and Local Forms	6	P 12 Junior credit points of Anthropology	N ANTH2026			Semester 2
ANT2627 Medical Anthropology	6	P 12 Junior credit points of Anthropology	N ANTH2027			Semester 2
ANT2628 Migration and Migrant Cultures	6	P 12 Junior credit points of Anthropology	N ANTH2120, ANTH2121			Semester 1
ANT2629 Race and Ethnic Relations	6	P 12 Junior credit points of Anthropology	N ANTH2117			Semester 2
ANT2631 Being There: Method in Anthropology	6	P 12 Junior credit points of Anthropology				Semester 2
ANT2653 Economy and Culture	6	P 12 Junior credit points of Anthropology				Semester 2
ANT2655 The Social Production of Space	6	P 12 Junior credit points in Anthropology	N ANTH3911			Semester 2
ANT2804 Social Anthropology Exchange	6	Note: Department permission required for enrolment				Semester 1
ANT2805 Social Anthropology Exchange	6	Note: Department permission required for enrolment				Semester 2
ANT2806 Social Anthropology Exchange	6	Note: Department permission required for enrolment				Semester 1
ANT2810 Social Anthropology Exchange	6	Note: Department permission required for enrolment				Semester 1
ANT2811 Social Anthropology Exchange	6	Note: Department permission required for enrolment				Semester 1
ANTH3601 Contemporary Theory and Anthropology	6	P 12 credit points of Senior Anthropology at Credit level or above	N ANTH3921, ANTH3922			Semester 1
ANTH3602 Reading Ethnography	6	P 12 Credit Points of Senior Anthropology completed at Credit level or above	N ANTH3611, ANTH3612, ANTH3613, ANTH3614			Semester 2
ANTH3603 Social Anthropology Honours A	12	P Students must have a Credit average in Senior level Anthropology units totalling at least 48 credit points. Units must include ANTH3601 and at least one of the following: ANTH3602, ANTH3611, ANTH3613 or ANTH3614.	Note: Department permission required for enrolment			Semester 2
ANTH4012 Social Anthropology Honours B	12	C ANTH4011				Semester 1
ANTH4013 Social Anthropology Honours C	12	C ANTH4012				Semester 1
ANTH4014 Social Anthropology Honours D	12	C ANTH4013				Semester 1

Arabic Language, Literature and Culture

<p>| ARBC1611 Arabic Introductory 1B | 6 | N ARBC1311, ARBC1312, ARBC1101, ARBC1102 | | | | Semester 1 |</p>
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARBC1612 Arabic Introductory 2B</td>
<td>6</td>
<td>P ARBC1101 or ARBC1611 or equivalent</td>
<td>N ARBC1311, ARBC1312, ARBC1102</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC2613 Arabic Language and Literature 3B</td>
<td>6</td>
<td>P ARBC1102 or ARBC1612 or equivalent</td>
<td>N ARBC1311, ARBC1312, ARBC2633, ARBC2634, ARBC2103</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC2614 Arabic Language and Literature 4B</td>
<td>6</td>
<td>P ARBC2103 or ARBC2613 or equivalent</td>
<td>N ARBC2104, ARBC1311, ARBC1312, ARBC2313, ARBC2314, ARBC2633, ARBC2634, ARBC3635, ARBC3636, ARBC3637, ARBC3638</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC2633 Arabic Advanced Language & Literature 3A</td>
<td>6</td>
<td>P ARBC1311 or ARBC2633</td>
<td>N ARBC1312, ARBC1101, ARBC1102, ARBC1611, ARBC1612</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC2634 Arabic Advanced Language & Literature 4A</td>
<td>6</td>
<td>P ARBC1312</td>
<td>N ARBC1312, ARBC1101, ARBC1102, ARBC1611, ARBC1612</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC2811 Arabic Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC2812 Arabic Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC2813 Arabic Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC2814 Arabic Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC3615 Arabic Language and Literature 5B</td>
<td>6</td>
<td>P ARBC2104 or ARBC2614 or equivalent</td>
<td>N ARBC2105, ARBC1311, ARBC1312, ARBC2313, ARBC2314, ARBC2315, ARBC2316, ARBC2633, ARBC2634, ARBC3635, ARBC3636, ARBC3637, ARBC3638</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC3616 Arabic Language and Literature 6B</td>
<td>6</td>
<td>P ARBC2106 or ARBC3615 or equivalent</td>
<td>N ARBC2106, ARBC1311, ARBC1312, ARBC2313, ARBC2314, ARBC2315, ARBC2316, ARBC2633, ARBC2634, ARBC3635, ARBC3636, ARBC3637, ARBC3638</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC3635 Arabic Advanced Translation & Writing 5A</td>
<td>6</td>
<td>P ARBC1312 or ARBC2633 or equivalent</td>
<td>N ARBC2313, ARBC1101, ARBC1102, ARBC1611, ARBC1612</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC3636 Arabic Advanced for Media Studies 6A</td>
<td>6</td>
<td>P ARBC1311 or ARBC2633 or equivalent</td>
<td>N ARBC2313, ARBC1101, ARBC1102, ARBC1611, ARBC1612, ARBC2314</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC3637 Arabic Advanced Translation & Writing 7A</td>
<td>6</td>
<td>P ARBC1312 or ARBC2634</td>
<td>N ARBC2315, ARBC1101, ARBC1102, ARBC1611, ARBC1612</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARBC3638 Arabic Advanced for Media Studies 8A</td>
<td>6</td>
<td>P ARBC1311 or ARBC2633</td>
<td>N ARBC2316, ARBC1101, ARBC1102, ARBC1611, ARBC1612</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arab World, Islam and The Middle East

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIS1671 Arabs, Islam & Middle East: Introduction</td>
<td>6</td>
<td></td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIS1672 Arab-Islamic Civilisation: Introduction</td>
<td>6</td>
<td>P ARIS1001 or ARIS1671</td>
<td></td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIS2801 Arab World Islam & Middle East Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIS2802 Arab World Islam & Middle East Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIS2803 Arab World Islam & Middle East Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIS2804 Arab World Islam & Middle East Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIS2805 Arab World Islam & Middle East Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIS2806 Arab World Islam & Middle East Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIS3675 Society and Politics in the Middle East</td>
<td>6</td>
<td>P ARIS1001 or ARIS1671 or equivalent</td>
<td>N ARIS2005</td>
<td>Semester 1</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (Advanced) degree program.</td>
<td></td>
</tr>
<tr>
<td>ARIS3676 Issues and Debates in Arab Culture Today</td>
<td>6</td>
<td>P ARIS1001 or ARIS1671 or equivalent</td>
<td>N ARIS2006</td>
<td>Semester 2</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (Advanced) degree program.</td>
<td></td>
</tr>
<tr>
<td>ARIS3680 Approaches to Arabic and Islamic Studies</td>
<td>6</td>
<td>P Credit in ARIS2673 or ARIS3675 or ARIS2003 or ARIS2005, and credit in ARBC2613 or ARBC3635 or ARBC2103 or ARBC2313</td>
<td>N ARBC1311, ARBC1312, ARBC1611, ARBC1612</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Bachelor of Liberal Arts and Science

![Image](243)
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIS4011 Arabic and Islamic Studies Honours A</td>
<td>12</td>
<td>P A total of 48 credit points in a combination of ARBC and ARIS senior units, with at least a Credit average. These include the 36 credit points of the major in Arabic and Islamic Studies, plus two more senior units, (including the special entry unit, ARIS3680 Approaches to Arabic and Islamic Studies). Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARIS4012 Arabic and Islamic Studies Honours B</td>
<td>12</td>
<td>C ARIS4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARIS4013 Arabic and Islamic Studies Honours C</td>
<td>12</td>
<td>C ARIS4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARIS4014 Arabic and Islamic Studies Honours D</td>
<td>12</td>
<td>C ARIS4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>Archeology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCA1001 Ancient Civilisations</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARCA1002 Archaeology: An Introduction</td>
<td>6</td>
<td>N ARPH1001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARCA2602 Field Methods</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology N ARPH3921</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARCA2603 Archaeology of Sydney</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARCA2605 Archaeology of Aboriginal Australia</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology N ARPH2607</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARCA2607 Digital Methods</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology N ARPH2690</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARCA2611 Ancient Mediterranean Lives</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology or 6 junior credit points of Ancient History or Classical Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARCA2613 Athenian Art, Architecture and Society</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology or 6 junior credit points of Ancient History or Classical Studies N ARCL2601</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Summer Main</td>
</tr>
<tr>
<td>ARCA2615 Etruscans and Romans</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology or 6 junior credit points of Archaeology plus 6 junior credit points of Ancient History or Classical Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARCA2616 Early East and Southeast Asian Cultures</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARCA2801 Archaeology Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARCA2802 Archaeology Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARCA2803 Archaeology Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARCA2804 Archaeology Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARCA2805 Archaeology Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARCA2806 Archaeology Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARCA2807 Archaeology Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARCA2808 Archaeology Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>ARCA3601 Research in Australasian Archaeology</td>
<td>6</td>
<td>P Credit average in 24 senior credit point of Archaeology</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARCA3603 Ionia and the East Greek World</td>
<td>6</td>
<td>P Credit results in two of ARCA2610, ARCA2612 and ARCA2615</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ARCA4011 Archaeology Honours A</td>
<td>12</td>
<td>P Credit average or better in 48 senior credit points in Archaeology (including cross-listed units for students doing Honours in Heritage Studies topics (see separate Heritage Studies entry). The following information is for Honours entry for 2010. Students who intend to specialise in Classical Archaeology at Honours should normally have obtained (a) credit or better result in ARCA3600; (b) credit or better result in ARCA3602 or ARCA 3603 or ARCA 3604 (or equivalent); (c) credit or better average results in ARCA 2610 and ARCA2612 and ARCA2615 (or equivalent); (d) credit average results in any three other senior Archaeology or Heritage Studies units (including those in the list above and senior Archaeology exchange units), and (e) HSC 2-unit or equivalent knowledge of at least one of the following languages: French, German, Italian and Modern Greek. Students who intend to specialise in Near Eastern and/or West Asian Archaeology at Honours should normally have obtained (a) credit or better results in ARCA3600, (b) credit or better results in ARNE2691 and ARNE3691, and (c) credit average results in 5 additional senior units of Archaeology including at least 2 of the following: ARCA2604, ARCA2608, ARCA2609, ARNE2601, ARNE2602, ARNE2606, ARNE2607. Students who intend to specialise at Honours in other regional archaeology (e.g. Australia, Asia, Pacific), Heritage Studies or a thematic topic should normally have obtained (a) credit or better results in ARCA3600, (b) credit or better results in at least two of the following hands-on practical units ARPH2602, ARCA2601, ARCA2602, ARCA2606, ARCA2607, ARCA2617 (or equivalent), (c) credit or better results in at least three of the following ARPH2603, ARPH2612, ARPH2616, ARCA2603, ARCA2605, ARCA2616 (or equivalent), and (d) credit average results in any two other senior Archaeology or Heritage Studies units (including those listed above and senior Archaeology exchange units). The Department will only approve Honours research topics which are considered appropriate to the content of senior units of study obtained by the student. ARCA3600 will not be offered in 2010. For 2011 Honours entry students should complete at least one subject specific pre-Honours unit of study and gain credit results or better, ARCA3602, 3603 or 3604 for Classical Archaeology; ARNE3691 (or equivalent) for Near Eastern and/or West Asian Archaeology; ARCA3601 (or equivalent) for all other Honours topics (e.g. Australian, Asian, Pacific, Heritage Studies or other thematic research). These exact pre-requisites will be waived where students are unable to meet the new requirements due to curriculum changes. For Classical Archaeology at Honours students should also have obtained HSC 2-unit or equivalent knowledge of at least one of the following languages: French, German, Italian and Modern Greek. 2011 Honours pre-requisites are listed here for general guidance only. Exact pre-requisites will be advised in 2010. Please contact relevant Department staff for advice and assistance. All students with credit or above results are encouraged to apply for Honours. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCA4012 Archaeology Honours B</td>
<td>12</td>
<td>P Refer to ARCA4011</td>
<td>C ARCA4011</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCA4013 Archaeology Honours C</td>
<td>12</td>
<td>P Refer to ARCA4011</td>
<td>C ARCA4012</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCA4014 Archaeology Honours D</td>
<td>12</td>
<td>P Refer to ARCA4011</td>
<td>C ARCA4013</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Archaeology (Classical)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCL1801 Archaeology (Classical) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCL2605 The Archaeology of the Roman East</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology or 6 junior credit points of Archaeology plus 6 junior credit points of Ancient History or Classical Studies</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCL2804 Archaeology (Classical) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCL2805 Archaeology (Classical) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCL2806 Archaeology (Classical) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCL2810 Archaeology (Classical) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCL2811 Archaeology (Classical) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCL4011 Archaeology (Classical) Honours A</td>
<td>12</td>
<td>P (a) Credit results in ARCL2600 Special Topics in Classical Athens and ARCL3691 Research Issues in Classical Archaeology (or equivalent); (b) Credit average in two of the following units: ARCL 2601 (The World of Classical Athens), ARCL 2602 (Cities and Sanctuaries), ARCL 2603 (The Archaeology of Pre-Roman Italy), ARCL 2604 (Aegae Prehistory [ca. 3000-1100 BC]), ARCL 2605 (The Archaeology of the Roman East) (or equivalent); (c) Credit average in any two other Senior Archaeology or Heritage Studies units (including those in the list above and senior Archaeology exchange units); (d) HSC 2-unit or equivalent knowledge of at least one of the following languages: French, German, Italian and Modern Greek. All intending Honours students should complete ARCA3600 Archaeological Research Principles. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARCL4012 Archaeology (Classical) Honours B</td>
<td>12</td>
<td>C ARCL4011</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCL4013 Archaeology (Classical) Honours C</td>
<td>12</td>
<td>C ARCL4012</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARCL4014 Archaeology (Classical) Honours D</td>
<td>12</td>
<td>C ARCL4013</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Archaeology (Near Eastern)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARNE1801 Archaeology (Near Eastern) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ARNE2601 Egyptian Archaeology</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology or 6 junior credit points of Archaeology plus 6 junior credit points of Ancient History or Classical Studies</td>
<td>N ARNE2010</td>
<td>Semester 1</td>
<td>Winter Main</td>
<td></td>
</tr>
<tr>
<td>ARNE2602 Ancient Mesopotamia</td>
<td>6</td>
<td>P 12 junior credit points of Archaeology or 6 junior credit points of Archaeology plus 6 junior credit points of Ancient History or Classical Studies</td>
<td></td>
<td>Semester 2</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>ARNE2804 Archaeology (Near Eastern) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARNE2805 Archaeology (Near Eastern) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARNE2806 Archaeology (Near Eastern) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARNE2810 Archaeology (Near Eastern) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARNE2811 Archaeology (Near Eastern) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARNE3691 Special Topics in West Asian Archaeology</td>
<td>6</td>
<td>P Credit average in 24 senior credit points of Archaeology</td>
<td>N ARNE3901</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARNE4011 Archaeology (Near Eastern) Honours A</td>
<td>12</td>
<td>P (a) Credit results in ARNE 2901/2691 (Material Culture) and ARNE 3901/3691 (Special Topics in West Asian Archaeology), (b) Credit average in two further senior units of Archaeology of the Department Studies; (c) reading ability in a relevant modern European language (French, German, Italian)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARNE4012 Archaeology (Near Eastern) Honours B</td>
<td>12</td>
<td>C ARNE4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARNE4013 Archaeology (Near Eastern) Honours C</td>
<td>12</td>
<td>C ARNE4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARNE4014 Archaeology (Near Eastern) Honours D</td>
<td>12</td>
<td>C ARNE4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>Archaeology (Prehistoric and Historical)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARPH1001 Archaeology (Prehistoric & Historic) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARPH2602 Scientific Analysis of Materials</td>
<td>6</td>
<td>P 12 Junior credit points in Archaeology</td>
<td>N ARPH2621</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARPH2603 The Archaeology of Society</td>
<td>6</td>
<td>P 12 Junior credit points in Archaeology</td>
<td>N ARPH2003</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARPH2617 Analysis of Stone Technology</td>
<td>6</td>
<td>P 12 Junior credit points in Archaeology</td>
<td>N ARPH2517</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARPH2804 Archaeology (Prehistoric & Historic) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARPH2805 Archaeology (Prehistoric & Historic) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARPH2806 Archaeology (Prehistoric & Historic) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARPH4011 Archaeology (Prehist/Historical) Hons A</td>
<td>12</td>
<td>P (a) Credit results in ARPH3692 (Archaeological Research Principles) and ARPH3693 (Archaeological Practice) (or equivalent); (b) Credit results in two of the following units: ARPH2614 (Archaeological Methods), ARPH2602 (Scientific Analysis of Materials), ARPH2617 (Analysis of Stone Technology), ARPH3690 (Archaeological Applications of Computing) (or equivalent); (c) Credit results in two of the following units: ARPH2006 (Australian Archaeology), ARPH2605 (The Archaeology of Modern Times), ARPH2612 (Historical Archaeology), ARPH2611 (Archaeology of Asia), ARPH2603 (The Archaeology of Society), ARPH2616 (Public Archaeology), ARHT2641 (Art & Archaeology of SE Asia) (or equivalent); (d) Credit average in any two other Senior Archaeology or Heritage Studies units (including those in the lists above). Due to curriculum review students may be admitted to Honours, at the discretion of the Department, if they have Credit results in equivalent Archaeology units previously taught but now discontinued.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARPH4012 Archaeology (Prehist/Historical) Hons B</td>
<td>12</td>
<td>C ARPH4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARPH4013 Archaeology (Prehist/Historical) Hons C</td>
<td>12</td>
<td>C ARPH4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ARPH4014 Archaeology (Prehist/Historical) Hons D</td>
<td>12</td>
<td>C ARPH4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>Art History</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARHT1001 Art and Experience</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2, Late</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>ARHT1002 Modern Times: Art and Film</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARHT1001 Art History and Theory Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>ARHT1002</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARHT2616 High Renaissance Art</td>
<td>6</td>
<td>P ARHT1001 and ARHT1002
N ARHT2016</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2618 French Art, Salon to Post-Impressionism</td>
<td>6</td>
<td>P ARHT1001 and ARHT1002
N ARHT2018</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARHT2621 Modernism</td>
<td>6</td>
<td>P ARHT1001 and ARHT1002
N ARHT2021</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2631 Australian Painting, Colony to Nation</td>
<td>6</td>
<td>P ARHT1001 and ARHT1002
N ARHT2031, ARHT2664</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2641 Art and Archaeology of South East Asia</td>
<td>6</td>
<td>P The pre-requisites are any of ARHT1001 and ARHT1002 or ASNS1001/1601 and ASNS1002/1602 or ASNS1001/1601 and ASNS1101 or any one of ARPH1100, ARPH1102, ARPH1103
N ARHT2041</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2
Summer Main</td>
</tr>
<tr>
<td>ARHT2645 China: Art and Empire</td>
<td>6</td>
<td>P ARHT1001 and ARHT1002 or ASNS1001 and ASNS1002 or ASNS1101</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2652 From Silent to Sound Cinema</td>
<td>6</td>
<td>P ARHT1001 and ARHT1002 (For Art History Major)
ARHT1002 or ENGL1025 (For Film Major)
N ARHT2052</td>
<td>Film Studies Core Unit. This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td></td>
<td>Semester 1
Semester 2</td>
</tr>
<tr>
<td>ARHT2653 Memory of the World: Film and Directors</td>
<td>6</td>
<td>P ARHT1001 and ARHT1002 (For Art History Major)
ARHT1002 or ENGL1025 (for Film Majors)
N ARHT2053</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2657 Contemporary Hollywood</td>
<td>6</td>
<td>P ARHT1001 and ARHT1002 (For Art History Major)
ARHT1002 or ENGL1025 (for Film Majors)
N ARHT2057</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1
Summer Late</td>
</tr>
<tr>
<td>ARHT2664 Special Studies: Costume and Fashion</td>
<td>6</td>
<td>P Credit and above in 12 Junior Credit points from any two ARHT units OR consent of Chair of Department
N ARHT2064</td>
<td>Note: Only one Special Studies course may be taken at senior level.</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2810 Art History and Theory Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARHT2811 Art History and Theory Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2812 Art History and Theory Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2813 Art History and Theory Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2814 Art History and Theory Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2815 Art History and Theory Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2816 Art History and Theory Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT2817 Art History and Theory Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARHT4011 Art History and Theory Honours A</td>
<td>12</td>
<td>P Results of a credit average or better in 48 credit points in Art History and Film Studies senior units. If you do not have this prerequisite please contact the Honours coordinator to determine possible waiving of the prerequisite. Students may commence their study either at the beginning of the year or mid-year. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1
Semester 2</td>
</tr>
<tr>
<td>ARHT4012 Art History and Theory Honours B</td>
<td>12</td>
<td>C ARHT4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARHT4013 Art History and Theory Honours C</td>
<td>12</td>
<td>C ARHT4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ARHT4014 Art History and Theory Honours D</td>
<td>12</td>
<td>C ARHT4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Arts

(No major available)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTS2600 Internship 1</td>
<td>6</td>
<td>Note: Department permission required for enrolment only available to incoming Study Abroad students</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1
Summer Main</td>
</tr>
<tr>
<td>ARTS2801 Arts Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARTS2802 Arts Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARTS2803 Arts Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ARTS2804 Arts Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Asian Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS1601</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Introduction to Asian Cultures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS1602</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Modernity in Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS1801</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS2518</td>
<td>6</td>
<td>Students with no prior knowledge of modern Chinese history are encouraged to read an introductory textbook (e.g., Edwin E. Moise. Modern China: A History. Second edition. Longman, 1994) before the start of the semester.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Remaking Chinese Society, 1949-Present</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2520</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Classical Indian Philosophy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS2526</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Religious Traditions of South Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2531</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>The Origins of Japanese Tradition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2541</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Traditional Korea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2542</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Modern Korea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2551</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS2552</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS2563</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS2564</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS2565</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS2566</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS2567</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Islam, Trade & Society-Arabia to SE Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2620</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Modern Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2630</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>History of Modern Indonesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2661</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Modern Japan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2670</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Mass Media in East Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2672</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Japan in East Asia from 1840 until Today</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2676</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Gender and Sexuality in Modern Asia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2677</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Beyond the Geisha/Samurai Binary</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS2818</td>
<td>6</td>
<td>P 12 credit points from junior level Asian Studies, or other subject areas listed in Table A in the Faculty of Arts Handbook.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Popular China</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS3690</td>
<td>6</td>
<td>P Credit average or above in a minimum of 30 senior credit points of Asian studies or Asian language.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Approaches to Research in Asian Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNS4011</td>
<td>12</td>
<td>P A Credit average or better in the major, plus 12 additional senior credit points, including ASNS3690 Approaches to Research in Asian Studies.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Honours A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS4012</td>
<td>12</td>
<td>C ASNS4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Honours B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS4013</td>
<td>12</td>
<td>C ASNS4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Honours C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASNS4014</td>
<td>12</td>
<td>C ASNS4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Asian Studies Honours D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Australian Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(See English.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASTR2601</td>
<td>6</td>
<td>P 18 junior credit points</td>
<td>N ASTR2601</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Australia: Land and Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>May be cross listed to a major in Australian Literature. This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBCL1001</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biblical Studies 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBCL1002</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Biblical Studies 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBCL2603</td>
<td>6</td>
<td>P BBCL1001 and BBCL1002</td>
<td>N BBCL2603</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Prophets</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBCL2604</td>
<td>6</td>
<td>P BBCL1001 and BBCL1002</td>
<td>N BBCL2604</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Biblical Writings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BBCL2801</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biblical In-Country Study A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BBCL2802</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biblical In-Country Study B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BBCL4011</td>
<td>12</td>
<td>P Credit average in 48 senior credit points from Hebrew, Biblical and Jewish Studies. These credit points must include 24 senior credit points from Biblical Studies and at least 12 senior credit points in Classical Hebrew. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biblical Studies Honours A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BBCL4012</td>
<td>12</td>
<td>C BBCL4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biblical Studies Honours B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BBCL4013</td>
<td>12</td>
<td>C BBCL4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biblical Studies Honours C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BBCL4014</td>
<td>12</td>
<td>C BBCL4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biblical Studies Honours D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Celtic Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2601</td>
<td>6</td>
<td>P 18 Junior Credit Points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Defining the Celts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2602</td>
<td>6</td>
<td>P CLST2606</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Old Irish 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2603</td>
<td>6</td>
<td>P CLST2604</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Middle Welsh 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2604</td>
<td>6</td>
<td>P 18 Junior Credit Points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Middle Welsh 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2605</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Cells in History</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2606</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (advanced) degree programme</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Old Irish 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2607</td>
<td>6</td>
<td>P 12 Senior Credit Points</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (advanced) degree programme</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Modern Irish Linguistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2608</td>
<td>6</td>
<td>P 18 Junior Credit Points</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (advanced) degree programme</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Modern Welsh Language and Culture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2609</td>
<td>6</td>
<td>P 18 Junior Credit Points; CLST2608</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (advanced) degree programme</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Modern Welsh Language and Culture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2610</td>
<td>6</td>
<td>P 18 Junior Credit Points</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (advanced) degree programme</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Modern Irish Language and Culture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2611</td>
<td>6</td>
<td>P 18 Junior Credit Points; CLST2610</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (advanced) degree programme</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Modern Irish Language and Culture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST2612</td>
<td>6</td>
<td>P 18 Junior Credit Points</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (advanced) degree programme</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Scottish Identity, History and Culture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLST4011</td>
<td>12</td>
<td>P A major in Celtic Studies plus 12 additional credit points, all with a credit average</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Celtic Studies Honours A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CLST4012</td>
<td>12</td>
<td>C CLST4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Celtic Studies Honours B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CLST4013</td>
<td>12</td>
<td>C CLST4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Celtic Studies Honours C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CLST4014</td>
<td>12</td>
<td>C CLST4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Celtic Studies Honours D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Chinese Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNS1101 Chinese 1A (For Beginners)</td>
<td>6</td>
<td>A This unit of study is suitable for complete beginners and for those students who, in the department's judgement, are best advised to go back to the beginning.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS1102 Chinese 1B (For Beginners)</td>
<td>6</td>
<td>A One semester of Chinese at introductory level.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS1201 Chinese 1C (For Advanced Beginners)</td>
<td>6</td>
<td>A Native- or near-native fluency in a spoken Chinese language (e.g., Putonghua, Cantonesenese) combined with no, or very limited, knowledge of characters.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS1202 Chinese 1D (For Advanced Beginners)</td>
<td>6</td>
<td>A Native- or near-native fluency in a spoken Chinese language (e.g., Putonghua, Cantonesenese) combined with full mastery reading and writing of about 400 to 500 characters; at least basic communicative skills in Putonghua.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS1601 Understanding Contemporary China</td>
<td>6</td>
<td>N ASNS1101</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS1801 Chinese Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS1802 Chinese Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS2601 Chinese 2A (Lower Intermediate)</td>
<td>6</td>
<td>A One year (approx. 5 hours per week for 26 weeks) of Chinese at introductory level.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2602 Chinese 2B (Lower Intermediate)</td>
<td>6</td>
<td>A Sound intermediate knowledge of Modern Standard Chinese, including full mastery of about 1000 characters (preferably full-form).</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS2611 Classical Chinese A</td>
<td>6</td>
<td>A Minimum of one year of Chinese at introductory level, preferably using full-form characters.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2612 Classical Chinese B</td>
<td>6</td>
<td>P CHNS2611; or CHNS2111; or HSC Chinese for Background Speakers or equivalent, CHNS2101</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS2650 Chinese In-Country Study A</td>
<td>6</td>
<td>A At least a year of Modern Standard Chinese at tertiary level (or equivalent). The department recommends that students complete at least two semesters of Chinese prior to undertaking a full semester of in-country study.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2651 Chinese In-Country Study B</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2652 Chinese In-Country Study C</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2653 Chinese In-Country Study D</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2654 Chinese In-Country Study E</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2655 Chinese In-Country Study F</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2656 Chinese In-Country Study G</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2657 Chinese In-Country Study H</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2810 Chinese Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2811 Chinese Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2812 Chinese Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS2813 Chinese Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS3601 Chinese 3A (Upper Intermediate)</td>
<td>6</td>
<td>A Two years of university-level Chinese-language instruction for students without prior knowledge of Chinese.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS3602 Chinese 3B (Upper Intermediate)</td>
<td>6</td>
<td>A Two and a half years of university-level Chinese-language instruction for students without prior knowledge of Chinese.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS3603 Chinese 4A (Advanced)</td>
<td>6</td>
<td>P CHNS1202 or CHNS3602 or CHNS3104</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>CHNS3604 Chinese 4B (Advanced)</td>
<td>6</td>
<td>P CHNS3603 or CHNS2203</td>
<td>N HSC Chinese for Background Speakers or equivalent; CHNS2204</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS3605 Advanced Chinese Studies A</td>
<td>6</td>
<td>P CHNS3604 or Distinction in CHNS3602. (Note: students who have earned a Distinction in CHNS3602 will be permitted to take this subject either with or instead of Chinese 4A). N HSC Chinese for Background Speakers (or equivalent).</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS3606 Advanced Chinese Studies B</td>
<td>6</td>
<td>P CHNS3605 Advanced Chinese Studies A, or department permission; [Note: students who have earned a Distinction in CHNS3603 Chinese 4A (Advanced) will be permitted to take this subject either with or instead of CHNS3604 Chinese 4B (Advanced)]</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS3608 Chinese for Business Purposes (A)</td>
<td>6</td>
<td>A Sound intermediate knowledge of Modern Standard Chinese</td>
<td>P CHNS2602, CHNS1202 or CHNS2102</td>
<td>C CHNS3601 or CHNS3603</td>
<td>N HSC Chinese for Background Speakers or equivalent; CHNS3421</td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS3609 Chinese for Business Purposes (B)</td>
<td>6</td>
<td>A Sound intermediate knowledge of Modern Standard Chinese; basic grounding in Chinese for business purposes.</td>
<td>P CHNS3608 or CHNS3421</td>
<td>C CHNS3602 or CHNS3604</td>
<td>N HSC Chinese for Background Speakers or equivalent; CHNS3422</td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS3632 The Novel in Premodern China</td>
<td>6</td>
<td>A No knowledge of the Chinese language or Chinese literature is required.</td>
<td>P 12 credit points from Table A of the Table of Units of Study in the Faculty of Arts or equivalent</td>
<td>N CHNS3302</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS3639 Chinese Cinema</td>
<td>6</td>
<td>A No knowledge of the Chinese language or cinema is required.</td>
<td>P 12 credit points from Part A of the Table of Units in the Faculty of Arts or equivalent.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS3641 Chinese Philosophy</td>
<td>6</td>
<td>A No knowledge of the Chinese language or of Chinese philosophy is required.</td>
<td>P 12 credit points of Chinese language, or 12 non-language credit points from Table A of the Table of Units of Study in the Faculty of Arts; or department permission. (Note: students who hope to attend the Chinese-language tutorials must have successfully completed one of the following: CHNS2612, CHNS2112, CHNS2904, CHNS3114).</td>
<td>N CHNS3351, CHNS3451</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS3646 Classical Chinese Fiction</td>
<td>6</td>
<td>A Good grounding in Classical Chinese</td>
<td>P CHNS2612 or CHNS2112 or CHNS3114 or CHNS2904</td>
<td>N CHNS3354, CHNS3443</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS4011 Chinese Honours A</td>
<td>12</td>
<td>P The minimum requirements for admission to Honours are as follows: (1) a major in Chinese Studies plus sufficient additional credit points selected from other China-focused units of study to reach 48 senior credit points; and (2) a Credit average in all qualifying units of study. In addition, ASNS3690, Approaches to Research in Asian Studies is strongly recommended and may be counted towards the required 48 senior credit points by all students except those whose qualifying senior credit points include CHNS3601 (or 2101) and/or CHNS2602 (or 2102). Intending Honours students are advised to take as many senior credit points as possible in Chinese language and China-related subjects.</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CHNS4012 Chinese Honours B</td>
<td>12</td>
<td>P See under CHNS4011.</td>
<td>C CHNS4011</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS4013 Chinese Honours C</td>
<td>12</td>
<td>P See under CHNS4011.</td>
<td>C CHNS4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CHNS4014 Chinese Honours D</td>
<td>12</td>
<td>P See under CHNS4011.</td>
<td>C CHNS4013</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Classical Studies

<table>
<thead>
<tr>
<th>Classical Studies</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLCV1801 Classical Civilisation Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CLCV1802 Classical Civilisation Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CLSS2804 Classical Civilisation Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CLSS2805 Classical Civilisation Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CLSS4011 Classics Honours A</td>
<td>12</td>
<td>P Either credit average in 36 senior credit points of Latin, including two of LATN3603, 3604, 3605, 3606 plus 18 additional senior credit points of Greek OR credit average in 36 senior credit points of Greek, including two of GREEK3603, 3604, 3605, 3606 plus 18 additional senior credit points of Latin.</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>CLSS4012 Classics Honours B</td>
<td>12</td>
<td>P Refer to CLSS4011</td>
<td>C CLSS4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CLSS4013 Classics Honours C</td>
<td>12</td>
<td>P Refer to CLSS4011</td>
<td>C CLSS4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>CLSS4014 Classics Honours D</td>
<td>12</td>
<td>P Refer to CLSS4011</td>
<td>C CLSS4013</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
Comparative Literary Studies

(See International Comparative Literary Studies.)

Cultural Studies

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCST2601 Introducing Media and Popular Culture</td>
<td>6</td>
<td>P 18 junior credit points</td>
<td>N WMST12001</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 1 Winter Main</td>
</tr>
<tr>
<td>GCST2608 Gender, Communities and Belonging</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td>N WMST2008</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2812 Cultural Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2613 Cultural Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2814 Cultural Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2815 Cultural Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2816 Cultural Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2817 Cultural Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2818 Cultural Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2819 Cultural Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST3603 Consumer Cultures</td>
<td>6</td>
<td>P 18 Junior credit points, including 6 credit points in GCST</td>
<td>N WMST3003</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST3604 Cultural Theory</td>
<td>6</td>
<td>P 18 junior credit points including at least 6 credit points GCST</td>
<td></td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GCST4011 Cultural Studies Honours A</td>
<td>12</td>
<td>P Credit average in 48 senior credit points of Cultural Studies, including GCST2601 (or WMST2001)</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>GCST4012 Cultural Studies Honours B</td>
<td>12</td>
<td>P Refer to GCST4011</td>
<td>C GCST4011</td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>GCST4013 Cultural Studies Honours C</td>
<td>12</td>
<td>P Refer to GCST4011</td>
<td>C GCST4012</td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>GCST4014 Cultural Studies Honours D</td>
<td>12</td>
<td>P Refer to GCST4011</td>
<td>C GCST4013</td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>GCST4010 Arguing the Point</td>
<td>6</td>
<td>P Credit average in 48 senior credit points of Gender Studies, including GCST2602 (or WMST2002) OR credit average in 48 senior credit points of Cultural Studies, including GCST2601 (or WMST2001)</td>
<td>N WMST4011</td>
<td>Note: Department permission required for enrolment</td>
<td>The Honours in Gender Studies and Honours in Cultural Studies programs are structured in the same way. For each, a student must enrol in GCST4101 Arguing the Point and GCST4102 Research Skills. Every student then takes four Honours Thesis units and two Honours Seminar units, in Gender Studies or Cultural Studies respectively. It is also possible to do combined Honours by enrolling in one Seminar and two Thesis units from each discipline. All Honours students are also expected to attend the Departmental research seminar series. Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010.</td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST4102 Research Skills</td>
<td>6</td>
<td>C GCST4101</td>
<td>Note: Department permission required for enrolment</td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST4111 Cultural Studies Honours Seminar A</td>
<td>6</td>
<td>C GCST4101</td>
<td>Note: Department permission required for enrolment</td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>GCST4112 Cultural Studies Honours Seminar B</td>
<td>6</td>
<td>C GCST4101</td>
<td>Note: Department permission required for enrolment</td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>GCST4113 Cultural Studies Honours Thesis A</td>
<td>6</td>
<td>C GCST4101</td>
<td>Note: Department permission required for enrolment</td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>GCST4114 Cultural Studies Honours Thesis B</td>
<td>6</td>
<td>C GCST4101</td>
<td>Note: Department permission required for enrolment</td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>GCST4115 Cultural Studies Honours Thesis C</td>
<td>6</td>
<td>C GCST4101 Note: Department permission required for enrolment Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
</tr>
<tr>
<td>GCST4116 Cultural Studies Honours Thesis D</td>
<td>6</td>
<td>C GCST4101 Note: Department permission required for enrolment Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
</tr>
</tbody>
</table>

Digital Cultures

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARIN2600 Technocultures</td>
<td>6</td>
<td>P 18 junior credit points N ARIN3000</td>
<td></td>
<td>Semester 1</td>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>ARIN2610 Web Production</td>
<td>6</td>
<td>P 18 junior credit points N ARIN2100</td>
<td>Semester 2 Summer Main</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN2620 Cyberworlds</td>
<td>6</td>
<td>P 18 junior credit points N ARIN2200 May be cross-listed for a Sociology major</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN2630 Digital Arts</td>
<td>6</td>
<td>P 18 junior credit points N ARIN2300 May be cross-listed for an Art History and Theory major.</td>
<td></td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN2801 Digital Cultures Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN2802 Digital Cultures Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN2803 Digital Cultures Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN2804 Digital Cultures Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN2805 Digital Cultures Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN2806 Digital Cultures Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN2807 Digital Cultures Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN2808 Digital Cultures Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN3620 Researching Digital Cultures</td>
<td>6</td>
<td>P 18 senior credit points N ARIN2000</td>
<td></td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN3640 Computer Games and Simulation</td>
<td>6</td>
<td>P 18 junior credit points</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN3650 Digital Cultures Project 1</td>
<td>6</td>
<td>P ISYS3403 (ISYS3113), ISYS3400 (ISYS3207) and ARIN3620 (ARIN2000) N ARIN3500, ARIN3600</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN3660 Digital Cultures Project 2</td>
<td>6</td>
<td>P ISYS3403 (ISYS3113), ISYS3400 (ISYS3207), ARIN3620 (ARIN2000) and ARIN3650 N ARIN3500, ARIN3600</td>
<td></td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN3670 Digital Cultures Internship</td>
<td>6</td>
<td>P ARIN1000 and either ISYS1003 or INFO1000 or INFO1003; 36 senior credit points of ARIN and ISYS/INFO C ARIN3680 N Enrolment is subject to approval by the Director of the BA (Digital Technology and Culture) program and locating an appropriate match between student and organisation. Note: Department permission required for enrolment Students will usually not enrol in ARIN3670 until the second semester of their 3rd year.</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN3680 Digital Cultures Internship Project</td>
<td>6</td>
<td>P ARIN1000 and either ISYS1003 or INFO1000 or INFO1003; 36 senior credit points of ARIN and ISYS/INFO C ARIN3670</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN4011 Digital Cultures Honours A</td>
<td>12</td>
<td>P Completion of 48 senior credit points in the Digital Cultures Program comprising ARIN and cross-listed units of study. For 2008, the ARIN units must include ARIN2600 Technocultures and ARIN3620 Researching Digital Cultures. An average of credit or above must be achieved for the 48 credit points. Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1 Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN4012 Digital Cultures Honours B</td>
<td>12</td>
<td>C ARIN4011</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN4013 Digital Cultures Honours C</td>
<td>12</td>
<td>C ARIN4012</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIN4014 Digital Cultures Honours D</td>
<td>12</td>
<td>C ARIN4013</td>
<td></td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

English

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL1002 Narratives of Romance and Adventure</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL1007 Language, Texts and Time</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL1008 Australian Texts: International Contexts</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL1025 Fiction, Film and Power</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ENGL1801 English Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL1802 English Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2603 American Literature: Imagining America</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2003</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL2607 Drama: Classical to Renaissance</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2007</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL2611 Jane Austen and Her Contemporaries</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2011</td>
<td></td>
<td>Semester 1 Main</td>
</tr>
<tr>
<td>ENGL2619 Semiotics of Language</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2019, SMT2001, SMT2002</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL2635 Contemporary American Literature</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2035</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2648 Literature of Travel and Discovery</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2048</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2650 Reading Poetry</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2050</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL2651 Transatlantic Negotiations</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2051</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2655 Modern British Literature</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2052</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL2656 From the Metaphysicals to Milton</td>
<td>6</td>
<td>P 12 junior credit points of English excluding ENGL1000</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2657 Myths, Legends and Heroes</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2053</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2661 Imagining Camelot</td>
<td>6</td>
<td>P 12 junior credit points of English</td>
<td></td>
<td>N ENGL2601</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL2811 English Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL2812 English Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2813 English Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2814 English Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2815 English Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2816 English Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2817 English Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL2818 English Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL3603 Contemporary British Literature</td>
<td>6</td>
<td>P Credit or above in 12 senior credit points of English</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL3605 Canonical Poetry</td>
<td>6</td>
<td>P Credit or above in 12 senior credit points of English</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL3611 Issues in the Semiotics of Language</td>
<td>6</td>
<td>P Credit or above in 12 senior credit points of English</td>
<td>N ENGL3915</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL3615 The Rhetoric of the Streets</td>
<td>6</td>
<td>P Credit or above in 12 senior credit points of English</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3633 Introduction to Old English</td>
<td>6</td>
<td>P Credit or above in 12 senior credit points of English</td>
<td>N Students who have completed ENGL3621, ENGL3622, ENGL3631, ENGL3632 must consult co-ordinator.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3634 Continuing Old English</td>
<td>6</td>
<td>P ENGL3633</td>
<td>N Students who have completed ENGL3621, ENGL3622, ENGL3631, ENGL3632 must consult co-ordinator.</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL3635 Introduction to Old Norse</td>
<td>6</td>
<td>P Credit or above in 12 senior credit points of English</td>
<td>N Students who have completed ENGL3621, ENGL3622, ENGL3631, ENGL3632 must consult co-ordinator.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3636 Continuing Old Norse</td>
<td>6</td>
<td>P ENGL3635</td>
<td>N Students who have completed ENGL3621, ENGL3622, ENGL3631, ENGL3632 must consult co-ordinator.</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
European Studies

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL3642 Studies in Medieval Literatures</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3653 Political Speech in Early Modern Drama</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3654 Liberteine Literature: Sex and Liberty</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3655 The Literary in Theory</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL3656 Rethinking the Thirties</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3657 The Brontes</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL4101 English Honours A</td>
<td>12</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL4102 English Honours B</td>
<td>12</td>
<td>C</td>
<td>ENGL4101</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL4103 English Honours C</td>
<td>12</td>
<td>C</td>
<td>ENGL4102</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL4104 English Honours D</td>
<td>12</td>
<td>C</td>
<td>ENGL4103</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT2609 Australian Literature 1988 to Present</td>
<td>6</td>
<td>P 12 Junior credit points</td>
<td>N ASLT2009</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASLT2616 Australian Stage and Screen</td>
<td>6</td>
<td>P 18 Junior credits points</td>
<td>N ASLT2006, ASLT2016</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT2617 Writing and Justice</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT2618 Anatomy of the Literary Hoax</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT2620 Writing Australian Nature</td>
<td>6</td>
<td>P 12 Junior credit points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASLT4011 Australian Literature Honours A</td>
<td>12</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT4012 Australian Literature Honours B</td>
<td>12</td>
<td>C</td>
<td>ASLT4011</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT4013 Australian Literature Honours C</td>
<td>12</td>
<td>C</td>
<td>ASLT4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT4014 Australian Literature Honours D</td>
<td>12</td>
<td>C</td>
<td>ASLT4013</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

European Studies

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUST2611 European & Middle Eastern Myth & Legend</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td>from Part A of the Table of Units of Study, of which 12 credit points are from one subject; or permission from the Director of European Studies.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>EUST2612 Regionalisms in Europe & the Middle East</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td>from Part A of the Table of Units of Study, of which 12 credit points are from one subject; or permission from the Director of European Studies.</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>EUST2613 Romanticism and Revolution</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td>from Part A of the Table of Units of Study, of which 12 credit points are from one subject; or permission from the Director of European Studies.</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>EUST2614 Contested Histories of Eastern Europe</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td>from Part A of the Table of Units of Study, of which 12 credit points are from one subject; or permission from the Director of European Studies.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>EUST2805 European Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>EUST2806 European Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>EUST2807 European Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>EUST2808 European Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

European Studies

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL3642 Studies in Medieval Literatures</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3653 Political Speech in Early Modern Drama</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3654 Liberteine Literature: Sex and Liberty</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3655 The Literary in Theory</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENGL3656 Rethinking the Thirties</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL3657 The Brontes</td>
<td>6</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL4101 English Honours A</td>
<td>12</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL4102 English Honours B</td>
<td>12</td>
<td>C</td>
<td>ENGL4101</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL4103 English Honours C</td>
<td>12</td>
<td>C</td>
<td>ENGL4102</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENGL4104 English Honours D</td>
<td>12</td>
<td>C</td>
<td>ENGL4103</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT2609 Australian Literature 1988 to Present</td>
<td>6</td>
<td>P 12 Junior credit points</td>
<td>N ASLT2009</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASLT2616 Australian Stage and Screen</td>
<td>6</td>
<td>P 18 Junior credits points</td>
<td>N ASLT2006, ASLT2016</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT2617 Writing and Justice</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT2618 Anatomy of the Literary Hoax</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT2620 Writing Australian Nature</td>
<td>6</td>
<td>P 12 Junior credit points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ASLT4011 Australian Literature Honours A</td>
<td>12</td>
<td>P</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT4012 Australian Literature Honours B</td>
<td>12</td>
<td>C</td>
<td>ASLT4011</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT4013 Australian Literature Honours C</td>
<td>12</td>
<td>C</td>
<td>ASLT4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ASLT4014 Australian Literature Honours D</td>
<td>12</td>
<td>C</td>
<td>ASLT4013</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
Film Studies

FILM2810 Film Studies Exchange
Credit points: 6
Sessions: Summer Main, Summer Late, Winter Main
Note: Department permission required for enrolment

FILM2811 Film Studies Exchange
Credit points: 6
Sessions: Summer Main, Summer Late, Winter Main
Note: Department permission required for enrolment

FILM2812 Film Studies Exchange
Credit points: 6
Sessions: Summer Main, Summer Late, Winter Main
Note: Department permission required for enrolment

FILM2813 Film Studies Exchange
Credit points: 6
Sessions: Summer Main, Summer Late, Winter Main
Note: Department permission required for enrolment

FILM2814 Film Studies Exchange
Credit points: 6
Sessions: Summer Main, Summer Late, Winter Main
Note: Department permission required for enrolment

FILM2815 Film Studies Exchange
Credit points: 6
Sessions: Summer Main, Summer Late, Winter Main
Note: Department permission required for enrolment

FILM4101 Film Studies Honours A
Credit points: 12
Sessions: Semester 1, Semester 2
P: Results of a credit average or better in 48 credit points in Film Studies senior units. If you do not have this prerequisite please contact the Honours coordinator to determine possible waiving of the prerequisite. Students may commence their study either at the beginning of the year or mid-year.
Note: Department permission required for enrolment

FILM4102 Film Studies Honours B
Credit points: 12
Sessions: Semester 1, Semester 2
Note: Department permission required for enrolment

FILM4103 Film Studies Honours C
Credit points: 12
Sessions: Semester 1, Semester 2
Note: Department permission required for enrolment

FILM4104 Film Studies Honours D
Credit points: 12
Sessions: Semester 1, Semester 2
Note: Department permission required for enrolment

French Studies

FRNC1611 Junior French Introductory 1
Credit points: 6
P: Complete beginners, or less than 2 years of French, or less than 65% in Beginners HSC French
N: FRNC1101
Sessions: Semester 1, Summer Main, Summer Late, Winter Main

FRNC1612 Junior French Introductory 2
Credit points: 6
P: FRNC1611 or FRNC1101 or equivalent
N: FRNC1102
Sessions: Semester 2, Summer Late, Winter Main

FRNC1621 Junior French Intermediate 3
Credit points: 6
P: Less than 80% in HSC French Continuers or more than 65% in HSC French Beginners or equivalent
N: FRNC1201
Sessions: Semester 1

FRNC1622 Junior French Intermediate 4
Credit points: 6
P: FRNC1621 or FRNC1201 or equivalent
N: FRNC1202
Sessions: Semester 2

FRNC1631 Junior French Advanced 5
Credit points: 6
P: HSC French Continuers and Extension or more than 80% in Continuers French
N: FRNC1301
Sessions: Semester 1

FRNC1632 Junior French Advanced 6
Credit points: 6
P: FRNC1631 or FRNC1301 or equivalent
N: FRNC1302
Sessions: Semester 2

FRNC1801 French Exchange
Credit points: 6
Note: Department permission required for enrolment
Sessions: Semester 1, Semester 2

FRNC1802 French Exchange
Credit points: 6
Note: Department permission required for enrolment
Sessions: Semester 1, Semester 2

FRNC2901 French Exchange
Credit points: 6
Note: Department permission required for enrolment
Sessions: Semester 1, Semester 2

FRNC2611 Senior French Intermediate 1
Credit points: 6
P: FRNC1622, FRNC1612, FRNC1102 or equivalent
N: FRNC2103
Sessions: Semester 1

FRNC2612 Senior French Intermediate 2
Credit points: 6
P: FRNC2611, FRNC2103 or equivalent
N: FRNC2104
Sessions: Semester 2

FRNC2614 French Reading 1: Text and Society
Credit points: 6
P: FRNC1612, FRNC1622, FRNC1102, FRNC1202 or equivalent
N: FRNC2621, FRNC2631, FRNC2501, FRNC2621, FRNC3622
This unit is required for students intending to major or take options in their third year
Sessions: Semester 1

FRNC2615 Literature and Theatre
Credit points: 6
P: FRNC2614, FRNC2501 or equivalent
N: FRNC2502, FRNC2622, FRNC2631, FRNC3621, FRNC3822
This unit is required for students intending to major or take options in their third year
Sessions: Semester 2

FRNC2621 Senior French Intermediate 3
Credit points: 6
P: FRNC2612, FRNC2104 or equivalent
N: FRNC3105
Sessions: Semester 1

FRNC2622 Senior French Intermediate 4
Credit points: 6
P: FRNC2621, FRNC3105 or equivalent
N: FRNC3106
Sessions: Semester 2

FRNC2666 Research Methods in French Studies
Credit points: 6
P: Credit in FRNC1632 or FRNC2615 or FRNC1302 or FRNC2502
This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.
Sessions: Semester 1

FRNC2682 The Legend of the Holy Grail
Credit points: 6
P: FRNC1302 or FRNC2502 or FRNC1632 or FRNC2615 or equivalent
N: FRNC2901
This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.
Sessions: Semester 2

256
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRNC2692 The Second French Revolution</td>
<td>6</td>
<td>P FRNC1632, FRNC1302, FRNC2615, FRNC2502 or equivalent N FRNC2303</td>
<td>Semester 2</td>
</tr>
<tr>
<td>FRNC2693 French Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC2694 French Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
</tr>
<tr>
<td>FRNC2695 French Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC2696 French Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC2697 French Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC2698 French Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
</tr>
<tr>
<td>FRNC3621 Senior French Advanced 5</td>
<td>6</td>
<td>P FRNC1632, FRNC1302 or equivalent N FRNC2303</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC3622 Senior French Advanced 6</td>
<td>6</td>
<td>P FRNC1632, FRNC1302 or equivalent N FRNC2304</td>
<td>Semester 2</td>
</tr>
<tr>
<td>FRNC3631 Senior French Advanced 7</td>
<td>6</td>
<td>P FRNC1632, FRNC1302 or equivalent N FRNC2304</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC3652 Textual Linguistics</td>
<td>6</td>
<td>P FRNC1632 or FRNC2615 or FRNC1302 or FRNC2502 or equivalent N FRNC3603</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC3661 Genre de l'Invention, Invention du Genre</td>
<td>6</td>
<td>P FRNC1632 or FRNC1302 or FRNC2615 or FRNC2502</td>
<td>Semester 2</td>
</tr>
<tr>
<td>FRNC3667 French Enlightenment</td>
<td>6</td>
<td>P FRNC1302, FRNC1632, FRNC2615 or equivalent N FRNC3908</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC3669 French Romanticism</td>
<td>6</td>
<td>P FRNC1302, FRNC1632, FRNC2615 or equivalent N FRNC3908</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC3690 French Political Cinema</td>
<td>6</td>
<td>P FRNC1631 or FRNC2615 or FRNC1302 or FRNC2502</td>
<td>Semester 2</td>
</tr>
<tr>
<td>FRNC3801 French In-Country Study</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC4011 French Honours A</td>
<td>12</td>
<td>P 48 senior credit points (with Credit average or better) including FRNC2666 Research Methods in French Studies and FRNC3631 Senior French Language (or equivalent). Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC4012 French Honours B</td>
<td>12</td>
<td>C FRNC4011</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC4013 French Honours C</td>
<td>12</td>
<td>C FRNC4012</td>
<td>Semester 1</td>
</tr>
<tr>
<td>FRNC4014 French Honours D</td>
<td>12</td>
<td>C FRNC4013</td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Gender Studies

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCST2601 Introducing Media and Popular Culture</td>
<td>6</td>
<td>P 18 junior credit points N WMST2001 This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2602 Introducing Gender</td>
<td>6</td>
<td>P 18 junior credit points N WMST2002</td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2604 Sex, Violence and Transgression</td>
<td>6</td>
<td>P 18 junior credit points N WMST2004 This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 2</td>
</tr>
<tr>
<td>GCST2607 Bodies, Sexualities, Identities</td>
<td>6</td>
<td>P 18 junior credit points N WMST2007 This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2608 Gender, Communities and Belonging</td>
<td>6</td>
<td>P 18 junior credit points N WMST2008 This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2609 Cultures of Masculinities</td>
<td>6</td>
<td>P 18 junior credit points N WMST2009 This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 1</td>
</tr>
<tr>
<td>GCST2610 Intimacy, Love and Friendship</td>
<td>6</td>
<td>P 18 junior credit points N WMST2010 This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 2</td>
</tr>
<tr>
<td>GCST2612 Youth Cultures</td>
<td>6</td>
<td>P 18 junior credit points N WMST2012 This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>GCST2613 Everyday Life: Theories and Practices</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td>N GCST2611</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N GCST2611</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
</tr>
<tr>
<td>GCST2614 The Body: Theories, Practices, Cultures</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td>N WMST2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N WMST2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
</tr>
<tr>
<td>GCST2804 Gender Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td>GCST2805 Gender Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td>GCST2806 Gender Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td>GCST2810 Gender Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td>GCST2811 Gender Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td>GCST3603 Consumer Cultures</td>
<td>6</td>
<td>P 18 Junior credit points, including 6 credit points in GCST</td>
<td>N WMST3009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N WMST3009</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
</tr>
<tr>
<td>GCST3604 Cultural Theory</td>
<td>6</td>
<td>P 18 Junior credit points including at least 6 credit points GCST</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P 18 Junior credit points including at least 6 credit points GCST</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
</tr>
<tr>
<td>GCST3690 Transnationalism, Gender & Globalisation</td>
<td>6</td>
<td>P 18 Junior credit points, including 6 credit points in GCST</td>
<td>N WMST3090</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N WMST3090</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
</tr>
<tr>
<td>GCST4015 Gender Studies Honours A</td>
<td>12</td>
<td>P Credit average in 48 senior credit points of Gender Studies, including GCST2602 (or WMST2002)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td>GCST4016 Gender Studies Honours B</td>
<td>12</td>
<td>P Refer to GCST4015</td>
<td>C GCST4015</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P Refer to GCST4015</td>
<td>C GCST4015</td>
</tr>
<tr>
<td>GCST4017 Gender Studies Honours C</td>
<td>12</td>
<td>P Refer to GCST4015</td>
<td>C GCST4016</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P Refer to GCST4015</td>
<td>C GCST4016</td>
</tr>
<tr>
<td>GCST4018 Gender Studies Honours D</td>
<td>12</td>
<td>P Refer to GCST4015</td>
<td>C GCST4017</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P Refer to GCST4015</td>
<td>C GCST4017</td>
</tr>
<tr>
<td>GCST4101 Arguing the Point</td>
<td>6</td>
<td>P Credit average in 48 senior credit points of Gender Studies, including GCST2602 (or WMST2002) OR credit average in 48 senior credit points of Cultural Studies, including GCST2601 (or WMST2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P Credit average in 48 senior credit points of Gender Studies, including GCST2602 (or WMST2002) OR credit average in 48 senior credit points of Cultural Studies, including GCST2601 (or WMST2001)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The Honours in Gender Studies and Honours in Cultural Studies programs are structured in the same way. For each, a student must enrol in GCST4101 Arguing the Point and GCST4102 Research Skills. Every student then takes four Honours Thesis units and two Honours Seminar units, in Gender Studies or Cultural Studies respectively. It is also possible to do combined Honours by enrolling in one Seminar and two Thesis units from each discipline. All Honours students are also expected to attend the Departmental research seminar series. Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010.</td>
<td></td>
</tr>
<tr>
<td>GCST4102 Research Skills</td>
<td>6</td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td>GCST4103 Gender Studies Honours Seminar A</td>
<td>6</td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
</tr>
<tr>
<td>GCST4104 Gender Studies Honours Seminar B</td>
<td>6</td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
</tr>
<tr>
<td>GCST4105 Gender Studies Honours Thesis A</td>
<td>6</td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
</tr>
<tr>
<td>GCST4106 Gender Studies Honours Thesis B</td>
<td>6</td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
</tr>
<tr>
<td>GCST4107 Gender Studies Honours Thesis C</td>
<td>6</td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
</tr>
<tr>
<td>GCST4108 Gender Studies Honours Thesis D</td>
<td>6</td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C GCST4101</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Available only to students who commenced Cultural Studies or Gender Studies Honours prior to 2010. See GCST4101</td>
<td></td>
</tr>
</tbody>
</table>

Germanic Studies

<p>| GRMN1111 Junior German 1 | 6 | N HSC German Extension, German Continuers, German Beginners 70% or above or equivalent | | | | Semester 1 |</p>
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRMN1122</td>
<td>6</td>
<td></td>
<td>P GRMN1111</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Junior German 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN1211</td>
<td>6</td>
<td></td>
<td>P HSC German Beginners 70% or above or German Continuers below 70% or equivalent</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Junior German 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN1222</td>
<td>6</td>
<td></td>
<td>P GRMN1211</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Junior German 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN1311</td>
<td>6</td>
<td></td>
<td>P HSC German Extension or German Continuers 70% or above or equivalent</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Junior German 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN1322</td>
<td>6</td>
<td></td>
<td>P GRMN1311</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Junior German 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2611</td>
<td>6</td>
<td></td>
<td>P GRMN1122</td>
<td>N GRMN2211, GRMN2222, GRMN2311, GRMN2322, GRMN2331, GRMN2342, GRMN2351, GRMN2362</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Senior German 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2612</td>
<td>6</td>
<td></td>
<td>P GRMN2611 or GRMN2211</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Senior German 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2613</td>
<td>6</td>
<td></td>
<td>P GRMN1222 or GRMN2222 or GRMN2612</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Senior German 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2614</td>
<td>6</td>
<td></td>
<td>P GRMN2613 or GRMN2311</td>
<td>N GRMN2322, GRMN2331, GRMN2342, GRMN2351, GRMN2362</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Senior German 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2615</td>
<td>6</td>
<td></td>
<td>P GRMN2322 or GRMN2614</td>
<td>N GRMN2331, GRMN2342, GRMN2351, GRMN2362</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Senior German 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2616</td>
<td>6</td>
<td></td>
<td>P GRMN1322 or GRMN2615</td>
<td>N GRMN2342, GRMN2351, GRMN2362</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Senior German 6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2617</td>
<td>6</td>
<td></td>
<td>P GRMN2331 or GRMN2616</td>
<td>N GRMN2351, GRMN2362</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Senior German 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2618</td>
<td>6</td>
<td></td>
<td>P GRMN2342 or GRMN2617</td>
<td>N GRMN2362</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Senior German 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2631</td>
<td>6</td>
<td></td>
<td>P (GRMN1111 and GRMN1122) or (GRMN1211 and GRMN1222)</td>
<td>N GRMN1311, GRMN1322, GRMN2342, GRMN2616, GRMN2650, GRMN2351, GRMN2617, GRMN2362, GRMN2618</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Reading Comprehension and Text Study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2632</td>
<td>6</td>
<td></td>
<td>P 12 Junior credit points of German not including GRMN1133</td>
<td>N GRMN2450</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Early 20th Century German Culture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2634</td>
<td>6</td>
<td></td>
<td>P 12 Junior credit points of German not including GRMN1133</td>
<td>N GRMN2450</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>The Fantastical in German Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2635</td>
<td>6</td>
<td></td>
<td>P 12 Junior credit points of German not including GRMN1133</td>
<td>N GRMN2913</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (Advanced) degree program.</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Contemporary German Fiction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2637</td>
<td>6</td>
<td></td>
<td>P GRMN1222, GRMN1322, GRMN2222 or GRMN2612</td>
<td>N GRMN2362</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Business German</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2682</td>
<td>6</td>
<td></td>
<td>P Credit average in 12 Junior credit points of German not including GRMN1133</td>
<td>N GRMN3702</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (Advanced) degree program.</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Foreign & Exotic in the German World</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2684</td>
<td>6</td>
<td></td>
<td>P Credit average in 12 Junior credit points of German not including GRMN1133</td>
<td>N GRMN2450</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Myth in German Literature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRMN2811</td>
<td>6</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Germanic Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRMN2812</td>
<td>6</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Germanic Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRMN2813</td>
<td>6</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Germanic Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRMN2814</td>
<td>6</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Germanic Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRMN2815</td>
<td>6</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Germanic Studies Exchange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRMN4011</td>
<td>12</td>
<td></td>
<td>P 48 senior credit points of German including 12 credit points of special honours entry units (2680 level)</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>German Honours A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRMN4012</td>
<td>12</td>
<td></td>
<td>C GRMN4011</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>German Honours B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRMN4013</td>
<td>12</td>
<td></td>
<td>C GRMN4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>German Honours C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRMN4014</td>
<td>12</td>
<td></td>
<td>C GRMN4013</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>German Honours D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Global Studies

(For continuing Bachelor of Global Studies students only.)

<p>| GBST2602 Human Rights & the Global Public Sphere | 6 | P GBST1001 and ANTH11002 | Semester 2 |
| GBST2801 Global Studies Exchange 1 | 6 | Note: Department permission required for enrolment | Semester 1 |
| GBST2802 Global Studies Exchange 2 | 6 | Note: Department permission required for enrolment | Semester 1 |</p>
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>GBST2803 Global Studies Exchange 3</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2806 Global Studies Exchange 6</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2807 Global Studies Exchange 7</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2808 Global Studies Exchange 8</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2411 Global Studies Honours A</td>
<td>12</td>
<td>P Completion of the Bachelor of Global Studies with a Credit average</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2412 Global Studies Honours B</td>
<td>12</td>
<td>C GBST4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2413 Global Studies Honours C</td>
<td>12</td>
<td>C GBST4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2414 Global Studies Honours D</td>
<td>12</td>
<td>C GBST4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Government and International Relations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOVT1001 Government Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT1101 Australian Politics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT1104 Power in Society</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GOVT1105 Geopolitics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GOVT1202 World Politics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT1881 Government Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT1882 Government Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2111 Human Rights and Australian Politics</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2101</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GOVT2114 The Australian Political Party System</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2104</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GOVT2116 Australian Foreign and Defence Policy</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2106</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2119 Southeast Asia: Dilemmas of Development</td>
<td>6</td>
<td>P 12 junior credit points in Government N ECHS2303, GOVT2109</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GOVT2221 Politics of International Economic Rels</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2201</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2225 International Security in 21st Century</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2205</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2226 International Organisations</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2206</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2331 Social Change and Politics</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2301</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GOVT2410 Globalisation and National Governance</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2410</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GOVT2445 American Politics and Foreign Policy</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2405</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GOVT2522 Policy Analysis</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2502</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2557 Public Sector Management</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2507</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2558 Government, Business and Society</td>
<td>6</td>
<td>P 4 junior units of study</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GOVT2611 Capitalism and Democracy in East Asia</td>
<td>6</td>
<td>P 12 junior credit points in Government N GOVT2411</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GOVT2801 Applied International Studies</td>
<td>6</td>
<td>Four core junior BIntS units of study (GOVT1105, GOVT1202, ECOP1001, ECOP1003) This unit is only available to students enrolled in the Bachelor of International Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GOVT2802 International Studies Practicum</td>
<td>6</td>
<td>Four core junior BIntS units of study (GOVT1105, GOVT1202, ECOP1001, ECOP1003) This unit is only available to students enrolled in the Bachelor of International Studies.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Unit of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOVT2881 Government Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT2882 Government Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT2883 Government Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT2884 Government Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT2885 Government Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT2991 Political Analysis</td>
<td>6</td>
<td>P Two junior Government units at the level of Credit or better, or with the consent of the Honours Coordinator, Dr Ariadne Vromen</td>
<td>N GOVT2991</td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT3993 Power</td>
<td>6</td>
<td>P Two senior Government units and GOVT2991 (or 2091), each at the level of Credit or better, or with the consent of the Honours Coordinator, Dr Ariadne Vromen.</td>
<td>N GOVT3991</td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT3994 Research Preparation</td>
<td>6</td>
<td>P Two senior Government units and GOVT2991 (or 2091), each at the level of Credit or better, or with the consent of the Honours Coordinator, Dr Ariadne Vromen.</td>
<td>N GOVT3991</td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT4101 Government Honours A</td>
<td>12</td>
<td>P Credit grades in two junior GOVT units, three senior GOVT units and GOVT2991 (or GOVT2091), GOVT3993 (or GOVT3991) and GOVT3994 (or GOVT3992). Requirements for the Pass degree must be completed before entry to level 4000 honours units of study.</td>
<td>C Must enrol in GOVT4101, 4102, 4103, and 4104</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT4102 Government Honours B</td>
<td>12</td>
<td>P Credit grades in two junior GOVT units, three senior GOVT units and GOVT2991 (or GOVT2091), GOVT3993 (or GOVT3991) and GOVT3994 (or GOVT3992). Requirements for the Pass degree must be completed before entry to level 4000 honours units of study.</td>
<td>C Must enrol in GOVT4101 and 4102 and 4103 and 4104</td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT4103 Government Honours C</td>
<td>12</td>
<td>P Credit grades in two junior GOVT units, three senior GOVT units and GOVT2991 (or GOVT2091), GOVT3993 (or GOVT3991) and GOVT3994 (or GOVT3992). Requirements for the Pass degree must be completed before entry to level 4000 honours units of study.</td>
<td>C Must enrol in GOVT4101, 4102, 4103, and 4104</td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GOVT4104 Government Honours D</td>
<td>12</td>
<td>P Credit grades in two junior GOVT units, three senior GOVT units and GOVT2991 (or GOVT2091), GOVT3993 (or GOVT3991) and GOVT3994 (or GOVT3992). Requirements for the Pass degree must be completed before entry to level 4000 honours units of study.</td>
<td>C Must enrol in GOVT4101, 4102, 4103, and 4104</td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
</tbody>
</table>

Greek (Ancient)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRKA1600 Introduction to Ancient Greek 1</td>
<td>6</td>
<td>N GRKA1001, GRKA2611, GRKA2620</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GRKA1601 Introduction to Ancient Greek 2</td>
<td>6</td>
<td>P GRKA1600 or GRKA1001</td>
<td>N GRKA1002, GRKA2612, GRKA2621</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRKA2600 Intermediate Greek 1</td>
<td>6</td>
<td>P HSC Greek or GRKA1601 or GRKA2621 or GRKA2612 or GRKA1002</td>
<td>N GRKA2603</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GRKA2601 Intermediate Greek 2</td>
<td>6</td>
<td>P GRKA2600 or GRKA2603</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRKA2620 Reading Greek 1</td>
<td>6</td>
<td>N GRKA1600, GRKA1001, GRKA2611</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GRKA2621 Reading Greek 2</td>
<td>6</td>
<td>P GRKA1600 or GRKA2603 or GRKA2611 or GRKA2620</td>
<td>N GRKA1001, GRKA1002, GRKA2612</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRKA2604 Greek (Ancient) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GRKA2605 Greek (Ancient) Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GRKA3600 Advanced Greek</td>
<td>6</td>
<td>P GRKA2601 or equivalent</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GRKA3601 The Language of the Greek Bible</td>
<td>6</td>
<td>P GRKA2600 or equivalent; OR MGRK2675 and MGRK2676</td>
<td>Students wishing to do a Greek (Ancient) major or honours are advised to take this unit concurrently with GRKA2601. This unit is available as a designated 'Advanced' unit to students enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRKA3603 Greek Oratory and Historiography</td>
<td>6</td>
<td>C GRKA3600 or equivalent</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GRKA3605 Greek Drama</td>
<td>6</td>
<td>P 18 GRKA credit points at 3000 level</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GRKA4011 Greek Honours A</td>
<td>12</td>
<td>P Credit average in 42 senior credit points of Greek including two of GRKA3603, 3604, 3605, 3606 plus 6 additional senior credit points of Greek, Latin or Ancient History</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>GRKA4012 Greek Honours B</td>
<td>12</td>
<td>P Refer to GRKA4011</td>
<td>C GRKA4011</td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>GRKA4013 Greek Honours C</td>
<td>12</td>
<td>P Refer to GRKA4011</td>
<td>C GRKA4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GRKA4014 Greek Honours D</td>
<td>12</td>
<td>P Refer to GRKA4011</td>
<td>C GRKA4013</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Hebrew (Classical)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBRW1111 Hebrew Classical B1</td>
<td>6</td>
<td>N HBRW1311, HBRW2631</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW1112 Hebrew Classical B2</td>
<td>6</td>
<td>P HBRW1111</td>
<td>N HBRW1312, HBRW2632</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW2625 Hebrew Classical 5</td>
<td>6</td>
<td>P HBRW1112 or HBRW2632 or HBRW2402 or HSC Hebrew or equivalent</td>
<td>N HBRW2115</td>
<td>This unit is available as a designated ‘Advanced’ unit to students enrolled in the BA (Advanced)</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW2626 Hebrew Classical 6</td>
<td>6</td>
<td>P HBRW1112 or HBRW2632 or HSC Hebrew or equivalent</td>
<td>N HBRW2116</td>
<td>This unit is available as a designated ‘Advanced’ unit to students enrolled in the BA (Advanced)</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW2631 Hebrew Accelerated C1</td>
<td>6</td>
<td>P 18 Junior credit points including 12 credit points in a subject area from the School of Archaeology, Classics and Ancient History or from the Department of Hebrew, Biblical and Jewish Studies or from the Department of Arabic and Islamic Studies.</td>
<td>C 6 senior credit points in a subject area from the School of Archaeology, Classics and Ancient History or from the Department of Hebrew, Biblical and Jewish Studies or from the Department of Arabic and Islamic Studies.</td>
<td>N HBRW1111, HBRW1112, HBRW2401</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW2632 Hebrew Accelerated C2</td>
<td>6</td>
<td>P HBRW2401 or HBRW2631</td>
<td>N HBRW1112, HBRW2402</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW2643 Aramaic 3</td>
<td>6</td>
<td>P HBRW1112 or HBRW2632 or HBRW2402 or HSC Hebrew or equivalent, N HBRW3901</td>
<td></td>
<td>This unit is available as a designated ‘Advanced’ unit to students enrolled in the BA (Advanced)</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW2644 Aramaic 4</td>
<td>6</td>
<td>P HBRW1112 or HBRW2632 or HSC Hebrew or equivalent, N HBRW3902</td>
<td></td>
<td>This unit is available as a designated ‘Advanced’ unit to students enrolled in the BA (Advanced)</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW2651 Syriac 1</td>
<td>6</td>
<td>P HBRW1112 or HBRW2402 or HBRW2632 or HSC Hebrew or equivalent, N HBRW2911 Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW2652 Syriac 2</td>
<td>6</td>
<td>P HBRW2911 or HBRW2651</td>
<td>N HBRW2912</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW2801 Hebrew (Classical) In-Country Study A</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW2802 Hebrew (Classical) In-Country Study B</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW3653 Syriac 3</td>
<td>6</td>
<td>P HBRW2912 or HBRW2652</td>
<td>N HBRW3911</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW3654 Syriac 4</td>
<td>6</td>
<td>P HBRW3911 or HBRW3653</td>
<td>N HBRW3912</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW4011 Hebrew (Classical) Honours A</td>
<td>12</td>
<td>P 48 senior credit points consisting of: (HBRW2113 or HBRW2623) and (HBRW2114 or HBRW2624) and (HBRW2115 or HBRW2625) and (HBRW2116 or HBRW2626); and 24 credit points from the department of Hebrew, Biblical and Jewish Studies including at least 12 credit points from HBRW units. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW4012 Hebrew (Classical) Honours B</td>
<td>12</td>
<td>C HBRW4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW4013 Hebrew (Classical) Honours C</td>
<td>12</td>
<td>C HBRW4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW4014 Hebrew (Classical) Honours D</td>
<td>12</td>
<td>C HBRW4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Hebrew (Modern)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBRW1011 Hebrew Modern B1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW1102 Hebrew Modern B2</td>
<td>6</td>
<td>P HBRW1011 or equivalent knowledge as determined by the department</td>
<td>N HBRW1302</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW2603 Hebrew Modern 3</td>
<td>6</td>
<td>P HBRW1102 or equivalent knowledge as determined by the department</td>
<td>N HBRW2103</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW2604 Hebrew Modern 4</td>
<td>6</td>
<td>P HBRW2603 or equivalent knowledge as determined by the department</td>
<td>N HBRW2104</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW2605 Hebrew Modern 5</td>
<td>6</td>
<td>P HBRW2604 or equivalent knowledge as determined by the department</td>
<td>N HBRW2105</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW2606 Hebrew Modern 6</td>
<td>6</td>
<td>P HBRW2605 or equivalent knowledge as determined by the department</td>
<td>N HBRW2106</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>HBRW2607 Hebrew Modern 7</td>
<td>6</td>
<td>P HBRW2106 or HBRW2606 or Modern Hebrew HSC or equivalent knowledge as determined by the department</td>
<td>N HBRW1301</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW2608 Hebrew Modern 8</td>
<td>6</td>
<td>P HBRW1301 or HBRW2607 or equivalent knowledge as determined by the department</td>
<td>N HBRW1302</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW2609 Hebrew Modern 9</td>
<td>6</td>
<td>P HBRW1302 or HBRW2608 or equivalent knowledge as determined by the department</td>
<td>N HBRW2303</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW2610 Hebrew Modern 10</td>
<td>6</td>
<td>P HBRW1302 or HBRW2609 or equivalent knowledge as determined by the department</td>
<td>N HBRW2304</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW2611 Hebrew Modern 11</td>
<td>6</td>
<td>P HBRW2610 or equivalent knowledge as determined by the department</td>
<td>N HBRW2305</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW2612 Hebrew Modern 12</td>
<td>6</td>
<td>P HBRW1302 or HBRW2611 or equivalent knowledge as determined by the department</td>
<td>N HBRW2306</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW4021 Hebrew (Modern) Honours A</td>
<td>12</td>
<td>P Credit or better at 36 credit points of Modern Hebrew from among HBRW2605 to HBRW2612</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW4022 Hebrew (Modern) Honours B</td>
<td>12</td>
<td>C HBRW4021</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HBRW4023 Hebrew (Modern) Honours C</td>
<td>12</td>
<td>C HBRW4022</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HBRW4024 Hebrew (Modern) Honours D</td>
<td>12</td>
<td>C HBRW4023</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Heritage Studies

- **HRTG2601 Approaching Heritage Studies** | 6 | P At least 18 junior credit points | N HRTG2001 | Semester 1
- **HRTG2602 The Museum and Cultural Heritage** | 6 | P HRTG2001 or HRTG2601 or ARHT2034 or ARHT2634 | N HSTY2022 | Semester 2
- **HRTG2804 Heritage Studies Exchange** | 6 | Note: Department permission required for enrolment | | Semester 1 | Semester 2
- **HRTG2805 Heritage Studies Exchange** | 6 | Note: Department permission required for enrolment | | Semester 1 | Semester 2
- **HRTG2806 Heritage Studies Exchange** | 6 | Note: Department permission required for enrolment | | Semester 1 | Semester 2
- **HRTG2809 Heritage Studies Exchange** | 6 | Note: Department permission required for enrolment | | Semester 1 | Semester 2
- **HRTG2810 Heritage Studies Exchange** | 6 | Note: Department permission required for enrolment | | Semester 1 | Semester 2
- **HRTG3601 Heritage Museums and the Public Sphere** | 6 | P HRTG2001 or HRTG2601 or ARHT2034 or ARHT2634 | N HRTG3001 | Semester 1

Hindi-Urdu

(Major may not be available.)

- **HIUR3601 Hindi and Urdu Advanced 1** | 6 | P HIUR2002 or HIUR2602 or equivalent | N HIUR3001 | Semester 1
- **HIUR3602 Hindi and Urdu Advanced 2** | 6 | P HIUR3001 or HIUR3601 or equivalent | N HIUR3002 | Semester 2

History

- **HSTY1025 The Middle Ages** | 6 | | | | Semester 1
- **HSTY1031 Renaissance and Reformation (1499-1648)** | 6 | | | | Semester 2
- **HSTY1044 Twentieth Century Europe** | 6 | N HSTY1043 | | | Semester 2
- **HSTY1045 Modern European History 1750-1914** | 6 | | | | Semester 1
- **HSTY1075 American History from Lincoln to Clinton** | 6 | N HSTY2035 | | | Semester 1
- **HSTY1089 Australia: Colonies to Nation** | 6 | | | | Semester 2
- **HSTY1090 History of Chinese Culture** | 6 | N ASNS1101 | | | Semester 1
- **HSTY1801 History Exchange** | 6 | Note: Department permission required for enrolment | | | Semester 1 | Semester 2
- **HSTY1802 History Exchange** | 6 | Note: Department permission required for enrolment | | | Semester 1 | Semester 2
- **HSTY2604 Popular Culture in Australia 1850-1945** | 6 | P 12 credit points of Junior History, Ancient History, or Asian Studies | N HSTY2004 | | Semester 1 | Winter Main
- **HSTY2605 Contemporary Europe** | 6 | P 12 credit points of Junior History, Ancient History, or Asian Studies | N HSTY2005 | | Semester 1 | Winter Main
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSTY2608 European Film and History</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History, or Asian Studies</td>
<td>N HSTY2006</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2614 Australian Social History</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History, or Asian Studies</td>
<td>N HSTY2014</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2621 China's Economy: From Mao to Market</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History, or Asian Studies</td>
<td>N HSTY2021</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2622 The Opium Wars in China (1839-1860)</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History, or Asian Studies</td>
<td>N HSTY2021</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2625 Culture and Society in Modern Britain</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History, or Asian Studies</td>
<td>N HSTY2025</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2636 A House Divided: The American Civil War</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History, or Asian Studies</td>
<td>N HSTY2056</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2657 Politics and Cultures of US Imperialism</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td>N HSTY2067</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2668 The Rise and Fall of the First Reich</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td>N HSTY2068</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2674 Pilgrim to Backpacker: Travel Histories</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td>N HSTY2000, HSTY3001</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2678 Race Around the World</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2681 Colonialism in Modern Asia</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2683 Violence in Chinese History</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2684 Darwinism, Nationalism and Eugenics</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td>N HSTY2061</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2685 Gender and Historical Change: East Asia</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td>N ASNS2675</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2686 Food, Environment and Culture in Europe</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2687 Alliance: Australia-USA Relations</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2690 Australia's Underworld: Stories & Method</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2691 Writing History</td>
<td>6</td>
<td>P 12 credit points of Junior History, Ancient History or Asian Studies</td>
<td>N HSTY2061, ANHS2691</td>
<td></td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2805 History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2806 History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2809 History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>HSTY2810 History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY2811 History Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY4011 History Honours A</td>
<td>12</td>
<td>P 48 senior credit points of History (up to 18 credit points of which may be cross-listed), including HSTY2691, with an average mark in those units of study of credit or better. Students who do not meet this requirement, however, may apply to the Honours Coordinator for a waiver to permit their entry into the honours program.</td>
<td>N HSTY2691, ANHS2691</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY4012 History Honours B</td>
<td>12</td>
<td>P Refer to HSTY4011 C HSTY4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY4013 History Honours C</td>
<td>12</td>
<td>P Refer to HSTY4011 C HSTY4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>HSTY4014 History Honours D</td>
<td>12</td>
<td>P Refer to HSTY4011 C HSTY4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Indigenous Australian Studies

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOCR2600 Indigenous Australia: An Introduction</td>
<td>6</td>
<td>P 18 Junior credit points</td>
<td>N KOCR2100</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>KOCR2601 Indigenous Australia: Land and Culture</td>
<td>6</td>
<td>P KOCR2100 or KOCR2600</td>
<td>N KOCR2101</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>KOCR2603 Indigenous Health and Communities</td>
<td>6</td>
<td>P KOCR2100 or KOCR2600</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>KOCR2604 Colours of Identity: Indigenous Bodies</td>
<td>6</td>
<td>C KOCR2100 or KOCR2600</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
Indonesian Studies

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>INMS1101 Indonesian 1A</td>
<td>6</td>
<td>N Native or near native speakers of Indonesian or Malay, HSC Continuers, or Extension</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INMS1102 Indonesian 1B</td>
<td>6</td>
<td>P INMS1101 or INMS1301, INMS1302</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2601 Indonesian 2A</td>
<td>6</td>
<td>P INMS1102 or HSC Continuers or Extension Indonesian or HSC Beginners Indonesian 75% and above or department permission</td>
<td>N 8 credit point units of study numbered INMS2101 or above</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INMS2902 Indonesian 2B</td>
<td>6</td>
<td>P INMS2101 or INMS2601</td>
<td>N 8 credit point units of study numbered INMS2102 or above</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2650 Indonesian In-Country Study A</td>
<td>6</td>
<td>P INMS1102 or INMS2101 or INMS2601</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INMS2651 Indonesian In-Country Study B</td>
<td>6</td>
<td>P INMS1102 or INMS2101 or INMS2601</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2652 Indonesian In-Country Study C</td>
<td>6</td>
<td>P INMS1102 or INMS2101 or INMS2601</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2653 Indonesian In-Country Study D</td>
<td>6</td>
<td>P INMS1102 or INMS2101 or INMS2601</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2654 Indonesian In-Country Study E</td>
<td>6</td>
<td>P INMS1102 or INMS2101 or INMS2601</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2655 Indonesian In-Country Study F</td>
<td>6</td>
<td>P INMS1102 or INMS2101 or INMS2601</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2656 Indonesian In-Country Study G</td>
<td>6</td>
<td>P INMS1102 or INMS2101 or INMS2601</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2657 Indonesian In-Country Study H</td>
<td>6</td>
<td>P INMS1102 or INMS2101 or INMS2601</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2905 Indonesian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2906 Indonesian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS2907 Indonesian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS3601 Indonesian 3A</td>
<td>6</td>
<td>P INMS2102 or INMS2602 or department permission</td>
<td>N 8 credit point units of study numbered INMS3101 or above</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INMS3602 Indonesian 3B</td>
<td>6</td>
<td>P INMS3101 or INMS3601 or departmental permission</td>
<td>N 8 credit points of units of study numbered INMS3102 or above</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS3603 Indonesian Advanced Studies A</td>
<td>6</td>
<td>P INMS3602 or INMS3102 or department permission</td>
<td>N INMS3301, INMS3302</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INMS3604 Indonesian Advanced Studies B</td>
<td>6</td>
<td>P INMS3602 or INMS3102 or department permission</td>
<td>N INMS3302</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (Advanced) degree program</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>INMS4011 Indonesian and Malay Studies Honours A</td>
<td>12</td>
<td>P A major in Indonesian Studies with a Credit average or better, or departmental permission</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INMS4012 Indonesian and Malay Studies Honours B</td>
<td>12</td>
<td>C INMS4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS4013 Indonesian and Malay Studies Honours C</td>
<td>12</td>
<td>C INMS4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INMS4014 Indonesian and Malay Studies Honours D</td>
<td>12</td>
<td>C INMS4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

International and Comparative Literary Studies

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICLS2622 Great Books 3: The Twentieth Century</td>
<td>6</td>
<td>P At least 18 Junior credit points from any department in the Faculty of Arts from Table A, of which 12 credit points are from one subject; or special permission from the Director of International and Comparative Literary Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ICLS2634 Literature and Revolution</td>
<td>6</td>
<td>P 18 credit points at Junior level from any department in the Faculty of Arts from Part A, of which 12 credit points are from one subject; or special permission by the Director of International and Comparative Literary Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ICLS2635 Science Fiction: The Future is Now</td>
<td>6</td>
<td>P 18 credit points at Junior level from any department in the Faculty of Arts from Part A, of which 12 credit points are from one subject; or special permission by the Director of International and Comparative Literary Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ICLS2801 Int Comparative Literary Studies Exch</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Unit of study

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICLS2802</td>
<td>Int Comparative Literary Studies Exch</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ICLS2803</td>
<td>Int Comparative Literary Studies Exch</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ICLS2804</td>
<td>Int Comparative Literary Studies Exch</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ICLS3630</td>
<td>International Sociology of Literature</td>
<td>6</td>
<td>P 18 junior credit points from any department in the Faculty of Arts from Table A of which 12 credit points are from one subject, or special permission from the Director of International and Comparative Literary Studies.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ICLS4011</td>
<td>Int Comparative Literary Studies Hons A</td>
<td>12</td>
<td>P Credit average in 48 senior credit points of ICLS, of which at least 36 senior credit points should be from ICLS units including exchange units, and 12 may be from cross-listed units from the School of Languages and Cultures or the Department of English. A reading knowledge of one language other than English is also required. Students not meeting these criteria may apply for special permission from the Director of ICLS. Special transitional entry arrangements will be made for students undertaking Honours in 2010.</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ICLS4012</td>
<td>Int Comparative Literary Studies Hons B</td>
<td>12</td>
<td>C ICLS4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ICLS4013</td>
<td>Int Comparative Literary Studies Hons C</td>
<td>12</td>
<td>C ICLS4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ICLS4014</td>
<td>Int Comparative Literary Studies Hons D</td>
<td>12</td>
<td>C ICLS4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

International and Global Studies

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGS1001</td>
<td>Power and Money in Global Society</td>
<td>6</td>
<td>This unit is available only to students in the Bachelor of International and Global Studies</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>INGS1002</td>
<td>Global Culture and Society</td>
<td>6</td>
<td>N GBST1001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>INGS2601</td>
<td>Transnational Spaces and Networks</td>
<td>6</td>
<td>P INGS1001 and INGS1002 or permission from Bachelor of International and Global Studies Director.</td>
<td>This unit is available only to student in the Bachelor of International and Global Studies</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Italian Studies

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITLN1611</td>
<td>Introductory Italian 1</td>
<td>6</td>
<td>N ITLN1101, ITLN1201, ITLN1301, ITLN1621, ITLN1631</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN1612</td>
<td>Introductory Italian 2</td>
<td>6</td>
<td>P ITLN1611, ITLN1101 or equivalent</td>
<td>N ITLN1102, ITLN1202, ITLN1302, ITLN1632</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ITLN1801</td>
<td>Italian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN1802</td>
<td>Italian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN2611</td>
<td>Intermediate Italian 3</td>
<td>6</td>
<td>P ITLN1612, ITLN1102 or HSC Italian Beginners or equivalent language knowledge</td>
<td>N ITLN2631, ITLN2101, ITLN2201, ITLN2301</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN2612</td>
<td>Intermediate Italian 4</td>
<td>6</td>
<td>P ITLN2611, ITLN2101, or equivalent language knowledge.</td>
<td>N ITLN2632, ITLN2202, ITLN2302</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ITLN2631</td>
<td>Senior Italian 3</td>
<td>6</td>
<td>P ITLN1632, ITLN2102 or equivalent language knowledge</td>
<td>N ITLN2611, ITLN2101, ITLN2301</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN2632</td>
<td>Senior Italian 4</td>
<td>6</td>
<td>P ITLN2631, ITLN2201 or ITLN2301 or equivalent language knowledge</td>
<td>N ITLN2612, ITLN2202, ITLN2302</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ITLN2811</td>
<td>Italian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN2812</td>
<td>Italian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN2813</td>
<td>Italian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN2814</td>
<td>Italian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN2815</td>
<td>Italian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN2816</td>
<td>Italian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN2817</td>
<td>Italian Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN3611</td>
<td>Senior Italian 5</td>
<td>6</td>
<td>P ITLN2612, ITLN2202 or equivalent language knowledge</td>
<td>N ITLN3631, ITLN3201, ITLN3301</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ITLN3612</td>
<td>Senior Italian 6</td>
<td>6</td>
<td>P ITLN3611, ITLN3201 or equivalent language knowledge</td>
<td>N ITLN3302, ITLN3302</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ITLN3631</td>
<td>Senior Italian 7</td>
<td>6</td>
<td>P ITLN2632, ITLN2302 or equivalent language knowledge</td>
<td>N ITLN3611, ITLN3301, ITLN3201</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>ITLN3662 Machiavelli and Renaissance Italy</td>
<td>6</td>
<td>P 18 junior credit points from Part A of the Table of Units of Study</td>
<td>N ITLN31111</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN3668 Issues of Language and Society in Italy</td>
<td>6</td>
<td>P One of ITLN1612, ITLN1632, ITLN1202, ITLN1302, ITLN2611, ITLN2631 or equivalent language knowledge</td>
<td>N ITLN31111, ITLN36111</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN3671 Dante: Inferno</td>
<td>6</td>
<td>P ITLN2611 or ITLN2631 N ITLN31111</td>
<td>N ITLN31111, ITLN36111</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN3678 Contemporary Italian Fiction</td>
<td>6</td>
<td>P One of ITLN1612, ITLN1632, ITLN1202, ITLN1302, ITLN2611, ITLN2631 or equivalent language knowledge</td>
<td>N ITLN31111, ITLN36111</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN3679 Filming Fiction: The Italian Experience</td>
<td>6</td>
<td>P One of ITLN1612, ITLN1632, ITLN1102, ITLN1202, ITLN1302, HSC Italian Continuers or Beginners or equivalent language knowledge</td>
<td>N ITLN31111, ITLN36111</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN3681 Representations of Southern Italy</td>
<td>6</td>
<td>P One of ITLN1612, ITLN2612, ITLN1202, ITLN1302, HSC Italian Continuers or equivalent language knowledge</td>
<td>N ITLN31111, ITLN36111</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN3687 Focus on Writing in Italian</td>
<td>6</td>
<td>P One of ITLN3631, ITLN3612, ITLN3301, ITLN3202 or equivalent language knowledge; N ITLN31111, ITLN36111</td>
<td>N ITLN31111, ITLN36111</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN3688 Advanced Italian: Translation</td>
<td>6</td>
<td>P One of ITLN3611, ITLN3631, ITLN3202, ITLN3301 or equivalent language knowledge</td>
<td>N ITLN31111, ITLN36111</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN3691 Italian Literature: 1200-1860</td>
<td>6</td>
<td>P Credit in 12 credit points of Italian or 80% in HSC Italian Continuers</td>
<td>N ITLN31111, ITLN36111</td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN4011 Italian Honours A</td>
<td>12</td>
<td>P Students must have qualified for the award of the pass degree with a major in Italian (36 senior credit points). They will have completed an additional 12 credit points, normally including the special entry unit ITLN3691. Intending Honours students should attain a Credit average result in senior Italian units of study taken as a part of their major. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN4012 Italian Honours B</td>
<td>12</td>
<td>C ITLN4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN4013 Italian Honours C</td>
<td>12</td>
<td>C ITLN4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>ITLN4014 Italian Honours D</td>
<td>12</td>
<td>C ITLN4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>

Japanese Studies

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPNS1111 Japanese 1</td>
<td>6</td>
<td>N JPNS1111, any HSC Japanese Course</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Winter Main</td>
</tr>
<tr>
<td>JPNS1112 Japanese 2</td>
<td>6</td>
<td>P JPNS1111 or JPNS1111 N JPNS1112</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPNS11801 Japanese Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Winter Main</td>
</tr>
<tr>
<td>JPNS11802 Japanese Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPNS2611 Japanese 3</td>
<td>6</td>
<td>P 65% or more in HSC Japanese Beginners or less than 70% in Japanese Continuers, or JPNS1121 or JPNS1612 N JPNS1114, JPNS2212</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JPNS2612 Japanese 4</td>
<td>6</td>
<td>P JPNS1114 or JPNS2212 or JPNS2611 N JPNS1114, JPNS2222</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPNS2621 Japanese 5</td>
<td>6</td>
<td>P HSC Japanese Extension or Japanese Continuers 70% or above or equivalent determined by the department; or JPNS1124 or JPNS2222 or JPNS2612 N JPNS2213</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JPNS2622 Japanese 6</td>
<td>6</td>
<td>P JPNS2212 or JPNS2223 N JPNS2223</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPNS2660 Introduction to Japan</td>
<td>6</td>
<td>P JPNS1121 or JPNS1612 N JPNS2222, JPNS3622, JPNS3632</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPNS2670 Modern Japanese Literary Masterpieces</td>
<td>6</td>
<td>P JPNS1124 or JPNS2222 (from 2007, JPNS2612) N JPNS3116, JPNS3621, JPNS2301, JPNS3631, JPNS3301</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JPNS2671 Japanese Sociolinguistics</td>
<td>6</td>
<td>P JPNS1124 or JPNS2222 or JPNS2612 or equivalent, by departmental permission N JPNS3621, JPNS3622, JPNS3632, JPNS2301, JPNS3631, JPNS3302, JPNS3314</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPNS2672 Japanese Media Culture and New Japan</td>
<td>6</td>
<td>P JPNS1124 or JPNS2222 or JPNS2612 N JPNS3106, JPNS3621, JPNS3631</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JPNS2811 Japanese Exchange 3</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPNS2812 Japanese Exchange 4</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPNS2813 Japanese Exchange 5</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Unit of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPN52814 Japanese Exchange 6</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>JPN52815 Japanese Exchange 7</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>JPN53621 Japanese 7</td>
<td>6</td>
<td>P JPN5123 or JPN5223 or JPN52622</td>
<td>N JPN52301</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JPN53622 Japanese 8</td>
<td>6</td>
<td>P JPN5321 or JPN53201</td>
<td>N JPN53302</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPN53631 Japanese 9</td>
<td>6</td>
<td>P JPN53302 or JPN53622</td>
<td>N JPN53301</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JPN53632 Japanese 10</td>
<td>6</td>
<td>P JPN53301 or JPN53631</td>
<td>N JPN53302</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPN53673 Japanese Society</td>
<td>6</td>
<td>P JPN5123 or JPN5223 or JPN52622 or JPN51125</td>
<td>N JPN53314</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JPN53675 Japanese Cinema</td>
<td>6</td>
<td>P JPN52622</td>
<td>This unit is available as a designated 'Advanced' unit to students enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JPN53676 Monsters & Ghosts: Japanese Fantasy & SF</td>
<td>6</td>
<td>P JPN5123 or JPN51125 or JPN52223 or JPN52622</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JPN53841 Japan In-Country Study 1</td>
<td>6</td>
<td>P 12 Junior JPN5 credit points</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JPN53842 Japan In-Country Study 2</td>
<td>6</td>
<td>P 12 Junior JPN5 credit points</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JPN54011 Japanese Honours A</td>
<td>12</td>
<td>P Credit average or better in the major plus 12 additional senior credit points, including ASNS3690 Approaches to Research in Asian Studies. They may include one 6-credit point Japan-related Asian Studies unit of study.</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>JPN54012 Japanese Honours B</td>
<td>12</td>
<td>C JPN54011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>JPN54013 Japanese Honours C</td>
<td>12</td>
<td>C JPN54012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>JPN54014 Japanese Honours D</td>
<td>12</td>
<td>C JPN54013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>Jewish Civilisation, Thought and Culture</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JCTC1001 Palestine: Roman Rule to Islam</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JCTC1002 Jewish Settlement Outside Palestine</td>
<td>6</td>
<td>P JCTC1001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JCTC1001 Jewish Civilization Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>JCTC2603 Jews Under the Crescent and the Cross</td>
<td>6</td>
<td>P JCTC1001 or one of HSTY1022, HSTY1031, HSTY1043, HSTY1044, HSTY1045, HSTY1076, HSTY1088, RLST1001, RLST1002</td>
<td>N JCTC2003</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JCTC2604 From Expulsion to Regeneration</td>
<td>6</td>
<td>P JCTC1001 or one of HSTY1022, HSTY1031, HSTY1043, HSTY1044, HSTY1045, HSTY1076, HSTY1088, RLST1001, RLST1002</td>
<td>N JCTC2004</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JCTC2605 From Emancipation to the Holocaust</td>
<td>6</td>
<td>P JCTC1001 or one of HSTY1022, HSTY1031, HSTY1043, HSTY1044, HSTY1045, HSTY1076, HSTY1088</td>
<td>This unit is available as a designated 'Advanced' unit to students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JCTC2606 The Holocaust: History and Aftermath</td>
<td>6</td>
<td>P JCTC1001 or 6 junior credit points from History.</td>
<td>N JCTC2006</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>JCTC2607 Israel in the Modern Middle East</td>
<td>6</td>
<td>P JCTC1001 or one of HSTY1022, HSTY1025, HSTY1031, HSTY1043, HSTY1044, HSTY1045</td>
<td>This unit is available as a designated 'Advanced' unit to students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JCTC2811 Jewish Civilisation Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JCTC2812 Jewish Civilisation Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JCTC2813 Jewish Civilisation Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JCTC2814 Jewish Civilisation Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JCTC2815 Jewish Civilisation Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>JCTC2816 Jewish Civilisation Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Note: Department permission required for enrolment of this unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>JCTC4011 Judaic Studies Honours A</td>
<td>12</td>
<td>P A major in Jewish Civilisation with a Credit average, plus 12 credit points in an associated language (Hebrew Classical OR Hebrew Modern OR Yiddish) or an Honours preparation course from an associated discipline (History, Government or Studies of Religion). Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>JCTC4012 Judaic Studies Honours B</td>
<td>12</td>
<td>C JCTC4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>JCTC4013 Judaic Studies Honours C</td>
<td>12</td>
<td>C JCTC4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>JCTC4014 Judaic Studies Honours D</td>
<td>12</td>
<td>C JCTC4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Korean Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KRNS1521 Korean 1</td>
<td>6</td>
<td>N KRNS1101</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>KRNS1522 Korean 2</td>
<td>6</td>
<td>P KRNS1621 or KRNS1101 N KRNS1102</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS1523 Korean Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS2621 Korean 3</td>
<td>6</td>
<td>P KRNS1102 or KRNS1622 N KRNS2001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>KRNS2622 Korean 4</td>
<td>6</td>
<td>P KRNS2001 or KRNS2621 N KRNS2002</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>KRNS2671 Translation and Interpretation</td>
<td>6</td>
<td>P KRNS1302 or KRNS1632 or native speakers of Korean N KRNS2400</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>KRNS2675 Contemporary Korean Society and Culture</td>
<td>6</td>
<td>P 12 junior credit points in Arts N KRNS2500</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>KRNS2681 Korean In-Country Study A</td>
<td>6</td>
<td>P KRNS1101 or KRNS1621 or KRNS1301 or KRNS1631 Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS2682 Korean In-Country Study B</td>
<td>6</td>
<td>P KRNS1101 or KRNS1621 or KRNS1301 or KRNS1631 Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS2811 Korean Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS2812 Korean Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS2813 Korean Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS2814 Korean Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS2815 Korean Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS3621 Korean 5</td>
<td>6</td>
<td>P KRNS2002 or KRNS2622 N KRNS3001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>KRNS3622 Korean 6</td>
<td>6</td>
<td>P KRNS3001 or KRNS3621 N KRNS3002</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>KRNS4011 Korean Honours A</td>
<td>12</td>
<td>P Students must obtain a Credit average or better in their Korean Studies major and have taken an additional 12 credit points from KRNS or cross-listed ASNS units, including ASNS3690: Approaches to Research in Asian Studies. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS4012 Korean Honours B</td>
<td>12</td>
<td>C KRNS4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS4013 Korean Honours C</td>
<td>12</td>
<td>C KRNS4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>KRNS4014 Korean Honours D</td>
<td>12</td>
<td>C KRNS4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Latin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN1600 Introductory Latin 1</td>
<td>6</td>
<td>N LATN1001, LATN2611, LATN2620</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LATN1601 Introductory Latin 2</td>
<td>6</td>
<td>P LATN1600 or LATN1001 or LATN2611 N LATN1002, LATN2612, LATN2621</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>LATN1801 Latin Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>LATN1802 Latin Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>LATN2660 Intermediate Latin 1</td>
<td>6</td>
<td>P HSC Latin or LATN1601 or LATN2612 or LATN2621 or LATN1002 N LATN2603, LATN1101 This unit is available as a designated 'Advanced' unit to students enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LATN2661 Intermediate Latin 2</td>
<td>6</td>
<td>P LATN2600 or LATN1101 N LATN1102 This unit is available as a designated 'Advanced' unit to students enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>LATN2620 Reading Latin 1</td>
<td>6</td>
<td>N LATN1600, LATN1001, LATN2611</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
Linguistics

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATN2621 Reading Latin 2</td>
<td>6</td>
<td>P LATN2620 or LATN2611</td>
<td>N LATN1601, LATN1002, LATN2612</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN2804 Latin Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN2805 Latin Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN2806 Latin Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN2810 Latin Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN2811 Latin Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN3600 Advanced Latin</td>
<td>6</td>
<td>P LATN2601 or LATN2604 or LATN1102</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN3601 Latin Epic 1</td>
<td>6</td>
<td>C LATN2601 or LATN1102</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN3604 Latin Republican Poetry</td>
<td>6</td>
<td>C LATN3600 or LATN3607</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN3606 Latin Imperial Prose</td>
<td>6</td>
<td>P LATN3600 or LATN3607</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN4011 Latin Honours A</td>
<td>12</td>
<td>P Credit average in 42 senior credit points of Latin including two of LATN3603, 3604, 3605, 3606 plus 6 additional senior credit points of Greek, Latin or Ancient History, Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN4012 Latin Honours B</td>
<td>12</td>
<td>P Refer to LATN4011</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN4013 Latin Honours C</td>
<td>12</td>
<td>P Refer to LATN4011</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LATN4014 Latin Honours D</td>
<td>12</td>
<td>P Refer to LATN4011</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legal Studies

(For continuing Bachelor of Arts and Sciences students only - no major available.)

<p>| SLS61001 Introduction to Socio-Legal Studies | 6 | Available to Bachelor of Arts and Sciences and Bachelor of Socio-Legal Studies only | Semester 1 |
| SLS61003 Law and Contemporary Society | 6 | Available to Bachelor of Arts and Sciences and Bachelor of Socio-Legal Studies only | Semester 2 |</p>
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNGS2806 Linguistics Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS2809 Linguistics Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS2810 Linguistics Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS2811 Linguistics Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS2812 Linguistics Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS3601 Semantics and Pragmatics</td>
<td>6</td>
<td>P one of LNGS2602 [Syntax], LNGS2603 [Functional Grammar], ENGL2619 [Semiotics of Language] and ENGL2653 [Varieties of English Grammar]</td>
<td>N LNGS2602, LNGS3006</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS3604 Field Methods</td>
<td>6</td>
<td>P Credit average in 18 senior credit points of Linguistics including three of: LNGS2601 (or LNGS2001), LNGS2602 (or LNGS2002), LNGS2603 (or LNGS2003) or LNGS2604 (or LNGS2004), LNGS2620, LNGS2621</td>
<td>N LNGS3606</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS3606 Phonological Theory</td>
<td>6</td>
<td>P LNGS2601 or (LNGS2620 and LNGS2621)</td>
<td>N LNGS3002</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS3608 Corpus Linguistics and Linguistic Theory</td>
<td>6</td>
<td>P LNGS2601 (or LNGS2001) and one of LNGS2602, LNGS2002, LNGS2003, LNGS2003</td>
<td>N LNGS2603</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS3690 Issues in Theoretical Linguistics</td>
<td>6</td>
<td>P Credit average in 18 senior credit points of Linguistics. The units must include LNGS2601 (or LNGS2001), and at least one of LNGS2602, LNGS2002, LNGS2003 and LNGS2003</td>
<td>N LNGS2603</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS3699 Linguistics Research Issues</td>
<td>6</td>
<td>P Credit average in 18 senior credit points in linguistics, including at least 2 of LNGS2601, LNGS2001, LNGS2602, LNGS2002, LNGS2603, LNGS2003, LNGS2604, LNGS2004, LNGS2620, LNGS2621.</td>
<td>N LNGS2603</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS4011 Linguistics Honours A</td>
<td>12</td>
<td>P Prerequisites: Credit average in 48 senior credit points, including at least three of the five units LNGS3601, LNGS2602, LNGS2604, LNGS2620, LNGS2621.</td>
<td>N</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS4012 Linguistics Honours B</td>
<td>12</td>
<td>C LNGS4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS4013 Linguistics Honours C</td>
<td>12</td>
<td>C LNGS4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>LNGS4014 Linguistics Honours D</td>
<td>12</td>
<td>C LNGS4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Media and Communications

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECO1001 Australian Media Studies</td>
<td>6</td>
<td>Available to BA (Media and Comm) and BSc (Media and Comm) students only.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MECO1003 Principles of Media Writing</td>
<td>6</td>
<td>Available to BA (Media and Comm) and BSc (Media and Comm) students only.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>MECO2601 Radio Broadcasting</td>
<td>6</td>
<td>P 12 junior credit points of MECO units</td>
<td>N MECO2001</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MECO2603 Media Relations</td>
<td>6</td>
<td>P 12 junior credit points of MECO units plus one of the following (WRIT1001, WRIT1002, ENGL1025, ENGL1007)</td>
<td>N MECO2003</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>MECO2805 Media and Communications Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MECO2806 Media and Communications Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MECO2807 Media and Communications Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MECO2808 Media and Communications Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MECO3601 Video Production</td>
<td>6</td>
<td>P 12 junior credit points of MECO units plus one of the following (WRIT1001, WRIT1002, ENGL1025, ENGL1007)</td>
<td>N MECO2001</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>MECO3602 Online Media</td>
<td>6</td>
<td>P 12 junior credit points of MECO units plus one of the following (WRIT1001, WRIT1002, ENGL1025, ENGL1007)</td>
<td>N MECO2002</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>MECO3603 Media, Law and Ethics</td>
<td>6</td>
<td>P 12 Junior credit points of MECO units plus one of the following (WRIT1001, WRIT1002, ENGL1025, ENGL1007) N MECO3003 Available to BA(Media and Comm) and BSc (Media and Comm) students only.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO3605 Media Globalisation</td>
<td>6</td>
<td>P 12 Junior credit points to MECO units plus one of the following (WRIT1001, WRIT1002, ENGL1025, ENGL1007) N MECO3005 Available to BA (Media and Comm) and, subject to departmental approval, students undertaking a major in Cultural Studies.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO3606 Advanced Media Writing</td>
<td>6</td>
<td>P 12 Junior credit points to MECO units plus one of the following (WRIT1001, WRIT1002, ENGL1025, ENGL1007) N MECO3006 Available to BA (Media and Comm) and BSc (Media and Comm) students only.</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO3609 Critical Practice in Media</td>
<td>6</td>
<td>P 12 Junior credit points of MECO units plus one of the following (WRIT1001, WRIT1002, ENGL1025, ENGL1007) Available to BA (Media and Comm) and BSc (Media and Comm) students only.</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO3671 Media and Communications Internship</td>
<td>6</td>
<td>P 30 senior credit points of MECO, including (MECO3603 or MECO3003). Students may not enrol in MECO3671 prior to the second semester of their 3rd year. N MECO3701, MECO3702 Available to BA (Media and Comm) and BSc (Media and Comm) students only.</td>
<td>Semester 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO3672 Internship Project</td>
<td>6</td>
<td>P 30 senior credit points of MECO, including two of (MECO3602, MECO3603, MECO3002, MECO3003). Students may not enrol in MECO3672 prior to the first semester of their 4th year. C MECO3671 N MECO3701, MECO3702 All students must attend the Week One lecture, at which they sign up for one of 3 cycles of 4 x 2-hour seminars.</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4011 Media and Communications Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4012 Media and Communications Honours B</td>
<td>12</td>
<td>C MECO4011</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4013 Media and Communications Honours C</td>
<td>12</td>
<td>C MECO4012</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4014 Media and Communications Honours D</td>
<td>12</td>
<td>C MECO4013</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4601 Honours Research Methods A</td>
<td>6</td>
<td>Note: Department permission required for enrolment Available only to students who commenced Media and Communications Honours prior to 2010</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4602 Honours Research Methods B</td>
<td>6</td>
<td>C MECO4601 Note: Department permission required for enrolment Available only to students who commenced Media and Communications Honours prior to 2010</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4603 Honours Seminar A</td>
<td>6</td>
<td>Note: Department permission required for enrolment Available only to students who commenced Media and Communications Honours prior to 2010</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4604 Honours Seminar B</td>
<td>6</td>
<td>C MECO4603 Note: Department permission required for enrolment Available only to students who commenced Media and Communications Honours prior to 2010</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4605 Honours Thesis A</td>
<td>6</td>
<td>Note: Department permission required for enrolment Available only to students who commenced Media and Communications Honours prior to 2010</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4606 Honours Thesis B</td>
<td>6</td>
<td>C MECO4605 Note: Department permission required for enrolment Available only to students who commenced Media and Communications Honours prior to 2010</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4607 Honours Thesis C</td>
<td>6</td>
<td>C MECO4606 Note: Department permission required for enrolment Available only to students who commenced Media and Communications Honours prior to 2010</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECO4608 Honours Thesis D</td>
<td>6</td>
<td>C MECO4607 Note: Department permission required for enrolment Available only to students who commenced Media and Communications Honours prior to 2010</td>
<td>Semester 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medieval Studies

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDST2608 The First Crusade</td>
<td>6</td>
<td>P At least 18 junior credit points from part A of the Table of units of study of which 12 credit points are from one subject. N MDST2008 This unit of study may be counted towards a major in History</td>
</tr>
<tr>
<td>MDST2609 Crusade and Jihad</td>
<td>6</td>
<td>P At least 18 Junior credit points from Part A of the Table of units of study, of which 12 credit points are from one subject. This Unit of Study may be counted towards a Major in History.</td>
</tr>
<tr>
<td>MDST2614 The Legend of King Arthur</td>
<td>6</td>
<td>P At least 18 junior credit points from Part A of the Table of units of study, of which 12 credit points are from one subject. This unit of study may be counted towards a Major in History.</td>
</tr>
<tr>
<td>MDST2615 Intellectual History of the Middle Ages</td>
<td>6</td>
<td>P At least 18 junior credit points from Part A of the Table of units of study, of which 12 credit points are from one subject. This unit of study may be counted towards a Major in History.</td>
</tr>
<tr>
<td>MDST4011 Medieval Studies Honours A</td>
<td>12</td>
<td>P Units of study to the value of at least 48 Senior credit points from Medieval Studies units of study or from cross-listed units of study (including at least two MDST units of study to the value of 12 credit points), all with a credit average Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>MDST4012 Medieval Studies Honours B</td>
<td>12</td>
<td>C MDST4011</td>
</tr>
<tr>
<td>MDST4013 Medieval Studies Honours C</td>
<td>12</td>
<td>C MDST4012</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>MDST4014 Medieval Studies Honours D</td>
<td>12</td>
<td>C MDST4013</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern Greek Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MGRK1601 Junior Modern Greek 1</td>
<td>6</td>
<td>N MGRK1101</td>
</tr>
<tr>
<td>MGRK1602 Junior Modern Greek 2</td>
<td>6</td>
<td>P MGRK1101 or MGRK1601 N MGRK1102</td>
</tr>
<tr>
<td>MGRK1621 Junior Modern Greek 3</td>
<td>6</td>
<td>P Modern Greek Continuers or Modern Greek Extension or equivalent language proficiency as determined by the department N MGRK1101, MGRK1501, MGRK1401</td>
</tr>
<tr>
<td>MGRK1622 Junior Modern Greek 4</td>
<td>6</td>
<td>P MGRK1621 or MGRK1401 or equivalent language proficiency as determined by the department N MGRK1101, MGRK1102, MGRK1402</td>
</tr>
<tr>
<td>MGRK2601 Senior Modern Greek 1</td>
<td>6</td>
<td>P MGRK1102 or MGRK1602 or special permission by the department N MGRK1501, MGRK2001</td>
</tr>
<tr>
<td>MGRK2602 Senior Modern Greek 2</td>
<td>6</td>
<td>P MGRK2001 or MGRK2601 or special permission by the department N MGRK1502, MGRK2002</td>
</tr>
<tr>
<td>MGRK2603 Style and Expression</td>
<td>6</td>
<td>P MGRK1402 or MGRK1622 or MGRK2002 or MGRK2602 or special permission by the department N MGRK2203</td>
</tr>
<tr>
<td>MGRK2609 Theory and Practice of Translation A</td>
<td>6</td>
<td>P MGRK1202 or MGRK1402 or MGRK1622 or MGRK2002 or MGRK2602 or special permission by the department N MGRK3210</td>
</tr>
<tr>
<td>MGRK2621 Greek Modernism</td>
<td>6</td>
<td>P At least 18 junior credit points from Part A of the table of units of study, of which 12 credit points are from one subject, or special permission by the department N MGRK2508</td>
</tr>
<tr>
<td>MGRK2631 Cultural Identities</td>
<td>6</td>
<td>P At least 18 junior credit points from part A of the table of units of study, of which 12 credit points are from one subject, or special permission by the Chair of the department.</td>
</tr>
<tr>
<td>MGRK2632 Social Norms/Stereotypes in Greek Cinema</td>
<td>6</td>
<td>P At least 18 junior credit points from Part A of the table of units of study, of which 12 credit points are from one subject, or special permission by the chair of department N MGRK2513</td>
</tr>
<tr>
<td>MGRK2653 Sex, Drugs and Music in Modern Greece</td>
<td>6</td>
<td>P 12 Junior credit points in any subject N MGRK2523</td>
</tr>
<tr>
<td>MGRK2675 New Testament Greek and its World A</td>
<td>6</td>
<td>P 12 junior credit points in any subject N MGRK2525</td>
</tr>
<tr>
<td>MGRK2676 New Testament Greek and its World B</td>
<td>6</td>
<td>P 12 junior credit points in any subject N MGRK2526</td>
</tr>
<tr>
<td>MGRK2691 Sociolinguistics in the Greek Diaspora</td>
<td>6</td>
<td>P Credit or above in MGRK1402 or MGRK1622 or MGRK2002 or MGRK2602 or special permission by the department N MGRK2904</td>
</tr>
<tr>
<td>MGRK2911 Modern Greek Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>MGRK2912 Modern Greek Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>MGRK2913 Modern Greek Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>MGRK2914 Modern Greek Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>MGRK2915 Modern Greek Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>MGRK3692 Theories of Literature</td>
<td>6</td>
<td>P Credit or above in MGRK1402 or MGRK1622 or MGRK2002 or MGRK2602 or Special Entry Eligibility form signed by the chair of department N MGRK2901</td>
</tr>
<tr>
<td>MGRK4011 Modern Greek Honours A</td>
<td>12</td>
<td>P A major in Modern Greek plus 16 additional credit points which must include MGRK2904 and MGRK3901</td>
</tr>
<tr>
<td>MGRK4012 Modern Greek Honours B</td>
<td>12</td>
<td>C MGRK4011</td>
</tr>
<tr>
<td>MGRK4013 Modern Greek Honours C</td>
<td>12</td>
<td>C MGRK4012</td>
</tr>
<tr>
<td>MGRK4014 Modern Greek Honours D</td>
<td>12</td>
<td>C MGRK4013</td>
</tr>
<tr>
<td>Music</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUSC1501 Concepts of Music</td>
<td>6</td>
<td>P At least 67% in the NSW HSC Music 2 or 3-unit Music Extension, IB High Level Music or the equivalent skills as determined by the Chair of Unit N MUSC1503, MUSC1504</td>
</tr>
<tr>
<td>MUSC1503 Fundamentals of Music I</td>
<td>6</td>
<td>N MUSC1501</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>MUSC1504 Fundamentals of Music II</td>
<td>6</td>
<td>A Material covered in MUSC1503. Students interested in taking this course who have not completed MUSC1503 must see the lecturer beforehand to ascertain that they have the required knowledge.</td>
</tr>
<tr>
<td>MUSC1506 Music in Western Culture</td>
<td>6</td>
<td>A The ability to follow a musical score while listening to the music and some prior knowledge of elementary music theory.</td>
</tr>
<tr>
<td>MUSC1507 Sounds, Screens, Speakers: Music & Media</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MUSC2612 Arts Music Concert Performance 1</td>
<td>6</td>
<td>P 18 junior credit points, AND audition (contact the Unit one week before semester begins)</td>
</tr>
<tr>
<td>MUSC2613 Arts Music Concert Performance 2</td>
<td>6</td>
<td>P MUSC2612 Arts Music Concert Performance 1</td>
</tr>
<tr>
<td>MUSC2614 Composition Workshop 1</td>
<td>6</td>
<td>P 12 junior credit points in music.</td>
</tr>
<tr>
<td>MUSC2618 Arts Music Ensemble 1</td>
<td>6</td>
<td>P 18 junior credit points in no more than two subject areas. Some ensemble groups require an audition as well.</td>
</tr>
<tr>
<td>MUSC2619 Arts Music Ensemble 2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>MUSC2621 The Medieval Spanish Melting Pot</td>
<td>6</td>
<td>A Ability to read and comprehend musical notation and terminology</td>
</tr>
<tr>
<td>MUSC2631 Fieldwork, Ethnography and Transmission</td>
<td>6</td>
<td>P 12 junior music credit points. Students will normally have completed either MUSC1501 Concepts of Music or MUSC1504 Fundamentals of Music II. This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
</tr>
<tr>
<td>MUSC2651 Australian and Asian Music 1</td>
<td>6</td>
<td>P 18 junior credit points An ability to read music at a basic level and an understanding of fundamental musical terminology would be an advantage in this unit of study but is not essential.</td>
</tr>
<tr>
<td>MUSC2653 Introduction to Digital Music Techniques</td>
<td>6</td>
<td>P 18 Junior credit points An ability to read music at a basic level and an understanding of fundamental musical terminology would be an advantage in this unit of study but is not essential.</td>
</tr>
<tr>
<td>MUSC2654 Popular Music</td>
<td>6</td>
<td>P 18 junior credit points. This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
</tr>
<tr>
<td>MUSC2662 Film Music</td>
<td>6</td>
<td>P 18 Junior credit points An ability to read music at a basic level and an understanding of fundamental musical terminology would be an advantage in this unit of study but is not essential.</td>
</tr>
<tr>
<td>MUSC2666 A Global Sound: African American Music</td>
<td>6</td>
<td>P 18 junior credit points.</td>
</tr>
<tr>
<td>MUSC2670 Music Festivals and their Administration</td>
<td>6</td>
<td>P 18 junior credit points.</td>
</tr>
<tr>
<td>MUSC2672 A Certain Beat: Australian Popular Music</td>
<td>6</td>
<td>P 18 junior credit points.</td>
</tr>
<tr>
<td>MUSC2673 First Nights: Musical Premieres</td>
<td>6</td>
<td>P 30 junior credit points in any subject area</td>
</tr>
<tr>
<td>MUSC2674 History of the Musical</td>
<td>6</td>
<td>P 30 junior credit points.</td>
</tr>
<tr>
<td>MUSC2679 The Music of Christianity</td>
<td>6</td>
<td>P 30 junior credit points.</td>
</tr>
<tr>
<td>MUSC2691 Revolutionary Voices: Music and Politics</td>
<td>6</td>
<td>P 18 junior credit points.</td>
</tr>
<tr>
<td>MUSC2698 Music Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>MUSC2699 Music Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>MUSC2700 Music Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>MUSC2701 Music Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>MUSC3604 Arts Music Concert Performance 3</td>
<td>6</td>
<td>P MUSC2613 Arts Music Concert Performance 2</td>
</tr>
<tr>
<td>MUSC3605 Arts Music Concert Performance 4</td>
<td>6</td>
<td>P MUSC3604 Arts Music Concert Performance 3</td>
</tr>
<tr>
<td>MUSC3609 Musicology</td>
<td>6</td>
<td>P 12 junior credit points in music This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
</tr>
<tr>
<td>MUSC3611 Composition Workshop 2</td>
<td>6</td>
<td>P MUSC2614 Composition Workshop 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>MUSC4011 Music Honours A</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>MUSC4012 Music Honours B</td>
<td>12</td>
<td>C MUSC4011</td>
</tr>
<tr>
<td>MUSC4013 Music Honours C</td>
<td>12</td>
<td>C MUSC4012</td>
</tr>
<tr>
<td>MUSC4014 Music Honours D</td>
<td>12</td>
<td>C MUSC4013</td>
</tr>
<tr>
<td>Pali</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PALI1001 Pali A</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>PALI1002 Pali B</td>
<td>6</td>
<td>P PALI1001</td>
</tr>
<tr>
<td>Peace and Conflict Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PACS2002 History and Politics of War and Peace</td>
<td>6</td>
<td>P 18 junior credit points, of which 6 must normally be in either HSTY, GOVT, SCLG or LAWS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in PRFM3961 and sufficient units for a major in Performance Studies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRFM2812</td>
</tr>
<tr>
<td>Performance Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRFM1801 Performance Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>PRFM2601 Being There: Theories of Performance</td>
<td>6</td>
<td>P 18 junior credit points in no more than two subject areas including at least 12 from Part A of the Table of Units of Study. N PRFM2001</td>
</tr>
<tr>
<td>PRFM2602 Performance: Production & Interpretation</td>
<td>6</td>
<td>P 18 junior credit points in no more than two subject areas including at least 12 from Part A of the Table of Units of Study. N PRFM2002</td>
</tr>
<tr>
<td>PRFM2604 Sociology of Theatre</td>
<td>6</td>
<td>P 18 junior credit points in no more than two subject areas including at least 12 from Part A of the Table of Units of Study. N PRFM3012</td>
</tr>
<tr>
<td>PRFM2805 Performance Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>PRFM2806 Performance Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>PRFM2810 Performance Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>PRFM2811 Performance Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>PRFM2812 Performance Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>PRFM3602 Performance Histories</td>
<td>6</td>
<td>P (PRFM2801 and PRFM2602) or (PRFM2001 and PRFM2002)</td>
</tr>
<tr>
<td>PRFM3604 Embodied Histories</td>
<td>6</td>
<td>P (PRFM2601 and PRFM2602) or (PRFM2001 and PRFM2002) N PRFM3021</td>
</tr>
<tr>
<td>PRFM3605 Cross-Cultural and Hybrid Performance</td>
<td>6</td>
<td>P (PRFM2601 and PRFM2602) or (PRFM2001 and PRFM2002) N PRFM3023, PRFM3028</td>
</tr>
<tr>
<td>PRFM3606 Approaches to Acting</td>
<td>6</td>
<td>P 18 junior credit points in no more than two subject areas including at least 12 from Part A of the Table of Units of Study N PRFM3022</td>
</tr>
<tr>
<td>PRFM3611 Dramaturgy</td>
<td>6</td>
<td>P (PRFM2601 and PRFM2602) or (PRFM2001 and PRFM2002) N PRFM3010</td>
</tr>
<tr>
<td>PRFM3961 Rehearsal Studies</td>
<td>6</td>
<td>P (Credit results in PRFM2601 and PRFM2602) or (credit results in PRFM2001 and PRFM2002) C PRFM3962 and sufficient units for a major in Performance Studies. This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
</tr>
<tr>
<td>PRFM3962 Rehearsal to Performance</td>
<td>6</td>
<td>P (Credit results in PRFM2601 and PRFM2602) or (credit results in PRFM2001 and PRFM2002) C PRFM3961 and sufficient units for a major in Performance Studies. This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
</tr>
<tr>
<td>PRFM4011 Performance Studies Honours A</td>
<td>12</td>
<td>P Credit results in PRFM3961 and PRFM3962 (or PRFM3901 and PRFM3902) and credit average in a further 36 credit points of PRFM units. Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>PRFM4012 Performance Studies Honours B</td>
<td>12</td>
<td>C PRFM4011</td>
</tr>
<tr>
<td>PRFM4013 Performance Studies Honours C</td>
<td>12</td>
<td>C PRFM4012</td>
</tr>
<tr>
<td>PRFM4014 Performance Studies Honours D</td>
<td>12</td>
<td>C PRFM4013</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Philosophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL1011</td>
<td>6</td>
<td>N PHIL1003, PHIL1004, PHIL1006, PHIL1008</td>
</tr>
<tr>
<td>Reality, Ethics and Beauty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL1012</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Introductory Logic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL1013</td>
<td>6</td>
<td>N PHIL1010</td>
</tr>
<tr>
<td>Society, Knowledge and Self</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL1016</td>
<td>6</td>
<td>This unit is available to HSC students only</td>
</tr>
<tr>
<td>Mind and Morality HSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL1801</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>Philosophy Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2600</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Twentieth Century Philosophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2605</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Locke and Empiricism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2606</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Knowledge, Reason and Action</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2615</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy and PHIL1012 or PHIL2203 or PHIL2628.</td>
</tr>
<tr>
<td>Intermediate Logic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2617</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy.</td>
</tr>
<tr>
<td>Practical Ethics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2621</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Truth, Meaning and Language</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2622</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Reality, Time & Possibility: Metaphysics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2623</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy, N PHIL2513, PHIL3513</td>
</tr>
<tr>
<td>Moral Psychology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2625</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Hannah Arendt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2626</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Philosophy and Psychoanalysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2629</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Descartes and Continental Philosophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2633</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Theorising Modernity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2634</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Democratic Theory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2635</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Contemporary Political Philosophy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2642</td>
<td>6</td>
<td>P 12 Junior credit points in any units within the University</td>
</tr>
<tr>
<td>Critical Thinking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2643</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Philosophy of Mind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2644</td>
<td>6</td>
<td>P 12 Junior credit points</td>
</tr>
<tr>
<td>Critical Theory: From Marx to Foucault</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2645</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>Philosophy of Law</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2646</td>
<td>6</td>
<td>P 12 junior credit points in Philosophy</td>
</tr>
<tr>
<td>Philosophy and Literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2647</td>
<td>6</td>
<td>P 12 Junior credit points</td>
</tr>
<tr>
<td>The Philosophy of Happiness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2648</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>German Philosophy, Leibniz to Nietzsche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2649</td>
<td>6</td>
<td>P 12 Junior credit points in Philosophy</td>
</tr>
<tr>
<td>The Classical Mind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2650</td>
<td>6</td>
<td>P PHIL1012 or PHIL2628 or permission of instructor</td>
</tr>
<tr>
<td>Logic and Computation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2804</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>Philosophy Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2805</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>Philosophy Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2806</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>Philosophy Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2810</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>Philosophy Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2811</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
<tr>
<td>Philosophy Exchange</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL2812</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
</tr>
</tbody>
</table>
Political Economy

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHIL3618 Pre-Honours Seminar</td>
<td>6</td>
<td>P 24 Senior credit points in Philosophy</td>
<td>N PHIL2204, PHIL3204, PHIL3218</td>
<td>Semester 1</td>
<td>Winter Main</td>
<td></td>
</tr>
<tr>
<td>PHIL4011 Philosophy Honours A</td>
<td>12</td>
<td>P 48 credit points of Philosophy at Senior level, with a credit average or better, and including 6 credit points from each of the three programs (History of Philosophy, Epistemology, Metaphysics & Logic; Aesthetics, Ethics and Political Philosophy). Intending Honours students are strongly encouraged to discuss their unit choices with the Honours Coordinator at the beginning of their third year. The department places importance on the breadth of the philosophical education of its Honours graduates, and encouraging Intending Honours students to avoid over-specialisation at Senior level. Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHIL4012 Philosophy Honours B</td>
<td>12</td>
<td>P Refer to PHIL4011</td>
<td>C PHIL4011</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>PHIL4013 Philosophy Honours C</td>
<td>12</td>
<td>P Refer to PHIL4011</td>
<td>C PHIL4012</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
<tr>
<td>PHIL4014 Philosophy Honours D</td>
<td>12</td>
<td>P Refer to PHIL4011</td>
<td>C PHIL4013</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
</tr>
</tbody>
</table>

Economics

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>Notes</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOP1001 Economics as a Social Science</td>
<td>6</td>
<td>Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP1003 International Economy and Finance</td>
<td>6</td>
<td>Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP1004 Economy and Society</td>
<td>6</td>
<td>Department permission required for enrolment</td>
<td>Semester 2</td>
</tr>
<tr>
<td>ECOP1551 Political Economy Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP1552 Political Economy Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP2011 Economics of Modern Capitalism</td>
<td>6</td>
<td>P ECOP1001 and either (ECOP1002 or ECOP1003 or ECOP1004) N ECOP2001</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP2012 Social Foundations of Modern Capitalism</td>
<td>6</td>
<td>P ECOP1001 and either (ECOP1002 or ECOP1003 or ECOP1004) N ECOP2002</td>
<td>Semester 2</td>
</tr>
<tr>
<td>ECOP2550 Political Economy Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP2551 Political Economy Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP2552 Political Economy Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP2612 Economic Policy in Global Context</td>
<td>6</td>
<td>P ECOP1001 and either (ECOP1002 or ECOP1003 or ECOP1004)</td>
<td>Semester 2</td>
</tr>
<tr>
<td>ECOP2911 Political Economy Honours II</td>
<td>6</td>
<td>Credit average in ECOP1001 and (ECOP1002 or ECOP1003 or ECOP1004) C ECOP2011 or ECOP2012 N ECOP2901</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP3012 Global Political Economy</td>
<td>6</td>
<td>P ECOP1001 and either (ECOP1002 or ECOP1003 or ECOP1004) N ECOP2000</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP3014 Political Economy of Development</td>
<td>6</td>
<td>P ECOP1001 and either (ECOP1002 or ECOP1003 or ECOP1004) N ECOP2004</td>
<td>Semester 2</td>
</tr>
<tr>
<td>ECOP3015 Political Economy of the Environment</td>
<td>6</td>
<td>P ECOP1001 and either (ECOP1002 or ECOP1003 or ECOP1004) N ECOP2005</td>
<td>Semester 2</td>
</tr>
<tr>
<td>ECOP3017 Human Rights in Development</td>
<td>6</td>
<td>P ECOP1001 and either (ECOP1002 or ECOP1003 or ECOP1004) N ECOP3007</td>
<td>Semester 2</td>
</tr>
<tr>
<td>ECOP3019 Finance: Volatility and Regulation</td>
<td>6</td>
<td>P ECOP1001 and either (ECOP1002 or ECOP1003 or ECOP1004) N ECOP3009</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP3551 Political Economy Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP3552 Political Economy Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP3553 Political Economy Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP3620 Distribution of Income and Wealth</td>
<td>6</td>
<td>P ECOP1001 and either (ECOP1002 or ECOP1003 or ECOP1004)</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP2911 Theories in Political Economy</td>
<td>6</td>
<td>Credit average in 4 intermediate or senior ECOP units including (ECOP2911 or (ECOP2901 and ECOP2902)) N ECOP3901</td>
<td>Semester 1</td>
</tr>
<tr>
<td>ECOP3912 Research in Political Economy</td>
<td>6</td>
<td>Credit average in 4 intermediate or senior ECOP units including (ECOP2911 and (ECOP2901 and ECOP2902)) N ECOP3902</td>
<td>Semester 2</td>
</tr>
<tr>
<td>ECOP4001 Political Economy Honours A</td>
<td>12</td>
<td>P ECOP2011, ECOP2012 (or ECOP2012 prior to 2009), ECOP2811, ECOP3911, ECOP3912 and one other senior level ECOP unit. Students who do not meet this requirement may apply to thehonours coordinator for a waiver to permit their entry to honours. C ECOP4002, ECOP4003, ECOP4004</td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>Assumed knowledge</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>ECOP4002 Political Economy Honours B</td>
<td>12</td>
<td>C ECOP4001, ECOP4003</td>
<td></td>
</tr>
<tr>
<td>ECOP4003 Political Economy Honours C</td>
<td>12</td>
<td>C ECOP4001, ECOP4002</td>
<td></td>
</tr>
<tr>
<td>ECOP4004 Political Economy Honours D</td>
<td>12</td>
<td>C ECOP4003</td>
<td></td>
</tr>
</tbody>
</table>

Studies in Religion

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>Assumed knowledge</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLS1001 Paths to Enlightenment</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>RLS1002 The History of God</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS1801 Religious Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS2610 Mahayana Buddhism</td>
<td>6</td>
<td>A 12 junior credit points in Religion, or their equivalent as assessed by the department.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>RLS2612 Dualism: Zoroaster, Gnosis & Manichaeism</td>
<td>6</td>
<td>A 12 junior credit points of Religion Studies, or equivalent as assessed by the Department</td>
<td>N RLST2012</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>RLS2614 Philosophy of Religion: Reason & Belief</td>
<td>6</td>
<td>A 12 junior credit points of Religion Studies</td>
<td>N RLST2014</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>RLS2623 Meditation and Self Transformation</td>
<td>6</td>
<td>A 12 junior credit points of Religion Studies, or equivalent as assessed by the Department</td>
<td>N RLST2023</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS2624 The Birth of Christianity</td>
<td>6</td>
<td>A 12 junior credit points of Religion Studies, or equivalent as assessed by the Department</td>
<td>N RLST2024</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS2628 Religion and Film</td>
<td>6</td>
<td>A 12 junior credit points of Religion studies, or their equivalent to be assessed by the Department</td>
<td>N RLST2028</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS2631 Celtic and Germanic Mythology</td>
<td>6</td>
<td>P 12 junior credit points of Religion Studies, or equivalent as assessed by the Department</td>
<td>N RLST2001, RLST2002</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS2633 Religion and Television</td>
<td>6</td>
<td>A 12 junior credit points of Religion or equivalent as assessed by the Department</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>RLS2634 Religion, Media and Consumerism</td>
<td>6</td>
<td>A 12 junior credit points of Religion or equivalent as assessed by the Department</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS2635 Sex, Desire and the Sacred</td>
<td>6</td>
<td>A 12 junior credit points of Religion Studies, or equivalent as assessed by the Department</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>RLS2636 Ancient Egyptian Religion and Magic</td>
<td>6</td>
<td>A 12 junior credit points of Religion or equivalent as assessed by the Department</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS2804 Religious Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS2805 Religious Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>RLS2806 Religious Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS2809 Religious Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS2810 Religious Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS4011 Religious Studies Honours A</td>
<td>12</td>
<td>P Credit average in 48 senior credit points of Studies in Religion. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS4012 Religious Studies Honours B</td>
<td>12</td>
<td>C RLS4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>RLS4013 Religious Studies Honours C</td>
<td>12</td>
<td>C RLS4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Sanskrit

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>Assumed knowledge</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANS1001 Sanskrit Introductory 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SANS1002 Sanskrit Introductory 2</td>
<td>6</td>
<td>P SANS1001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SANS2601 Sanskrit Intermediate 1</td>
<td>6</td>
<td>P SANS2001 or equivalent</td>
<td>N SANS2001</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SANS2602 Sanskrit Intermediate 2</td>
<td>6</td>
<td>P SANS2001 or SANS2601 or equivalent</td>
<td>N SANS2002</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SANS2612 Sanskrit Research Preparation 1</td>
<td>6</td>
<td>P SANS2001 or SANS2601 or equivalent</td>
<td>N SANS2901, SANS2902</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SANS3601 Sanskrit Advanced 1</td>
<td>6</td>
<td>P SANS2001 or SANS2602 or equivalent</td>
<td>N SANS3001</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SANS3602 Sanskrit Advanced 2</td>
<td>6</td>
<td>P SANS3001 or SANS3601 or equivalent</td>
<td>N SANS3002</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>SANS4001 Sanskrit IV Honours A</td>
<td>12</td>
<td>P</td>
<td>The completion of 8 senior units of study; a Credit average in senior level Sanskrit language units of study (SANS2601, SANS2602, SANS2612, SANS3601, SANS3602 and SANS3612) plus two additional units of study chosen from the following senior level Asian Studies units of study: ASNS2620 Classical Indian Philosophy, ASNS2621 Buddhist Philosophy, ASNS2623 India: Tradition and Modernity, ASNS2624 Understanding Buddhist Literature, ASNS2625 Buddhism in Modern Asia, ASNS2626 Religious Traditions of South Asia, and / or any senior unit of Hindi / Urdu or equivalent as determined by the Department. Note: Department permission required for enrolment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SANS4002 Sanskrit IV Honours B</td>
<td>12</td>
<td>C SANS4001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SANS4003 Sanskrit IV Honours C</td>
<td>12</td>
<td>C SANS4002</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SANS4004 Sanskrit IV Honours D</td>
<td>12</td>
<td>C SANS4003</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Social Policy

SCPL2601 Australian Social Policy | 6 | P SCLG1001 and SCLG1002 | | SCLP3001 | | Semester 1 |

SCPL2602 The Principles of Social Policy | 6 | P SCLG1001 and SCLG1002 | | SCLP3002 | | Semester 2 |

SCPL2603 Development and Welfare in East Asia | 6 | P SCLG1001 and SCLG1002 | | | | Semester 1 |

Social Sciences

(For continuing Bachelor of Social Sciences students only.)

SSCI3601 Social Sciences Internship | 12 | P SSSI1001 or SSSI2001 or SSSI2601 and SSSI2002 or SSSI2602 and STAT1021 and SCLG2602 or SCLG2521 | N SSSI3001 | Bachelor of Social Sciences only | | Semester 1 |

SSCI3602 Internship Research Paper | 12 | P SSSI1001 or SSSI2001 or SSSI2601 and SSSI2002 or SSSI2602 and STAT1021 and SCLG2602 or SCLG2521 | C SSSI3001 or SSSI3601 | | | Semester 1 |

Socio-Legal Studies

SLSS1001 Introduction to Socio-Legal Studies | 6 | Available to Bachelor of Arts and Sciences and Bachelor of Socio-Legal Studies only | | | | Semester 1 |

SLSS1003 Law and Contemporary Society | 6 | Available to Bachelor of Arts and Sciences and Bachelor of Socio-Legal Studies only | | | | Semester 2 |

SLSS2601 Socio-Legal Research | 6 | P SLSS1001 and SLSS1003 or SLSS1001 and SLSS1002 Available to Bachelor of Socio-Legal Studies only | | | | Semester 1 |

SLSS2603 Medico-Legal and Forensic Criminology | 6 | P SLSS1001 and SLSS1003 or SCLG1001 and SCLG1002 Available to Bachelor of Socio-Legal Studies only | | | | Semester 2 |

SLSS2604 Indigenous Social and Legal Justice | 6 | P SLSS1001 and SLSS1003 or SLSS1001 and SLSS1002 Available to Bachelor of Socio-Legal Studies Students only | | | | Semester 2 |

SLSS2801 Socio-Legal Studies Exchange | 6 | Note: Department permission required for enrolment Available to Bachelor of Socio-Legal Studies only | | | | Semester 1 |

SLSS2802 Socio-Legal Studies Exchange | 6 | Note: Department permission required for enrolment Available to Bachelor of Socio-Legal Studies only | | | | Semester 2 |

SLSS2803 Socio-Legal Studies Exchange | 6 | Note: Department permission required for enrolment Available to Bachelor of Socio-Legal Studies only | | | | Semester 1 |

SLSS2804 Socio-Legal Studies Exchange | 6 | Note: Department permission required for enrolment Available to Bachelor of Socio-Legal Studies only | | | | Semester 1 |

SLSS2805 Socio-Legal Studies Exchange | 6 | Note: Department permission required for enrolment Available to Bachelor of Socio-Legal Studies only | | | | Semester 2 |

SLSS2806 Socio-Legal Studies Exchange | 6 | Note: Department permission required for enrolment Available to Bachelor of Socio-Legal Studies only | | | | Semester 2 |

SLSS2807 Socio-Legal Studies Exchange | 6 | Note: Department permission required for enrolment Available to Bachelor of Socio-Legal Studies only | | | | Semester 1 |

SLSS2808 Socio-Legal Studies Exchange | 6 | Note: Department permission required for enrolment Available to Bachelor of Socio-Legal Studies only | | | | Semester 2 |

SLSS4011 Socio-Legal Studies Honours A | 12 | P completion of all requirements of a Bachelor of Socio-Legal Studies with a credit average in senior level core and elective Socio-Legal Studies units. Requirements for the Pass degree must be completed before entry to level 4000 honours units of study. Note: Department permission required for enrolment. | | | | Semester 2 |

SLSS4012 Socio-Legal Studies Honours B | 12 | C SLSS4011 | | | | Semester 1 |

SLSS4013 Socio-Legal Studies Honours C | 12 | C SLSS4012 | | | | Semester 1 |

SLSS4014 Socio-Legal Studies Honours D | 12 | C SLSS4013 | | | | Semester 1 |
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sociology</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCLG1001 Introduction to Sociology 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG1002 Introduction to Sociology 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG1001 Sociology Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG1002 Sociological Theory</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2001, SCLG2520</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2602 Social Inquiry: Research Methods</td>
<td>6</td>
<td>P Either SCLG1001 and SCLG1002 or SCWK2003 or SSCI1003</td>
<td>N SCLG2002, SCLG2521</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG2604 Social Inequality in Australia</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2010, SCLG2529</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2605 Social Justice Law and Society</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2017, SCLG2536</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2606 Media in Contemporary Society</td>
<td>6</td>
<td>A Ability to access internet and basic web browsing skills</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2018, SCLG2537</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2607 Social Movements and Policy Making</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2576</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2608 Social Construction of Difference</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2004, SCLG2523</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2609 Contemporary Cultural Issues</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2501</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG2610 Science, Technology and Social Change</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2504</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2611 Welfare States: A Comparative Analysis</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2509</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG2612 Self and Society</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2516</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG2613 Sociology of Childhood and Youth</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2522</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG2614 Law and Social Theory</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002 and (SCLG2601 or SCLG2001 or SCLG2520)</td>
<td>N SCLG2536</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG2615 Global Transformations</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2566</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2616 Violence, Imaginaries and Symbolic Power</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2566</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2617 Power, Politics and Society</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2510</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG2618 Human Rights and Social Protest</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2510</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2619 Sociology of Friendship</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2510</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2620 Sociology of Religion</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG2510</td>
<td>This unit is available as a designated 'Advanced' unit for students who are already enrolled in the BA (Advanced) degree program.</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2621 Crime, Punishment and Society</td>
<td>6</td>
<td>P Two of: SCLG1001, SCLG1002, SLSS1001, SLSS1002 and LAWS1100</td>
<td>N SCLG2566</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2622 Sociology Exchange</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2623 Sociology Exchange</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2624 Sociology Exchange</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2625 Sociology Exchange</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2626 Sociology of Religion</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2627 Sociology of Religion</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2628 Sociology of Religion</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2629 Sociology of Religion</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG2630 Sociology of Religion</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>SCLG3601 Contemporary Sociological Theory</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG3002</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG3602 Empirical Sociological Methods</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG3003</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG3603 Quantitative Methods for Social Science</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG3002</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SCLG3604 Environmental Sociology</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG3002</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG3605 Urban Sociology</td>
<td>6</td>
<td>P SCLG1001 and SCLG1002</td>
<td>N SCLG3002</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG4011 Sociology Honours A</td>
<td>12</td>
<td>P Credit average in 48 credit points of Senior level Sociology including SCLG3602</td>
<td>N SPAN1601 or equivalent knowledge of Spanish</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG4012 Sociology Honours B</td>
<td>12</td>
<td>C SCLG4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG4013 Sociology Honours C</td>
<td>12</td>
<td>C SCLG4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SCLG4014 Sociology Honours D</td>
<td>12</td>
<td>C SCLG4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Spanish and Latin American Studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPAN1611 Spanish Level 1</td>
<td>6</td>
<td>N Not to be taken by students with prior knowledge of Spanish. Students who have already studied Spanish at HSC level, or who have equivalent knowledge may not take SPAN1611. Students should contact the department, which will determine the appropriate level of enrolment.</td>
<td></td>
<td></td>
<td></td>
<td>Winter Main</td>
</tr>
<tr>
<td>SPAN1612 Spanish Level 2</td>
<td>6</td>
<td>P SPAN1611 or SPAN1601, or equivalent knowledge of Spanish</td>
<td>N SPAN1002, SPAN1602 Students who have already studied Spanish at HSC level, or who have equivalent knowledge, may not take SPAN1612. Students should contact the department, which will determine the appropriate level of enrolment.</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN1801 Spanish Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN1802 Spanish Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN2611 Spanish Level 3</td>
<td>6</td>
<td>P SPAN1002 or SPAN1602 or SPAN1612 or 65% in HSC Spanish Beginners</td>
<td>N SPAN2001, SPAN2601, HSC Spanish Continuers Minimum Mark 70%.</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN2612 Spanish Level 4</td>
<td>6</td>
<td>P SPAN2611 or SPAN2601</td>
<td>N SPAN2002, SPAN2602, HSC Spanish Continuers Minimum Mark 70%.</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN2613 Spanish Level 5</td>
<td>6</td>
<td>P SPAN2612 or SPAN2602, or HSC Spanish Continuers Minimum 70%</td>
<td>N SPAN3601 or SPAN3602</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN2614 Spanish Level 6</td>
<td>6</td>
<td>P SPAN2613 or SPAN2602 or equivalent knowledge of Spanish.</td>
<td>N SPAN3601 or SPAN3602</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN2621 Spanish Culture 1</td>
<td>6</td>
<td>P SPAN2601 or SPAN2611 or equivalent language knowledge.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN2622 Latin American Culture 1</td>
<td>6</td>
<td>P SPAN2601 or SPAN2611 or equivalent language knowledge.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN2631 Cultural and Social Change in Spain</td>
<td>6</td>
<td>P 12 junior credit points</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN2641 Filmmaking in the Latin American Context</td>
<td>6</td>
<td>P 18 Part A junior credit points.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN3611 Spanish Level 7</td>
<td>6</td>
<td>P SPAN2614 or equivalent knowledge of Spanish.</td>
<td>N SPAN3601</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN3612 Spanish Level 8</td>
<td>6</td>
<td>P SPAN3611 or SPAN3601 or equivalent knowledge of Spanish.</td>
<td>N SPAN3602</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN3621 Latin American Film and Literature</td>
<td>6</td>
<td>P SPAN2602 or SPAN2612 or equivalent language knowledge.</td>
<td>N SPAN3006</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN3622 Introduction to Spanish Translation</td>
<td>6</td>
<td>P SPAN3601 or SPAN2613 or equivalent language knowledge.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN3623 Argentina for Export</td>
<td>6</td>
<td>P SPAN2602 or SPAN2612 or equivalent language knowledge.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN3811 Spanish Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN3812 Spanish Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN3813 Spanish Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN3814 Spanish Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>SPAN3815 Spanish Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
Unit of study

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credit points</th>
<th>Assumed knowledge</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN3816</td>
<td>Spanish Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN3817</td>
<td>Spanish Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN3818</td>
<td>Spanish Studies Exchange</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN4011</td>
<td>Spanish & Latin American Studies Hons A</td>
<td>12</td>
<td>P 48 senior credit points in Spanish and Latin American Studies with at least a Credit average. At least 24 credit points must be in language units of study. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN4012</td>
<td>Spanish & Latin American Studies Hons B</td>
<td>12</td>
<td>C SPAN4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN4013</td>
<td>Spanish & Latin American Studies Hons C</td>
<td>12</td>
<td>C SPAN4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>SPAN4014</td>
<td>Spanish & Latin American Studies Hons D</td>
<td>12</td>
<td>C SPAN4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Writing

(No major available.)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credit points</th>
<th>Assumed knowledge</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>WRIT1001</td>
<td>Academic English</td>
<td>6</td>
<td>P Upon registration for this unit students will be directed to an online diagnostic exercise.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>WRIT1002</td>
<td>Academic Writing</td>
<td>6</td>
<td>P This unit is available to all enrolled students and across all faculties. There are no specific prerequisites but students will be required to complete a diagnostic exercise in their first tutorial. Students in this unit are assumed to have native or near native competence in written English. Students who do not have this competence would benefit from completing WRIT1001 before enrolling in WRIT1002 but WRIT1001 is NOT a pre-requisite for WRIT1002.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Winter Main</td>
</tr>
</tbody>
</table>

Yiddish

(No guarantee of continuing availability)

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credit points</th>
<th>Assumed knowledge</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>YDDH1101</td>
<td>Yiddish 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td>Yiddish 2</td>
<td>6</td>
<td>P YDDH1101 or permission from the department</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>YDDH2603</td>
<td>Yiddish 3</td>
<td>6</td>
<td>P YDDH1102 or permission from the department</td>
<td>N YDDH2103, YDDH2104</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td>Yiddish 4</td>
<td>6</td>
<td>P YDDH2103 or YDDH2603</td>
<td>N YDDH2104</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>YDDH3605</td>
<td>Yiddish 5</td>
<td>6</td>
<td>P YDDH2104 or YDDH2604</td>
<td>N YDDH3105, YDDH3106</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td>Yiddish 6</td>
<td>6</td>
<td>P YDDH3605 or YDDH3105</td>
<td>N YDDH3106</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
11. Honours in the Faculty of Science

This chapter is intended to give enrolment advice to undergraduate students in the Faculty of Science.

Honours in the Faculty of Science

Honours in the BSc (including all streams and combined degrees), BMedSc, BST

Admission

To qualify to enrol in an honours course, students shall:

- have qualified for the award of a relevant pass degree from the Faculty of Science, or
- be a pass graduate of the Faculty of Science, or
- be a pass graduate holding an equivalent qualification from another institution
- have achieved either
 1. a SCIWAM of at least 65 (or equivalent at another institution); or
 2. a credit average in 48 credit points in relevant intermediate and senior science units of study;

and

- satisfy any additional criteria set by the Head of Department concerned.
- have completed a minimum of 24 credit points of Senior units of study relating to the intended honours course (or equivalent at another institution)

You should also note the following:

- Students shall complete the requirements for the honours course full-time over two consecutive semesters. If the faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of Department concerned so recommends, permission may be granted to undertake honours half-time over four consecutive semesters.
- Not all departments offer students part time enrolment in honours, or honours enrolment commencing in the July semester. Students considering these types of honours enrolments are urged to contact the department concerned.
- A student may not re-attempt an honours course in a single subject area. A student who is qualified to enrol in two honours courses may either complete the honours courses in the two subject areas separately and in succession, or complete a joint honours course, equivalent to an honours course in a single subject area, in the two subject areas.
- A joint honours course shall comprise such parts of the two honours courses as may be decided by the Dean.
- An interdisciplinary honours course shall comprise such parts as determined by the Coordinating Committee for the interdisciplinary course.

SCIWAM for all degrees

SCIWAM means the weighted average mark calculated by the faculty from the results for all intermediate and senior units of study with a weighting of 2 for intermediate units and 3 for senior units.

The SCIWAM is calculated by summing the products of the marks achieved and the weighted credit point values of the units of study taken in the degree and then dividing by the sum of the weighted credit point values, with all attempts at units of study being included in the calculation, except where units of study are discontinued with permission; the formula used is:

\[
\text{SCIWAM} = \frac{\text{Sum}(Wc \times Mc)}{\text{Sum}(Wc)}
\]

where \(Wc \) is the weighted credit point value, i.e., the product of the credit point value and level of weighting of 2 for 2000–2999 units of study and 3 for 3000–3999 units of study; where \(Mc \) is the mark out of 100 for the unit of study.

In calculating the SCIWAM for a student transferring from another university, units of study are assigned level weightings and credit point values consistent with their equivalent units of study at the University of Sydney.

A mark is assigned to each unit of study credited based on the results provided on a validated academic transcript from the University. Where no mark is provided by the institution an appropriate estimate is used. Students are encouraged to obtain actual marks from departments at those universities that do not issue formal marks.

Ranking for postgraduate scholarships

For the purposes of ranking for APAs and UPAs at the University of Sydney the final ranking mark consists of the SCIWAM and/or Honours 1 (or Honours 1 equivalent) mark and Research Potential Indicator.

The use of these components is based on whether the applicant has attained an Honours 1 degree, has completed his/her most recent studies within the last five years by the time the scholarship is being awarded, and the extent of any relevant research/professional experience. A greater weight is given to the Honours 1 (or H1E) mark.

More information can be found on the Research Office's website.

Honours units of study

Honours units of study are listed in Table VI: Honours units of study or in the tables associated with the relevant degree (all tables appear in chapter 3).

Please note that enrolment in Honours requires both Faculty and Departmental permission, and students intending to attempt an Honours year should read the relevant sections of chapters 3 and 5 for further information.

Honours in the BPsych

Admission

To qualify to enrol in the honours course, students shall have completed 144 credit points as specified in Resolution 5 (1) of the BPsych including completion of all intermediate and senior units of study in Psychology with an average grade of Distinction or better.

You should also note the following:

- Students shall complete the requirements for the honours course full-time over two consecutive semesters. If the faculty is satisfied that a student is unable to attempt the honours course on a full-time basis and if the Head of School of Psychology so recommends, permission may be granted to undertake honours half-time over four consecutive semesters. A student may not re-attempt an honours course.
11. Honours in the Faculty of Science

Determination of marks and grades

To qualify for the award of an honours degree, students shall complete 48 credit points of honours units of study in the table of honours units of study, as prescribed by the Head of Department concerned.

The grade of honours and the honours mark are determined by performance in the honours course.

Departments and schools are required to make recommendations concerning honours marks and grades of honours for consideration by the faculty. Final marks and grades of honours are determined by biannual honours meetings of department and school representatives of the faculty to ensure consistency across the faculty. Therefore final results for individual students may differ from those recommended.

The faculty is aware that, because the honours units of study in some departments are wholly or predominantly formal course work and in others a research project, and because some subjects are not taught until well into the undergraduate program, the way in which departments take cognisance of performance in the honours year in arriving at a recommendation for a grade of honours must be left to their discretion. However the faculty has established a set of guidelines for departments to use in determining their recommendations.

The faculty has adopted the following guidelines for assessment of student performance in honours:

95–100

Outstanding First Class quality of clear Medal standard, demonstrating independent thought throughout, a flair for the subject, comprehensive knowledge of the subject area and a level of achievement similar to that expected by first rate academic journals. This mark reflects an exceptional achievement with a high degree of initiative and self-reliance, considerable student input into the direction of the study, and critical evaluation of the established work in the area.

90–94

Very high standard of work similar to above but overall performance is borderline for award of a Medal. Lower level of performance in certain categories or areas of study above.

Note that in order to qualify for the award of a university medal, it is necessary but not sufficient for a candidate to achieve a SCIWAM of 80 or greater and an honours mark of 90 or greater. Faculty has agreed that more than one medal may be awarded in the subject of an honours course.

The relevant Senate Resolution reads: "A candidate with an outstanding performance in the subject of an honours course shall, if deemed of sufficient merit by the Faculty, receive a bronze medal."

Students with an honours mark of 90 or greater and a SCIWAM of 77 to 79 inclusive may be considered for the award of a university medal only if it can be demonstrated that their WAM was affected by sickness, misadventure, unusual workload or choice of units of study.

80–89

Clear First Class quality, showing a command of the field both broad and deep, with the presentation of some novel insights. Student will have shown a solid foundation of conceptual thought and a breadth of factual knowledge of the discipline, clear familiarity with and ability to use central methodology and experimental practices of the discipline, and clear evidence of some independence of thought in the subject area.

Some student input into the direction of the study or development of techniques, and critical discussion of the outcomes.

75–79

Second class honours, first division – student will have shown a command of the theory and practice of the discipline. They will have demonstrated their ability to conduct work at an independent level and complete tasks in a timely manner, and have an adequate understanding of the background factual basis of the subject. Student shows some initiative but is more reliant on other people for ideas and techniques and project is dependent on supervisor’s suggestions. Student is dedicated to work and capable of undertaking a higher degree.

70–74

Second class honours, second division – student is proficient in the theory and practice of their discipline but has not developed complete independence of thought, practical mastery or clarity of presentation. Student shows adequate but limited understanding of the topic and has largely followed the direction of the supervisor.

65–69

Third class honours – performance indicates that the student has successfully completed the work, but at a standard barely meeting honours criteria. The student’s understanding of the topic is extremely limited and they have shown little or no independence of thought or performance.

0–64

The student’s performance in fourth year is not such as to justify the award of honours.

Honours

Examiners are also asked to return their recommendation for the grade of honours to be awarded bearing in mind the honours mark and the faculty’s guidelines for the award of honours which are listed below.

The examiners’ recommendations are to be indicated on the examination result sheets by the use of the following valid symbols:

H1	Honours Class I	80+
H21	Honours Class II (Division 1)	75–79
H22	Honours Class II (Division 2)	70–74
H3	Honours Class III	65–69
F	Fail *	below 65
AF	Absent Fail	

* In these cases the award of the Pass degree is recommended.

Note:

1. The biannual honours meetings of the department and school representatives of the faculty shall consider a motion that those recommendations from the departments and schools that accord with the faculty’s guidelines for the award of Honours and medal be approved. Cases where the recommendations do not accord with the guidelines will be considered individually; and departments and schools will be required to have a representative present with the authority to make revised recommendations if requested to do so at the biannual honours meetings of departmental and school representatives of the faculty.

2. In order to qualify for the award of a University medal, it is necessary but not sufficient for a candidate to achieve a WAM of 80 or greater and an honours mark of 90 or greater. Faculty has agreed that more than one medal may be awarded in the subject of an honours course. The relevant Senate Resolution reads "A candidate with an outstanding performance in the subject of an Honours course shall, if deemed of sufficient merit by the Faculty, receive a bronze medal."

Students with an honours mark of 90 or greater and a WAM of 77 to 79 inclusive may be considered for the award of a University medal only if it can be demonstrated that their WAM was affected by sickness, misadventure, unusual workload or choice of units of study.

3. In order to qualify for Honours Class 1, a candidate must achieve an honours mark of 80 or greater.

4. The rolling five year average mark difference (student honours mark minus SCIWAM) for each department and school should fall within the range 10 plus or minus 2. A department or school whose rolling five year average mark difference in any year falls above or below this range is required to justify its recommended marks for that year to the July Semester honours meetings of
representatives of the Faculty will be called to consider the results.

Biannual honours meetings of Departmental and School representatives of the Faculty

Biannual honours meetings of Departmental and School representatives of the Faculty will be called to consider the results.

5. Equivalent honours grades are not awarded to Graduate Diploma in Science students by the biannual honours meetings of departmental and school representatives of the faculty but can be determined by the Scholarships Ranking Meeting if the student qualifies for an equivalent grade and applies for an APA scholarship.

Biannual honours meetings of Departmental and School representatives of the Faculty

Biannual honours meetings of Departmental and School representatives of the Faculty will be called to consider the results.

Honours units of study

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Chemistry Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGCH4021 Agricultural Chemistry Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>AGCH4022 Agricultural Chemistry Honours B</td>
<td>12</td>
<td>C AGCH4021</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>AGCH4023 Agricultural Chemistry Honours C</td>
<td>12</td>
<td>C AGCH4022</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>AGCH4024 Agricultural Chemistry Honours D</td>
<td>12</td>
<td>C AGCH4023</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Anatomy and Histology Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANAT4011 Anatomy Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANAT4012 Anatomy Honours B</td>
<td>12</td>
<td>C ANAT4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANAT4013 Anatomy Honours C</td>
<td>12</td>
<td>C ANAT4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ANAT4014 Anatomy Honours D</td>
<td>12</td>
<td>C ANAT4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biochemistry Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCHM4011 Biochemistry Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entry into the School Honours program normally requires a credit average in a major relevant to the chosen project or relevant 24 credit points of senior study. The School will consider entry to students who do not have this requirement if their overall academic performance indicates an equivalent performance in other subject areas or if their SCIWAM exceeds 65.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BCHM4012 Biochemistry Honours B</td>
<td>12</td>
<td>C BCHM4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entry into the School Honours program normally requires a credit average in a major relevant to the chosen project or relevant 24 credit points of senior study. The School will consider entry to students who do not have this requirement if their overall academic performance indicates an equivalent performance in other subject areas or if their SCIWAM exceeds 65.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BCHM4013 Biochemistry Honours C</td>
<td>12</td>
<td>C BCHM4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entry into the School Honours program normally requires a credit average in a major relevant to the chosen project or relevant 24 credit points of senior study. The School will consider entry to students who do not have this requirement if their overall academic performance indicates an equivalent performance in other subject areas or if their SCIWAM exceeds 65.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BCHM4014 Biochemistry Honours D</td>
<td>12</td>
<td>C BCHM4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Entry into the School Honours program normally requires a credit average in a major relevant to the chosen project or relevant 24 credit points of senior study. The School will consider entry to students who do not have this requirement if their overall academic performance indicates an equivalent performance in other subject areas or if their SCIWAM exceeds 65.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Biology Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL4015 Scientific Research in Biology</td>
<td>6</td>
<td>P Pass degree in an area of Life Sciences or Equivalent</td>
<td>C BIOL4016</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N BIOL4009, BIOL4010</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BIOL4016/ corequisite not required by Bioinformatics Masters Research Stream students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL4016 Biology Honours A</td>
<td>6</td>
<td>C BIOL4015</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N BIOL4011</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BIOL4012 Biology Honours B</td>
<td>12</td>
<td>C BIOL4011 or (BIOL4015 and BIOL4016)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BIOL4013 Biology Honours C</td>
<td>12</td>
<td>C BIOL4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Register of results

Departments and Schools are required to make recommendations concerning marks for consideration by the biannual honours meeting of departmental and school representatives of the faculty. Final marks are determined by the biannual honours meetings of departmental and school representatives of the faculty so as to ensure consistency across the faculty. Therefore, final results for individual students may differ from those recommended.

A register and copies of the honours ranking report are produced by the faculty for use by the biannual honours meetings of departmental and school representatives of the faculty.

Other important policies

See chapter 1 for important policy information.
<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL4014 Biology Honours D</td>
<td>12</td>
<td>C BIOL4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>CHEM4011 Chemistry Honours A</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>CHEM4012 Chemistry Honours B</td>
<td>12</td>
<td>C CHEM4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>CHEM4013 Chemistry Honours C</td>
<td>12</td>
<td>C CHEM4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>CHEM4014 Chemistry Honours D</td>
<td>12</td>
<td>C CHEM4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>COSC4001 Computational Science Honours A</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>COSC4002 Computational Science Honours B</td>
<td>12</td>
<td>C COSC4001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>COSC4003 Computational Science Honours C</td>
<td>12</td>
<td>C COSC4002</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>COSC4004 Computational Science Honours D</td>
<td>12</td>
<td>C COSC4003</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>COMP4011 Computer Science Honours A</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>COMP4012 Computer Science Honours B</td>
<td>12</td>
<td>C COMP4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>COMP4013 Computer Science Honours C</td>
<td>12</td>
<td>C COMP4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>COMP4014 Computer Science Honours D</td>
<td>12</td>
<td>C COMP4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>CPAT4011 Cell Pathology Honours A</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>CPAT4012 Cell Pathology Honours B</td>
<td>12</td>
<td>C CPAT4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>CPAT4013 Cell Pathology Honours C</td>
<td>12</td>
<td>C CPAT4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>CPAT4014 Cell Pathology Honours D</td>
<td>12</td>
<td>C CPAT4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ENVI4011 Environmental Studies Honours A</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ENVI4012 Environmental Studies Honours B</td>
<td>12</td>
<td>C ENVI4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ENVI4013 Environmental Studies Honours C</td>
<td>12</td>
<td>C ENVI4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>ENVI4014 Environmental Studies Honours D</td>
<td>12</td>
<td>C ENVI4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>GEOG4011 Geography Honours A</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>GEOG4012 Geography Honours B</td>
<td>12</td>
<td>C GEOG 4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>GEOG4013 Geography Honours C</td>
<td>12</td>
<td>C GEOG 4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>GEOG4014 Geography Honours D</td>
<td>12</td>
<td>C GEOG 4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>GEOL4011 Geology Honours A</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>GEOL4012 Geology Honours B</td>
<td>12</td>
<td>C GEOL4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>GEOL4013 Geology Honours C</td>
<td>12</td>
<td>C GEOL4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>GEOL4014 Geology Honours D</td>
<td>12</td>
<td>C GEOL4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
</tbody>
</table>
11. Honours in the Faculty of Science

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geophysics Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOP4011 Geophysics Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOP4012 Geophysics Honours B</td>
<td>12</td>
<td>C GEOP 4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOP4013 Geophysics Honours C</td>
<td>12</td>
<td>C GEOP 4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOP4014 Geophysics Honours D</td>
<td>12</td>
<td>C GEOP 4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>History and Philosophy of Science Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4101 Philosophy of Science</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4102 History of Science</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4103 Sociology of Science</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4104 Recent Topics in HPS</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4105 HPS Research Methods</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4106 Core topics: History & Philosophy of Sci</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4201 HPS Research Project 1</td>
<td>6</td>
<td>A HPSC (2001 and 2002) or HPSC (2100 and 2101) and HPS Honours and Graduate Diploma or Certificate in Science (History and Philosophy of Science). N HPSC4106, HPSC4107 Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4202 HPS Research Project 2</td>
<td>6</td>
<td>A HPSC (2001 and 2002) or HPSC (2100 and 2101) and HPS Honours and Graduate Diploma or Certificate in Science (History and Philosophy of Science). N HPSC4106 and HPSC4107 Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4203 HPS Research Project 3</td>
<td>6</td>
<td>A HPSC (2001 and 2002) or HPSC (2100 and 2101) and HPS Honours and Graduate Diploma or Certificate in Science (History and Philosophy of Science). N HPSC4106, HPSC4107 Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4204 HPS Research Project 4</td>
<td>6</td>
<td>A HPSC (2001 and 2002) or HPSC (2100 and 2101) and HPS Honours and Graduate Diploma or Certificate in Science (History and Philosophy of Science). N HPSC4106, HPSC4107 Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4999 History & Philosophy of Science Honours</td>
<td></td>
<td>P Available only to students admitted to HPS Honours. Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Immunology Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMMU4011 Immunology Honours A</td>
<td>12</td>
<td>N BMED4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>IMMU4012 Immunology Honours B</td>
<td>12</td>
<td>C IMMU4011</td>
<td>N BMED4012</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>IMMU4013 Immunology Honours C</td>
<td>12</td>
<td>C IMMU4012</td>
<td>N BMED4013</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>IMMU4014 Immunology Honours D</td>
<td>12</td>
<td>C IMMU4014</td>
<td>N BMED4014</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Information Systems Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISYS4301 Information Systems Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ISYS4302 Information Systems Honours B</td>
<td>12</td>
<td>C ISYS4301</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ISYS4303 Information Systems Honours C</td>
<td>12</td>
<td>C ISYS4302</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Unit of study</td>
<td>Credit points</td>
<td>A: Assumed knowledge</td>
<td>P: Prerequisites</td>
<td>C: Corequisites</td>
<td>N: Prohibition</td>
<td>Session</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>ISYS4304 Information Systems Honours D</td>
<td>12</td>
<td>C ISYS4303</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Marine Sciences Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARS4011 Marine Sciences Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MARS4012 Marine Sciences Honours B</td>
<td>12</td>
<td>C MARS4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MARS4013 Marine Sciences Honours C</td>
<td>12</td>
<td>C MARS4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MARS4014 Marine Sciences Honours D</td>
<td>12</td>
<td>C MARS4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Pure Mathematics Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH4301 Pure Mathematics Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MATH4302 Pure Mathematics Honours B</td>
<td>12</td>
<td>C MATH4301</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MATH4303 Pure Mathematics Honours C</td>
<td>12</td>
<td>C MATH4302</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MATH4304 Pure Mathematics Honours D</td>
<td>12</td>
<td>C MATH4303</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Applied Mathematics Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH4401 Applied Mathematics Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MATH4402 Applied Mathematics Honours B</td>
<td>12</td>
<td>C MATH4401</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MATH4403 Applied Mathematics Honours C</td>
<td>12</td>
<td>C MATH4402</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MATH4404 Applied Mathematics Honours D</td>
<td>12</td>
<td>C MATH4403</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Microbiology Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MICR4011 Microbiology Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MICR4012 Microbiology Honours B</td>
<td>12</td>
<td>P Department permission required for enrolment</td>
<td>C MICR4011</td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MICR4013 Microbiology Honours C</td>
<td>12</td>
<td>C MICR4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>MICR4014 Microbiology Honours D</td>
<td>12</td>
<td>C MICR4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Molecular Biotechnology Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Students enrolled in the Bachelor of Molecular Biotechnology (Honours) degree enrol in units in the School/Department in which they are undertaking Honours.

Pharmacology Honours

<table>
<thead>
<tr>
<th>Pharmacology Honours A</th>
<th>12</th>
<th>Note: Department permission required for enrolment</th>
<th>Semester 1 Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCOL4011 Pharmacology Honours B</td>
<td>12</td>
<td>C PCOL4011</td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>PCOL4013 Pharmacology Honours C</td>
<td>12</td>
<td>C PCOL4012</td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>PCOL4014 Pharmacology Honours D</td>
<td>12</td>
<td>C PCOL4013</td>
<td>Semester 1 Semester 2</td>
</tr>
</tbody>
</table>

Physiology Honours

<table>
<thead>
<tr>
<th>Physiology Honours A</th>
<th>12</th>
<th>Note: Department permission required for enrolment</th>
<th>Semester 1 Semester 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS4011 Physiology Honours B</td>
<td>12</td>
<td>C PHYS4011</td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>PHYS4013 Physiology Honours C</td>
<td>12</td>
<td>C PHYS4012</td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>PHYS4014 Physiology Honours D</td>
<td>12</td>
<td>C PHYS4013</td>
<td>Semester 1 Semester 2</td>
</tr>
</tbody>
</table>

288
11. Honours in the Faculty of Science

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS4011 Physics Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>PHYS4012 Physics Honours B</td>
<td>12</td>
<td>C PHYS4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>PHYS4013 Physics Honours C</td>
<td>12</td>
<td>C PHYS4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>PHYS4014 Physics Honours D</td>
<td>12</td>
<td>C PHYS4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>Psychology Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC4011 Psychology Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>PSYC4012 Psychology Honours B</td>
<td>12</td>
<td>C PSYC4011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>PSYC4013 Psychology Honours C</td>
<td>12</td>
<td>C PSYC4012</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>PSYC4014 Psychology Honours D</td>
<td>12</td>
<td>C PSYC4013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>Soil Science Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOIL4021 Soil Science Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>SOIL4022 Soil Science Honours B</td>
<td>12</td>
<td>C SOIL4021</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>SOIL4023 Soil Science Honours C</td>
<td>12</td>
<td>C SOIL4022</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>SOIL4024 Soil Science Honours D</td>
<td>12</td>
<td>C SOIL4023</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>Mathematical Statistics Honours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT4201 Mathematical Statistics Honours A</td>
<td>12</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>STAT4202 Mathematical Statistics Honours B</td>
<td>12</td>
<td>C STAT 4201</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>STAT4203 Mathematical Statistics Honours C</td>
<td>12</td>
<td>C STAT 4202</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>STAT4204 Mathematical Statistics Honours D</td>
<td>12</td>
<td>C STAT 4203</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
</tbody>
</table>
12. Talented Student Program

Overview
The Talented Student Program (TSP) is a special program of study intended for students of ‘exceptional merit’ who are enrolled in degrees administered by the Faculty of Science (BST, BSc, BMedSc, BPsysch and their specialist streams or combined degrees).

It is also available for the science component of the BLibStud. If other faculties grant permission, TSP options may be taken for science components that are part of other degree programs. The aim of the program is to offer students of exceptional merit additional challenging material to enable them to maximise their intellectual growth and potential.

A major benefit of participation in the Talented Student Program is that students receive special supervision by academic staff and often engage in studies with small numbers of fellow students, all of whom have particular interest in the subject. In general, the TSP caters for students whose talent is broad-based across science.

There are two main aspects of a student’s involvement in the TSP. Students can have greater flexibility in their choice of study (beyond that normally allowed by degree rules), and they have a mentor, a member of the academic staff who assists them in choosing from the great range of possibilities.

Participation in the Talented Student Program is recorded separately on the student’s academic transcript, as are TSP units of study, so that all potential employers are aware that the student has completed challenging courses of study.

Further information on the operation of the Talented Student Program may be obtained from the departmental coordinators listed below or from the Undergraduate Adviser, Faculty of Science.

Selection
Entry to the Talented Student Program is by invitation from the Dean. Invitations to participate in the TSP are made each year for that year. The following guidelines apply generally, although departments may have additional (and more stringent) requirements for entry to the activities they offer in the program:

- To be considered for the program in their first year, students should normally have aATAR (or equivalent) of 99.00 or higher and a result in band 6 in at least one HSC science subject area a mark of 95 or better in HSC Mathematics Extension 2. The Dean may consider slight variations to these requirements where a student has demonstrated exceptional performance in scientific study (eg, at the level of membership of a team which represents Australia in an International Science or Mathematics Olympiad).
- To be considered for entry into the program in their second and third years, students should normally have AAMs of 85 or over and a high distinction grade in an appropriate Science subject area. Intermediate level entry to TSP is available only to students who have been enrolled full-time in units of study totalling at least 48 credit points.

Students who feel that they satisfy these criteria, but who have not received an invitation to participate in the TSP that year, should contact the Dean.

Range of TSP structures
The relevant Faculty Resolutions (for example, Section 2.2 of the BSc degree) authorises the Dean to give approval for students of exceptional merit to enrol in units of study or in combinations of units of study not normally available within the degree.

In very exceptional cases, particularly for students who have excelled in Olympiad programs, application of these Resolutions may permit accelerated progress toward the completion of the BSc degree. Faculty policy in relation to the Talented Student Program is described in this chapter.

Students will arrange a suitable pattern of study for the year, in consultation with their mentor (who will also consider the entire degree program). For some students, the TSP activities will be in a single discipline, for others there will be separate TSP activities in several disciplines. Still others will choose interdisciplinary activities that relate several fields to one another. Some students choose TSP activities that involve additional work beyond the normal amount for a student in the degree; for others, the TSP activities replace prescribed work, giving a normal total credit point load.

Many disciplines have an organised activity for a whole group of TSP students studying that field, such as a weekly seminar or group project. In other disciplines, TSP activity involves participation by each TSP student in a research group of staff and postgraduates. Every student is treated individually; however, there are some common patterns that we describe below.

For many TSP students who are interested in several fields, (especially if they aren’t really sure about their eventual direction), a suitable arrangement might be for them to join in separate TSP activities of each discipline. Students might elect to study a broader range of fields than usual, by studying more than the normal load of 24 credit points per semester.

Another pattern is to accelerate a student who (say through Olympiad participation) has already learnt most of the topics in the usual first-year units in a discipline. Such a student can go directly to second year study in that field and in related fields, when they begin their degree.

By studying more than the usual workload each semester, they may be able to complete their honours degree in less than 4 years full-time.

Some students have particular interests that can best be served by specially planned activities combining different disciplines.

Constraints on TSP structure
When a TSP activity replaces normal activity within a unit of study, the student will enrol in that unit, but the transcript will be annotated to reflect the TSP activity. When a TSP activity differs from the normal workload, the student will be enrolled in specially designated TSP units.

The maximum number of credit points from TSP activities that can be credited towards the degree is normally 42 credit points designated as TSP units of study that are not listed in the faculty handbook.

This 42-credit point total covers all three years of study, and perhaps several different disciplines, so it is important to plan carefully to leave enough TSP possibilities in later years. It is also important that the student meets all the usual degree requirements, involving numbers of credit points at various levels and in a range of disciplines.

Each TSP activity is assigned a number of credit points, a level (Junior, Intermediate or Senior) and a Discipline area, so it can contribute to meeting the degree requirements.
The TSP process
At the start of each year, the Dean chooses students to be invited to participate in the TSP. A welcome is held in Orientation week, and at that time, each student who is new to the TSP will meet briefly with the faculty TSP coordinator, who assigns a mentor for the student.

The mentor is usually a departmental TSP coordinator, from a department closest to the student’s interest(s). The mentor and the student then plan special activities for the year, covering all fields (this may involve discussions with coordinators from other departments).

A proposal is put to the Dean, who can approve enrolment in special TSP units of study. During the year the student will meet several times with the mentor, to make sure that everything is going well. Whatever TSP activities have been arranged will be carried out by the student with others (staff and possibly students too).

Assessment will be through the mentor and the staff involved in the activities. At the end of the semester the TSP coordinator will report results.

TSP coordinators

Faculty of Science
Coordinator: Associate Professor Anthony Masters

Senior Agricultural Chemistry
Coordinator: Dr Robert Caldwell
Students may undertake, in addition to normal coursework, a special research project directly supervised by a member of the academic staff.

Anatomy and Histology
Coordinator: Dr Vladimir Balcar
The Department of Anatomy and Histology offers individual projects related to research in the department (for example Neuroscience, Developmental Biology, Forensic Anatomy, Structure and Function of Muscle Tissue) as well as a more structured program in cooperation with other departments in the School of Medical Sciences.

Biochemistry
See Molecular and Microbial Biosciences

Biology
Coordinator: Dr Jan Marc
Students may undertake additional seminars and/or special project work.

Chemistry
Coordinator: Professor Scott Kable
The Chemistry School offers Junior TSP students a challenging program based on the ‘Chemistry 1 (Special Studies Program)’. The program comprises the Junior Chemistry (Advanced) lecture series, special tutorials, and special project-based laboratory exercises. Admission to Chemistry 1 (SSP) is by invitation only, and is limited to 40 students each year. Intermediate and senior Chemistry students may undertake a special research project.

The possibility of intermediate students taking senior units and junior students taking intermediate units also exists. Students should discuss options with Dr Rendina.

Electron Microscope Unit
Coordinator: Dr Lillian Soon
The department will make special arrangements for individual students throughout their studies. Interested students should contact the TSP coordinator as soon as possible.

Geosciences
Intermediate Geography
Coordinator: Professor Phil Hirsch

In lieu of some of the normal coursework, students may undertake special project work on an environmental problem. Particular emphasis will be given to the enhancement of student capabilities in the areas of problem identification, problem formulation, data gathering, and analysis and reporting.

Geology and Geophysics
Coordinator: Dr Derek Wyman
Students will be offered extra seminars and/or special project work.

History and Philosophy of Science
Coordinator: Dr Charles Wolfe
The unit will make special arrangements for individual students throughout their studies. Interested students should contact the TSP coordinator as soon as possible. Topics offered include History, Philosophy, and Sociology of Science; Science and Ethics; and Public Communication/Understanding of Science.

From first year onwards TSP students may enrol in advanced HPS for entry into the HPS Honours program. A ‘distinction’ grade in one advanced Intermediate UOS, one Senior UOS and HPSC4104 is required. Students who successfully complete the requirements will be awarded a special certificate from the school of HPS.

Immunology
Coordinator: Dr Allison Abendroth
Students may undertake a special research project.

Information Technologies
Coordinator: Dr James Curran
The department will make special arrangements for individual students throughout their studies. Interested students should contact the TSP coordinator as soon as possible.

Mathematics and Statistics
Coordinators: Dr Daniel Daners
Students admitted to the program have the following options:

• First-year students in the Talented Student Program are invited to apply for entry to the Mathematics Special Studies Program. In addition to covering standard material, students in the Special Studies Program will participate in their own seminars on specially chosen advanced topics. Second and third year students are encouraged to tailor their own programs, in consultation with the coordinators.

• Students in the Talented Student Program have access to Mathematics units of study in higher years. For example, a first-year student may take selected second or even third-year units.

• Second and third-year students have access to special projects, which can be inter-disciplinary, according to the interests of the individual student. Second and third-year students are encouraged to tailor their own programs, in consultation with the coordinators.

Medical Science
Coordinator: Dr Brent McParland

Molecular and Microbial Biosciences
Biochemistry, Molecular Biology and Genetics, Molecular Biotechnology and Microbiology
Coordinator: Dr Andrew Holmes
A special program of study will be developed for individual students enrolled in Intermediate and Senior Biochemistry, Molecular Biology and Genetics, Molecular Biotechnology and Microbiology.

Pathology
Coordinator: Dr Bob Bao

Pharmacology
Coordinator: Dr Brent McParland
The department will make special arrangements for individual students throughout their studies.
Physics
Coordinators: Professor Dick Hunstead
The Physics TSP program extends the physics course by special seminars and project work, together with an excursion to locations of interest in the July semester break. The special project work in the July semester replaces part of the laboratory program and is available to first and second year TSP students. It introduces students to the diversity of research activities in the School. The aim is to broaden students’ knowledge of physics, and give an insight into how physicists think and how a real research project is tackled.

Physiology
Coordinator: Dr Margot Day
Students may undertake, in addition to normal coursework, a special research project.

Psychology
Coordinator: Dr Irina Harris
The program is available in Intermediate and Senior Psychology. Students admitted to the program have the following options, or various combinations of these options, available to them:

• additional options in Psychology either in lieu of, or in addition to, other units of study in Science
• a combination of additional Psychology options combined with special studies in another science discipline (for example, Biochemistry, Computer Science, Mathematics and Statistics)
• a special research project in lieu of, or in addition to, normal practical or classwork components.

Senior Soil Science
Coordinator: Dr Balwant Singh
Students may undertake, in addition to normal coursework, a special research project.
13. Information for students on Outbound Exchange

This chapter is intended for students in the Faculty of Science who wish to take up the opportunity to study overseas at an exchange-partner institution for part of their University of Sydney degree.

The University of Sydney has exchange agreements with Universities throughout the Asia Pacific, Europe, Canada, the USA and South America. Each year a number of students in the Faculty of Science choose to participate in Exchange programs and have found them to be an exciting and challenging way of globalising their academic experience and enriching their personal experience in different environments and cultures.

When a student is on exchange they are enrolled full-time at the University of Sydney and pay all relevant fees to the University of Sydney (i.e. Commonwealth Supported). Students from Sydney may be required to pay some minor administrative charges and health insurance; however they are not normally required to pay any other tuition fees to the host institution.

Eligibility

All students should check with the Faculty of Science to ensure there are no restrictions on their program of study before applying for the exchange. If there are none, the following eligibility criteria normally apply for the University-wide student exchange programs:

- Undergraduate students must have completed 48 credit points at the University of Sydney at the time of application (you can apply in the second semester of first year to depart in the second semester of second year). Students who have transferred from another university and received credit for previous study must have completed at least one semester of full-time (24 credit points) study at the University of Sydney before they can apply for the exchange program.
- Postgraduate coursework students will usually need to have completed one semester of full-time postgraduate study at the University of Sydney at the time of application.
- Postgraduate research students must have completed one semester of full-time postgraduate study before they can go on exchange.
- You must have achieved at least a credit average (65 per cent or higher) over your academic record at the University of Sydney and should have passed all subjects. A failure may be overlooked if you can demonstrate extenuating circumstances.
- You must be enrolled as a full-time student at the University of Sydney while away on exchange taking classes that will count as credit towards your normal Sydney enrolment i.e. you cannot study classes overseas for recreation or personal interest.
- You must have sufficient funding for the exchange period.
- Exchange programs are not available to honours students.

Applying to go on Exchange

The deadlines for collecting application forms are 15 May for programs commencing in the first half of the following year and 15 October for programs commencing in the second half of the following year. The deadline for the submission of completed applications is 31 May or 31 October.

Please note that the application is quite complex and it is essential that you plan to commence the process 4 to 6 weeks before the deadline. Details on the application process, as well as information about scholarships and loans, can be obtained from the International Study Abroad and Exchange Office at the University of Sydney or on the University of Sydney website.

Students enrolled in combined degree programs are required to get endorsement from both faculties. All students must submit their exchange paperwork to their administering/home faculty regardless of which units are being taken overseas.

Students are required to obtain the following academic information prior to lodging the application at the Study Abroad and Exchange Office:

- **Academic Study Plan**: University of Sydney unit of study equivalences for all of the possible subjects of choice – for your three preferred exchange destinations to be submitted (one form per destination). These forms are available from the International Study Abroad and Exchange Office. These Academic Study Plans are a guide to what you intend to study overseas but do not guarantee credit at this stage. These are used by the International Office to assess the viability of your destination choices based on your proposed areas of study. While there is no need to seek approval for the Academic Study Plans from the faculty at this stage of the process, you may wish to consult with your school for guidance about suitable units of study to meet the requirements of your major.
- **Faculty Permission**: This approval needs to be recorded on the faculty endorsement of exchange study plan provided by the International Study Abroad and Exchange Office.

The Academic Study Plans are submitted to the International Office along with all other application documentation by the submission deadlines at the end of May and October. If your application is successful, you will then be required to complete the **Academic Approval for Nominated Exchange Student** form which will require official written approval from the Faculty of Science. This form is provided by the International Study Abroad and Exchange Office and should be completed by contacting the nominated Exchange Unit of Study coordinator in each school of interest. You will need to provide course outlines from the overseas institution. Completed Academic Approval for Nominated Exchange Student forms must be submitted to the International Office to confirm your place in the International Exchange Program. These forms confirm the credit arrangements you will receive for your exchange units of study.

Students need to ensure that a copy of the final approval is lodged at the Faculty of Science prior to departure.

In many instances the unit of study availability at the overseas institution can vary. Students need to ensure that the University of Sydney enrolment correctly reflects the enrolment at the overseas institution. If units of study at the overseas institution become unavailable, students are required to obtain written equivalents and faculty approval for any subsequent changes prior to the HECS census dates each semester.

Results

After completion of the exchange semester(s), your original transcript will be forwarded to the Faculty of Science office (via the International Study Abroad and Exchange Office). Exchange results appear on your University of Sydney transcript on a pass/fail basis.
This chapter gives an overview of postgraduate study in the Faculty of Science. Following is a brief outline of the types of postgraduate degrees offered by the Faculty of Science, a list of degrees available and an outline of the layout of the postgraduate section of the Faculty of Science handbook.

Degree types

The Faculty of Science offers a range of postgraduate coursework and research degrees in a variety of disciplines.

Coursework programs

Coursework programs usually involve the completion of a required series of units of study as detailed in the subsequent chapters of this handbook. A coursework program normally requires attendance at lectures and tutorials. Although coursework programs may sometimes include a component of original work in the form of a research project; other forms of instruction and learning will normally be dominant.

Graduate certificate

Graduate certificates usually require the completion of at least 24 credit points of study, and take one semester of full-time study or the equivalent duration of part-time study. The entry requirement is normally a bachelor's degree.

Graduate diploma

Graduate diplomas usually require the completion of at least 36 credit points of study, and take two semesters of full-time study or the equivalent of part-time study. The entry requirement is also usually a bachelor's degree or an equivalent.

Coursework master's

Coursework master's degrees usually require the completion of at least one to two years of full-time study or the equivalent of part-time study. The entry requirement is also usually a bachelor's degree or its equivalent.

Students who complete a research project that is worth a minimum of 25 per cent of a coursework master's are eligible to apply for admission to a research degree (Master of Science or Doctor of Philosophy).

Articulated degree programs

Many of the coursework programs available in the Faculty of Science are articulated master's programs. This means that students may enter a program at a range of levels, including graduate certificate, graduate diploma or master's level. This also means that students can exit a program on completion of a particular level. Please see individual course information for more details.

Research degrees

Students in research degrees in the Faculty of Science undertake supervised research leading to the writing of a thesis or other piece of written work.

Research master's

A research master's degree usually requires one to two years of full-time study or the equivalent of part-time study during which a candidate undertakes supervised research and a thesis, or in some cases coursework and an essay. The entry requirement is usually a bachelor's degree with first or second class honours or equivalent.

Doctor of Philosophy

The degree of Doctor of Philosophy is a research degree awarded for a thesis considered to be a substantially original contribution to the subject concerned. Some coursework may be required, but in no case is it a major component. Applicants should normally hold a master's degree or a bachelor's degree with first class honours. The usual minimum period of candidature is three years of full-time study, or the equivalent of part-time study.

Admission requirements

Admission requirements vary according to degree. Applicants must consult the individual admission requirements for each degree given in the relevant resolutions.

Degrees offered

This is introductory part of chapter 13 - overview of postgraduate study

Postgraduate degrees, graduate diplomas and graduate certificates

The postgraduate degrees in the Faculty of Science are:

1. **Degrees of Doctor**
 1.1 Doctor of Philosophy (PhD)
 1.2 Doctor of Science (DSc)
 1.3 Doctor of Clinical Psychology/Master of Science DCP/MSc

2. **Degrees of Master**
 2.1 Master of Science (MSc)
 2.2 Master of Science (Environmental Science) (MSc(EnvirSci))
 2.3 Master of Environmental Science and Law (MEnvSciLaw)
 2.4 Master of Medical Physics (MMedPhys)
 2.5 Master of Nutrition and Dietetics (MNutDiet)
 2.6 Master of Bioethics (MBeth)
 2.7 Master of Bioethics (Honours) (MBethHon)
 2.8 Master of Photonics and Optical Science
 2.9 Master of Applied Nuclear Science (MApplNucSci)
 2.10 Master of Applied Science (MApplSc), which shall also incorporate the streams:
 2.10.1 Master of Applied Science (Bioinformatics) (MApplSc(Bioinf))
 2.10.2 Master of Applied Science (Environmental Science) (MApplSc(EnvSci))
 2.10.3 Master of Applied Science (Health Psychology) (MApplSc(HlthPsych))
 2.10.4 Master of Applied Science (Microscopy and Microanalysis) (MApplSc(Microsc & Microanal))
 2.10.5 Master of Applied Science (Molecular Biotechnology) (MApplSc(MBT))
 2.10.6 Master of Applied Science (Psychology of Coaching) (MApplSc(PsycCoach))
 2.10.7 Master of Applied Science (Spatial Information Science) (MApplSc(SIS))
 2.10.8 Master of Applied Science (Wildlife Health and Population Management) (MApplSc(Wild Hlth Pop Man))
 2.11 Master of Sustainability (MSust)

3. **Graduate Diplomas**

The diplomas in the Faculty of Science shall be:
3.1 Graduate Diploma in Science (GradDipSc)
3.2 Graduate Diploma in Photonics and Optical Science (GradDipPhotOptSci)
3.3 Graduate Diploma in Psychology (GradDipPsych)
3.4 Graduate Diploma in Science (Microscopy and Microanalysis) (GradDipSc(Microsc & Microanal))
3.5 Graduate Diploma in Medical Physics (GradDipMedPhys)
3.6 Graduate Diploma in Bioethics (GradDipBEth)
3.7 Graduate Diploma in Applied Nuclear Science (GradDipApplNucSci)
3.8 Graduate Diploma in Applied Science (GradDipApplSc), which shall also incorporate the streams:
 3.8.1 Graduate Diploma in Applied Science (Bioinformatics) (GradDipApplSc(Bioinf))
 3.8.2 Graduate Diploma in Applied Science (Environmental Science) (GradDipApplSc(EnvSc))
 3.8.3 Graduate Diploma in Applied Science (Health Psychology) (GradDipApplSc(HlthPsych))
 3.8.4 Graduate Diploma in Applied Science (Microscopy and Microanalysis) (GradDipApplSc(Microsc & Microanal))
 3.8.5 Graduate Diploma in Applied Science (Molecular Biotechnology) (GradDipApplSc(MBT))
 3.8.6 Graduate Diploma in Applied Science (Psychology of Coaching) (GradDipApplSc(PsychCoach))
 3.8.7 Graduate Diploma in Applied Science (Spatial Information Science) (GradDipApplSc(SIS))
 3.8.8 Graduate Diploma in Applied Science (Wildlife Health and Population Management) (GradDipApplSc(WildHlthPopMan))
3.9 Graduate Diploma in Sustainability (GradDipSust)

4. Graduate Certificates
The certificates in the Faculty of Science shall be:
 4.1 Graduate Certificate in Science (History and Philosophy of Science) (GradCert(HPS))
 4.2 Graduate Certificate in Applied Science (Bioinformatics) (GradCertApplSc(Bioinf))
 4.3 Graduate Certificate in Applied Science (Environmental Science) (GradCertApplSc(EnvSc))
 4.4 Graduate Certificate in Applied Science (Health Psychology) (GradCertApplSc(HlthPsych))
 4.5 Graduate Certificate in Applied Science (Microscopy and Microanalysis) (GradCertApplSc(Microsc & Microanal))
 4.6 Graduate Certificate in Applied Science (Molecular Biotechnology) (GradCertApplSc(MBT))
 4.7 Graduate Certificate in Applied Science (Psychology of Coaching) (GradCertApplSc(PsychCoach))
 4.8 Graduate Certificate in Applied Science (Spatial Information Science) (GradCertApplSc(SIS))
 4.9 Graduate Certificate in Applied Science (Applied Positive Psychology) (GradCertApplSc(AppPosPsyc))
 4.10 Graduate Certificate in Applied Science (Wildlife Health and Population Management) (GradCertApplSc(WildHlthPopMan))
 4.11 Graduate Certificate in Bioethics (GradCertBEth)
 4.12 Graduate Certificate in Sustainability (GradCertSust)

Candidates who have commenced qualifications in the past that are no longer offered by the Faculty should make reference to the regulations applicable in their first year of enrolment and consult with the advisers in the Faculty Office.

Organisation of the postgraduate chapters

Chapter 15 contains an overview of postgraduate study within the Faculty of Science and a list of all the degrees offered.

Chapter 15 contains details of doctorates offered by the faculty, including enrolment advice and degree resolutions.

Chapter 16 contains information about master’s research degrees, including enrolment advice and degree resolutions.

Chapter 17 outlines the requirements for the graduate diploma in science.

Chapters 18-30 includes enrolment advice and resolutions for the postgraduate coursework degrees offered by the faculty. These chapters also contain unit of study descriptions. The chapters are sorted alphabetically by area of study.

University of Sydney (Coursework) Rule 2000 (as amended)

The Resolutions in the postgraduate section of the handbook must be read in conjunction with the University of Sydney (Coursework) Rule 2000 (as amended), which sets out the requirements for all coursework courses, and the relevant Senate Resolutions, which are available in the University Calendar. The Calendar can also be viewed on the web at www.usyd.edu.au/calendar.
15. Doctorates in the Faculty of Science

This chapter sets out the requirements for research postgraduate degrees offered in the Faculty of Science. Following is a brief description of the research degrees, notes on the presentation of theses and a description of coursework/research degrees.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree resolutions, collected variously at the end of the degree descriptions, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the Faculty Office or the Library, or on the website: www.usyd.edu.au/publications/calendar.

Research doctorate degrees

Research degrees offered by the Faculty of Science are listed in this chapter in the following order:

- Doctor of Science (DSc)
- Doctor of Philosophy (PhD)
- Doctor of Clinical Psychology/ Master of Science (DCP/MSc)
- Doctor of Clinical Neuropsychology/ Master of Science (DCN/MSc)

The resolutions of the Senate, Academic Board and Faculty relating to these degrees may be found below and in the Calendar.

Additional valuable resources for intending and current research students are the Postgraduate Research Studies Handbook, published by the University of Sydney and the Thesis Guide and Survival Manual published by SUPRA (Sydney University Postgraduate Representative Association).

These publications are available from the Faculty Office. The Postgraduate Research Studies Handbook is also on the website: www.usyd.edu.au/study/postgrad.shtml.

Doctor of Science (DSc)

Degree Code: LA000

The degree of Doctor of Science is awarded for published work which has been generally recognised by scholars in the field concerned as a distinguished contribution to knowledge. To be eligible applicants must be graduates of the University of Sydney.

Alternatively they may be graduates of another university or be accepted as having standing equivalent to that required of a graduate of the university and have been either a full-time member of the academic staff of the University of Sydney for at least three years or have had a significant involvement with the teaching or research of the University.

Admission to candidature is subject to a preliminary assessment by the Faculty of the applicant's case. In the first instance, the prospective candidate should send an expression of interest setting out his/her connection with the University of Sydney to the Faculty of Science.

If this is favourable an applicant is required to submit a list of published work, together with a description of the theme of the published work. At least three examiners, of whom at least two are external, are appointed to assess the application and make recommendations.

Faculty resolutions: see end of this chapter.

Resolutions of the Senate: see the University of Sydney Calendar.

Doctor of Philosophy (PhD)

Degree Code: LB000

The degree of Doctor of Philosophy is a research degree awarded for a thesis considered to be a substantially original contribution to the subject concerned. Some coursework may be required (mainly in the form of seminars) but in no case is it a major component. The Resolutions of the Senate and Academic Board relating to the degree of Doctor of Philosophy are printed in University of Sydney Calendar.

Applicants should normally hold a Masters degree or a Bachelors degree with first or second class Honours from the University of Sydney, or an equivalent qualification from another university or institution. The Masters degree may be a research Masters or a coursework Masters which contains a project or thesis component equivalent to half a semester's load.

With permission from the Dean, additional training (coursework) may be undertaken either prior to commencement of candidature or during the first semester of candidature. This coursework may be general research preparation or discipline-specific.

The degree may be taken on either a full-time or part-time basis. In the case of full-time candidates, the minimum period of candidature can, with the permission of the faculty, be two years for candidates holding an MSc degree or equivalent, or shall be three years in the case of candidates holding a bachelors degree with first class or second class honours; the maximum period of candidature is normally four years.

Part-time candidature may be approved for applicants who can demonstrate that they are engaged in an occupation or other activity, which leaves them substantially free to pursue their candidature for the degree. Normally the minimum period of candidature will be determined on the recommendation of the faculty but in any case will be not less than three years; the maximum period of part-time candidature is normally eight years.

Doctor of Philosophy Resolutions: see the University of Sydney Calendar.

Doctor of Clinical Psychology/Master of Science (DCP/MSc)

Degree Code: LB001/LC083

The School of Psychology offers a double degree which trains psychology graduates in the professional specialisation of clinical psychology: Doctor of Clinical Psychology/Master of Science course.

The Doctor of Clinical Psychology/Master of Science is recognised, in principle, by the New South Wales Department of Health as qualifying the holder for progression to the grade of Clinical Psychologist. The course is accredited by the Australian Psychology Accreditation Council (APAC) as a 5th, 6th and 7th year of training, and is an approved qualification for Associate Membership of the Australian Psychological Society (APS) College of Clinical Psychologists. The Australian Psychology Accreditation Council (APAC) also accredits the course for the purposes of achieving the required practical experience in psychology for full registration.

The Doctor of Clinical Psychology/Master of Science (DCP/MSc) involves three years of full-time study and includes three components: academic course work, supervised clinical internships and research.
The academic coursework involves lectures, workshops, forums and seminars by the University academic staff. Qualified Clinical Psychologists and Neuropsychologists who work in a variety of teaching hospitals and clinics in the Sydney area provide supervised clinical practice in external internships. The program includes a minimum of 1500 hours of clinical internship experience and 600 client contact hours. The research component requires students to produce a Research Thesis on a clinical topic that fulfills the requirements for a Master of Science degree.

All students enrol in the DCP degree and in their second year enrol in an MSc degree as well. On completion of all the course requirements at the end of third year, students will graduate with a DCP and MSc degree.

Students who demonstrate acceptable academic ability in their initial application and who meet the School’s requirements for acceptance into a PhD program (including having a supervisor who agrees to supervise the PhD project) may take the PhD research path, and in their second year enrol directly into a PhD. Students in the MSc research path who wish to upgrade, and who have made excellent progress, and whose projects are of sufficient scope and merit may apply in the first semester of the third year for transfer to a PhD degree, subject to approval and satisfactory production of a thesis proposal which outlines how the thesis, on completion, will make a contribution to knowledge in a specialist area of study.

Admission requirements

- Completion of a four year honours degree in Psychology, gaining at least an upper second class (2.1) honours, or equivalent: all qualifications obtained from a non-Australian University must be assessed by the Australian Psychological Society (APS) before an application may be submitted. To determine equivalency visit the APS website or the APAC website.
- English language proficiency: you must provide evidence of English language proficiency if you have not completed a tertiary qualification in Australia or your qualifications were obtained from a university or other institution where the language of instruction was not English.
- Two referee reports.

Selection

Applicants are selected following the evaluation of application forms, supporting documentation and a selection interview. Applicants must meet the admission requirements to be considered for the selection interview (an essential part of the selection process). Offering of places are dependent upon the ranking of applicants and competition for places.

Selection interview criteria:

- Undergraduate academic performance
- Additional academic qualifications in psychology: MSc or PhD in psychology
- Publications: published journal articles, published reports, conference presentations
- Referee reports
- Relevant clinical work experience: Paid work experience (Psychologist, Counsellor, clinically relevant research), Voluntary work experience (teaching, research, other). NB: Receptionist, Shop Assistant, babysitting or similar work is not considered relevant work experience.

Clinical relevance for application

Students applying for the DCP/MSc are not required to have completed an empirical research project in the area of Abnormal Psychology, Clinical Psychology or Neuropsychology.

The selection process aims to identify students with a demonstrated interest in these areas, an awareness of clinical issues, and relevant experience. Clinical relevance can be demonstrated on the basis of projects in many areas of psychology or relevant work experience.

Application submission

Applications should be sent to:

The Postgraduate Assistant
Faculty of Science
Carslaw Building, F07
University of Sydney
NSW 2006 Australia

International applicants should apply in writing to:

The International Office
Jane Foss Russell, G02
University of Sydney
NSW 2006 Australia

Provisional registration

All intending candidates are required to apply for and gain provisional registration with the NSW Psychologists Registration Board before commencing their candidature, or if applicable, full registration. Please note that the NSW Psychologists Registration Board requires that all overseas qualifications be assessed by the Australian Psychological Society (APS).

PO Box K599
Haymarket
NSW 1238 Australia
Phone: +61 2 9219 0211
Fax: +61 2 9211 9318

Course structure

The DCP/MSc program is based on a Scientist-Practitioner model with cognitive-behavioural an emphasis, providing students with expertise, both practical and academic, to enable them to work as professional Clinical Psychologists in a variety of clinical settings. Advanced units of study and external placements allow students to develop a breadth of clinical experience as they are introduced to additional therapeutic approaches such as Schema therapy, ACT, DBT, Systems and Child and Family therapy.

Our graduates will have a highly developed knowledge base and strong clinical skills necessary for both the practice of professional psychology on the one hand and conducting psychological research on the other.
Doctor of Clinical Psychology/ Master of Science unit of study descriptions 2010

PSYC6065 Psychological Assessment
Credit points: 6
Teacher/Coordinator: Dr Suncica Sunny Lah and Dr David Horry

Session: Semester 1
Classes: 13 three- or four-hour lectures and 13 three-hour practicals

Assessment: WASI-III Pass out; Adult Report Writing assignment; WISC-IV Pass out; Child Case assignment

This course introduces students to the basic theory and the general practice of neuropsychological assessment in children and adults. It will foster clinical approach that relies on integration of information obtained from a clinical history with results obtained on testing. It will develop conceptual framework for understanding of core developmental disorders and assessment of these disorders. The course will focus on the following components of cognition: intelligence, memory, attention, executive abilities and achievement. Students will be taught how to administer, score and interpret a variety of tests in these areas and how to report the results in written form.

PSYC6051 Adult Psychological Disorders
Credit points: 6
Teacher/Coordinator: Dr Caroline Hunt

Session: Semester 1

Classes: 13 one-hour lectures and 13 three-hour practicals

Assessment: Written examination; Clinical viva

This course is designed to introduce students to the nature of therapeutic work with common psychological problems of adulthood through a series of lectures and practical skills-based sessions. Skills training in cognitive behavioural strategies is combined with theoretical knowledge about different disorders to form strong theory-practice links. Emphasis is placed upon the learning of strong practical skills.
in the application of evidence-based therapies to the common psychological disorders encountered in adulthood, such as anxiety disorders, mood disorders and eating disorders.

**PSYC6049
Child Psychological Disorders**

Credit points: 6
Teacher/Coordinator: Dr David Hawes
Session: Semester 1
Classes: 6
Assessment: Clinical role-play (incl. videotaped interview and written self-critique)

This course introduces current perspectives on child and adolescent psychopathology, examining the historical development and current status of theory and practice. Core theories are presented within a developmental-ecological framework and examined in relation to the etiology and course of common internalising and externalising disorders. Skills training addresses basic family consultation as well as multi-method forms of assessment (e.g., interviewing, observation, self-report) and intervention (e.g., parent skills training, individual and group child therapy). Attention is also given to essential aspects of professional practice related to school and community contexts, ethics, and the scientist-practitioner model.

**PSYC6069
Ethics and Professional Practice**

Credit points: 6
Teacher/Coordinator: Professor Stephen Touyz
Session: Semester 1
Classes: 1: 4-hour lecture/workshop per week (weeks 1-10); 2-hour seminar per week (weeks 1-13); 1 2-hour clinic observation per week (weeks 1-13)
Assessment: Child protection assessment, ethics clinical viva, weekly seminar presentations and ethical and professional practice issues that relate to the Mental Health Review Tribunal process via case and research seminar. Students must demonstrate satisfactory performance on all assessments to satisfy requirements for this unit of study.

This course will introduce students to the highest standards of ethical and clinical practice and familiarise them with relevant legislation pertaining to contemporary practice in clinical psychology. These wide ranging seminars will cover New South Wales Psychologists Registration Board, Guardianship Tribunal and College of Clinical Psychologists of the Australian Psychological Society. This unit of study will also introduce students to the practice of clinical psychology. The internship will strengthen theory-practice links, by exposing students to a range of mental health presentations and ethical and professional practice issues that present in the Psychology Clinic. Students will also attend weekly seminars in which cases and clinical research is presented by students in senior years.

Textbooks
Recommended readings
Cambridge: Cambridge University Press.

**PSYC6055
Advanced Adult Psychological Disorders**

Credit points: 6
Teacher/Coordinator: Prof Alex Blaszczynski
Session: Semester 2
Classes: 8
Assessment: Written case report/Attendance at case and research seminars
Prerequisites: PSYC6051 Assessment; Assignment (3 Qs: 250-300 words ea.); Mental Health Review Tribunal Report (500 words)

The advanced adult therapy component will cover major mental health problems such as schizophrenia, bipolar disorder, anorexia nervosa, drug and alcohol problems and disorders of impulse control. It will also include a workshop on working with older adults and cover issues that relate to the Mental Health Review Tribunal process. Students will gain exposure to the Mental Health Review Tribunal process via direct observation as part of this unit.

**PSYC6032
Health Psychology**

Credit points: 6
Teacher/Coordinator: Dr Catalina Lawsin
Session: Semester 2
Classes: 6
Assessment: Health Project Proposal (2 pages); Presentation. Further info will be provided at the first lecture.

This course aims to understand the relationships between psychological and physical functioning across a range of medical disorders and the way in which cognitive and behavioural factors influence psychological and physical functioning of those with health-related problems. The course will be concerned with theories and interventions that promote health-related behaviours and improve quality of life for people with medical problems. The course will aim to investigate theories and practice in the areas of adjustment to illness, adherence to medical treatments, working with patients with chronic illness, facilitating doctor-patient communication and dealing with death and dying. In addition, the psychological issues relevant to particular illnesses will be discussed.

**PSYC6067
Clinical Internship 1**

Credit points: 6
Teacher/Coordinator: Dr Caroline Hunt and Ms Judy Hyde
Session: Semester 2
Classes: 1 and 1/2 days per week for 24 weeks
Assessment: Contract; Mid-internship review; End of internship review; Log; Intern’s evaluation

This unit is designed to provide intern with intensely supervised practice in conducting the fundamentals of clinical assessment, formulation, treatment planning and treatment implementation for adult clientsd. A cognitive-behavioural approach is predominant in this internship, although your supervisor may allow variation for particular cases. It will also provide an introduction to the practice of conductin psychometric assessments. An adult case will be undertaken in Internship 2 under the intense supervision of a clinical neuropsychologist. Three further cases will be required to be undertaken over Internships 2 and 3; these may be undertaken in the Child Memory Clinic, the Cognitive-behavioural centre or the Clinical Neuropsychology service. All interns will also be assigned to psychometric casework as required and as they become available. All interns will also have the equivalent of one semester of child, adolescent and family therapy under the supervision of clinical psychologists with expertise in this area. This is offered for intern in Internship 2 or Internship 3. All interns are expected to run a group at some point in Internship 2 or Internship 3. Interns will be allocated to supervisors for adult and child, adolescent and family therapy. Some supervisors will conduct supervision in both areas. Interns may also be assigned to supervisors to conduct group programs for adults, children or adolescents. While supervisors vary in the way they offer supervision, with a mixture of individual, group and observation formats being offered, supervision is intense and strongly observational throughout this Internship.

**PSYC6072
Case and Research Seminars 1**

Credit points: 6
Teacher/Coordinator: Professor Stephen Touyz
Session: Semester 2
Classes: Research seminar 1 hour/week. Case seminar 1 hour/week
Assessment: Written case report/Attendance at case and research seminars
Prerequisites: PSYC6069 Ethics and Professional Practice. This unit of study will comprise attendance at formal weekly presentations of cases seen in the course of clinical internships by Year 3 students. The research component will comprise attendance at formal weekly presentations of research findings by Year 3 students. All students are required to attend throughout the semester.

**PSYC6068
Clinical Internship 2**

Credit points: 6
Teacher/Coordinator: Dr Caroline Hunt and Ms Judy Hyde
Session: Semester 1
Classes: 2 days/week for 20 weeks
Assessment: Contract; Mid-internship review; End of internship review; Log; Intern’s evaluation

This unit of study is designed to further develop students’ competence in therapy and psychological assessment skills for working with adults.
and young people and their families. Students will be allocated to a supervisor who will oversee their clinical practice closely. This internship will expose students to clients with psychological problems in mild to moderate clinical range. Interns will be able to work more independently at this stage of their training.

PSYC6070
Neuropsychology and Disability
Credit points: 6 Teacher/Coordinator: Dr Sunny Lah Session: Semester 1 Classes: 1 3-hour lecture / week Assessment: Two short essays/case analyses 100%

This unit of study is concerned with neuropsychological and pervasive developmental disorders, and related forms of disability across the lifespan. Students will be introduced to the neuro-cognitive and behavioural correlates of a range of neurological, developmental, and medical conditions (including traumatic brain injury, epilepsy, autism, dementia, etc.) in children and adults. The course aims to develop students' understanding of functional brain organisation, recovery of function and rehabilitation, and principles of early intervention in these areas. In addition, attention will be given to evidence-based methods for assessing and intervening in cognitive, behavioural, and emotional problems commonly encountered in these populations. Lectures will include theoretical components, case presentations and discussions.

Textbooks
Recommended readings

PSYC6073
Case and Research Seminars 2
Credit points: 6 Teacher/Coordinator: Professor Stephen Touyz Session: Semester 1 Classes: Research seminar 1 hour/week. Case seminar 1 hour/week Assessment: Attendance at case and research seminars Attendance at the School of Psychology Colloquium Students must demonstrate satisfactory performance on both assessments to satisfy requirements for this unit of study

This unit of study will continue the seminars introduced in PSYC6072 Case and Research Seminars 1 where Year 2 students will present a clinical case for discussion and prepare a written case report. The research component will comprise attendance at formal weekly presentations of research findings by year 2 students. All students are required to attend throughout the semester.

PSYC6071
Research Project
Credit points: 6 Teacher/Coordinator: Associate Professor Louise Sharpe Session: Semester 1 Classes: Research seminar 1 hour/week. Assessment: Research presentation. Written research proposal. Students must demonstrate satisfactory performance on both assessments to satisfy requirements for this unit of study

Students will attend the research forum and the School Colloquium. Students will present a formal research proposal presentation and submit a formal written proposal. During this semester it is expected that students will submit appropriate applications for research ethics, so that they are in a position to commence data collection no later than the middle of their second year.

PSYC6056
Advanced Seminars
Credit points: 6 Teacher/Coordinator: Dr Caroline Hunt Session: Semester 2 Classes: One 6-hour workshop per week. Prerequisites: PSYC6051 Assessment: Advanced Neuropsychology: in-class presentation; Other seminars: class participation

This course is designed to provide interns with advanced level training in the professional practice of clinical psychology. It will include topics such as advanced neuropsychology, supervision skills and contemporary issues in clinical practice, and may form time to time include seminars by visiting clinical academics.

PSYC6074
Advanced Models of Therapy
Credit points: 6 Teacher/Coordinator: Dr Paul Rhodes Session: Semester 2 Classes: 1 6-hour workshop / week. Prerequisites: PSYC6051 Adult Psychological Disorders Assessment: Family therapy assignment Schema therapy assignment and clinical viva. Students must demonstrate satisfactory performance on all assessments to satisfy requirements for this unit of study

This course is designed to provide students with advanced level training in psychotherapeutic approaches. The advanced level seminars will include Family Therapy, Schema Therapy, Integrated Approaches to Psychotherapy, and will include from time to time, seminars by visiting clinical academics or practitioners with expertise in specific therapeutic approaches.

PSYC6066
Clinical Internship 3
Teacher/Coordinator: Dr Caroline Hunt and Ms Judy Hyde Session: Semester 2 Classes: Case Seminars: 13 one-hour seminars; Internship: 2 days/week for 24 weeks. Assessment: Case seminars: case presentation, case report; Internship: contract, mid-internship review, end of internship review, log, intern's evaluation

This course provides students with a range of therapy and assessment experiences in accordance with their clinical and research interests. The specific nature of learning outcomes will depend on the setting for the internship, the client group and the nature of the clinical work. Students will also attend the clinical case seminars and present complex clinical cases for discussion that pose either diagnostic dilemmas or difficulties in treatment.

PSYC6054
Neuropsychopathology
Credit points: 3 Teacher/Coordinator: Dr Suncica Sunny Lah Session: Semester 2 Classes: 13 two-hour lectures Assessment: Essay (2000 words); Examination (1 hour)

This unit of study is concerned with principles of neuropsychology and their clinical applications. It aims to develop students' understanding of functional brain organisation, recovery of function and rehabilitation. In addition, it introduces students to the behavioural and cognitive correlates of a range of neurological and medical conditions (including traumatic brain injury, epilepsy, diabetes, etc.) in children and adults. Students will learn to recognise the cognitive profiles and behavioural disorders associated with a variety of neurological and medical conditions, to understand the neurological basis for these profiles and to know how to assess patients with these disorders. Lectures will include theoretical components, case presentations and discussions.

PSYC6061
Clinical Internship 4
Teacher/Coordinator: Dr Caroline Hunt and Ms Judy Hyde Session: Semester 1 Classes: Case seminars: 13 one-hour seminars; Internship: 2 days/week for 24 weeks. Assessment: Case seminars: case presentation, case report; Internship: contract, mid-internship review, end of internship review, log, intern's evaluation

This course provides students with a range of therapy and assessment experiences in accordance with their clinical and research interests. The specific nature of learning outcomes will depend upon the setting
for the internship, the client group and the nature of the clinical work. Students will also attend the clinical case seminars and present complex clinical cases for discussion which pose either diagnostic dilemmas or difficulties in treatment.

PSYC6058 Clinical Internship 5
Teacher/Coordinator: Dr Caroline Hunt and Ms Judy Hyde Session: Semester 2
Classes: Case seminars: 13 one-hour seminars; Internship: 2 days/week for 24 weeks. Assessment: Case Seminars: attendance, case report; Internship: contract, mid-internship review, end of internship review, log, intern's evaluation.

This course provides students with a range of therapy and assessment experiences in accordance with their clinical and research interests. The specific nature of learning outcomes will depend upon the setting for the internship, the client group and the nature of the clinical work. Students will also attend the clinical case seminars and present for discussion complex clinical cases which pose either diagnostic dilemmas or difficulties in treatment.

Presentation of theses - for research degrees
The following information is presented for the guidance of candidates. It should be regarded as a summary only. Candidates should also consult the University Calendar, the Postgraduate Research Studies Handbook and the Faculty of Science for the most current and detailed advice.

Formal requirements
Number of copies to be submitted for the Doctor of Philosophy: 4

The four copies of theses submitted for examination for the degree of Doctor of Philosophy and the three copies of theses submitted for examination for the degree of Master of Science may be bound in either a temporary or a permanent form.

Theses submitted in temporary binding should be strong enough to withstand ordinary handling and postage. Full details of requirements for the Master of Science (Research) may be found in the following chapter.

The degree shall not be awarded until the candidate has submitted a permanently bound copy of the thesis (containing any corrections or amendments that may be required) and printed on acid-free or permanent paper.

The thesis shall be accompanied by a certificate from the supervisor stating whether in the supervisor's opinion the form of presentation of the thesis is satisfactory.

Theses in permanent form shall normally be on International Standard A4 size paper sewn and bound in boards covered with bookcloth or buckram or other binding fabric.

The title of the thesis, the candidate's initials and surname, the title of the degree, the year of submission and the name of the University of Sydney should appear in lettering on the front cover or on the title page.

The lettering on the spine, reading from top to bottom, should conform as far as possible to the above except that the name of the University of Sydney may be omitted and the thesis title abbreviated. Supporting material should be bound in the back of the thesis as an appendix or in a separate sheet of covers.

Additional information
At the request of the Academic Board, the Science Faculty has resolved that a thesis should not normally exceed 80,000 words. With the permission of the Chair of the Faculty of Science's Postgraduate Studies Committee, a thesis may have an absolute upper limit of 100,000 words.

Amendments do not have to involve rekeying if a black ink/biro amendment is clear. Amendments can also be made by way of an appendix to the thesis.

Candidates are advised to consult the SUPRA publication, Practical Aspects of Producing a Thesis at the University of Sydney, for other guidelines and suggestions in addition to the formal requirements above.

Summary
Within the Faculty of Science, there are no formal requirements or guidelines other than those listed above. There are no requirements for single/double spacing or single/double sided presentation, nor font size, figure presentation, format of bibliographic citations, etc.

Candidates should, however, be aware that if the degree is awarded, the thesis becomes a public document, the quality of which reflects on the ability of the candidate. Moreover, utilising a format that will make the examiners' tasks easier is obviously sensible.
Resolutions

Doctor of Science (DSc)
The Resolutions of the Senate relating to the degree of Doctor of Science are printed in the University of Sydney Calendar, the following Resolutions of the Faculty also apply.

1.1 Published work which a candidate for the degree of Doctor of Science submits for examination must, in addition to satisfying the requirements of the Resolutions of the Senate relating to the degree, be in a field with which the Faculty is concerned.

1.2 A candidate for the degree is required, by way of an introduction, to describe the theme of the published work submitted and, where there is a large number of publications whose dates range over a period of time and which contain some range of subject matter, to state how these are related to one another and to the theme.

1.3 If a prospective candidate, as a first step, tenders the introduction called for in 1.2 above, together with a list of the published work which it is proposed to submit for examination, the Faculty will endeavour to make an assessment as to whether the published work is in a field with which the Faculty is concerned and, if so, an assessment also of the prima-facie worthiness for examination of the published work.

1.4 A prospective candidate who tenders the introduction together with the list of published work shall not be debarred from subsequently submitting the published work for examination.

Doctor of Philosophy

The Resolutions of the Senate and Academic Board relating to the degree of Doctor of Philosophy are printed in the University of Sydney Calendar.

Doctor of Clinical Psychology/Master of Science

Course rules

1.1 The Dean of the Faculty of Science may admit to candidature:

1.1.1 The Dean of the Faculty of Science may admit to candidature:

1.2 A candidate for the degree is required, by way of an introduction, to describe the theme of the published work submitted and, where there is a large number of publications whose dates range over a period of time and which contain some range of subject matter, to state how these are related to one another and to the theme.

1.3 If a prospective candidate, as a first step, tenders the introduction called for in 1.2 above, together with a list of the published work which it is proposed to submit for examination, the Faculty will endeavour to make an assessment as to whether the published work is in a field with which the Faculty is concerned and, if so, an assessment also of the prima-facie worthiness for examination of the published work.

1.4 A prospective candidate who tenders the introduction together with the list of published work shall not be debarred from subsequently submitting the published work for examination.

Details of units of study

5.1 The structure of the course is arranged to cover areas from five key topics, namely: Therapy Knowledge and Skills, Assessment Knowledge and Skills, Clinical Internships, Ethics and Professional Practice and Research arranged as shown in the table of units of study in this chapter of the Faculty of Science Handbook.

Enrolment in more/less than minimum load

6.1 A candidate may proceed on either a part-time or full-time basis.

Cross-institutional study

7.1 Cross-institutional study shall not be available to students enrolled in the Doctor of Clinical Psychology/Master of Science course, except where the University of Sydney has a formal Cooperation Agreement with another University.

Restrictions on enrolment

8.1 Admission to candidature may be limited by a quota. In determining the quota, the University will take into account:

8.1.1 availability of resources including space, laboratory and computing facilities; and

8.1.2 availability of adequate and appropriate supervision.

8.2 In considering an application for admission to candidature, the Head of Department, the Director of Clinical Training and the Dean shall take account of the quota and shall select, in preference, applicants who are most meritorious in terms of subsection 1 above.

Discontinuation of enrolment

9.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the combined course. Students who have discontinued from the combined course will be required to apply for admission to the combined course and be subject to admission requirements pertaining at that time.

Suspension of candidature

10.1 A student may seek written permission from the Dean to suspend candidature in the combined course. The Dean of the Faculty of Science in consultation with the Director of Clinical Training shall approve any period of absence. Suspension may be granted for a maximum of one year on any one application.

Re-enrolment after an absence

11.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

Satisfactory progress

12.1 The Dean may:

12.1.1 call upon any candidate to show cause why that candidate should not be terminated by reason of unsatisfactory progress towards the completion of the combined award course; and

12.1.2 terminate the candidature where the candidate does not show good cause.

12.2 Satisfactory progress is prescribed as follows:

12.2.1 a candidate for the combined award course must complete satisfactorily a unit of study at the first attempt, they can make a second attempt at completing that unit of study, Clinical Internship units of study...
should be taken in sequence, but this sequence may be varied with permission from the Director of Clinical Training.

12.2.3 Any candidate who fails to complete satisfactorily a unit of study at the second attempt will normally be deemed to have failed to complete the course requirements and their candidature will be terminated by the Dean; and

12.2.4 If a candidate fails to complete satisfactorily two units of study within the same key topic area at the first attempt, they will normally be deemed to have failed to complete the course requirements and their candidature will be terminated by the Dean.

13. **Time limit**

13.1 A candidate shall complete the requirements for the Doctor of Clinical Psychology/Master of Science in a minimum enrolment of six semesters and a maximum enrolment of twelve semesters, and except with permission of the Dean within nine calendar years of admission to candidacy.

14. **Assessment policy**

14.1 The procedures for the examination and award of the Master of Science shall be prescribed in the Resolutions of the Senate and Faculty relating to that degree.

14.2 On completion of the requirements for the combined award course, the Faculty, on the recommendation of the Head of Department and the Director of Clinical Training, shall determine the results of the candidature.

15. **Credit transfer policy**

15.1 A candidate who, before admission to candidacy, has spent time in graduate study and, within the previous three years, has completed coursework considered by the Dean to be equivalent to units of study prescribed for the combined award course, may receive credit of up to 48 credit points towards the requirements for the Doctor of Clinical Psychology provided that the completed work was not counted toward the requirements of another degree.

16. **Transfer to and from Doctor of Philosophy Candidature**

16.1 The Director of Clinical Training in consultation with the Head of Department may recommend to the Dean of the Faculty of Science that a candidate withdraw from candidacy for the combined award course and complete requirements for the degree of Doctor of Philosophy under such conditions as the University may determine.

16.2 The Dean of the Faculty may readmit to candidacy a candidate who has previously withdrawn from the combined award course and has completed the requirements for the award of the degree of Doctor of Philosophy. Such a candidate shall complete the requirements for the degree of Doctor of Clinical Psychology under such conditions as the Dean may determine but shall not be permitted to continue candidacy for the award of the degree of Master of Science.

16.3 The Dean of the Faculty may readmit to candidacy a candidate who has previously withdrawn from the combined award course and who has not completed the requirements for the award of the degree of Doctor of Philosophy. Such a candidate will complete the requirements for the combined award course under such conditions as the Dean may determine.

16.4 Except in exceptional circumstances, and with the permission of the Dean, readmission to candidacy under subsections 17.2 and 17.3 above shall occur within 14 semesters of withdrawal under subsection 17.1 above and within a maximum of nine years from commencement of candidacy for the DCP/MSc course.
16. Master's research degrees

This chapter sets out the requirements for master's level research postgraduate degrees offered in the Faculty of Science. Following is a brief description of the research degrees, notes on the presentation of theses, and a description of the master's level research degrees.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected at the end of this chapter or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at www.usyd.edu.au/publications/calendar.

Research degrees

Research master's degrees offered by the faculty are listed in this chapter in the following order:

- Master of Science (MSc)
- Master of Science (Environmental Science)
- Master of Science (with or without an emphasis in Environmental Science)

The resolutions of the Senate, Academic Board and faculty relating to these degrees may be found in this chapter and the Calendar. Additional valuable resources for intending and current research students are found in the Postgraduate Research Studies handbook, published by the University of Sydney, the Thesis Guide and the Survival Manual published by SUPRA (Sydney University Postgraduate Representative Association). These publications are available from the faculty office. The Postgraduate Research Studies handbook is also online at www.usyd.edu.au/study/postgrad.shtml.

Master of Science (MSc)

Degree code: LC080

Graduates of the University of Sydney with first or second class honours and candidates in the final year of an approved honours course in the BSc degree or who have an equivalent qualification from another institution or an equivalent standard of knowledge, may apply for admission to candidature for the MSc degree. Graduates of master's coursework programs which include a minimum 12 credit point Research Project are eligible to apply for admission to the MSc. Once admitted, candidates proceed full-time or part-time, by supervised research and thesis.

With permission from the Dean, additional training (coursework) may be undertaken either prior to commencement of candidature or during the first semester of candidature. This coursework may be general research preparation or discipline-specific. (See next page for a listing of research preparation units.)

An application should be lodged with the faculty. It must be supported by the Head of the Department concerned and approved by the faculty. If an applicant has the prerequisite qualifications, admission to candidature may be approved provided the necessary staff and facilities are available, including adequate accommodation and any special equipment. Some candidates must satisfy a preliminary examination before being admitted to full candidature.

In some circumstances and after one year of full-time candidature, candidates may apply to the faculty to upgrade to a PhD. Time spent enrolled in a master's will count towards the minimum period of candidature of three years for a PhD.

Full-time candidates
Minimum period of candidature: 1 year
Maximum period of candidature: 2 years

Part-time candidates
Minimum period of candidature: 1 year
Maximum period of candidature: 4 years

Master of Science (Environmental Science)

Degree code: LC014

The MSc (Environmental Science) is a research degree requiring a minimum of three semesters of full-time study (or equivalent part-time study). This degree is designed to extend the student's knowledge base in environmental matters by providing the student with further training and research experience.

Candidates are required to show proof of a breadth of knowledge in environmental issues, as determined by the Director of Environmental Science. Consequently, as well as the submission of a research thesis, candidates may be required to satisfactorily complete up to a maximum of 24 credit points of coursework study. Prior to the beginning of studies, students must discuss their enrolment details and candidature with the Director of Environmental Science and agree to a program guaranteeing breadth of study and ensuring that all units of coursework cover material new to the student. Such details may only be approved or modified by the Director.

Graduates of the University of Sydney with first or second class honours, or who have completed a Graduate Diploma in Applied Science (with or without an emphasis in Environmental Science) with a grade of credit or above, or who have an equivalent qualification from another institution or an equivalent standard of knowledge, may apply for admission to candidature for the Master of Science (Environmental Science) degree.

An application should be lodged with the Faculty of Science and must include a project proposal and the signature(s) of the prospective supervisor(s). It should also be supported by the Director of Environmental Science. If an applicant has the prerequisites qualifications, admission to candidature may be approved if the necessary staff and facilities are available, including adequate accommodation and any special equipment. Some candidates may need to satisfy a preliminary examination before being admitted to full candidature.

Master of Science (Environmental Science) Resolutions: see end of this chapter.

Presentation of theses for Master of Science (MSc) and Master of Science (Environmental Science)

The following information is presented for the guidance of candidates. It should be regarded as a summary only. Candidates should also consult the University Calendar, the Postgraduate Research Studies handbook and the Faculty of Science for the most current and detailed advice. The Postgraduate Research Studies handbook is available online at www.usyd.edu.au/study/su/ab/committees/committees.html.

Formal requirements
Number of copies to be submitted:
Master of Science 3
Master of Science (Environmental Science) 3
The three copies of theses submitted for examination for the degree of Master of Science or Master of Science (Environmental Science) may be bound in either a temporary or a permanent form. Theses submitted in temporary binding should be strong enough to withstand ordinary handling and postage.

The degree shall not be awarded until the candidate has submitted a permanently bound copy of the thesis (containing any corrections or amendments that may be required) and printed on acid-free or permanent paper.

The thesis shall be accompanied by a certificate from the supervisor stating whether in the supervisor's opinion the form of presentation of the thesis is satisfactory.

Theses in permanent form shall normally be on International Standard A4 size paper sewn and bound in boards covered with bookcloth or buckram or other binding fabric. The title of the thesis, the candidate's initials and surname, the title of the degree, the year of submission and the name of the University of Sydney should appear in lettering on the front cover or on the title page. The lettering on the spine, reading from top to bottom, should conform as far as possible to the above except that the name of the University of Sydney may be omitted and the thesis title abbreviated. Supporting material should be bound in the back of the thesis as an appendix or in a separate sheet of covers.

Additional information
At the request of the Academic Board, the Science faculty has resolved that a thesis should not normally exceed 80,000 words. With the permission of the Chair of the Faculty of Sciences Postgraduate Studies Committee, a thesis may have an absolute upper limit of 100,000 words.

Amendments do not have to involve re-keying if a black ink/biro amendment is clear. Amendments can also be made by way of an appendix to the thesis.

Candidates are advised to consult the SUPRA publication, Practical Aspects of Producing a Thesis at the University of Sydney, for other guidelines and suggestions in addition to the formal requirements above.

Summary
Within the Faculty of Science, there are no formal requirements/guidelines other than those listed above. There are no requirements for single/double spacing or single/doubled sided presentation, nor point size, figure presentation, format of bibliographic citations, etc. Candidates should however, be aware that, if the degree is awarded, the thesis becomes a public document, the quality of which reflects on the ability of the candidate. Moreover, utilising a format that will make the examiners' tasks easier is obviously sensible.

Resolutions
Master of Science (MSc)
1. Admission
1.1 The Faculty of Science may, on the recommendation of the Head of the Department concerned, admit to candidature for the degree of Master of Science an applicant who:

1.1.1 is a graduate of the University of Sydney; and

1.1.2 has, in the opinion of the Faculty, reached a first or second class honours standard:

1.1.2.1 in the final year of an honours program for the degree of Bachelor of Science, or

1.1.2.2 in a program considered by the Faculty to be equivalent to a unit of study referred to in subsection 1.1.2.1, or has, in some other manner, acquired a standard of knowledge considered by the Faculty to be equivalent to a first or second class honours standard in a unit of study referred to in subsection 1.1.2.1.

1.2 Notwithstanding subsection 1, the Academic Board may admit a person to candidature for the degree in accordance with the provisions of Part 9 of the University of Sydney (Amendment Act) Rule 1999.

2. Requirements for the Master of Science (MSc)
2.1 A candidate for the degree is required to:

2.1.1 carry out an original investigation on a topic approved by the Head of Department; and

2.1.2 write a thesis embodying the results of this investigation, stating in the thesis the sources from which the work of others has been used, and the proportion of the thesis claimed as original work.

3. Enrolment in more/less than minimum load
3.1 Subject to the approval of the Head of the Department, a candidate for the degree shall elect to proceed:

3.1.1 either as a full-time or as a part-time candidate;

3.1.2 either by research and thesis in accordance with subsections 7.1-7.8 or by coursework and essay in accordance with subsections 7.9-7.12; and

3.1.3 except in the case of a candidate proceeding in accordance with Part 9 of the University of Sydney (Amendment Act) Rule, either within The University of Sydney or elsewhere.

4. Restrictions on enrolment
4.1 A candidate to be full-time shall not keep the normal semesters but shall pursue candidature continuously throughout the year, except for a period of recreation leave and shall not have any substantial employment during the day.

4.2 A candidate who does not comply with subsection 3.1 shall be regarded as a part-time candidate.

5. Time Limits
5.1 A candidate shall not present for examination for the degree earlier than one year after commencement of candidature.

5.2 Except with the permission of the Faculty, a full-time candidate proceeding by research and thesis or any candidate proceeding by coursework and essay shall complete the requirements for the degree not later than two years after the commencement of candidature.

5.3 Except with the permission of the Faculty, a part-time candidate proceeding by research and thesis shall complete the requirements for the degree not later than four years after the commencement of candidature.

5.4 Time spent by a candidate in advanced study in The University of Sydney before admission to candidature may be deemed by the Faculty to be time spent after such admission.

6. Supervision
6.1 The Dean of the Faculty, on the recommendation of the Head of the Department concerned, shall appoint a full-time member of the academic staff or research staff of the University to act as supervisor of each candidate.

6.2 Where the supervisor is a member of the research staff, the Dean of the Faculty, on the recommendation of the Head of the Department concerned, shall also appoint a member of the full-time academic staff as associate supervisor. Any person so appointed as associate supervisor must be capable of acting as supervisor in the event that the supervisor is no longer able to act.

6.3 The Dean of the Faculty, on the recommendation of the Head of the Department concerned, may appoint a full-time member...
1. Admission

1.1 The Dean of the Faculty of Science may admit to candidature:

1.1.1 candidates who have completed an Honours degree majoring in a Science discipline that has a significant environmental emphasis, or in Environmental Science, or equivalent;

1.1.2 graduates who have completed the requirements for a Graduate Diploma majoring in a Science discipline that has a significant environmental emphasis, or in Environmental Science, or equivalent as provided for by Subsection 1.2; or

1.1.3 graduates who have completed prior postgraduate study in a Science discipline that has a significant environmental emphasis, or in Environmental Science.

1.2 A candidate may seek admission into the MSc (Environmental Science) from any of the Graduate Diploma of Science programs, including those of Applied Science and Environmental Science, as follows:

1.2.1 A candidate who has fully completed the requirements for a Graduate Diploma of Science or Applied Science is eligible to apply for admission into the MSc (Environmental Science). Candidates who are considered not to have the required breadth of knowledge in environmental issues may need to complete some further coursework as provided for by section 4.

1.2.2 A candidate who has completed 24 credit points of Environmental Science coursework at Credit grade or above towards the requirements for a postgraduate qualification in Science or Applied Science may apply for admission into the MSc (Environmental Science). Candidates who gain admission in this manner may still need to complete some further coursework as provided for by section 2 (faculty rules).

2. Requirements for the Master of Science (Environmental Science)

2.1 A candidate for the degree is required to:

2.1.1 carry out an original investigation on a topic approved by the Chair of the Program Committee for Environmental Science; and

2.1.2 write a thesis embodying the results of this investigation, stating in the thesis the sources from which the information was taken, the extent to which the work of others has been used, and the proportion of the thesis claimed as original.

2.2 Candidates for the degree must prove to the satisfaction of the Program Committee for Environmental Science a breadth of knowledge in environmental issues.

2.3 Candidates for the degree must satisfactorily complete any coursework requirements prescribed by the Chair of the Program Committee for Environmental Science. This can include up to 24 credit points of coursework covering material new to the candidate and selected from units of study approved from time to time by the Faculty.

Faculty rules

3. Enrolment in more/less than minimum load

3.1 A candidate may proceed on either a full-time or a part-time basis.

4. Cross-institutional study

4.1 Cross-institutional study shall not be available to students enrolled in the Master of Science (Environmental Science) course, except where the University of Sydney has a formal Cooperation Agreement with another University.

5. Restrictions on enrolment

5.1 Admission to candidature may be limited by a quota. In determining the quota the University will take into account:

5.1.1 availability of resources including space, laboratory and computing facilities; and

5.1.2 availability of adequate and appropriate supervision.

5.2 In considering an application for admission to candidature the Program Committee for Environmental Science and the Faculty shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of section 1 above.

6. Discontinuation of enrolment

6.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued candidature for the degree. Students who have discontinued candidature will be required to apply for admission to the candidature and be subject to admission requirements pertaining at that time.

7. Suspension of candidature

7.1 A student may seek written permission from the Dean to suspend candidature for the degree.

7.2 Suspension may be granted for a maximum of one year.

8. Re-enrolment after an absence

8.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

9. Satisfactory progress

9.1 The Faculty may:

9.1.1 call upon any candidate to show cause why that candidature should not be terminated by reason of unsatisfactory progress towards completion of the degree; and

9.1.2 terminate the candidature where the candidate does not show good cause.

10. Time limit

10.1 A full-time candidate shall complete the requirements for the degree not earlier than the end of the third semester and not later than the end of the fourth semester of candidature, except as described in subsection 1 or unless otherwise determined by the Faculty. A full-time candidate shall not keep the normal semesters but shall pursue candidature continuously throughout the year, except for periods of leave approved by the
16. Master's research degrees

candidate's supervisor, and shall not have any substantial employment during the day.

10.2 A part-time candidate shall complete the requirements for the degree not earlier than the end of the third semester and not later than the end of the eighth semester of candidature, except as described in subsection 8.1 or unless otherwise determined by the Faculty.

10.3 Any candidate who does not comply with subsection 1 shall be deemed to be a part-time candidate.

10.4 For a candidate who gains admission into the MSc (Environmental Science) from a Graduate Diploma of Science or Applied Science, the duration of candidature is as follows:

10.4.1 Where a full-time candidate has completed the requirements for a Graduate Diploma of Science or Applied Science immediately prior to admission into the MSc (Environmental Science), the minimum duration for completion of the requirements of the MSc (Environmental Science) is two semesters.

10.4.2 Where a part-time candidate has completed the requirements for the Graduate Diploma of Science or Applied Science immediately prior to admission into the MSc (Environmental Science), the minimum duration for completion of the requirements of the MSc (Environmental Science) is three semesters.

10.4.3 In these resolutions, the term 'immediately' means that the Graduate Diploma requirements were completed in the previous semester.

11. Assessment policy

11.1 A candidate shall:

11.1.1 attend such course of study and pass such examinations in each unit of study as prescribed under subsection 3.3.

11.1.2 carry out an original investigation on a topic approved by Chair of the Program Committee - Environmental Science;

11.1.3 write a thesis embodying the results of this investigation and state in the thesis generally in a preface and specifically in notes, the sources from which the information was taken, the extent to which the work of others has been used, and the proportion of the thesis claimed as original;

11.1.4 lodge with the Registrar three copies of the thesis, typewritten and bound; and

11.1.5 if required by the examiners, sit for an examination in the branch or branches of science to which the thesis relates.

11.2 The thesis shall be accompanied by a certificate from the supervisor stating whether in the supervisor's opinion the form of presentation of the thesis is satisfactory.

11.3 The Dean of the Faculty of Science on the recommendation of the Head of Department concerned, shall appoint two, or where the Dean considers it appropriate, more than two examiners of whom at least one shall be external to the University - i.e., not being a member of the staff of the University or holding a clinical academic title, and of whom one may be the person appointed to act as supervisor of the candidate.

11.4 The examiners shall report to the Faculty which shall determine the result of the examination.

11.5 A candidate may not present as the thesis any work which has been presented for a degree or diploma at this or any another tertiary institution, but the candidate shall not be precluded from incorporating such work in the thesis, provided that in presenting the thesis the candidate indicates the part of the work which has been so incorporated.

11.6 The Registrar shall lodge one copy of the thesis with the Librarian if the degree is awarded.

12. Credit transfer policy

12.1 A candidate who, before admission to candidature, has spent time in graduate study and, within the previous three years, has completed coursework considered by the Dean to be equivalent to units of study prescribed for the combined award course, may receive credit of up to 6 credit points towards the requirements for the Master of Science (Environmental Science) provided that the completed work was not counted toward the requirements of another degree.
17. Graduate Diploma in Science

Graduate Diploma in Science (GradDipSc)

Degree Code: LF008

This chapter sets out the requirements for the Graduate Diploma in Science coursework degree.

Admission requirements

Graduates of the University of Sydney who are holders of a Bachelor of Science, Bachelor of Computer Science and Technology, Bachelor of Liberal Studies, Bachelor of Medical Science or Bachelor of Psychology, or graduates from other universities with an equivalent degree, may apply for admission to candidature for the degree Graduate Diploma in Science.

The Faculty of Science offers Graduate Diplomas in Science in all Science honours areas except Psychology. The Graduate Diploma is the postgraduate coursework equivalent of an Honours degree.

Relationship of Graduate Diploma to research degrees

The Graduate Diploma in Science serves as an entry qualification for the degrees of Master of Science or Doctor of Philosophy. It consists of equivalent work to that carried out by candidates enrolled in the fourth year honours courses, and is normally available to candidates who may not be eligible to enrol in those courses. The normal duration of the degree is one year full-time or two years part-time.

Course requirements

Intending students should consult the table of honours units of study in Chapter 11 for the range of disciplines offered. After discussion of your interests with a relevant member of academic staff, an application should be lodged with the Faculty of Science. Entry to the Graduate Diploma is subject to approval by the relevant Head of Department, the faculty, and confirmation that requirements for the award of a relevant bachelor’s degree have been met.

Resolutions

Graduate Diploma in Science (GradDipSc)

Course rules

1. Admission
1.1 The Faculty may, on the recommendation of the Head of the Department concerned, admit to candidature for the Graduate Diploma in Science, an applicant who is a holder of a bachelor’s degree from the Faculty of Science, from the University of Sydney.
1.2 The Academic Board, in accordance with the provisions of Part 9 of the University of Sydney (Amendment Act) Rule 1999, on the recommendation of the relevant Head of Department and of the Faculty, may admit to candidature of the graduate diploma, graduates who have qualifications equivalent, in the opinion of the Academic Board, to those specified in subsection 1.1.
1.3 Admission to the graduate diploma may be limited by quota.
1.3.1 In determining the quota, the University will take into account:
1.3.1.1 availability of resources including space, library, equipment, laboratory and computing facilities; and
1.3.1.2 availability of adequate and appropriate supervision.
1.4 In considering an application for admission to candidature, the Head of Department and the Faculty shall take account of the quota and will select in preference applicants who are most meritorious in terms of subsection 1.1 above.

Faculty rules

2. Method of progression and time limits
2.1 A candidate shall engage in a program of work equivalent to that required for completion of the relevant fourth year of a bachelor’s degree in the Faculty of Science by completing the honours units of study offered by the department concerned either as a full-time student for a period of one year or, with the approval of the Head of Department concerned, as a part-time student for a period of two years.
3. Assessment
3.1 The award of the graduate diploma shall be subject to the completion of the program of work and examinations to the satisfaction of the Faculty.
4. Progress
4.1 The Faculty may call upon any candidate to show cause why that candidature should not be terminated by reason of unsatisfactory progress towards completion of the graduate diploma and where, in the opinion of the Faculty, the candidate does not show good cause, terminate the candidature.
17. Graduate Diploma in Science
18. Bioethics coursework degrees

Master of Bioethics (Honours) (MBEthHon)
Degree code: LC049

Master of Bioethics (MBEth)
Degree code: LC047

Graduate Diploma in Bioethics (GradDipBEth)
Degree code: LF037

Graduate Certificate in Bioethics (GradCertBEth)
Degree code: LG019

This chapter sets out the requirements for postgraduate degrees offered in the Faculty of Science in the area of Bioethics. A comprehensive guide to the requirements and units of study of the coursework degrees is listed.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously in this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at www.usyd.edu.au/publications/calendar.

Course overview
The University of Sydney offers several postgraduate degree courses in Bioethics. Increasing levels of expertise are provided through completion of the Graduate Certificate in Bioethics, Graduate Diploma in Bioethics, Master of Bioethics, and the Master of Bioethics (Honours).

These courses are designed to meet the widely recognised growing need for ethics education for scientists, researchers, and professionals working in medicine, nursing, public health, health law, health policy/administration, public policy, and science communication. They will also be attractive to students with general interests in relationships between science and society or relevant social science disciplines.

Particular units of study – such as Core Concepts in Bioethics (BETH5000), Human and Animal Research Ethics (BETH5202), Ethics and Biotechnology (BETH5201), and Ethics and Public Health (BETH5203) – offered through the postgraduate program in Bioethics will be popular with postgraduate students pursuing degrees in other fields such as medical humanities, law, biology, health sciences, biomedical sciences, public health, and/or any disciplines involving human or animal experimentation.

The discipline of bioethics is concerned with ethical questions arising in contexts of biological and medical science. Social concern about such issues has grown with advances in biomedical technology, as illustrated by contemporary debate over reproductive technologies, genetic engineering, cloning, and stem cell research. Traditional topics in bioethics include abortion, euthanasia, relationships between health care providers and patients, research involving humans and animals, and justice in the distribution of medical resources. Emerging topics include ethical issues related to global public health.

Falling at the intersections of ethics, policy, and biomedical science, bioethics is an inherently interdisciplinary field. The University of Sydney's postgraduate program in Bioethics uniquely addresses this interdisciplinarity head-on.

In addition to the core unit of study (BETH5000), which provides a broad survey of the field of bioethics, our foundational units provide interdisciplinary grounding in ethical philosophy (BETH5101), philosophy of science/medicine (BETH5102), interdisciplinary approaches to the study of medicine and society (BETH5103), and bioethics law (BETH5104).

Specialisation in areas of particular interest is provided via elective units with focus on biotechnology (BETH5201), research ethics (BETH5202), public health (BETH5203), clinical ethics (BETH5204) and mental health (BETH5205). All of these units of study include historical components.

Qualified students admitted to the Master of Bioethics (Honours) degree will obtain further expertise in an area of special interest, and experience necessary for further postgraduate study (ie, PhD), through completion of a research project (BETH5301 and 5302).

The Master of Bioethics degree can be completed in one year by full-time students or over two years by part-time students. Further details on duration of study are provided below.

Course outcomes
The University of Sydney postgraduate Bioethics degree courses provide breadth and depth of coverage of both traditional and alternative/emerging issues in, and approaches to, bioethics.

Our students will gain advanced understanding of the bearing of ethical philosophy, epistemology, law, sociology, linguistics, and history on issues in bioethics. They will develop interdisciplinary appreciation of relationships between values, science, and society. They will become familiar with both the historical and philosophical bases of local and international legislation and regulatory guidelines regarding the ethics of health care and research.

They will develop, and be able to defend, their own reasoned judgements about how ethical issues arising in health care, research, and public policy contexts should be resolved; and they will be able to recognise novel, or previously unappreciated, ethical issues arising in the professional workplace or in social policy contexts.

Our degrees contribute to the professional development of those working in health care and they offer the skills and knowledge base necessary for critical analysis in health policy making or in relevant areas of social science disciplines.

All of our degrees contribute to development of general skills in research, reading, writing, and oral expression. Expertise will vary with level of degree completed.

The program has been designed to enable progression from Graduate Certificate to Graduate Diploma, Masters, and Masters (Honours).
Bioethics postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graduate Certificate in Bioethics (GradCertBEth)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETH5000 Core Concepts in Bioethics</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>Foundational (Students must complete three units from:)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETH5101 Introduction to Ethical Reasoning</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>BETH5102 Philosophy of Medicine</td>
<td>6</td>
<td>A three-year degree in science, medicine, nursing, allied health</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sciences, philosophy/ethics, sociology/anthropology, history, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>other relevant field - or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>BETH5103 Biomedicine and Society</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>BETH5104 Bioethics, Law and Society</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td>BETH5205 Ethics and Mental Health</td>
<td>6</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Graduate Diploma in Bioethics (GradDipBEth)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compulsory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETH5000 Core Concepts in Bioethics</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>Students must also complete three Foundational plus two additional (either Foundational or Elective)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foundational</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETH5101 Introduction to Ethical Reasoning</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>BETH5102 Philosophy of Medicine</td>
<td>6</td>
<td>A three-year degree in science, medicine, nursing, allied health</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sciences, philosophy/ethics, sociology/anthropology, history, or</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>other relevant field - or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>BETH5103 Biomedicine and Society</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>BETH5104 Bioethics, Law and Society</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td>Elective</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETH5201 Ethics and Biotech: Genes and Stem</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Cells</td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>BETH5202 Human and Animal Research Ethics</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>BETH5203 Ethics and Public Health</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing,</td>
<td>Semester 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>allied health sciences, philosophy/ethics, sociology/anthropology,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>history, or other relevant field, or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
<tr>
<td>BETH5204 Clinical Ethics</td>
<td>6</td>
<td>A Honours or equivalent degree, or other appropriate terminal</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>undergraduate degree (such as a three-year nursing degree) in</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>science, medicine, nursing, allied health sciences, philosophy/</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ethics, sociology/anthropology, history, or other relevant field</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- or by special permission.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A limited number of students may be granted permission to take</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>this unit during their honours year.</td>
<td></td>
</tr>
</tbody>
</table>
Master of Bioethics (MBeth)

Compulsory

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETH5000 Core Concepts in Bioethics</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Foundational (students must complete four units from:)

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETH5101 Introduction to Ethical Reasoning</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BETH5102 Philosophy of Medicine</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BETH5102 Philosophy of Medicine</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BETH5104 Bioethics, Law and Society</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Elective (students must complete three units from:)

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETH5201 Ethics and Biotech: Genes and Stem Cells</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BETH5202 Human and Animal Research Ethics</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BETH5203 Ethics and Public Health</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BETH5204 Clinical Ethics</td>
<td>6</td>
<td>A Honours or equivalent degree, or other appropriate terminal undergraduate degree (such as a three-year nursing degree) in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Master of Bioethics (Honours) (MBethHon)

Compulsory

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETH5000 Core Concepts in Bioethics</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BETH5301 Research Project A</td>
<td>6</td>
<td>Distinction average (or higher) in 24 credit points of BETH units of study. Only available to students admitted to the Master of Bioethics (Honours) degree. BETH5301 must be taken in conjunction with BETH5302. It is recommended, but not required, that BETH5301 and BETH5302 are taken in separate semesters.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>BETH5302 Research Project B</td>
<td>6</td>
<td>Only available to students admitted to the Master of Bioethics (Honours) degree. Must be taken in conjunction with BETH5301. It is recommended, but not required that BETH5301 and BETH5302 are taken in separate semesters.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
</tbody>
</table>

Foundational (students must complete four from:)

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETH5101 Introduction to Ethical Reasoning</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BETH5102 Philosophy of Medicine</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BETH5103 Biomedicine and Society</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BETH5104 Bioethics, Law and Society</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
Bioethics unit of study descriptions 2010

BETH5000
Core Concepts in Bioethics
Credit points: 6 Session: Semester 1 Classes: The equivalent of two hours of seminars per week and up to 4 hours per week spent on online learning tasks, small group sessions, project work, and consultation with lecturers. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays; short written assignments; research project/presentation. Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit of study provides a broad overview of the primary issues in, and theoretical approaches to, bioethics. Following an introduction to the history of bioethics and review of the major theoretical approaches to applied ethics, central debates in bioethics surrounding doctor-patient relationships, informed consent, privacy/confidentiality, research ethics, abortion, euthanasia, genetics, cloning, stem cell research, justice and distribution of health care resources, etc., are examined. In addition to classical cases and traditional philosophical perspectives, emerging topics and alternative perspectives are explored. The unit concludes with the topic of global public health and socio-political critique(s) of the discipline of bioethics itself. Learning activities will include seminars, small group sessions, and project work. It is recommended, but not required, that BETH5000 is taken during students' first semester in the program.

BETH5101
Introduction to Ethical Reasoning
Credit points: 6 Session: Semester 1 Classes: The equivalent of two hours of seminar/week and up to 4 hours per week spent on online learning tasks, small group sessions, project work, and consultation with lecturers. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays; short written assignments; research project/presentation. Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit prepares students for advanced analysis of issues in bioethics by laying foundations in both critical thinking and ethical theory. Following an introduction to the construction and assessment of arguments, central issues of debate in meta-ethics, normative ethics, and political philosophy are examined. Major traditional (historical, consequential, deontological, contractarian/egalitarian, and communitarian) theoretical frameworks as well as postmodern/continental perspectives are introduced and critically evaluated. The unit concludes with an introduction to applied and professional ethics. It is recommended, but not required, that BETH5101 is taken during students' first semester in the program.

BETH5102
Philosophy of Medicine
Credit points: 6 Session: Semester 1 Classes: One 2-hour seminar per week with up to 4 hours per week spent on online learning tasks, small group sessions, project work, and consultation with lecturers. Assumed knowledge: A three-year degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field - or by special permission. Assessment: Essays, short written assignments, research project/presentation. Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit of study introduces students to the broader philosophical issues and epistemological structures that underlie medicine and the biomedical sciences. The unit will begin by introducing students to the philosophy of science and medicine, epistemology and the concepts of health, illness and disease. The second part of the unit will review debates regarding disease causation and the social construction of disease. Students will then consider issues relating to the generation and use of knowledge and evidence, and the differences between conventional and alternative/non-Western approaches to illness and healing. The final part of the unit will focus on diagnosis, nosology and classification of disease, with particular reference to mental illness.

BETH5103
Biomedicine and Society
Credit points: 6 Session: Semester 2 Classes: The equivalent of one 2-hour seminar per week with up to 4 hours per week spent on online learning tasks, small group sessions, project work and consultation with lecturers. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays, short written assignments, presentation/project. Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit introduces students to the complex relationships between biomedicine and society utilizing several disciplines including philosophy, ethics, sociology, anthropology and linguistics. Students will consider issues such as power in the biomedical professions and industries; the illness experience; the role of the healer; biomedicine and indigenous cultures and non-Western notions of illness and care.

BETH5104
Bioethics, Law and Society
Credit points: 6 Session: Semester 1 Classes: The equivalent of one 2-hour seminar per week presented in an intensive format with up to four hours per week spent on online learning tasks, small group sessions and consultation with lecturers. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics,
sociology/anthropology, history, or other relevant field, or by special permission.

Assessment: Essays, short written assignments.

The unit of study will begin by introducing students to interrelationships between health care, ethics and the law. In particular, students will explore the moral basis of law and the means by which law influences moral norms, clinical practice and health policy. Students will be shown how to critically read and analyse primary sources of law relevant to bioethics. Students will then examine a number of areas of law that have particular significance for bioethics and society including the law of tort (consent and standards of care), contract (confidentiality), criminal law (euthanasia and abortion), public health law, administrative law and law reform.

BETH5201

Ethics and Biotech: Genes and Stem Cells

Credit points: 6
Session: Semester 2
Classes: The equivalent of one 2-hour seminar per week presented in flexible mode incorporating seminars and an intensive format. In addition, students will spend up to four hours per week on online learning tasks, small group sessions, project work and consultation with lecturers over the course of the 13 weeks of semester. **Assumed knowledge:** A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. **Assessment:** Essays, short written assignments, presentation/project.

Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit introduces students to the broader social/political, ethical/philosophical and legal/regulatory issues that underlie genetics, stem cell research and the emerging biotechnologies. The unit will provide a brief overview of the relevant science before considering sociocultural, cultural and religious understandings of life and human identity. The second part of the unit will review the political, regulatory and commercial context of biotechnology and the control of information. Students will then review the history of genetics and eugenics and the ethical issues that arise in clinical and population genetics, stem cell research and cloning. The final part of the unit will explore the boundaries of research and knowledge and the issues raised by emerging biotechnologies, such as nanotechnology and proteomics. Learning activities will include an intensive seminar program, small group sessions and reading. Students will be able to concentrate on stem cell research, clinical or molecular genetics or other biotechnologies according to their clinical and scientific interests and experience.

BETH5202

Human and Animal Research Ethics

Credit points: 6
Teacher/Coordinator: Dr Karolyn White
Session: Semester 2
Classes: The equivalent of one 2-hour seminar per week presented in flexible mode incorporating seminars and an intensive format. In addition, students will spend up to four hours per week on online learning tasks, small group sessions, project work and consultation with lecturers over the course of the 13 weeks of semester. **Assumed knowledge:** A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. **Assessment:** Essays, short written assignments, presentations.

Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit introduces students to research ethics in its social context. Students will first analyse the philosophical underpinnings of the research endeavour, including the justifications for engaging in research, research priorities and research integrity. The unit will then review the history of research and research abuses, the evolution of research ethics and the regulation of research in Australia. The second part of the unit will focus on issues arising in the conduct of research, including: the protection of research subjects (both human and animal), consent, confidentiality and risk/benefit analysis.

BETH5203

Ethics and Public Health

Credit points: 6
Session: Semester 2
Classes: The equivalent of one 2-hour seminar per week presented in intensive format. In addition, students will spend up to four hours per week on online learning tasks, small group sessions, project work and consultation with lecturers over the course of the 13 weeks of semester. **Assumed knowledge:** A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. **Assessment:** Essays, short written assignments.

Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit will provide students with an overview of the broader philosophical, ethical, sociopolitical and cultural issues that underlie public health and public health research. Students will first review the history of public health and examine the values that underpin health promotion and disease prevention. The second part of the unit will critique the place of facts and values in public health and the construction and use of information, with particular reference to evidence-based-medicine. The third part of the unit will examine the cultural, moral and social context of public health including the social determinants of health, the construction of health services, the determination of research priorities and issues relating to human rights and global health. Learning activities will include 2-hour weekly seminars and readings. Assessment tasks will consist of essays and a presentation/project.

BETH5204

Clinical Ethics

Credit points: 6
Session: Semester 1
Classes: The equivalent of one 2-hour seminar per week presented in an intensive format. In addition, students will spend up to four hours per week on small group sessions, project work, presentation/project.

Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit will provide students with an overview of the broader philosophical, ethical, sociopolitical, and cultural issues that underlie the delivery of healthcare. Students will first explore major conceptual models for ethical reasoning in the clinical context; the design and delivery of clinical ethics consultation; and issues relating to the role of the professions. The second part of the unit will examine the foundations of clinical practice, including consent, competence, veracity, confidentiality, and decision-making. The third part of the unit will consider specific issues and populations within clinical practice, such as the care of vulnerable populations, mental health, and chronic illness. The next part of the unit will focus on skills associated with clinical ethics including analytic and mediation skills. The unit will conclude with reflections on current debates in the Australian healthcare context, particularly issues associated with healthcare rationing. Learning activities will include lectures (in an intensive format), facilitated discussion, case study presentations, and readings. Assessment tasks will consist of essays, a portfolio/journal, and a presentation/project.

BETH5205

Ethics and Mental Health

Credit points: 6
Session: Semester 2
Classes: One 2-hour seminar per week with 4 hours per week spent on consultation, on-line work, library work, independent study. **Assessment:** One short essay (1,500 words); one long essay (4,000 words); on-line task, participation.

Mental health and mental illness are unique in the field of health care and bioethics. The very nature of psychiatric disorder and its relationship with prevailing social and cultural factors, in addition to the unique status of the mental health patient, necessitate a specific discourse in biomedical ethics in the area of mental health. This course will provide participants with a broad perspective of issues in bioethics applied to mental health and mental illness. Students will examine the history of the psychiatric profession and consider the adequacy of current safeguards against the abuses of power seen in the history of the profession of psychiatry. Other areas considered in the course include the current ethical dilemmas in mental health care, the implications of technological advances in the neurosciences, the
philosophical basis of the concept of mental disorder, the relationship between power and the psychiatric profession and the complex relationship between morality, mental health and the law. The course aspires to inform future decision makers in health, public policy, clinical settings and academia in the unique aspects of biomedical ethics in the field of mental health.

Textbooks

BETH5301 Research Project A
Credit points: 6 Session: Semester 1, Semester 2 Classes: Weekly consultation with supervisor(s), Prerequisites: Distinction average (or higher) in 24 credit points of BETH units of study. Assessment: Research tasks, 15,000 word thesis (in conjunction with BETH 5302).
Note: Only available to students admitted to the Master of Bioethics (Honours) degree. BETH5301 must be taken in conjunction with BETH5302. It is recommended, but not required, that BETH5301 and BETH5302 are taken in separate semesters.

This unit must be taken in conjunction with BETH5302 (Research Project B). These units are only available to students admitted to the Master of Bioethics (Honours) degree track. The Research Project (i.e. parts A and B combined) provides opportunity for research and in-depth learning in a bioethics topic of special interest or importance to the student. Successful completion of the project may also provide students with the research experience required for the pursuit of a higher degree. This unit involves independent research and regular meetings with (a) supervisor(s). In the process of completing the Research Project (i.e. parts A and B combined), students will produce an original 15,000 word thesis. Choice of thesis topic depends on availability of appropriate supervisor(s). It is recommended, but not required, that BETH5301 and BETH5302 are taken in separate semesters. A mark for both BETH5301 and BETH5302 combined is provided at the completion of BETH5302 (upon submission of thesis). It is possible to take these units in distance mode.

BETH5302 Research Project B
Credit points: 6 Session: Semester 1, Semester 2 Classes: Weekly consultation with supervisor(s), Assessment: Research tasks, 15,000 word thesis (in conjunction with BETH5301).
Note: Only available to students admitted to the Masters of Bioethics (Honours) degree. BETH5301 must be taken in conjunction with BETH5302. It is recommended, but not required, that BETH5301 and BETH5302 are taken in separate semesters.

This unit must be taken in conjunction with BETH5301 (Research Project A). These units are only available to students admitted to the Master of Bioethics (Honours) degree. The Research Project (i.e. parts A and B combined) provides opportunity for research and in-depth learning in a bioethics topic of special interest or importance to the student. Successful completion of the project may also provide students with the research experience required for the pursuit of a higher degree. This unit involves independent research and regular meetings with (a) supervisor(s). In the process of completing the Research Project (i.e. parts A and B combined), students will produce an original 15,000 word thesis. Choice of thesis topic depends on availability of appropriate supervisor(s). It is recommended, but not required, that BETH5301 and BETH5302 are taken in separate semesters. A mark for both BETH5301 and BETH5302 combined is provided at the completion of BETH5302 (upon submission of thesis). It is possible to take these units in distance mode.

Bioethics unit of study descriptions 2010

BETH5000 Core Concepts in Bioethics
Credit points: 6 Session: Semester 1 Classes: The equivalent of two hours of seminars per week and up to 4 hours per week spent on online learning tasks, small group sessions, project work, and consultation with lecturers. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays; short written assignments; research project/presentation.

Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit of study provides a broad overview of the primary issues in, and theoretical approaches to, bioethics. Following an introduction to the history of bioethics and review of the major theoretical approaches to applied ethics, central debates in bioethics surrounding doctor/patient relationships, informed consent, privacy/confidentiality, research ethics, abortion, euthanasia, genetics, cloning, stem cell research, justice and distribution of health care resources, etc., are examined. In addition to classical cases and traditional theoretical perspectives, emerging topics and alternative perspectives are explored. The unit concludes with the topic of global public health and socio-political critique(s) of the discipline of bioethics itself. Learning activities will include seminars, small group sessions, and project work. It is recommended, but not required, that BETH5000 is taken during students' first semester in the program.

BETH5101 Introduction to Ethical Reasoning
Credit points: 6 Session: Semester 1 Classes: The equivalent of two hours of seminar/week and up to 4 hours per week spent on online learning tasks, small group sessions, project work, and consultation with lecturers. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays; short written assignments; research project/presentation.
Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit prepares students for advanced analysis of issues in bioethics by laying foundations in both critical thinking and ethical theory. Following an introduction to the construction and assessment of arguments, central issues of debate in meta-ethics, normative ethics, and political philosophy are examined. Major traditional (historical, consequential, deontological, contractarian/egalitarian, and communitarian) theoretical frameworks as well as postmodern/continental perspectives are introduced and critically evaluated. The unit concludes with an introduction to applied and professional ethics. It is recommended, but not required, that BETH5101 is taken during students' first semester in the program.

BETH5102 Philosophy of Medicine
Credit points: 6 Session: Semester 1 Classes: One 2-hour seminar per week with up to 4 hours per week spent on online learning tasks, small group sessions, project work, and consultation with lecturers. Assumed knowledge: A three-year degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field - or by special permission. Assessment: Essays; short written assignments; research project/presentation.
Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit of study introduces students to the broader philosophical issues and epistemological structures that underlie medicine and the biomedical sciences. The unit will begin by introducing students to the philosophy of science and medicine, epistemology and the concepts of health, illness and disease. The second part of the unit will review debates regarding disease causation and the social construction of disease. Students will then consider issues relating to the generation and use of knowledge and evidence, and the differences between conventional and alternative/non-Western approaches to illness and healing. The final part of the unit will focus on diagnosis, nosology and classification of disease, with particular reference to mental illness.

BETH5103 Biomedicine and Society
Credit points: 6 Session: Semester 2 Classes: The equivalent of one 2-hour seminar per week with up to 4 hours per week spent on online learning tasks, small group sessions, project work and consultation with lecturers. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays; short written assignments; presentation/project.
This unit introduces students to the complex relationships between biomedicine and society utilizing several disciplines including philosophy, ethics, sociology, anthropology and linguistics. Students will consider issues such as power in the biomedical professions and industries; the illness experience; the role of the healer; biomedicine and indigenous cultures and non-western notions of illness and care.

BETH5104
Bioethics, Law and Society
Credit points: 6 Session: Semester 1 Classes: The equivalent of one 2-hour seminar per week presented in an intensive format with up to four hours per week spent on online learning tasks, small group sessions and consultation with lecturers. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays, short written assignments.

The unit of study will begin by introducing students to interrelationships between health care, ethics and the law. In particular students will explore the moral basis of law and the means by which law influences moral norms, clinical practice and health policy. Students will be shown how to critically read and analyse primary sources of law relevant to bioethics. Students will then examine a number of areas of law that have particular significance for bioethics and society including the law of tort (consent and standards of care), contract (confidentiality), criminal law (euthanasia and abortion), public health law, administrative law and law reform.

BETH5201
Ethics and Biotech: Genes and Stem Cells
Credit points: 6 Session: Semester 2 Classes: The equivalent of one 2-hour seminar per week presented in flexible mode incorporating seminars and an intensive format. In addition, students will spend up to four hours per week on online learning tasks, small group sessions, project work and consultation with lecturers over the course of the 13 weeks of semester. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays, short written assignments, presentation/project.

Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit introduces students to the broader social/political, ethical/philosophical and legal/regulatory issues that underlie genetics, stem cell research and the emerging biotechnologies. The unit will provide a brief overview of the relevant science before considering scientific, cultural and religious understandings of life and human identity. The second part of the unit will review the political, regulatory and commercial context of biotechnology and the control of information. Students will then review the history of genetics and eugenics and the ethical issues that arise in clinical and population genetics, stem cell research and cloning. The final part of the unit will explore the boundaries of research and knowledge and the issues raised by emerging biotechnologies, such as nanotechnology and proteomics. Learning activities will include an intensive seminar program, small group sessions and reading. Students will be able to concentrate on stem cell research, clinical or molecular genetics or other biotechnologies according to their clinical and scientific interests and experience.

BETH5202
Human and Animal Research Ethics
Credit points: 6 Teacher/Coordinator: Dr Karolyn White Session: Semester 2 Classes: The equivalent of one 2-hour seminar per week presented in flexible mode incorporating seminars and an intensive format. In addition, students will spend up to four hours per week on online learning tasks, small group sessions, project work and consultation with lecturers over the course of the 13 weeks of semester. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays, short written assignments, projects/presentations.

Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit introduces students to research ethics in its social context. Students will first analyse the philosophical underpinnings of the research endeavour, including the justifications for engaging in research, research priorities and research integrity. The unit will then review the history of research and research abuses, the evolution of research ethics and the regulation of research in Australia. The second part of the unit will focus on issues arising in the conduct of research including: the protection of research subjects (both human and animal), consent, confidentiality and risk/benefit analysis.

BETH5203
Ethics and Public Health
Credit points: 6 Session: Semester 2 Classes: The equivalent of one 2-hour seminar per week will be presented in an intensive format. In addition, students will spend up to four hours per week on online learning tasks, small group sessions, project work and consultation with lecturers over the course of the 13 weeks of semester. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays, short written assignments.

Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit will provide students with an overview of the broader philosophical, ethical, sociopolitical and cultural issues that underlie public health and public health research. Students will first review the history of public health and examine the values that underpin health promotion and disease prevention. The second part of the unit will critique the place of facts and values in public health and the construction and use of information, with particular reference to evidence-based-medicine. The third part of the unit will examine the cultural, moral and social context of public health including the social determinants of health, the construction of health services, the determination of research priorities and issues relating to human rights and global health. Learning activities will include 2-hour weekly seminars and readings. Assessment tasks will consist of essays and a presentation/project.

BETH5204
Clinical Ethics
Credit points: 6 Session: Semester 1 Classes: The equivalent of one 2-hour seminar per week presented in an intensive format. In addition, students will spend up to four hours per week on small group sessions, project work, portfolio development and discussion, and consultation with lecturers. (Students will be able to choose to focus on specific ethical issues or particular healthcare practice settings according to their own interests and experience.) Assumed knowledge: Honours or equivalent degree, or other appropriate terminal undergraduate degree (such as a three-year nursing degree) in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Two essays, reflective portfolio/journal via WebCT and a project/presentation on the analysis of a case.

Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit will provide students with an overview of the broader philosophical, ethical, sociopolitical, and cultural issues that underlie the delivery of healthcare. Students will first explore major conceptual models for ethical reasoning in the clinical context; the design and delivery of clinical ethics consultation; and issues relating to the role of the professions. The second part of the unit will examine the foundations of clinical practice, including consent, competence, veracity, confidentiality, and decision-making. The third part of the unit will consider specific issues and populations within clinical practice, such as the care of vulnerable populations, mental health, and chronic illness. The next part of the unit will focus on skills associated with clinical ethics including analytic and mediation skills. The unit will conclude with reflections on current debates in the Australian healthcare context, particularly issues associated with healthcare rationing. Learning activities will include lectures (in an intensive format), facilitated discussion, case study presentations, and readings. Assessment tasks will consist of essays, a portfolio/journal, and a presentation/project.
BETH5205 Ethics and Mental Health

Credit points: 6
Session: Semester 2
Classes: One 2-hour seminar per week with 4 hours per week spent on consultation, on-line work, library work, independent study.
Assessment: One short essay (1,500 words); one long essay (4,000 words); on-line task, participation

Mental health and mental illness are unique in the field of health care and bioethics. The very nature of psychiatric disorder and its relationship with prevailing social and cultural factors, in addition to the unique status of the mental health patient, necessitate a specific discourse in biomedical ethics in the area of mental health. This course will provide participants with a broad perspective of issues in bioethics applied to mental health and mental illness. Students will examine the history of the psychiatric profession and consider the adequacy of current safeguards against the abuses of power seen in the history of the profession of psychiatry. Other areas considered in the course include the current ethical dilemmas in mental health care, the implications of technological advances in the neurosciences, the philosophical basis of the concept of mental disorder, the relationship between power and the psychiatric profession and the complex relationship between morality, mental health and the law. The course aspires to inform future decision makers in health, public policy, clinical settings and academia in the unique aspects of biomedical ethics in the field of mental health.

Textbooks

BETH5301 Research Project A

Credit points: 6
Session: Semester 1, Semester 2
Classes: Weekly consultation with supervisor(s).
Prerequisites: Distinction average (or higher) in 24 credit points of BETH units of study.
Assessment: Research tasks, 15,000 word thesis (in conjunction with BETH5302).
Note: Only available to students admitted to the Master of Bioethics (Honours) degree. BETH5301 must be taken in conjunction with BETH5302. It is recommended, but not required, that BETH5301 and BETH5302 are taken in separate semesters.

This unit must be taken in conjunction with BETH5302 (Research Project B). These units are only available to students admitted to the Master of Bioethics (Honours) degree track. The Research Project (i.e. parts A and B combined) provides opportunity for research and in-depth learning in a bioethics topic of special interest or importance to the student. Successful completion of the project may also provide students with the research experience required for the pursuit of a higher degree. This unit involves independent research and regular meetings with (a) supervisor(s). In the process of completing the Research Project (i.e. parts A and B combined), students will produce an original 15,000 word thesis. Choice of thesis topic depends on availability of appropriate supervisor(s). It is recommended, but not required, that BETH5301 and BETH5302 are taken in separate semesters. A mark for both BETH5301 and BETH5302 combined is provided at the completion of BETH5302 (upon submission of thesis). It is possible to take these units in distance mode.

Resolutions

Master of Bioethics (MBEth)
Graduate Diploma in Bioethics (GradDipB Eth)
Graduate Certificate in Bioethics (GradCertB Eth)

Course rules

1. **Admission**
1.1 The Dean of the Faculty of Science may admit to candidature for:
1.1.1 the Graduate Certificate in Bioethics, Graduate Diploma in Bioethics and Master of Bioethics:
1.1.1.1 an applicant who is the holder of a Bachelor's degree or any equivalent award in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology, anthropology, history, law, or other relevant field;
1.1.2 the Master of Bioethics (Honours):
1.1.2.1 an applicant who has completed at least four units of study in the University's Postgraduate Program in Bioethics and who holds at least a distinction average for units of study taken in the University's Postgraduate Program in Bioethics.

2. **Units of study**
2.1 The units of study for these award courses are listed in the tables for Bioethics Postgraduate coursework degrees in the Faculty of Science Handbook.
2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included in the description of units of study associated with these resolutions.

3. **Requirements for the Graduate Certificate in Bioethics, Graduate Diploma in Bioethics, Master of Bioethics, Master of Bioethics (Honours)**
3.1 Candidates for the GradCertB Eth are required to complete satisfactorily units of study granting a minimum of 24 credit points selected from units of study approved from time to time by the Faculty.
3.2.1 They must complete BETH5000 and three Foundational units of study.
3.2 Candidates for the GradDipB Eth are required to complete satisfactorily units of study granting a minimum of 36 credit points selected from units of study approved from time to time by the Faculty.
3.2.1 They must complete BETH5000, three Foundational units, and two additional units of study (Foudnationl or elective).
3.3 Candidates for the MBEth are required to complete satisfactorily units of study granting a minimum of 48 credit points selected from units of study approved from time to time by the Faculty.
3.3.1 They must complete BETH5000, four Foundational units, and three Elective units of study.
3.4 Candidates for the MBEthHon are required to complete satisfactorily units of study granting a minimum of 60 credit points selected from units of study approved from time to time by the Faculty.
3.4.1 They must complete the BETH5000, four Foundational units, three Elective units, and two Research Project units of study.

Faculty rules
4. Details of units of study

4.1 The units of study for the Graduate Certificate in Bioethics, Graduate Diploma in Bioethics, Master of Bioethics, and Master of Bioethics (Honours) are listed in the tables of units of study in the Faculty of Science Handbook.

4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

4.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:

4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;

4.4.2 to complete satisfactorily the essays, exercises, practical work, or project work if any; and

4.4.3 to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.

4.6 The Dean, upon the recommendation of the course coordinator, may allow substitution of any unit of study by another unit of study (up to a maximum of two units of study), for candidates with the appropriate background/experience.

4.6.1 Candidates (for all degrees) with special aims/interests may be permitted to substitute one relevant non-BETH postgraduate unit of study (in History, Medical Humanities, or Law, for example) for specifically required units upon approval of the course coordinator and Dean.

4.7 The Master of Bioethics shall be awarded in two grades, namely Pass and, in the case of an outstanding candidate, Pass with Merit.

5. Enrolment in more/less than minimum load

5.1 A candidate may proceed on either a full-time or a part-time basis.

6. Cross-institutional study

6.1 Cross-institutional study shall not be available to students enrolled in the Graduate Certificate in Bioethics, the Graduate Diploma in Bioethics, the Master of Bioethics, and the Master of Bioethics (Honours), except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment

7.1 Admission to candidature may be limited by a quota.

7.2 In determining the quota, the University will take into account:

7.2.1 availability of resources including space, laboratory and computing facilities; and

7.2.2 availability of adequate and appropriate supervision.

7.3 In considering an application for admission to candidature the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of subsection 1 above.

8. Discontinuation of enrolment

8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature

9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence

10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress

11.1 Candidates shall be governed by the rules as follows:

11.1.1 If an award has been conferred for this study, credit is not available within any of the Bioethics programs.

11.2 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Master of Bioethics or Master of Bioethics (Honours) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Certificate in Bioethics.

11.3 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Master of Bioethics and/or Master of Bioethics (Honours) and/or the Graduate Diploma in Bioethics and/or the Graduate Certificate in Bioethics will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.4 A student who has failed a cumulative total of more than 18 credit points in the Master of Bioethics and/or Master of Bioethics (Honours) and/or the Graduate Diploma in Bioethics and/or the Graduate Certificate in Bioethics will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit

12.1 A candidate for the GradCertBEth shall complete the requirements for the award in a minimum of one semester and a maximum of five semesters, and (in the event of suspension) except with permission of the Dean within three calendar years of admission to candidature.

12.2 A candidate for the GradDipBEth shall complete the requirements for the award in a minimum of two semesters and a maximum of eight semesters, and (in the event of suspension) except with permission of the Dean within five calendar years of admission to candidature.

12.3 A candidate for the MBeth shall complete the requirements for the award in a minimum of two semesters and a maximum of ten semesters, and (in the event of suspension) except with permission of the Dean within six calendar years of admission to candidature.

12.4 A candidate for the MBethHon shall complete the requirements for the award in a minimum of three semesters and a maximum of twelve semesters, and (in the event of suspension) except with permission of the Dean within seven calendar years of admission to candidature.

13. Assessment policy

13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidate.

14. Credit transfer policy

14.1 Credit may be available in the GradCertBEth, GradDipBEth, MBeth and MBeth(Hon) for postgraduate study which has been undertaken at the University of Sydney (either within the Postgraduate Program in Bioethics or through the University's Professional Master of Medicine Program) within the past three years and for which no award has been conferred.

14.1.1 If an award has been conferred for this study, credit is not available within any of the Bioethics programs.

14.2 A candidate who has qualified for the award of GradCertBEth may transfer, within three years, to the GradDipBEth, MBeth or MBeth (Hon) and receive credit for up to 24 credit points from the GradCertBEth.

14.3 To transfer to the MBeth(Hon) the candidate must satisfy admission requirements in sub-section 1.1.2 of the Resolutions of Faculty.

14.4 A candidate who has qualified for the award of GradDipBEth may transfer, within three years, to the MBeth or MBeth(Hon) and receive credit for up to 36 credit points from the GradDipBEth.

14.5 A candidate who has qualified for the award of MBeth may transfer, within three years, to the MBeth(Hon) and receive credit for up to 48 credit points from the MBeth.

14.5.1 To transfer to MBeth(Hon) the candidate must satisfy admission requirements in subsection 1.1.2.
18. Bioethics coursework degrees
19. Bioinformatics coursework degrees

Master of Applied Science (Bioinformatics) (MApplSc(Bioinf))
Degree Code: LC042

Graduate Diploma in Applied Science (Bioinformatics) (GradDipApplSc(Bioinf))
Degree Code: LF030

Graduate Certificate in Applied Science (Bioinformatics) (GradCertApplSc(Bioinf))
Degree Code: LG015

This chapter sets out the requirements for postgraduate degrees offered in the Faculty of Science in the area of Bioinformatics. A comprehensive guide to the requirements and units of study of the coursework degrees is listed.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, which can be found at the end of this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at: www.usyd.edu.au/publications/calendar.

Course overview
The Graduate Certificate in Applied Science (Bioinformatics), Graduate Diploma in Applied Science (Bioinformatics) and Master of Applied Science (Bioinformatics) are articulated award courses that provide a professional qualification to biologists and computer scientists working in industry, research and education.

The award program brings together the disciplines of computer science, statistics and the life sciences, developing and enhancing skills in bioinformatics. Students with little background in molecular biology who want to extend their understanding of the biosciences, statistics and bioinformatics follow Stream A. Students with a strong background in molecular biology who want to study bioinformatics, statistics and computer science follow Stream B.

The program has core and optional units of study to satisfy both of these requirements and will produce graduates with skills in the disciplines that underpin bioinformatics and in bioinformatics itself. Graduates from the Bioinformatics program will be proficient in molecular biology, genetics and bioinformatics. (Biology graduates who want to learn about computer programming are directed to the Graduate Diploma in Computing).

Candidates will normally commence their study in Semester 1, except with the permission of the Dean.

Course outcomes
The aim of this articulated coursework program is to provide students with a coordinated approach to bioinformatics, thus developing expertise to perform and develop the analysis of biological data with underlying competencies in the life sciences, computer science and statistics. Upon completion of the graduate certificate, graduate diploma or master’s, graduates will have a broad understanding of the topic of bioinformatics. In addition, the master’s will provide the option of experience in carrying out and completing a research project and report.

Bioinformatics postgraduate coursework degree table
Units of study listed in the table as optional are recommended; other Information Technology units of study are also available with approval from the the Program Coordinator.

Units of study listed as compulsory for a particular degree or stream do not need department permission for enrolment.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream A (Information Technology Background)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Degrees: Compulsory Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL5001 Molecular Genetics and Inheritance</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Note: Department permission not required for Stream A Bioinformatics students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL5002 Bioinformatics: Sequences and Genomes</td>
<td>6</td>
<td>C BIOL5001</td>
<td>N BIOL3027, BIOL3927</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Department permission not required for Bioinformatics students. BIOL5001 corequisite not required for Molecular Biotechnology students or Stream B Bioinformatics students.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOBT5201 Applied Molecular Biotech A (Theory)</td>
<td>6</td>
<td>N BCHM3098, BCHM5001, MOBT5101</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT5001 Applied Statistics for Bioinformatics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Diploma: Recommended Optional Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma students must complete 12 credit points from the following:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP5028 Object-Oriented Design</td>
<td>6</td>
<td>A Intermediate level of object oriented programming such as Java</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>N INF3323</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP5318 Knowledge Discovery and Data Mining</td>
<td>6</td>
<td>A COMP5138 and familiarity with basic statistics</td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

To view the latest update, download, purchase or search a handbook visit Handbooks online: www.usyd.edu.au/handbooks
19. Bioinformatics coursework degrees

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP5426 Parallel and Distributed Computing</td>
<td>6</td>
<td>A Equivalent of COMP5116</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MCAN5104 Image Analysis</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BETH5201 Ethics and Biotech: Genes and Stem Cells</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Masters (Non-Research Stream): Recommended Optional Units

Masters students must complete 24 credit points from the following:

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP5028 Object-Oriented Design</td>
<td>6</td>
<td>A Intermediate level of object oriented programming such as Java</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP5316 Knowledge Discovery and Data Mining</td>
<td>6</td>
<td>A COMP5138 and familiarity with basic statistics Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP5424 Information Technology in Biomedicine</td>
<td>6</td>
<td>A Basic programming skills</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP5426 Parallel and Distributed Computing</td>
<td>6</td>
<td>A Equivalent of COMP5116</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MCAN5104 Image Analysis</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BETH5000 Core Concepts in Bioethics</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BETH5201 Ethics and Biotech: Genes and Stem Cells</td>
<td>6</td>
<td>A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Masters Research Stream: Additional Core Units

NB: Entry to the Masters Research stream is by invitation only

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BINF5002 Bioinformatics Research Project A</td>
<td>6</td>
<td>C BINF5003, BIOL5001, BIOL5002, MOBT5201 and STAT5001 Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BINF5003 Bioinformatics Research Project B</td>
<td>6</td>
<td>C BINF5002, BIOL5001, BIOL5002, MOBT5201 and STAT5001 Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BIOL4015 Scientific Research in Biology</td>
<td>6</td>
<td>P Pass degree in an area of Life Sciences or Equivalent C BIOL4016, N BIOL4009, BIOL4010 Note: Department permission required for enrolment BIOL4016 corequisite not required by Bioinformatics Masters Research Stream students.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>BINF5426 Bioinformatics Research Project B</td>
<td>6</td>
<td>A Equivalent of COMP5116</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Masters Research Stream: Recommended Optional Units

Masters research stream students must complete 6 credit points from the following:

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP5028 Object-Oriented Design</td>
<td>6</td>
<td>A Intermediate level of object oriented programming such as Java</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP5318 Knowledge Discovery and Data Mining</td>
<td>6</td>
<td>A COMP5138 and familiarity with basic statistics Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP5424 Information Technology in Biomedicine</td>
<td>6</td>
<td>A Basic programming skills</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP5426 Parallel and Distributed Computing</td>
<td>6</td>
<td>A Equivalent of COMP5116</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Stream B (Life Science Background)

All Degrees: Compulsory Units

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL5002 Bioinformatics: Sequences and Genomes</td>
<td>6</td>
<td>C BIOL5001, N BIOL3027, BIOL3927 Note: Department permission required for enrolment Department permission not required for Bioinformatics students BIOL5001 corequisite not required for Molecular Biotechnology students or Stream B Bioinformatics students.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>COMP5213 Computer and Network Organisation</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MOBT5201 Applied Molecular Biotech A (Theory)</td>
<td>6</td>
<td>N BCHM3098, BCHM5001, MOBT5101</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>STAT5001 Applied Statistics for Bioinformatics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Diploma and Masters: Additional Compulsory Unit

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP5214 Software Development in Java</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Diploma and Masters: Recommended Optional Units

Diploma students must complete 6 credit points from the following:
During students' first semester in the program, small group sessions and reading. Students will be able to explore the boundaries of research and knowledge and the issues raised by emerging biotechnologies, such as nanotechnology and eugenics and the ethical issues that arise in clinical and population scientific, cultural and religious understandings of life and human identity. The second part of the unit will review the political, regulatory and theoretical perspectives, emerging topics and alternative perspectives are explored. The unit concludes with the topic of global public health and research ethics, abortion, euthanasia, genetics, cloning, stem cell research and the emerging biotechnologies. The unit will provide a brief overview of the relevant science before considering its ethical/philosophical and legal/regulatory issues that underlie genetics, stem cell research and the emerging biotechnologies. The unit will explore the boundaries of research and knowledge and the issues raised by emerging biotechnologies, such as nanotechnology and proteomics. Learning activities will include seminars, small group sessions and project work. It is recommended, but not required, that BETH5000 is taken during students' first semester in the program.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP5206 Introduction to Information Systems</td>
<td>6</td>
<td>N INFOS210</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>COMP5211 Algorithms</td>
<td>6</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>MCAN5104 Image Analysis</td>
<td>6</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BETH5201 Ethics and Biotech: Genes and Stem Cells</td>
<td>6</td>
<td>A A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td>Semester 2</td>
</tr>
<tr>
<td>MCAN5104 Image Analysis</td>
<td>6</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Master (Non-Research Stream): Recommended Optional Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masters students must complete 18 credit points from the following:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP424 Information Technology in Biomedicine</td>
<td>6</td>
<td>A Basic programming skills</td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP5206 Introduction to Information Systems</td>
<td>6</td>
<td>N INFOS210</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>COMP5211 Algorithms</td>
<td>6</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BETH5201 Ethics and Biotech: Genes and Stem Cells</td>
<td>6</td>
<td>A A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. A limited number of students may be granted permission to take this unit during their honours year.</td>
<td>Semester 2</td>
</tr>
<tr>
<td>MCAN5104 Image Analysis</td>
<td>6</td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Master Research Stream: Recommended Optional Units</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masters research stream students must complete 18 credit points from the following:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL4015 Scientific Research in Biology</td>
<td>6</td>
<td>P Pass degree in an area of Life Sciences or Equivalent C BIOL4016 N BIOL4009, BIOL4010 Note: Department permission required for enrolment BIOL4016 corequisite not required by Bioinformatics Masters Research Stream students.</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BINF5002 Bioinformatics Research Project A</td>
<td>6</td>
<td>C BINF5003, BIOL5001, BIOL5002, MOBT5201 and STAT5001 Note: Department permission required for enrolment</td>
<td>Semester 2</td>
</tr>
<tr>
<td>BINF5003 Bioinformatics Research Project B</td>
<td>6</td>
<td>C BINF5002, BIOL5001, BIOL5002, MOBT5201 and STAT5001 Note: Department permission required for enrolment</td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

Bioinformatics unit of study descriptions

BETH5000
Core Concepts in Bioethics
Credit points: 6 Session: Semester 1 Classes: The equivalent of two hours of seminars per week and up to 4 hours per week spent on online learning tasks, small group sessions, project work, and consultation with lecturers. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays, short written assignments, research project/presentation. Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit provides a broad overview of the primary issues in, and theoretical approaches to, bioethics. Following an introduction to the history of bioethics and review of the major theoretical approaches to applied ethics, central debates in bioethics surrounding doctor-patient relationships, informed consent, privacy/confidentiality, research ethics, abortion, euthanasia, genetics, cloning, stem cell research, justice and distribution of health care resources, etc., are examined. In addition to classical cases and traditional theoretical perspectives, emerging topics and alternative perspectives are explored. The unit concludes with the topic of global public health and socio-political critique(s) of the discipline of bioethics itself. Learning activities will include seminars, small group sessions, and project work. It is recommended, but not required, that BETH5000 is taken during students' first semester in the program.

BETH5201
Ethics and Biotech: Genes and Stem Cells
Credit points: 6 Session: Semester 2 Classes: The equivalent of one 2-hour seminar per week presented in flexible mode incorporating seminars and an intensive format. In addition, students will spend up to four hours per week on online learning tasks, small group sessions, project work and consultation with lecturers over the course of the 13 weeks of semester. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays, short written assignments, research project/presentation. Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit introduces students to the broader social/political, ethical/philosophical and legal/regulatory issues that underlie genetics, stem cell research and the emerging biotechnologies. The unit will provide a brief overview of the relevant science before considering its scientific, cultural and religious understandings of life and human identity. The second part of the unit will review the political, regulatory and commercial context of biotechnology and the control of information. Students will then review the history of genetics and eugenics and the ethical issues that arise in clinical and population genetics, stem cell research and cloning. The final part of the unit will explore the boundaries of research and knowledge and the issues raised by emerging biotechnologies, such as nanotechnology and proteomics. Learning activities will include an intensive seminar program, small group sessions and reading. Students will be able to concentrate on stem cell research, clinical or molecular genetics or other biotechnologies according to their clinical and scientific interests and experience.
BINF5002
Bioinformatics Research Project A
Credit points: 6 Teacher/Coordinator: A/Prof Jermiin Session: Semester 1, Semester 2 Class: Meetings by arrangement with the supervisor. Corequisites: BINF5003, BIoL5001, BIoL5002, MOBT5201 and STAT5001 Assessment: Project plan, seminar, final report Note: Department permission required for enrolment.

BINF5002 comprises the commencement of a research project on a topic with significant emphasis on the use of bioinformatics tools to address important questions in the areas of biology, biochemistry, mathematics and statistics, computer science, crop and veterinary sciences, and medical science. Students will be working with an appointed supervisor from the Faculties of Agriculture, Science, Veterinary Science, and Medicine or from industry under the guidelines of the convenor. Students will commence a small research project in an area agreed by the student, the supervisor and the convenor. Research experience is highly valued by prospective employers as it shows a willingness and ability to undertake independent, as well as guided, research in bioinformatics. The project is not conducted in the way of contact hours per week for a semester. Rather, the student is expected to work in a continuous manner throughout the semester.

BINF5003
Bioinformatics Research Project B
Credit points: 6 Teacher/Coordinator: A/Prof Jermiin Session: Semester 1, Semester 2 Class: meetings by arrangement with the supervisor Corequisites: BINF5002, BIoL5001, BIoL5002, MOBT5201 and STAT5001 Assessment: seminar, final report Note: Department permission required for enrolment.

BINF5003 comprises the continuation of a research project commenced in BINF5002.

BIOL4015
Scientific Research in Biology
Credit points: 6 Teacher/Coordinator: Lecturers:- Prof S. Simpson, Prof B. Oldroyd, A/Prof R. Coleman, A/Prof N. Beekman, Dr D. Hochuli, Dr C. McArthur Session: Semester 1, Semester 2 Class: 13 workshops Prerequisites: Pass grade in an area of Life Sciences or Equivalent Corequisites: BIoL4016 Prohibitions: BIoL4009, BIoL4010 Assessment: Research proposal (based on University of Sydney Research and Development scheme) (50%). Written assignment to include data analysis and presentation of analysed results (50%) Note: Department permission required for enrolment. Note: BIoL4016 corequisite not required by Bioinformatics Masters Research Stream students.

Studies in Life Science investigate the dynamics of living organisms and span the levels of biological organization, from the ecosystem to the molecular. Research in the Life Sciences strives to offer explanations as to how organisms function, interact and evolve. A graduate Biologist must be conversant with a wide range of analytical techniques, including quantitative analysis as well as being able to communicate effectively about their research. Students must understand the logical structures which underpin analytical techniques, be able to design experiments based on understanding of biological processes and document their intended research. This course work unit provides the core skills and techniques that will equip students to perform a broad range of laboratory and field studies in biology, develop critical thinking and clear communication skills. Students will be introduced to the appropriate methodologies for data collection, handling and analysis which underpin the successful testing of biological hypotheses, and document their intended research as a grant proposal.

Textbooks

BIOL5001
Molecular Genetics and Inheritance
Credit points: 6 Teacher/Coordinator: Dr Jenny Saleeba Session: Semester 1 Class: 2-3 tutorials per week. Assessment: Formal exam, quizzes Note: Department permission required for enrolment. Note: Department permission not required for Stream A Bioinformatics students.

The fundamentals of inheritance and applications of molecular genetics will be covered. At the completion of the Unit, students will be able to recognise the most common modes of inheritance, understand the fundamentals of linkage analysis, be familiar with common genome structures, be familiar with modes of transmission and mechanisms of change in genetic material, be familiar with the genetic mechanisms behind complex biological systems, understand basic methods in recombinant DNA technology, be adept at applying genetics to solving problems in biology and understand the fundamentals of quantitative and population genetics.

BINF5002
Bioinformatics: Sequences and Genomes
Credit points: 6 Teacher/Coordinator: Dr Neville Firth Session: Semester 1 Class: 1 lecture or tutorial per week, 1 three hour practical per fortnight. Corequisites: BIoL5001 Prohibitions: BIoL3027, BIoL3927 Assessment: Formal exam, projects. Note: Department permission required for enrolment. Note: Department permission not required for Bioinformatics students. BIoL5001 corequisite not required for Molecular Biotechnology students or Stream B Bioinformatics students.

Bioinformatics - the application of computers to life sciences, and genomics - the study of biology at the genome-wide scale, are revolutionising basic and applied biological sciences in the 21st century. The unit focuses on the application of bioinformatics to the storage, retrieval and analysis of biological information, principally in the form of nucleotide and amino acid sequences. An extensive practical component emphasises the development of hands-on skills in the use of bioinformatics technologies. Students will gain an appreciation of the significance and potential of bioinformatics and genomics in contemporary life sciences; an awareness of the breadth of bioinformatics resources and applications, including non-sequence-based biological information; skills and experience in the use of a core set of programs and databases for nucleotide and amino acid sequence analysis and phylogenetic reconstruction; a basic understanding of the theoretical foundation and underlying assumptions of the programs, and their relative strengths/limitations; and, competence in the evaluation of output from the programs in appropriate biological context.

COMP5028
Object-Oriented Design
Credit points: 6 Session: Semester 1 Class: One 2 hour lecture and one 1 hour tutorial per week. Prohibitions: INFO3220 Assumed knowledge: Intermediate level of object oriented programming such as Java Assessment: Assignments, written exam.

This unit introduces Object-Oriented Analysis and Design especially the principles of modelling through Rational Unified Process and agile processes using Unified Modeling Language (UML), both of which are industry standard. Students work in small groups to experience the process of object-oriented analysis, architectural design, object-oriented design, implementation and testing by building a real-world application.

Objectives: In this unit students will develop the ability to: identify how the system interacts with its environment; identify appropriate objects and their attributes and methods; identify the relationships between objects; write the interfaces of each object; implement and test the objects; read and write various UML diagrams including use case, class, and sequence diagrams; apply design patterns to standard problems.
COMP5206
Introduction to Information Systems
Credit points: 6 Session: Semester 1, Semester 2 Classes: One 2 hour lecture and one 1 hour tutorial per week. Prohibitions: INFO5210 Assessment: Assignments, written exam

This unit provides a comprehensive introduction to information systems in organisations and the enabling role of information technology. The critical role of data and knowledge management will be covered from both conceptual and practical standpoints. Methods and techniques for analysing systems and eliciting user requirements will be emphasised. Key topics covered include: basic information systems concepts; systems approach and systems thinking; E-Business and E-Commerce; data and knowledge management; systems analysis and development methodologies; ethical, legal and social aspects of information technologies; and Web 2.0 and social computing. On completion of this unit students will have a good understanding of important information concepts; a deep understanding of the systems approach and its applicability; be able to develop skills to perform systems analysis in contemporary systems environments; have an understanding of major conceptual and technological developments in Information Systems.

COMP5211
Algorithms
Credit points: 6 Session: Semester 1, Semester 2 Classes: One 2 hour lectures and one 1 hour tutorial per week. Assessment: Assignments, written exam.

The study of algorithms is a fundamental aspect of computing. This unit of study covers data structures, algorithms, and gives an overview of the main ways of thinking used in IT from simple list manipulation and data format conversion, up to shortest paths and cycle detection in graphs. The objective of the unit is to teach basic concepts in data structure, algorithm, dynamic programming and program analysis. Students will gain essential knowledge in computer science.

COMP5213
Computer and Network Organisation
Credit points: 6 Session: Semester 1, Semester 2 Classes: One 2 hour lecture and one 1 hour tutorial per week. Assessment: Assignments, written exam.

This unit of study provides an overview of hardware and system software infrastructure including: compilers, operating systems, device drivers, network protocols, etc. It also includes user-level Unix skills and network usability. The objectives are to ensure that on completion of this unit students will have developed an understanding of compilers, operating systems, device drivers, network protocols, Unix skills and network usability.

COMP5214
Software Development in Java
Credit points: 6 Session: Semester 2 Classes: One 2 hour lecture and one 1 hour tutorial per week. Assessment: Assignments, written exam.

This unit of study introduces software development methods, where the main emphasis is on careful adherence to a process. It includes design methodology, quality assurance, group work, version control, and documentation. It will suit students who do not come from a programming background, but who want to learn the basics of computer software.

Objectives: This unit of study covers systems analysis, a design methodology, quality assurance, group collaboration, version control, software delivery and system documentation.

COMP5318
Knowledge Discovery and Data Mining
Credit points: 6 Session: Semester 1 Classes: (Lec 2hrs & Prac 1hr) per week Assumed knowledge: COMP5138 and familiarity with basic statistics Assessment: Assignments, written exam. Note: Department permission required for enrolment.

Knowledge discovery is the process of extracting useful knowledge from data. Data mining is a discipline within knowledge discovery that seeks to facilitate the exploration and analysis of large quantities of data, by automatic or semiautomatic means. This subject provides a practical and technical introduction to knowledge discovery and data mining.

Objectives: Topics to be covered include problems of data analysis in databases, discovering patterns in the data, and knowledge interpretation, extraction and visualisation. Also covered are analysis, comparison and usage of various types of machine learning techniques and statistical techniques: clustering, classification, prediction, estimation, affinity grouping, description and scientific visualisation.

COMP5424
Information Technology in Biomedicine
Credit points: 6 Session: Semester 1 Classes: (Lec 2hrs & Tut 1hr) per week Assumed knowledge: Basic programming skills Assessment: Assignments, quizzes, written exam.

Information technology (IT) has significantly contributed to the research and practice of medicine, biology and health care. The IT field is growing enormously in scope with biomedicine taking a lead role in utilizing the evolving applications to its best advantage. The goal of this unit of study is to provide students with the necessary knowledge to understand the information technology in biomedicine. The major emphasis will be on the principles associated with biomedical digital imaging systems and related biomedical data processing, analysis, visualization, registration, modelling, compression, management and communication. Specialist areas such as Picture Archiving and Communication Systems (PACS), computer-aided diagnosis (CAD), image-guided surgery (IGS), content-based medical image retrieval (CBMIr), and ubiquitous m-Health, etc. will be addressed. A broad range of practical integrated clinical applications will be also elaborated.

COMP5426
Parallel and Distributed Computing
Credit points: 6 Session: Semester 1 Classes: (Lec 2hrs & Prac 1hr) per week. Assumed knowledge: Equivalent of COMP5116 Assessment: Assignments, written exam.

This unit is intended to introduce and motivate the study of high performance computer systems. The student will be presented with the foundational concepts of parallel and distributed computing that are pertaining to the different types and classes of high performance computers. The student will be exposed to the description of the computer systems and will also get an introduction to the principles of cloud computing. Students will gain skills in evaluating, experimenting with, and optimizing the performance of high performance computers. The unit also provides students with the ability to undertake more advanced topics and courses on high performance computing.

MCAN5104
Image Analysis
Credit points: 6 Teacher/Coordinator: Dr Allan S. Jones Session: Semester 1, Semester 2 Classes: 10 one hour lectures, 10 two hour practicals over a one week period. Assessment: Eight practical reports (50%), 1 three part mathematical assignment (20%), 1 in-depth assignment of 2500 word length on a relevant topic (30%).

This unit of study covers the nature and processing of images and the extraction of quantitative data from them. Participants will develop a sound working knowledge of both traditional stereology techniques and modern digital image processing and analysis. Emphasis is placed on an understanding of both the strengths and the limitations that are inherent in image data, and the technology applied to it. Topics in this module include: a general review of image acquisition, filters and transforms, segmentation methods, calibration of hardware for analysis, extraction of simple features from images, advanced feature extraction from images, limitations of measurement and a general overview of stereology, including geometric probability, density estimation and sampling.
MOBT5201
Applied Molecular Biotech A (Theory)
Credit points: 8 Teacher/Coordinator: Dr Neville Firth Session: Semester 1 Classes: One 2 hour lecture and one 1 hour tutorial per week. Prohibitions: BCHM3098, BCHM5001, MOBT5101 Assessment: One 2 hour theory exam (70%) and in semester assessments (30%).

This unit of study comprises the lecture component of MOBT5101.

STAT5001
Applied Statistics for Bioinformatics
Credit points: 8 Session: Semester 1 Classes: one three hour seminar per week Assessment: computer exam and lab reports

This is an introduction to statistics and data analysis used in Bioinformatics and many other areas of Biology. It aims to give an understanding of the concepts and the use of a major scientific statistical package, R. In addition to an introduction to ideas of analysis of data and statistical tests the unit will introduce ideas of simulation in resampling and the methods of clustering and classification of particular importance in Bioinformatics.

Resolutions

Master of Applied Science (Bioinformatics)
Graduate Diploma in Applied Science (Bioinformatics)
Graduate Certificate in Applied Science (Bioinformatics)

Course rules

1. Admission
1.1 The Dean of the Faculty of Science may admit to candidature for:
1.1.1 the Graduate Certificate in Applied Science:
1.1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1; or
1.1.1.3 persons who have experience which is considered to demonstrate the knowledge and aptitude required to undertake the units of study;
1.1.2 the Graduate Diploma in Applied Science:
1.1.2.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.2.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.2.1; or
1.1.2.3 persons who have completed requirements for the Graduate Certificate in Applied Science, or equivalent;
1.1.3 the Master of Applied Science:
1.1.3.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.3.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.3.1; or
1.1.3.3 persons who have completed requirements for the Graduate Diploma in Applied Science, or equivalent.

2. Units of study
2.1 The units of study for the Graduate Certificate in Applied Science (Bioinformatics), Graduate Diploma in Applied Science (Bioinformatics), and Master of Applied Science (Bioinformatics), are listed in the table of units of study in this chapter of the Faculty of Science Handbook.

2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included under units of study description.

3. Requirements for the Graduate Certificate in Applied Science (Bioinformatics) (GradCertApplSc(Bioinf)); Graduate Diploma in Applied Science (Bioinformatics) (GradDipApplSc(Bioinf)); Master of Applied Science (Bioinformatics) (MApplSc(Bioinf))
3.1 Candidates for the Graduate Certificate in Applied Science (Bioinformatics) Stream A are required to complete satisfactorily four core units of study (BIOL5001, BIOL5002, MOBT5201, STAT5001).
3.2 Candidates for the Graduate Certificate in Applied Science (Bioinformatics) Stream B are required to complete satisfactorily four core units of study (BIOL5002, MOBT5201, STAT5001, COMP5213).
3.3 Candidates for the Graduate Diploma in Applied Science (Bioinformatics) Stream A are required to complete satisfactorily four core units of study (BIOL5001, BIOL5002, MOBT5201, STAT5001) and 12 credit points from optional units of study.
3.4 Candidates for the Graduate Diploma in Applied Science (Bioinformatics) Stream B are required to complete satisfactorily five core units of study (BIOL5002, MOBT5201, STAT5001, COMP5213, COMP5214) and 6 credit points from optional units of study.
3.5 Candidates for the Master of Applied Science (Bioinformatics) Stream A are required to complete satisfactorily four core units of study (BIOL5001, BIOL5002, MOBT5201, STAT5001) and 24 credit points from optional units of study.
3.6 Candidates for the Master of Applied Science (Bioinformatics) Stream B are required to complete satisfactorily five core units of study (BIOL5002, MOBT5201, STAT5001, COMP5213, COMP5214) and 18 credit points from optional units of study.

Faculty rules

4. Details of units of study
4.1 The units of study for the Graduate Certificate in Applied Science (Bioinformatics), Graduate Diploma in Applied Science (Bioinformatics), and Master of Applied Science (Bioinformatics), are listed in the table of units of study in this chapter of the Faculty of Science Handbook.
4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.
4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.
4.4 In these resolutions, to complete a unit of study or any derivative expression means:
4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;
4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
4.4.3 to pass any other examination of the unit of study that may apply.
4.5 All units of study for a particular subject area may not be available every semester.
4.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other postgraduate coursework programs in the Faculty or elsewhere in the University.
5. Enrolment in more/less than minimum load
5.1 A candidate may proceed on either a full-time or a part-time basis.
6. Cross-institutional study
6.1 Cross institutional study shall not be available to students enrolled in the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science courses, except where the University of Sydney has a formal Cooperation Agreement with another University.
7. Restrictions on enrolment
7.1 Admission to candidature may be limited by a quota.
7.2 In determining the quota, the University will take into account:
7.2.1 availability of resources including space, laboratory and computing facilities; and
7.2.2 availability of adequate and appropriate supervision.
In considering an application for admission to candidature the Dean shall take account of the quota and will select, in preference to applicants who are most meritorious in terms of sub-section 1 above.

8. Discontinuation of enrolment

8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature

9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence

10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress

11.1 Candidates for the Master of Applied Science (Bioinformatics), the Graduate Diploma in Applied Science (Bioinformatics), and the Graduate Certificate in Applied Science (Bioinformatics), shall be governed by the rules as follows:

11.1.1 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Master of Applied Science (Bioinformatics) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Diploma in Applied Science (Bioinformatics);

11.1.2 A student who has failed a cumulative total of 18 credit points at any stage of enrolment in the Master of Applied Science (Bioinformatics) and/or the Graduate Diploma in Applied Science (Bioinformatics) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Certificate in Applied Science (Bioinformatics);

11.1.3 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Graduate Certificate in Applied Science (Bioinformatics) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.2 A student who has failed a cumulative total of more than 18 credit points in the Master of Applied Science (Bioinformatics) and/or the Graduate Diploma in Applied Science (Bioinformatics) and/or the Graduate Certificate in Applied Science (Bioinformatics) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.3.1 A student who has failed a core unit at the second attempt in the Master of Applied Science (Bioinformatics) and/or the Graduate Diploma in Applied Science (Bioinformatics) and/or the Graduate Certificate in Applied Science (Bioinformatics) will be deemed to have failed to complete course requirements and will be required to show good cause why he or she should be allowed to re-enrol.

11.3.2 If good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit

12.1 A candidate for the Graduate Certificate in Applied Science (Bioinformatics) shall complete the requirements for the award in a minimum enrolment of one semester and a maximum enrolment of four semesters.

12.2 A candidate for the Graduate Diploma in Applied Science (Bioinformatics) shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of six semesters.

12.3 A candidate for the Master of Applied Science (Bioinformatics) shall complete the requirements for the award in a minimum of two semesters and a maximum of eight semesters.

13. Assessment policy

13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidature.

14. Credit transfer policy

14.1 Credit is not available in the Graduate Certificate in Applied Science (Bioinformatics), Graduate Diploma in Applied Science (Bioinformatics) and Master of Applied Science (Bioinformatics) for postgraduate study which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Certificate in Applied Science (Bioinformatics) may transfer, within three years, to the Graduate Diploma in Applied Science (Bioinformatics) and receive credit for up to 24 credit points from the Graduate Certificate in Applied Science (Bioinformatics).

14.3 A candidate who has qualified for the award of the Graduate Diploma in Applied Science (Bioinformatics) may transfer, within three years, to the Master of Applied Science (Bioinformatics) and receive credit for up to 36 credit points from the Graduate Diploma in Applied Science.

14.4 A candidate who has completed units of study in the Applied Science program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Applied Science program and receive credit for the units of study completed.
19. Bioinformatics coursework degrees
20. Coastal Management coursework degrees

Master of Applied Science (Coastal Management) (MApplSc(CoastalMgt))
Degree Code: LC043

Graduate Diploma in Applied Science (Coastal Management) (GradDipApplSc(CoastalMgt))
Degree Code: LF031

Graduate Certificate in Applied Science (Coastal Management) (GradCertApplSc(CoastalMgt))
Degree Code: LG016

Note that these degrees are not available to new students in 2010.

This chapter sets out the requirements for postgraduate degrees offered in the Faculty of Science in the area of Coastal Management. A comprehensive guide to the requirements and units of study of the coursework degrees is listed.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected at the end of this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at www.usyd.edu.au/publications/calendar.

Course overview
The University of Sydney Institute of Marine Science in collaboration with the Department of Environment and Conservation, the NSW Coastal Council and Surf Life Saving Australia, has developed a new and innovative graduate program in Coastal Management. This program is the only one of its kind in Australia, and has been designed and will be taught by leading researchers and practitioners of coastal management.

It will be taught primarily in coastal locations in the Sydney region. It will draw on local coastal management systems, issues and problems as part of the program material. It will also make use of the 2003 NSW Coastal Policy and Coastal Management Manual to provide students with an in-depth understanding of all aspects of coastal management. The program will include units on coastal processes and systems, coastal zone policy and management, beach management and the application of geographical information systems (GIS) to the coastal zone.

The program is ideal for recent graduates who wish to extend their knowledge of coastal and beach management, and for coastal practitioners in local, state, federal and other agencies and in industry who require additional training and knowledge of coastal management policy and issues. The program will provide formal training and also enable students to undertake a supervised coastal management project. A key aspect of all Master's units will be a broad on-site exposure to coastal processes, systems, issues and real management problems in the greater Sydney region, and in some units in regional NSW.

Course outcomes
Upon completion of the graduate certificate graduates will possess a practical and theoretical background in a range of issues related to coastal management. This knowledge can be extended by completion of a graduate diploma, and further extended through course work and research projects as part of a master's program.

Coastal Management Postgraduate Degree Table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Degrees: Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB: Certificate students must complete two of these core units.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARS5003 Beach Management</td>
<td>6</td>
<td>This is a compulsory unit for all levels of the Applied Science (Coastal Management) program</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOG5001 Geographic Information Science A</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>All Degrees: Optional Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Certificate students must complete 12 credit points from the following (or from the remaining two core units).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma students must complete 12 credit points from the following.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masters students must complete 24 credit points from the following.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVS505 Ecolog Principles for Environ Scientists</td>
<td>6</td>
<td>This is a compulsory course for all levels of the postgraduate Applied Science (Environmental Science) program.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENVS508 App Ecology for Environmental Scientists</td>
<td>6</td>
<td>This is a compulsory course for all levels of the postgraduate Applied Science (Environmental Science) program.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENVS509 Environmental Simulation Modelling</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Available to Diploma and Masters students only:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MARS5004 Coastal Management Field School</td>
<td>6</td>
<td>C MARS5001, MARS5002, MARS5003 and GEOG5001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Available to Masters students only:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To view the latest update, download, purchase or search a handbook visit Handbooks online: www.usyd.edu.au/handbooks

331
Coastal Management Unit of Study Descriptions 2010

ENVI5705
Ecolog Principles for Environ Scientists
Credit points: 6 Teacher/Coordinator: Dr Charlotte Taylor Session: Semester 1
Classes: One 3 hour lecture per week. Assessment: Assignment, presentation.
Note: This is a compulsory course for all levels of the postgraduate Applied Science (Environmental Science) program.
This unit of study introduces fundamental concepts of modern ecology for environmental scientists so as to provide non-biologically trained persons an understanding of the nomenclature of ecology and the physical parameters represented.

ENVI5708
Introduction to Environmental Chemistry
Credit points: 6 Teacher/Coordinator: A/Prof Gavin Birch Session: Semester 1
Classes: Two 1 hour lectures and one practical per week; one field trip per semester. Assessment: Assignment, presentation and report
Note: This is a compulsory course for the Grad Dip and Masters levels of the Applied Science (Environmental Science) program.
Introduction to Environmental Chemistry provides the basic chemical knowledge required to be able to understand chemical analysis of air, water and soil samples taken in the field. This is supplemented by a field-based project analysing soil and sediment samples for trace pollutants from locations in and around Sydney. This unit of study involves 4 contact hours per week for one semester as well as some time in the field as arranged with the class.

ENVI5803
Law and the Environment
Credit points: 6 Teacher/Coordinator: Dr Gerry Bates Session: Semester 1
Classes: One 2 hour lectures per week. Assessment: Essays
This unit of study provides an overview of Australian and international law as it pertains to the environment. It looks at a number of environmental issues at the various levels of analysis, policy making, implementation of policy and dispute resolution. It also provides a broad background to political and economic issues as they related to the legal issues. This unit of study involves lecture material and an essay on policy issues.

ENVI5808
App Ecology for Environmental Scientists
Credit points: 6 Teacher/Coordinator: Dr Clare McArthur Session: Semester 2
Classes: Three 1 hour lectures per week. Assessment: Essays and presentations
This unit of study complements ENVI5705, and covers in depth the concerns of modern ecology pertaining to both terrestrial and marine ecosystems. An understanding of the complex issues of invasive species, conservation of biodiversity and ecological management of the environment is provided.

ENVI5809
Environmental Simulation Modelling
Credit points: 6 Teacher/Coordinator: Dr David Chapman Session: Semester 1
Classes: Six workshops. Assessment: Report
The concept and use of computer modelling in natural resource management is introduced in this unit of study, which is aimed particularly at non-programmers.

ENVI5903
Sustainable Development
Credit points: 6 Teacher/Coordinator: A/Prof Phil McManus Session: Semester 2
Classes: Two 2 hour lectures per week for seven weeks. Assessment: Essay and presentation
This unit of study demonstrates the history and contested understandings of the concept of sustainable development. It applies these concepts to explore important environmental science issues such as population, water management sustainable cities, rural development, industrial ecology, and energy issues. The unit concludes by presenting a range of future scenarios and encouraging students to develop their own vision of sustainability at the global and other scales, and to communicate their means of achieving this sustainability vision.

ENVI5904
Understanding Environmental Uncertainty
Credit points: 6 Teacher/Coordinator: Associate Professor Ross Coleman Session: Semester 2
Classes: One three hour lecture per week for 8 weeks. Assessment: Tutorials, oral presentations and written reports.
No assessment of potential environmental impacts is possible without relevant information about the ecological consequences. This unit is for those without a science degree, to explain the need to quantify and what are relevant measures. Describing and understanding uncertainty will be explained in the context of precautionary principles. Issues about measuring biodiversity and the spatial and temporal problems of ecological systems will be introduced.

ENVI5905
Management of Parks
Credit points: 6 Teacher/Coordinator: A/Prof Deirdre Dragovich Session: Semester 2
Classes: Lectures 2hrs for 6 weeks, Practical work 3 hrs for 3 wks, Fieldwork 21 hrs (2.5 days), Total / week 7 hrs average Assessment: A prac report, assignment, one 1hr exam
This unit of study evaluates the reasons for the existence of parks, including National Parks, recreational spaces and reserves, and examines the applied aspects of their management. Topics covered include conservation, ecotourism, plans of management and their implementation (with particular emphasis on the remediation of the impacts of visitor numbers and erosion), fire control practices and resource management. Students will visit various parks within the Sydney region (such as the Royal National Park, the Sydney Harbour Foreshore, Jenolan Caves Reserve and Centennial Park) that highlight the different issues introduced in lectures and which illustrate the practical measures undertaken to manage the parks in a sustainable fashion.
Textbooks
A Course Handbook will be provided.

GEOG5001
Geographic Information Science A
Credit points: 6 Teacher/Coordinator: Dr David Chapman Session: Semester 1, Semester 2
Classes: Six workshops. Assessment: Report
This unit of study gives an overview of basic spatial data models, and enables students to understand the import and export of data to and from a geographical information system (GIS). The manipulation of spatial data at a level appropriate to planning or locational applications, and the development of thematic maps from diverse data layers, will be addressed.

GEOG5002
Geographic Information Science B
Credit points: 6 Teacher/Coordinator: Dr Eleanor Bruce Session: Semester 2
Classes: One 2 hour lectures, one 1 hour tutorial, one 3 hour practical per week for 6 weeks. Assumed knowledge: GEOG5001 Assessment: 2500 word assignment, seminar presentation, tutorial reports, WebCT quiz
This course will provide the conceptual background to more advanced GIS analysis applications and spatial reasoning methods in the context of contemporary environmental issues. The course is designed to provide an understanding of spatial analysis techniques available within a GIS environment, explore a diversity of both social and physical environmental applications and address emerging issues in GIS research. A range of topics will be introduced including field based capture of spatial information, spatial data structures, surface
modelling, visibility analysis, hydrological modeling, network analysis, spatial data uncertainty and social GIS.

Conceptual material presented in lectures and tutorial workshops will be placed in an applied context through a series of laboratory and field sessions designed to strengthen practical understanding and awareness of GIS methods.

MARS5003
Beach Management
Credit points: 6
Session: Semester 2
Note: This is a compulsory unit for all levels of the Applied Science (Coastal Management) program

This unit of study focuses on the fundamental issues, strategies and infrastructure involved in the management of urban, rural and resort beach environments. At present, the concept and application of beach management is poorly defined. The goal of this unit of study is to provide an integrated and comprehensive template for beach management covering a range of issues such as beach hazard recognition and assessment, public safety and awareness, patterns of public beach usage, and the planning and undertaking of major events. Specific topics covered include hazardous wave and surf conditions, rip currents, lifeguarding, beach capacity, demographics of beach users, beach infrastructure, beach auditing, surf carnivals, sporting events and concerts. The unit will use lectures, real-world scenarios, case studies and field exercises to enable students to develop beach management plans appropriate to their backgrounds.

MARS5004
Coastal Management Field School
Credit points: 6
Session: Semester 2
Corequisites: MARS5001, MARS5002, MARS5003 and GEOG5001

The field school will be based around visits to a series of coastal sites along the NSW coast. The unit will include a series of introductory lectures followed by visits to the sites where both unit staff and local coastal managers and stakeholders will address the students on the nature of the site, its historical development and contemporary coastal management issues and solutions. Sites will be selected to the representative of both the range of coastal systems present along the NSW coast, as well as the range of management issues presented by the sites.

MARS5006
Coral Reefs, Science and Management
Credit points: 6
Session: Semester 1
Classes: University base delivery: Preferred: a) tutorial (1 hr), b) on-line exercises (2 hr) Field based delivery: Lectures (11 x 1 hr), Seminars (4 x 1 hr), Tutorials - individual consultations to develop concepts in research (2 x 1 hr), Independent Research and Oral Presentation (40 hrs)
Assessment: Written assignments: essay and project report; oral presentations; seminar and lecture participation.
Note: Department permission required for enrolment.

This unit provides an in-depth overview of the key biological and non-biological processes that make up coral reef ecosystems. There is a focus on the biogeographic, oceanographic and physiological processes underlying the integrity of global tropical reef systems. The Great Barrier Reef is used as a case study to explore emerging concepts on the influence of natural and anthropogenic processes on the integrity of global reef and lagoon systems. Learning activities will include a series of background lectures and research seminars and tutorials in the development of a major research project. A major aspect of this unit is an independent research project conducted under the supervision of the course instructors. The unit concludes with a series of oral presentations based on student research. Assessment tasks will consist of two essays and a research project report and presentation. The curriculum in this unit is based on current research and a course book will be provided. This is a field intensive course held at One Tree Island Research Station or Heron Island Research Station. The course is ex Gladstone Queensland and students are expected to make their own way there. This unit will be run over 8 days and there will be an additional course fee for food and accommodation, expected to be $600.

NTMP5005
Tropical Coastal Management
Credit points: 6
Teacher/Coordinator: Lucie Reynolds (course contact)
Session: Semester 2
Field school 80 hours intensive
Corequisites: MARS5002 and MARS5003
Prohibitions: NTMP3005
Assessment: Presentation, teamwork, assignment, 1 hr exam
Note: Department permission required for enrolment.

This course examines the impacts of human activities on coastal and marine environments. It explores the complex relationships among the ecological and social values of these environments and outlines strategies and tools for their management. This is an intensive course that will be held at the University of Queensland Moreton Bay Research Station, North Stradbroke Island.

Textbooks
Handouts provided.

Resolutions

Master of Applied Science (Coastal Management)
Graduate Diploma in Applied Science (Coastal Management)
Graduate Certificate in Applied Science (Coastal Management)

Course rules

1. Admission
1.1 The Dean of the Faculty of Science may admit to candidature for:
1.1.1 the Graduate Certificate in Applied Science (Coastal Management):
1.1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1; or
1.1.1.3 persons who have experience which is considered to demonstrate the knowledge and aptitude required to undertake the units of study;
1.1.2 the Graduate Diploma in Applied Science (Coastal Management):
1.1.2.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.2.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.2.1; or
1.1.2.3 persons who have completed requirements for the Graduate Certificate in Applied Science, or equivalent;
1.1.3 the Master of Applied Science (Coastal Management):
1.1.3.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.3.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.3.1; or
1.1.3.3 persons who have completed requirements for the Graduate Diploma in Applied Science, or equivalent.

2. Units of study
2.1 The units of study for the Graduate Certificate in Applied Science (Coastal Management), Graduate Diploma in Applied Science (Coastal Management), and Master of Applied Science (Coastal Management), are listed in the table of units of study in this chapter of the Faculty of Science Handbook.

333
2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included under unit of study descriptions.

3. Requirements for the Graduate Certificate in Applied Science (Coastal Management) (GradCertApplSc(Coastal Mgt)); Graduate Diploma in Applied Science (Coastal Management) (GradDiplApplSc(Coastal Mgt)); Master of Applied Science (Coastal Management) (MApplSc(Coastal Mgt))

3.1 Candidates for the Graduate Certificate in Applied Science (Coastal Management) are required to complete satisfactorily at least two core units of study: MARS5001, MARS5002, MARS5003, GEOG5001, and 12 credit points from the following optional units of study: MARS5001, MARS5002, MARS5003, GEOG5001, CHEM5001, ENVI5705, ENVI5803, ENVI5808, ENVI5809.

3.2 Candidates for the Graduate Diploma in Applied Science(Coastal Management) are required to complete satisfactorily four core units of study (MARS5001, MARS5002, MARS5003, GEOG5001) and 12 credit points from the following optional units of study: MARS5004, CHEM5001, ENVI5705, ENVI5803, ENVI5806, ENVI5809.

3.3 Candidates for the Master of Applied Science (CoastalManagement) are required to complete satisfactorily four core units of study (MARS5001, MARS5002, MARS5003, GEOG5001) and 24 credit points from the following optional units of study: MARS5004, MARS5005, CHEM5001, ENVI5705, ENVI5803, ENVI5808, ENVI5809.

Faculty rules

4. Details of units of study

4.1 The units of study for the Graduate Certificate in Applied Science (Coastal Management), Graduate Diploma in Applied Science (Coastal Management), and Master of Applied Science (Coastal Management), are listed in the table of units of study in this chapter of the Faculty of Science Handbook.

4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

4.4 In these resolutions, ‘to complete a unit of study’ or any derivative expression means:

4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;

4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and

4.4.3 to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.

4.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other postgraduate coursework programs in the Faculty or elsewhere in the University.

4.7 The Master of Applied Science (Coastal Management) shall be awarded in two grades, namely Pass and, in the case of an outstanding candidate, Pass with Merit.

5. Enrolment in more/less than minimum load

5.1 A candidate may proceed on either a full-time or a part-time basis.

6. Cross-institutional study

6.1 Cross institutional study shall not be available to students enrolled in the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science courses, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment

7.1 Admission to candidature may be limited by a quota.

7.2 In determining the quota, the University will take into account:

7.2.1 availability of resources including space, laboratory and computing facilities; and

7.2.2 availability of adequate and appropriate supervision.

7.3 In considering an application for admission to candidature the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of sub-section 1 above.

8. Discontinuation of enrolment

8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature

9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence

10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress

11.1 Candidates for the Master of Applied Science (Coastal Management), the Graduate Diploma in Applied Science (Coastal Management), and the Graduate Certificate in Applied Science (Coastal Management), shall be governed by the rules as follows:

11.1.1 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Master of Applied Science (Coastal Management) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Diploma in Applied Science (Coastal Management);

11.1.2 A student who has failed a cumulative total of 18 credit points at any stage of enrolment in the Master of Applied Science (Coastal Management) and/or the Graduate Diploma in Applied Science (Coastal Management) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Certificate in Applied Science (Coastal Management);

11.1.3 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Graduate Certificate in Applied Science (Coastal Management) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.2 A student who has failed a cumulative total of more than 18 credit points in the Master of Applied Science (Coastal Management) and/or the Graduate Diploma in Applied Science (Coastal Management) and/or the Graduate Certificate in Applied Science (Coastal Management) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.3.1 A student who has failed a core unit at the second attempt in the Master of Applied Science (Coastal Management) and/or the Graduate Diploma in Applied Science (Coastal Management) and/or the Graduate Certificate in Applied Science (Coastal Management) will be deemed to have failed to complete course requirements and will be required to show good cause why he or she should be allowed to re-enrol.

11.3.2 If good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit

12.1 A candidate for the Graduate Certificate in Applied Science (Coastal Management) shall complete the requirements for the award in a minimum enrolment of one semester and a maximum enrolment of four semesters.

12.2 A candidate for the Graduate Diploma in Applied Science (Coastal Management) shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of six semesters.

12.3 A candidate for the Master of Applied Science (Coastal Management) shall complete the requirements for the award in a minimum of two semesters and a maximum of eight semesters.
13. **Assessment policy**

13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidature.

14. **Credit transfer policy**

14.1 Credit is not available in the Graduate Certificate in Applied Science (Coastal Management), Graduate Diploma in Applied Science (Coastal Management) and Master of Applied Science (Coastal Management) for postgraduate study which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Certificate in Applied Science (Coastal Management) may transfer, within three years, to the Graduate Diploma in Applied Science (Coastal Management) and receive credit for up to 24 credit points from the Graduate Certificate in Applied Science (Coastal Management).

14.3 A candidate who has qualified for the award of the Graduate Diploma in Applied Science (Coastal Management) may transfer, within three years, to the Master of Applied Science (Coastal Management) and receive credit for up to 36 credit points from the Graduate Diploma in Applied Science (Coastal Management).

14.4 A candidate who has completed units of study in the Applied Science program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Applied Science program and receive credit for the units of study completed.
20. Coastal Management coursework degrees
This chapter sets out the requirements for postgraduate degrees offered in the Faculty of Science in the area of Environmental Science. A comprehensive guide to the requirements and units of study of the coursework degrees is listed.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously in this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at www.usyd.edu.au/publications/calendar

Master of Environmental Science and Law

Degree Code: LC040

Course overview

The Master of Environmental Science and Law program is a novel concept of undertaking dual courses in the fields of both Science and Law. The program is unique and is not available elsewhere. It provides science graduates with the opportunity of extending their scientific knowledge into the area of the environment, as well as acquiring new skills in the field of environmental law. For law graduates, the opportunity is to extend their knowledge into environmental aspects of law, as well as to gain an understanding of some of the concepts underpinning environmental science.

Course outcomes

Upon completion of the Master of Environmental Science and Law graduates will possess a practical and theoretical background in aspects of Environmental Science and Environmental Law. This knowledge includes research and practical skills in these areas. The program is designed to integrate disciplines which are normally considered separately and which would be difficult to study outside of the Master of Environmental Science and Law program.

Master of Environmental Science and Law table

The table lists the units of study available within this degree. Other units are possible with the permission of the Director of Environmental Science. Note: Law units of study are taught in intensive mode. Units offered change from time to time. Contact the Faculty of Law for a complete and up to date list.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB: LAWS6252 is compulsory for students without a background in Law</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAWS6044 Environmental Law and Policy</td>
<td>6</td>
<td>C LAWS6252 or law degree from a common law jurisdiction</td>
<td></td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Environmental law candidates must complete LAWS6252 and this unit prior to enrolling in other law optional units</td>
<td></td>
<td>S2 Intensive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAWS6252 Legal Reasoning & the Common Law System</td>
<td>6</td>
<td>N LAWS6881 International candidates must undertake this unit during the first week of their study</td>
<td></td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Late IntA</td>
</tr>
</tbody>
</table>

Elective Units: Students must enrol in a minimum of 24 credit points offered by each Faculty

<table>
<thead>
<tr>
<th>Science Elective Units</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(ENVI5705, ENVI5708 and ENVI5808 are recommended)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVI5705 Ecolog Principles for Environ Scientists</td>
<td>6</td>
<td>This is a compulsory course for all levels of the postgraduate Applied Science (Environmental Science) program.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENVI5705 Ecolog Principles for Environ Scientists</td>
<td>6</td>
<td>This is a compulsory course for all levels of the postgraduate Applied Science (Environmental Science) program.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENVI5707 Energy - Sources, Uses and Alternatives</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENVI5708 Introduction to Environmental Chemistry</td>
<td>6</td>
<td>This is a compulsory course for the Grad Dip and Masters levels of the Applied Science (Environmental Science) program.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENVI5808 App Ecology for Environmental Scientists</td>
<td>6</td>
<td>This is a compulsory unit for all levels of the postgraduate Applied Science (Environmental Science) program</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENVI5809 Environmental Simulation Modelling</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOG5001 Geographic Information Science A</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOG5002 Geographic Information Science B</td>
<td>6</td>
<td>A GEOG5001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>WILD5001 Australasian Wildlife: Introduction</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
</tbody>
</table>
Environmental Science and Law unit of study descriptions 2010

ENVI5501 Environmental Research Project
Credit points: 12 Session: Semester 1, Semester 2, Summer Early Classes: Meetings arranged with supervisor. Prerequisites: 24 credit points of study with a credit average or better Assessment: Written report and continuous assessment Note: This unit of study is available only to students enrolled in AppSc(EnvSc)
A valuable opportunity to apply some of the knowledge gained from earlier coursework, ENVI5501 consists of a research project as arranged between you (the student) and an appropriate supervisor. The project topic may contain a field or laboratory component, or may be entirely literature-based. The only requirement is that the topic be of environmental emphasis, meaning that potential topics range from ecotourism to pollution detection and monitoring, erosion to solar power, environmental law to conservation biology. The topic must also be able to be completed within the timeframe of 16 weeks (one semester) of investigation, including the literature survey, sample and data collection, analysis of data and results, and write up of the report. This unit is not conducted by way of a number of contact hours per week for a semester. Instead, the student will work on the project full-time (aside from other study commitments) in a continuous manner for the entire duration (1 semester). Any student interested in taking ENVI5501 should contact the postgraduate advisor for Environmental Science to discuss their project and for help in selecting and appropriate supervisor.

ENVI5707 Energy - Sources, Uses and Alternatives
Credit points: 6 Teacher/Coordinator: Dr Chris Dey Session: Semester 2 Classes: Two 1 hour lectures per week and three field trips per semester. Assessment: Assignment, presentation and quiz
Environmental impacts of energy generation and use are addressed in this unit of study. Major topics include discussion of the various energy sources, global energy resources, the economics associated with energy production, the politics and culture that surrounds energy use, and the alternative sources of solar thermal and photovoltaic energy and atmospheric systems. This unit of study includes several field trips to energy utilities and industry groups associated with alternate energy sources and generation.

ENVI5708 Introduction to Environmental Chemistry
Credit points: 6 Teacher/Coordinator: A/Prof Gavin Birch Session: Semester 1 Classes: Two 1 hour lectures and one practical per week; one field trip per semester. Assessment: Assignment, presentation and report Note: This is a compulsory course for the Grad Dip and Masters levels of the Applied Science (Environmental Science) program.
Introduction to Environmental Chemistry provides the basic chemical knowledge required to be able to understand chemical analysis of air, water and soil samples taken in the field. This is supplemented by a field-based project analysing soil and sediment samples for trace pollutants from locations in and around Sydney. This unit of study involves 4 contact hours per week for one semester as well as some time in the field as arranged with the class.

ENVI5808 App Ecology for Environmental Scientists
Credit points: 6 Teacher/Coordinator: Dr Clare McArthur Session: Semester 2 Classes: Three 1 hour lectures per week. Assessment: Essays and presentations Note: This is a compulsory unit for all levels of the postgraduate Applied Science (Environmental Science) program
This unit of study complements ENVI5705, and covers in depth the concerns of modern ecology pertaining to both terrestrial and marine ecosystems. An understanding of the complex issues of invasive species, conservation of biodiversity and ecological management of the environment is provided.
ENVIS809
Environmental Simulation Modelling
Credit points: 6 Teacher/Coordinator: Dr David Chapman Session: Semester 1 Classes: Six workshops. Assessment: Report

The concept and use of computer modelling in natural resource management is introduced in this unit of study, which is aimed particularly at non-programmers.

GEOG5001
Geographic Information Science A
Credit points: 6 Teacher/Coordinator: Dr David Chapman Session: Semester 1, Semester 2 Classes: Six workshops. Assessment: Report

This unit of study gives an overview of basic spatial data models, and enables students to understand the import and export of data to and from a geographical information system (GIS). The manipulation of spatial data at a level appropriate to planning or locational applications, and the development of thematic maps from diverse data layers, will be addressed.

GEOG5002
Geographic Information Science B
Credit points: 6 Teacher/Coordinator: Dr Eleanor Bruce Session: Semester 2 Classes: One 2 hour lectures, one 1 hour tutorial, one 3 hour practical per week for 6 weeks. Assumed knowledge: GEOG3001 Assessment: 2500 word assignment, seminar presentation, tutorial reports, WebCT quiz

This course will provide the conceptual background to more advanced GIS analysis applications and spatial reasoning methods in the context of contemporary environmental issues. The course is designed to provide an understanding of spatial analysis techniques available within a GIS environment, explore a diversity of both social and physical environmental applications and address emerging issues in GIS research. A range of topics will be introduced including field based capture of spatial information, spatial data structures, surface modelling, visibility analysis, hydrological modeling, network analysis, spatial data uncertainty and social GIS.

Conceptual material presented in lectures and tutorial workshops will be placed in an applied context through a series of laboratory and field sessions designed to strengthen practical understanding and awareness of GIS methods.

WILD5001
Australasian Wildlife: Introduction
Credit points: 6 Teacher/Coordinator: Dr Matthew Crowther Session: S1 Intensive Classes: Intensively taught unit, the remainder of the unit will involve personal study and project activity. See the Wildlife Health and Population Management website for dates. Assessment: Assessments for each unit may include practical work, field studies, student presentations and written reports

This unit of study provides an introduction to the wildlife of Australasia, an overview of the present status of that wildlife, and an understanding of both conservation problems and management solutions. Issues in wildlife management are exemplified using a broad range of vertebrate species occupying different environments. The unit follows on from WILD5001 and provides practical experience via a five day field trip.

LAWS6041
Environmental Litigation
Credit points: 6 Teacher/Coordinator: Dr Andrew Edgar, Adj Prof Brian Preston Session: S2 Late IntB Classes: block/intensive Assessment: 1x7500wd essay (100%)
Note: This unit replaced LAWS6041 Environmental Dispute Resolution

This unit focuses on litigation as a tool for resolving environmental disputes. The unit examines different types of environmental litigation and issues that can arise in litigation processes. Candidates will develop an understanding of the characteristics of environmental litigation, the advantages and limitations of different types of proceedings, and the range of outcomes that are possible for environmental litigation. The topics include litigation strategies, procedure and evidence, defensive actions (ie SLAPP litigation), and the outcomes of litigation. Reference will be made to recent cases, such as in the field of climate change, to illustrate the topics.

LAWS6043
Environmental Impact Assessment Law
Credit points: 6 Teacher/Coordinator: Mr Bernard Dunne Session: S2 Late IntB Classes: block/intensive Assessment: 1x4000wd essay (50%), 1xtake home exam (50%)

This unit has three fundamental aims. The first is to provide a sound analysis of Environmental Impact Assessment (EIA) procedures in NSW and at the Commonwealth level. The second aim is to develop a critical understanding of EIA as a distinctive regulatory device by examining its historical, ethical and political dimensions as well as relevant aspects of legal theory. The third and ultimate aim is to combine these doctrinal and theoretical forms of knowledge so we can suggest possible improvements to the current practice of EIA in Australia.

LAWS6044
Environmental Law and Policy
Credit points: 6 Teacher/Coordinator: Adj Prof Gerry Bates Session: S1 Intensive, S2 Intensive Classes: block/intensive Corequisites: LAWS6252 or law degree from a common law jurisdiction Assessment: 2x4000wd essays (50% each)
Note: Environmental law candidates must complete LAWS6252 and this unit prior to enrolling in other law optional units

The aim of the unit is to introduce candidates to overarching themes in environmental law and policy as a foundation to their more detailed studies for the Environmental Law Program. This is an overview unit addressing a number of environmental issues at various levels of analysis; such as policy making, implementation of policy and dispute resolution. The unit covers the law and policy relating to environmental planning, environmental impact assessment, pollution and heritage. The concept of ecologically sustainable development and its implications for environmental law and policy is a continuing theme. The unit is designed to develop multi-dimensional thinking about environmental issues and the strategies needed to address them. The unit provides a broad background of the political and economic issues in so far as they are related to the legal issues involved.

LAWS6045
Environmental Planning Law
Credit points: 6 Teacher/Coordinator: Ms Nicola Franklin, Dr Andrew Edgar Session: S1 Late IntB Classes: block/intensive Assessment: 1x5000-6000wd essay (70%), 1x3000wd problem based assignment (30%)

This unit examines the legal and institutional structures in New South Wales for land-use regulation and the resolution of land-use conflicts. The focus is on environmental planning, development control and environmental impact assessment under the Environmental Planning and Assessment Act 1979 (NSW) and cognate legislation. The unit provides an opportunity to explore contemporary urban issues, such as urban consolidation and infrastructure funding. Federal interest in the cities is also examined. While an important aim of the unit is to
provide candidates with an understanding of the New South Wales environmental planning system, the unit also aims to develop the capacity to evaluate environmental policies and programs through exploring theoretical perspectives on the function of environmental planning. The unit will critically evaluate the function and design of environmental planning systems and the legal ambit of planning discretion. Significant influences, such as escalating environmental and social concerns about our cities, will be discussed, together with an evaluation of processes and forums for public involvement in land-use policy and decision making. A good grounding in this area will be of assistance to candidates undertaking other units in the Environmental Law Program.

LAWS6055
Heritage Law
Credit points: 6
Teacher/Coordinator: Ms Susan Shearing
Session: S1 Late IntC
Classes: block/intensive
Assessment: 1x4000wd research paper (50%), 1xproblem assignment (50%)

This unit focuses on the conservation of natural and cultural heritage, including intangible heritage, underwater heritage, movable heritage and Australian Aboriginal heritage. International, national, state and local regimes for heritage conservation are examined and considered in the context of broader environmental decision making. Through the use of case studies, the unit aims to bring together a range of interdisciplinary strands in archaeology, anthropology, cultural and natural history, art, architecture and urban planning, and to weave them into a framework for the legal protection of world, national, state and local heritage.

LAWS6061
International Environmental Law
Credit points: 6
Teacher/Coordinator: Em Prof Ben Boer
Session: S1 Intensive
Classes: block/intensive
Assessment: 1x2500wd problem based assignment (30%), 1x15000wd essay (70%)

This unit aims to provide candidates with an overview of the development of international environmental law throughout the twentieth century. Attention will primarily be devoted to the international law and policy responses to global and regional environmental and resource management issues. Basic principles will be discussed prior to taking a sectoral approach in looking at the application of international environmental law in specific issue areas. The unit includes material on implementation of international environmental law in the Asia Pacific region. Relevant Australian laws and initiatives will be referred to from time to time. The focus is on law and policy that has been applied to deal with environmental problems in an international and transboundary context.

LAWS6141
Asia Pacific Environmental Law
This unit of study is not available in 2010
Credit points: 6
Teacher/Coordinator: Ms Nicola Franklin, Assoc Prof Heng
Session: S2 Late IntC
Classes: block/intensive
Assessment: 1x7000wd essay (80%) and class participation (20%)

In this unit, the environmental legal systems and environmental management regimes of selected countries and groups of countries in the Asia Pacific will be studied against the background of relevant international and regional environmental law and administration. Unit topics will be divided into four sub-regions: Pacific Island Developing Countries; South East Asia Region (ASEAN and Mekong countries); North Asian Region (Japan, People's Republic of China); West Asian Region (South Asian Association of Regional Cooperation [SAARC] Countries). In relation to each region, the implications of the international and regional environmental law framework will be explored, followed by case studies involving issues such as biodiversity, natural resources and environmental planning; industrial pollution; environmental impact assessment; climate change; legal and institutional arrangements for environmental management.

LAWS6154
Sustainable Development Law in China
Credit points: 12
Teacher/Coordinator: Ms Nicola Franklin, Em Prof Ben Boer
Session: S1 Late IntC
Classes: block/intensive classes to be held at Jiaotong University, Shanghai, China
Assessment: 1x15000wd research paper (100%)

Note: For further travel information, please visit
www.law.usyd.edu.au/accel/index.shtml or contact Law.Accel@usyd.edu.au

This 12 credit point unit comprises an intensive series of lectures and field trips in Shanghai, People's Republic of China, followed by supervised research. The location for lectures is Shanghai Jiaotong University. The unit is designed to: introduce the legal and institutional framework of environmental law and policy in China; and encourage comparative and jurisprudential studies of Chinese environmental law and policy.

The lectures and field trips are undertaken over a period of two weeks. The unit is taught principally by Chinese academics at Shanghai Jiaotong University. Candidates are given an introduction to Chinese law and the Chinese legal system before embarking on a study of Chinese environmental law. Field trips are included. It is likely that there will be a visit to the State Environment Protection Authority and to Huangshan, a World Heritage area.

LAWS6163
Energy and Climate Law
Credit points: 6
Teacher/Coordinator: Assoc Prof Rosemary Lyster
Session: S1 Late IntC
Classes: block/intensive
Assessment: 1x7000wd essay (80%)

Note: This unit replaced LAWS6163 Energy Law

This unit adopts an inter-disciplinary and integrative approach to understanding the theoretical and practical aspects of the most pressing environmental concerns ecologically sustainable energy use. Working loosely within the framework of the Climate Change Convention, the unit relies on the perspectives of scientists, lawyers and economists to develop an integrated approach to sustainable energy use. The unit identifies current patterns of energy use in Australia and examines Australia's response to the Climate Change Convention. It also analyses the strengths and weaknesses of various political, legal and economic mechanisms for influencing the choice of energy use. The initiatives of the Commonwealth and New South Wales governments, as well as local councils, to promote sustainable energy use and to combat global warming are scrutinised.

LAWS6165
Biodiversity Law
This unit of study is not available in 2010
Credit points: 6
Teacher/Coordinator: Adj Prof Brian Preston, Ms Susan Shearing
Session: S2 Late IntC
Classes: block/intensive
Assessment: 1x8000wd research paper (100%) Practical field work: field trip

The unit takes an interdisciplinary approach to the conservation of biodiversity. Key concepts in ecology are explained to provide a foundation for the legal framework. This framework is examined at international, national, and state levels, in terms of conventions and legislation, as well as policy and organisations. The legal framework is explored both by analysing the proper purpose, scope and effect of the laws, as well as how they work in practice. The latter is achieved by lectures and field exercises assisted by officers of government agencies, including State Forests, the National Parks and Wildlife Service and the Department of Infrastructure, Planning and Natural Resources. An integral component of the unit is a field trip to areas of relevance to biodiversity conservation, focusing on northern New South Wales. Areas to be studied include habitats of threatened species and ecological communities and World Heritage areas listed under the relevant Commonwealth and State legislation. Field studies provide a unique opportunity to understand how principles of international and domestic law are implemented locally. The field trip component will be arranged in conjunction with the field trip for LAWS6055 Heritage Law (if offered). Candidates are encouraged to
take both units of study; they are designed to complement each other closely.

Textbooks
a book of reading materials and a field trip manual will be prepared and distributed

LAWS6191
Water Law
Credit points: 5 Teacher/Coordinator: Assoc Prof Rosemary Lyster Session: S2 Late IntB Classes: block/intensive Prohibitions: LAWS6139 Assessment: class participation (20%), 1x7000wd essay (80%)

This unit examines the ecologically sustainable management of water resources incorporating legal, scientific and economic perspectives. The legal analysis incorporates the following: international principles of water law; Commonwealth and state responsibilities for water management; the Water Management Act 2000 (NSW); the legal and constitutional implications of the reallocation of rights to use water; the implications of allocation and use for Indigenous people; the regulation of water pollution; and the corporatisation and privatisation of water utilities. Case studies from a number of jurisdictions are used to explore these themes. Economic perspectives include the impact of National Competition Policy on water law while the principles of sustainable water management are discussed within a scientific paradigm.

LAWS6252
Legal Reasoning & the Common Law System
Credit points: 6 Teacher/Coordinator: Prof Reg Graycar Session: S1 Intensive, S2 Late IntB Classes: block/intensive Prohibitions: LAWS6681 Assessment: compulsory attendance/completion of workshops, 2x2500wd assignments (50% each)

Note: International candidates must undertake this unit during the first week of their study

This is a compulsory unit for all postgraduate candidates who do not hold a degree in law entering the: Master of Administrative Law and Policy; Master of Environmental Law; Master of Environmental Science and Law; Master of Health Law; Master of International Business and Law; Master of Labour Law and Relations as well as Graduate Diplomas offered in these programs.

The unit has been designed to equip candidates with the necessary legal skills and legal knowledge to competently apply themselves in their chosen area of law. Instruction will cover the legislative process; the judiciary and specialist tribunals; precedent; court hierarchies; legal reasoning; constitutional law; administrative law; contracts; and torts. Some elements of the unit will be tailored in accordance with the requirements of the particular specialist programs.

LAWS6257
Public Policy
Credit points: 6 Teacher/Coordinator: Prof Patricia Apps Session: S2 Late IntB Classes: block/intensive Prohibitions: LAWS6139, LAWS6042, LAWS6113 Assessment: 1x problem based assignment and class presentation of a case study (10%), 1xsearch essay (90%)

Note: compulsory for MALP candidates

The aim of the unit is to provide an understanding of the role of government policy within the analytical framework of welfare economics. Questions of central interest include: What are the conditions that justify government intervention? How can policies be designed to support basic principles of social justice? What kinds of reforms promote economic efficiency?

Applications will range from taxation and social security to environmental regulation and protection, and will cover the following specific topics: The structure of the Australian tax-benefit system; Uncertainty and social insurance; Unemployment, health and retirement income insurance; Externalities, environmental taxes and tradable permits; Monopoly and environmental regulation; Utility pricing and access problems; Cost benefit analysis, intergenerational equity and growth.

The unit will provide an overview of the main empirical methodologies used in evaluating policy reforms in these areas. Candidates may select to specialise in one or more of the policy areas.

LAW6833
European Environmental Law
This unit is not available in 2010
Credit points: 6 Teacher/Coordinator: Adj Prof Gerry Bates Session: S1 Late IntC Classes: block/intensive Assessment: 1x8000wd research essay (100%)

This unit examines fundamental concepts that govern environmental law in the European Union and how environmental policy is developed and translated into the domestic laws of countries that form the EU. The influences at work behind the formulation of environmental policy, and therefore of environmental law, is explored. The unit also examines environmental democracy in the EU and implementation and enforcement of EU environmental laws. Areas of environmental law that are covered include environmental assessment, biodiversity, integrated pollution prevention and control, the European Climate Change Programme, and waste management. The unit encourages comparative analysis between the formation and implementation of environmental law in the EU and the Australian federal environmental law system.

Resolutions

Master of Environmental Science and Law (MEnvSci and Law)

1. Admission
1.1 The Dean of the Faculty of Science may admit to candidature: 1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science (BSc) or Bachelor of Laws (LLB); or 1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.

2. Units of study
2.1 The units of study for the Master of Environmental Science and Law are listed in the table associated with these resolutions.

3. Requirements for the Master of Environmental Science and Law
3.1 Candidates for the Master of Environmental Science and Law are required to complete satisfactorily 48 credit points selected from units of study approved by the Faculties of Science and Law including:
3.1.1 a core unit of study (LAW6044);
3.1.2 LAWS6252 is compulsory for students who do not have a law background
3.1.3 a minimum of 24 credit points selected from units of study offered by each Faculty.

Faculty Rules
4. Details of units of study
4.1 The units of study for the Master of Environmental Science and Law are listed in the table of units of study for the Master of Environmental Science and Law in this chapter of the Faculty of Science Handbook.
4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.
4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.
4.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:
4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;
4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
4.4.3 to pass any other examination of the unit of study that may apply.
4.5 All units of study for a particular subject area may not be available every semester.
4.6 A candidate shall complete coursework to the value of 48 credit points.
4.7 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other postgraduate
coursework programs in the Faculties of Science and Law, or elsewhere in the University.

5. **Enrolment in more/less than minimum load**
 5.1 A candidate may proceed on either a full-time or a part-time basis.

6. **Cross-institutional study**
 6.1 Cross-institutional study shall not be available to students enrolled in the Master of Environmental Science and Law except where the University of Sydney has a formal Cooperation Agreement with another University.

7. **Restrictions on enrolment**
 7.1 Admission to the Master of Environmental Science and Law may be limited by a quota.
 7.2 In determining the quota, the University will take into account:
 7.2.1 availability of resources including space, laboratory and computing facilities; and
 7.2.2 availability of adequate and appropriate supervision.
 7.3 In considering an application for admission to candidature the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of subsection 1 above.

8. **Discontinuation of enrolment**
 8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.
 8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. **Suspension of candidature**
 9.1 A student may seek written permission from the Dean to suspend candidature in the course.
 9.2 Suspension may be granted for a maximum of one year.

10. **Re-enrolment after an absence**
 10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. **Satisfactory progress**
 11.1 Candidates for the Master of Environmental Science and Law shall be governed by the rule as follows:
 11.1.1 A student who has failed a cumulative total of 12cp at any stage of enrolment in the Master of Science and Law will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be terminated and the student will not be permitted to re-enrol.

12. **Time limit**
 12.1 A candidate for the Master of Environmental Science and Law shall complete the requirements for the award in a minimum of two semesters and a maximum of ten semesters, and except with permission of the Faculty, within six calendar years of admission to candidature.

13. **Assessment policy**
 13.1 A candidate may be tested by written and oral examinations, assignments, exercises and practical work or any combination of these.
 13.2 On completion of the requirements for the degree, the Dean shall determine the results of the candidature.

14. **Credit transfer policy**
 14.1 A candidate who, before admission to candidature, has spent time in graduate study and, within the previous three years, has completed coursework considered by the Faculty to be equivalent to units of study prescribed for the degree, for which no award has been conferred, may receive credit of up to 12 credit points towards the requirements for the degree of Master of Environmental Science and Law.

15. **Authority of the Deans**
 15.1 The Deans of Science and Law shall jointly exercise authority in any matter concerning the course not otherwise dealt with in these resolutions.

Environmental Science Applied Science degrees

Master of Applied Science (Environmental Science)
- **Degree Code:** LC033

Graduate Diploma in Applied Science (Environmental Science)
- **Degree Code:** LF020

Graduate Certificate in Applied Science (Environmental Science)
- **Degree Code:** LG004

Further information can be found on the Environmental Science website: www.usyd.edu.au/su/envisci.

Course overview

The Graduate Certificate in Applied Science (Environmental Science), Graduate Diploma in Applied Science (Environmental Science) and Master of Applied Science (Environmental Science) are articulated coursework programs that allow a large degree of flexibility in the depth at which studies are undertaken and the choice of subjects studied. Some of the major themes addressed include environmental sciences, environmental politics and law, project evaluation and assessment, decision making and conflict resolution.

Course outcomes

The articulated award program in Environmental Science is designed for both recent graduates wishing to obtain employment in the environmental field and for graduates already working in an environmental sphere who are interested in gaining either a formal qualification in environmental science or additional information about related areas of environmental science.

Environmental managers and scientists are increasingly finding that they need to have a broad interdisciplinary knowledge base and the ability to be flexible and innovative in their application of such knowledge. Thus the aim of this award program is to provide students with the ability to solve environmental problems that require the integration of knowledge from diverse disciplines. Emphasis is placed on studies which span several disciplines, adaptive problem solving, and the development of new skills and expertise.

Upon completion of the graduate certificate, graduates will possess a practical and theoretical background in some of the basic aspects of environmental science. This can be supplemented and extended upon completion of the graduate diploma, and extended further to include research and practical skills upon completion of the master's program. Students completing the full postgraduate program will have a solid grounding in all basic areas of environmental science, enabling them to understand the environmental problems that can arise and the disparate solutions that can be applied to solve such problems, and to comprehend all aspects of environmental assessment.

Graduates of the Master of Applied Science (Environmental Science) who have completed the 12cp Research Project ENV15501 are eligible to apply for admission to a research degree (MSc, MSc (Environmental Science) or PhD).
Master of Environmental Science postgraduate coursework degree table

Not all units of study may be available every semester. The faculty may allow substitution of any unit of study by an approved unit of study, including units of study from other postgraduate coursework programs in the faculty or elsewhere in the University.

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB: LAWS6252 is compulsory for students without a background in Law</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAWS6044 Environmental Law and Policy</td>
<td>6</td>
<td>C LAWS6252 or law degree from a common law jurisdiction Environmental law candidates must complete LAWS6252 and this unit prior to enrolling in other law optional units</td>
<td></td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S2 Intensive</td>
</tr>
<tr>
<td>LAWS6252 Legal Reasoning & the Common Law System</td>
<td>6</td>
<td>N LAWS6881 International candidates must undertake this unit during the first week of their study</td>
<td></td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Late IntB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S2 Late IntA</td>
</tr>
<tr>
<td>Elective Units: Students must enrol in a minimum of 24 credit points offered by each Faculty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Elective Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ENVI5705, ENVI5708 and ENVI5808 are recommended)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVI5705 Ecolog Principles for Environ Scientists</td>
<td>6</td>
<td>This is a compulsory course for all levels of the postgraduate Applied Science (Environmental Science) program.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENVI5705 Ecolog Principles for Environ Scientists</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENVI5707 Energy - Sources, Uses and Alternatives</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENVI5708 Introduction to Environmental Chemistry</td>
<td>6</td>
<td>This is a compulsory course for the Grad Dip and Masters levels of the Applied Science (Environmental Science) program.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>ENVI5808 App Ecology for Environmental Scientists</td>
<td>6</td>
<td>This is a compulsory unit for all levels of the postgraduate Applied Science (Environmental Science) program</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ENVI5809 Environmental Simulation Modelling</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOG5001 Geographic Information Science A</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOG5002 Geographic Information Science B</td>
<td>6</td>
<td>A GEOG5001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>WILD5001 Australasian Wildlife: Introduction</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td>WILD5002 Australasian Wildlife: Field Studies</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td>Law Elective Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAWS6041 Environmental Litigation</td>
<td>6</td>
<td>This unit replaced LAWS6041 Environmental Dispute Resolution</td>
<td></td>
<td></td>
<td></td>
<td>S2 Late IntB</td>
</tr>
<tr>
<td>LAWS6043 Environmental Impact Assessment Law</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S2 Late IntB</td>
</tr>
<tr>
<td>LAWS6045 Environmental Planning Law</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Late IntB</td>
</tr>
<tr>
<td>LAWS6055 Heritage Law</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Late IntC</td>
</tr>
<tr>
<td>LAWS6061 International Environmental Law</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td>LAWS6154 Sustainable Development Law in China</td>
<td>12</td>
<td>For further travel information, please visit www.law.usyd.edu.au/accel/index.shtml or contact Law.Accel@usyd.edu.au</td>
<td></td>
<td></td>
<td></td>
<td>S1 Late Int</td>
</tr>
<tr>
<td>LAWS6163 Energy and Climate Law</td>
<td>6</td>
<td>N LAWS6863 This unit replaced LAWS6163 Energy Law</td>
<td></td>
<td></td>
<td></td>
<td>S1 Late IntC</td>
</tr>
<tr>
<td>LAWS6165 Biodiversity Law</td>
<td>6</td>
<td>This unit of study is not available in 2010</td>
<td></td>
<td></td>
<td></td>
<td>S2 Late IntB</td>
</tr>
<tr>
<td>LAWS6191 Water Law</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S2 Late IntB</td>
</tr>
<tr>
<td>LAWS6257 Public Policy</td>
<td>6</td>
<td>N LAWS6139, LAWS6042, LAWS6113 compulsory for MALP candidates</td>
<td></td>
<td></td>
<td></td>
<td>S2 Late IntB</td>
</tr>
</tbody>
</table>
Environmental Science unit of study descriptions 2010

ENVI5501 Environmental Research Project
Credit points: 12 Session: Semester 1, Semester 2, Summer Early Classes: Meetings arranged with supervisor. Prerequisites: 24 credit points of study with a credit average or better Assessment: Written report and continuous assessment Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: This unit of study is available only to students enrolled in AppSc(EnvSc)

A valuable opportunity to apply some of the knowledge gained from earlier coursework, ENVI5501 consists of a research project as arranged between you (the student) and an appropriate supervisor. The project topic may contain a field or laboratory component, or may be entirely literature-based. The only requirement is that the topic be of environmental emphasis, meaning that potential topics range from ecotourism to pollution detection and monitoring, erosion to solar power, environmental law to conservation biology. The topic must also be able to be completed within the timeframe of 16 weeks (one semester) of investigation, including the literature survey, sample and data collection, analysis of data and results, and write up of the report. This unit is not conducted by way of a number of contact hours per week for a semester. Instead, the student will work on the project full-time (aside from other study commitments) in a continuous manner for the entire duration (1 semester). Any student interested in taking ENVI5501 should contact the postgraduate advisor for Environmental Science to discuss their project and for help in selecting and appropriate supervisor.

ENVI5705 Ecologists Principles for Environ Scientists
Credit points: 6 Teacher/Coordinator: Dr Charlotte Taylor Session: Semester 1 Classes: One 3 hour lecture per week. Assessment: Assignment, presentation. Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: This is a compulsory course for all levels of the postgraduate Applied Science (Environmental Science) program.

This unit of study introduces fundamental concepts of modern ecology for environmental scientists so as to provide non-biologically trained persons an understanding of the nomenclature of ecology and the physical parameters represented.

ENVI5707 Energy - Sources, Uses and Alternatives
Credit points: 6 Teacher/Coordinator: Dr Chris Dey Session: Semester 2 Classes: Two 1 hour lectures per week and three field trips per semester. Assessment: Assignment, presentation and quiz Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day

Environmental impacts of energy generation and use are addressed in this unit of study. Major topics include discussion of the various energy sources, global energy resources, the economics associated with energy production, the politics and culture that surrounds energy use, and the alternative sources of solar thermal and photovoltaic energy and atmospheric systems. This unit of study includes several field trips to energy utilities and industry groups associated with alternate energy sources and generation.

ENVI5708 Introduction to Environmental Chemistry
Credit points: 6 Teacher/Coordinator: A/Prof Gavin Birch Session: Semester 1 Classes: Two 1 hour lectures and one practical per week; one field trip per semester. Assessment: Assignment, presentation and report Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: This is a compulsory course for the Grad Dip and Masters levels of the Applied Science (Environmental Science) program.

Introduction to Environmental Chemistry provides the basic chemical knowledge required to be able to understand chemical analysis of air, water and soil samples taken in the field. This is supplemented by a field-based project analysing soil and sediment samples for trace pollutants from locations in and around Sydney. This unit of study involves 4 contact hours per week for one semester as well as some time in the field as arranged with the class.

ENVI5801 Social Science of Environment
Credit points: 6 Teacher/Coordinator: Dr P McManus Session: Semester 1 Classes: 2hrs lectures and 2 hrs tutorials per week plus directed reading. The unit runs for weeks 1-7 Assessment: essay and seminar presentation Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day

This unit provides both a conceptual and an empirical foundation for the analysis of relationships between society, the environment and natural resources. Contexts for application of social science concepts to the environment include climate change, water resources management, forest issues and urban environmental quality. Students will deal with both broad theoretical approaches to the societal analysis of relationships between people and the environment, for example political ecology, and with specific themes including the sociological basis of collective action, property relations, resource tenure, decentralisation, participatory approaches to environmental and natural resource management, and systems of knowledge. The unit pays particular attention to the implications of heterogeneous and competing interests for environmental and natural resource management and explores ways of dealing with diverse stakeholder interests. Empirical material is drawn from various countries, with special emphasis on Southeast Asia and Australia. The aim of the unit is to provide conceptual tools that will be used in other units of study within the program and for application in analysis of resource and environmental management issues faced in real world decision-making contexts. The unit will draw on the professional experience and agency roles of participants. The unit is taught through a combination of lectures and reading-based seminars.

ENVI5803 Law and the Environment
Credit points: 6 Teacher/Coordinator: Dr Gerry Bates Session: Semester 1 Classes: One 2 hour lectures per week. Assessment: Essays Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day

This unit of study provides an overview of Australian and international law as it pertains to the environment. It looks at a number of environmental issues at the various levels of analysis, policy making, implementation of policy and dispute resolution. It also provides a broad background to political and economic issues as they related to the legal issues. This unit of study involves lecture material and an essay on policy issues.

ENVI5805 The Urban Environment and Planning
Credit points: 6 Teacher/Coordinator: Dr John Dee Session: Semester 1 Classes: Eight lectures and eight 2 hour seminars per semester Assessment: Report and short research paper Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day

The aim of this unit of study is to introduce the concepts and procedures which are relevant to the application of scientific analysis to the formulation of urban and regional development policy and strategies.

ENVI5808 App Ecology for Environmental Scientists
Credit points: 6 Teacher/Coordinator: Dr Clare McArthur Session: Semester 2 Classes: Three 1 hour lectures per week. Assessment: Essays and presentations Campus: Camperdown/Darlington Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: This is a compulsory unit for all levels of the postgraduate Applied Science (Environmental Science) program

This unit of study complements ENVI5705, and covers in depth the concerns of modern ecology pertaining to both terrestrial and marine ecosystems. An understanding of the complex issues of invasive species, conservation of biodiversity and ecological management of the environment is provided.
ENN1509
Environmental Simulation Modelling
Credit points: 6
Teacher/Coordinator: Dr David Chapman
Session: 1
Classes: 6 workshops
Assessment: Report
Campus: Camperdown/Darlington
Mode of delivery: Normal (lecture/lab/tutorial) Day
The concept and use of computer modelling in natural resource management is introduced in this unit of study, which is aimed particularly at non-programmers.

ENN1503
Sustainable Development
Credit points: 6
Teacher/Coordinator: A/Prof Phil McManus
Session: Semester 2
Classes: Two 2 hour lectures per week for seven weeks.
Assessment: Essay and presentation
Campus: Camperdown/Darlington
Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study demonstrates the history and contested understandings of the concept of sustainable development. It applies these concepts to explore important environmental science issues such as population, water management sustainable cities, rural development, industrial ecology, and energy issues. The unit concludes by presenting a range of future scenarios and encouraging students to develop their own vision of sustainability at the global and other scales, and to communicate their means of achieving this sustainability vision.

ENN1504
Understanding Environmental Uncertainty
Credit points: 6
Teacher/Coordinator: Associate Professor Ross Coleman
Session: Semester 2
Classes: One three hour lecture per week for 8 weeks.
Assessment: Tutorials, oral presentations and written reports
Campus: Camperdown/Darlington
Mode of delivery: Normal (lecture/lab/tutorial) Day
No assessment of potential environmental impacts is possible without relevant information about the ecological consequences. This unit is for those without a science degree, to explain the need to quantify and what are relevant measures. Describing and understanding uncertainty will be explained in the context of precautionary principles.
Issues about measuring biodiversity and the spatial and temporal problems of ecological systems will be introduced.

ENN1505
Management of Parks
Credit points: 6
Teacher/Coordinator: A/Prof Deidre Dragovich
Session: Semester 2
Classes: Lectures 2hrs for 6 weeks, Practical work 3 hrs for 3 wks, Fieldwork 21 hrs (2.5 days), Total / week 7 hrs average
Assessment: A prac report, assignment, one 1hr exam
Campus: Camperdown/Darlington
Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study evaluates the reasons for the existence of reserves, including National Parks, recreational spaces and reserves, and examines the applied aspects of their management. Topics covered include conservation, ecotourism, plans of management and their implementation (with particular emphasis on the remediation of the impacts of visitor numbers and erosion), fire control practices and resource management. Students will visit various parks within the Sydney region (such as the Royal National Park, the Sydney Harbour Foreshore, Jenolan Caves Reserve and Centennial Park) that highlight the different issues introduced in lectures and which illustrate the practical measures undertaken to manage the parks in a sustainable fashion.
Textbooks
A Course Handbook will be provided.

GEOG5002
Geographic Information Science A
Credit points: 6
Teacher/Coordinator: Dr David Chapman
Session: Semester 1
Classes: Six workshops
Assessment: Report
Campus: Camperdown/Darlington
Mode of delivery: Normal (lecture/lab/tutorial) Day
This unit of study gives an overview of basic spatial data models, and enables students to understand the import and export of data to and from a geographical information system (GIS). The manipulation of spatial data at a level appropriate to planning or locational applications, and the development of thematic maps from diverse data layers, will be addressed.

GEOG5004
Environmental Mapping and Monitoring
Credit points: 6
Teacher/Coordinator: A/Prof Peter Cowell
Session: Semester 2
Classes: 2 hours of lectures and one three hour practical per week.
Assessment: Assignments
Campus: Camperdown/Darlington
Mode of delivery: Normal (lecture/lab/tutorial) Day
The unit introduces methods associated with acquiring data in the field and examines issues associated with application of spatial data to environmental monitoring, terrain mapping and geocomputing. Students will learn both theoretically and practically how environmental data is collected using different remote sensing techniques, (pre)processing methods of integrating data in a GIS environment and the role of spatial data in understanding landscape processes and quantifying environmental change.

GEOG5005
Human Rights and the Environment
Credit points: 6
Teacher/Coordinator: Dr Robert Fisher
Session: Semester 2
Classes: One 2 hour seminar per week and 4 hours per week personal study
Assessment: 3000 word essay 70%, Seminar paper 30%
Campus: Camperdown/Darlington
Mode of delivery: Normal (lecture/lab/tutorial) Day
This core unit of study addresses the nexus between human rights and the environment. The unit has a geographical focus on Australia and the Asia-Pacific region. Human rights and environmental concerns intersect in diverse and complex ways. Rights to a healthy environment and rights to resources forge a common cause between human rights advocates and environmental activists. Projects such as dams and mines have on-site and wider environmental impacts that displace marginal groups and impact on their rights to livelihood. On the other hand, creation of protected areas and other forms of environmental protection that alienate indigenous and other groups from their customary land and livelihoods create an uneasy relationship between human rights and environmental movements. Public and private access to urban space is also bound up with rights around race, sexuality and class. There are also human rights issues associated with climate change, the fate of South Pacific islands and environmental refugees. The unit of study deals with the human rights – environment nexus around such themes through a series of lectures, seminars and case study based assignment work.

ENG5060
Greenhouse Gas Mitigation
Credit points: 6
Session: Semester 2
Classes: 2 hour lecture and a tutorial each week
Assessment: Assignments and final examination
Campus: Camperdown/Darlington
Mode of delivery: Normal (lecture/lab/tutorial) Day
Note: Unit Administration: WebCT

345
MARS5002 and MARS5003

Prohibitions:

Credit points: 6

Australasian Wildlife: Introduction

WILD5001

Camperdown/Darlington

Block Mode

Mode of delivery:

Campus:

Presentation, teamwork, assignment, 1 hr exam

Semester 2

Session:

Teacher/Coordinator:

Lucie Reynolds (course contact)

Corequisites:

MARS5002 and MARS5003

Prohibitions: NTMP3005

Assessment: Presentation, teamwork, assignment, 1 hr exam

Campus: Camperdown/Darlington

Mode of delivery: Block Mode

Note: Department permission required for enrolment

This course examines the impacts of human activities on coastal and marine environments. It explores the complex relationships among the ecological and social values of these environments and outlines strategies and tools for their management. This is an intensive course that will be held at the University of Queensland Moreton Bay Research Station, North Stradbroke Island.

Textbooks

Handouts provided.

WILD5002

Australasian Wildlife: Field Studies

Credit points: 6

Teacher/Coordinator: Dr Matthew Crowther

Session: S1

Intensive Classes: Intensively taught unit. See the Wildlife Health and Population Management website for dates. Assessments for each unit may include practical work, field studies, student presentations and written reports

Campus: Camperdown/Darlington

Mode of delivery: Block Mode

This unit of study provides an introduction to the wildlife of Australasia, an overview of the present status of that wildlife, and an understanding of both conservation problems and management solutions. Issues in wildlife management are exemplified using a broad range of vertebrate species occupying different environments. Emphasis is placed on providing students with a coordinated and interdisciplinary approach to wildlife health and management, and on developing expertise in recognising and solving a broad range of problems in field populations. The unit integrates lectures, practical work and supervised study, and offers students the opportunity to work through real-world wildlife conservation problems relevant to their individual backgrounds.

Textbooks

MARS5006

Coral Reefs, Science and Management

Credit points: 6

Session: Semester 1

Classes: University base delivery: Prefield Trip Tutorial (1 hr), On-line exercises (2 hr) Field based delivery: Lectures (11 x 1 hr), Seminars (4 x 1 hr), Tutorials - individual consultations to develop concepts in research (2 x 1 hr), Independent Research and Oral Presentation (40 hrs)

Assessment: Written assignments: essay and project report; oral presentations; seminar and lecture participation.

Campus: Camperdown/Darlington

Mode of delivery: Field Experience

Note: Department permission required for enrolment

This unit provides an in-depth overview of the key biological and non-biological processes that make up coral reef ecosystems. There is a focus on the biogeographic, oceanographic and physiological processes underlying the integrity of global tropical reef systems. The Great Barrier Reef is used as a case study to explore emerging concepts on the influence of natural and anthropogenic processes on the integrity of global reef and lagoon systems. Learning activities will include a series of background lectures and research seminars and tutorials in the development of a major research project. A major aspect of this unit is an independent research project conducted under the supervision of the course instructors. The unit concludes with a series of oral presentations based on student research. Assessment tasks will consist of two essays and a research project report and presentation. The curriculum in this unit is based on current research and a course book will be provided. This is a field intensive course held at One Tree Island Research Station or Heron Island Research Station. The course is ex-Gladstone Queensland and students are expected to make their own way there. This unit will be run over 8 days and there will be an additional course fee for food and accommodation, expected to be $600.

NTMP5005

Tropical Coastal Management

Credit points: 6

Teacher/Coordinator: Lucie Reynolds (course contact)

Session: Semester 2

Classes: Fieldschool 80 hours intensive

Corequisites: MARS5002 and MARS5003

Prohibitions: NTMP3005

Assessment: Written assignments, expected to be $600.

Outcomes: Students will be able to make recommendations of the most cost effective approach to enterprises meeting carbon dioxide limits expected to be imposed as a result of the Kyoto Protocol.

Keywords: Greenhouse science, energy efficiency, carbon sinks, climate change amelioration

Objectives: To develop an understanding of, the significance of carbon dioxide in climate; the role of increasing fossil fuel energy conversion efficiency; the international framework for carbon sinks; the size, cost, potential and nature of terrestrial and oceanic sinks of carbon; the amelioration of the impacts of climate change.

Outcomes: Students will be able to make recommendations of the most cost effective approach to enterprises meeting carbon dioxide limits expected to be imposed as a result of the Kyoto Protocol.

Textbooks

Note: Department permission required for enrolment

This unit of study provides an introduction to the wildlife of Australasia, an overview of the present status of that wildlife, and an understanding of both conservation problems and management solutions. Issues in wildlife management are exemplified using a broad range of vertebrate species occupying different environments. Emphasis is placed on providing students with a coordinated and interdisciplinary approach to wildlife health and management, and on developing expertise in recognising and solving a broad range of problems in field populations. The unit integrates lectures, practical work and supervised study, and offers students the opportunity to work through real-world wildlife conservation problems relevant to their individual backgrounds.

WILD5002

Australasian Wildlife: Field Studies

Credit points: 6

Teacher/Coordinator: Dr Matthew Crowther

Session: S1

Intensive Classes: Intensively taught unit. See the Wildlife Health and Population Management website for dates. Assessments for each unit may include practical work, field studies, student presentations and written reports

Campus: Camperdown/Darlington

Mode of delivery: Block Mode

This unit of study provides a first-hand introduction to the wildlife of Australasia, a practical overview of the present status of that wildlife, and an understanding of both conservation problems and management solutions. Issues in wildlife management are exemplified using sampling and diagnostic methods on a broad range of vertebrate species occupying different environments. The unit follows on from WILD5001 and provides practical experience via a five day field trip.

346
Resolutions

Master of Applied Science (Environmental Science)
Graduate Diploma in Applied Science (Environmental Science)
Graduate Certificate in Applied Science (Environmental Science)

Course rules

1. Admission
 1.1 The Dean of the Faculty of Science may admit to candidature for:
 1.1.1 the Graduate Certificate in Applied Science:
 1.1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1; or
 1.1.1.3 persons who have experience which is considered to demonstrate the knowledge and aptitude required to undertake the units of study;
 1.1.2 the Graduate Diploma in Applied Science:
 1.1.2.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.2.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.2.1; or
 1.1.2.3 persons who have completed requirements for the Graduate Certificate in Applied Science, or equivalent;
 1.1.3 the Master of Applied Science:
 1.1.3.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.3.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.3.1; or
 1.1.3.3 persons who have completed requirements for the Graduate Diploma in Applied Science, or equivalent.

2. Units of study
 2.1 The units of study for the Graduate Certificate in Applied Science (Environmental Science), Graduate Diploma in Applied Science (Environmental Science), and Master of Applied Science (Environmental Science), are listed in the table of units of study for Environmental Science Postgraduate coursework degrees in this chapter of the Faculty of Science Handbook.
 2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included under unit of study descriptions.

Faculty rules

3. Requirements for Graduate Certificate in Applied Science (Environmental Science) (GradCertApplSc(EnvSc)); Graduate Diploma in Applied Science (Environmental Science) (GradDipApplSc(EnvSc)); Master of Applied Science (Environmental Science) (MAppSc(EnvSc))
 3.1 Candidates for the Graduate Certificate in Applied Science (Environmental Science) are required to satisfactorily complete 24 credit points of units of study including one of two core units of study (ENVI5705 and ENVI5808) and 18 credit points from the optional units of study.
 3.2 Candidates for the Graduate Diploma in Applied Science (Environmental Science) are required to satisfactorily complete three core units of study (ENVI5705 and ENVI5808 and either ENVI5708 or ENVI5904), and 18 credit points from optional units of study.
 3.3 Candidates for the Master of Applied Science (Environmental Science) are required to satisfactorily complete three core units of study (ENVI5705 and ENVI5808 and either ENVI5708 or ENVI5904), and 30 credit points from optional units of study.

3.3.1 Masters candidates may only enrol in ENV5501 after completing 24 credit points of study with a credit average or better, subject to availability of supervision.

4. Details of units of study
 4.1 The units of study for the Graduate Certificate in Applied Science (Environmental Science), Graduate Diploma in Applied Science (Environmental Science), and Master of Applied Science (Environmental Science), are listed in the table of units of study in this chapter of the Faculty of Science Handbook.
 4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.
 4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.
 4.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:
 4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction; or
 4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
 4.4.3 to pass any other examination of the unit of study that may apply.
 4.5 All units of study for a particular subject area may not be available every semester.
 4.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other postgraduate coursework programs in the Faculty or elsewhere in the University.
 4.7 The Master of Applied Science (Environmental Science) shall be awarded in two grades, namely Pass and, in the case of an outstanding candidate, Pass with Merit.

5. Enrolment in more/less than minimum load
 5.1 A candidate may proceed on either a full-time or a part-time basis.

6. Cross-institutional study
 6.1 Cross institutional study shall not be available to students enrolled in the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science courses, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment
 7.1 Admission to candidature may be limited by a quota.
 7.2 In determining the quota, the University will take into account:
 7.2.1 availability of resources including space, laboratory and computing facilities; and
 7.2.2 availability of appropriate supervision.
 7.3 In considering an application for admission to candidature the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of section 2 above.

8. Discontinuation of enrolment
 8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.
 8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature
 9.1 A student may seek written permission from the Dean to suspend candidature in the course.

10. Re-enrolment after an absence
 10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress
 11.1 Candidates for the Master of Applied Science, the Graduate Diploma in Applied Science, and the Graduate Certificate in Applied Science, shall be governed by the rules as follows:
 11.1.1 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Master of Applied Science will be required to show good cause why he or she should
be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will be transferred to the Graduate Diploma in Applied Science;

11.1.2 A student who has failed a cumulative total of 18 credit points at any stage of enrolment in the Master of Applied Science and/or the Graduate Diploma in Applied Science will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will be transferred to the Graduate Certificate in Applied Science;

11.1.3 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Graduate Certificate in Applied Science will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

12. **Time limit**

12.1 A candidate for the Graduate Certificate in Applied Science shall complete the requirements for the award in a minimum enrolment of one semester and a maximum enrolment of four semesters.

12.2 A candidate for the Graduate Diploma in Applied Science shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of six semesters.

12.3 A candidate for the Master of Applied Science shall complete the requirements for the award in a minimum of two semesters and a maximum of eight semesters.

13. **Assessment policy**

13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidature.

14. **Credit transfer policy**

14.1 Credit is not available in the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science for postgraduate study which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Certificate in Applied Science may transfer, within three years, to the Graduate Diploma in Applied Science and receive credit for up to 24 credit points from the Graduate Certificate in Applied Science.

14.3 A candidate who has qualified for the award of the Graduate Diploma in Applied Science may transfer, within three years, to the Master of Applied Science and receive credit for up to 36 credit points from the Graduate Diploma in Applied Science.

14.4 A candidate who has completed units of study in the Applied Science program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Applied Science program and receive credit for the units of study completed.
22. History and Philosophy of Science coursework degrees

Note: See Chapter 17 for other Postgraduate degrees related to the History and Philosophy of Science offered in the area of Bioethics

This chapter sets out the requirements for the postgraduate degree offered in the Faculty of Science in the area of History and Philosophy of Science. A comprehensive guide to the requirements and units of study of the coursework degrees is listed.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously in this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at www.usyd.edu.au/publications/calendar.

Graduate Certificate in Science (History and Philosophy of Science)
Degree Code: LG012
Course overview
The Graduate Certificate in Science (HPS) provides an introduction to the historical, philosophical, and sociological analysis of science.

History and Philosophy of Science postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students must complete 24 credit points from the following:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB: HPSC4108 is compulsory for and available only to those students who have not completed a major in HPS or equivalent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4101 Philosophy of Science</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science), or by special permission.</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4102 History of Science</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science), or by special permission.</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4103 Sociology of Science</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science), or by special permission.</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4104 Recent Topics in HPS</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science), or by special permission.</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4105 HPS Research Methods</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science), or by special permission.</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC4108 Core topics: History & Philosophy of Sci</td>
<td>6</td>
<td>P Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science), or by special permission.</td>
<td>Note: Department permission required for enrolment</td>
<td>Semester 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

History and Philosophy of Science unit of study descriptions 2010

HPSC4101 Philosophy of Science
Credit points: 6 Teacher/Coordinator: Dr Dean Rickles Session: Semester 1 Classes: One 2 hour seminar per week, individual consultation. Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission. Assessment: Written assignment, seminar participation. Note: Department permission required for enrolment.

In this course we explore a range of issues from within the philosophy of physics. We focus on the interpretation of the theories physics provides, examining how these theories might describe our world.
The course will assume some basic mathematical literacy, but most technical matters will be introduced in class.

Textbooks
Course reader.

HPSC4102

History of Science

Credit points: 6
Teacher/Coordinator: Dr Ofer Gal
Taught by: HPS staff and guest lecturers.
Session: Semester 1, Semester 2
Classes: One 2 hour seminar per week.
Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission.
Assessment: Essays, seminar participation.

Note: Department permission required for enrolment.

This unit explores major episodes in the history of science from the 18th century until the present as well as introducing students to historiographic methods. Special attention is paid to developing practical skills in the history and philosophy of science.

Textbooks
Course reader

HPSC4103

Sociology of Science

Credit points: 6
Teacher/Coordinator: Dr Hans Pols
Session: Semester 2
Classes: One 2 hour seminar per week, individual consultation.
Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission.
Assessment: Essays, fieldwork report, seminar participation mark.

Note: Department permission required for enrolment.

This unit explores recent approaches in the social studies of scientific knowledge. Students evaluate various sociological approaches by conducting their own research on topics relevant to their own major thesis.

The unit starts with an overview of the development of history and philosophy of science since 1945, to put the emergence of the sociology of science into perspective, before moving on to a selection of readings from the field. Topics will include: the strong program critique of traditional philosophy of science, the sociology of technology, the impact of feminism on the study of science, and the actor-network approach developed by Bruno Latour and Michel Callon.

Textbooks
Course reader

HPSC4104

Recent Topics in HPS

Credit points: 6
Teacher/Coordinator: HPS Staff
Session: Semester 1, Semester 2
Classes: One 2 hour seminar per week, individual consultation.
Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission.
Assessment: Essays, seminar participation.

Note: Department permission required for enrolment.

An examination of one area of the contemporary literature in the history and philosophy of science. Special attention will be paid to development of research skills in the history and philosophy of science.

Textbooks
Course reader

HPSC4105

HPS Research Methods

Credit points: 6
Teacher/Coordinator: Dr Hans Pols
Session: Semester 1, Semester 2
Classes: One 2 hour seminar per week, individual consultation.
Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission.
Assessment: Literature review, archival research project, seminar participation mark, short essays.

Note: Department permission required for enrolment.

Adopting a seminar style, this unit provides students with an advanced knowledge of the skills necessarily to conduct their own original research in the sociology, history and philosophy of science.

Participants will be given a weekly set of core readings, and specialists both from within the Unit and from outside will present their views on the topic in question. This presentation will form the basis for a discussion involving the students, the academic members of the Unit, and invited speakers.

Topics will include: the use of case studies in the philosophy of science, how to conduct oral history projects, institutional history, and sociological methodology.

Textbooks
Course reader

HPSC4108

Core topics: History & Philosophy of Science

Credit points: 6
Teacher/Coordinator: HPS staff.
Session: Semester 1, Semester 2
Classes: One 2 hour seminar per week.
Prerequisites: Available only to students admitted to HPS Honours, Graduate Diploma in Science (History and Philosophy of Science) and Graduate Certificate in Science (History and Philosophy of Science), or by special permission.
Prohibitions: Not available to students who have completed a major in History and Philosophy of Science or an equivalent program of study at another institution.
Assessment: Essays, seminar presentations, seminar participation mark.

Note: Department permission required for enrolment.

An intensive reading course, supported by discussion seminars, into core topics in HPS.
Resolutions

Graduate Certificate in Science (History and Philosophy of Science)

Course rules

1. Admission
 1.1 The Dean of the Faculty of Science may admit to candidature for the Graduate Certificate in Science (History and Philosophy of Science) an applicant who is:
 1.1.1 the holder of the degree of Bachelor of Science or Bachelor of Medical Science or Bachelor of Arts or Bachelor of Liberal Studies, or any other award of Bachelor of the University of Sydney; or
 1.1.2 a graduate of another university or other appropriate institution who has qualifications equivalent to those specified in subsection 1.1.1.

2. Units of study
 2.1 The units of study for the Graduate Certificate in Science (History and Philosophy of Science) are listed in the table of units of study in this chapter of the Faculty of Science handbook.
 2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included in the description of units of study.

3. Requirements for the Graduate Certificate in Science (History and Philosophy of Science)
 3.1 A candidate shall complete course work to the value of 24 credit points selected from the following table associated with these resolutions, and including HPSC4108 (if they have not completed a major in History and Philosophy of Science, or equivalent program of study, at another institution).

Faculty rules

4. Details of units of study
 4.1 The units of study for the Graduate Certificate in Science (History and Philosophy of Science) are listed in the table of units of study in this chapter of the Faculty of Science Handbook.
 All units of study are worth 6 credit points, unless otherwise indicated.
 4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.
 4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.
 4.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:
 4.4.1 to attend all lectures and the meetings, if any, for seminars or tutorial instruction;
 4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
 4.4.3 to pass any other examination of the unit of study that may apply.
 4.5 All units of study for a particular subject area may not be available every semester.

5. Enrolment in more/less than minimum load
 5.1 A candidate may proceed on either a full-time or a part-time basis.

6. Cross-institutional study
 6.1 Cross-institutional study shall not be available to students enrolled in the Graduate Certificate in Science (History and Philosophy of Science) except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment
 7.1 Admission to the Graduate Certificate in Science (History and Philosophy of Science), may be limited by a quota.
 7.2 In determining the quota, the University will take into account:
 7.2.1 availability of resources including space, laboratory and computing facilities; and
 7.2.2 availability of adequate and appropriate supervision.
 7.3 In considering an application for admission to candidature the Dean shall take account of the quota and, in preference, applicants who are most meritorious in terms of subsection 1 above.

8. Discontinuation of enrolment
 8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.
 8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature
 9.1 A student may seek written permission from the Dean to suspend candidature in the course.
 9.2 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence
 10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress
 11.1 The Dean may call upon any candidate to show cause why that candidature should not be terminated by reason of unsatisfactory progress towards completion of the Graduate Certificate in Science (History and Philosophy of Science).
 11.2 If good cause has not been established, the student's candidature will be terminated.

12. Time limit
 12.1 A candidate shall proceed as a full time student for a period of one semester or as a part time student for up to three semesters.

13. Assessment policy
 13.1 A candidate may be tested by written and oral examinations, assignments, exercises and practical work or any combination of these.
 13.2 On completion of the requirements for the course, the Faculty shall determine the results of the candidate.

14. Credit transfer policy
 14.1 Credit is not available in the Graduate Certificate in Science (History and Philosophy of Science), except for postgraduate units of study which have been taken through the University of Sydney Unit for History and Philosophy of Science within the previous three years, and for which no award has been conferred.
23. Microscopy and Microanalysis coursework degrees

Master of Applied Science (Microscopy and Microanalysis)
(MApplSc(Microsc&Microanal)
Degree Code: LC041

Graduate Diploma in Applied Science (Microscopy and Microanalysis)
(GradDipApplSc(Microsc&Microanal)
Degree Code: LF029

Graduate Certificate in Applied Science (Microscopy and Microanalysis)
(GradCertApplSc(Microsc&Microanal)
Degree Code: LG018

This chapter sets out the requirements for postgraduate degrees offered in the Faculty of Science in the area of Microscopy and Microanalysis. A comprehensive guide to the requirements and units of study of the coursework degrees follows.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously in this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at: www.usyd.edu.au/publications/calendar.

Course overview

The Graduate Certificate in Applied Science (Microscopy and Microanalysis), Graduate Diploma in Applied Science (Microscopy and Microanalysis) and Master of Applied Science (Microscopy and Microanalysis) are articulated award courses that provide a professional qualification to microscopists for industry, research, medical science and education. The course develops and enhances skills in specimen preparation, operation of microscopes and analytical equipment, interpretation of microscopical images and microanalysis.

Course outcomes

The aim of this articulated coursework program is to provide students with a coordinated and interdisciplinary approach to microscopy and microanalysis, thus developing expertise to recognise and solve a broad range of problems in life and material sciences. Upon the completion of the graduate certificate, graduates will possess practical and theoretical background in a wide variety of microscopy, microanalysis and specimen preparation techniques for the materials or life sciences. The graduate diploma will add more specialist knowledge in particular areas of interest or relevance. In addition, the Masters will provide experience in designing, carrying out and completing an independent project and report.

Microscopy and Microanalysis coursework degrees table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Degrees: Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAN5005 Introductory Microscopy & Microanalysis</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>MCAN5006 Electron Microscopy</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>Optional Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Certificate students must complete 12 credit points from the following</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Diploma and Masters students must complete 24 credit points from the following</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAN5102 Biological Specimen Preparation</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>MCAN5103 Materials Preparation and Microscopy</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>MCAN5104 Image Analysis</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>MCAN5110 Nanostructural Analysis of Materials</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>MCAN5112 Advances in Modern Microscopy</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>MCAN5210 Research Methodology</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>Core for research path, optional for Masters</td>
<td>Semester 2</td>
</tr>
<tr>
<td>Masters: Additional Core Units (students must enrol in 12 credit points from the following)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB: Masters students must have successfully completed 24 credit points of units of study before they can enrol in MCAN5201, MCAN5202 or MCAN5203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masters non-Research Path students may choose from MCAN5201 MCAN5202 MCAN5210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masters Research Path students must take MCAN5203 MCAN5210</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCAN5201 Project and Report A</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
<tr>
<td>MCAN5202 Project and Report B</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, 2</td>
</tr>
</tbody>
</table>

To view the latest update, download, purchase or search a handbook visit Handbooks online: www.usyd.edu.au/handbooks
Microscopy and Microanalysis unit of study descriptions 2010

MCAN5005
Introductory Microscopy & Microanalysis
Credit points: 6
Teacher/Coordinator: Dr Lilian Soon
Session: Semester 1, Semester 2
Classes: Six groups (two people per group; can vary) of 4 one hour, 25 minutes lectures, 4 one hour practicals, 4 two hour practicals (TEMs), 4 one hour practical (SEM), 40 minute tutorial, 40 minute practical demonstration.
Assessment: Practical, analytical exercises in a written report including an annotated image portfolio (30-40 pages with ½ page sized images).

Trains participants, with no prior knowledge of electron microscopy, to become operators of scanning and transmission electron microscopes. Participants are given theoretical and practical understanding of the operation and construction of the microscope and how to obtain the optimum performance from it in routine operation.

MCAN5006
Electron Microscopy
Credit points: 6
Teacher/Coordinator: Prof. Simon Ringer and (non-academic) Dr Tim Petersen
Session: Semester 1, Semester 2
Classes: Eight groups (two people per group; can vary) of 4 one hour, 25 minutes lectures, 4 one hour practicals, 4 two hour practicals (TEMs), 4 one hour practical (SEM), 40 minute tutorial, 40 minute practical demonstration.
Assessment: Practical, analytical exercises in a written report including an annotated image portfolio (30-40 pages with ½ page sized images).

Develops knowledge and skills in the fundamentals of specimen preparation for light microscopy. Techniques covered will include tissue processing for paraffin microtomy and an introduction to histochemical staining methods. In addition this unit will present the theory and practical skills of routine specimen preparation techniques used for electron microscopy in the biological sciences including fixing, embedding, sectioning, drying, coating and staining techniques. An introduction to cryotechniques and immuno methodologies is included.

MCAN5010
Materials Preparation and Microscopy
Credit points: 6
Teacher/Coordinator: Prof Simon Ringer, Dr Tim Petersen
Session: Semester 1, Semester 2
Classes: 3 thirty minute lectures, 3 one hour laboratory practicals, 1 three and a half hour demonstrations.
Assessment: Flat polished SEM specimen brass (20%), TEM specimen of Al or steel using electropolishing (20%), TEM cross-sectional specimen of a Si based devices using tripod polishing (30%), Quiz (20%), Materials preparation log (10%).

Gives practical training in the preparation of specimens for electron microscopy from a wide range of materials, including: metals, semiconductors, powders, ceramics and polymers. A comprehensive range of preparation techniques will be covered, including: electropolishing, tripod polishing, ion milling, dimple grinding, ultramicrotomy, cleavage and focused ion beam (FIB). Aspects of transmission electron microscopy specific to inorganic materials, such as crystallography, diffraction patterns and diffraction contrast will be introduced.

MCAN5014
Image Analysis
Credit points: 6
Teacher/Coordinator: Dr Allan S. Jones
Session: Semester 1, Semester 2
Classes: 10 one hour lectures, 10 two hour practicals over a one week period.
Assessment: Eight practical reports (50%), 1 three part mathematical assignment (20%), 1 in-depth assignment of 2500 word length on a relevant topic (30%).

This unit of study covers the nature and processing of images and the extraction of quantitative data from them. Participants will develop a sound working knowledge of both traditional stereochemistry and modern digital image processing and analysis. Emphasis is placed on an understanding of both the strengths and the limitations that are inherent in image data, and the technology applied to it. Topics in this module include: a general review of image acquisition, filters and transforms, segmentation methods, calibration of hardware for analysis, extraction of simple features from images, advanced feature extraction from images, limitations of measurement and a general overview of stereology, including geometric probability, density estimation and sampling.

MCAN5110
Nanostructural Analysis of Materials
Credit points: 6
Teacher/Coordinator: Prof Simon Ringer, Dr Zongwen Liu
Session: Semester 1, Semester 2
Classes: 8 one hour lectures, twenty hours of practicals, two hours of tutorials.
Assessment: Written report including portfolio of images, at least 3000 words (100%).

This unit provides students with knowledge and training so that they may explore the relationships between the structure and properties of materials. The unit covers the principles and practice of materials characterisation with an emphasis on techniques for the quantitative determination of the nanoscale structure and chemistry of materials. Topics include diffraction, contrast theory in transmission electron
microscopy, analytical electron microscopy, other X-ray, ion beam and scanned probe methodologies.

MCAN5112

Advances in Modern Microscopy

Credit points: 6
Teacher/Coordinator: Dr Allan S Jones, A/Prof Filip Braet, Dr Lilian Soon and others.
Session: Semester 1, Semester 2
Classes: 12 one hour lectures, 2-4 one hour tutorials, 12 two hour practicals over a two week period.
Assessment: Six practical reports, two to four tutorial reports, two major assignments of approximately 2500 words.

This unit provides students with knowledge of and training in the application of the very latest advances in microscopy techniques and technologies. Students will examine in detail advances that are occurring in several areas of current microscopy practice and obtain knowledge of both the specific operational characteristics and the associated theory of newly developed instruments. Course content will maintain a focus on cutting-edge techniques that reflect the dynamic advances occurring in microscopy technologies.

MCAN5201

Project and Report A

Credit points: 6
Teacher/Coordinator: A/Prof Filip Braet, Dr Allan Jones, Dr Lilian Soon
Session: Semester 1, Semester 2
Classes: At least forty five hours devoted to a research project.
Assessment: Continuing unit (see MCAN 5205 for assessment details).

Gives students the opportunity to extend the practical work encountered in other modules, and gain skills in carrying out and writing up a research project. Students will choose topics in consultation with members of academic staff and complete project work under supervision. Students also need to enrol in MCAN5202.

MCAN5202

Project and Report B

Credit points: 6
Teacher/Coordinator: A/Prof Filip Braet, Dr Alan Jones, Dr Lilian Soon
Session: Semester 1, Semester 2
Classes: At least forty five hours devoted to a research project.
Assessment: Written report (70%) and an oral presentation (30%).

See MCAN5201.

MCAN5203

Project and Report Part C

Credit points: 6
Teacher/Coordinator: A/Prof Filip Braet, Dr Allan Jones, Dr Lilian Soon
Session: Semester 1, Semester 2
Classes: Research project.
Assessment: Oral presentation (20%), problem solving task (20%), written report in the form of a journal publication (60%).

Note: Research path only

This unit of study is an extension of Project and Report A and B and is only for those students approved for the Research path. Students will further extend their research, as well as formulating a literature review and a research plan and incorporating referee's comments into the final report. Students also need to enrol in or have completed MCAN5201, MCAN5202 and MCAN5210.

MCAN5210

Research Methodology

Credit points: 6
Teacher/Coordinator: Dr Lilian Soon and Dr July Cairney
Session: Semester 2
Classes: Thirteen hours of lectures, one hour student presentation, four hours of tutorials/practicals.
Assessment: Risk assessment (10%), written research proposal (30%), written experimental plan (30%), worked exercises in data analysis (30%).

Note: Core for research path, optional for Masters

This unit covers the principles and practice of research methodology. Topics included: literature and database searching; citing and referencing; research proposals; safety, risk assessment and ethics; experimental design and documentation; statistics, errors and data analysis; and written and oral communication.

Resolutions

Master of Applied Science (Microscopy and Microanalysis)

Graduate Diploma in Applied Science (Microscopy and Microanalysis)

Graduate Certificate in Applied Science (Microscopy and Microanalysis)

Course rules

1. **Admission**
 1.1 The Dean of the Faculty of Science may admit to candidature for:
 1.1.1 the Graduate Certificate in Applied Science (Microscopy and Microanalysis):
 1.1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1; or
 1.1.1.3 persons who have experience which is considered to demonstrate the knowledge and aptitude required to undertake the units of study;
 1.1.2 the Graduate Diploma in Applied Science (Microscopy and Microanalysis):
 1.1.2.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.2.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.2.1; or
 1.1.2.3 persons who have completed requirements for the Graduate Certificate in Applied Science, or equivalent;
 1.1.3 the Master of Applied Science (Microscopy and Microanalysis):
 1.1.3.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.3.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.3.1; or
 1.1.3.3 persons who have completed requirements for the Graduate Diploma in Applied Science, or equivalent.

2. **Units of study**
 2.1 The units of study for the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science (Microscopy and Microanalysis) are listed in the table of units of study for Microscopy and Microanalysis Postgraduate coursework degrees in this chapter of the Faculty of Science Handbook.
 2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included in unit of study descriptions.

3. **Requirements for Graduate Certificate in Applied Science (Microscopy and Microanalysis); Graduate Diploma in Applied Science (Microscopy and Microanalysis); and Master of Applied Science (Microscopy and Microanalysis)**
 3.1 Candidates for the Graduate Certificate in Applied Science (Microscopy and Microanalysis) are required to complete satisfactorily 12 credit points from core units of study and 12 credit points from optional units of study.
 3.2 Candidates for the Graduate Diploma in Applied Science (Microscopy and Microanalysis) are required to complete satisfactorily 12 credit points from core units of study and a further 24 credit points from optional units of study.
 3.3 Candidates for the Master of Applied Science (Microscopy and Microanalysis) are required to complete satisfactorily 12 credit points from core units of study, a further 24 credit points from optional units of study, and 12 credit points of additional core Project and Report units of study.
Faculty rules

4. Details of units of study

4.1 The units of study for the Graduate Certificate in Applied Science (Microscopy and Microanalysis), Graduate Diploma in Applied Science (Microscopy and Microanalysis) and Master of Applied Science (Microscopy and Microanalysis) are listed in the table of units of study in this chapter of the Faculty of Science Handbook.

Not all units of study may be available every semester. The faculty may allow substitution of any unit of study by an approved unit of study, including units of study from other postgraduate coursework programs in the Faculty or elsewhere in the University.

4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

In these resolutions, 'to complete a unit of study' or any derivative expression means:

4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;

4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and

4.4.3 to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.

4.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other postgraduate coursework programs in the Faculty or elsewhere in the University.

4.7 The Master of Applied Science (Microscopy and Microanalysis) shall be awarded in two grades, namely Pass and, in the case of an outstanding candidate, Pass with Merit.

5. Enrolment in more/less than minimum load

5.1 A candidate may proceed on either a full-time or a part-time basis.

6. Cross-institutional study

6.1 Cross institutional study shall not be available to students enrolled in the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science courses, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment

7.1 Admission to candidature may be limited by a quota.

7.2 In determining the quota, the University will take into account:

7.2.1 availability of resources including space, laboratory and computing facilities; and

7.2.2 availability of adequate and appropriate supervision.

7.3 In consideration of an application for admission to candidature the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of sub-section 1 above.

8. Discontinuation of enrolment

8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature

9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence

10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress

11.1 Candidates for the Master of Applied Science (Microscopy and Microanalysis), the Graduate Diploma in Applied Science (Microscopy and Microanalysis), and the Graduate Certificate in Applied Science (Microscopy and Microanalysis), shall be governed by the rules as follows:

11.1.1 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Master of Applied Science (Microscopy and Microanalysis) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will be transferred to the Graduate Diploma in Applied Science (Microscopy and Microanalysis);

11.1.2 A student who has failed a cumulative total of 18 credit points at any stage of enrolment in the Master of Applied Science (Microscopy and Microanalysis) and/or the Graduate Diploma in Applied Science (Microscopy and Microanalysis) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will be transferred to the Graduate Certificate in Applied Science (Microscopy and Microanalysis);

11.1.3 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Graduate Certificate in Applied Science (Microscopy and Microanalysis) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will not be permitted to re-enrol.

11.2 A student who has failed a cumulative total of more than 18 credit points in the Master of Applied Science (Microscopy and Microanalysis) and/or the Graduate Diploma in Applied Science (Microscopy and Microanalysis) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.3.1 A student who has failed a core unit at the second attempt in the Master of Applied Science (Microscopy and Microanalysis) and/or the Graduate Diploma in Applied Science (Microscopy and Microanalysis) and/or the Graduate Certificate in Applied Science (Microscopy and Microanalysis) will be permitted to re-enrol.

11.3.2 If good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit

12.1 A candidate for the Graduate Certificate in Applied Science (Microscopy and Microanalysis) shall complete the requirements for the award in a minimum enrolment of one semester and a maximum enrolment of four semesters.

12.2 A candidate for the Graduate Diploma in Applied Science (Microscopy and Microanalysis) shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of eight semesters.

12.3 A candidate for the Master of Applied Science (Microscopy and Microanalysis) shall complete the requirements for the award in a minimum of two semesters and a maximum of eight semesters.

13. Assessment policy

13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidate.

14. Credit transfer policy

14.1 Credit is not available in the Graduate Certificate in Applied Science (Microscopy and Microanalysis), Graduate Diploma in Applied Science (Microscopy and Microanalysis) and Master of Applied Science (Microscopy and Microanalysis) for postgraduate study which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Certificate in Applied Science (Microscopy and Microanalysis) may transfer, within three years, to the Graduate Diploma in Applied Science (Microscopy and Microanalysis) and receive credit for up to 24 credit points from the Graduate Certificate in Applied Science (Microscopy and Microanalysis).

14.3 A candidate who has qualified for the award of the Graduate Diploma in Applied Science (Microscopy and Microanalysis) may transfer, within three years, to the Master of Applied Science (Microscopy and Microanalysis) and receive credit for up to 36 credit points from the Graduate Diploma in Applied Science (Microscopy and Microanalysis).
A candidate who has completed units of study in the Applied Science program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Applied Science program and receive credit for the units of study completed.
23. Microscopy and Microanalysis coursework degrees
24. Molecular Biotechnology coursework degrees

Master of Applied Science (Molecular Biotechnology)
Degree Code: LC035
Graduate Diploma in Applied Science (Molecular Biotechnology)
Degree Code: LF023
Graduate Certificate in Applied Science (Molecular Biotechnology)
Degree Code: LG008

This chapter sets out the requirements for postgraduate degrees offered in the Faculty of Science in the area of Molecular Biotechnology. A comprehensive guide to the requirements and units of study of the coursework degrees is listed.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously in this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or on the Web at www.usyd.edu.au/publications/calendar.

Course overview and outcomes
The Graduate Certificate in Applied Science (Molecular Biotechnology), Graduate Diploma in Applied Science (Molecular Biotechnology) and Master of Applied Science (Molecular Biotechnology) are articulated programs intended for industry employees and those experienced in related fields to obtain relevant knowledge in molecular biotechnology. They include teaching in current and innovative areas and provide specialisations with attractive prospects for retraining and employment and for further education.

These programs cover new and leading edge high technologies that provide education in relevant aspects of biology, biochemistry, chemistry, food science and technology, agricultural science, bioinformatics and information bioscience. They aim to provide a basic knowledge and skills base emphasising scientific applications.

The courses also provide a professional graduate education for scientists and technologists already working in these areas. Students will be exposed to a solid grounding in molecular biotechnology including an appreciation of social and ethical implications. This professional development award course is particularly designed for those seeking training in this expanding high technology area.

Molecular Biotechnology postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Degrees: Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOBT5101 Applied Molecular Biotechnology A</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>MOBT5102 Applied Molecular Biotechnology B</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Masters: Additional Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BETH5201 Ethics and Biotech: Genes and Stem Cells</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL5002 Bioinformatics: Sequences and Genomes</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>MOBT5033 Applied Molecular Biotech C (Project)</td>
<td>6</td>
<td>P MOBT (5101 or 5102)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Enrolment in MOBT5034 requires permission of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Director of the Molecular Biotechnology Program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOBT5034 Applied Molecular Biotech D (Project)</td>
<td>12</td>
<td>P MOBT5101 or MOBT5102 at Distinction or High Distinction level, with further permission required for enrolment by Director of the Molecular Biotechnology Program.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Graduate Diploma and Masters students must also complete 12 credit points of optional units of study

These must have the permission of the program coordinator. Most postgraduate units offered by the Faculty of Science are allowable, subject to timetabling, availability and prerequisites. MOBT5033 is, however, only available to Masters Students.
Molecular Biotechnology unit of study descriptions 2010

BETH5201
Ethics and Biotech: Genes and Stem Cells
Credit points: 6 Session: Semester 2 Classes: The equivalent of one 2-hour seminar per week presented in flexible mode incorporating seminars and an intensive format. In addition, students will spend up to four hours per week on online learning tasks, small group sessions, project work and consultation with lecturers over the course of the 13 weeks of semester. Assumed knowledge: A three-year undergraduate degree in science, medicine, nursing, allied health sciences, philosophy/ethics, sociology/anthropology, history, or other relevant field, or by special permission. Assessment: Essays, short written assignments, presentation/project.
Note: A limited number of students may be granted permission to take this unit during their honours year.

This unit introduces students to the broader social/political, ethical/philosophical and legal/regulatory issues that underlie genetics, stem cell research and the emerging biotechnologies. The unit will provide a brief overview of the relevant science before considering scientific, cultural and religious understandings of life and human identity. The second part of the unit will review the political, regulatory and commercial context of biotechnology and the control of information. Students will then review the history of genetics and eugenics and the ethical issues that arise in clinical and population genetics, stem cell research and cloning. The final part of the unit will explore the boundaries of research and knowledge and the issues raised by emerging biotechnologies, such as nanotechnology and proteomics. Learning activities will include an intensive seminar program, small group sessions and reading. Students will be able to concentrate on stem cell research, clinical or molecular genetics or other biotechnologies according to their clinical and scientific interests and experience.

BIOL5002
Bioinformatics: Sequences and Genomes
Credit points: 6 Teacher/Coordinator: Dr Neville Firth Session: Semester 2 Classes: 1 lecture or tutorial per week, 1 three hour practical per fortnight. Corequisites: BIOL5001 Prohibitions: BIOL3027, BIOL3927 Assessment: Formal exam, projects.
Note: Department permission required for enrolment. Note: Department permission not required for Bioinformatics students.
BIOL5001 corequisite not required for Molecular Biotechnology students or Stream B Bioinformatics students.

Bioinformatics - the application of computers to life sciences, and genomics - the study of biology at the genome-wide scale, are revolutionising basic and applied biological sciences in the 21st century. The unit focuses on the application of bioinformatics to the storage, retrieval and analysis of biological information, principally in the form of nucleotide and amino acid sequences. An extensive practical component emphasises the development of hands-on skills in the use of bioinformatics technologies. Students will gain an appreciation of the significance and potential of bioinformatics and genomics in contemporary life sciences; an awareness of the breadth of bioinformatics resources and applications, including non-sequence-based biological information; skills and experience in the use of a core set of programs and databases for nucleotide and amino acid sequence analysis and phylogenetic reconstruction; a basic understanding of the theoretical foundation and underlying assumptions of the programs, and their relative strengths/limitations; and, competence in the evaluation of output from the programs in an appropriate biological context.

MOBT5102
Applied Molecular Biotechnology B
Credit points: 12 Teacher/Coordinator: Dr Matthew Todd Session: Semester 2 Classes: 1 two-hour lecture and 1 one hour tutorial per week. Assessment: Continuous assessment throughout semester, end of semester examination

Applied molecular biotechnology B broadens knowledge of and training in applications of the field. Key areas of molecular biology and genetics are combined with studies embracing major issues in modern molecular biotechnology, and are illustrated by examples and case studies.

MOBT5303
Applied Molecular Biotech C (Project)
Credit points: 6 Teacher/Coordinator: A/Prof Kevin Downard Session: Semester 1, Semester 2 Prerequisites: MOBT (5101 or 5102). Prohibitions: MOBT5103 Assessment: Report (60%) and individual/group poster and presentation (40%)

MOBT5304
Applied Molecular Biotech D (Project)
Credit points: 12 Teacher/Coordinator: A/Prof. Kevin Downard Session: Semester 1, Semester 2 Classes: 150 hours of research. Prerequisites: MOBT5101 or MOBT5102 at Distinction or High Distinction level, with further permission required for enrolment by Director of the Molecular Biotechnology Program. Prohibitions: MOBT5303 Assessment: Report of some 7,500 words (60%), supervisor's assessment of performance (20%), presentation (10%), viva (10%)

Note: Department permission required for enrolment. Note: This unit of study is only available to students enrolled in the Master of Applied Science (Molecular Biotechnology).

MOBT5101
Applied Molecular Biotech A
Credit points: 12 Teacher/Coordinator: Dr Neville Firth Session: Semester 1 Classes: 1 two hour lecture and 1 one hour tutorial per week. Assessment: Continuous assessment throughout semester, end of semester examination

This unit of study provides a solid foundation for education and training in applied molecular biotechnology. Classes emphasise molecular biology and genetics combined with essential aspects underscoring modern molecular biotechnology.

Textbooks

MOBT5102
Applied Molecular Biotechnology B
Credit points: 12 Teacher/Coordinator: Dr Matthew Todd Session: Semester 2 Classes: 1 two-hour lecture and 1 one hour tutorial per week. Assessment: Continuous assessment throughout semester, end of semester examination

MOBT5303
Applied Molecular Biotech C (Project)
Credit points: 6 Teacher/Coordinator: A/Prof Kevin Downard Session: Semester 1, Semester 2 Prerequisites: MOBT (5101 or 5102). Prohibitions: MOBT5103 Assessment: Report (60%) and individual/group poster and presentation (40%)

MOBT5304
Applied Molecular Biotech D (Project)
Credit points: 12 Teacher/Coordinator: A/Prof. Kevin Downard Session: Semester 1, Semester 2 Classes: 150 hours of research. Prerequisites: MOBT5101 or MOBT5102 at Distinction or High Distinction level, with further permission required for enrolment by Director of the Molecular Biotechnology Program. Prohibitions: MOBT5303 Assessment: Report of some 7,500 words (60%), supervisor's assessment of performance (20%), presentation (10%), viva (10%)

Note: Department permission required for enrolment. Note: This unit of study is only available to students enrolled in the Master of Applied Science (Molecular Biotechnology).

This unit will provide additional research training for qualified M.Ampl.Sci (Molecular Biotechnology) students wishing to undertake a subsequent research degree at Masters or PhD level. The student's research supervisor will be involved in developing an appropriate focus for the project to satisfy assessment criteria.

MOBT5101
Applied Molecular Biotech A
Credit points: 12 Teacher/Coordinator: Dr Neville Firth Session: Semester 1 Classes: 1 two hour lecture and 1 one hour tutorial per week. Assessment: Continuous assessment throughout semester, end of semester examination

This unit of study provides a solid foundation for education and training in applied molecular biotechnology. Classes emphasise molecular biology and genetics combined with essential aspects underscoring modern molecular biotechnology.

Textbooks

MOBT5102
Applied Molecular Biotechnology B
Credit points: 12 Teacher/Coordinator: Dr Matthew Todd Session: Semester 2 Classes: 1 two-hour lecture and 1 one hour tutorial per week. Assessment: Continuous assessment throughout semester, end of semester examination

Applied molecular biotechnology B broadens knowledge of and training in applications of the field. Key areas of molecular biology and genetics are combined with studies embracing major issues in modern molecular biotechnology, and are illustrated by examples and case studies.

Textbooks

MOBT5303
Applied Molecular Biotech C (Project)
Credit points: 6 Teacher/Coordinator: A/Prof Kevin Downard Session: Semester 1, Semester 2 Prerequisites: MOBT (5101 or 5102). Prohibitions: MOBT5103 Assessment: Report (60%) and individual/group poster and presentation (40%)

Note: This unit of study is only available to students enrolled in the Master of Applied Science (Molecular Biotechnology).

This unit of study provides students with the opportunity to undertake hands-on experience in the biotechnology industry. This will typically involve placement in an approved industry partner's facility on a part-time basis or a case study project conducted in association with an industry affiliate. Entry to an industry placement is limited by a quota and the availability of facilities and projects. Results obtained in MOBT units of study undertaken in the preceding semester (in theory and practical components) will decide whether students are assigned to placements or case study projects. All students enrolled in this unit are required to complete an industry placement suitability survey which will also be taken into consideration. Assessment is based on a student's performance in their placement or project, a report, poster and presentation.

MOBT5304
Applied Molecular Biotech D (Project)
Credit points: 12 Teacher/Coordinator: A/Prof. Kevin Downard Session: Semester 1, Semester 2 Classes: 150 hours of research. Prerequisites: MOBT5101 or MOBT5102 at Distinction or High Distinction level, with further permission required for enrolment by Director of the Molecular Biotechnology Program. Prohibitions: MOBT5303 Assessment: Report of some 7,500 words (60%), supervisor's assessment of performance (20%), presentation (10%), viva (10%)

Note: Department permission required for enrolment. Note: This unit of study is only available to students enrolled in the Master of Applied Science (Molecular Biotechnology).

This unit will provide additional research training for qualified M.Ampl.Sci (Molecular Biotechnology) students wishing to undertake a subsequent research degree at Masters or PhD level. The student's research supervisor will be involved in developing an appropriate focus for the project to satisfy assessment criteria.
Resolutions

Master of Applied Science (Molecular Biotechnology)
Graduate Diploma in Applied Science (Molecular Biotechnology)
Graduate Certificate in Applied Science (Molecular Biotechnology)

Course Rules

1. Admission
1.1 The Dean of the Faculty of Science may admit to candidature for:
1.1.1 the Graduate Certificate in Applied Science (Molecular Biotechnology):
1.1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1; or
1.1.1.3 persons who have completed requirements for the Graduate Certificate in Applied Science (Molecular Biotechnology); or
1.1.2 the Graduate Diploma in Applied Science (Molecular Biotechnology):
1.1.2.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.2.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.2.1; or
1.1.2.3 persons who have completed requirements for the Graduate Diploma in Applied Science, or equivalent;
1.1.3 the Master of Applied Science (Molecular Biotechnology):
1.1.3.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.3.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.3.1; or
1.1.3.3 persons who have completed requirements for the Graduate Diploma in Applied Science, or equivalent.

1.2 In relation to particular subject areas the Dean may require applicants to satisfy additional specific requirements relating to that subject area.

1.3 The additional requirements for Molecular Biotechnology are as follows.
1.3.1 Applicants for the Graduate Certificate in Applied Science (Molecular Biotechnology) should hold a bachelor's degree with credit average results in substantial study in areas of relevance to Molecular Biotechnology, such as biochemistry, biology, chemistry, genetics or molecular biology, or have previous experience in a relevant area that is considered to demonstrate the knowledge and aptitude required to undertake this course.

1.3.2 Applicants for the Graduate Diploma in Applied Science (Molecular Biotechnology) should hold a bachelor's degree with credit average results in substantial study in areas of relevance to Molecular Biotechnology, such as biochemistry, biology, chemistry, genetics or molecular biology, or have completed the Graduate Certificate in Applied Science (Molecular Biotechnology) at the University of Sydney, without failing any units of study.

1.3.3 Applicants for a Master of Applied Science (Molecular Biotechnology) should hold a bachelor's degree with credit average results in substantial study in areas of relevance to Molecular Biotechnology, such as biochemistry, biology, chemistry, genetics or molecular biology; or have completed the Graduate Certificate in Applied Science (Molecular Biotechnology) at the University of Sydney, without failing any units of study; or have completed the Graduate Diploma in Applied Science (Molecular Biotechnology) at the University of Sydney without failing more than 6 credit points of study.

2. Units of study
2.1 The units of study for the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science (Molecular Biotechnology) are listed in the table of units of study for Molecular Biotechnology Postgraduate coursework degrees in this chapter of the Faculty of Science Handbook.

2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included in the unit of study descriptions.

3. Requirements for Graduate Certificate in Applied Science (Molecular Biotechnology) (GradCertApplSc(MBT)); Graduate Diploma in Applied Science (Molecular Biotechnology) (GradDipApplSc(MBT)); Master of Applied Science (Molecular Biotechnology) (MApplSc(MBT))

3.1 Candidates for the Graduate Certificate in Applied Science (Molecular Biotechnology) are required to complete satisfactorily two core units of study (MOBTS101 and MOBTS102).

3.2 Candidates for the Graduate Diploma in Applied Science (Molecular Biotechnology) are required to complete satisfactorily two core units of study (MOBTS101 and MOBTS102) and 12 credit points from optional units of study, excluding MOBTS303.

3.3 Candidates for the Master of Applied Science (Molecular Biotechnology) are required to complete satisfactorily four core units of study (MOBTS101, MOBTS102, BIOL5002 or BETHS201, and MOBTS303) and 12 credit points from optional units of study.

Faculty Rules

4. Details of units of study
4.1 The units of study for the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science (Molecular Biotechnology) are listed in the table of units of study in this chapter of the Faculty of Science Handbook.

4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

4.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:
4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;
4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
4.4.3 to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.

4.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other postgraduate coursework programs in the Faculty or elsewhere in the University.

4.7 The Master of Applied Science (Molecular Biotechnology) shall be awarded in two grades, namely Pass and, in the case of an outstanding candidate, Pass with Merit.

5. Enrolment in more/less than minimum load
5.1 A candidate may proceed on either a full-time or a part-time basis.

6. Cross-institutional study
6.1 Cross institutional study shall not be available to students enrolled in the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science courses, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment
7.1 Admission to candidature may be limited by a quota.
7.2 In determining the quota, the University will take into account:
7.2.1 availability of resources including space, laboratory and computing facilities; and
7.2.2 availability of adequate and appropriate supervision.
7.3 In considering an application for admission to candidature the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of sub-section 1 above.

8. Discontinuation of enrolment
8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature
9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence
10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress
11.1 Candidates for the Master of Applied Science (Molecular Biotechnology), the Graduate Diploma in Applied Science (Molecular Biotechnology), and the Graduate Certificate in Applied Science (Molecular Biotechnology), shall be governed by the rules as follows:

11.1.1 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Master of Applied Science (Molecular Biotechnology) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Diploma in Applied Science (Molecular Biotechnology);

11.1.2 A student who has failed a cumulative total of 18 credit points at any stage of enrolment in the Master of Applied Science (Molecular Biotechnology) and/or the Graduate Diploma in Applied Science (Molecular Biotechnology) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Certificate in Applied Science (Molecular Biotechnology);

11.1.3 A student who has failed a cumulative total of 12 credit points in the Master of Applied Science (Molecular Biotechnology) and/or the Graduate Diploma in Applied Science (Molecular Biotechnology) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.2 A student who has failed a cumulative total of more than 18 credit points in the Master of Applied Science (Molecular Biotechnology) and/or the Graduate Diploma in Applied Science (Molecular Biotechnology) and/or the Graduate Certificate in Applied Science (Molecular Biotechnology) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.3.1 A student who has failed a core unit at the second attempt in the Master of Applied Science (Molecular Biotechnology) and/or the Graduate Diploma in Applied Science (Molecular Biotechnology) and/or the Graduate Certificate in Applied Science (Molecular Biotechnology) will be deemed to have failed to complete course requirements and will be required to show good cause why he or she should be allowed to re-enrol.

11.3.2 If good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit
12.1 A candidate for the Graduate Certificate in Applied Science (Molecular Biotechnology) shall complete the requirements for the award in a minimum enrolment of one semester and a maximum enrolment of four semesters.

12.2 A candidate for the Graduate Diploma in Applied Science (Molecular Biotechnology) shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of six semesters.

12.3 A candidate for the Master of Applied Science (Molecular Biotechnology) shall complete the requirements for the award in a minimum of two semesters and a maximum of eight semesters.

13. Assessment policy
13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidature.

14. Credit transfer policy
14.1 Credit is not available in the Graduate Certificate in Applied Science (Molecular Biotechnology), Graduate Diploma in Applied Science (Molecular Biotechnology) and Master of Applied Science (Molecular Biotechnology) for postgraduate study which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Certificate in Applied Science (Molecular Biotechnology) may transfer, within three years, to the Graduate Diploma in Applied Science (Molecular Biotechnology) and receive credit for up to 24 credit points from the Graduate Certificate in Applied Science (Molecular Biotechnology).

14.3 A candidate who has qualified for the award of the Graduate Diploma in Applied Science (Molecular Biotechnology) may transfer, within three years, to the Master of Applied Science (Molecular Biotechnology) and receive credit for up to 36 credit points from the Graduate Diploma in Applied Science (Molecular Biotechnology).

14.4 A candidate who has completed units of study in the Applied Science program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Applied Science program and receive credit for the units of study completed.
This chapter sets out the requirements for the coursework postgraduate degree offered in the Faculty of Science in the area of Nutrition and Dietetics. The faculty offers one degree in this area – the Master of Nutrition and Dietetics.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously at the end of this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at www.usyd.edu.au/calendar.

Master of Nutrition and Dietetics

Degree Code: LC005

Course overview

The MNutrDiet is a course designed to survey all aspects of human nutrition, with special emphasis on the needs of dietitians who will be working in Australia. It provides the basic training for hospital and community dietitians and nutritionists and is one of the recognised professional courses for dietitians in Australia. The MNutrDiet provides training in nutrition and dietetics for science graduates who have not completed the accredited degree of Bachelor of Science (Nutrition) or equivalent.

The course requires two years of full-time work and study. The first year consists of coursework, lectures, tutorials and practicals. In the second year, one semester is devoted to clinical training and the other semester is spent on a small research project. The dates for this course do not follow the undergraduate academic year. The second year commences in late January.

Course outcomes

Upon completion of the course, the graduate will have a sound knowledge base in nutrition and dietetics, possess the skills to improve nutritional status of individuals, families, and the community at large and to modulate the course of illness with dietetics. The graduate will be skilled in basic research and have a lifelong commitment to the pursuit of excellence in professional conduct.

Graduates of the Master of Nutrition and Dietetics are eligible to apply for admission to a research degree (Doctor of Philosophy).

Admission requirements

Applicants must have a degree from a recognised tertiary institution and have completed two semesters of study in Biochemistry and two semesters in Human Physiology. This preparation is required by the Dietitians Association of Australia. Applicants who meet the minimum entry requirements are then ranked according to their academic record and performance in Biochemistry and Human Physiology. Offers of places are dependent upon the ranking of applicants and competition for places.

Students who have completed the University of Sydney BSc (Nutrition) honours degree or equivalent are not eligible to enrol in the Master of Nutrition and Dietetics degree.

Course requirements

First year: This is an integrated academic year of teaching, practicals and study. All students take the units of study listed below.

Second year: In the first semester of second year (Jan to June), students undertake a clinical and community dietetics training placement, while in the second semester of second year (July to Nov) students carry out a research project.

During the second year all students are required to attend formal lectures at the University on several days. Lectures on management, advanced clinical nutrition and advanced community nutrition are compulsory.

The units of study are supervised by a Program Committee in Nutrition and Dietetics, chaired by the Head of School.

Master of Nutrition and Dietetics table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTD5501 Nutritional Science</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>NTD5502 Food Science</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>NTD5503 Dietary Intake & Nutritional Assessment</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>NTD5504 Communications A</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>NTD5505 Food Service Management</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>NTD5507 Clinical Nutrition and Dietetics</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>NTD5508 Community and Public Health Nutrition</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>NTD5509 Communication</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Nutrition and Dietetics unit of study descriptions 2010

NTD5305
Food Service Management

Credit points: 6
Teacher/Coordinator: Ms Beth Rohrlich
Session: Semester 1
Classes: 3 hours per week practical classes, 2 hours per week lectures.
Assessment: Continuous assessment that may include practical work and project.

The course introduces students to the principles of Food Service Management ranging from food safety and hygiene to the development of menus for therapeutic diets. The course introduces students to commercial cookery equipment and food preparation principles for both domestic and commercial clinical and community nutrition application.

NTD5307
Clinical Nutrition and Dietetics

Credit points: 12
Teacher/Coordinator: Ms Margaret Nicholson
Session: Semester 2
Classes: Lectures average nine hours per week, tutorials/practicals average three hours per week.
Assessment: Two assessment tasks and formal examination.

The broad objectives involve learning the role of nutrition in all aspects of disease from aetiology to medical nutrition therapy. The importance of client focused factors in dietary modification; education and interpretation of theory for client understanding are key discussion points. This unit of study includes paediatrics at the New Children's Hospital, the study of medicine as it relates to nutrition, and the modification of diet and nutrition support of patients with different illnesses.

NTD5308
Community and Public Health Nutrition

Credit points: 10
Teacher/Coordinator: A/Prof Margaret Allman-Farinelli
Session: Semester 2
Classes: Average of seven hours lectures per week.
Assessment: Combination of assignments and formal exam.

This unit of study covers several topics which include an Introduction to health promotion which aims to introduce students to planning, implementing and evaluating nutrition health promotion programs for various population groups. Topics covered include principles of health promotion, effective nutrition promotion strategies, and program evaluation; Nutrition and chronic disease which examines the relationship and evidence for the role and etiology of chronic diseases such as cancer, heart disease, hypertension and diabetes. It also investigates the current nutrition policies and guidelines aimed at preventing these diseases; Food habits which covers theories of food habits and examines food habits of various population groups such as children, adolescents, older people and vulnerable groups; Basic concepts of epidemiology which investigates the advantages and limitations of various epidemiological methods.

Textbooks

NTD5309
Communication

Credit points: 2
Teacher/Coordinator: Dr Janelle Gifford
Session: Semester 2
Classes: Lectures average one hour per week, tutorials/practicals average one hour per week.
Assessment: Two practical assessment tasks

The unit of study consolidates and extends skills that were introduced in Semester 1 (NTDT5504 Communications A). Students take part in a teaching clinic where they practise their interviewing, counselling and documentation skills with standardized patients. They also attend a hospital orientation program in preparation for their placement in Year 2.

NTD5310
Nutrition Research Project

Credit points: 24
Teacher/Coordinator: A/Prof Margaret Allman-Farinelli and/or Dr Janelle Gifford
Session: Semester 2
Classes: Tutorials two hours per week, supervised research experience.
Assessment: Two assignments, presentation, report.

During the research semester each student has a research supervisor. Research projects can include small surveys, simple bench work, supervised hospital assignments or library searches, and are carried out in the University or with an external supervisor. Students also attend nutrition seminars.

NTD5311
Nutrition Practice

Credit points: 12
Teacher/Coordinator: Ms Margaret Nicholson
Session: Semester 1
Classes: Whole day lectures/workshops held on two to four occasions through the semester.
Assessment: Attendance only

Note: This unit of study will commence prior to the start of semester.

The aim of this unit is to provide further knowledge and develop counselling strategies in specialty areas of dietetic practice. It builds on subjects introduced in the first year of the Master's course.

NTD5312
Nutrition & Dietetics Training Placement

Credit points: 12
Teacher/Coordinator: Ms Margaret Nicholson
Session: Semester 1
Classes: 20 week full time attendance of practical placement at clinical/community/food service sites.
Assessment: Practical work and attendance

Note: This unit of study will commence prior to the start of semester.

All students must achieve competency in the 3 areas of clinical, community and food service dietics. Students undertake dietetic clinical training at two or more hospitals. Community placements occur at community nutrition centres, public health units and food industry sites. Food service placements are usually part of a hospital food service department or other suitable site. The semester is of 20 weeks duration and placement starts early (usually late January) to accommodate this.

NTD5501
Nutritional Science

Credit points: 6
Teacher/Coordinator: A/Prof Samir Samman
Session: Semester 1
Classes: 3 lectures per week.
Assessment: Set reading, 2 hour exam

NTD5501 aims to give a broad appreciation of different nutrients and the ways in which they are metabolised. The focus is on the multiple factors that drive metabolism and subsequently the

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTD5310 Nutrition Research Project</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>NTD5311 Nutrition Practice</td>
<td>12</td>
<td>This unit of study will commence prior to the start of semester.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>NTD5312 Nutrition & Dietetics Training Placement</td>
<td>12</td>
<td>This unit of study will commence prior to the start of semester.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

364
relationship between nutrients and health and/or disease. Nutrients are discussed according to category, macronutrients and micronutrients, and there are different themes, including: the chemistry of macronutrients, vitamins and minerals, food sources and factors affecting availability for absorption, metabolism and excretion of the nutrient, the biochemical, physiological and pharmacological actions, methods of assessing biochemical status, the requirements at each stage of life and recommended intakes, signs of deficiency and toxicity, interactions with other nutrients.

NTDT5501 is a compulsory unit of study for students undertaking the Master of Nutrition and Dietetics or Master of Nutrition Science degrees and complements the learning in Food Science. NTDT5501 is also offered as an optional course to students in other degree programs.

Textbooks

NTDT5502 Food Science
Credit points: 3 Teacher/Coordinator: Prof. J Brand-Miller Session: Semester 1 Classes: 2 lectures per week. Assessment: Set reading, exam.

NTDT5502 aims to give a broad appreciation of different types of foods, the ways in which they are processed and consumed, their social context as well as their nutritional attributes. The focus is on the multiple factors that drive a food’s relationship to health and/or disease. Foods are covered according to category: animal foods, seafoods, cereals, sugars, fats and oils, dairy products, legumes, nuts, roots, tubers, green leafy vegetables, fruits, herbs and spices and alcohol. NTDT5502 is a compulsory unit of study for students undertaking the Master of Nutrition and Dietetics degree and complements the learning in Nutritional Science. NTDT5502 is also offered as an optional course to students in other degree programs.

Textbooks

NTDT5503 Dietary Intake & Nutritional Assessment
Credit points: 6 Teacher/Coordinator: A/Prof Margaret Allman-Farinelli Session: Semester 1 Classes: 3 lectures, 2 workshops per week. Assessment: Assignment, reports.

Basic concepts in nutritional status; four methods of dietary assessment in individuals, advantages and limitations; validation of dietary methods; nutritional guidelines, targets and recommended dietary intakes; computerized nutrient analysis; limitations of food composition analysis. Behavioural influences on food intake. Nutritional assessment of individuals through clinical examination and commonly used laboratory biochemical tests for nutritional status; methods used to diagnose nutritional deficiencies; specificity, reliability of biochemical tests. Anthropometry and body composition; soft tissue measurement; percent body fat; reference standards; growth standards and percentiles.

Textbooks

NTDT5504 Communications A
Credit points: 3 Teacher/Coordinator: Ms S Amanatidis Session: Semester 1 Classes: 40 hours of lectures and tutorials Assessment: Communications: two reports and one in-class assessment; Small Group Education: one assignment

NTDT5504 introduces students to the theories of effective communication. Students will acquire skills used to communicate with individuals in a variety of contexts, including the patient/client and his/her family, colleagues, other health team members and the community-at-large. Factors enhancing and distracting from effective communication are identified. The role of the dietitian as a facilitator of change is explored. Barriers to change and techniques used to enhance compliance are identified. Opportunity is provided for students to observe a hospital dietitian conducting a counseling session and also to practice their own communication and interviewing skills. Students will be introduced to educational theory and small group education practice, especially the skills of planning, implementing and evaluation.

Textbooks

Resolutions

Master of Nutrition and Dietetics

Course rules

1. Admission
1.1 The Faculty of Science, on the recommendation of the Nutrition Program Committee, may admit to candidature for the degree:
1.1.1 graduates of the University of Sydney who have, unless exempted by the Nutrition Program Committee, completed acceptable units of study in Biochemistry and Human Physiology.
1.1.2 graduates of other universities who have qualifications equivalent to those specified in 1.1.1, and on such conditions as the Nutrition Program Committee may prescribe.
1.1.3 graduates of the Bachelor of Science degree undertaken as part of the double Bachelor of Science/ Master of Nutrition and Dietetics degree.
1.1.4 graduates of the Bachelor of Applied Science (Sport and Exercise Science) degree undertaken as part of the double Bachelor of Applied Science (Sport and Exercise Science)/ Master of Nutrition and Dietetics degree.

2. Units of study
2.1 The units of study for the Master of Nutrition and Dietetics are listed in subsection 4.1.
2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included in description of units of study associated with this course.

3. Requirements for the Master of Nutrition and Dietetics
3.1 Candidates for the Master of Nutrition and Dietetics are required to complete satisfactorily units of study granting a minimum of 48 credit points selected from the table of units of study in subsection 4.1, in their first year of study.
3.2 In the second year of candidature a candidate will:
3.2.1 undertake training in the dietetics departments of primary health care settings;
3.2.2 complete further units of study as prescribed by the Program Committee in Nutrition and Dietetics; and
3.2.3 undertake a project approved by the unit of study coordinator. The results of this project shall be presented for examination in the form of a long essay.

Faculty rules

4. Details of units of study
4.1 The units of study for the Master of Nutrition and Dietetics are listed in the following table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1, Semester 1</td>
<td></td>
</tr>
<tr>
<td>NTDT5501 Nutritional Science</td>
<td>6</td>
</tr>
<tr>
<td>NTDT5502 Food Science</td>
<td>3</td>
</tr>
<tr>
<td>NTDT5503 Dietary Intake & Nutritional Assessment</td>
<td>6</td>
</tr>
<tr>
<td>NTDT5504 Communications A</td>
<td>3</td>
</tr>
<tr>
<td>NTDT5305 Food Service Management</td>
<td>6</td>
</tr>
<tr>
<td>Year 1, Semester 2</td>
<td></td>
</tr>
<tr>
<td>NTDT5307 Clinical Nutrition and Dietetics</td>
<td>12</td>
</tr>
</tbody>
</table>

365
25. Nutrition and Dietetics coursework degrees

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTDT5308 Community and Public Health</td>
<td>10</td>
</tr>
<tr>
<td>NTDT5309 Communication</td>
<td>2</td>
</tr>
<tr>
<td>Year 2, Semester by arrangement</td>
<td></td>
</tr>
<tr>
<td>NTDT5310 Nutrition Research Project</td>
<td>24</td>
</tr>
<tr>
<td>NTDT5311 Nutrition Practice</td>
<td>12</td>
</tr>
<tr>
<td>NTDT5312 Nutrition & Dietetics Training</td>
<td>12</td>
</tr>
</tbody>
</table>

4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

4.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:

4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;

4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and

4.4.3 to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.

4.6 A candidate shall complete in the first year of candidature such units of study as described in table 4.1 above.

4.7 The Master of Nutrition and Dietetics shall be awarded in two grades, namely Pass and, in the case of an outstanding candidate, Pass with Merit.

5. Enrolment in more/less than minimum load

5.1 A candidate for the Master of Nutrition and Dietetics may proceed on a full-time basis only.

6. Cross-institutional study

6.1 Cross institutional study shall not be available to students enrolled in Master of Nutrition and Dietetics, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment

7.1 Admission to candidature may be limited by a quota.

7.2 In determining the quota, the University will take into account:

7.2.1 availability of resources including space, laboratory and computing facilities; and

7.2.2 availability of adequate and appropriate supervision.

7.3 In considering an application for admission to the course the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of subsection 1 above.

8. Discontinuation of enrolment

8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend enrolment shall be deemed to have discontinued enrolment in the course.

8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature

9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence

10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress

11.1 Candidates for the Master of Nutrition and Dietetics shall be governed by the rule as follows:

11.1.2 A student who has failed a cumulative total of 12cp at any stage of enrolment in the Master of Nutrition and Dietetics will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will be terminated and the student will not be permitted to re-enrol.

11.1.3 Any candidate who fails to complete satisfactorily a clinical training placement unit of study at the second attempt will be deemed to have failed to complete the course requirements and their candidacy will be terminated by the Dean.

12. Time limit

12.1 A candidate for the degree shall be enrolled full-time and, except with the permission of the Faculty of Science, shall complete the requirements for the degree no later than two years from the date of first enrolment.

13. Assessment policy

13.1 On completion of the requirements for the degree, the Faculty shall determine the result of the candidature, on the recommendation of the Nutritional Science Program Committee, acting on a report from the Head of the Human Nutrition unit.

14. Credit transfer policy

14.1 Credit is not available in the Master of Nutrition and Dietetics for previous study.

A double degree offered by the Faculty of Science

Bachelor of Science and Master of Nutrition and Dietetics

Course Rules

1. Admission

1.1 All applicants for admission to candidature to the double degree in the Faculty of Science will be subject to the Undergraduate Admissions policy of the University of Sydney

2. Units of Study

2.1 The units of study for the Bachelor of Science degree are set out in Table 1 of the Faculty of Science Handbook.

2.2 The units of study for the Master of Nutrition and Dietetics degree are set out in the Faculty of Science Handbook.

3. Requirements for the double degree

3.1 To qualify for the award of Bachelor of Science/Master of Nutrition and Dietetics a student shall complete 240 units of study in accordance with the resolutions for each of those degrees as set out in the Faculty of Science Handbook and in these resolutions.

3.2 To qualify for the award of the BSc students must complete at least 144 credit points and for the Master of Nutrition and Dietetics the specified 96 credit points.

3.3 In the case of any inconsistency between these resolutions and resolutions for the Bachelor of Science or the Master of Nutrition and Dietetics degree, these resolutions shall prevail to the extent of the inconsistency.

3.6 Bachelor of Science

3.6.1 Students shall complete:

3.6.1.1 at least one major from Science subject areas of Biochemistry, Physiology, Microbiology or Psychology included in Table I;

3.6.1.2 at least 12 credit points from the Science subject areas of Mathematics and Statistics including 3 credit points of statistics;

3.6.1.3 at least 12 credit points of Junior units of study from chemistry;

3.6.1.4 at least 6 credit points of Junior units of study from biology;

3.6.1.5 at least 12 credit points from two Science subject areas other than specified above;

3.6.1.6 no more than 60 credit points from Junior units of study.

3.3 A student who is suitably qualified may undertake an Honours year in the Bachelor of Science degree before continuing to the Master of Nutrition and Dietetics degree.

3.4.0 Master of Nutrition and Dietetics

3.4 A student shall not proceed to the Master of Nutrition and Dietetics degree until the student has completed all requirements for the Bachelor of Science degree.

4. Satisfactory progress

4.1 To maintain satisfactory progress, a student shall maintain a Weighted Average Mark of 60 in the first year of the Bachelor of Science degree and Weighted Average Mark of 65 in subsequent years of the Bachelor of Science degree.
4.2 A student who does not maintain the required average shall be transferred from the double degree to the Bachelor of Science degree.

4.3 A student who has not maintained the required average at the completion of the Bachelor of Science degree shall not proceed to the Master of Nutrition and Dietetics. The student shall graduate with the Bachelor of Science degree only.

4.4 Satisfactory progress using a WAM calculation is assessed on an annual basis at the conclusion of semester 2 each year.
25. Nutrition and Dietetics coursework degrees
This chapter sets out the requirements for postgraduate degrees offered in the Faculty of Science in the area of Physics. Degrees offered in the area of Physics are listed in the following order:

- Medical Physics
- Nuclear Science
- Photonics and Optical Science

Medical Physics degrees

Master of Medical Physics (MMedPhys)

Degree Code: LC046

Graduate Diploma in Medical Physics (GradDipMedPhys)

Degree Code: LF034

This section sets out the requirements for coursework postgraduate degrees offered in the Faculty of Science in the area of Medical Physics. A comprehensive guide to the requirements and units of study of the coursework degrees is listed.

The information in this section is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously at the end of this chapter, following the unit of study descriptions, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at www.usyd.edu.au/publications/calendar.

Course overview

The Master of Medical Physics (MMedPhys) and the Graduate Diploma in Medical Physics (GradDipMedPhys) are the entry level qualifications for trainee medical physicists. Physical scientists apply their knowledge and training in many different areas of medicine including the treatment of cancer, medical imaging, physiological monitoring and medical electronics.

Course outcomes

The MMedPhys and GradDipMedPhys provide the entry level qualification for trainee medical physicists working in a hospital medical physics department. Both courses are accredited by the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM). Graduates of these courses will qualify to apply for trainee medical physicist positions in hospitals in Australia and New Zealand. Medical physicists employed in hospitals often undertake research studies part-time for the higher Doctor of Philosophy (PhD) research degree.

Medical Physics postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Degrees: Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS5002 Anatomy and Physiology</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5029 Nuclear Medicine Physics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5011 Nuclear Physics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5012 Radiation Physics and Dosimetry</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5005 Radiotherapy Physics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS5006 Medical Imaging Physics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS5018 Health Physics and Radiation Protection</td>
<td>6</td>
<td>N PHYS5008</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS5020 Computation and Image Processing</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Masters: Additional Core Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS5019 Research Methodology and Project</td>
<td>24</td>
<td>P Successful completion of the eight coursework units of the postgraduate coursework Masters degree for which the student is enrolled, equivalent to completion of the requirements for award of the Graduate Diploma. N Both PHYS5009 and 5010</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>

To view the latest update, download, purchase or search a handbook visit Handbooks online: www.usyd.edu.au/handbooks
Medical Physics unit of study descriptions 2010

PHYS5002
Anatomy and Physiology
Credit points: 6 Session: Semester 1 Classes: One 2 hour lecture and one 1 hour practical per week. Assessment: Assignments, written exam

In this unit normally undertaken as part of the Masters of Medical Physics degree or the Graduate Diploma in Medical Physics, the concepts of the structure of the human body and tissues are introduced. The organisation and function of each of the major organ systems that constitute the human body are covered. Examples of pathology of diseases commonly encountered in the practice of medical physics will be included. Basic concepts in physiological modelling are introduced.

PHYS5009
Nuclear Medicine Physics
Credit points: 6 Session: Semester 1 Classes: One 2 hour lecture and one 1 hour practical per week. Assessment: Assignments, written exam

This unit of study will introduce the student to the physics associated with diagnostic and therapeutic applications in Nuclear Medicine. This will cover the use of radionuclides for imaging in single photon (SPECT) and positron emission tomography (PET), radiation and the patient, tomographic image reconstruction and kinetic analysis of imaging data. Internal radionuclide dosimetry will be addressed using standard (MIRD) models as well as by voxel-based estimators.

PHYS5005
Radiotherapy Physics
Credit points: 6 Session: Semester 2 Classes: One 2 hour lecture and one 1 hour practical per week. Assessment: Assignments, written exam

In this unit normally undertaken as part of the Masters of Medical Physics degree or the Graduate Diploma in Medical Physics, both theoretical and practical aspects of the major topics in radiotherapy physics are covered. These topics include radiation beam production and modification, calibration and characterisation, principles of treatment planning, dose calculation and reporting, and the physics of brachytherapy.

PHYS5006
Medical Imaging Physics
Credit points: 6 Session: Semester 2 Classes: One 2 hour lecture and one 1 hour practical per week. Assessment: Assignments, written exam

In this unit normally undertaken as part of the Masters of Medical Physics degree or the Graduate Diploma in Medical Physics, the physical principles underlying the science of imaging in diagnostic radiology, ultrasound, magnetic resonance imaging and functional imaging modalities are covered.

PHYS5011
Nuclear Physics
Credit points: 5 Session: Semester 1 Classes: One 3 hour lecture per week. Assessment: Assignments, written exam

This unit is normally undertaken as part of the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science or the Master of Medical Physics or the Graduate Diploma in Medical Physics. Nuclear properties, nuclear models, nuclear decays (gamma, beta, alpha and heavy ion decay), natural radioactivity and radioactive decay series, artificial radioactivity, nuclear reactions (including high energy nuclear particle induced spallation reactions), nuclear fission (spontaneous and induced fission) and nuclear fusion are covered.

PHYS5012
Radiation Physics and Dosimetry
Credit points: 6 Session: Semester 1 Classes: One 2 hour lecture and one 1 hour practical per week. Assessment: Assignments, written exam

This unit is normally undertaken as part of the Master of Medical Physics degree or the Graduate Diploma in Medical Physics or the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science. Sources of radiation, interaction of radiation with matter, physical, chemical and biological effects of radiation in human tissue, physical principles of dosimetry, internal and external dosimetry, radiation units and measurement are covered.

PHYS5018
Health Physics and Radiation Protection
Credit points: 6 Session: Semester 2 Classes: One 2 hour lecture and one 1 hour practical per week. Prohibitions: PHYS5008 Assessment: Assignments, written exam

This unit is normally undertaken as part of the Master of Medical Physics degree or in the Graduate Diploma in Medical Physics or the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science. Physical and biological aspects of the safe use of ionising radiation, physical principles and underlying shielding design instrumentation, international and legislative requirements for radiation protection are covered. Factors affecting dose response of tissue are considered along with models describing characteristic behaviour.

PHYS5019
Research Methodology and Project
Credit points: 24 Session: Semester 1, Semester 2 Prerequisites: Successful completion of the eight coursework units of the postgraduate coursework Masters degree for which the student is enrolled, equivalent to completion of the requirements for award of the Graduate Diploma. Prohibitions: Both PHYS(5009 and 5010) Assessment: Report, research seminar

Note: Department permission required for enrolment.

In this unit a research project is undertaken. The topic of the project will be determined in consultation with the course coordinator. In addition, the processes involved in conducting various forms of research, basic data analysis and interpretation, research writing and presentation skills are covered.

PHYS5020
Computation and Image Processing
Credit points: 6 Session: Semester 2 Classes: One 2 hour lecture and one 1 hour practical per week. Assessment: Assignments, written exam

In this unit normally undertaken as part of the Masters of Medical Physics degree or the Graduate Diploma in Medical Physics, Monte Carlo modelling of radiation transport is covered, along with the theory of image formation, concepts of computing, numerical methods and image processing, including techniques such as enhancement, registration, fusion and 3D reconstruction.

Resolutions

Master of Medical Physics
Graduate Diploma in Medical Physics

Course rules

1. Admission
1.1 The Faculty may, on the recommendation of the Dean of the Faculty of Science, admit to candidature for:
1.1.1 the Graduate Diploma in Medical Physics;
1.1.2 an applicant who is the holder of a bachelor’s degree in Science or Engineering from the University of Sydney provided the applicant has achieved a major in physics, or equivalent;
1.1.3 a graduate of another university or appropriate institution who has equivalent qualifications to those specified in subsection 1.1.2.
1.2 the Master of Medical Physics
1.2.1 a person who has the qualifications specified in subsection 1.1.2; or
1.2.2 a person who has completed requirements for the Graduate Diploma in Medical Physics.
2. **Units of study**

2.1 The units of study for the Graduate Diploma in Medical Physics and the Master of Medical Physics are listed in the table of units of study associated with these resolutions.

3. **Requirements for the Graduate Diploma in Medical Physics and Master of Medical Physics**

3.1 Candidates for the Graduate Diploma in Medical Physics are required to complete 48 credit points consisting of the core units of study in the table of units of study for Medical Physics Postgraduate coursework degrees in this chapter of the Faculty of Science Handbook, excluding the project PHYS5019.

3.2 Candidates for the Master of Medical Physics are required to complete 72 credit points consisting of the 48 credit points of core units of study in the table of units of study for Medical Physics Postgraduate coursework degrees in this chapter of the Faculty of Science Handbook, including the 24 credit point project PHYS5019.

3.3 A candidate must complete successfully 48 credit points of units of study before enrolling in PHYS5019.

Faculty rules

4. **Details of units of study**

4.1 The units of study for the Graduate Diploma in Medical Physics, and the Master of Medical Physics are listed in the tables included earlier in this chapter. The first half of the table relates to students who first enrolled in the program prior to 2008. The second half of the table relates to students who enrol in the program from 2008 onwards.

4.2 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed. In these resolutions, ‘to complete a unit of study’ or any derivative expression means:

4.2.1 to attend lectures and meetings, if any, for seminars and tutorial instruction;

4.2.2 to complete satisfactorily the essays, exercises, practical and project work if any; and

4.2.3 to pass any other examination of the unit of study that may apply.

4.3 The Master of Medical Physics shall be awarded in two grades, namely Pass and, in the case of an outstanding candidate, Pass with Merit.

5. **Enrolment in more/less than minimum load**

5.1 A candidate may proceed on either a full-time or part-time basis.

6. **Cross-institutional study**

6.1 Cross-institutional study shall not be available to students enrolled in the Graduate Diploma in Medical Physics and the Master of Medical Physics courses, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. **Restrictions on enrolment**

7.1 Admission to either course may be limited by quota.

7.2 In determining the quota the University will take into account:

7.2.1 availability of resources including space, library, equipment, laboratory and computing facilities; and

7.2.2 availability of adequate and appropriate supervision.

7.3 In considering an application for admission to candidature the Head of Department and the Faculty shall take account of the quota and will select in preference applicants who are most meritorious in terms of section 1 above.

8. **Discontinuation of enrolment**

8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course. Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. **Suspension of candidature**

9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. **Re-enrolment after an absence**

10.1 A student who plans to reenrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. **Satisfactory progress**

11.1 Candidates for the Master of Medical Physics and the Graduate Diploma in Medical Physics shall be governed by the rules as follows:

11.1.1 A student who has failed a cumulative total of 12cp at any stage of enrolment in the Master of Medical Physics will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Diploma in Medical Physics.

11.1.2 A student who has failed a cumulative total of 18cp at any stage of enrolment in the Master of Medical Physics and/or the Graduate Diploma in Medical Physics will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.1.3 A student who has failed a unit at the second attempt in the Master of Medical Physics and/or the Graduate Diploma in Medical Physics will be deemed to have failed to complete course requirements and will be required to show good cause why he or she should be allowed to re-enrol. If good cause has not been established, the student will not be permitted to re-enrol.

12. **Time limit**

12.1 For the Graduate Diploma in Medical Physics:

12.1.1 A full-time candidate shall complete the requirements for the Graduate Diploma not earlier than the end of the second semester of candidature, and not later than the fourth semester of candidature.

12.1.2 A part-time candidate shall complete the requirements for the Graduate Diploma not earlier than the end of the fourth semester of candidature, and not later than the sixth semester of candidature.

12.2 For the Master of Medical Physics:

12.2.1 A full-time candidate shall complete the requirements for the Masters degree not earlier than the end of the third semester of candidature, and not later than the fourth semester of candidature.

12.2.2 A part-time candidate shall complete the requirements for the Masters degree not earlier than the end of the fourth semester of candidature, and not later than the sixth semester of candidature.

13. **Assessment policy**

13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidature, on the recommendation of the Head of the School of Physics.

14. **Credit transfer policy**

14.1 Credit is not available in the Graduate Diploma in Medical Physics and Master of Medical Physics for postgraduate study which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Diploma in Medical Physics may transfer, within three years, to the Master of Medical Physics and receive credit for up to 48 credit points from the Graduate Diploma in Medical Physics.
Nuclear Science degrees

Master of Applied Nuclear Science
Degree Code: LC051

Graduate Diploma in Applied Nuclear Science
Degree Code: LF039

This section sets out the requirements for coursework postgraduate degrees offered in the Faculty of Science in the area of Applied Nuclear Science. A comprehensive guide to the requirements and units of study of the coursework degrees is listed.

The information in this section is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously in at the end of this chapter, following the unit of study descriptions, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or on the Web at: www.usyd.edu.au/publications/calendar.

Course overview

The Master of Applied Nuclear Science (MApplNucSci) and the Graduate Diploma in Applied Nuclear Science (GradDipApplNucSci) are designed to meet the growing needs both within Australia and globally for individuals with a postgraduate education and training in nuclear science and technology. Both award courses build upon a Physics major and provide a level and type of specialisation that is not available at the undergraduate level.

Candidates will normally commence their study in Semester 1, except with the permission of the Dean.

Course outcomes

Graduates of the MApplNucSci and GradDipApplNucSci degrees will have gained a comprehensive understanding of nuclear science and its applications. Graduates of the Master's program will have gained, in addition, research experience. Both courses will enable students to gain entry into the specialist field of nuclear science or into occupations where knowledge of this field is desirable. It will also provide an opportunity for those already working in the field of nuclear science to gain further experience in this field of science and technology.

Graduates of the Master of Applied Nuclear Science are eligible to apply for admission to a research degree (PhD).

Nuclear Science postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Degrees: Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS5011 Nuclear Physics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5012 Radiation Physics and Dosimetry</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5013 Nuclear Instrumentation</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5014 Applications of Nuclear Physics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5015 Reactor Physics and Systems</td>
<td>6</td>
<td>N PHYS5011, PHYS5013</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS5016 Nuclear Chemistry and Nuclear Fuel Cycle</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS5017 Energy Options and Environment</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS5018 Health Physics and Radiation Protection</td>
<td>6</td>
<td>N PHYS5008</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Masters: Additional Core Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS5019 Research Methodology and Project</td>
<td>24</td>
<td>P Successful completion of the eight coursework units of the postgraduate coursework Masters degree for which the student is enrolled, equivalent to completion of the requirements for award of the Graduate Diploma. N Both PHYS5009 and 5010</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Nuclear Science unit of study descriptions 2010

PHYS5011 Nuclear Physics

Credit points: 6 Session: Semester 1 Classes: One 3 hour lecture per week
Assessment: Assignments, written exam

This unit is normally undertaken as part of the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science or the Master of Medical Physics or the Graduate Diploma in Medical Physics. Nuclear properties, nuclear models, nuclear decays (gamma, beta, alpha and heavy ion decay), natural radioactivity and radioactive decay series, artificial radioactivity, nuclear reactions (including high energy nuclear particle induced spallation reactions), nuclear fission (spontaneous and induced fission) and nuclear fusion are covered.

PHYS5012 Radiation Physics and Dosimetry

Credit points: 6 Session: Semester 1 Classes: One 2 hour lecture and one 1 hour practical per week. Assessment: Assignments, written exam

This unit is normally undertaken as part of the Master of Medical Physics degree or the Graduate Diploma in Medical Physics or the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science. Sources of radiation, interaction of radiation with matter, physical, chemical and biological effects of radiation in human
tissue, physical principles of dosimetry, internal and external dosimetry, radiation units and measurement are covered.

PHYS5013

Nuclear Instrumentation

Credit points: 6 **Session:** Semester 1 **Classes:** One 2 hour lecture and one 1 hour practical per week. **Assessment:** Assignments, written exam

This unit is normally undertaken as part of the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science. It covers principles and operation of nuclear particle detectors, gas-filled detectors (ionisation chambers, Geiger counter, proportional counter), scintillation detectors (organic and inorganic scintillators), solid state detectors (Surface barrier detectors, GeLi detectors, Pin diodes), nuclear track detectors, neutron detectors (BF3, He-3, He-4 detectors, fission counters), nuclear data acquisition methods and data analysis (counting statistics and error prediction).

PHYS5014

Applications of Nuclear Physics

Credit points: 6 **Session:** Semester 1 **Classes:** One 2 hour lecture and one 1 hour practical per week. **Assessment:** Assignments, written exam

This unit is normally undertaken as part of the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science. It presents the diverse range of applications of nuclear physics, such as nuclear medicine (including hadron therapy), environmental science, geochronology and radiocarbon dating, biogeochemistry, Hydrology, and applications of radioisotopes in agriculture and industry. Neutron activation analysis and applications of neutron scattering in material space, accelerator technology in research (e.g., accelerator mass spectrometry, ion beam analysis) and issues related to nuclear safeguards are also covered.

PHYS5015

Reactor Physics and Systems

Credit points: 6 **Session:** Semester 2 **Classes:** One 2 hour lecture and one 1 hour practical per week. **Prohibitions:** PHYS5011, PHYS5013 **Assessment:** Assignments, written exam

This unit is normally undertaken as part of the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science. It covers the following: physical properties of neutrons, interaction of neutrons with matter, neutron cross-sections, nuclear fission, diffusion of neutrons, neutron moderation, neutron chain reaction systems, thermal and fast reactors, nuclear reactor dynamics, production and transmutation of radionuclides.

PHYS5016

Nuclear Chemistry and Nuclear Fuel Cycle

Credit points: 6 **Session:** Semester 2 **Classes:** One 2 hour lecture and one 1 hour practical per week. **Assessment:** Assignments, written exam

This unit is normally undertaken as part of the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science. It covers nuclear fuel materials, reactor fuel production, properties of fuel element materials, processing of spent fuel, nuclear waste disposal and transmutation methods, liquid waste, gaseous waste and solid waste.

PHYS5017

Energy Options and Environment

Credit points: 6 **Session:** Semester 2 **Classes:** One 2 hour lecture and one 1 hour practical per week. **Assessment:** Assignments, written exam

This unit is normally undertaken as part of the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science. It covers the following: fossil fuels (coal, oil, gas); renewable energies (solar, wind, wave, biomass, geothermal); nuclear energy (fission, fusion); relative advantages; environmental impact and economical viability.

PHYS5018

Health Physics and Radiation Protection

Credit points: 6 **Session:** Semester 2 **Classes:** One 2 hour lecture and one 1 hour practical per week. **Prohibitions:** PHYS5008 **Assessment:** Assignments, written exam

This unit is normally undertaken as part of the Master of Medical Physics degree or in the Graduate Diploma in Medical Physics or the Master of Applied Nuclear Science or the Graduate Diploma in Applied Nuclear Science. Physical and biological aspects of the safe use of ionising radiation, physical principles and underlying shielding design instrumentation, international and legislative requirements for radiation protection are covered. Factors affecting dose response of tissue are considered along with models describing characteristic behaviour.

PHYS5019

Research Methodology and Project

Credit points: 24 **Session:** Semester 1, Semester 2 **Prerequisites:** Successful completion of the eight coursework units of the postgraduate coursework Masters degree for which the student is enrolled, equivalent to completion of the requirements for award of the Graduate Diploma. **Prohibitions:** Both PHYS5009 and 5010 **Assessment:** Report, research seminar **Note:** Department permission required for enrolment

In this unit a research project is undertaken. The topic of the project will be determined in consultation with the course coordinator. In addition, the processes involved in conducting various forms of research, basic data analysis and interpretation, research writing and presentation skills are covered.

Resolutions

Master of Applied Nuclear Science

Graduate Diploma in Applied Nuclear Science

Course rules

1. **Admission**

1.1 The Faculty may, on the recommendation of the Dean of the Faculty of Science, admit to candidature for:

1.1.1 **the Graduate Diploma in Applied Nuclear Science**

1.1.2 an applicant who is the holder of a bachelor's degree in Science or Engineering from the University of Sydney provided the applicant has achieved a major in physics, or equivalent;

1.1.3 a graduate of another university or appropriate institution who has equivalent qualifications to those specified in subsection 1.1.2.

1.2 **The Master of Applied Nuclear Science**

1.2.1 a person who has the qualifications specified in subsection 1.1.2; or

1.2.2 a person who has completed requirements for the Graduate Diploma in Applied Nuclear Science.

1.3 Conditions of candidature are prescribed by Resolutions of the Faculty.

2. **Units of study**

2.1 The units of study for the Graduate Diploma in Applied Nuclear Science and the Master of Applied Nuclear Science are listed in the Table of units of study associated with these resolutions.

3. **Requirements for the Graduate Diploma in Applied Nuclear Science and Master of Applied Nuclear Science**

3.1 Candidates for the Graduate Diploma in Applied Nuclear Science are required to complete 48 credit points consisting of the core units of study in the Table of units of study for Applied Nuclear Science Postgraduate coursework degrees in this chapter of the Faculty of Science Handbook, excluding the project PHYS5019.

3.2 Candidates for the Master of Applied Nuclear Science are required to complete 72 credit points consisting of the 48 credit points of core units of study in the Table of units of study for Applied Nuclear Science Postgraduate coursework degrees in
11.1.1 A student who has failed a cumulative total of 12cp at any
cumulative total of 18cp at any
class of study in the Faculty of Science Handbook. The units of study may be varied by the
Faculty from time to time:
All units are core. Unless otherwise indicated all units are worth 6
credit points.
4.2 A candidate for the course shall proceed by completing units
of study as prescribed by the Faculty.
4.3 A unit of study shall consist of such lectures, seminars, tutorial
instruction, essays, exercises, practical work, or project work
as may be prescribed.
4.4 In these resolutions, ‘to complete a unit of study’ or any
derivative expression means:
4.4.1 to attend lectures and meetings, if any, for seminars and
tutorial instruction;
4.4.2 to complete satisfactorily the essays, exercises, practical
and project work if any; and
4.4.3 to pass any other examination of the unit of study that may
apply.
4.5 All units of study for a particular subject area may not be
available every semester.
4.6 The Master of Applied Nuclear Science shall be awarded in
two grades, namely Pass and, in the case of an outstanding
candidate, Pass with Merit.
5. Enrolment in more/less than minimum load
5.1 A candidate may proceed on either a full-time or part-time basis.
6. Cross-institutional study
6.1 Cross-institutional study shall not be available to students
enrolled in the Graduate Diploma in Applied Nuclear Science and the Master of Applied Nuclear Science courses, except
where the University of Sydney has a formal Cooperation Agreement with another University.
7. Restrictions on enrolment
7.1 Admission to the Graduate Diploma in Applied Nuclear Science and Master of Applied Nuclear Science may be limited by a
quota.
7.2 In determining the quota the University will take into account:
7.2.1 availability of resources including space, library, equipment, laboratory and computing facilities; and
7.2.2 availability of adequate and appropriate supervision.
7.3 In considering an application for admission to candidature the Dean shall take account of the quota and will select, in
preference, applicants who are most meritorious in terms of subsection 1 above.
8. Discontinuation of enrolment
8.1 A student who does not enrol in any semester without first
obtaining written permission from the Dean to suspend
candidature will be deemed to have discontinued enrolment in the
course.
8.2 Students who have discontinued from the course will be
required to apply for admission to the course and be subject
to admission requirements pertaining at that time.
9. Suspension of candidature
9.1 A student may seek written permission from the Dean to
suspend candidature in the course.
9.2 Suspension may be granted for a maximum of one year.
10. Re-enrolment after an absence
10.1 A student who plans to re-enrol after a period of suspension
must advise the Faculty of Science Office in writing of their
intention by no later than the end of October for First Semester of
the following year or the end of May for Second Semester of
the same year.
11. Satisfactory progress
11.1 Candidates for the Graduate Diploma in Applied Nuclear Science and the Master of Applied Nuclear Science shall be
governed by the rules as follows:
11.1.1 A student who has failed a cumulative total of 12cp at any
stage of enrolment in the Master of Applied Nuclear Science
will be required to show good cause why he or she should
be allowed to re-enrol and, if good cause has not been
established, the student’s enrolment will be transferred to
the Graduate Diploma in Applied Nuclear Science;
11.1.2 A student who has failed a cumulative total of 18cp at any
stage of enrolment in the Master of Applied Nuclear Science
and/or the Graduate Diploma in Applied Nuclear Science will
be required to show good cause why he or she should be
allowed to re-enrol and, if good cause has not been
established, the student will not be permitted to re-enrol.
11.1.3 A student who has failed a unit at the second attempt in the
Master of Applied Nuclear Science and/or the Graduate Diploma in Applied Nuclear Science will be deemed to have
failed to complete course requirements and will be required
to show good cause why he or she should be allowed to
re-enrol. If good cause has not been established, the student
will not be permitted to re-enrol.
12. Time limit
12.1 A candidate for the Graduate Diploma in Applied Nuclear Science shall complete the requirements for the award in a
minimum of two semesters and a maximum of 6 semesters,
and (in the event of suspension) except with permission of the
Dean within five calendar years of admission to candidature.
12.2 A candidate for the Master in Applied Nuclear Science shall complete the requirements for the award in a minimum of 3
semesters and a maximum of 6 semesters, and (in the event of suspension) except with permission of the Dean within five
calendar years of admission to candidature.
13. Assessment policy
13.1 A candidate may be tested by written and oral examinations,
assignments, exercises and practical work or any combination
of these.
13.2 On completion of the requirements for the Graduate Diploma
in Applied Nuclear Science or the Master in Applied Nuclear Science, the results of the examination of the coursework shall
be reported by the School of Physics to the Faculty, which shall
determine the result of the candidature.
14. Credit transfer policy
14.1 Credit is not available in the Graduate Diploma in Applied Nuclear Science and Master of Applied Nuclear Science for
postgraduate study which has not been undertaken in these
award courses within the previous three years.
14.2 A candidate who has qualified for the award of the Graduate Diploma in Applied Nuclear Science may transfer, within three
years, to the Master of Applied Nuclear Science and receive
credit for up to 48 credit points from the Graduate Diploma in
Applied Nuclear Science.

374
 Photonics and Optical Science degrees

Master of Photonics and Optical Science

Degree Code: LC053

Graduate Diploma in Photonics and Optical Science

Degree Code: LF041

The Graduate Diploma in Photonics and Optical Science and the Master of Photonics and Optical Science are articulated coursework programs that allow a degree of flexibility in the depth at which studies are undertaken and the choice of subjects studied.

This section sets out the requirements for coursework postgraduate degrees offered in the Faculty of Science in the area of Photonics and Optical Science. A comprehensive guide to the requirements and units of study of the coursework degrees is listed.

The information in this section is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously in the end of this chapter, following the unit of study descriptions, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or on the Web at: www.usyd.edu.au/publications/calendar.

Course overview

The Master of Photonics and Optical Science is taken over three semesters of full-time study with two of those semesters comprised of coursework and one semester of study towards a research project carried out under the supervision of academic staff in the School of Physics. Each semester of coursework comprises four 6 unit courses in the following subject areas:

- Optical Instrumentation and Imaging
- Guided wave optics and communications applications
- Lasers and optical devices
- Optical materials and methods
- Physical and nonlinear optics
- Quantum optics and nanophotonics
- Biophotonics and microscopy
- Optics in industry

Course outcomes

This course provides a professional level of education in optics and photonics with training applicable to employment in in communications, optical and scientific instruments and optical techniques in biology and medical applications. The course is suitable both for those training for senior positions in optical industries or as preparation for a PhD.

Photonics and Optical Science postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diploma and Masters: Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS5021 Optical Instrumentation and Imaging</td>
<td>6</td>
<td>A Pass science degree majoring in Physics, or pass Engineering degree</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS5022 Optical Materials and Methods</td>
<td>6</td>
<td>A Pass degree in Science majoring in Physics or equivalent, or a pass degree in Electrical Engineering or equivalent</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5024 Optical Sources and Detectors</td>
<td>6</td>
<td>P Pass degree in Science majoring in Physics or equivalent, or a pass degree in Electrical Engineering or equivalent</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5025 Biophotonics and Microscopy</td>
<td>6</td>
<td>A Pass degree in Science majoring in Physics or equivalent or a pass degree in Electrical Engineering or equivalent</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS5026 Physical and Nonlinear Optics</td>
<td>6</td>
<td>A basic electromagnetism, optical waveguide theory</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PHYS5027 Quantum Optics and Nanophotonics</td>
<td>6</td>
<td>A Pass degree in Science majoring in Physics or equivalent, or a pass degree in Electrical Engineering or equivalent</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHYS5028 Optics in Industry</td>
<td>6</td>
<td>A Equivalent to a pass degree in Science majoring in Physics or a pass degree in Electrical Engineering</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>ELEC5511 Optical Communication Systems</td>
<td>6</td>
<td>A (ELEC3503 Introduction to Digital Communications or ELEC3505 Communications) and (ELEC3402 Communications Electronics or ELEC3405 Communications Electronics and Photonics)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Masters: Additional Core Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS5019 Research Methodology and Project</td>
<td>24</td>
<td>P Successful completion of the eight coursework units of the postgraduate coursework Masters degree for which the student is enrolled, equivalent to completion of the requirements for award of the Graduate Diploma.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N Both PHYS5009 and 5010</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Photonics and Optical Science unit of study descriptions 2010

ELEC5511 Optical Communication Systems

Credit points: 6 Session: Semester 1 Classes: 2 hours of lectures and 2 hours laboratory/tutorial per week. Assumed knowledge: (ELEC3503 Introduction to Digital Communications or ELEC3505 Communications) and (ELEC3402 Communications Electronics or ELEC3405 Communications Electronics and Photonics). Assessment: Assignments and labs, final semester exam.

PHYS5019
Research Methodology and Project
Credit points: 24 Session: Semester 1, Semester 2 Prerequisites: Successful completion of the eight coursework units of the postgraduate coursework Masters degree for which the student is enrolled, equivalent to completion of the requirements for award of the Graduate Diploma. Prohibitions: Both PHYS5009 and 5010) Assessment: Report, research seminar
Note: Department permission required for enrolment.

In this unit a research project is undertaken. The topic of the project will be determined in consultation with the course coordinator. In addition, the processes involved in conducting various forms of research, basic data analysis and interpretation, research writing and presentation skills are covered.

PHYS5021
Optical Instrumentation and Imaging
Credit points: 6 Teacher/Coordinator: Dr Gordon Robertson Session: Semester 2 Classes: Total of 20 lectures, 10 two hour practicals Assumed knowledge: Pass science degree majoring in Physics, or pass Engineering degree Assessment: One 2-hour exam 70%, tutorial papers 15%, prac reports 15%.

Optical instrumentation covers the basics of geometrical optics before moving on to a detailed overview of the principles and practice of optical design principles of image formation, lenses and mirrors, aberrations and tolerancing. The course will cover different design examples - collimators, cameras, objective lenses. Students will gain experience in working with optical design software.

The Imaging component of the course provides training in the mathematical techniques used to analyse an image recorded by an electronic camera to recover information of interest. Students will be given an overview of image processing principles, and learn about processing in the spatial and frequency domains. The course covers noise removal, tomography and image restoration techniques. This section of the course will be complemented by laboratory sessions in which students manipulate images using one of the data processing packages (IDL, Matlab).

Textbooks
To be announced

PHYS5022
Optical Materials and Methods
Credit points: 6 Teacher/Coordinator: Dr Maryanne Large Session: Semester 1 Classes: Two lectures and 1 practical per week Assumed knowledge: Pass degree in Science majoring in Physics or equivalent, or a pass degree in Electrical Engineering or equivalent Assessment: One 2 hour examination 75%, practical reports 15%, assignments 10%

This unit of study introduces students to the properties and use of modern optical materials such as glasses, semiconductors, polymers and liquid crystals. We analyse the effect of electronic and crystallographic properties on the generation and propagation of light in these materials. We study fundamental methods for producing modern optical materials, which includes techniques to fabricate optically active glasses, to grow bulk semiconductor crystals and compound semiconductor heterostructures, and to deposit organic semiconducting polymers.

We will discuss advanced concepts such as generating abrupt interfaces, p-i-n junctions and doping profiles that are important concepts in the context of band gap engineering and low-dimensional semiconductor heterostructures, such as Quantum Wells or Quantum Dots. Students are then introduced to methods of micro-fabricating optical devices from these materials, including patterning by conventional optical lithography and novel Nanoimprint lithography, structuring by wet and dry etching and deposition of electrical contacts. The properties and fabrication techniques for optical thin films will also be covered.

Students will receive training in the use of modern microfabrication tools (e.g. electron beam lithography, reactive ion etching, thin film deposition).

Textbooks
To be announced

PHYS5024
Optical Sources and Detectors
Credit points: 6 Teacher/Coordinator: Dr David Moss Session: Semester 1 Classes: 2 lectures, 1 tutorial/practical per week averaged over the semester Prerequisites: Pass degree in Science majoring in Physics or equivalent, or a pass degree in Electrical Engineering or equivalent Assessment: One 2 hour examination 75%, two assignments 25%

This unit of study provides a detailed overview of sources and detectors of optical radiation as well as optical amplifiers. Lasers, light emitting diodes, optical amplifiers and other sources of radiation are covered. Students will study the principles of operation and application of a range of different lasers including diode lasers, fibre lasers and solid state diode-pumped lasers; mode locking and short pulse lasers and high power gas lasers. The properties of semiconductor lasers, amplifiers and detectors will be explained in terms of the materials properties of semiconductors.

Textbooks
Various (no single text will be used)

PHYS5025
Biophotonics and Microscopy
Credit points: 6 Teacher/Coordinator: Dr Boris Kuhlmey Session: Semester 2 Classes: One 1 hour lecture per week and an average of 0.5 hour tutorials and 1.5 practical hours per week over the semester Assumed knowledge: Pass degree in Science majoring in Physics or equivalent or a pass degree in Electrical Engineering or equivalent Assessment: One 2 hour examination 30%, three written assignments 30%, practical assessment 40%

Biophotonics is the use of optical techniques to probe living tissue either via imaging or spectral analysis. In this course we cover the basics of imaging in tissue and cover the principles of the main microscopy techniques: fluorescence imaging, confocal microscopy, two-photon microscopy, optical coherence tomography and endoscopic imaging. Using EMU facilities, students will be provided with practical training in these techniques. Approaches to biochemical detection, Raman spectroscopy, surface plasmon sensors will be covered. The course will also include lectures on laser tweezers and microfluidics, both of which are used for analyzing small biological samples.

Textbooks
To be announced

PHYS5026
Physical and Nonlinear Optics
Credit points: 6 Teacher/Coordinator: Professor Martijn de Sterke Session: Semester 1 Classes: 2 lectures per week, 1 tutorial alternated with 3-5 hours laboratory work per week Assumed knowledge: basic electromagnetism, optical waveguide theory Assessment: One 3 hour examination 65%, written assignments 20%, lab 15%

This unit of study provides a rigorous introduction to physical optics and to nonlinear optics. Physical optics includes polarization, coherence, diffraction, Fourier properties of lenses and optical systems, spatial filtering and holography. Nonlinear optics starts with nonlinear polarization and covers Chi-2 effects (electro optic effect, second harmonic generation) and Chi-3 effects (self and cross phase modulation). Nonlinear wave propagation is examined by solving the nonlinear Schrodinger equation, which elucidates a range of physical phenomena including four wave mixing and soliton generation and their impact on communications systems.

Textbooks
"Light and Matter" by Yehuda Band (Wiley, 2006)

PHYS5027
Quantum Optics and Nanophotonics
Credit points: 6 Teacher/Coordinator: Dr Stephen Bartlett Session: Semester 2 Classes: 1 lecture, 1 tutorial, 1 seminar per week Assumed knowledge: Pass degree in Science majoring in Physics or equivalent, or a pass degree in Electrical Engineering or equivalent Assessment: One 2 hour examination 70%, written assignments 30%

Quantum optics will introduce the quantization of light and photon statistics, and cover a range of topics of current interest including intensity interferometry, quantum cryptography, optical quantum computing and atom optics including Bose Einstein condensates and
atom lasers. Emphasis will be on qualitative understanding rather than rigorous mathematical descriptions.

Nanophotonics covers light propagation through materials with sub-wavelength structuring so light is guided not only by refraction but also diffraction. This leads to the study of photonic crystals including photonic crystal fibres, plasmonics, photonic ‘nanowires’ and metamaterials. The course also provides opportunities for students to use powerful finite difference time domain (FDTD) simulation packages to design devices like high Q nano-resonators using these materials, and discusses how such devices are actually made.

Textbooks
To be announced

PHYS5028
Optics in Industry
Credit points: 6 Teacher/Coordinator: Dr Chris Walsh Session: Semester 2 Classes: One 1-hour lecture per week, two hours of tutorials per week Assumed knowledge: Equivalent to a pass degree in Science majoring in Physics or a pass degree in Electrical Engineering Assessment: One 2000-word essay 40%, prac assessments 60%

This unit of study will first provide students with a detailed optical analysis of a consumer or industry product whose operation embodies many of the principles discussed in this course. Examples include a phone camera or a DVD player.

Next, students will study the factors that become increasingly important when working as a professional in an industry/commercial environment. These include Intellectual property, Business plans and Project Management. This component of the unit will comprise lectures from University staff with industry experience and guest speakers from industry.

There will be a project-based activity in which students will be required to develop a business case for a specific product and draw up a project plan.

Resolutions

Master of Photonics and Optical Science
Graduate Diploma in Photonics and Optical Science

Course rules

1. Admission
1.1 The Faculty may, on the recommendation of the Dean of the Faculty of Science, admit to candidature for:
1.1.1 The Master of Photonics and Optical Science:
1.1.1.1 an applicant who is the holder of a bachelor’s degree in Science or Engineering from the University of Sydney who has achieved a major in physics, or equivalent;
1.1.1.2 a graduate of another university or appropriate institution who has equivalent qualifications to those specified in subsection 1.1.1.1.
1.1.2 The Graduate Diploma in Photonics and Optical Science:
1.1.2.1 an applicant who has the qualifications specified in subsections 1.1.1.1 or 1.1.1.2.

2. Units of study
2.1 The units of study for the Graduate Diploma in Photonics and Optical Science and the Master of Photonics and Optical Science are listed in the table of units of study associated with these resolutions.

3. Requirements for the Graduate Diploma in Photonics and Optical Science and Master of Photonics and Optical Science
3.1 Candidates for the Graduate Diploma in Photonics and Optical Science are required to complete 48 credit points consisting of the core units of study in the table of units of study for Photonics and Optical Science Postgraduate coursework degrees this chapter of the Faculty of Science Handbook.

3.2 Candidates for the Master of Photonics and Optical Science are required to complete 72 credit points consisting of the 48 credit points of core units of study in the table of units of study for Photonics and Optical Science Postgraduate coursework degrees in this chapter of the Faculty of Science Handbook and the 24 credit point PHYS5019 Research Methodology and Project.

3.3 A candidate must complete successfully 48 credit points of units of study before enrolling in PHYS5019 Research Methodology and Project.

Details of units of study

5. Enrolment in more/less than minimum load
5.1 A local candidate may proceed on either a full-time or part-time basis.

6. Cross-institutional study
6.1 Cross-institutional study shall not be available to students enrolled in the Graduate Diploma in Photonics and Optical Science and the Master of Photonics and Optical Science courses, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment
7.1 Admission to either course may be limited by quota.
7.2 In determining the quota the University will take into account:
7.2.1 Availability of resources including space, library, equipment, laboratory and computing facilities; and
7.2.2 Availability of adequate and appropriate supervision.
7.2.3 In considering an application for admission to candidature the Head of Department and the Faculty shall take account of the quota and will select in preference applicants who are most meritorious in terms of section 1 above.

8. Discontinuation of enrolment
8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course. Students who have discontinued from the course will be required to apply for readmission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature
9.1 A student may seek written permission from the Dean to suspend candidature in the course.
9.2 Suspension may be granted for a maximum of one year.
10. Re-enrolment after an absence
10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress
11.1 Candidates for the Master of Photonics and Optical Science and the Graduate Diploma in Photonics and Optical Science shall be governed by the rules as follows:
11.1.1 A student who has failed a cumulative total of 12cp at any stage of enrolment in the Master of Photonics and Optical Science will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Diploma in Photonics and Optical Science;
11.1.2 A student who has failed a cumulative total of 12cp at any stage of enrolment in the Master of Photonics and Optical Science and/or the Graduate Diploma in Photonics and Optical Science will be required to show good cause why he or she should be allowed to re-enrol, and if good cause has not been established, the student will not be permitted to re-enrol.
11.1.3 A student who has failed a unit at the second attempt in the Photonics and Optical Science and/or the Graduate Diploma in Photonics and Optical Science will be required to show good cause why he or she should be allowed to re-enrol, if good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit
12.1 For the Graduate Diploma in Photonics and Optical Science:
12.1.1 A full-time candidate shall complete the requirements for the Graduate Diploma not earlier than the end of the second
12.2 For the Master of Photonics and Optical Science:

12.2.1 A full-time candidate shall complete the requirements for the Masters degree not earlier than the end of the third semester of candidature, and not later than the fourth semester of candidature.

12.2.2 A part-time candidate shall complete the requirements for the Masters degree not earlier than the end of the fourth semester of candidature, and not later than the sixth semester of candidature.

13. **Assessment policy**

13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidature, on the recommendation of the Head of the School of Physics.

14. **Credit transfer policy**

14.1 Credit is not available in the Graduate Diploma in Photonics and Optical Science and Master of Photonics and Optical Science for postgraduate study which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Diploma in Photonics and Optical Science may transfer, within three years, to the Master of Photonics and Optical Science and receive credit for up to 48 credit points from the Graduate Diploma in Photonics and Optical Science.

15. **Award of the Masters degree**

15.1 The Master of Photonics and Optical Science shall be awarded in two grades, namely Pass and, in the case of an outstanding candidate, Pass with Merit.
27. Psychology coursework degrees

This chapter sets out the requirements for coursework postgraduate degrees offered by the School of Psychology.

The information in this chapter contains information in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variably in this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at www.usyd.edu.au/calendar.

The School offers a range of degrees:
- The Graduate Diploma in Psychology for graduates in other disciplines to obtain a Psychology major.
- The Graduate Certificate in Applied Science (Applied Positive Psychology) for students interested in the study of positive psychology.
- The Graduate Certificate, Graduate Diploma and Master of Applied Science (Health Psychology) – an articulated postgraduate program for students interested in the theory and practical applications of health psychology.
- The Graduate Certificate, Graduate Diploma and Master of Applied Science (Psychology of Coaching) – an articulated postgraduate program for students interested in the applied science of human performance enhancement and coaching.

Graduate Diploma in Psychology

Degree Code: LF017

Course outcomes

Upon completion of the course, the graduate will have a Psychology major, accredited by the Australian Psychological Society, equivalent to that available in the Bachelor of Arts, Bachelor of Science, Bachelor of Economics (Social Science), Bachelor of Liberal Studies or the Bachelor of Arts and Sciences. They will have studied all basic areas of experimental Psychology, statistical methods in Psychology, and a range of optional topics. They will be eligible to apply to continue to the range of optional topics. They will be eligible to apply to continue to a fourth year in Psychology (Honours) and from there to a higher degree in Psychology.

Eligibility for admission

Applicants holding relevant degrees

The Faculty of Science may admit to candidature applicants who hold the award course of Bachelor of Science, Bachelor of Arts, Bachelor of Economic & Social Sciences, Bachelor of Liberal Studies or Bachelor of Arts and Sciences from the University of Sydney, or equivalent degree as deemed by the faculty, who have not previously completed a major in Psychology. Applicants must have already successfully completed 12 credit points of Junior Psychology (currently PSYC1001 and 1002) or equivalent within the last 10 years. When assessing an applicant, both undergraduate record and UAI (or equivalent) may be taken into account.

Method of progression

Students are required to study a minimum of 48 credit points of intermediate and senior level Psychology. This shall consist of 24 credit points of Intermediate Psychology (currently PSYC2011, 2012, 2013 and 2014) and a minimum of 24 credit points of Senior Psychology including PSYC3010, PSYC3018 and one of PSYC(3011, 3012, 3013 or 3014). Students must complete the necessary qualifying units of study for entry into later units of study. Normally, progression will be over a minimum of four semesters. Students may study additional senior Psychology if they wish.

Study in Psychology beyond the Graduate Diploma

To be eligible for study in Psychology beyond the graduate diploma at the University of Sydney, students must, except with School approval, include PSYC3010 Advanced Statistics for Psychology for entry to Psychology 4 (Honours). Successful completion of HPSC3023 History and Philosophy of Psychology and Psychiatry is essential for students intending to take the Theoretical Thesis option in Psychology honours.

Exemptions and Advanced Standing

Students may apply for exemptions if they have already completed studies which the faculty deems equivalent to those in the program. Such units of study must have been completed within the previous 10 years. The number of exemptions allowed will not exceed Faculty of Science regulations or will not exceed 24 credit points, whichever is the lower.

Graduate Diploma in Psychology table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC2011 Brain and Behaviour</td>
<td>6</td>
<td>P PSYC (1001 and 1002).</td>
<td>N PSYC2111</td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PSYC2013 Cognitive and Social Psychology</td>
<td>6</td>
<td>P PSYC (1001 and 1002).</td>
<td>N PSYC2113</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PSYC2014 Personality and Intelligence 1</td>
<td>6</td>
<td>P PSYC (1001 and 1002)</td>
<td>N PSYC2114</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Senior Units (students must complete 24 credit points from:)

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC3010 Advanced Statistics for Psychology</td>
<td>6</td>
<td>P PSYC (2012 or 2112) plus at least one other Intermediate Psychology Unit of Study from PSYC (2011 or 2111), PSYC (2013 or 2113), PSYC (2014 or 2114).</td>
<td>N PSYC3201</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
2.1 The units of study for the Graduate Diploma in Psychology are

1.1.4 Conditions of candidature are prescribed by Resolutions of the Faculty.

1.2 When assessing an applicant, both undergraduate record and UAI (or equivalent) may be taken into account.

1.1 The Dean of the Faculty of Science may admit to candidature applicants who hold an equivalent degree as deemed by the Faculty, who have not previously completed a major in Psychology.

1.3 Applicants must have already successfully completed 12 credit points of Junior Psychology (currently PSYC1001 and 1002) or equivalent within the last 10 years.

1.1.1 applicants who hold the degree of Bachelor of Science, Bachelor of Arts, Bachelor of Economic & Social Sciences, Bachelor of Arts and Sciences, or Bachelor of Liberal Studies from the University of Sydney, or applicants who hold an equivalent degree as deemed by the Faculty, who have not previously completed a major in Psychology.

1.4 Conditions of candidature are prescribed by Resolutions of the Faculty.

2. The units of study for the Graduate Diploma in Psychology are listed in Table 1 associated with the resolutions of the Bachelor of Science.

3. Requirements for the Graduate Diploma in Psychology

3.1 A candidate shall complete coursework to the value of 48 credit points comprising:

- 24 credit points of Intermediate units of study in Psychology, and
- 24 credit points of Senior units of study in Psychology which must, except with Departmental approval, include PSYC3012 and PSYC3018 and one of PSYC3011, 3012, 3013 and 3014.

3.2 The prerequisites and progression requirements for these units of study as set out in Table 1 for the BSc must be met.

Faculty rules

4. Details of units of study

4.1 The units of study for the Graduate Diploma Psychology are listed in Table 1 of the Resolutions of the Bachelor of Science.

4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

4.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:

- to attend the lectures and the meetings, if any, for seminars or tutorial instruction;
- to complete satisfactorily the essays, exercises, practical and project work if any; and
- to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.

Graduate Diploma in Psychology unit of study descriptions 2010

See the earlier chapter with Undergraduate unit of study descriptions under Psychology.

Resolutions

Graduate Diploma in Psychology

Course rules

1. Admission

1.1 The Dean of the Faculty of Science may admit to candidature for the Graduate Diploma in Psychology:

1.1.1 applicants who hold the degree of Bachelor of Science, Bachelor of Arts, Bachelor of Economic & Social Sciences, Bachelor of Arts and Sciences, or Bachelor of Liberal Studies from the University of Sydney, or applicants who hold an equivalent degree as deemed by the Faculty, who have not previously completed a major in Psychology.

1.2 When assessing an applicant, both undergraduate record and UAI (or equivalent) may be taken into account.

1.3 Applicants must have already successfully completed 12 credit points of Junior Psychology (currently PSYC1001 and 1002) or equivalent within the last 10 years.

1.4 Conditions of candidature are prescribed by Resolutions of the Faculty.

2. Units of study

2.1 The units of study for the Graduate Diploma in Psychology are listed in Table 1 associated with the resolutions of the Bachelor of Science.

2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included in the description of units of study associated with these resolutions.

2.3 To pass any other examination of the unit of study that may apply.

Graduate Diploma in Psychology unit of study descriptions 2010

See the earlier chapter with Undergraduate unit of study descriptions under Psychology.

Resolutions

Graduate Diploma in Psychology

Course rules

1. Admission

1.1 The Dean of the Faculty of Science may admit to candidature for the Graduate Diploma in Psychology:

1.1.1 applicants who hold the degree of Bachelor of Science, Bachelor of Arts, Bachelor of Economic & Social Sciences, Bachelor of Arts and Sciences, or Bachelor of Liberal Studies from the University of Sydney, or applicants who hold an equivalent degree as deemed by the Faculty, who have not previously completed a major in Psychology.

1.2 When assessing an applicant, both undergraduate record and UAI (or equivalent) may be taken into account.

1.3 Applicants must have already successfully completed 12 credit points of Junior Psychology (currently PSYC1001 and 1002) or equivalent within the last 10 years.

1.4 Conditions of candidature are prescribed by Resolutions of the Faculty.

2. Units of study

2.1 The units of study for the Graduate Diploma in Psychology are listed in Table 1 associated with the resolutions of the Bachelor of Science.

2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included in the description of units of study associated with these resolutions.

3. Requirements for the Graduate Diploma in Psychology

3.1 A candidate shall complete coursework to the value of 48 credit points comprising:

3.1.1 24 credit points of Intermediate units of study in Psychology, and

3.1.2 24 credit points of Senior units of study in Psychology which must, except with Departmental approval, include PSYC3012 and PSYC3018 and one of PSYC3011, 3012, 3013 and 3014.

3.2 The prerequisites and progression requirements for these units of study as set out in Table 1 for the BSc must be met.

Faculty rules

4. Details of units of study

4.1 The units of study for the Graduate Diploma Psychology are listed in Table 1 of the Resolutions of the Bachelor of Science.

4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

4.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:

4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;

4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and

4.4.3 to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.
5. **Enrolment in more/less than minimum load**

5.1 Candidates normally proceed on a part-time basis but full-time enrolment may be permitted after the first semester of candidature.

6. **Cross-institutional study**

6.1 Cross-institutional study shall not be available to students enrolled in the Graduate Diploma in Psychology except where the University of Sydney has a formal Cooperation Agreement with another University.

7. **Restrictions on enrolment**

7.1 Admission to the Graduate Diploma in Psychology may be limited by a quota.

7.2 In determining the quota, the University will take into account:

7.2.1 availability of resources including space, laboratory and computing facilities; and

7.2.2 availability of adequate and appropriate supervision.

7.3 In considering an application for admission to candidature the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of subsection 1 above.

8. **Discontinuation of enrolment**

8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. **Suspension of candidature**

9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. **Re-enrolment after an absence**

10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. **Satisfactory progress**

11.1 Candidates for the Graduate Diploma in Psychology shall be governed by the rule as follows:

11.1.2 A student who has failed a cumulative total of 12cp at any stage of enrolment in the Graduate Diploma in Psychology will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be terminated and the student will not be permitted to re-enrol.

12. **Time limit**

12.1 A candidate for the Graduate Diploma in Psychology shall complete the requirements for the award in a minimum of three semesters and a maximum of eight semesters, and (in the event of suspension) except with permission of the Dean within five calendar years of admission to candidature.

13. **Assessment policy**

13.1 A candidate may be tested by written and oral examinations, assignments, exercises and practical work or any combination of these.

13.2 On completion of the requirements for the Graduate Diploma in Psychology, the results of the examination of the coursework and participation in the seminar series shall be reported by the School of Psychology to the Faculty, which shall determine the result of the candidature.

14. **Credit transfer policy**

14.1 Students may apply for credit (up to 24 credit points) for unit(s) of study where they have already completed studies which the Faculty deems equivalent to unit(s) in the Graduate Diploma in Psychology.

14.2 Such units of study must have been completed within the previous 10 years.
Applied Positive Psychology

degrees

Graduate Certificate in Applied Science (Applied Positive Psychology)
Degree Code: LG024

Course overview
Positive psychology is the scientific study of the factors that enable individuals, organisations and communities to flourish and thrive. There is considerable interest worldwide in positive psychology and its application in work, professional and personal settings. This degree program teaches history and development of positive psychology, an understanding of the key theoretical constructs of positive psychology, the core research methods used in positive psychology, and the application of positive psychology principles in a wide range of settings.

Course outcomes
The aim of the program is to equip graduates with the skills, knowledge and ability to be effective change agents in the area of applied positive psychology. Topics covered in the program include goals, meaning and self-concordance; subjective and psychological well-being; the languishing vs. flourishing dichotomy; positive psychology in organisations, broaden and build theory; the psychology of peak performance; resilience flow, mental toughness, and the philosophy and psychology of happiness. There is emphasis on both theoretical understanding and applied skills, and students will be expected to engage in experiential learning, to participate in group discussion and to relate the taught material to their own personal life experience.

Applied Positive Psychology postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC4727 Positive Organisational Coaching</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S2 Intensive</td>
</tr>
<tr>
<td>PSYC4730 Applied Positive Psychology</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Elective Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC4721 Theories & Techniques of Coaching Psych</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PSYC4731 Psychology of Peak Performance</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PHIL7840 Philosophy and the Science of Happiness</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>

Students must complete 12 credit points from the following:

How can psychology help create 'healthy' workplaces? Executive and management coaching have emerged as important factors in the enhancement of performance, engagement and well-being in the workplace. This unit examines key issues in contemporary executive and workplace coaching and equips students with the knowledge and skills to provide world-class executive and management coaching. The emphasis is on critical evaluation of theory and application to practice. Although primarily focused on positive psychology, solution-focused and cognitive-behavioural approaches to coaching in organisations, the application of psychodynamic (eg Kilburg) and systems (eg O'Neil) approaches to the enhancement of performance and well-being are also considered. The unit covers issues in senior executive coaching, coaching middle management, establishing manager-as-coach programs, and the use of positive psychology in the workplace.

PSYC4730 Applied Positive Psychology
Credit points: 6 Session: Semester 1 Classes: One 3 hour lecture per week. Assessment: Written papers (Essays or case studies) and exam.

This unit of study teaches the application of positive psychology to coaching in work and personal life contexts. We consider the core principles of positive psychology and how these can be applied in coaching interventions. Topics covered in this unit include; coaching as an applied positive psychology; goals, meaning and well-being; subjective and psychological well-being; happiness; gratitude; the languishing vs. flourishing dichotomy; broaden and build theory; self-concordance; well-being in the workplace; career coaching through the life span; and the use of positive psychology in health coaching. There is emphasis on both theoretical understanding and personal practice. The experiential learning component requires students to

Applied Positive Psychology unit of study descriptions 2010

PSYC4721
Theories & Techniques of Coaching Psych
Credit points: 6 Session: Semester 1, Semester 2 Classes: One 3 hour lecture per week. Assessment: Written papers (Essay, journal or case study) and exam.

This unit details the core theories and techniques of coaching psychology and evidence-based coaching, and the use of coaching as an applied positive psychology. Theories and techniques will be evaluated by reference to empirical research and conceptual analysis. An integrated goal-focused approach to coaching draws on a broad base of established Behavioural Science. Within this framework, primary attention will be paid to cognitive-behavioural and solution-focused theories and techniques of behaviour change and self-regulation, and their application to coaching clients. Each weekly seminar has a lecture component and an experiential learning component. The experiential learning component requires students to evaluate each week's topic in relation to their own personal life experience and to participate in group discussion and coaching practice.

PSYC4727
Positive Organisational Coaching
Credit points: 6 Session: S2 Intensive Classes: Five Day Seminars: Block Teaching. Assessment: A written coaching proposal (3,000 words) (50%), take home exam and written assignment (1,000 words) (35%), in-class exam (short answer and multiple choice) (15%).
evaluate each week’s topic in relation to their own personal life experience and to participate in group discussion and coaching practice.

PSYC4731
Psychology of Peak Performance
Credit points: 6
Session: Semester 2
Classes: One 3 hour seminar per week
Assessment: Written papers (essays or case studies) and exam

The Psychology of Peak Performance draws on theories and models of sport, performance and positive psychology and applies these to use in executive, workplace and personal coaching practice. Topics covered include flow, mental toughness, mental readiness, concentration enhancement strategies and techniques, rehearsal and debrief strategies, thriving under pressure, self-coaching, overcoming setbacks, performance protocols, focusing, and surviving success. In addition the unit covers issues related to high performing teams and groups. Issues of work/life balance are also addressed, particularly in relation to the management of optimal energy levels (avoiding burnout). There is emphasis on both theoretical understanding and personal practice. The experiential learning component requires students to evaluate each week’s topic in relation to their own personal life experience and to participate in group discussion and coaching practice.

Textbooks
No set text book: A reading pack can be obtained from the University Copy Centre

PHIL7840
Philosophy and the Science of Happiness
Credit points: 6
Teacher/Coordinator: Dr C West with Assoc Prof D Braddon-Mitchell
Session: Semester 2
Classes: 2 hours per week
Assessment: Short essay 1500 words; long essay 3500 words

This unit deals with the philosophy and psychology of happiness and wellbeing. It covers classical and contemporary philosophical work on the nature of happiness. It discusses the kind of goal happiness or wellbeing is - is it something that we want only insofar as we desire it, or is there some rational requirement to make a richer conception of wellbeing the goal of life? The unit will also engage with aspects of positive psychology.

Resolutions

Graduate Certificate in Applied Science (Applied Positive Psychology)

1. **Admission**
 1.1 The Dean of the Faculty of Science may admit to candidature for:
 1.1.1 The Graduate Certificate in Applied Science (Applied Positive Psychology):
 1.1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1; or
 1.1.1.3 persons who have experience which is considered to demonstrate the knowledge and aptitude required to undertake the units of study.

1.2 Applicants must also meet the following requirements:
1.2.1 have either a 3-year Psychology degree or a 3-year degree in a cognate discipline; and
1.2.2 at least 2 years relevant employment experience is required.
1.2.3 Relevant work experience may include counselling, experience in organisational learning and development, management experience, employment in applied psychology settings, professional coaching or other areas directly related to coaching.

2. **Units of Study**
2.1 The units of study for the Graduate Certificate in Applied Science (Applied Positive Psychology) are listed in the table of units of study for the Graduate Certificate in Applied Science (Applied Positive Psychology) in this chapter of the Faculty of Science Handbook.

2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included in the unit of study descriptions.

3.0 **Requirements for Graduate Certificate in Applied Science (Applied Positive Psychology)**
3.1 Candidates for the Graduate Certificate in Applied Science (Applied Positive Psychology) are required to satisfactorily complete two core units of study PSYC4727 and PSYC4730, and 12 credit points from elective units.

Details of units of study

4.1 The units of study for the Graduate Certificate in Applied Science (Applied Positive Psychology), are listed in the table of units of study in this chapter of the Faculty of Science Handbook.

Students may enrol in alternative elective units with permission.

4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

4.4 In these resolutions, 'to complete a unit of study' or any derivative expression means:
4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;
4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
4.4.3 to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.

4.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other postgraduate coursework programs in the Faculty or elsewhere in the University.

5. **Enrolment in more/less than minimum load**
5.1 A candidate may only proceed on a part-time basis.

6. **Cross-institutional study**
6.1 Cross institutional study shall not be available to students enrolled in the Graduate Certificate course, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. **Restrictions on enrolment**
7.1 Admission to candidature may be limited by a quota.
7.2 In determining the quota, the University will take into account:
7.2.1 availability of resources including space, laboratory and computing facilities; and
7.2.2 availability of adequate and appropriate supervision.
7.3 In considering an application for admission to candidature the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of subsection 1 above.

8. **Discontinuation of enrolment**
8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. **Suspension of candidature**
9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. **Re-enrolment after an absence**
10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.
11. Satisfactory progress
11.1 Candidates for the Graduate Certificate in Applied Science (Applied Positive Psychology), shall be governed by the rules as follows:

11.1.1 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Graduate Certificate in Applied Science (Applied Positive Psychology) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.2 A student who has failed a core unit at the second attempt in the Graduate Certificate in Applied Science (Applied Positive Psychology) will be deemed to have failed to complete course requirements and will be required to show good cause why he or she should be allowed to re-enrol.

11.2.1 If good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit
12.1 A candidate for the Graduate Certificate in Applied Science (Applied Positive Psychology) shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of four semesters.

13. Assessment policy
13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidature.

14. Credit transfer policy
14.1 Credit is not available in the Graduate Certificate in Applied Science (Applied Positive Psychology) for postgraduate study which has not been undertaken in this award course within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Certificate in Applied Science (Applied Positive Psychology) may transfer, within three years, to the Master of Applied Science (Psychology of Coaching) and receive credit for up to 12 credit points from the Graduate Certificate in Applied Science (Applied Positive Psychology).

14.3 A candidate who has completed units of study in the Applied Science program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Applied Science program and receive credit for the units of study completed.
Health Psychology degrees

Master of Applied Science (Health Psychology)
Degree Code: LC050

Graduate Diploma in Applied Science (Health Psychology)
Degree Code: LF038

Graduate Certificate in Applied Science (Health Psychology)
Degree Code: LG022

Course overview
The Master of Applied Science (Health Psychology) is an articulated postgraduate program which teaches the theory and practical applications of Health Psychology. Health psychology is the field of psychology devoted to the study of the promotion and maintenance of health; the causes and detection of illness; the prevention and treatment of illness; and the improvement of health care systems and health care policy. The Master of Applied Science (Health Psychology) is designed to provide students with an understanding of the theoretical, methodological and practical aspects of health psychology. A research stream is also available to Master of Applied Science (Health Psychology) students in their second semester of enrolment, upon completion of at least 24 credit points with a distinction average in their first full-time semester (or equivalent).

Course outcomes
This program is designed to meet the needs of a wide variety of health professionals interested in the growing area of health psychology: for example, people working within the Department of Health and other organisations, charities and research groups, allied health professionals, psychology students, geneticists and genetic counsellors. These programs will allow these individuals to pursue health psychology careers within the health service, academia and government.

Health Psychology postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Degrees: Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC5010 Applying Psychology to Health</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PSYC5011 Applying Models of Health Behaviour</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>PUBH5018 Introductory Biostatistics</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>Diploma, Masters: Additional Core Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BACH531 Research & Inquiry in Health Professions</td>
<td>6</td>
<td>N BACH531 Research Project Development, BACH4047 Developing a Research Project, BACH5268 Developing a Research Project, DHSC7002 Research & Inquiry in Health Professions, DHSC7005 Developing a Research Project</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>All Degrees: Elective Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Certificate students must complete one of the following units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Diploma students must complete two of following units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masters students must complete two of the following and two additional elective units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC5013 Coping and Adjustment to Illness</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PSYC5012 Health Communication: Risk and Decisions</td>
<td>6</td>
<td>S2 Intensive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC5014 Developments in Health Psychology</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 Semester 2</td>
</tr>
<tr>
<td>Masters Only: Additional Elective Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPSC1000 Bioethics</td>
<td>6</td>
<td>N HPSC1900 This Junior unit of study is highly recommended to Intermediate and Senior Life Sciences students.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>PUBH5010 Epidemiology Methods and Uses</td>
<td>6</td>
<td>N BSTA5011</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>NURS5010 Clinical Qualitative Research</td>
<td>6</td>
<td>This unit of study is not available in 2010</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>NURS5024 Cancer Nursing Practice</td>
<td>6</td>
<td>P NURS5025</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>NURS5025 Understanding Cancer Causes & Therapies</td>
<td>6</td>
<td>This unit of study is a pre requisite for the field of cancer nursing and will provide the scientific basis for cancer nursing practice.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>NURS5026 Health Promotion in Cancer Recovery</td>
<td>6</td>
<td>P NURS5025</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>BACH5300 Action Research</td>
<td>6</td>
<td>Note: Department permission required for enrolment</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
</tbody>
</table>
Health Psychology unit of study
descriptions 2010

BACH300
Action Research
Credit points: 6 Teacher/Coordinator: Dr Freidoon Khavarpour Session: Semester 1 Classes: No on-campus attendance required Assessment: Three assignments Campus: Cumberland
Note: Department permission required for enrolment.

Action research is a participatory, process concerned with developing practical knowledge in the pursuit of worthwhile human purposes. In participation with others, health professionals and researchers bring action and reflection, theory and practice together in the pursuit of practical solutions to pressing issues of health and wellbeing of individuals and their communities. Action research is a set of practices for systematic development of knowledge grounded in a participatory worldview. It is rather different from traditional academic research, with different purposes, based in different relationships, and with different ways of conceiving knowledge and its relation to practice. Action research can be applied in community work, complex systems research, collaborative inquiry, improving health interventions and in other ways. This unit is suitable for research students developing action research, participatory research or similar projects, and for health professionals who are serious about improving their practice.

BACH5341
Research & Inquiry in Health Professions
Credit points: 6 Teacher/Coordinator: Dr Kaye Brock and Dr Rob Heard (Sem 1), Dr Tatjana Seizova-Cajic (Sem 2) Session: Semester 1, Semester 2 Classes: Distance mode (students must have access to the internet): 3hr group on-campus consultations (optional) Prohibitions: BACH3126 Research Project Development, BACH4047 Developing a Research Project, BACH5268 Developing a Research Project, DHCSCI002 Research & Inquiry in Health Professions, DHCSCI005 Developing a Research Project Assessment: 3 assignments Campus: Cumberland

This unit provides an overview of the research process and focuses on the formulation of a proposal for a small research project. It provides students with an opportunity to learn about (or update their knowledge of) research methods at the introductory level and acts as an introduction to the research electives which concentrate on a particular methodology or aspect of the research process. Students explore quantitative and qualitative approaches to research with their own specific research question in mind. Basic research designs are considered (including interview, observation, longitudinal and cross-sectional designs, experiment, single case study, survey) together with their suitability for investigating different types of research questions. Students also learn about ethics in research, sampling, validity and reliability of measures and descriptive statistics.

Textbooks

HPSC1000
Bioethics
Credit points: 6 Teacher/Coordinator: Dr Catherine Mills Session: Semester 1 Classes: One 1 hour and one 2 hour lecture and one 1 hour tutorial per week. Prohibitions: HPSC1900 Assessment: Short essays, tutorial work, tests. Campus: Camperdown/Darlington

Note: This Junior unit of study is highly recommended to Intermediate and Senior Life Sciences students.

Science has given us nearly infinite possibilities for controlling life. Scientists probe the origins of life through research with stem cells and embryos. To unlock the secrets of disease, biomedicine conducts cruel experiments on animals. GM crops are presented as the answer to hunger. Organ transplantation is almost routine. The international traffic in human body parts and tissues is thriving. The concept of brain death makes harvesting organs ethically more acceptable. It may also result in fundamental changes in our ideas about life. Science has provided new ways of controlling and manipulating life and death. As a consequence, difficult ethical questions are raised in increasingly complex cultural and social environments. This course will discuss major issues in the ethics of biology and medicine, from gene modification to Dolly the sheep. This unit will be introductory, but a small number of topical issues will be studied in depth. No scientific background beyond School Certificate level will be assumed.

Textbooks
Course reader

NURS5024
Cancer Nursing Practice
This unit of study is not available in 2010
Credit points: 6 Session: Semester 2 Classes: distance education/intensive Prerequisites: NURS5025 Assessment: Two essays, online participation. Campus: Camperdown/Darlington

This unit will explore the evidence-based knowledge for best nursing practice in cancer treatment and care. It will investigate the nurse’s role in the diagnosis of cancer, treatment and follow up and explore notions of leadership in cancer nursing. Biomedical approaches to cure and cancer control will be explored. The therapeutic nursing role of communicating with patients and their families, translating medical information, educating patients and families, and providing support will be investigated. The unit will also identify common side effects of the medical treatment for cancer and identify best practice for developing related supportive care strategies. The unit will further investigate how nursing services are being reconfigured in Australia to more appropriately meet the needs of people undergoing diagnostic tests or treatment for cancer, rather than for those of the service or service provider.

NURS5025
Understanding Cancer Causes & Therapies
This unit of study is not available in 2010
Credit points: 6 Session: Semester 1 Classes: distance education/intensive Assessment: 1 x 3000 word assignment, exam, online participation including quizzes. Campus: Camperdown/Darlington
Note: This unit of study is a pre requisite for the field of cancer nursing and will provide the scientific basis for cancer nursing practice.

The unit will explore cancer epidemiology, with a focus on identifying the determinants and distribution of cancer in defined populations. The reporting and measurement of cancer in Australia will be included. Cancer as a genetic disease is explored and advances in understanding the biology of cancer is critiqued. Biological and physiological principles that support cancer treatments will be reviewed in detail.

NURS5026
Health Promotion in Cancer Recovery
This unit of study is not available in 2010
This unit will critically analyse the consequences of a cancer diagnosis and the subsequent treatment, on the individual and their family. The acute and long term disease and treatment related sequelae, impact on quality of life, employment, physical and psychological functioning will be reviewed. Approaches to maximising the individual's recovery and resilience will be explored, with specific focus on the role of early interventions, and maintaining individual autonomy. Areas such as identity, body image, fertility, employment, and management of fatigue will be a major focus of this unit. Such issues will be considered from the perspective of interdisciplinary working and the unique contribution of the nurse to contemporary cancer care.

NURS6010
Clinical Qualitative Research
This unit of study is not available in 2010
Credit points: 6
Session: Semester 2
Classes: distance education/Intensive Assessment: two essays, seminar participation
Campus: Camperdown/Darlington

This unit explores the specific issues related to the use of qualitative research in clinical settings and with clinical populations. In particular, it explores the appropriate uses of a qualitative research methodology in which the experiences of people with a health issue or illness are being researched. The unit focuses specifically on research approaches where human social interaction and/or observation is fundamental to the collection of data. The unit explores issues of design, methods of data collection, ethical and clinical considerations as well as matters related to rigor, analysis and reporting of results.

PSYC5010
Applying Psychology to Health
Credit points: 6
Session: Semester 2
Classes: one hour lecture, two hours of tutorials per week
Assessment: Tutorial attendance and presentation, major assignment - 2500 word
Campus: Camperdown/Darlington

The work of health psychologists relies on a broad range of professional skills and attributes. The aim of this unit of study is to conceptually define health within a biopsychosocial framework and to present some of the psychological reactions to hospitalisation, illness and pain. This unit of study provides students with an introduction to key areas of health psychology, and demonstrates how they relate to other disciplines. It also considers the context within which treatment takes place. This unit of study will explore mental and physical diseases. This unit of study examines the application of psychology in clinical settings. The unit of study considers the application of psychological theory to illness and preparation for hospitalisation; the management of adverse psychological sequelae arising from hospitalisation; and rehabilitation.

PSYC5011
Applying Models of Health Behaviour
Credit points: 6
Session: Semester 2
Classes: one hour lecture and two hours of tutorials per week
Assessment: Presentation of intervention, write up of intervention
Campus: Camperdown/Darlington

The student will be given the opportunity to develop an intervention based on social cognitions models. The process can be followed from start to finish allowing the individual to utilise knowledge and skills gained in other units of study. It is an intended outcome for students enrolled in the MApplSc (HealthPsych) that students can demonstrate an understanding of the key models and theories in Health Psychology which are seen by many to be the foundations of the subject area. The aim of this unit of study is to allow students to identify an area of Health Psychology where an intervention would be appropriate, review existing literature on the topic, formulate the intervention, and evaluate the intervention on a pilot level.
conduct a substantial piece of independent research that builds clearly upon their prior learning and which draws upon appropriate methodologies. The aim of this unit of study is to allow students to identify a research issue, review existing literature on the topic, formulate novel research questions, and test these questions through the application of contemporary psychological methodologies and appropriate data-analytic procedures. Lectures are voluntary, and are designed to cover common problems. The majority of support will be one-on-one tutorial sessions with the student’s supervisor.

PUBH5018

Introductory Biostatistics

Credit points: 6
Teacher/Coordinator: Dr Tim Driscoll
Session: Semester 1
Classes: 1 x 1hr lecture and 8 x 0.5hr statistical computing self-directed learning tasks over 12 weeks
Assessment: 1 x 4page assignment (30%) and 1 x 2.5hr open-book exam (70%)
Campus: Camperdown/Darlington

This unit aims to provide students with an introduction to statistical concepts, their use and relevance in public health. This unit covers descriptive analyses to summarise and display data; concepts underlying statistical inference; basic statistical methods for the analysis of continuous and binary data; and statistical aspects of study design. Specific topics include: sampling; probability distributions; sampling distribution of the mean; confidence interval and significance tests for one-sample, two independent samples and two independent samples for continuous data and also binary data; correlation and simple linear regression; distribution-free methods for two paired samples; independent samples and correlation; power and sample size estimation for simple studies; statistical aspects of study design and analysis. Students will be required to perform analyses using a calculator and also be required to conduct analyses using statistical software (SPSS). It is expected that students spend an additional 2 hours per week preparing for their tutorials. Computing tasks are self-directed.

Textbooks

Course notes are provided.

PUBH5010

Epidemiology Methods and Uses

Credit points: 6
Teacher/Coordinator: Dr Tim Driscoll
Session: Semester 1
Classes: 1 x 1hr lecture and 1 x 2hr tutorial per week for 13 weeks - lectures and tutorials may be completed online
Assessment: 1 x 4page assignment (30%) and 1 x 2.5hr open-book exam (70%)
Campus: Camperdown/Darlington

This unit provides students with core skills in epidemiology, particularly the ability to critically appraise public health and clinical epidemiological research literature. This unit covers: study types; measures of frequency and association; measurement bias; confounding/effect modification; randomized trials; systematic reviews; screening and test evaluation; infectious disease outbreaks; measuring public health impact and use and interpretation of population health data. It is expected that students spend an additional 2-3 hours per week preparing for their tutorials.

Textbooks

Resolutions

Master of Applied Science (Health Psychology)
Graduate Diploma in Applied Science (Health Psychology)
Graduate Certificate in Applied Science (Health Psychology)

Course rules

1. Admission
1.1 The Dean of the Faculty of Science may admit to candidature for:
1.1.1 the Graduate Certificate in Applied Science (Health Psychology):
1.1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1; or
1.1.1.3 persons who have experience which is considered to demonstrate the knowledge and aptitude required to undertake the units of study:
1.1.2 the Graduate Diploma in Applied Science (Health Psychology):
1.1.2.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.2.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.2.1; or
1.1.2.3 persons who have completed requirements for the Graduate Certificate in Applied Science, or equivalent;
1.1.3 the Master of Applied Science (Health Psychology):
1.1.3.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
1.1.3.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.3.1; or
1.1.3.3 persons who have completed requirements for the Graduate Diploma in Applied Science, or equivalent.

2. Units of study
2.1 The units of study for the Graduate Certificate in Applied Science (Health Psychology), Graduate Diploma in Applied Science (Health Psychology) and Master of Applied Science (Health Psychology) are listed the table of units of study for Applied Science (Health Psychology) Postgraduate coursework degrees in this chapter of the Faculty of Science Handbook.

3. Requirements for the Graduate Certificate in Applied Science (Health Psychology)
(GradCertAppSc (HlthPsych)); Graduate Diploma in Applied Science (Health Psychology) (GradDipApplSc (HlthPsych)); Master of Applied Science (Health Psychology) (MApplSc (HlthPsych))

3.1 Candidates for the Graduate Certificate in Applied Science (Health Psychology) are required to complete satisfactorily the following core units of study: PSYC5010, PSYC5011, PUBH5018 and one elective unit of study from the following:
PSYC5012, PSYC5013, BACH5340 and BACH5180.

3.2 Candidates for the Graduate Diploma in Applied Science (Health Psychology) are required to complete satisfactorily the following core units of study: PSYC5010, PSYC5011, PUBH5018 and BACH5341; and two elective units of study from PSYC5013, PSYC5012, BACH5180, and BACH5340.

3.3 Candidates for the Master of Applied Science (Health Psychology) are required to complete satisfactorily the following core units of study: PSYC5010, PSYC5011, BACH5341 and PUBH5018; two elective units of study from PSYC5013,
9.1 A student may seek written permission from the Dean to
9. Suspension of candidature

8.2 Students who have discontinued from the course will be
8. Discontinuation of enrolment

7.3 In considering an application for admission to candidature the
7. Admission to candidature may be limited by a quota.

6.1 Cross institutional study shall not be available to students
6. Cross-institutional study

5. Enrolment in more/less than minimum load
5.1 A candidate may proceed on either a full-time or a part-time

4. Details of units of study
4.1 The units of study for the Graduate Certificate in Applied
4. Cross institutional study

3.4 Candidates for the Master of Applied Science (Health
3.4 Candidates for the Master of Applied Science (Health

27. Psychology coursework degrees
from the Graduate Certificate in Applied Science (Health Psychology).

14.3 A candidate who has qualified for the award of the Graduate Diploma in Applied Science (Health Psychology) may transfer, within three years, to the Master of Applied Science (Health Psychology) and receive credit for up to 36 credit points from the Graduate Diploma in Applied Science (Health Psychology).

14.4 A candidate who has completed units of study in the Applied Science program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Applied Science program and receive credit for the units of study completed.
Psychology of Coaching

Master of Applied Science (Psychology of Coaching)
Degree Code: LC044

Graduate Diploma in Applied Science (Psychology of Coaching)
Degree Code: LF028

Graduate Certificate in Applied Science (Psychology of Coaching)
Degree Code: LG005

Course overview
The Master of Applied Science (Psychology of Coaching) is an articulated postgraduate program which teaches the applied science of human performance enhancement and coaching. Coaching psychology sits at the intersection of counselling, clinical and organisational psychology and focuses on working with non-clinical populations. This program provides students with a sound grounding in the theoretical and methodological aspects of coaching and coaching psychology and teaches fundamental applied coaching skills. Study for the Graduate Diploma in Applied Science (Psychology of Coaching) and the Master of Applied Science (Psychology of Coaching) may be undertaken in either part-time or full-time mode. Students enrolled in the Graduate Certificate in Applied Science (Psychology of Coaching) may only enrol part-time.

Masters students take one of three streams:
• the specialist Executive and Workplace Coaching stream
• the Specialist Health Coaching stream
• the non-specialist Coaching stream

Eligibility for admission
An applicant for admission will satisfy the admission requirements for the Graduate Certificate in Applied Science or the Graduate Diploma in Applied Science or the Master of Applied Science and:

Students must have either a 3 year Psychology degree or a 3 year degree in a cognate discipline. At least 2 years relevant employment experience is required.

To obtain entry into the Research Masters stream, students will need to have a 4 year Psychology degree on entry. Students without a 4 year Psychology degree will need to hold a three year degree in Psychology or in a cognate discipline and obtain distinction or better at the Certificate level and complete PUBH5018 Introductory Biostatistics or an equivalent statistical course (with approval).

Course outcomes
This program is designed to provide graduates with the key theoretical understandings and the core skills necessary to work as a coach in a wide range of settings. Graduates of this course will be equipped to work in the scientist-practitioner or scholar-practitioner model, and can expect to find employment as human performance consultants and personal, workplace of executive coaches in industry, in the human resources field or in private practice.

Graduates of the MAppSci (Coach Psych) who have completed the 12 credit point unit PSYC5015 Research Project are eligible to apply for admission to a research degree (Master of Science or Doctor of Philosophy).

Masters Streams
These streams are only available to Masters students

Executive and Workplace Coaching Stream
The Executive and Workplace Coaching stream comprises: PSYC4721, PSYC4722, PSYC4724, PSYC4727, PSYC4729 and PSYC4730, and two elective units from PSYC4723, PSYC4725 or PSYC4731. With permission PHIL7840, Philosophy and Science of Happiness, may be taken as one of the elective units.

Health Coaching Stream
The Health Coaching stream comprises: PSYC4721, PSYC4722, PSYC4724, PSYC5010, PSYC5011, PSYC5012; and two electives from PSYC4723, PSYC4729, PSYC4730 or PSYC5014.

Non-specialist Coaching Stream
The non-specialist or generalist coaching stream comprises: PSYC4721, PSYC4722, PSYC4724, and 30 credit points from the elective units of study in the Psychology of Coaching postgraduate coursework degree table.

Students in any stream who wish to do a research project may substitute 12 credit points of elective units for PSYC5015 if they meet the prerequisites.

Full- and Part-time Progression
Part-time students: the progression sequence is: first semester of enrolment, PSYC4721 and PSYC4722; second semester of enrolment and following semesters, PSYC4724 and remaining elective units to suit individual students' needs and interests and to meet degree requirements.

Full-time students: the progression sequence is: first semester of enrolment, PSYC4721, PSYC4722 and other elective units; second semester of enrolment, PSYC4724 and remaining elective units to suit the individual students' needs and interests and to meet degree requirements. PSYC4721 and PSYC4722 must be completed before enrolling in PSYC4724. If PSYC4741 and PSYC4722 are taken in separate semesters, students should enrol in PSYC4724 before PSYC4722.

NB: full-time enrolment is not available in the Graduate Certificate.

Psychology of Coaching postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC4721</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>Theories & Techniques of Coaching Psych</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC4722</td>
<td>6</td>
<td></td>
<td>PSYC (4721 and 4722)</td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>Fundamentals of Coaching Practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSYC4724</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>Coaching Practice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Psychology of Coaching unit of study descriptions 2010

PSYC4721
Theories & Techniques of Coaching Psych
Credit points: 6 Session: Semester 1, Semester 2 Classes: One 3 hour lecture per week. Assessment: Written papers (essay, journal or case study) and exam.

This unit details the core theories and techniques of coaching psychology and evidence-based coaching. The use of coaching as an applied positive psychology. Theories and techniques will be evaluated by reference to empirical research and conceptual analysis. An integrated goal-focused approach to coaching draws on a broad base of established Behavioural Science. Within this framework, primary attention will be paid to cognitive-behavioural and solution-focused theories and techniques of behaviour change and self-regulation, and their application to coaching clients. Each weekly seminar has a lecture component and an experiential learning component. The experiential learning component requires students to evaluate each week's topic in relation to their own personal life/work experience and to participate in group discussion and coaching practice.

PSYC4722
Fundamentals of Coaching Practice
Credit points: 6 Session: Semester 1, Semester 2 Classes: Block teaching. Assessment: Written papers (essay, journal or case study) and exam.

This unit teaches the fundamentals of coaching, and lays the foundations for sound contemporary practice. This unit outlines the emergence of contemporary coaching from its roots in the Human Potential Movement, sports coaching, management consulting, clinical and counseling psychology, through to the establishment of the positive psychology movement. Drawing on established approaches students will be trained in the core micro skills of coaching. Core issues relating to mental illness and mental health and ethical professional coaching practice are addressed. Each seminar has a lecture component and an experiential learning component. The experiential learning component requires students to evaluate each topic in relation to their own personal life/work experience and to participate in group discussion. Practical experience of self-coaching and co-coaching are central aspects of this unit. This unit will be taught in block intensive mode over five days.

PSYC4723
Socio-cognitive Issues in Coaching Psych
Credit points: 6 Session: Semester 1

PSYC4725
Assessment and Selection
This unit of study is not available in 2010
Credit points: 6 Session: Semester 2 Prerequisites: PSYC (4721 and 4722 and either 4724 or 4728)

PSYC4727
Positive Organisational Coaching
Credit points: 6 Session: S2 Intensive

PSYC4729
Groups, Teams and Systems
Credit points: 6 Session: Semester 2 Prerequisites: PSYC (4721 and 4722 and either 4724 or 4728)

PSYC4730
Applied Positive Psychology
Credit points: 6 Session: Semester 1

PSYC4731
Psychology of Peak Performance
Credit points: 6 Session: Semester 2

Students wishing to do a research project can substitute 12 credit points for the following unit of study:

PSYC5015
Research Project
Credit points: 12 Session: Semester 1 Prerequisites: all of PSYC5010, PSYC5011, PUBH5018 and BACH5341; plus 12 credit points of electives. Students must have a distinction average in the prerequisite units.

Students can also do the following elective units of study with special permission:

PSYC5010
Applying Psychology to Health
Credit points: 6 Session: Semester 1

PSYC5011
Applying Models of Health Behaviour
Credit points: 6 Session: Semester 2

PSYC5014
Developments in Health Psychology
Credit points: 6 Session: Semester 1 Semester 2

PHIL7840
Philosophy and the Science of Happiness
Credit points: 6 Session: Semester 2
Students will consolidate the theory and skills acquired in PSYC4721 and PSYC4722 through a semester-long coaching practicum. Using real-life issues in a supportive and confidential environment, students will coach each other in a structured solution-focused personal coaching program based on the material taught in previous units of study. This unit gives students experience in being both a coach and a client. A key component of this course will be feedback from the lecturer on students' coaching styles, skills and other relevant issues. As such this unit provides students with the opportunity to embed and develop their coaching skills. Case studies and case presentations will form part of the unit.

PSYC4725
Assessment and Selection
This unit of study is not available in 2010
Credit points: 6 Session: Semester 2 Classes: One 2 hour lecture per week.
Prerequisites: PSYC (4721 and 4722 and either 4724 or 4728) Assessment: Take home exam, Selection Case Study and Design of assessment program.

This unit will introduce students to some of the major assessment instruments used in coaching psychology. This unit does not accredit students to administer any of the instruments examined in this unit of study. Rather the unit focuses both on critical evaluation of assessment instruments and on fostering an understanding of where each may be best utilised. Assessment instruments include: NEO 4; 16PF; Myers Briggs Type Inventory; the DISK; Human Synergistics; BarOn EQI; WAIS; MMPi; Self-directed Search; Strong Interest Inventory; Multi-factor Leadership Questionnaire.

PSYC4727
Positive Organisational Coaching
Credit points: 6 Session: S2 Intensive Classes: Five Day Seminars: Block Teaching. Assessment: A written coaching proposal (3,000 words) (50%), take home exam and written assignment (1,000 words) (35%), in-class exam (short answer and multiple choice) (15%).

How can psychology help create 'healthy' workplaces? Executive and management coaching have emerged as important factors in the enhancement of performance, engagement and well-being in the workplace. This unit examines key issues in contemporary executive and workplace coaching and equips students with the knowledge and skills to provide world-class executive and management coaching. The emphasis is on critical evaluation of theory and application to practice. Although primarily focused on positive psychology, solution-focused and cognitive-behavioural approaches to coaching in organisations, the application of psychodynamic (eg Kilburg) and systems (eg O'Neill) approaches to the enhancement of performance and well-being are also considered. The unit covers issues in senior executive coaching, coaching middle management, establishing manager-as-coach programs, and the use of positive psychology in the workplace.

PSYC4729
Groups, Teams and Systems
Credit points: 6 Session: Semester 2 Classes: One 3 hour lecture per week.
Prerequisites: PSYC (4721 and 4722 and either 4724 or 4728) Assessment: Written papers (major essay, minor essay) and exam.

Coaching always takes place within the context of human systems, be they family, social networks, or workplace organisations. This unit of study considers both the theory and practice of working in human systems. At the theoretical level, students undertaking this unit will consider the major theoretical advances which aid our understanding of groups and complex human systems. These will include systems theory and complexity theory as well as major research findings in group and team dynamics. Students will also consider the practical implications of these theoretical approaches to coaching within organisations. Issues surrounding self organisation, leadership and control, and the management of change in complex adaptive systems will also be discussed. Students will design and facilitate a small group coaching program. This unit is run in a block teaching format.

PSYC4730
Applied Positive Psychology
Credit points: 6 Session: Semester 1 Classes: One 3 hour lecture per week. Assessment: Written papers (Essays or case studies) and exam.

This unit of study teaches the application of positive psychology to coaching in work and personal life contexts. We consider the core principles of positive psychology and how these can be applied in coaching interventions. Topics covered in this unit include: coaching as an applied positive psychology; goals, meaning and well-being; subjective and psychological well-being; happiness; gratitude; the languishing vs. flourishing dichotomy; broaden and build theory; self-concordance; well-being in the workplace; career coaching through the life span; and the use of positive psychology in health coaching. There is emphasis on both theoretical understanding and personal practice. The experiential learning component requires students to evaluate each week's topic in relation to their own personal life experience and to participate in group discussion and coaching practice.

PSYC4731
Psychology of Peak Performance
Credit points: 6 Session: Semester 2 Classes: One 3 hour seminar per week Assessment: Written papers (essays or case studies) and exam.

The Psychology of Peak Performance draws on theories and models of sport, performance and positive psychology and applies these to use in executive, workplace and personal coaching practice. Topics covered include flow, mental toughness, mental readiness, concentration enhancement strategies and techniques, rehearsal and debrief strategies, thriving under pressure, self-coaching, overcoming setbacks, performance protocols, focusing, and surviving success. In addition the unit covers issues related to high performing teams and groups. Issues of work/life balance are also addressed, particularly in relation to the management of optimal energy levels (avoiding burnout). There is emphasis on both theoretical understanding and personal practice. The experiential learning component requires students to evaluate each week's topic in relation to their own personal life experience and to participate in group discussion and coaching practice.

Textbooks
No set text book: A reading pack can be obtained from the University Copy Centre

PSYC5010
Applying Psychology to Health
Credit points: 6 Session: Semester 1 Classes: One 1 hour lecture, two hours of tutorials per week. Assessment: Tutorial attendance and presentation, major assignment - 2500 word essay

The work of health psychologists relies on a broad range of professional skills and attributes. The aim of this unit of study is to conceptually define health within a biopsychosocial framework and to present some of the psychological reactions to hospitalisation, illness and pain. This unit of study provides students with an introduction to key areas of health psychology and demonstrates how they relate to other disciplines. It also considers the context within which treatment takes place. This unit of study will explore mental and physical diseases. This unit of study examines the application of psychology in clinical settings. The unit of study considers the application of psychological theory to illness and preparation for hospitalisation; the management of adverse psychological sequeliae arising from hospitalisation; and rehabilitation.

PSYC5011
Applying Models of Health Behaviour
Credit points: 6 Session: Semester 2 Classes: One 1 hour lecture and two hours of tutorials per week. Assessment: Presentation of intervention, write up of intervention

The student will be given the opportunity to develop an intervention based on social cognitions models. The process can be followed from start to finish allowing the individual to utilise knowledge and skills gained in other units of study. It is an intended outcome for students

393
enrolled in the MAppSc (HealthPsych) that students can demonstrate an understanding of the key models and theories in Health Psychology which are seen by many to be the foundations of the subject area. The aim of this unit of study is to allow students to identify an area of Health Psychology where an intervention would be appropriate, review existing literature on the topic, formulate the intervention, and evaluate the intervention on a pilot level.

PSYC5012
Health Communication: Risk and Decisions
Credit points: 6
Session: S2 Intensive
Classes: Lectures, seminars and role play
This unit will be taught in block intensive mode over five days
Assessment: Role play examination, essay
In this unit of study students will consider risk communication, health professional skills, empathy, breaking bad news and interaction analysis. This unit of study seeks to develop a critical awareness of the psychological aspects of the health care contexts. The unit of study will investigate: health professional-patient communication and implications for patient adherence to treatment programmes and patient satisfaction; the impact of psycho-social and physical aspects of hospitalisation on patients and health care professionals; effects of representations and perceptions of illness and symptoms on decision making and health related behaviour. Patient interaction with the health care system is an important issue across a range of facets of health care provision. The aim of this unit of study is to provide students with a comprehensive understanding of the key issues related to the nature of and outcome form patient interaction with health care provision.

PSYC5014
Developments in Health Psychology
Credit points: 6
Session: Semester 1, Semester 2
Classes: tutorials; three hours per week
Assessment: one major assignment - 5000 word essay
The purpose of this unit of study is to allow the student to choose a topic of particular relevance to their areas of expertise. It will allow the student to examine new developments within Health Psychology which may impact on their clinical or work practice.

PSYC5015
Research Project
Credit points: 12
Session: Semester 1, Semester 2
Classes: The student will use as many of the identified sessions as s/he wishes for collection of data, preparation of the project etc under the supervision of their research supervisor.
Prerequisites: all of PSYC5010, PSYC5011, PUBH5018 and BACH5341; plus 12 credit points of electives. Students must have a distinction average in the prerequisite units.
Assessment: Project
The student will be given the opportunity to carry out a substantial piece of research in the field of health psychology. The research process can be followed from start to finish allowing the individual to utilise knowledge and skills gained in other unit of study. It is an intended outcome for students enrolled in the MAppSc (HealthPsych research stream) that they present evidence of their capacity to conduct a substantial piece of independent research that builds clearly upon their prior learning and which draws upon appropriate methodologies. The aim of this unit of study is to allow students to identify a research issue, review existing literature on the topic, formulate novel research questions, and test these questions through the application of contemporary psychological methodologies and appropriate data-analytic procedures. Lectures are voluntary, and are designed to cover common problems. The majority of support will be one-on-one tutorial sessions with the student's supervisor.

PHIL7840
Philosophy and the Science of Happiness
Credit points: 6
Teacher/Coordinator: Dr C West with Assoc Prof D Braddon Mitchell
Session: Semester 2
Classes: 2 hours per week
Assessment: Short essay 1500 words; long essay 3500 words
This unit deals with the philosophy and psychology of happiness and wellbeing. It covers classical and contemporary philosophical work on the nature of happiness. It discusses the kind of goal happiness or wellbeing is - is it something that we want only insofar as we desire it, or is there some rational requirement to make a richer conception of wellbeing the goal of life? The unit will also engage with aspects of positive psychology.

Resolutions

Master of Applied Science (Psychology of Coaching)
Graduate Diploma in Applied Science (Psychology of Coaching)
Graduate Certificate in Applied Science (Psychology of Coaching)

Course rules

1. **Admission**

1.1 The Dean of the Faculty of Science may admit to candidature for:

1.1.1 the Graduate Certificate in Applied Science (Psychology of Coaching):

1.1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;

1.1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1; or

1.1.1.3 persons who have experience which is considered to demonstrate the knowledge and aptitude required to undertake the units of study;

1.1.2 the Graduate Diploma in Applied Science (Psychology of Coaching):

1.1.2.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;

1.1.2.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.2.1; or

1.1.2.3 persons who have completed requirements for the Graduate Certificate in Applied Science, or equivalent;

1.1.3 the Master of Applied Science (Psychology of Coaching):

1.1.3.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;

1.1.3.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.3.1; or

1.1.3.3 persons who have completed requirements for the Graduate Diploma in Applied Science, or equivalent.

1.2 In relation to particular subject areas the Dean may require applicants to satisfy additional specific requirements relating to that subject area.

1.3 The additional requirements for Psychology of Coaching are as follows.

1.3.2 An applicant for admission to the Graduate Certificate in Applied Science (Psychology of Coaching), Graduate Diploma in Applied Science (Psychology of Coaching) or Master of Applied Science (Psychology of Coaching) should:

1.3.3 have either a 3 year Psychology degree or a 3 year degree in a cognate discipline;

1.3.4 at least 2 years relevant employment experience is required. Relevant work experience may include counselling, experience in organisational learning and development, management experience, employment in applied psychology settings, professional coaching or other areas directly related to coaching.

1.3.5 Candidates for the Master of Applied Science (Psychology of Coaching) may complete a stream in either Executive and Workplace Coaching or Health Coaching and are required to complete satisfactorily units of study giving credit for a total of 48 credit points selected from the units of study approved for the Master of Applied Science (Psychology of
4.4 In these resolutions, ‘to complete a unit of study’ or any derivative expression means:
4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;
4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
4.4.3 to pass any other examination of the unit of study that may apply.
4.5 All units of study for a particular subject area may not be available every semester.
4.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other postgraduate coursework programs in the Faculty or elsewhere in the University.
4.7 The Master of Applied Science (Psychology of Coaching) shall be awarded in two grades, namely Pass and, in the case of an outstanding candidate, Pass with Merit.

5. Enrolment in more/less than minimum load
5.1 A candidate for the GradCertApplSc(PsychCoach) may proceed only on a part-time basis.
5.2 A candidate for the GradDipApplSc(PsychCoach) may proceed either on a full-time or a part-time basis.

6. Cross-institutional study
6.1 Cross institutional study shall not be available to students enrolled in the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science courses, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment
7.1 Admission to candidacy may be limited by a quota.
7.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

8. Discontinuation of enrolment
8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.
8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.
8.3 A student may seek written permission from the Dean to suspend candidature in the course.
8.4 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence
10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.
11. Satisfactory progress
11.1 Candidates for the Master of Applied Science (Psychology of Coaching), the Graduate Diploma in Applied Science (Psychology of Coaching), and the Graduate Certificate in Applied Science (Psychology of Coaching), shall be governed by the rules as follows:
11.1.1 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Master of Applied Science (Psychology of Coaching) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Diploma in Applied Science (Psychology of Coaching); and the Graduate Certificate in Applied Science (Psychology of Coaching); and/or the Graduate Diploma in Applied Science (Psychology of Coaching) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Certificate in Applied Science (Psychology of Coaching); and/or the Graduate Certificate in Applied Science (Psychology of Coaching).
11.1.2 A student who has failed a cumulative total of 18 credit points at any stage of enrolment in the Master of Applied Science (Psychology of Coaching) or the Graduate Diploma in Applied Science (Psychology of Coaching) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Certificate in Applied Science (Psychology of Coaching); and/or the Graduate Diploma in Applied Science (Psychology of Coaching) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student's enrolment will be transferred to the Graduate Certificate in Applied Science (Psychology of Coaching).
Applied Science (Psychology of Coaching) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.2 A student who has failed a cumulative total of more than 18 credit points in the Master of Applied Science (Psychology of Coaching) and/or the Graduate Diploma in Applied Science (Psychology of Coaching) and/or the Graduate Certificate in Applied Science (Psychology of Coaching) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.3.1 A student who has failed a core unit at the second attempt in the Master of Applied Science (Psychology of Coaching) and/or the Graduate Diploma in Applied Science (Psychology of Coaching) and/or the Graduate Certificate in Applied Science (Psychology of Coaching) will be deemed to have failed to complete course requirements and will be required to show good cause why he or she should be allowed to re-enrol.

11.3.2 If good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit

12.1 A candidate for the Graduate Certificate in Applied Science (Psychology of Coaching) shall complete the requirements for the award in a minimum enrolment of one semester and a maximum enrolment of four semesters.

12.2 A candidate for the Graduate Diploma in Applied Science (Psychology of Coaching) shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of six semesters.

12.3 A candidate for the Master of Applied Science (Psychology of Coaching) shall complete the requirements for the award in a minimum of two semesters and a maximum of eight semesters.

13. Assessment policy

13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidature.

14. Credit transfer policy

14.1 Credit is not available in the Graduate Certificate in Applied Science (Psychology of Coaching), Graduate Diploma in Applied Science (Psychology of Coaching) and Master of Applied Science (Psychology of Coaching) for postgraduate study which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Certificate in Applied Science (Psychology of Coaching) may transfer, within three years, to the Graduate Diploma in Applied Science (Psychology of Coaching) and receive credit for up to 24 credit points from the Graduate Certificate in Applied Science (Psychology of Coaching).

14.3 A candidate who has qualified for the award of the Graduate Diploma in Applied Science (Psychology of Coaching) may transfer, within three years, to the Master of Applied Science (Psychology of Coaching) and receive credit for up to 36 credit points from the Graduate Diploma in Applied Science (Psychology of Coaching).

14.4 A candidate who has completed units of study in the Applied Science program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Applied Science program and receive credit for the units of study completed.
Master of Applied Science (Spatial Information Science)
Degree Code: LC052

Graduate Diploma in Applied Science (Spatial Information Science)
Degree Code: LF040

Graduate Certificate in Applied Science (Spatial Information Science)
Degree Code: LG018

This chapter sets out the requirements for the Graduate Certificate in Applied Science (Spatial Information Science), the Graduate Diploma in Applied Science (Spatial Information Science) and the Master of Applied Science (Spatial Information Science). A comprehensive guide to the requirements and units of study of the coursework degrees is listed.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously at the end of this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at: www.usyd.edu.au/publications/calendar.

Course overview
The Applied Science (Spatial Information Science) articulated degree program provides an understanding of spatial analysis and modelling theory and use of GIS and Remote Sensing methods in a range of application fields. The opportunity to select optional units in combination with the core GIS units will allow students to focus on a preferred specialisation within the broader spatial science spectrum. In providing a solid grounding in the principles of spatio-temporal analysis and spatial reasoning, the core units will engender a depth of knowledge that is immediately transferable to industry. The optional units will extend this knowledge in specific applications areas and reinforce spatial science skills through practical and field-based training. Students may seek admission to the Graduate Certificate in Applied Science (Spatial Information Science), the Graduate Diploma in Applied Science (Spatial Information Science) or the Master of Applied Science (Spatial Information Science).

Course outcomes
The program will enable students to adopt effective spatial analysis methods for addressing broader environmental and socio-economic issues, examine geographical trends, embrace advances in spatial information technologies and contribute to innovations in the spatial science industry.

Graduates of the Master of Applied Science (Spatial Information Science) who have completed the 12cp Research Project unit are eligible to apply for admission to a research degree (MSc, MSc (Environmental Science), PhD).

Spatial Information Science postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Degrees: Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB: All students must enrol in GEOG5001 in their first semester of enrolment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOG5001 Geographic Information Science A</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOG5002 Geographic Information Science B</td>
<td>6</td>
<td>A GEOG5001</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>GEOG5003 Environmental Remote Sensing</td>
<td>6</td>
<td>A Knowledge or experience equivalent to GEOG5001 (Introduction to GIS)</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>GEOG5004 Environmental Mapping and Monitoring</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>Diploma and Masters: Optional Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diploma students must complete 12 credit points from the following</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masters students may either: 1) if they have NOT completed 24 cp at credit average or better: complete 18 credit points from the following plus 6 Postgraduate credit points offered by the Faculty of Science and approved by the program coordinator, excluding GEOG5005 and RESP5001 OR 2) if they have completed 24 credit points at credit average or better: complete 24 credit points from the following table</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENVS5809 Environmental Simulation Modelling</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td>COMP5338 Advanced Data Models</td>
<td>6</td>
<td>A COMP5138 or equivalent</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>AFNR5502 Remote Sensing, GIS and Land Management</td>
<td>6</td>
<td>A Some knowledge of GIS and spatial information systems and/or some knowledge of soil science, geomorphology and environmental science</td>
<td>P Recommended courses include ENVX3001 (Environmental GIS), SOIL2004 (The Soil Resource), GEOG5007 (Remote Sensing: Imaging the Earth), GEOG5014 (GIS in Coastal Management), GEOG5001 (Geographic Information Science A) and GEOG 5002 (Geographic Information Science B)</td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
</tbody>
</table>
Spatial Information Science unit of study descriptions 2010

AFNR5502
Remote Sensing, GIS and Land Management
Credit points: 6 Teacher/Coordinator: A/Prof Inakwu Odeh Session: Semester 2 Classes: 2 lec, 1 tut & 4hr prac/wk (wks 1-6); Project: (wks 7-12) Prerequisites: Recommended courses include ENVS3001 (Environmental GIS), SOIL2004 (The Soil Resource), GEOG2007 (Remote Sensing: Imaging the Earth), GEOG3014 (GIS in Coastal Management), GEOG5001 (Geographic Information Science A) and GEOG 5002 (Geographic Information Science B) Assumed knowledge: Some knowledge of GIS and spatial information systems and/or some knowledge of soil science, geomorphology and environmental science Assessment: Lab prac reports, group work, presentation and project report.

This unit of study is aimed at advanced techniques in Remote Sensing (RS), linked with Geographical Information Systems (GIS), as applied to land management problems. We will review the basic principles of GIS and then focus on advanced RS principles and techniques used for land resource assessment and management. This will be followed by practical training in RS techniques, augmented by land management project development and implementation based on integration of GIS and RS tools. The unit thus consists of three separate but overlapping parts: 1) a short theoretical part which focuses on the concepts of RS; 2) a practical part which aims at developing hands-on skills in using RS tools, and 3) an application-focused module in which students will learn the skills of how to design a land management project and actualise it using integrated GIS and RS techniques.

Syllabus summary: Lectures will cover: Overview of the basic principles of Geographical Information Science (GISc), Advanced principles of remote sensing, Land resource information and data capture using RS, Digital elevation modelling and terrain analysis using remote sensing; Image enhancement and visualization; Image classification and interpretation; RS data interpretation for land resource inventory; RS and GIS for land use and land cover change analysis; Coupling of models of land resource assessment with GIS and RS. Fifty percent of learning time will be devoted to the design and implementation of projects, which can be selected from GIS and RS applications in: agricultural land management, vegetation studies, water and catchment (hydrological) studies; land-cover and land-use change modelling, pesticide and herbicide environmental risk assessment, environmental impact analysis, and degradation modelling including soil salinity, soil erosion, etc.

Textbooks

COMP5338
Advanced Data Models
Credit points: 6 Session: Semester 2 Classes: (Lec 2hrs & Prac 1hr) per week. Assumed knowledge: COMP5138 or equivalent Assessment: Assignments, written exam.

This unit of study gives a comprehensive overview of post-relational data models and of latest developments in database technology. Particular emphasis is put on spatial, temporal, and semi-structured data. The unit extensively covers the advanced features of SQL:2008, as well as XML and related standards such as XMLSchema, xPath, and xQuery. The last part is dedicated to current developments of advanced data management techniques. Besides in lectures, the advanced topics will be also studied with prescribed readings of database research publications.

ENVI5809
Environmental Simulation Modelling
Credit points: 6 Teacher/Coordinator: Dr David Chapman Session: Semester 1 Classes: Six workshops. Assessment: Report

This concept and use of computer modelling in natural resource management is introduced in this unit of study, which is aimed particularly at non-programmers.

GEOG5001
Geographic Information Science A
Credit points: 6 Teacher/Coordinator: Dr David Chapman Session: Semester 1, Semester 2 Classes: Six workshops. Assessment: Report

This unit of study gives an overview of basic spatial data models, and enables students to understand the import and export of data to and from a geographical information system (GIS). The manipulation of spatial data at a level appropriate to planning or locational applications, and the development of thematic maps from diverse data layers, will be addressed.

GEOG5002
Geographic Information Science B
Credit points: 6 Teacher/Coordinator: Dr Eleanor Bruce Session: Semester 2 Classes: One 2 hour lecture, one 1 hour tutorial, one 3 hour practical per week for 6 weeks. Assumed knowledge: GEOG3501 Assessment: 2500 word assignment, seminar presentation, tutorial reports, WebCT quiz.

This course will provide the conceptual background to more advanced GIS analysis applications and spatial reasoning methods in the context of contemporary environmental issues. The course is designed to provide an understanding of spatial analysis techniques available within a GIS environment, explore a diversity of both social and physical environmental applications and address emerging issues in GIS research. A range of topics will be introduced including field based capture of spatial information, spatial data structures, surface modelling, visibility analysis, hydrological modeling, network analysis, spatial data uncertainty and social GIS. Conceptual material presented in lectures and tutorial workshops will be placed in an applied context through a series of laboratory and field sessions designed to strengthen practical understanding and awareness of GIS methods.

GEOG5003
Environmental Remote Sensing
Credit points: 6 Teacher/Coordinator: Dr Richard Murphy Session: Semester 1 Classes: Two one hour lectures and a 4 hour practical per week. Assumed knowledge: Knowledge or experience equivalent to GEOG5001 (Introduction to GIS) Assessment: Assignments, practicals and examination

This unit of study provides a comprehensive introduction to the computational manipulation and application of imaging techniques commonly used in environmental management, from the microscopic to macroscopic level. It includes an introduction to the uses of aerial photography and initial training in image analysis using computer-based exercises. The application and interpretation of
remote sensing techniques is then covered in computer-based practical exercises that use a mixture of Landsat thematic mapper, Hyper-spectral, airborne radiometric and magnetic databases. The application of processed images in environmental management will be covered through integrated lectures and laboratory exercise, with assignments being done as part of private study time.

GEOG5004
Environmental Mapping and Monitoring
Credit points: 6
Teacher/Coordinator: A/Prof Peter Cowell
Session: Semester 2
2 Classes: 2 hours of lectures and one three hour practical per week.
Assessment: Assignments
The unit introduces methods associated with acquiring data in the field and examines issues associated with application of spatial data to environmental monitoring, terrain mapping and geocomputing. Students will learn both theoretically and practically how environmental data is collected using different remote sensing techniques, (pre)processing methods of integrating data in a GIS environment and the role of spatial data in understanding landscape processes and quantifying environmental change.

GEOG5005
Spatial Science Research Project
Credit points: 12
Session: Semester 1, Semester 2
Classes: Regular meetings with supervisor
Assessment: Written thesis
Note: Department permission required for enrolment in the following sessions: Semester 1.
This unit provides students with an opportunity for research and in-depth inquiry in a spatial science topic of interest allowing students to further extend their knowledge or theoretical and conceptual material presented in other units. The research topic will be arranged between the student and supervisor and must have a spatial science focus. Potential topics range from modeling coastal impacts of predicted sea level rise, applying remote sensing in vegetation change detection to the spatial modeling of public transport accessibility. The project topic may involve a spatial modeling or field component, or may be entirely literature-based.

RESP5001
Fundamentals of Research
This unit of study is not available in 2010
Credit points: 6
Teacher/Coordinator: A/Prof D Dragovich
Session: Semester 1a, Semester 2a
Assessment: Three 1000 word reports, oral presentation
This unit will provide research training for students wishing to undertake research at a Masters or PhD level. Students will revise or develop the necessary skills for commencing a research degree, including critical reading, developing the thesis proposal, developing a research plan with timelines and benchmarks, critical writing, library search techniques, use of referencing systems like EndNote, working with a supervisor, and matters relating to intellectual property and authorship.

Resolutions
Master of Applied Science (Spatial Information Science)
Graduate Diploma in Applied Science (Spatial Information Science)
Graduate Certificate in Applied Science (Spatial Information Science)

Course rules
1. Admission
 1.1 The Dean of the Faculty of Science may admit to candidature for:

 1.1.1 the Graduate Certificate in Applied Science (Spatial Information Science)
 1.1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1; or
 1.1.1.3 persons who have experience which is considered to demonstrate the knowledge and aptitude required to undertake the units of study.

 1.1.2 the Graduate Diploma in Applied Science (Spatial Information Science):
 1.1.2.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.2.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.2.1; or
 1.1.2.3 persons who have completed requirements for the Graduate Certificate in Applied Science, or equivalent.

 1.1.3 the Master of Applied Science (Spatial Information Science)
 1.1.3.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.3.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.3.1; or
 1.1.3.3 persons who have completed requirements for the Graduate Diploma in Applied Science, or equivalent.

2. Units of study
 2.1 The units of study for the Graduate Certificate in Applied Science (Spatial Information Science), Graduate Diploma in Applied Science (Spatial Information Science), and Master of Applied Science (Spatial Information Science), are listed in the table of units of study for Applied Science (Spatial Information Science) Postgraduate coursework degrees in this chapter of the Faculty of Science Handbook.

3. Requirements for the Graduate Certificate in Applied Science (Spatial Information Science), Graduate Diploma in Applied Science (Spatial Information Science), Master of Applied Science (Spatial Information Science)
 3.1 Candidates for the Graduate Certificate in Applied Science (Spatial Information Science) are required to satisfactorily complete 24 credit points of units of study comprising GEOG5001, GEOG5002, GEOG5003 and GEOG5004.
 3.2 Candidates for the Graduate Diploma in Applied Science (Spatial Information Science) are required to complete satisfactorily 36 credit points of units of study comprising GEOG5001, GEOG5002, GEOG5003, GEOG5004 and 12 credit points from other units in the table in this chapter of the Faculty of Science Handbook.
 3.3 Candidates for the Master of Applied Science (Spatial Information Science) are required to complete satisfactorily 48 credit points of units of study comprising GEOG5001, GEOG5002, GEOG5003 and GEOG5004; and either
 3.3.1 18 credit points from the list of units of study in this chapter of the Faculty of Science Handbook, not including GEOG5005 or RESP5001; and 6 credit points from an optional unit offered by the Faculty of Science and approved by the coordinator of the Spatial Information Science program; or
 3.3.2 only if qualified to enrol in GEOG5005 and RESP5001, 48 credit points of study from the list of units in the table in this chapter of the Faculty of Science Handbook.

Faculty rules
4. Details of units of study
 4.1 The units of study for the Graduate Certificate in Applied Science (Spatial Information Science), Graduate Diploma in
28. Spatial Information Science coursework degrees

Applied Science (Spatial Information Science) and the Master of Applied Science (Spatial Information Science) are listed in the table in this chapter of the Faculty of Science Handbook.

4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

4.4 In these resolutions, ‘to complete a unit of study’ or any derivative expression means:

4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;

4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and

4.4.3 to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.

4.6 The Dean may allow substitution of any unit of study by another unit of study, including units of study from other postgraduate coursework programs in the Faculty or elsewhere in the University.

4.7 The Master of Applied Science (Spatial Information Science) shall be awarded in two grades, namely Pass and, in the case of an outstanding candidate, Pass with Merit.

5. Enrolment in more/less than minimum load

5.1 A candidate may proceed on either a full-time or a part-time basis.

6. Cross-institutional study

6.1 Cross institutional study shall not be available to students enrolled in the Master of Applied Science (Spatial Information Science), the Graduate Diploma in Applied Science (Spatial Information Science) or the Graduate Certificate in Applied Science (Spatial Information Science) except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment

7.1 Admission to candidature may be limited by a quota.

7.2 In determining the quota, the University will take into account:

7.2.1 availability of resources including space, laboratory and computing facilities; and

7.2.2 availability of adequate and appropriate supervision.

7.3 In considering an application for admission to candidature the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of section 2 above.

8. Discontinuation of enrolment

8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature

9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence

10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress

11.1 Candidates for the Graduate Certificate in Applied Science (Spatial Information Science), Graduate Diploma in Applied Science (Spatial Information Science) and the Master of Applied Science (Spatial Information Science) shall be governed by the rules as follows:

11.1.1 A student who has failed a cumulative total of 12cp at any stage of enrolment in the Master of Applied Science (Spatial Information Science) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will be transferred to the Graduate Certificate in Applied Science (Spatial Information Science).

11.1.2 A student who has failed a cumulative total of 18cp at any stage of enrolment in the Master of Applied Science (Spatial Information Science) and/or the Graduate Diploma in Applied Science (Spatial Information Science) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will be transferred to the Graduate Certificate in Applied Science (Spatial Information Science).

11.1.3 A student who has failed a cumulative total of 12cp at any stage of enrolment in the Graduate Certificate in Applied Science (Spatial Information Science) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.2 A student who has failed a cumulative total of more than 18cp in the Master of Applied Science (Spatial Information Science) and/or the Graduate Diploma in Applied Science (Spatial Information Science) and/or the Graduate Certificate in Applied Science (Spatial Information Science) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.3.1 A student who has failed a unit at the second attempt in the Master of Applied Science (Spatial Information Science) and/or the Graduate Diploma in Applied Science (Spatial Information Science) and/or the Graduate Certificate in Applied Science (Spatial Information Science) will be deemed to have failed to complete course requirements and will be required to show good cause why he or she should be allowed to re-enrol.

11.3.2 If good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit

12.1 A candidate for the Graduate Certificate in Applied Science (Spatial Information Science) shall complete the requirements for the award in a minimum enrolment of one semester and a maximum enrolment of four semesters.

12.2 A candidate for the Graduate Diploma in Applied Science (Spatial Information Science) shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of six semesters.

12.3 A candidate for the Master of Applied Science (Spatial Information Science) shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of eight semesters.

13. Assessment policy

13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidature.

14. Credit transfer policy

14.1 Credit is not available in the Graduate Certificate in Applied Science (Spatial Information Science), Graduate Diploma in Applied Science (Spatial Information Science) and Master of Applied Science (Spatial Information Science) for postgraduate study which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Certificate in Applied Science (Spatial Information Science) may transfer, within three years, to the Graduate Diploma in Applied Science (Spatial Information Science) and receive credit for up to 24 credit points from the Graduate Certificate in Applied Science (Spatial Information Science).

14.3 A candidate who has qualified for the award of the Graduate Diploma in Applied Science (Spatial Information Science) may transfer, within three years, to the Master of Applied Science (Spatial Information Science) and receive credit for up to 36 credit points from the Graduate Diploma in Applied Science (Spatial Information Science).

14.4 A candidate who has completed units of study in the Applied Science program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Applied Science program and receive credit for the units of study completed.
29. Wildlife Health and Population Management coursework degrees

Master of Applied Science (Wildlife Health and Population Management)
Degree Code: LC034

Graduate Diploma in Applied Science (Wildlife Health and Population Management)
Degree Code: LF022

Graduate Certificate in Applied Science (Wildlife Health and Population Management)
Degree Code: LG007

This chapter sets out the requirements for coursework postgraduate degrees offered in the areas of Wildlife Health and Population Management.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously at the end of this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at: www.usyd.edu.au/publications/calendar.

Course overview
The Graduate Certificate in Applied Science (Wildlife Health and Population Management), Graduate Diploma in Applied Science (Wildlife Health and Population Management) and Master of Applied Science (Wildlife Health and Population Management) are articulated award courses that provide a professional qualification to biologists and veterinarians working in private practice, industry, research and education. The award program brings together the disciplines of animal health and wildlife population management, developing and enhancing skills in conservation techniques for native fauna, diagnosis and management of wildlife health, and management of native and pest species populations.

Candidates will normally commence their study in Semester 1, except with the permission of the Dean.

Course outcomes
The aim of this articulated coursework program is to provide students with a coordinated and interdisciplinary approach to wildlife health and wildlife management, thus developing expertise to recognise and solve a broad range of problems in field populations. Upon completion of the graduate certificate, graduate diploma or Master’s, graduates will have a broad understanding of the topic of wildlife management and practical skills developed from field studies. In addition, the Master's will provide experience in designing, carrying out and completing a research project and thesis.

Graduates of the Master of Applied Science (Wildlife Health & Population Management) are eligible to apply for admission to a research degree (PhD).

Wildlife Health and Population Management postgraduate coursework degree table

<table>
<thead>
<tr>
<th>Unit of study</th>
<th>Credit points</th>
<th>A: Assumed knowledge</th>
<th>P: Prerequisites</th>
<th>C: Corequisites</th>
<th>N: Prohibition</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Degrees: Core Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILD5001 Australasian Wildlife: Introduction</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td>WILD5002 Australasian Wildlife: Field Studies</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Intensive</td>
</tr>
<tr>
<td>Masters: Additional Core Unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB: Students must successfully complete 24 credit points of units of study before they can enrol in WILD5009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILD5009 Research Project</td>
<td>12</td>
<td>Core for the Masters program</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1, Semester 2</td>
</tr>
<tr>
<td>Optional Units</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Certificate students must complete 12 credit points from the following</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate Diploma students must complete 24 credit points from the following</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masters students must complete 30 credit points from the following</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WILD5003 Wildlife Health</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Late Int</td>
</tr>
<tr>
<td>WILD5004 Vertebrate Pest Management</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S2 Intensive</td>
</tr>
<tr>
<td>WILD5005 In Situ Wildlife Management</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S1 Late Int</td>
</tr>
<tr>
<td>WILD5006 Ex Situ Wildlife Management</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S2 Late Int</td>
</tr>
<tr>
<td>WILD5010 Southern Ocean Vertebrates Conservation</td>
<td>6</td>
<td>All students will need to have the equivalent of a bachelor's degree. They will be assumed to know how to use electronic resources to search data bases that relate to environmental topics.</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2</td>
</tr>
<tr>
<td>This unit of study is not available in 2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To view the latest update, download, purchase or search a handbook visit Handbooks online: www.usyd.edu.au/handbooks
Wildlife Health and Population Management unit of study descriptions 2010

WILD5001

Australasian Wildlife: Introduction

Credit points: 6
Teacher/Coordinator: Dr Matthew Crowther
Session: S1
Intensive Classes: Intensively taught unit, the remainder of the unit will involve personal study and project activity. See the Wildlife Health and Population Management website for dates.
Assessment: Assessments for each unit may include practical work, field studies, student presentations and written reports.

This unit of study provides an introduction to the wildlife of Australasia, an overview of the present status of that wildlife, and an understanding of both conservation problems and management solutions. Issues in wildlife management are exemplified using a broad range of vertebrate species occupying different environments. Emphasis is placed on providing students with a coordinated and interdisciplinary approach to wildlife health and management, and on developing expertise in recognising and solving a broad range of problems in field populations.

The unit integrates lectures, practical work and supervised study, and offers students the opportunity to work through real-world wildlife conservation problems relevant to their individual backgrounds.

WILD5002

Australasian Wildlife: Field Studies

Credit points: 6
Teacher/Coordinator: Dr Matthew Crowther
Session: S1
Intensive Classes: Intensively taught unit. See the Wildlife Health and Population Management website for dates.
Assessment: Assessments for each unit may include practical work, field studies, student presentations and written reports.

This unit of study provides a first-hand introduction to the wildlife of Australasia, a practical overview of the present status of that wildlife, and an understanding of both conservation problems and management solutions. Issues in wildlife management are exemplified using sampling and diagnostic methods on a broad range of vertebrate species occupying different environments. The unit follows on from WILD5001 and provides practical experience via a five day field trip.

WILD5003

Wildlife Health

Credit points: 6
Teacher/Coordinator: Assoc Prof DN Phalen
Session: S1
Late Int Classes: A full-time week on the Camden campus, with one day spent on a field trip to Taronga Zoo.
Assessment: The assessment of this unit occurs both in the full-time week and in individual written assignments done in the student's own time. The full-time week contributes 40% of the total mark through a number of individual and syndicate tasks, with presentations to the group. The remaining 60% comes from two written assignments of 3,000 words (20%) and 5,000 words (40%) respectively.

This unit of study provides an introduction to the health issues confronting wildlife in Australasia, an overview of the health status of that wildlife, and an understanding of both the investigation of health problems and the effective management of these. Issues in wildlife disease management are exemplified using a broad range of vertebrate species occupying different environments. Emphasis is placed on providing students with a coordinated and interdisciplinary approach to wildlife health, and on developing expertise in recognising and solving a broad range of health problems in field populations.

The unit is taught intensively in a full-time week on the Camden campus, with one day spent on a field trip to Taronga Zoo. The unit integrates lectures, practical work and supervised study, and offers students the opportunity to work through real-world wildlife conservation problems relevant to their individual backgrounds.

Textbooks
Unit of Study Handbook is the primary reference.

WILD5004

Vertebrate Pest Management

Credit points: 6
Teacher/Coordinator: Dr Adam Munn
Session: S2
Intensive Classes: The Unit is taught in a full-time week at the university farm “Arthursleigh” near Marulan NSW. There are lectures, tutorials, and a variety of practical classes.
Assessment: The assessment of this unit occurs both in the full-time week and in individual written assignments done in the student's own time. The full-time week contributes 40% of the total mark through a number of individual and syndicate tasks, with presentations to the group. The remaining 60% comes from two written assignments of 3000 words (20%) and 5000 words (40%) respectively.

Vertebrate pests occur in many parts of the world, and can pose significant problems for management of habitat, agricultural productivity, human and wildlife health. This unit focuses on vertebrates that have been introduced to new environments, and considers in detail the impacts and management of pest vertebrates in Australia. Steps in pest management are reviewed, from problem analysis to acceptable levels of control, using case studies of cane toads, rabbits, house mice and red foxes. Traditional mortality methods of management are reviewed, and emphasis placed on developing methods based on fertility control. The Unit is taught in a full-time week at the university farm “Arthursleigh” near Marulan NSW. There are lectures, tutorials, and a variety of practical classes. The Unit is taught in a full-time week at the university farm “Arthursleigh” near Marulan NSW. There are lectures, tutorials, and a variety of practical classes.

Textbooks
Unit of Study Handbook is the primary reference.

WILD5005

In Situ Wildlife Management

Credit points: 6
Teacher/Coordinator: Dr Matthew Crowther
Session: S1
Late Int Classes: Intensively taught unit. See the Wildlife Health and Population Management website for dates.
Assessment: Assessments for each unit may include practical work, field studies, student presentations and written reports.

Wildlife populations do not remain static, but change in size and composition over both time and space. The challenge for managers is to recognise when change in target populations exceeds acceptable limits and intervention is necessary. This unit of study develops skills in assessing population status and recognising differences between ‘small populations’ and ‘declining populations’. It introduces methods used in population pattern analysis, demographic analysis, threat and resource assessment, and determination of health, emphasising the value of a coordinated and interdisciplinary approach to problem recognition and resolution.

WILD5006

Ex Situ Wildlife Management

Credit points: 6
Teacher/Coordinator: Dr Derek Spielman
Session: S2
Late Int Classes: The Unit is taught in a full-time week at Western Plains Zoo in Dubbo, NSW.
Assessment: The assessment of this unit occurs both in the full-time week and in individual written assignments done in the student's own time. The full-time week contributes 40% of the total mark through a number of individual and syndicate tasks, with presentations to the group. The remaining 60% comes from two written assignments of 3,000 words (20%) and 5,000 words (40%) respectively.

Wildlife populations are under a variety of threats, most of which result from human activities. Modern conservation biology seeks practical solutions to these problems, using a wide variety of options. These options may include captive breeding and re-introduction programs, provided that a range of biological, ethical and political-economic issues are addressed. This unit of study will provide students with the ability to evaluate the likely cost-effectiveness of such programs. It will also develop knowledge of the technologies available to capture and translocate wildlife, and of the planning required to ensure the best possible chance of success. The Unit is taught in a full-time week at Western Plains Zoo in Dubbo, NSW. The unit integrates lectures, tutorials, practical work and supervised study, and offers students the opportunity to examine real-world problems in the conservation and management of threatened wildlife populations using case studies relevant to their individual backgrounds.

Textbooks
Unit of Study Handbook is the primary reference.
WILD5009
Research Project
Credit points: 12 Session: Semester 1, Semester 2 Classes: meetings throughout semester to be arranged with supervisor. Assessment: independent research project
Note: Core for the Masters program

A valuable opportunity to apply some of the knowledge gained from earlier coursework, WILD5009 comprises a research project on a topic with significant emphasis on wildlife health and/or population management, as arranged between the student and an appropriate supervisor. This research experience is highly valued by prospective employers as it shows a willingness and ability to undertake guided but independent research. The project is not conducted by way of contact hours per week for a semester. Instead the student is expected to work on the project full-time and in a continuous manner for the semester. This unit of study is available only to students enrolled in the Master of Applied Science (Wildlife Health and Population Management).

WILD5010
Southern Ocean Vertebrates Conservation
This unit of study is not available in 2010
Credit points: 6 Teacher/Coordinator: Program Academic Supervisor: Assoc Prof David Phalen Instructor(s): Assoc Prof David Phalen, Dr Rachael Gray, Dr Tracey Rogers Session: Semester 2 Classes: Residential and self study. See the Wildlife Health and Population Management website for dates. Assumed knowledge: All students will need to have the equivalent of a bachelor's degree. They will be assumed to know how to use electronic resources to search data bases that relate to environmental topics. Assessment: presentation, written assignment
Note: This unit of study is one that is offered as part of the Master's of Wildlife Health and Population Management program

A diverse range of fish, birds and mammals inhabit the oceans surrounding the Antarctic. These oceans fall under the jurisdiction of many nations and international regulatory agencies. Our knowledge of and ability to monitor the populations of fish, mammals and birds that live in these oceans is complicated by the fact that many species migrate across huge areas of the oceans crossing many jurisdictions. Many nations have an interest in the animals of the Southern Ocean. These interests range from strictly commercial to the desire to see that they are left untouched or at least utilized in a sustainable manner. In this course we will examine how anthropogenic factors are impacting the birds, mammals, and fish of the Southern Oceans and to learn how these changes can be monitored and documented. We will also discuss how commercial interests are regulated by law and how change in these laws may come about and the difficulties of enforcement.

Resolutions

Course rules
1. Admission
 1.1 The Dean of the Faculty of Science may admit to candidature for:

 1.1.1 the Graduate Certificate in Applied Science (Wildlife Health and Population Management):
 1.1.1.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.1.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1;
 1.1.1.3 persons who have experience which is considered to demonstrate the knowledge and aptitude required to undertake the units of study;
 1.1.2 the Graduate Diploma in Applied Science (Wildlife Health and Population Management):
 1.1.2.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.2.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.2.1;
 1.1.2.3 persons who have completed requirements for the Graduate Certificate in Applied Science, or equivalent;
 1.1.3 the Master of Applied Science (Wildlife Health and Population Management):
 1.1.3.1 graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 1.1.3.2 graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.3.1;
 1.1.3.3 persons who have completed requirements for the Graduate Diploma in Applied Science, or equivalent.

2. Units of study
 2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included in the unit of study description.

 3.1 Candidates for the Graduate Certificate in Applied Science (Wildlife Health and Population Management) are required to complete satisfactorily two core units of study (WILD5001 and WILD5002) and 12 credit points from optional units of study.
 3.2 Candidates for the Graduate Diploma in Applied Science (Wildlife Health and Population Management) are required to complete satisfactorily two core units of study (WILD5001 and WILD5002) and 24 credit points from optional units of study.
 3.3 Candidates for the Master of Applied Science (Wildlife Health and Population Management) are required to complete satisfactorily three core units of study (WILD5001, WILD5002 and WILD5009) and 24 credit points from optional units of study.

Faculty rules
4. Details of units of study
 4.1 The units of study for the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science (Wildlife Health and Population Management) are listed in the table in this chapter of the Faculty of Science Handbook.

 Unless otherwise indicated, all units are worth 6 credit points. There are no prerequisites, corequisites or other special conditions for enrolment in these units of study except that 24 credit points of units of study must be completed successfully before a candidate may enrol in WILD5009.
 4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.
4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

4.4 In these resolutions, ‘to complete a unit of study’ or any derivative expression means:

4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;

4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and

4.4.3 to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.

4.6 The Dean may allow substitution of any unit of study by another course.

4.7 The Master of Applied Science (Wildlife Health and Population Management) shall be awarded in two grades, namely Pass with Merit.

5. Enrolment in more/less than minimum load

5.1 A candidate may proceed on either a full-time or a part-time basis.

6. Cross-institutional study

6.1 Cross institutional study shall not be available to students enrolled in the Graduate Certificate in Applied Science, Graduate Diploma in Applied Science and Master of Applied Science courses, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment

7.1 Admission to candidacy may be limited by a quota.

7.2 In determining the quota, the University will take into account:

7.2.1 availability of resources including space, laboratory and computing facilities; and

7.2.2 availability of adequate and appropriate supervision.

7.3 In considering an application for admission to candidature the Dean shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of subsection 1 above.

8. Discontinuation of enrolment

8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean to suspend candidature will be deemed to have discontinued enrolment in the course.

8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature

9.1 A student may seek written permission from the Dean to suspend candidature in the course.

9.2 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence

10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress

11.1 Candidates for the Master of Applied Science (Wildlife Health and Population Management), the Graduate Diploma in Applied Science (Wildlife Health and Population Management), and the Graduate Certificate in Applied Science (Wildlife Health and Population Management), shall be governed by the rules as follows:

11.1.1 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Master of Applied Science (Wildlife Health and Population Management) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will be transferred to the Graduate Certificate in Applied Science (Wildlife Health and Population Management);

11.1.2 A student who has failed a cumulative total of 18 credit points at any stage of enrolment in the Master of Applied Science (Wildlife Health and Population Management) and/or the Graduate Diploma in Applied Science (Wildlife Health and Population Management) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.1.3 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Graduate Certificate in Applied Science (Wildlife Health and Population Management) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.2 A student who has failed a cumulative total of more than 18 credit points in the Master of Applied Science (Wildlife Health and Population Management) and/or the Graduate Diploma in Applied Science (Wildlife Health and Population Management) and/or the Graduate Certificate in Applied Science (Wildlife Health and Population Management) will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.3.1 A student who has failed a core unit at the second attempt in the Master of Applied Science (Wildlife Health and Population Management) and/or the Graduate Diploma in Applied Science (Wildlife Health and Population Management) and/or the Graduate Certificate in Applied Science (Wildlife Health and Population Management) will be deemed to have failed to complete course requirements and will be required to show good cause why he or she should be allowed to re-enrol.

11.3.2 If good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit

12.1 A candidate for the Graduate Certificate in Applied Science (Wildlife Health and Population Management) shall complete the requirements for the award in a minimum enrolment of one semester and a maximum enrolment of four semesters.

12.2 A candidate for the Graduate Diploma in Applied Science (Wildlife Health and Population Management) shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of six semesters.

12.3 A candidate for the Master of Applied Science (Wildlife Health and Population Management) shall complete the requirements for the award in a minimum of two semesters and a maximum of eight semesters.

13. Assessment policy

13.1 On completion of the requirements for the course, the Faculty shall determine the results of the candidature.

14. Credit transfer policy

14.1 Credit is not available in the Graduate Certificate in Applied Science (Wildlife Health and Population Management), Graduate Diploma in Applied Science (Wildlife Health and Population Management) and Master of Applied Science (Wildlife Health and Population Management) for coursework which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Certificate in Applied Science (Wildlife Health and Population Management) may transfer, within three years, to the Graduate Diploma in Applied Science (Wildlife Health and Population Management) and receive credit for up to 24 credit points from the Graduate Certificate in Applied Science (Wildlife Health and Population Management).

14.3 A candidate who has qualified for the award of the Graduate Diploma in Applied Science (Wildlife Health and Population Management) may transfer, within three years, to the Master of Applied Science (Wildlife Health and Population Management) and receive credit for up to 36 credit points from the Graduate Diploma in Applied Science (Wildlife Health and Population Management).

14.4 A candidate who has completed units of study in the Applied Science program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Applied Science program and receive credit for the units of study completed.
This chapter sets out the requirements for the coursework postgraduate degree offered in the Faculty of Science in the area of Sustainability. The faculty offers one degree in this area: the Master of Sustainability.

The information in this chapter is in summary form and is subordinate to the provisions of the relevant degree Resolutions, collected variously at the end of this chapter, or in the University of Sydney Calendar. The Calendar is available for sale at the Student Centre, for viewing at the faculty office or the Library, or online at www.usyd.edu.au/calendar.

Master of Sustainability

Degree Code: LC054

Course Overview

The Master of Sustainability is a truly multi and cross-disciplinary qualification aimed at producing sustainability professionals able to augment their discipline-specific skills with an appreciation of the technological, commercial, legal, governmental and societal imperatives underpinning sustainability issues.

The Master of Sustainability has been developed in collaboration between the University’s Institute of Sustainable Solutions and industry professionals from areas such as energy, finance, the media, planning, health, law, and government. It builds upon the Graduate Diploma with a capstone experience in which students will work in teams to research current sustainability problems in collaboration with industry (including their own employment if appropriate), aiming to deliver sustainable solutions to the industry partners.

Graduate Certificate of Sustainability

Degree Code: LG025

Graduate Diploma of Sustainability

Degree Code: LF042

The Graduate Certificate of Sustainability is a multi and cross-disciplinary qualification aimed at producing sustainability professionals able to augment their discipline-specific skills with an appreciation of the technological, commercial, legal, governmental and societal imperatives underpinning sustainability issues. Addressing questions such as what sort of environment will our children inherit? Will our rivers run dry? Can our cities survive? How will future populations replenish? What will the future hold?

There will be simultaneous consideration of key global issues such as maintaining biodiversity, land and water sustainability, renewable energy, energy conservation, carbon capture and emission management, sustainable building design, urban planning, public health and well-being, economic development, triple bottom line analysis, an environmental, national and international treaty law. Instruction will be from experts from across the University and leading industrial practitioners.

The Certificate can be taken as a stand-alone qualification, or converted to advanced standing in the Graduate Diploma of Sustainability. The Diploma builds upon the Graduate Certificate by providing greater breadth and depth in the study areas.

Course Outcomes

Upon completion of the course, Graduates will be equipped to engage in developing and implementing solutions to the complex conundrum of delivering acceptable life styles for all without compromising the fate of future generations.

Sustainability Units 2010

Unit descriptions will be available in late 2009.
Faculty resolutions

Master of Sustainability
Graduate Diploma in Sustainability
Graduate Certificate in Sustainability

Course rules

1. Admission
 1.1 The Dean of the Faculty of Science, on the recommendation of the Director of USISS or nominee, may admit to candidature for:
 1.1.1 the Graduate Certificate in Sustainability:
 a. graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 b. graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.1.1; or
 c. persons who have experience which is considered to demonstrate the knowledge and aptitude required to undertake study of the Master of Sustainability:
 1.1.2 the Graduate Diploma in Sustainability:
 a. graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 b. graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.2.1; or
 c. persons who have completed requirements for the Graduate Certificate in Sustainability, or equivalent;
 1.1.3 the Master of Sustainability:
 a. graduates of the University of Sydney holding the degree of Bachelor of Science or any other equivalent award of the University of Sydney;
 b. graduates of other universities or other appropriate institutions who have qualifications equivalent to those specified in subsection 1.1.3.1; or
 c. persons who have completed requirements for the Graduate Diploma in Sustainability, or equivalent.

2. Units of study
 2.1 The units of study for the Graduate Certificate in Sustainability, Graduate Diploma in Sustainability, and Master of Sustainability, are listed in subsection 4.
 2.2 Credit point value, assumed knowledge, corequisites, prerequisites and any special conditions are included under units of study description.

3. Requirements for the Graduate Certificate in Sustainability (GradCertSust); Graduate Diploma in Sustainability (GradDipSust); Master of Sustainability (MSust)
 3.1 Candidates for the Graduate Certificate in Sustainability are required to complete satisfactorily two 6 credit point core units of study (from two different strands) from Table 1 and two 6 credit point units of study from Table 1 or Table 2.
 3.2 Candidates for the Graduate Diploma Sustainability are required to complete satisfactorily six 6 credit point core units of study from Table 1 (one from each strand) and two 6 credit point units of study from Table 1 or Table 2.
 3.3 Candidates for the Master of Sustainability are required to complete satisfactorily six 6 credit point core units of study (one from each strand) from Table 1, two 6 credit point units of study from Table 1 or Table 2 and 24 credit points from units of study in Table 3.

Faculty rules

4. Details of units of study
 4.1 The units of study for the Graduate Certificate in Sustainability, Graduate Diploma in Sustainability, and Master of Sustainability, are listed in tables 1, 2 and 3, accompanying these resolutions.
 4.2 A candidate for the course shall proceed by completing units of study as prescribed by the Faculty.

4.3 A unit of study shall consist of such lectures, seminars, tutorial instruction, essays, exercises, practical work, or project work as may be prescribed.

4.4 In these resolutions, ‘to complete a unit of study’ or any derivative expression means:
 4.4.1 to attend the lectures and the meetings, if any, for seminars or tutorial instruction;
 4.4.2 to complete satisfactorily the essays, exercises, practical and project work if any; and
 4.4.3 to pass any other examination of the unit of study that may apply.

4.5 All units of study for a particular subject area may not be available every semester.

4.6 The Dean, on the advice of the Director of USISS or nominee, may allow substitution of any unit of study by another unit of study, including units of study from other postgraduate coursework programs elsewhere in the University.

5. Enrolment in more/less than minimum load
 5.1 A candidate may proceed on either a full-time or a part-time basis.

6. Cross-institutional study
 6.1 Cross institutional study shall not be available to students enrolled in the Graduate Certificate in Sustainability, Graduate Diploma in Sustainability and Master of Sustainability courses, except where the University of Sydney has a formal Cooperation Agreement with another University.

7. Restrictions on enrolment
 7.1 Admission to candidature may be limited by a quota.
 7.2 In determining the quota, the University will take into account:
 7.2.1 availability of resources including space, laboratory and computing facilities; and
 7.2.2 availability of adequate and appropriate supervision.
 7.3 In considering an application for admission to candidature the Dean, on the advice of the Director of USISS or nominee, shall take account of the quota and will select, in preference, applicants who are most meritorious in terms of sub-section 1 above.

8. Discontinuation of enrolment
 8.1 A student who does not enrol in any semester without first obtaining written permission from the Dean, to suspend candidature will be deemed to have discontinued enrolment in the course.
 8.2 Students who have discontinued from the course will be required to apply for admission to the course and be subject to admission requirements pertaining at that time.

9. Suspension of candidature
 9.1 A student may seek written permission from the Dean to suspend candidature in the course.
 9.2 Suspension may be granted for a maximum of one year.

10. Re-enrolment after an absence
 10.1 A student who plans to re-enrol after a period of suspension must advise the Faculty of Science Office in writing of their intention by no later than the end of October for First Semester of the following year or the end of May for Second Semester of the same year.

11. Satisfactory progress
 11.1 Candidates for the Master of Sustainability, the Graduate Diploma in Sustainability, and the Graduate Certificate in Sustainability, shall be governed by the rules as follows:
 11.1.1 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Master of Sustainability will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will be transferred to the Graduate Diploma in Sustainability;
 11.1.2 A student who has failed a cumulative total of 18 credit points at any stage of enrolment in the Master of Sustainability and/or the Graduate Diploma in Sustainability will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student’s enrolment will be transferred to the Graduate Certificate in Sustainability;
 11.1.3 A student who has failed a cumulative total of 12 credit points at any stage of enrolment in the Graduate Certificate in Sustainability will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has
not been established, the student will not be permitted to re-enrol.

11.2 A student who has failed a cumulative total of more than 18 credit points in the Master of Sustainability and/or the Graduate Diploma in Sustainability and/or the Graduate Certificate in Sustainability will be required to show good cause why he or she should be allowed to re-enrol and, if good cause has not been established, the student will not be permitted to re-enrol.

11.3.1 A student who has failed a core unit at the second attempt in the Master of Sustainability and/or the Graduate Diploma in Sustainability and/or the Graduate Certificate in Sustainability will be deemed to have failed to complete course requirements and will be required to show good cause why he or she should be allowed to re-enrol.

11.3.2 If good cause has not been established, the student will not be permitted to re-enrol.

12. Time limit

12.1 A candidate for the Graduate Certificate in Sustainability shall complete the requirements for the award in a minimum enrolment of one semester and a maximum enrolment of four semesters.

12.2 A candidate for the Graduate Diploma in Sustainability shall complete the requirements for the award in a minimum enrolment of two semesters and a maximum enrolment of six semesters.

12.3 A candidate for the Master of Sustainability shall complete the requirements for the award in a minimum of three semesters and a maximum of eight semesters.

13. Assessment policy

13.1 On completion of the requirements for the course, the Faculty, on the advice of the Director of USISS or nominee, shall determine the results of the candidature.

14. Credit transfer policy

14.1 Credit is not available in the Graduate Certificate in Sustainability, Graduate Diploma in Sustainability and Master of Sustainability for postgraduate study which has not been undertaken in these award courses within the previous three years.

14.2 A candidate who has qualified for the award of the Graduate Certificate in Sustainability may transfer, within three years, to the Graduate Diploma in Sustainability and receive credit for up to 24 credit points from the Graduate Certificate in Sustainability.

14.3 A candidate who has qualified for the award of the Graduate Diploma in Sustainability may transfer, within three years, to the Master of Sustainability and receive credit for up to 48 credit points from the Graduate Diploma in Sustainability.

14.4 A candidate who has completed units of study in the Sustainability program within the previous three years, but has not qualified for an award, may transfer to another award course within the same Sustainability program and receive credit for the units of study completed.
Faculty of Science

Dean’s office

Dean
To be advised.

Pro-Dean
Jenny Henderson, DipEd Flinders MSc Sydney
Dr Thomas CT Hubble, MApPSc UNSW MSc DipEd PhD Sydney

Director Academic Administration
Cindy Wilkinson, BA (Hons) MMgmt UTS

Faculty Finance Manager
Helen Kwan, BCom UNSW

Executive Assistant
Christine Askew, TCertT Sydney

Administrative Officer
Sutira Teh

Associate Deans
Helen Agus, MSc UNSW/MASM Sydney
Professor Clive Baldock, BSc Sus MSc PhD Lond
Dr Margaret A Charles, BA PhD Sydney
Professor Les Copeland, BSc PhD Sydney, FRACI CChem
Associate Professor Charles Collyer, BSc Flinders PhD Sydney
Professor David Feng, ME SJTU MS PhD UCLA
Professor Trevor Hambley, BSc UWA PhD Adelaide, FRACI CChem
Dr Murray Henwood, BSc Well PhD ANU
Associate Professor Anthony P Masters, BSc Melbourne PhD ANU, FRACI CChem
Dr Manjula Sharma, MSc DAPh SPac
Associate Professor Ian Spence, BSc PhD Monash
Dr Charlotte Taylor, BSc Dund MEd UNSW PhD Aberd
Dr Charles Warren, BSc UTAS PhD UWA
Fiona White, BA PhD Sydney

Faculty and Student Information Office

Administration Manager (Student Services)
Kath Farrell BSc Sydney

Administration Manager (Operations)
Susan Winch BA BA (Hons) MIM-Archive/Records UNSW GradDipLib CSU LLB Sydney

Postgraduate Student Adviser
To be advised

Postgraduate Assistant (Acting)
Tanya Bulat

Undergraduate Student Adviser
Clare Woodley, BSc/BA (Hons) UOW

Undergraduate Assistant
Marah Weston

International Student Adviser
Ellen Poels

Graduations and Appeals Officer (Acting)
Melanie Fernandez BA (Hons) Sydney

Scholarships and At Risk Officer (Administrative)
Violeta Birks GradCert HRM SIT

Administrative Assistant
Eleni Calvi BA (Informatics) Sydney

Marketing and Communication Unit

Director, Marketing, Communication and International Relations
Jasmine Chambers

Manager, School Programs & Undergraduate Recruitment
Louise Freys, BCommunication (Public Relations) UWS

Manager, Public Programs & Postgraduate Recruitment
Kristi Mauroopoulos B Communications UOW

Marketing & Events Officer
Samantha Loveridge BComm UNSW

Designer & Production Coordinator
Chris Angwin, BA (Media & Communications) UNSW

Web Developer
Jayne Ion, BA Guelph GradCertIT CSU

Web Content Officer
Trixie Barretto, BSc DipTProlPrac UTS

Student Information Officer
Preeti Chawla

Science Media Officer
Katynna Gill, BSc(Adv)/(Hons)

Agricultural Chemistry and Soil Science

Professor in Agriculture
Les Copeland, BSc PhD Sydney, FRACI CChem

Professor in Agricultural and Environmental Chemistry (Personal Chair)
Ivan R Kennedy, PhD DSc(Agric) UWA, FRACI CChem

Professor in Soil Science
Alexander B McBratney, DSc PhD Aberd

Associate Professor
Balwant Singh, BSc(Agr) MSc(SoilSc) Hisar PhD UWA

Senior Lecturers
Robert A Caldwell, MSc PhD Sydney, MRACI CChem
Stephen R Cattle, BScAgr PhD Sydney
Inakwu OA Odeh, BSc(Agric) ibadan MSc Ahmado Bello PhD Adelaide

Senior Research Fellows
Budiman Minasny, BSc(Sumatera Utara MAgr) PhD Sydney
Brett Whelan, BScAgr PhD Sydney

Postdoctoral Fellow
Rosalin Deaker, BSc MScAgr PhD DipEd Macquarie

Research Fellow
Damian Field, BSc PhD Sydney

To view the latest update, download, purchase or search a handbook visit Handbooks online: www.usyd.edu.au/handbooks
Staff

Senior Technical Officers
Colin Bailey, BAppSc NSWIT
Kevin McLauchlan, BioTechHCert STC

Technical Officer
Iona Gyorgy, BioTechCert BSc(Biotech) UTS

Emeritus Professor
Neville Collis-George, BSc Manc PhD Camb HonDScAgr Sydney, FRSChem

Honorary Associates
Harold R Geening, MSc Cornell
Rodney J Roughley, MScAgr PhD Lond

Anatomy and Histology
Bosch Professor of Histology and Embryology
Christopher R Murphy, BSc Adelaide PhD Flinders DSc Sydney

Personal Chair in Visual Neuroscience
Bogdan Dreher, MS PhD Warsaw DSc Sydney

Professor Developmental and Marine Biology
Professor Maria Byrne, BSc Galway PhD VicBC

Professor
Cristobal G dos Remedios, PhD DSc Sydney
Johnston W McAvoy, BSc Belf PhD Flinders
John Mitrofanis, BSc PhD Sydney
William S Webster, BSc PhD Lond

Head of Department and Professor
Kevin Keay, BSc PhD Leeds

Associate Professors
Vladimir J Balcar, BSc Shelf PhD ANU
Taloi Chan-Ling, MOptom PhD UNSW, FAAO
Frank Lovicu, PhD Sydney

Senior Lecturers
Robin Arnold, MSc Sydney
Deborah Bryce, BSc UoN MChiroprac Macquarie
Denise A Donlon, BA PhD NE BSc DipEd Sydney
Luke Henderson, PhD Sydney
Margaret A Swan, PhD Sydney

Lecturers
Karen Cullen, PhD Sydney
Michelle Gerke, BAppSc(Hons) OUTPhD OUTGradDipScMed Sydney
Richard Ward, BMedSci MB BS Monash
Sam Solomon, PhD Sydney

Associate Lecturers
Susan Illerenshaw, PhD Sydney

Research Fellows
Neil Nosworthy, PhD Sydney
Michael Slater, BSc Macquarie PhD Sydney

Postdoctoral Fellows
Susan Adams, PhD Sydney
Paul Austin, PhD Sydney

Senior Technical Officers
Darryl R Cameron
Clive H Jeffrey
Roland A Smith, DipPhoto Syd Inst
Marcus Robinson BSc (Hons)

Technical Officers
Inas Kansoh El Ghawi
Michael White, BTC SydTech

Computer Systems Manager
Danny Yee, BSc(Hons) Sydney

Administrative Officers
Sue Freeman-Levy, BA DipEd Sydney
Trevor Steer
Lena Ting, DipPublAdmin HK
Katherine Wilkinson, BMust(Perf) ANU BFA NAS

Administrative Assistants
Mai Pharm, BSc UTS
Tonnette Stanford, BA(Com) UTS Dip(Screen) SAE GradDip(Film&TV) VCA

NMRC Senior Research Officer
Chun Wang, PhD Sydney

Honorary Senior Research Associate
Coral G Chamberlain, MSc PhD Sydney

Honorary Associates
Louise Baxter
Peter O Bishop, MB BS DSc MD Sydney, FRS FAA
William Burke, BSc PhD Lond
David Cameron, BA PhD ANU
Arthur V Everitt, PhD Sydney
Andrew Howe, BDS PhD Sydney, FRACDS
Robbert de Iongh, MSc PhD Sydney
Estelle Lazer, PhD Sydney
Ann Macintosh
Peter R Mills, DipMT Sydney, AAIMLS AAIMLS
Lynette A Moffat, PhD Sydney
Robert R Munro, MD BS Sydney, FRACS
John K Pollak, PhD Sydney
Cedric D Shorey, MSc PhD UNSW, CGIA FCGI

Biological Sciences
ARC Federation Fellows
Stephen Simpson, BSc OId PhD Lond
Richard Shine AM, BSc ANU PhD UNE DSc Sydney, FAA
Peter Waterhouse, BSc Newcastle(UK) PhD Dundee

ARC Professorial Fellows
Christopher Dickman, BSc Leeds PhD ANU
Mats Olsson, BSc PhD Gothenburg

Professor in Behavioural Genetics (Personal Chair))
Benjamin Oldroyd, BScAgr PhD DSc Sydney

Professor in Plant Cell Biology (Personal Chair)
Robyn L Overall, BSc UNSW PhD ANU

Professor in Zoology (Personal Chair)
Michael B Thompson, BSc PhD Adelaide

Associate Professors
Madeleine Beekman, MSc PhD Amsterdam
Ross A Coleman, BSc Plymouth Polytechnic DipEd PhD S’ton
Peter McGee, BAgSc PhD Adelaide DipEd UNSW
Frank Seebacher, BSc PhD UQ

Senior Lecturers
Will Figueira, BSc Calif PhD Duke
Neville Firth, BSc PhD Monash
Murray J Henwood, BSc Well PhD ANU
Dieter Hochuli, BSc Monash PhD LaTrobe
Simon Ho, BSc MSc Sydney PhD Oxford
Nathan Lo, BMEdSci PhD Sydney
Bruce Lyon, BSc PhD Monash
Jan Marc, BSc PhD UNSW
Clare McArthur, BSc PhD Monash
Adele Pile, BA Boston MA PhD College of William and Mary
Rosanne Quinnell, BSc PhD ANU
Jennifer Saleebsa, BSc PhD Melbourne
Penelope Smith BSc PhD Melbourne
Gregory Sword, BSc Arizona PhD Texas
Charlotte Taylor, BSc Dund MHeD UNSW PhD Aberd
Murray Thomson, BSc Macquarie MSc UNSW PhD UoN
Glenda Wardle, MSc Auck MS PhD Chic

Director of First Year Biology
Adele Pile, BA Boston MA PhD College of William and Mary

Lecturers
Osu Lijie, BSc PhD Sydney
Elizabeth May, BSc DipEd PhD UNSW

Postgraduate Teaching Fellows
Sam Clayman, BSc Washington
Darron Cullen, BSc Oxford
Denise Bunting, BSc Bangor
Phoebe Hill, BSc Magu
Yik Wen Loh, BSc Sydney
Bridget Murphy, BSc Sydney

** articulate text in a readable format**

QE2 Postdoctoral Research Fellows and University of Sydney Senior Research Fellows
Madeleine Beeckman, MSc PhD Amsterdam
Charles Warren, BSc UTAS PhD UWA

QE2 Postdoctoral Research Fellow
Min Chen, BSc NE Normal MSc Liaoning (China) PhD Sydney

University of Sydney Senior Research Fellow
Ashley Ward, BSc PhD Leeds

ARC Postdoctoral Research Fellows
Weiguo Du, BSc PhD Zhejiang
Michael Letnic, BSc UNSW PhD Sydney
Ligia Mendelah do Prado, BSc, MSc, PhD Campinas, Brazil
Benjamin Phillips, BSc UQ

Grant Funded Postdoctoral Staff
Deborah Barton, BSc(Env) PhD
Dr Karine Berthier MSc Bourgogne PhD Franche-Comte
Gregory Brown, MSc Guelph PhD Carleton
Fiona Cissold, BSc PhD Monash
Michael Crossland, BSc PhD JCU
A Stuart Gilchrist, BSc LLB PhD
Alison Gosby, MSc PhD
Angela Ho, BSc UWA PhD
Stade Jensen, BMedSc PhD
Stephen Kwong, BTech Macquarie PhD UWS
Tanya Latty, BSc Trent PhD Calgary
Patrick Loughlin, BSc ANU PhD Adelaide
Michelle Parker, BSc Auburn MSc Appalachian State PhD
Scott Parker, BSc MSc Calif PhD Virginia State
Penelope Smith, BSc PhD Melbourne
Donya Tohidi-Esfahani BSc PhD UTS
Jonathan Webb, PhD

Senior Laboratory Manager
Mark Ahern, BSc GDS

Manager of Technical Development: Research and Teaching
Basil Panayotakos

Resources Manager
Michael Joseph, BSc Sydney DipBus CTI Aust

Senior Technical Officers
Helen Kranidiotis, BSc UNSW
Xiumei Liang, BSc Beijing
Claudio Muhlrad, BioTechCert STC
Malcolm Ricketts, BSc Macquarie PhotoqCert STC
Heather Sowden, BioTechCert STC (part-time)
Joanna Walker, BSc GradDipSci(EnvSc) (part-time)

Manager, E-Resources
Aida Yalcin, BSc MSc Aegean Univ Turkey

Web and Multimedia Administration Officer
Kerem Dalbal, BMultimedia Macqu

Technical Officers
Leslie Edwards, BioTechCert AssDipBioTech STC BSc UTS
Mihaly Ferenczi, BAgSc Godollo
Margaret Gilchrist, BiolCert STC
Hamlet Giragossyan
Kurt Herrmann, BSc New Brswk
Christine Newman, BAppSc UTS
Anne-Laure Markovina, BSc PhD

Laboratory Assistant
Matthew Austin

Administration Manager
Suzan Ramsey

Finance Manager
Norman Menezes, BCom Dip FM Bombay FCMA India CPA Aust

Executive Assistant
Susan Thomas, BA MA

Science Communicator
Carla Avolio, BSc Sydney GradDip SciCom ANU

Administration Officer (First Year Biology)
Kathryn Jakes, PhD UQ BSc

Administrative Assistants
Roslyn Malin
Sarah Newell, BA Bishop Grosseteste UK
Semra Yetke

Emeritus Professors
Donald Thomas Anderson, AO, PhD Lond DSc Lond and Sydney, FRS FLS FAIBiol
Charles Birch, BAgSc Melbourne DSc Adelaide, FAA FAAAS
Ian D Hume, BSc(Agric) PhD UWA DSc NE, FAIBiol
Anthony WD Larkum, BSc Lond DPhil Oxf, ARCIS
Ronald Anthony Skurray, AUAPharm PhD DSc Adelaide, MASM FAIBiol
David Joseph Patterson, PhD Brist DSc Queens
John Alexander Thomson, MSc MAGSc PhD Melbourne
Antony James Underwood, BSc PhD DSc Brist FAA FLS FIBiol FAIBiol

Honorary Adjunct Professor
Timothy Entwistle, BSc Melbourne PhD La Trobe

Honorary Professors
John Bennett, BSc PhD UO
Maura (Gee) Chapman, BSc Natl MSc PhD DSc Sydney

Honorary Associate Professors
Rosalind T Hinde, BSc PhD Sydney
Lars Jermin, Cand Scient Aarhus PhD Latrobe

Honorary Reader
Alan Meats, BSc Durrh PhD N’cle UK FRES

Honorary Associates
William G Allaway, MA Camb PhD Lans
David Blockley, BSc PhD Sydney
Melissa Brown, BSc MSc Guelph PhD Ottawa
Gerry Cassis, PhD Oregon
Harold Cogger, PhD Macquarie DSc
Donald Colgan, BSc BEC ANU PhD Melbourne
Yvonne Davila, BSc PhD
Elizabeth Denny, BA MLitt UNE PhD Sydney
Daniel Faith BA Chic PhD State Uni of New York
Marianne Frommer, BSc PhD
Christopher B Gillies, MAgSc UQ PhD Alta
Adrienne Grant, BSc PhD ANU

411
Allen E Greer, BA PhD Harv
Frank Gleason, BSc Trinity College, Hartford PhD UCLA
Patricia A Hutchings, BSc Lond PhD DSc N’cle(UK)
Jeffrey M Leis, BSc Arizona PhD Hawa’i
Ross Lilley, BSc Adelaide PhD Flinders
Valerie B Morris, BSc PhD Edin
Christopher Murphy, BSc Adelaide PhD Flinders DSc
Shauna Murray, BSc UNSW PhD
Peter Myerscough, MA PhD Oxf
Kerryn Parry-Jones, DipEd STC MAppSc PhD UNSW BSc
Winston Ponder, MSc PhD DSc Auck
Matthew Pye, BVsA SCA BSc PhD JCU
Kathryn Raphael, BA PhD Macquarie
Ray Ritchie, BSc PhD
John Runcie, BSc UNSW PhD
John Sved, BSc PhD Adelaide
George Wilson, BA Indiana MSc UCSD PhD La Jolla

Visiting Scholars
Francois Brishoux, BSc PhD Tours, France
Rute Brito, BSc MSc Vícosa PhD Sao Paulo
Marie-Pierre Chapuis, BSc MSc PhD Montpellier
Mark Lazzaro, BSc Corun MSc PhD Calif
Elizabeth Jockusch, BA Oberlin PhD Berkeley
Fleur Ponton, MSc Paris PhD Montpellier
Elisabeth Raff, BS Penn State PhD Duke
Rudolf Raff, BSc Penn PhD Duke
Martha Patricia Ramirez Pinilla, BSc Colomibia PhD Tucuman

Chemistry
Professor of Chemistry (Organic Chemistry)
Maxwell J Crossley, BSc PhD Melbourne, FAA FRACI CChem

Professors of Chemistry
Trevor W Hambly, BSc UWA PhD Adelaide, FRACI CChem
Peter R Harrowell, BSc PhD Chic
Katrina A Jolliffe, BSc PhD UNSW, MRACI CChem
Mark Lastaro, BSc Corun MSc PhD Calif
Elizabeth Jockusch, BA Oberlin PhD Berkeley
Fleur Ponton, MSc Paris PhD Montpellier
Elisabeth Raff, BS Penn State PhD Duke
Rudolf Raff, BSc Penn PhD Duke
Martha Patricia Ramirez Pinilla, BSc Colomibia PhD Tucuman

Associate Professors
James K Beattie, BA Prin MA Camb PhD Northwestern, FFAAS FRACI FRSC CChem
Adam J Bridgeman, BA Oxf PhD Camb
Michael Kassiou, PhD UNSW
Anthony F Masters, BSc Melbourne PhD ANU, FRACI CChem
Sebastien Perrier, Dip Ingenieur Chimiste, ENSCM, MSc Grenoble, PhD Warw

Senior Lecturers
Robert W Baker, BSc PhD UWA
Ronald J Clarke, BSc PhD Adelaide
Adrian George, BSc PhD R’dg, MRSC MRACI CChem
Christopher D Ling, BSc PhD ANU
Peter J Rutledge, MSc Auck DPhil Oxf
Siegbert A Schmid, Dipl-Chem DrRerNat Tuebingen Grad Dip HEd NSW, MRACI CChem
Timothy Schmidt, PhD Camb BSc Sydney, MRACI CChem
Matthew H Todd, MA PhD Camb

Lecturers
Toby Hudson, DPhil Oxon BSc Sydney
Christopher S P McElrane, PhD UQ
Chiera Neto, PhD Florence
Richard J Payne, BSc Cant PhD Camb

Postgraduate Teaching Fellows
Patryck K Allen, BSc Sydney
Jessica J Chadbourne, BSc Sydney
Lina Di Marco, BSc Sydney
Elizabeth Fellows, BSc JCU
Mark Hackett, BSc Curtin
Brianne Heazlewood, BSc Sydney
Alice Klein, BSc Sydney
Dominik Kolenkowicz, BSc BComm Sydney
Alexandra Manos-Turvey, BSc Sydney
John Moraes, MSc Well
Julia F Norman, BSc UTS
Tyler P Troy, BSc Sydney
Cameron C Weber, BSc Sydney
Natsuko Yamamoto, BSc Sydney
Jenny Zhang, BSc Sydney

Federation Fellow
Cameron J Kepert, BSc UWA PhD Lond

ARC Australian Professorial Fellows
John Canning, PhD Sydney
Peter A Lay, BSc Melbourne PhD ANU, FAA FRACI CChem
Leo Radom, MSc PhD Sydney
Jeffery R Reimers, BSc PhD ANU, MRACI CChem

Principal Research Fellow
Brian Hawkett, BSc PhD DipEd Sydney

Professorial Research Fellow
Phillip J Attard, BSc NSW PhD ANU

ARC Australian Postdoctoral Fellows
Meredith J T Jordan, BSc PhD Sydney
B Klasa Nauta, PhD NCarolina

University of Sydney Postdoctoral Research Fellow
Luke Hunter, PhD Sydney

Senior Research Associates
Jade B Aitken, PhD Sydney
Zhengli Cai, MSc PhD Chinese AcadSci
Bun Chan, PhD Otago
Aviva Levina, MSc PhD Riga
Swarna M Patra, PhD Samb
Aaron J Reynolds, PhD Sydney

Senior Research Fellow
Mattias L Aslund, PhD Sydney
Alexander Djerdjev, PhD Sydney
Antony J Ward, PhD Sydney

Research Associates
Nicole S Bryce, PhD Sydney
Raphael Clady, PhD Mediterranea
Paul A Fitzgerald, PhD Sydney
Ulrich Hall, PhD Freiburg
Pramit Kriyananda, BAppSc Moratuwa PhD UNSW
Yasoka Koda, PhD UQ
Nima Sawayadi, BSc Sistan MSc Shiraz, PhD Sydney
Alexander Yuen, PhD Sydney

Postdoctoral Fellows
Kevin Cook, PhD H-W
Blandine Coursot, PhD Centrale Paris
Vanessa De Souza, PhD Camb
Victoria Dungan, BSc UCD PhD Sydney
Kelly A Fairweather, PhD ANU
Falk Heinroth, PhD Hannover
Fatihah Issa, PhD Sydney
Nirmesh Jain, PhD SGU
Tony Khoury, PhD Sydney
Sébastien Léonard, PhD Montpellier
Feng Li, PhD Lisboa
Alain T Maccarone, PhD Colorado
Masakazu Nakajima, MSc TokyoT PhD Tokyo
David D N Nguyen, PhD UWS
Thi Thuy Binh Pham, MSc Hanoi PhD Sydney
David Price, PhD Monash

412
Peter Southon, PhD UTS
Yun Wang, PhD Fudan
Brendan Wilkinson, PhD Griffith
Qingdi Zhou, PhD Sydney
Manager, Molecular & Materials Structure Network
Peter Turner, BSc Flinders
MSc PhD UNE

Professional Officers
Elizabeth A Carter, BSc Griffith PhD QUT
Hank De Bruyn, PhD UNSW
Ian Luck, PhD Sydney
Kelvin Picker, PhD Sydney, MRACI
Jaroslaw T Popiolkiewicz
James Sainsbury, BSc BA UQ

Professional Assistant
S Warren Lazer, PhD Sydney

Laboratory Manager
John Duckworth, BAppSc NSWIT

Deputy Laboratory Manager
Gemma Thompson, BAppSc QIT

Administration Manager
Catherine H Woods, BA Sydney

Assistant Administration Manager
Rachel Moerman, Grad Dip IM (Lib) UNSW BA Sydney

Finance Manager
Shanthi Perera, ACA

High School Liaison Officer
Jeanette K Hurst, PhD Sydney

Administrative Assistants
Sophie Patsalides
Philip Penwright
Anne Woods
Lisa Wu, BBus CSU
Xun Xu, MComm Southern Yangtze

Technical Staff
Jeffrey Armstrong
Marjan Ashna, BSc Ahwaz
Fernando Barasoin
Eric De Courcey
Bruce Delilt
Hitendrka Gopal
Marcel Kaegi
John Kent
Bernhard Logge
Anna Opyrza
Carlo Piscicelli
Janette NN Thant
Jack Zylmans

Theatre Attendant
Cliff Gatfield

Adjunct Professor
Robert Robinson, PhD Camb

Adjunct Associate Professor
Garry Foran, PhD Sydney

Emeritus Professors
Noel S Hush AO, DSc Manc MSc Sydney, FRS FAA FRACI

Len Lindoy, PhD DSc UNSW, FAA FRACI CChem FRSC
Sever Sternehall, PhD DSc DIC Lond MSc Sydney, FAA FRACI CChem

Honorary Associate Professors
Robert S Armstrong, MSc PhD Sydney, MRACI CChem
Manuel Aroney AM OBE, PhD DSc Sydney, FRACI FRSC
CChem CorrMembAcadAthens
George Backskay, BSc Melbourne PhD Camb
Robert J Hunter AM, BSc PhD Sydney, FAA FRACI CChem
Julia M James, BSc PhD Lond, MRACI CChem
John C Mackie, PhD DSc Sydney, FRACI CChem

Honorary Senior Lecturers
James M Eckert, PhD
Anthony R Lacey, MSc PhD Sydney, MRACI CChem
Donald V Radford, MSc PhD DipEd NE

Honorary Lecturer
Alan J Williams, MSc PhD Sydney, MRACI CChem

Honorary Associates
Craig Barnes, PhD Sydney, MRACI
Michael M Bishop, BSc PhD Cant
Adam T Cawley, PhD Sydney
Rosemary A Goodall, PhD QUT

Geosciences

Acting Head of School
Peter J Cowell, BA PhD Sydney

Professors
Geoffrey L Clarke, BSc PhD Melbourne
Phillip Hirsch, BA MPhil Dundee PhD Lond
Dietmar Müller, BSc Kiel PhD Calif

Associate Professors
Gavin F Birch, MSc PhD GradDipIndAdmin Cape Town
Deirdre Dragovich, MA Adelaide PhD Sydney
Phillip McManus, BA GradDip MES PhD Sydney
William Pritchard, BA PhD Sydney

Senior Lecturers
Eleanor M Bruce, PhD UWA
Robert Fisher, BA PhD Sydney
Stephen J Gale, MA Oxr Phd Keele
Thomas CT Hubble, MAppSc UNSW MSc DipEd PhD Sydney
Kurt Iveson, BCon(SocSci) PhD Sydney
Melissa R Neave, PhD NYState
Patrice Rey, BSc PhD These Troisième Cycle, Montpellier-Lyon-Grenoble
Jody Webster BA(Hons) PhD Sydney
Derek Wyman, BSc WOnt PhD Sask

Associate Lecturers
Deanne Hickey, PhD Sydney
Edwina Tanner

Research Fellows
Elaine Baker, PhD Sydney
Adriana Dutkiewicz, PhD Flinders
Jeffrey Neilson, PhD Sydney
Daniel A Penny, BA PhD Monash
Ana Vila Concejo, PhD Sydney

Research Associates
Stephanie McCready, PhD Sydney
Elizabeth Moylan BAppSc, PhD, GradDip VET
Maria Seton, PhD Sydney
Joanne Whittaker PhD Sydney
Discipline of Infectious Diseases and Immunology

Immunology
Discipline Head and Professor
Warwick J Britton, MB BS BScMed PhD Sydney, FRACP
FRCP FRCPA DTM&H

Associate Professor
Helen Briscoe, BSc PhD Edin

Senior Lecturers
Allison Abendroth, BSc PhD Adelaide
Robert H Loblay, MB BS PhD Sydney, FRACP

Sesqui Lecturer in Bioinformatics
Jonathan Arthur, BSc PhD Sydney

Senior Technical Officer
Jason Compton, ADiplAppSc TechCertPhotography Sydney

Honorary Associates
Clinical Senior Lecturer Stephen Adelstein, MB
BCh PhD Sydney, FRACP FRCPA
Professor Antony Basten AO, MB BS DPhil
Oxf, FAA FTSE FRCP FRACP FRCPA
G Alex Bishop, MScAgr PhD Sydney
Roger J Garsia, MB BS PhD Sydney, FRACP FRCPA
Mark D Gorrell, BSc PhD ANU

Barbara D Fazekas de St Groth, BSc(Med) PhD Melbourne MB BS Sydney
Associate Professor Gary M Halliday, BSc PhD Monash
Bernadette Saunders, BSc PhD Melbourne

Honorary Professor
Andrew D Short, MA Hawaii PhD Louisiana State BA
Eric Waddell, BA Oxf MA McGill PhD ANU

Honorary Associates
David F Branagan, PhD Sydney, FGS
David E M Chapman, MEngSc UNSW BA PhD Sydney
John Connell, BA PhD Lond
Gabor Foldvary, PhD Sydney
Peter Hoare, MSc PhD Sydney
Ronald Horvath, MA PhD Sydney
John P Hudson, MA PhD ANU
Michael Hughes BSc PhD
Robert A Jones, BEng UWA MEng Auck MSc Lond
Jock B Keene, BAgEc ME PhD Calif BSc Sydney
Iain Mason, BScEng MA PhD Sydney
Gordon Packham, PhD Sydney
Roshanka Ranasinghe BScEng(Hons) PhD, MIEAust
Peter Roy, BSc PhD ImpColl
Anne-Louise Semple
Brian Stevens
Bruce Thom, PhD Sydney
Keeva Vozoff
Robin F Warner, BA Birm PhD NE
Thomas Zheng, PhD Sydney

Senior Technical Officers
David Mitchell
Tom E Savage, BE Sydney

School Administration Manager
Suzy Andrew

School Administration Assistant
Nikki Montenegro

Science Communicator
Lucie Reynolds

School Finance Manager
Marilyn Horgan

Finance Officer
Grace Lei Zhang

Honorary Professor
Andrew D Short, MA Hawaii PhD Louisiana State BA
Eric Waddell, BA Oxf MA McGill PhD ANU
Infectious Diseases

Discipline Head and Bosch Professor of Medicine
Warwick J Britton, MB BS BMedSc PhD Sydney, FRACP FRCP FRCPA DTM&H

Bosch Professor of Infectious Diseases
Peter C McMinn, MB BS, BMedSc UTAS PhD ANU, FRACP FRCPA

Associate Professor
Colin Harbour, BSc Wales PhD Lond

Lecturer
Belinda Herring, BSc MAPPSc PhD Sydney

Clinical Professor
Gwendolyn Lesley Gilbert, MD BSc Melbourne, FRACP FRCPA FASM (with Medicine)

Clinical Associate Professors
Richard Alan Vickery Benn, DipBact Lond BSc(Med) MB BS Sydney, FRACP FRCPA FASM (with Medicine)
Thomas Gottlieb, MB BS Sydney, FRACP FRCPA

Clinical Senior Lecturers
Ross Bradbury, MB BS Sydney, FRACP FRCPA
Colin MacLeod, MB BS Sydney, FRCPA FRACP MAS MAFPHM (with Medicine)

Senior Research Fellows
Barbara R Rose, BSc PhD Sydney, FAIMLS AAIMLT MASM
James Triccas, BSc PhD Sydney

Research Fellows
Jim Manos, BSc PhD UNSW
Nham Tran, BSc PhD UNSW

Technical Staff
Jason Compton, BSc Sydney
Jean Zou, PhD Sydney

Technical Officer
Justin Ellem, BMedSc CSU

Honorary appointments
Emeritus Professor
Yvonne Edna Cossart AO, DCP Lond BSc(Med) MB BS Sydney, FRCPA

Associate Professor
Raymond Kearney, BSc PhD UQ

Mathematics and Statistics

Professor in Applied Mathematics and Head of School
Nalin Joshi, BSc MA PhD Prin Appointed 2002

Professor in Pure Mathematics (Personal Chair)
John J Cannon, MSc PhD Sydney

Professor in Pure Mathematics
Edward Norman Dancer, BSc ANU PhD Camb, FAA. Appointed 1993

Professor in Mathematical Statistics (Personal Chair)
John Robinson, BSc UQ PhD Sydney. Appointed 1991

Professor in Mathematical Statistics
Neville C Weber, MSc PhD Sydney, A.Stat. Appointed 2005

Readers
Donald I Cartwright, PhD Ill BSc Sydney
Jonathan Hillman, BSc UWA AM Harv PhD ANU

Associate Professors
Holger Dullin, PhD Uni Bremen

David Easdown, BA ANU PhD Monash
Robert B Howlett, BA PhD Adelaide
Charles C Macaskill, BSc PhD Adelaide
Andrew P Mathas, BSc MSc PhD Ill
Alexander I Moley, Diploma PhD Moscow
Christian Oliver-Ewald, PhD, Universit at Mainz

Director of Junior Studies
Sandra C Britton, BSc UNSW MA Sydney

Senior Lecturers
Christopher M Cosgrove, BSc PhD Sydney
Clio Cresswell, BSc PhD UNSW
Daniel Daners, PhD Zurich
David J Galloway, BA PhD Camb
Anthony Henderson, BSc PhD MIT
Jenny Henderson, DipEd Flinders MSc Sydney
David J Ivers, BSc PhD Sydney
Mary R Myerscough, DPhil Oxf MSc Sydney
Laurentiu Paunescu, MSc Bucharest PhD Sydney
M Shelton Peiris, DipMath MSc Peradeniya PhD Monash
Rosemary S Thompson, BSc ANU PhD Sydney
Martin Wechselberger, MSc PhD Vienna
Jean Yee Hwa Yang, BSc PhD Calif

Lecturers
Emma Carberry, BSc Monash PhD Prin
Jennifer S Chan, BSc(Hons) DipEd MPhil Hong Kong PhD UNSW
Uri Keich, BSc MSc PhD NY
Samuel Mueller, PhD University of Bern
James Parkinson, PhD Sydney
Adrian M Nelson, BSc PhD Lond
Michael I Stewart, BSc MA PhD Sydney

ARC Professorial Fellows
Gustav I Lehrer, BSc PhD Warw, FAA
Andrew P Mathas, BSc MSc PhD Ill
Leon Poladian, GradDipEd PhD NE
Rubin Zhang, BSc Shandong PhD UTAS

ARC Postdoctoral Fellows
Florica Cirstea, PhD VU
James East, BSc(FChons) PhD Sydney
Georg Gottwald, Diploma Dusseldorf PhD Monash
Peter O’Sullivan, MSc PhD Sydney
Qijing Wang, BSc Anhui MSc S & T China PhD UOW

University of Sydney Postdoctoral Fellows
Scott H Murray, BSc ANU SM PhD Chic

Research Fellows
Andrew Docherty, PhD Sydney
Claus Fieker, DipMath Heinrich-Heine PhD Berlin
Michael Harrison, BA(Hons) PhD Camb
Alan K Steel, BA Sydney

Senior Research Associates
Steve Donnelly, BSc ANU PhD Georgia
Leslie Farnell, DipEd UC MA DPhil Oxf
Whayne Padden, PhD Sydney
William R Unger, PhD Sydney

Research Associates
Geoffrey M Bailey, BSc Sydney
Vivek Jayaswal, AppSc MSc PhD Sydney
Paul Spicer, PhD Leeds

Research Assistants
Anne P Cannon, BA MPhil Sydney
Nicole J Sutherland, BSc Macquarie

Computing Manager
Paul Szabo, BSc Havana
31. Staff

Computer Systems Officers
Robert B Pearson, BIT CSU ADipA Mitchell CAE BSc Sydney
Michael R Wilson, BSc Sydney

School Manager
Ana Do Vale

Finance Officer
Julie L Small

Administrative Assistant
Susan Liddell, BA Sydney

Administrative Officer
Sonia Morr

Student Services Manager
Chamreun Cheen, BSc BCA Well

Administrative Assistant, Student Services
Lucy Kennedy

Grid Access Room
Nikki Choi
Dinko Hanic
Scott Spence
Masahiro Takatsuka

Emeritus Professors
Eugene Seneta, MSc Adelaide PhD ANU, FAA
Gordon E Wall, BSc Adelaide PhD Camb, FAA

Visiting Professors
Richard Cowan, BSc PhD GradDip Sydney
Nicholas I Fisher, PhD NCarnolina DSc Sydney

Honorary Reader
Donald W Barnes, DPhil OxsfDSc Sydney
Tzee-Char Kuo, BS Natnl Taiwan PhD Chic
King Fai Lai, BSc Lond MPHil PhD Yale

Honorary Professor
John Rice
Alfred J van der Poorten, AM BA BSc MBA PhD UNSW

Honorary Associate Professors
Edward D Fackrell, MSc PhD Sydney
Terence M Gagen, BSc UQ PhD ANU
William G Gibson, MSc Cant PhD UNSW
Ronald W James, BSc PhD Sydney
John M Mack AM, MA Camb BSc PhD Sydney
Donald E Taylor MSc Monash DPhil Oxsf
Denis E Winch, MSc PhD Sydney, FRAS

Honorary Senior Lecturers
Koo-Guan Choo, BSc Nan MSc Otr PhD BrCol
Roger W Eyland, PhD Camb MSc Sydney
W Barrie Fraser, BSc ME Cant SM PhD Harv
Simon Ku
Nigel O’Brian, MA Camb PhD Warw
William Palmer, MLitt MA NEBSc PhD Dip Ed Sydney
Mary C Phipps, MSc Sydney
Zhengxue Tang
James N Ward, BSc PhD Sydney

Honorary Lecturers
Howard J D’Abertra, BSc PhD Calif
Humphrey M Gaslineau-Hills, MSc PhD Sydney

Honorary Associates
Geoffrey R Ball, BA Sydney
A J Berrick, PhD Sydney
S Blumen, PhD Sydney
Greg Cave, PhD Sydney
Diana Combe, BSc MSc Lond PhD Sydney
Wen Dai, BSc Yunnan MSc Beijing PhD ANU
Volker Gebhardt, PhD Sydney
Martine Girard, LM MM PhD Paris VII
Stephen Goulter, PhD Sydney
John Graham, PhD Sydney
Brian Gray, BSc PhD Manc, FRACI FRSC
Joseph Hammer, PhD Sydney
Joachim Hempel, PhD Sydney
Michael S Johnson, PhD Sydney
Otto Konstandatos, BSc LLB PhD Sydney
Stephen G Lack, BSc PhD Camb
Arjen Lenstra, MA PhD Amsterdam
Ben Martin, PhD Sydney
Leanne Rylands, MSc PhD Sydney
Timothy Schaerl, PhD Sydney
Tanya Schmah, PhD Sydney
Ross H Street, PhD Sydney, FAA
Shusen Yan, BSc MSc PhD Sydney

Molecular and Microbial Biosciences

Boden Professor of Human Nutrition
Ian D Caterson AM, BSc MB BS PhD Sydney, FRACP

McCaughey Professor of Biochemistry
Philip W Kuchel, BMedSc MB BA Adelaide PhD ANU, FAA

Professor of Microbiology
Peter Richard Reeves, BSc PhD Lond, FAA MASM

Professor of Molecular Biology
Iain L Campbell, BSc PhD Sydney

ARC Federation Fellows
Jill Trehwella, MSc UNSW PhD Sydney, FAAAS
Peter Waterhouse, BSc(Hons) Newcastle(UK) PhD Dundee

NHMRC Senior Principal Research Fellow
Ruth M Hall, DipEd Monash MSc PhD Edin

Professors
Janette C Brand-Miller, BSc PhD UNSW, FAIFST (Personal Chair)
Richard I Christopherson, BSc PhD Melbourne (Personal Chair)
P Merlin Crossley, BSc Melbourne DPhil Oxsf
J Mitchell Guss, BSc PhD Sydney (Personal Chair)
Anthony S Weiss, BSc PhD Sydney

Associate Professors
Margaret Allman-Farinelli, BSc DipNutriDiet PhD MPhilPH Sydney, APD
Deidre A Carter, BSc Flinders PhD Sydney
Charles A Collyar, BSc Flinders PhD Sydney
Arthur D Conigrave, BSc(Med) MB BS MSc PhD Sydney, FRACP
Gareth S Denyer, MA DPhil Oxsf
Kevin Downard, BSc PhD Adelaide
Alan R Jones, PhD Manc
Samir Samman, BSc PhD Sydney

NHMRC Senior Research Fellow
Joel P Mackay, BSc Auck PhD Camb

S&C Viertel Senior Research Fellow
Jacqueline M Matthews, BSc UNSW PhD Camb

Senior Lecturers
Helen M Agus, MSc UNSW, MASM
Stuart J Cordwell, BSc PhD Sydney
Simon B Easterbrook-Smith, BSc Well PhD Adelaide
Andrew J Holmes, BSc PhD UQ

Senior Research Fellow
William A Bubb, DIC Lond BSc UQ

Lecturers
Kim Bell-Anderson, BSc PhD UNSW
Nicholas V Coleman, PhD Sydney

Administrative Assistant, Student Services
Chamreun Cheen, BSc BCA Well

Honorary Associate Professors

Edward D Fackrell, MSc PhD Sydney
Terence M Gagen, BSc UQ PhD ANU
William G Gibson, MSc Cant PhD UNSW
Ronald W James, BSc PhD Sydney
John M Mack AM, MA Camb BSc PhD Sydney
Donald E Taylor MSc Monash DPhil Oxsf
Denis E Winch, MSc PhD Sydney, FRAS

Honorary Senior Lecturers
Koo-Guan Choo, BSc Nan MSc Otr PhD BrCol
Roger W Eyland, PhD Camb MSc Sydney
W Barrie Fraser, BSc ME Cant SM PhD Harv
Simon Ku
Nigel O’Brian, MA Camb PhD Warw
William Palmer, MLitt MA NEBSc PhD Dip Ed Sydney
Mary C Phipps, MSc Sydney
Zhengxue Tang
James N Ward, BSc PhD Sydney

Honorary Lecturers
Howard J D’Abertra, BSc PhD Calif
Humphrey M Gaslineau-Hills, MSc PhD Sydney

Honorary Associates
Geoffrey R Ball, BA Sydney
A J Berrick, PhD Sydney
S Blumen, PhD Sydney
Greg Cave, PhD Sydney
Diana Combe, BSc MSc Lond PhD Sydney
Wen Dai, BSc Yunnan MSc Beijing PhD ANU
Volker Gebhardt, PhD Sydney
Martine Girard, LM MM PhD Paris VII
Stephen Goulter, PhD Sydney
John Graham, PhD Sydney
Brian Gray, BSc PhD Manc, FRACI FRSC
Joseph Hammer, PhD Sydney
Joachim Hempel, PhD Sydney
Michael S Johnson, PhD Sydney
Otto Konstandatos, BSc LLB PhD Sydney
Stephen G Lack, BSc PhD Camb
Arjen Lenstra, MA PhD Amsterdam
Ben Martin, PhD Sydney
Leanne Rylands, MSc PhD Sydney
Timothy Schaerl, PhD Sydney
Tanya Schmah, PhD Sydney
Ross H Street, PhD Sydney, FAA
Shusen Yan, BSc MSc PhD Sydney

Molecular and Microbial Biosciences

Boden Professor of Human Nutrition
Ian D Caterson AM, BSc MB BS PhD Sydney, FRACP

McCaughey Professor of Biochemistry
Philip W Kuchel, BMedSc MB BA Adelaide PhD ANU, FAA

Professor of Microbiology
Peter Richard Reeves, BSc PhD Lond, FAA MASM

Professor of Molecular Biology
Iain L Campbell, BSc PhD Sydney

ARC Federation Fellows
Jill Trehwella, MSc UNSW PhD Sydney, FAAAS
Peter Waterhouse, BSc(Hons) Newcastle(UK) PhD Dundee

NHMRC Senior Principal Research Fellow
Ruth M Hall, DipEd Monash MSc PhD Edin

Professors
Janette C Brand-Miller, BSc PhD UNSW, FAIFST (Personal Chair)
Richard I Christopherson, BSc PhD Melbourne (Personal Chair)
P Merlin Crossley, BSc Melbourne DPhil Oxsf
J Mitchell Guss, BSc PhD Sydney (Personal Chair)
Anthony S Weiss, BSc PhD Sydney

Associate Professors
Margaret Allman-Farinelli, BSc DipNutriDiet PhD MPhilPH Sydney, APD
Deidre A Carter, BSc Flinders PhD Sydney
Charles A Collyar, BSc Flinders PhD Sydney
Arthur D Conigrave, BSc(Med) MB BS MSc PhD Sydney, FRACP
Gareth S Denyer, MA DPhil Oxsf
Kevin Downard, BSc PhD Adelaide
Alan R Jones, PhD Manc
Samir Samman, BSc PhD Sydney

NHMRC Senior Research Fellow
Joel P Mackay, BSc Auck PhD Camb

S&C Viertel Senior Research Fellow
Jacqueline M Matthews, BSc UNSW PhD Camb

Senior Lecturers
Helen M Agus, MSc UNSW, MASM
Stuart J Cordwell, BSc PhD Sydney
Simon B Easterbrook-Smith, BSc Well PhD Adelaide
Andrew J Holmes, BSc PhD UQ

Senior Research Fellow
William A Bubb, DIC Lond BSc UQ

Lecturers
Kim Bell-Anderson, BSc PhD UNSW
Nicholas V Coleman, PhD Sydney
Dale P Hancock, BSc PhD Sydney
Jill M Johnston, BSc Qld DipEd CathCE(Sydney)
Timothy P Newsome, BSc(Hons) Melbourne PhD Zurich

University of Sydney Postdoctoral Research Fellow
Hannah Nicholas, BMedSc DPhil Oxf

ARC Postdoctoral Research Fellows
David A Gell, BSc PhD Camb
Ann Kwan, BSc(Adv)(Hons) PhD Sydney

NHMRC RD Wright Research Fellow
Margaret Sunde, BSc Capetown PhD Camb

Proteomics Research Fellow
Ben Crossett, BSc Manc PhD Camb

Associate Lecturers
Vanessa Gysbers, BMedSc MSc(Med) Sydney
Sashi Kant, PhD Sydney
Beth Rohrlach, BSc DipNutrDiet Sydney, APD

Clinical Educator
Natasha Davis, BSc GradDipDiet Diet MHlthSc(Ed) Sydney, APD

Nutritional Epidemiologist
Victoria Flood, BSc Brs GradDipDiet Brs MPH UNSW PhD Sydney

CJ Martin Fellows
Janet Deane, BMedSc PhD Sydney
Melanie White, PhD Sydney

Postdoctoral Fellows
Visnesh Avlani, PhD Sydney
Jannine Bailey, PhD Sydney
Shona Blair, BSc PhD Sydney
Liza Cubeddu, BTech Macquarie PhD Sydney
Alister Funnell, PhD Sydney
Adriana Fusaro, PhD Sydney
Roland Gamsjaeger, MSc PhD Linz
Richard Grant, MA Oxf DPhil Oxf
Debra Hector, BSc Hampton PhD Nott, MPH
Markus Hofer, MD Freiburg
Cy Jefferies, BSc(Hons) ANU MPhipANU PhD Sydney
Kimberley Kaufman, PhD Sydney
David Langley, BSc PhD Sydney
Stella Lee, PhD Sydney
Swetlana Mactier, PhD Sydney
Chris Maloney, PhD Sydney
Victoria McCaI, PhD Sydney
Suzanne M Milheieux, BSc UNSW
Hee-Chang Mun, PhD Sydney
Christoph Naumann, PhD UBC
Yen Nguyen, BSc SBC PhD CIT
Guilhem Pages, BTEC Toul MSc PhD Mar
Richard C Pearson, BSc PhD Lond
Anna M Rangan, BSc GradDipDiet Diet QIT PhD Curtin
Alexander Schwahn, MSc PhD Erlangen
Neil Wilson, BSc(Hons) Macquarie PhD Sydney
Steven Wise, BSc UWS PhD Sydney
Sandra Wissmueller, PhD Sydney

Research Fellows
Craig Jackson
Lorna Wilkinson-White
Bethny Morrisey

Research Associate
Monica Cunneen, PhD Sydney

Research Manager, IOTF ASSO
Timothy P Gill, BSc UTAS BSc GradDipDiet PhD Deakin

Research Manager, SUGiRs
Fiona S Atkinson, BSc MNutrDiet Sydney

Clinical Trials Manager
Annie Simpson

Clinical Trials Administration Officer
Andy McNeil

Clinical Trials Administrative Assistant
David Whitfield

Research Dietitian
Bridget Kelly
Jennifer McArthur

Research Officer/Dietitian
Nicholas Fuller

Research Assistants
Thu Betteridge
Tien M T Bui, BMedSc Sydney
Sally Carter
Angela Connolly, BSc, Sydney
Nicholas J Evershed, BSc Sydney
Katherine Grant, BSc Open

Teaching Assistant
Deborah Blanckenberg, BMedSc Sydney

Professional Officer/School Laboratory Manager
Ziaul I Ahmad, BAppSc MAAPPsc UTS

Administrative Officers (Policy Development, Academic Support and Marketing)
Amy Holmes
Jessie Yang, BA Sydney

Administrative Officer (Building and Resource Management)
Emma Doyle, BComm Sydney

Molecular Biotechnology Program Coordinator
Katy Wilson, BA Sydney

Finance Manager
Stephen P Conaghan

Finance Officer
Bronwyn G Ferguson

Administrative Assistants
Marianne Alexander (HNU)
Joyce Calvitt (HNU)
Maria Karasantes (HNU)
Iva Hopwood (HNU)
Christopher Trott, BA Car

Executive Officer (IONE)
Kathryn Murray, BMus(Perf) GCArtEntMgt Sydney

Senior Technical Officers
Robert T Czolij, BSc Macquarie BioTechCert STC
Joseph Dimauro, MSc Sydney
Peter W Kerr
Ross I Taylor, FittMachCert ToolmakingCert STC

Technical Officers

417
Jane Dibbs, BSc DipNutrDiet Sydney
Susan Dumbrell, BSc MNutrDiet Sydney
Barbara Eden, AdvDipSecEd Sydney CA(Educ) Macquarie MSc(NutrDiet) UOW, APD
Trish Griffiths, GradDipCommM UTS BSc DipNutrDiet Sydney, MPH
Louise Houtzager, MSc(NutrDiet) [U(OW)W]
Melissa Macdonell, BSc(HSc(NutrDiet)) UoN
Melinda Morrison, MSc(NutrDiet) UOW GCDiabEd Deakin
Catherine Oﬀner, BSc(HSc(NutrDiet)) UoN
Simon Sadler, BSc(HSc(NutrDiet)) UoN, MPH
Leanne Scanes, BSc(HSc(NutrDiet)) Sydney
Mary Shaw
Lynette Stewart, BScAgr BA DipNutrDiet Macquarie
Helen Taylor, BSc(Nutr) Leeds Cert Educ Vic Manc

Horary Food Service Supervisors
Gladys Hitchen, MSc(NutrDiet) Lima
Andrew Howie, BSc DipNutrDiet Sydney
Suzanne Kennewell, BSc MNutrDiet Sydney, APD MAI FST
Maria Kokkinakos, BSc DipNutrDiet Sydney
Fifi Spechler, BSc DipNutrDiet Sydney
Jayne Taylor, MNutrDiet Sydney

Horary Industry Supervisors
Megan Cobcroft, BSc GradDipNutrDiet MPH&T&M Sydney
Trish Guy, BSc(HSc(NutrDiet)) UoN
Gina Levy, BSc BNutrition PhD Sydney
Mandy Sargood, BSc GradDip(Diet) Sydney
Penelope Small, BSc MSc(NutrDiet) Sydney
Kathy Usic, BEd MSc(NutrDiet) UOW

Pathology

Professors
Nicholas H Hunt, BSc PhD Aston
Nicholas JC King, MB ChB Cape T PhD ANU
Jillian Kiril, PhD Sydney
Georges Grau, MD PhD Sydney
Des Richardson, BSc MSc PhD DSc
Roland Stocker, PhD

Associate Professors
Shishan Bao, MB BS Shanghai PhD Sydney
Brett D Hambly, BSc(Med) MB BS PhD Sydney
Roger S Pamphlett, BSc(Med) MD ChB Cape T, FRACP MRCPath

Senior Lecturers
Stuart Cordwell, BSc PhD Sydney
Paul Witting, PhD

Executive Assistant
Lorraine Rhind

Pharmacology

Professor of Clinical Pharmacology
J Paul Seale, MB BS PhD Lond, FRACP

Professor of Pharmacology
Graham A R Johnston AM, MSc PhD Camb, CChem FRACI FTSE

Professor of Clinical Pharmacology and Hepatology
Christopher Liddle, MB BS BSc(Med) UNSW PhD Sydney, FRACP

Professor
Judith L Black, MB BS PhD Sydney, FRACP

Associate Professor
Robin D Allan, BSc UO PhD JCU

Associate Professor and NH&MRC Senior Research Fellow
Robert J Vandenbergh, BSc PhD Sydney

Clinical Associate Professor
Michael Kassiu, BSc PhD UNSW

Senior Lecturers
Jonathan C Arnold, BSc PhD Sydney
Rachel Codd, BSc PhD Sydney
Jasmine M Henderson, BSc DipNutrDiet PhD Sydney
Hilary GE Lloyd, BSc BSc MSc PhD Lond
Brett McPharland, PhD Sydney

Lecturers
Kellie Charles, PhD Sydney
Heidi Fedorow, PhD Sydney
Silade Matthews, PhD Sydney

Associate Lecturers
Katherine Locom
Farid Sanai

Postdoctoral Fellows
Janet K Burgess, BSc Adelaide PhD Sydney
Brian Oliver, PhD Sydney
Renae Ryan, PhD Sydney
Markus Weckman, PhD Sydney

Adjunct Professor
Susan M Pond AM, MB BS MD UNSW, FRACP FTSE

Conjoint Associate Professor in Physiology and Pharmacology
Paul M Pilowsky, BMedSc BM BS PhD Flinders

Horary Professor
Peter Carroll, BPharm PhD Sydney

Horary Associate Professors
Rosemarie Einstein, BSc PhD Sydney
Ewan Mylecharane, BPharm BSc PhD Melbourne
Michael Roth, Dipl Goethe PhD Basel
Graham A Starmer, MSc Manus PhD Sydney

Horary Associates
Melissa Baraket, PhD Sydney
Hugh Capper, PhD Sydney
Herbert F Jelinek, BSc UNSW GradDipNeurosci ANU PhD Sydney
Lyn Moir, PhD Sydney
Xianqin Qu, PhD Sydney
Christopher W Vaughan, BE MBiomedE UNSW PhD Sydney
Rachel Sutton, PhD Sydney
Thomas Trian, PhD Sydney

Physics

Professor in Astrophysics, Head of School and Director of Science Foundation for Physics
Anne Green, BSc Melbourne PhD Sydney

Professor in Medical Physics
Clive Baldock, BSc Sus MSc PhD Lond

[Professor in Physics (Applied)]
Marcela M Bilek, BSc PhD Cantab MBA Roch

Professor in Space Physics
Iver H Cairns, BSc PhD

Professor in Optics
Simon Fleming, BSc PhD Leeds

Professor in Sustainability Research
Manfred Lenzen, PhD Dip Bonn

Professor in Astrophysics and University Chair
Donald B Melrose, BSc UTAS DPhil Oxf

Professor in Physics (Condensed Matter)
Catherine Stampfl, BSc(Hons) PhD La Trobe

Professor in Theoretical Physics
Martijn de Sterke, MEng Delft PhD Roch
Professors in Astrophysics
Timothy R Bedding BSc PhD Sydney
Richard W Hunstead, BSc PhD Sydney
Geraint Lewis, BSc Lond PhD Cantab

Federation Fellows
Joss Bland-Hawthorn, BSc AU Birm PhD Sus & RGO
Benjamin J Eggleton, BSc PhD Sydney
Bryan Gaensler, BSc PhD Sydney
Peter A Robinson, BSc PhD Sydney

Australian Professorial Fellows
David R McKenzie, BSc PhD UNSW
Ross C McPhedran, BSc PhD UTAS
Elaine M Sadler, BSc UQ PhD ANU
Sergey Vladimirov, MSc PhD Mosc

Adjunct Professors
Russell Cannon, BSc MA PhD Camb
Matthew Collies, BSc PhD Camb
Thomas Landecker, BSc BE MEngSc PhD Sydney
Robert Robinson, BA PhD Cantab

Associate Professors
Serdar Kuyucak, BSc METU PhD Yale
David J Moss, BSc Waterloo MSc PhD Tor
Manjula D Sharma, MSc DAPh SPac
Peter G Tuthill, BSc UQ BSc(Hons) ANU PhD Cantab
Michael S Wheatland, BSc PhD Sydney

Adjunct Associate Professors
Roger Fulton, PhD UTS
Andrew Hopkins, BSc PhD Sydney
Naomi McClure-Griffiths, BA(Hons) Oberlin PhD Minn
Lyn Oliver. MSc Lond PhD UNSW
Natalka Suchowserska, BSc Birm MSc UTs PhD Sydney
Robert Wilkins, BE MEngSc PhD Sydney

Senior Lecturers
Stephen Bartlett, BSc Waterloo MSc PhD Tor
Reza Hashemi-Nezhad, MSc PhD Birm
Joseph Khachan, BSc PhD UNSW
Zdenka Kuncic, BSc PhD ANU
John W O’Byrne, BSc PhD Sydney
David Reilly, BAAppSc UTS PhD UNSW
J Gordon Robertson, BSc Adelaide PhD Sydney
Kevin E Varvell, BSc UWA DPhil Oxf

Adjunct Senior Lecturer
Lois Holloway, BSc PhD UNSW
Shami Chatterjee, BTech(EE) Madras MSc PhD Cornell

Lecturer
Putlin Gong, BS PhD Xian Jiaotong

Teaching Management
Richard Tarrant, BA MSc PhD Sydney
Richard Thompson BSc PhD Sydney

Postgraduate Teaching Fellows
Hilary Byrne
Christopher Hales
Matthew Palmer
Kate Randall

ARC Queen Elizabeth II Research Fellows
Scott Croom, BSc (Hons) PhD Durham
Stuart Jackson PhD
Alexander A Samarian, MSc Kiev PhD RAS(Mos)

ARC Australian Research Fellow
Bruce Yabsley, BTheol BSc PhD Sydney

ARC Postdoctoral Research Fellows
Mike Ireland, BSc PhD Sydney
31. Staff

Amelita Napthali
Barry Napthali
Moyo Win

Computing Staff
Sebastian Juraszek, PhD Sydney
Anthony Monger, PhD Sydney
Guoliang George Shan, PhD Sydney
Xue (Sue) Zhang, BEng MEng Beijing PhD ANU

Technical Officers
Robert Daives
Phil Denniss
Barbara Piestrzynska
Lai Chun So

Science Communicator (Physics)
Lara Davis, BAppSc ANU Grad Dip ScComm Sydney
Phil Dooley, BSc PhD ANU

Student Support Office
Hyacinth Alfonso
Eve Teran, BSc

Finance Officer
Nelly Le Hong Hwa Liew

Finance Assistant
David Young

Administrative Officer
Chindy Praseuthsouk, DipHRMgmt SJT BA Sydney

Human Resources Officer
Sang Huyhn

Administrative Support Staff
Jean Pierre Cheaib
Joanne Daniels, BA(Hons) UNSW Grad Cert TESOL UNE
Debra Gooley, BComm UNSW

CUDOS Chief Operating Officer
Chris Walsh, PhD Sydney

CUDOS Laboratory Manager
Engbang Li

CUDOS Support Staff
Emily Higginson
Joseph Zheng

Science Foundation Executive Officer
Adam Sellinger, GradDip BSc ANU

Science Community Relations Manager
Alison Muir

Education and Administrative Officer
Alex Viglienzone

Physics Workshop Technical Officers
Michael Paterson
Terry Pfeiffer

Molonglo Telescope Manager
Duncan Campbell-Wilson, BSc ANU

Molonglo Technical Officers
Adrian Blake
Darshan Thakkar

Emeritus Professors
Richard Edward Collins, BSc PhD NY
John Davis, BSc PhD Manc
Harry Messel AC CBE, BSc UQ PhD NUI
Bernard Mills AC, BSc BE ME DScEng Sydney, FRS FAA

Honorary Professors
John Boldeman, BSc UQ PhD DSc UNSW
David J H Coakley, MSc Melbourne DPhil Oxf
Lawrence E Cram, BSc BE PhD Sydney
Gregory W Forbes, PhD ANU BSc Sydney
Jak Kelly, BSc PhD Reading DSc UNSW
Roy Macleod, PhD LittD Cantab
Kostiantyn Ostrikov, DSc Kharkov
Colin JR Sheppard, MA PhD Cantab DSc Ox
Barry S Thornton AM, MSc PhD UNSW DSc Sydney

Honorary Reader
Graham Derrick, BSc UQ PhD Sydney

Honorary Associate Professors
Rodney C Cross, PhD DipEd Sydney
Robert G Hewitt, PhD Sydney
Brian W James, BSc PhD Sydney
Ian D S Johnston, BSc UQ PhD Sydney
David F Crawford, BSc PhD Sydney
Ian S Falconer, MSc NZ PhD ANU
Murray Winn, BSc PhD Birm

Honorary Senior Lecturers
Roy Allen, BSc PhD Manc
Peter Barnes
Ian M Bassett, MSc PhD Melbourne
G Ferguson Brand, MSc Otago PhD Sydney
Neil F Cramer, BSc PhD Sydney
David F Crawford, BSc PhD Sydney
Ian S Falconer, MSc NZ PhD ANU
Gavin Greenoak
Susan Law, PhD Sydney
Bruce McAdam, MSc NZ PhD Camb
James B T McCaughan, MSc PhD Sydney
Rosemary Millar, BSc UQ Med Sydney
Richard Morrow, BSc Adelaide PhD Flinders BA Sydney
Ian Selton, MSc Sydney
Robert Shobbrook, BSc StAnd PhD Sydney
William J Tango, BSc Cali PhD Colorado
Anthony J Turtle, BA PhD Cantab
Juris Ulrichs, PhD Sydney

Honorary Associates
Martin Abdinrooth
Dimitri Alexiev
Ara Asatryan, MSc Yerevan State Uni PhD Mosc
Andrew Bakich, MSc Sydney
Dale Bailey, BAAppSc NSWIT MAppSc UTS PhD Surrey
Jeremy Bolger, BSc UWA PhD Heriot-Watt
Stephen Bosi BSc PhD UNSW
Lindsay C Botten, BSc UTAS PhD Sydney
Michael Blake, BSc MB BS Sydney
John Bunting
Alexander Buryak
Gerald Cecil
Jenkins Charles
Carol Cogswell, BA MA MArch Oregon
Ian J Cooper, BSc MPhys DipEd UNSW
Guy Cox
Ludovico De Souza
Mark Englund
Pal Fekete, PhD Sydney
Robert Fletcher, DipEd UTS BSc MSc PhD Sydney
Catherine Foley, BSc DipEd Macquarie PhD Sydney
Barney Foran, BAgSc UQ MagSc Natal
Greg Forbes
Romuald Gajewski
Brad Gibson
Richard Gray, PhD Sydney
Peter Greer
Helen Gustafsson
Al Mamun Haque
Parameswaran Haritharan, BSc MSc Travacore PhD Kevala
Julienne I Harnett, BA Macquarie DipT Tas CAE PhD Sydney
Dionne Hayes
Roger Hayes
Brendan Healy
Kirsten Hogg
Anthony Horton
Chris Howard
Alexandra Hugman
Natalie L James, BSc MBiomedEd PhD UNSW
David L Jauncey, PhD Sydney
Simon Johnston, BSc Edin PhD Manc
Michael Kesteven
Ramzi Kutteh
Dixon (Tat-kun) Kwok, BSc PhD Cantab
Christian Langton
Kieran Larkin
Jon Lawrence
Igor Levchenko
Bob Lucas, BSEE Calif MSc Sydney
Pamela McNamara, BSc Swansea (Wales) MSc Sheff PhD Bangor (Wales)
Graham Morrison, BE PhD Melbourne
Bhaskar Mukherjee, BE Calc MSc PhD Technisch
Kym Nitsch
Julian North
Andrew R Parker, BSc JM Liv PhD Macquarie
Edward Penny
Kay Phillip
John Piggott
Rebecca Powles, PhD Sydney
Adel Rahmani
Mark Reinhard, BSc PhD [[UOW]
Christopher Rennie, BSc ANU MBioEd UNSW
Stephen Rowlands
Maitreyee Roy, MSc MPhil rani Dorgauati PhD Sydney
Michael Scholz, BSc Tuebingen MSc PhD Hamburg
Peter Shaver, BSc Queens (Canada) PhD Sydney
Hong Qing Shi
Robert Shobbrook
Geoff Smith, MSc Wtwh PhD UNSW
Lindsey Smith
Jeff Stanger
Dimitrii Stepanov
Michael Steel, BSc PhD Sydney
Ravi Subrahmanyya
Theo ten Brummelaar
Jocelyn Towsen, BSc UWA BA Cantab MSc Lond
John Tuthill
Martin Van Eijkelenborg
Mark J Wardle, MSc Auck PhD Prin
Thomas Wiedmann
Andrew Willes, BSc PhD Sydney
Leanne Williams
Kin wah Wu, BSc HK MSc PhD Louisiana
Tian Tian Ye

Physiology

Professors
David Grant Allen, BSc MB BS PhD Lond
Roger AL Dampney, PhD DSc Sydney
Maxwell Richard Bennett, BE MSc PhD Melbourne DSc Sydney, FAA
David I Cook, BSc(Med) MB BS MSc Sydney
Jürgen Götz, MSc Univ Basel (CH) PhD Univ Freiburg and Max-Planck-Inst (Chair of Molecular Biology)
Rebecca S Mason, MB BS PhD Sydney
Brian J Morris, BSc Adelaide PhD Monash DSc Sydney

Associate Professors
Simon Carille, BSc PhD Sydney
Rebecca S Mason, MB BS PhD Sydney
Christopher O’Neill, BSc PhD UoN

Senior Lecturers
Margot Day, BSc PhD Sydney
Miriam Frommer, BSc PhD Lond
Christine Koeppl, BSc PhD Sydney
Catherine Leamney, BSc PhD Sydney
William D Phillips, BSc PhD Sydney
Dario Protti, PhD B.Aires

Lecturers
Stephen Assinder, BSc MSc PhD Sydney
Bronwyn McAllan, BSc Macquarie MSc Adelaide PhD UNE
Meloni Muir, BSc Purdue PhD McG
Atomu Sawatari, PhD Sydney

Research Fellows
David Alais, PhD Sydney
Anuwat Dinudom, MSc PhD Sydney

Postdoctoral Research Fellows
Guo Jun Liu, MD Changchun China PhD Gifu Japan
Andrea Markus, BSc PhD Mainz (Germany)

Senior Research Officers
Vlado Buljain, PhD Sydney
Yi Chu, MD PhD Sydney
Othon Gervasio, DDS MSc PhD Sydney
Jouji Horiuchi, BSc PhD Yamanashi
Yue-Kun Ju, MD Xian PhD ANU
Permsak Komwatana, MS MCV PhD UVa
Il Ha Lee, PhD Sydney
Mark Stephen Rybchyn
Nicholas Whitehead, PhD Sydney

CJ Martin Fellow
Sam Solomon, BBIotech Flinders PhD Sydney

Class Laboratory Staff
Haydn Albett
John F Cossey, BTC STC
Adel Mitry, BVSc Cairo ACC STC
Claire Winnick

Electronics Workshop Staff
Vincent BW Cheung, HND HK Polytechnic Univ Freiburg and ü bergen G Univ Basel (CH)

Computing Staff
Peter Ceiley
John WA Dodson, HNC Lond MIEEIE I Eng
Li Jin

Department Manager
Lali Jacob Ba, MBA Sydney

Administrative Officers
Lucinda Guy
Louise Harrison
David Lawrey

Honorary Professors
William (Liam) Burke
Paul Korner
Paul Pilowsky, BMedSc BM BS PhD Flinders
Anne Sefton
Allan Snyder

Honorary Associate Professors
David F Davey, BSc MScMed PhD McG
Arthur Everitt
Amy Goodchild, BSc PhD Sydney
Barry S Gow, MDS PhD Sydney, FRACDS

422
Honoray Senior Lecturer
Lyn Cottey, BSc PhD Sydney

Honoray Lecturers
Annick Anssemlin, BA Macquarie MSc PhD Sydney
Irene Schneider
Francois Janod Groves

Honoray Associates
Joseph FY Hoh, PhD ANU BSc(Med) MB BS DSc Sydney
Craig Jin, BSc Stanford MSc Caltech PhD Sydney
David le Couteur
Peter Matiz
Ainsley Marsh, BSc(Adv) Sydney
Elaine Mulcahy, PhD Sydney
Anne Nelson, PhD Sydney
Philip Peronnk, PhD Sydney
Richard Shephard
Helen Speirs
William Wang, MM BS Sydney

Psychology
Head of School
Sally Andrews, BA PhD UNSW

Professor of Clinical Psychology
Stephen W Touyz, BSc PhD Cape T BSc Witw

Professors
Barton Anderson, BA Connecticut PhD Vanderbilt
Alex Biazzczynski, MA PhD UNSW
Phyllis Butow, MClincPsych ANU
Madeleine king, BSc GDip PhD UoN
Iain McGregor, MA Oxford PhD Sydney

Associate Professors
David Alais, BA PhD Sydney
Colin Clifford, MA Camb MSc Sus PhD Lond
Justin Harris, BSc PhD UNSW
Pauline Howie, BA PhD UNSW
Caroline Hunt, BSc MPsychol PhD UNSW
David J Livesey, BSc PhD UWA
Louise Sharpe, BA MPsych PhD Lond
Michael B Walker, BSc PhD UWA BA Adelaide DPhil Oxf

Senior Lecturers
Damian Birney, BAppSc USQ PhD UQ
Bruce Burns, BSc Melbourne MA PhD Calif
Margaret A Charles, BA PhD Sydney
Anthony Grant, BA MA Macquarie PhD Macquarie
Irina Harris, BSc UNSW MSc Macquarie PhD Sydney
Fiona Hibbard, BA PhD Sydney
Alex Holcombe, BA Virginia PhD Harvard
Sunny Lah, BA Zagreb MSc PhD Macquarie
Elizabeth Rieger, BA MClincPsych UNSW PhD Sydney
Fiona White, BA PhD Sydney

Lecturers
Maree Abbott, BA MSc UWS MClincPsych Macquarie PhD UNSW
Michael Cavanagh, BA MClincPsych PhD Macquarie
Karen Croot, BA Macquarie PhD Camb
Marc de Rosny, BA BSc Macquarie DPhil Oxf
Karen Gonsalkorale, BPsych Griffith MPsych PhD Sydney
David Hawes, BPsych Griffith MPsych PhD Sydney
Ian Johnston, BSc PhD UNSW
Sabina Kleitman, BA PhD Sydney
Catalina Lawsin, BSc Indianna MA Catholic Uni PhD Colorado
Barbara Mullan, BA MA Dublin PhD Open
Caleb Owens, BSc PhD UNSW
Marianna Szabo, BA PhD UNSW
Nikolaos Tiliopoulos, BEng TEI/BSc ARJ MSc PhD Edinburgh
Lisa Zadro, BSc PhD UNSW

Postdoctoral Research Officers
Arman Abrahamyan, MA Yerevan PhD UWS
Hisham Abu-Rayya, BA MA Hebrew PhD Camb
Ann Burgess, PhD Sydney
John Cass, BSc UOW
Helen Duffield, BA BSc PhD UNE
Ilona Juraskova, BA MPsysch PhD Sydney
Abul Kashem, BSc Bangladesh MSc PhD Nilgite Japan
Byung-Geun Khang BSc MA Yonsei MA PhD Louisville
Juno Kim BSc PhD Sydney
Daniel Linares, BSc MSc PhD Barcelona
Even Livesey, BPsych PhD Camb
James Scott Macdonald, BSc B'ham
Hamish MacDougal, BSc PhD Sydney
Melanie Price, BSc PhD Sydney
Nicole Rankin, BA MSc PhD Sydney
Judy Wilson, BA MPsych PhD Macquarie

Professional Officer
Sadhana Raju, BSc Sydney

Manager, Finance and Administration
Sandra Cheng, BBus UTSC MCom Sydney, CPA

Manager, Teaching Administration
Kapila Wimalaratne, BSc(Hons) Sydney

Senior Clinical Psychologist
Chantal Braganza, BSc MPsych UNSW
David Horry, BA BSc PhD Macquarie

Clinic Director, Clinical Psychology Unit
Judy Hyde, BA(Edu) BA (Psych) MPsych Macquarie

Administrative Officer
Belinda Ingram, BSc Sydney

Administrative Assistants
Julia Ashworth, BA Peking MComm Sydney
Grace Gong, BA Beijing
Cindy Li, DipComSec HKPU
Erin Simpson

Head of Computer and Technical Services
John Holden

Managers of Computer Services
Ethel Harris, DipEd Karlstad
Nenad Petkovski, BSc EE Belgrade

Computer Systems Officers
Yohans Bastian, BSc Macquarie

Technical Officer
Philip Leung, DiplT NSyd TAFE

Animal House Attendants
Deborah Brooks
Alison Salo

Honorary Professors
Robert Boakes, BA Cant PhD Harvard
Ian Curthoys, BA PhD Monash
Philip Ley, BA Marc DPsych Lond PhD Liv

Honorary Associate Professors
David Grayson, BA PhD Sydney
Cyril R Latimer, BA PhD Sydney
Joel Michell, BA PhD Sydney

Honorary Senior Lecturers
Jens Beckman, BSc MSc PhD Leipzig
Brian Crabbe, BA PhD Sydney
Alan E Credisson, BA PhD Sydney
Olga Katchan, BA Sydney
Roslyn Markhan, BA MA PhD Sydney
Terence McMullen, BA PhD Sydney
George Oliphant, BA PhD Sydney
John Predebon, BA PhD Sydney

Honorary Clinical Senior Lecturers and Lecturers
Clive Alcock, BSc MBChB Otago, FRANZCP
Christopher Basten, BA UNSW MA ClinPsych Sydney
Sandra Heriot, BA Wgtn MA Auck PhD Waikato
Jean Hollis, MBBS(Hons) Sydney, FRANZCP
Naresh Mondrathy, BSc MSc Cal MPsy/R Psychiat Macquarie
Philemona Reneer
Paul Rhodes, BSc Lanc MPsy/R PhD Macquarie
Gillian Straker-Bryce, BA MClincPsych PhD Wits

Honorary Associates
Rosa All, BA MPsych Macquarie
Elizabeth Allworth, PhD Macquarie MPsy/R(Appl) UNSW BA ANU
Patricia Austin, BA (Hons) MClincPsych UWA
Elaine Barrett, BA Macquarie MPsy/R Sydney
Christopher Basten, BA (Hons) MPsy/R Sydney
Janet Elizabeth Benson, BA (Hons) MClincPsych Macquarie
Carol Lynn Boland, BA(Hons) MClincPsych Macquarie
Phillippa Bowden, BA(Hons) MPsy/R Sydney
Julie Bralthwaite, BA MClincPsych Macquarie
Catherine Bray, BA(Hons) MPsy/R Sydney
Nora Breem, BSc(Hons) MScClinPsy/McClinPsy Melbourne PhD Psych Macquarie
Ruth Brundson, BA(Hons) MScClinNeuroPsych PhD Macquarie
Theona Rosemary Bustos, BSc(Hons) MClincPsych Grad Dip Forensic UNSW
Carey Callaghan, BSc(Nat) MSc/Sci Rhodes
Julie Cannon-Brookes, BSc(Hons) MClincPsych UNSW
Andrew James Campbell, BA(Psych) MPsy/R PhD Sydney
Barney Casey, BA Auck MPsy/R PhD Sydney
Judy Chan, BSc MPsy/R UNSW
Denise Chu, BSc(Hons) Oregon ClinPsych Macquarie
Anna Cohen, BA(Hons) MPsy/R UOW
Natalie Daniela Crino, B(Ed) (Hons) MClincPsych UNSW
Carlie Dean, BSc MPsy/R Sydney
Angela Dixon, BSc Melbourne MA Hارv MPsy/R PhD Sydney
Emma Djukic, BA(Hons) MPsy/R Sydney
Suzette Doctor, BSc Lond MSc Leic
Juliette Drobny, BSc(Hons) MClincPsych UNSW
Robert Duncan, MPsych UNSW
Danielle Einstein, BSc MPsych UNSW
Louise Ellis, BPsych Macquarie PhD UWS
Margaret Lynne Foddy, BA Sask PhD UBC
Gary Fulcher, BA UNSW MA Mpsy/R PhD Sydney
Eleanor Galt, BA(Hons) UoN DipPsych Sydney
Jonathon Gaston, BSc(Hons) MPsy/R UNSW
Julie Anne (Janne) Gibson, BA(Hons) UoN DipPsych Sydney
Jemma Gilchrist, BSc DipCP PhD Otago
Hugo Gonzales, MClincHealthPsych Curtin PhD Macquarie
Barbara Griffin, BPsych Macquarie PhD Sydney
Adam John Guastella, BA(Hons) UQ PhD Griffith
Anthony Peter Hannan, BSc(Psych) UNSW MClincPsych Macquarie
Christopher Hardwick, BSc(Hons) MPsych Macquarie
Lynne Maree Harris, BSc MClincPsych UNSW PhD Sydney
Ilana Hepner, BA(Psych) MClincNeuroPsy/R PhD Macquarie
Beryl Hesketh, BA Capetown MA Vic PhD Massey
Michelle Ingram, BA(Hons) MClincPsych Macquarie
Simon Charles Jakes, BA(Psych) Oxf MPhilsClinPsych Inst Psych Maudsley Hosp Lond
Lissa Johnson, BA RMIT BBehavSci(Hons) LaTrobe MClincPsych UNSW
Mainwen Jones, BA(Hons) PhD Sydney
Wendy Joung, BSc(Hons) PhD Sydney
Pamela Joy, BA MA MSc PhD Macquarie
John Kearney, BA(Hons) DCP Sydney
Meredith Kearney, BSc(Hons) MPsy/R UNSW
Andrew Kemp, BSc(Hons) Melbourne PhD Swinburne
Travis Kemp, BEd SA MA Deakin PhD UniSA
Alex Knapman, BPsych MPsy/R Macquarie
Suzanna Kostreviska-Kirov, BSc UoN MPsy/R Sydney
Sonia Kram, BA Macquarie MPsy/R Sydney
Tahn Le, BSc UNSW MPsy/R UWS
Leanne Little, BA MPsy/R UNSW
Sarah Lok, BA(Hons) UQ MClincPsych Macquarie
Wendy Longley, BSc MSc UWA MA Melbourne
Sarah Lucas, BSc Adelaide MPsy/R Macquarie
Peter Mangioni, BSc UNSW MClincPsych UNSW
Claudine Martijn, BA(Psych) DCPS Sydney
Wendy McCartney, BA Open DipEd MA Sydney
Peter McEvoy, BSc(Hons) UWA MClincPsych UWA PhD Sydney
Roderick Peter McDonald, BA(Hons) MSc DClin Psych Macquarie PhD UNE
Laurie Miller, BSc W'minster BSc PhD McGill
Gerris Minshall, BA(Hons) UQ MClincPsych UNSW
Neroli Muller, BA(Hons) MClincPsych PhD Macquarie
Karen Munro, BSc MPsy/R UoN
Sharon Naismith, BA MPsy/R DPsych Macquarie
Linda Nguy, BPsych MSc DCPS Sydney
Melissa Norberg, BA(Psych) Nebraska MSc DCPS Wisconsin
Margot O'Brien, BA(Hons) MClincPsych Sydney
Amada Lee Ollie, BSc UNSW MPsy/R Macquarie PhD UNSW
Sarah Overton, MPsy/R PhD Sydney
Arzu Oytam, BSc (Hons) UNSW MPsy/R UOW
Louise Parry, MClincPsych Macquarie BSc(Hons) Adelaide
Christian Paulin, BSc MPsy/R UNSW
Emily Phillips, BA(Hons) MClincPsych UNSW
Jeanne Maree Pollock, BSc(Hons) UNSW MClincPsych Sydney
Kris Revison, MPsy/R Warsaw
Geraldine Robinson, BEd Vic MSc PhD Loyola Baltimore
Andrew Rock, BA MClincPsych Macquarie
Claudia Rothbaas, Mpsych Cologne
David Anthony Rouen, BSc(Hons) MClincPsych UNSW
Dania Saab, BSc(Hons) UNSW MClincPsych UNSW
Mark Sabaz, BSc PhD Macquarie
Sandra Schock, BA SA MClincPsych Rhodes DCPS Lond
Dieter Schlosser, BSc UNSW MPsy/R Sydney
Julie Anne Shearsby, BSc(Hons) MPsy/R Clin UNSW
Thiagarajan Sitharthan, MACounsPsychPhil Mandras MClincPsych PhD Sydney
Jane Maree Turner, BA(Hons) MClincPsych Macquarie
Julie Simmons, BA(Hons) UoN MPsy/R UNSW
Nareille Spinks, BA(Hons) MPsy/R Sydney
Jeanette Stewart, BSc UoS DCPS Lond
Zoe Thaver, MSc MPsy/R Macquarie
Christopher Thornton, BSc MPsy/R Macquarie
Andrew Wallis, BScocWkr UNSW MFMamTher NSW Inst Psych
Ann Louise Wignall, BA UTAS MClincPsych UNSW DClinPsych Macquarie
Michelle Wong, BSc(Hons) UNSW DCP Sydney
Wilson Wong, BA(Psych)(Hons) Lond MHealth Law MPsy/R UTAS

31. Staff

Conjoint Academic Title
Deborah Finney, BSc MPsych PhD UNSW

Gambling Treatment Clinic
Chantal Braganza, BSc MPsy/R UNSW
Ainslie Hatch, BA MPsych Sydney
Christopher Hunt, BSc MPsy/R UNSW
Julia Lam, BScc MPhil UHK MSc Leic PhD Melbourne
Kate Leedes, BA AppPsych MPsy/R UC
Norris Ma, BA GDS(Psych) Sydney
Sylvana Sturevska, BSc UNSW MA Psych Sydney
Maree-Jo Richards, BSc UOW GDS(Psych) Sydney
Kristen Shannon, BA MA Sydney
Julianti Widury, BPsych Mara MPsy/R Indonesia MHCsc Sydney
Australian Key Centre for Microscopy and Microanalysis

Professor and Director
Simon P Ringer, BAppSc UniSA PhD UNSW, FIE Aust

Associate Professor and Deputy Director

Senior Lecturer
Allan J Jones, BAppSc UTS PhD UNSW

Lecturer
Lillian Soon, PhD Sydney

Research Associates
Julie Cairney, BMetEng PhD UNSW
Judith Field, PhD Sydney
Tomoyuki Honma, PhD Sydney
Alexandre La Fontaine, BE MSc Uni Paris-Orsay
Zhongwen Liu, PhD Sydney
Michael Moody, BSc(Hons) Adelaide PhD UniSA
Timothy Petersen, PhD RMIT
Andrei Reztsow, PhD Moscow
Anya Salih, MSc Kartoum PhD Sydney
Naomi Tsafnat, BSc SJSU PhD UNSW

Associate Lecturer
Wendy Reade, BAppSc UC GDipAncientDoc Macquarie BA Sydney

Technical and Professional Staff
Miles Apperley, PhD UNSW
Toshi Arakawa
Shaun Bulcock, MSc Melbourne
Dennis M Dwarte, BSc UNSW MSc Sydney
Uli Eichhorn
Rosie Hicks (General Manager)
Peter Hines, BME PhD Sydney
Eleanor P Kable, BSc PhD Sydney
Anthony Romeo, BSc Melbourne
David Saxey, BSc BE UWA
Adam Sikorski, M MechEng Warsaw Tech Univ
Anne Simpson

Administrative Staff
Ruth Fletcher

Centre for Research on Ecological Impacts of Coastal Cities

Director
Antony J Underwood, PhD DSc Brist, FAAA MLS FIBiol FAIBiol CBIol

Deputy Directors
M Gee Chapman, BSc Natal MSc PhD Sydney
Ross Coleman, BSc Plymouth PhD Southampton

University Senior Research Fellow
Ashley Ward, BSc PhD Sydney

Postdoctoral Fellows
David Blockley, BSc PhD Sydney
Victoria Cole, BSc PhD Sydney
Paris Goodsell, BSc PhD Adelaide
Angus Jackson, BA Oxford MSc Aberdeen PhD Plymouth
Richard Murphy, BSc Lond PhD R’dg
Trevor Tlhurst, BSc PhD StAnd

Senior Support Staff
Craig Myers, BSc Sydney

Research Support Staff
Anna Boden, BSc MSc Sydney
Karina Cheah, FSRA Tier 2 STG Branch Operations STG Office Administration II TAFE
Matthew Day, BSc Sydney
Paul Devlin, BSc Melbourne
Mark Ellis, BSc(Mar) Bio Adelaide
Olivia Hadisaputra, BSc Sydney
Penny Harrington, AdvCertAccounting AssocDipWelfareWork TAFE
Jennifer Haslam, BSc Waikato
Hester Jackson, MSc Plymouth BSc Sheffield
Amy Palmer, BSc Sydney
James Smith, BSc UNSW

Honorary Appointments
Brian Bayne, PhD, FIBiol OBS UK
Sean Brilliant, BSc MSc Canada PhD Sydney
Juan J Cruz Motta, PhD Sydney
Sharon P Cummings, PhD Sydney
Juan Moreira Da Rocha, PhD Vigo
M Gabriela Palomo, PhD Mar del Plata
Daniel R Roberts, PhD UOW
Greg A Skilliter, PhD Sydney

Coastal Studies unit

Director
Andrew D Short, MA Hawaii PhD Louisiana State BA Sydney

Members
Eleanor M Bruce, PhD UWA
David E M Chapman, MEngSc UNSW BA PhD Sydney
Peter J Cowell, BA PhD Sydney

Unit for History and Philosophy of Science

Director
Ofer Gal, BA MA Tel Aviv PhD Pitt

Lecturers
Jane Johnson, BA PhD Sydney
Catherine Mills, BA(Hons) CQD GradDipArts ANU PhD ANU
Domnic Murphy, BA Dublin MPhil London PhD Rutgers
Hans Pols, Drs Groningen MA Yrb PhD Penn
Dean Rickles, BA(Hons) Bolton MA(Hons) Sheffield PhD Leeds
Charles Wolfe, MA New School for Social Research DEA Paris IV Sorbonne PhD Boston

Administrative Assistant
Lisa Campano, BA Sydney

Honorary Associates
Warwick Anderson, MB BS MD Melbourne MA PhD Penn
Rachel Ankeny, BA StJohn’s Coll MA PhD Pitt
Peter Anstey, BA(Hons) PhD Sydney
Alison Bashford, BA(Hons) PhD Sydney
David Braddon-Mitchell, BA PhD ANU
Alain Chalmers, BSc Brist MSc Manc PhD Lond
Mark Colyvan, AssocDipAppSc RMIT BSc(Hons) NE PhD ANU
John Forge, BA Cornell DipEd McGill MA PhD Lond
Stephen Garton, BA(Hons) PhD UNSW
Stephen Gaukroger, BA Lond BA PhD Cant, FAHA
Judith Godden, BA UNE PhD Macquarie DipEd UNE
Paul Griffiths, BA (Hons) Camb PhD ANU
Jason Johnson, BA MA Tel Aviv PhD Pitt

Graduate Students

University of Sydney

Graduate Students

Research Support Staff
Anna Boden, BSc MSc Sydney
Karina Cheah, FSRA Tier 2 STG Branch Operations STG Office Administration II TAFE
Matthew Day, BSc Sydney
Paul Devlin, BSc Melbourne
Mark Ellis, BSc(Mar) Bio Adelaide
Olivia Hadisaputra, BSc Sydney
Penny Harrington, AdvCertAccounting AssocDipWelfareWork TAFE
Jennifer Haslam, BSc Waikato
Hester Jackson, MSc Plymouth BSc Sheffield
Amy Palmer, BSc Sydney
James Smith, BSc UNSW

Honorary Appointments
Brian Bayne, PhD, FIBiol OBS UK
Sean Brilliant, BSc MSc Canada PhD Sydney
Juan J Cruz Motta, PhD Sydney
Sharon P Cummings, PhD Sydney
Juan Moreira Da Rocha, PhD Vigo
M Gabriela Palomo, PhD Mar del Plata
Daniel R Roberts, PhD UOW
Greg A Skilliter, PhD Sydney

Coastal Studies unit

Director
Andrew D Short, MA Hawaii PhD Louisiana State BA Sydney

Members
Eleanor M Bruce, PhD UWA
David E M Chapman, MEngSc UNSW BA PhD Sydney
Peter J Cowell, BA PhD Sydney

Unit for History and Philosophy of Science

Director
Ofer Gal, BA MA Tel Aviv PhD Pitt

Lecturers
Jane Johnson, BA PhD Sydney
Catherine Mills, BA(Hons) CQD GradDipArts ANU PhD ANU
Domnic Murphy, BA Dublin MPhil London PhD Rutgers
Hans Pols, Drs Groningen MA Yrb PhD Penn
Dean Rickles, BA(Hons) Bolton MA(Hons) Sheffield PhD Leeds
Charles Wolfe, MA New School for Social Research DEA Paris IV Sorbonne PhD Boston

Administrative Assistant
Lisa Campano, BA Sydney

Honorary Associates
Warwick Anderson, MB BS MD Melbourne MA PhD Penn
Rachel Ankeny, BA StJohn’s Coll MA PhD Pitt
Peter Anstey, BA(Hons) PhD Sydney
Alison Bashford, BA(Hons) PhD Sydney
David Braddon-Mitchell, BA PhD ANU
Alain Chalmers, BSc Brist MSc Manc PhD Lond
Mark Colyvan, AssocDipAppSc RMIT BSc(Hons) NE PhD ANU
John Forge, BA Cornell DipEd McGill MA PhD Lond
Stephen Garton, BA(Hons) PhD UNSW
Stephen Gaukroger, BA Lond BA PhD Cant, FAHA
Judith Godden, BA UNE PhD Macquarie DipEd UNE
Paul Griffiths, BA (Hons) Camb PhD ANU
Jason Johnson, BA MA Tel Aviv PhD Pitt

Graduate Students

University of Sydney

Graduate Students
Huw Price, BA ANU MSc Oxf PhD Cant, FAHA
Evelleen Richards, BSc UQ MA PhD UNSW
John Schuster, BA Columbia MA Camb MA Princ PhD Prin
Catherine Waldby, BA UQ MA(Hons) Sydney PhD Murd

Key Centre for Polymer Colloids
Director
Sebastien Perrier, DipIngenieurChimiste ENSCM MSc Grenoble PhD Warw

Principal Research Fellow and Development Manager
Brian Hawkett, BSc DipEd PhD Sydney

Postdoctoral Research Fellows
Nirmesh Jain, BSc MSc PhD SGU
Thi Thuy Binh Pham, PhD MSc Hanoi

Research Assistants
Janine Hall
Eh Hau Pan, BE UNSW

University of Sydney Institute of Marine Science
Director
Douglas Cato, BSc MSc PhD Sydney

Deputy Director
Ross Coleman, BSc Plymouth Polytechnic PGCE PhD Southampton

Members

Gavin F Birch, MSc PhD GradDiplIndAdmin CapeT
Eleanor M Bruce, PhD UWA
Maria Byrne, BSc Galway PhD VicBC
John Carter, BE PhD Sydney
M Gee Chapman, BSc Natal MSc PhD Sydney
Peter J Cowell, BA PhD Sydney
Peter John Davies, BSc Leic PhD Sheff
Adriana Dukkiewicz, PhD Finders
Adrienne Grant, BSc PhD ANU
Rosalind T Hinde, BSc PhD Sydney
Thomas CT Hubble, MAppSc UNSW MSc DipEd PhD Sydney
Michael Glen Hughes, BSc PhD Sydney
Ian Jones, BE NSW PhD Wat, MIEAust
Anthony WD Larkum, BSc Lond DPhil Oxf, ARCS
Adele Pile, BA Boston MA PhD William & Mary
Anya Salih, MSc Khartoum PhD Sydney
Andrew D Short, MA Hawaii PhD Louisiana State BA Sydney
Trevor Tolhurst, BSc PhD StAnd
Antony J Underwood, PhD DSc Brist, FAA FLS FIBiol FABiol CBiol
Stephen Williams, BASC Waterloo PhD Sydney

Honorary Associates
Douglas Cato, BSc MSc PhD Sydney
Philip Chapple, PhD Sydney
David Haddad, BSc DPhil Oxf
Alexa Troedson, BSc PhD Sydney
John You, PhD Sydney

Stephen Williams, BASC Waterloo PhD Sydney
32. Scholarships

These tables contain simplified details of some of the prizes and scholarships offered by the University. Further information regarding scholarships is available from the University scholarships website and from the Research Office website.

Additional criteria are attached to each award below and for full details you are advised to consult the administering unit. In particular, requirements of sufficient merit or of a higher year enrolment in particular subjects or degrees are common. The University may not offer an award every year.

Prize values are estimates only, and may vary from year to year depending upon investment income and other factors.

The Faculty reserves the right to award and vary the number of scholarships available and the value of scholarships available in line with the amount of funds available for distribution each year without notice.

The scholarships and prizes fall into two broad categories:

- **Prizes awarded on application** – See the Scholarships Office and Research Office websites for more information. Applications usually close in September each year for the following year.

- **Prizes awarded automatically** – Successful students are notified of these either by the faculty or the Student Centre. Nearly all the prizes in these tables are awarded without application.

Literary Prizes

Details of these may be obtained from the Scholarships Office. Applications generally close in the third week of second semester.

Bursaries

Bursaries are awarded on the combined grounds of financial need and academic merit. Applications to the Financial Assistance Office usually close at the end of April.

Undergraduate prizes and scholarships

<table>
<thead>
<tr>
<th>Award</th>
<th>Value (pa)</th>
<th>Tenure (yrs)</th>
<th>Number</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarships awarded by the Faculty to students entering first year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Alumni Entry Scholarship</td>
<td>$1000</td>
<td>5</td>
<td>up to 4</td>
<td>Awarded to highly ranked University of Sydney Undergraduate Scholarship applicants who do not obtain one of those scholarships. These scholarships may not be held concurrently with a University of Sydney Scholarship for Outstanding Achievement.</td>
</tr>
<tr>
<td>Science Entry Scholarship</td>
<td>$5000</td>
<td>1</td>
<td>up to 4</td>
<td>Awarded to highly ranked University of Sydney Undergraduate Scholarship applicants who do not obtain one of those scholarships. These scholarships may not be held concurrently with a University of Sydney Scholarship for Outstanding Achievement.</td>
</tr>
<tr>
<td>Science Alumni Achievement Scholarship</td>
<td>$1000</td>
<td>2</td>
<td>up to 5</td>
<td>Awarded to highly ranked University of Sydney Undergraduate Scholarship applicants who do not obtain one of those scholarships. These scholarships may not be held concurrently with a University of Sydney Scholarship for Outstanding Achievement.</td>
</tr>
<tr>
<td>Faculty of Science Olympiad Scholarship</td>
<td>1 x $3000 then 3 x $1000</td>
<td>4</td>
<td>varies</td>
<td>Awarded to highly ranked University of Sydney Undergraduate Scholarship applicants who do not obtain one of those scholarships. Applicants must be medalists in an International Olympiad in Biology, Chemistry, Informatics, Mathematics or Physics. These scholarships may not be held concurrently with a University of Sydney Scholarship for Outstanding Achievement.</td>
</tr>
<tr>
<td>Biology Entry Scholarship</td>
<td>$2000</td>
<td>1</td>
<td>2</td>
<td>Awarded automatically on the basis of academic merit in the HSC to intending BSc Biology majors. Cannot be held with other scholarships of equal or greater value.</td>
</tr>
<tr>
<td>Chemistry Entry Scholarship</td>
<td>$2000</td>
<td>1</td>
<td>2</td>
<td>Awarded automatically on the basis of academic merit in the HSC to intending BSc Chemistry majors. Cannot be held with other scholarships of equal or greater value.</td>
</tr>
<tr>
<td>Geography Entry Scholarship</td>
<td>$2000</td>
<td>1</td>
<td>1</td>
<td>Awarded automatically on the basis of academic merit in the HSC to intending BSc Geography majors. Cannot be held with other scholarships of equal or greater value.</td>
</tr>
<tr>
<td>Mathematics Entry Scholarship</td>
<td>$2000</td>
<td>1</td>
<td>2</td>
<td>Awarded automatically on the basis of academic merit in the HSC to intending BSc Mathematics majors. Cannot be held with other scholarships of equal or greater value.</td>
</tr>
<tr>
<td>Molecular Biology & Genetics Entry Scholarship</td>
<td>$2000</td>
<td>1</td>
<td>1</td>
<td>Awarded automatically on the basis of ATAR to students entering the BSc (Molecular Biology and Genetics). Cannot be held with other scholarships of equal or greater value.</td>
</tr>
<tr>
<td>Medical Science Entry Scholarship</td>
<td>$2000</td>
<td>1</td>
<td>2</td>
<td>Offered jointly by the Faculties of Science and Medicine. Awarded automatically on the basis of ATAR to students entering the BMedSc. Cannot be held with other scholarships of equal or greater value.</td>
</tr>
<tr>
<td>Psychology Entry Scholarship</td>
<td>$2000</td>
<td>1</td>
<td>2</td>
<td>Awarded automatically on the basis of ATAR to students entering the BPsych. Cannot be held with other scholarships of equal or greater value.</td>
</tr>
<tr>
<td>Farrand Science Scholarships</td>
<td>$2500</td>
<td>1</td>
<td>11</td>
<td>Eleven scholarships for full time first year BSc students who have not undertaken previous tertiary study. Awarded automatically on the basis of academic merit in the HSC (or equivalent). May not be held with the Science Scholarship.</td>
</tr>
<tr>
<td>Liversidge Scholarship</td>
<td>$1000</td>
<td>3</td>
<td>2</td>
<td>Awarded automatically to the Chemistry student who, in the immediately preceding year, achieved the highest number of marks in HSC Chemistry.</td>
</tr>
<tr>
<td>Plimian Scholarship</td>
<td>$400</td>
<td>2</td>
<td>1</td>
<td>Awarded automatically for general proficiency at the HSC to a student enrolled in Biology, Geology or Geography in the candidate’s first year.</td>
</tr>
<tr>
<td>Science Scholarships</td>
<td>$500</td>
<td>1</td>
<td>10</td>
<td>Awarded automatically to full-time first year BSc students for academic merit in the HSC or equivalent and who have not previously enrolled in a degree course. May not be held with the Farrand Science Scholarship.</td>
</tr>
<tr>
<td>Horner Exhibition Prize</td>
<td>$500</td>
<td>1</td>
<td>1</td>
<td>Awarded automatically after enrolment for proficiency in Mathematics at the HSC, to candidates in the faculties of Science, Arts or Engineering. Must enrol in 12 credit points of Mathematics.</td>
</tr>
<tr>
<td>A.J. Shearsby Prize</td>
<td>$100</td>
<td>1</td>
<td>1</td>
<td>Awarded automatically to the Junior Geology student gaining the highest place in Earth and Environmental Science at the NSW HSC.</td>
</tr>
</tbody>
</table>
Scholarships and prizes awarded by the Scholarships Office to students entering first year in any faculty

<table>
<thead>
<tr>
<th>Award</th>
<th>Value (pa)</th>
<th>Tenure (yrs)</th>
<th>Number</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Sydney Scholarships Merit Award</td>
<td>$6000</td>
<td>5</td>
<td>50</td>
<td>Awarded on basis of application to the Scholarships & Prizes Office. Applications close 30 September in the year prior to enrolment. Selection based on academic merit and other achievements. For further information see www.usyd.edu.au/scholarships</td>
</tr>
<tr>
<td>University of Sydney Scholarships Entry Award</td>
<td>$6000</td>
<td>1</td>
<td>100</td>
<td>Awarded on basis of application to the Scholarships & Prizes Office. Applications close 30 September in the year prior to enrolment. Selection based on academic merit and other achievements. For further information see www.usyd.edu.au/scholarships</td>
</tr>
<tr>
<td>University of Sydney Scholarships for Outstanding Achievement</td>
<td>$10,000</td>
<td>5</td>
<td>approx 35</td>
<td>Awarded to any student enrolling at the University of Sydney who scores achieves an ATAR of 99.95 in the NSW HSC or equivalent in the preceding year. For further information see www.usyd.edu.au/scholarships</td>
</tr>
<tr>
<td>University of Sydney Access Scholarships</td>
<td>$6000</td>
<td>5</td>
<td>140</td>
<td>Access Scholarships assist new and continuing students who have been disadvantaged in some way. They are available to students who have a competitive UAI and who also meet at least one of these criteria: financial disadvantage, disability or rural/remote area. Applications close 30 September. Apply through UAC - consult the UAC booklet or UAC website: www.usyd.edu.au</td>
</tr>
<tr>
<td>Commonwealth Learning Scholarships</td>
<td>$2207 or $4415 indexed</td>
<td>approx 350</td>
<td></td>
<td>The Commonwealth Learning Scholarships program is a Commonwealth-funded scheme open to undergraduate students at the University of Sydney. Applications close 30 September. Apply through UAC - consult the UAC booklet or UAC website: www.usyd.edu.au</td>
</tr>
<tr>
<td>E. Trenchard Miller Memorial Scholarships</td>
<td>$1500</td>
<td>6</td>
<td>approx 8</td>
<td>Awarded automatically after enrolment for general proficiency in the HSC.</td>
</tr>
<tr>
<td>G.C. Halliday Scholarship</td>
<td>$250</td>
<td>3</td>
<td>1</td>
<td>Awarded for general proficiency in the HSC to a Sydney Grammar School student enrolling into the faculties of Arts, Law, Science, or Engineering</td>
</tr>
<tr>
<td>Kileeon Prize</td>
<td>$190</td>
<td>1</td>
<td>1</td>
<td>Awarded on the recommendation of the Principal of the Fort Street High School to a student at the end of March in the year of candidature.</td>
</tr>
<tr>
<td>John West Medal</td>
<td>$400</td>
<td>1</td>
<td>1</td>
<td>Awarded automatically after enrolment for general proficiency in the HSC.</td>
</tr>
</tbody>
</table>

Faculty prizes and scholarships for continuing students

<table>
<thead>
<tr>
<th>Award</th>
<th>Value (pa)</th>
<th>Tenure (yrs)</th>
<th>Number</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helen Beh Award for Citizenship</td>
<td>$350</td>
<td>1</td>
<td>1</td>
<td>Awarded annually to the Science student who has contributed most to the faculty’s non-academic activities and interests. May not be held with the Dean’s Award for Citizenship</td>
</tr>
<tr>
<td>Dean’s Award for Citizenship</td>
<td>$100</td>
<td>1</td>
<td>varies</td>
<td>Awarded annually to the Science student who has contributed most to the faculty’s non-academic activities and interests. May not be held with the Helen Beh award.</td>
</tr>
<tr>
<td>Dean’s List of Excellence in Academic Performance</td>
<td>$500</td>
<td>1</td>
<td>3</td>
<td>Students of the Faculty of Science earn a place on the Dean’s List of Excellence in Academic Performance if they achieve a WAM at the High Distinction level over at least 48 credit points in the given academic year.</td>
</tr>
<tr>
<td>Dean’s Honours List Prize</td>
<td>$500</td>
<td>1</td>
<td>3</td>
<td>Highest WAM of all candidates in junior, intermediate and senior years of study who have attempted at least 48 credit points in the year.</td>
</tr>
<tr>
<td>Dean’s Scholarship in Science</td>
<td>$1000</td>
<td>1</td>
<td>9</td>
<td>Awarded on basis of academic merit to candidates enrolled full time for courses offered by the faculty who have completed between 2 and 6 semesters and are not holders of a University of Sydney Undergraduate Scholarship.</td>
</tr>
<tr>
<td>Science Achievement Prize</td>
<td>$500</td>
<td>1</td>
<td>1</td>
<td>Highest WAM for all units of study to a student completing the requirements for a faculty degree in six semesters.</td>
</tr>
<tr>
<td>USA Foundation Scholarship for Women in Science</td>
<td>$800</td>
<td>1</td>
<td>1</td>
<td>The scholarship shall be awarded on merit to a woman who is a citizen or permanent resident of Australia enrolling into an honours program in the Faculty of Science at the University of Sydney.</td>
</tr>
</tbody>
</table>

Scholarships Office prizes and scholarships for continuing students

<table>
<thead>
<tr>
<th>Award</th>
<th>Value (pa)</th>
<th>Tenure (yrs)</th>
<th>Number</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Sydney Access Scholarships</td>
<td>$6000</td>
<td>5</td>
<td>approx 60</td>
<td>Access Scholarships assist new and continuing students who have been disadvantaged in some way. They are available to students who have a competitive ATAR and who also meet at least one of these criteria: financial disadvantage, disability or rural/remote area. Applications close 30 September. Apply through UAC - consult the UAC booklet or UAC website: www.usyd.edu.au</td>
</tr>
<tr>
<td>Commonwealth Learning Scholarships</td>
<td>$2207 or $4415 indexed</td>
<td>approx 350</td>
<td></td>
<td>The Commonwealth Learning Scholarships program is a Commonwealth-funded scheme open to undergraduate students at the University of Sydney. Applications close 30 September. Apply through UAC - consult the UAC booklet or UAC website: www.usyd.edu.au</td>
</tr>
<tr>
<td>Academic Merit Prizes</td>
<td>$2000</td>
<td>1</td>
<td>300</td>
<td>Awarded without application to continuing undergraduate students in any faculty on the basis of academic merit.</td>
</tr>
<tr>
<td>Honours Scholarship</td>
<td>$6000</td>
<td>1</td>
<td>50</td>
<td>Awarded on the basis of merit or equity and merit to students enrolled in an honours program at the University of Sydney. Equity applications to the Scholarships and Prizes Office usually close at the end of March in the year of candidature.</td>
</tr>
</tbody>
</table>

International Office scholarships for continuing students

<table>
<thead>
<tr>
<th>Award</th>
<th>Value (pa)</th>
<th>Tenure (yrs)</th>
<th>Number</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Merit Scholarship</td>
<td>$6000</td>
<td>1</td>
<td>up to 8</td>
<td>Half fee scholarships awarded on academic merit to International students who have completed at least 36 credit points at the University of Sydney.</td>
</tr>
</tbody>
</table>

Scholarships and prizes awarded by Schools and Departments

<table>
<thead>
<tr>
<th>Award</th>
<th>Value (pa)</th>
<th>Tenure (yrs)</th>
<th>Number</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy and Histology</td>
<td>$120</td>
<td>1</td>
<td>1</td>
<td>Merit in practical Anatomy to a student in the Bachelor of Medical Science.</td>
</tr>
<tr>
<td>Grafton Elliot Smith Memorial Prize</td>
<td>$280</td>
<td>1</td>
<td>1</td>
<td>For merit in Anatomy to a Bachelor of Medical Science student.</td>
</tr>
<tr>
<td>J T Wilson Memorial Prize</td>
<td>$140</td>
<td>1</td>
<td>1</td>
<td>Proficiency in Neuroscience for a student in the Bachelor of Medical Science.</td>
</tr>
<tr>
<td>Biological Sciences</td>
<td>$120</td>
<td>1</td>
<td>1</td>
<td>Merit in Intermediate or Senior invertebrate zoology.</td>
</tr>
<tr>
<td>Mary Besty Memorial Prize</td>
<td>$100</td>
<td>1</td>
<td>1</td>
<td>Merit in Intermediate plant morphology to a student born in Australia.</td>
</tr>
<tr>
<td>Award</td>
<td>Value (pa)</td>
<td>Tenure (yrs)</td>
<td>Number</td>
<td>Brief description</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>--------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Collie Prize</td>
<td>$250</td>
<td>1</td>
<td></td>
<td>Awarded to the student enrolled in the Faculty of Science who obtains the highest aggregate mark for 12 credit points of Junior Biology.</td>
</tr>
<tr>
<td>William John Dakin Memorial Prize in Geology</td>
<td>$450</td>
<td>1</td>
<td></td>
<td>For excellence in the subject of Zoology to a student gaining first class honours in Biology.</td>
</tr>
<tr>
<td>John H. Elliott Memorial Prize</td>
<td>$200</td>
<td>1</td>
<td></td>
<td>For merit in an honours thesis on animal biology.</td>
</tr>
<tr>
<td>Haswell Prize for Biology</td>
<td>$150</td>
<td>1</td>
<td></td>
<td>Proficiency in 24 credit points of zoological work in Senior Biology.</td>
</tr>
<tr>
<td>McGraw-Hill Prize for Academic Excellence in Biology</td>
<td>$250</td>
<td>3</td>
<td></td>
<td>Awarded annually in the form of a book voucher to the most proficient student in each of four streams in First Year Biology. These four streams are: Concepts in Biology, Living Systems, and Human Biology.</td>
</tr>
<tr>
<td>E.N. (Ted) O'Reilly Memorial Prize</td>
<td>$500</td>
<td>1</td>
<td></td>
<td>Merit in senior plant physiology.</td>
</tr>
<tr>
<td>Slade Prize in Junior Biology</td>
<td>$100</td>
<td>1</td>
<td></td>
<td>For proficiency in junior biology practicals.</td>
</tr>
<tr>
<td>Professor Spencer Smith-White Prize</td>
<td>$300</td>
<td>1</td>
<td></td>
<td>For merit in genetics honours.</td>
</tr>
<tr>
<td>Gabriella Wittman Prize</td>
<td>$350</td>
<td>1</td>
<td></td>
<td>Proficiency in senior genetics.</td>
</tr>
<tr>
<td>Biology Honours Scholarship</td>
<td>$1000</td>
<td>1</td>
<td></td>
<td>The scholarship shall be open to full time students enrolling in fourth year honours in Biology in the Bachelor of Science degree on a basis of prior academic merit. May not be held in conjunction with the G.S. Caird Scholarship.</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthur Hollis Memorial Prize</td>
<td>$150</td>
<td>1</td>
<td></td>
<td>For excellence in mainstream intermediate Chemistry.</td>
</tr>
<tr>
<td>Australia-USA Foundation Prizes</td>
<td>$250</td>
<td>1</td>
<td></td>
<td>Greatest improvement between junior and intermediate Chemistry.</td>
</tr>
<tr>
<td>C.H. Wilson Prize</td>
<td>$120</td>
<td>1</td>
<td></td>
<td>Highest grade in Organic Chemistry honours.</td>
</tr>
<tr>
<td>Charles E. Fawcitt Prize</td>
<td>$100</td>
<td>1</td>
<td></td>
<td>Proficiency in junior Chemistry.</td>
</tr>
<tr>
<td>Chemistry Summer Undergraduate Scholarship</td>
<td>varies</td>
<td>6 weeks</td>
<td>varies</td>
<td>This scholarship aims to encourage further study in chemistry and to provide experience in chemical research laboratory. Awarded on the basis of academic merit and an assessment of details provided on an application form to Australian citizens and permanent residents proceeding into senior Chemistry.</td>
</tr>
<tr>
<td>Edna Maude Goulston Prize in Organic Chemistry</td>
<td>$375</td>
<td>1</td>
<td></td>
<td>Awarded annually to the Chemistry honours student gaining the highest mark in the Organic coursework module, provided that the student’s work is of sufficient merit.</td>
</tr>
<tr>
<td>Frank E. Dixon Scholarship</td>
<td>$750</td>
<td>1</td>
<td>1</td>
<td>Merit in senior Chemistry for a student proceeding to honours.</td>
</tr>
<tr>
<td>G.S. Card Scholarships (in Chemistry)</td>
<td>$1290</td>
<td>1</td>
<td>3</td>
<td>Merit in senior Chemistry for a student proceeding to honours.</td>
</tr>
<tr>
<td>Hush Prize in Theoretical Chemistry</td>
<td>$350</td>
<td>1</td>
<td></td>
<td>Merit in senior Theoretical Chemistry for a student proceeding to honours in Theoretical Chemistry.</td>
</tr>
<tr>
<td>Inglis Hudson Scholarships</td>
<td>1 x $380 & 2 x $190</td>
<td>1</td>
<td>3</td>
<td>Merit in senior Chemistry for a student proceeding to Organic Chemistry honours.</td>
</tr>
<tr>
<td>Iredale Prize</td>
<td>$100</td>
<td>1</td>
<td></td>
<td>For merit in mainstream intermediate Chemistry.</td>
</tr>
<tr>
<td>Janet Elisabeth Crawford Prize In Chemistry</td>
<td>$1500</td>
<td>1</td>
<td></td>
<td>To a female graduate for merit in Chemistry honours.</td>
</tr>
<tr>
<td>Levey Scholarship No. 2</td>
<td>$550</td>
<td>1</td>
<td>1</td>
<td>For merit in junior Chemistry for a student proceeding to intermediate Chemistry.</td>
</tr>
<tr>
<td>Levey Scholarship No. 3</td>
<td>$300</td>
<td>1</td>
<td>1</td>
<td>For merit in junior Chemistry for a student proceeding to intermediate Chemistry.</td>
</tr>
<tr>
<td>RJW Le Fevre-DAAASN Rao Prize in Physical Chemistry</td>
<td>$230</td>
<td>1</td>
<td>1</td>
<td>For merit in senior Physical Chemistry to the student entering Physical Chemistry honours.</td>
</tr>
<tr>
<td>Slade Prize in Intermediate Chemistry Practical</td>
<td>$100</td>
<td>1</td>
<td></td>
<td>Awarded for proficiency in the practical component of both a Semester 1 and a Semester 2 intermediate Chemistry unit of study.</td>
</tr>
<tr>
<td>Walter Burritt Scholarship No 1</td>
<td>$750</td>
<td>1</td>
<td>1</td>
<td>Merit in senior Chemistry to a student proceeding to honours in Chemistry.</td>
</tr>
<tr>
<td>Geosciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AusIMM: Mining and Metallurgical Bursaries</td>
<td>$500 + $100 book voucher</td>
<td>1</td>
<td></td>
<td>Awarded annually by the New South Walesand ACT Branch of the Australian Institute of Mining and Metallurgy for the best intermediate, senior and honours students in a geoscience, mining or extractive metallurgical engineering department in NSW and the ACT. Application forms become available in March each year. Completed forms must be submitted to the Head of School of Geosciences by the end of April each year.</td>
</tr>
<tr>
<td>Olga Marian Browne Prize</td>
<td>$100</td>
<td>1</td>
<td></td>
<td>For merit in intermediate Geology fieldwork.</td>
</tr>
<tr>
<td>G.S. Card Scholarship (in Geography)</td>
<td>$1500</td>
<td>1</td>
<td>1</td>
<td>For merit in senior Geography.</td>
</tr>
<tr>
<td>Leo A. Cotton Prize in Exploration Geophysics</td>
<td>$100</td>
<td>1</td>
<td></td>
<td>For proficiency in senior year studies in the field of Exploration Geophysics.</td>
</tr>
<tr>
<td>Dee’s-Thomson Scholarship in Mineralogy</td>
<td>$1500</td>
<td>1</td>
<td>1</td>
<td>For proficiency in senior Geology to a student who proceeds to honours in Geology and/or Geophysics.</td>
</tr>
<tr>
<td>Earth Resources Foundation First Year Scholarships</td>
<td>$600</td>
<td>1</td>
<td>4</td>
<td>Merit in first semester junior Geology.</td>
</tr>
<tr>
<td>Earth Resources Foundation Second Year Scholarships</td>
<td>$800</td>
<td>1</td>
<td>4</td>
<td>For merit in junior Geology to students proceeding to intermediate Geology.</td>
</tr>
<tr>
<td>Earth Resources Foundation Third Year Scholarships</td>
<td>$1000</td>
<td>1</td>
<td>3</td>
<td>For merit in intermediate Geology to students proceeding to senior Geology and/or Geophysics.</td>
</tr>
<tr>
<td>Earth Resources Foundation Honours Year Scholarships</td>
<td>$1000</td>
<td>1</td>
<td>2</td>
<td>For merit in senior Geology and/or Geophysics to students proceeding to honours in these areas.</td>
</tr>
<tr>
<td>Edgeworth David Prize for Palaeontology</td>
<td>$150</td>
<td>1</td>
<td></td>
<td>For proficiency in senior Palaeontology.</td>
</tr>
<tr>
<td>Elliston Medal</td>
<td>Medal</td>
<td></td>
<td>1</td>
<td>For proficiency in Geology honours.</td>
</tr>
<tr>
<td>Award</td>
<td>Value (pa)</td>
<td>Tenure (yrs)</td>
<td>Number</td>
<td>Brief description</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>--------------</td>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>Edgar Ford Memorial Scholarship</td>
<td>$500</td>
<td>1</td>
<td>1</td>
<td>For proficiency in senior Geography to the student who proceeds to Geography honours.</td>
</tr>
<tr>
<td>Fugro Geophysics Prize</td>
<td>$1000</td>
<td>1</td>
<td>1</td>
<td>For proficiency in Senior Geophysics for a student proceeding to Geophysics honours.</td>
</tr>
<tr>
<td>Geological Society of Australia Prize</td>
<td>$180</td>
<td>1</td>
<td>1</td>
<td>Awarded to a candidate for a bachelor's degree enrolled in a unit of study or units of study in Geology and/or Geophysics who requires financial assistance to meet student expenses and who has demonstrated academic merit.</td>
</tr>
<tr>
<td>Roy Lindseth Bursary</td>
<td>$100</td>
<td>1</td>
<td>1</td>
<td>Proficiency in the practical component of junior Geology.</td>
</tr>
<tr>
<td>Jack Mahoney Memorial Prize</td>
<td>$70</td>
<td>1</td>
<td>1</td>
<td>Awarded to the woman student who gains the highest marks in the GEOG 1001 and 1002 examinations in the Faculty of Science.</td>
</tr>
<tr>
<td>C.E. Marshall Scholarship</td>
<td>$30</td>
<td>1</td>
<td>1</td>
<td>Awarded to the degree student who gains the highest marks in the GEOG 1001 and 1002 examinations, provided the student’s work is of sufficient merit.</td>
</tr>
<tr>
<td>W.H. Maze Prize in Intermediate Geography</td>
<td>$250</td>
<td>1</td>
<td>1</td>
<td>Awarded to the most proficient student in two units of study from GEOG 2001, 2002, 2101, 2102, 2201 and 2202 if the student’s work is of sufficient merit.</td>
</tr>
<tr>
<td>Rev. A.S. McCook Memorial Scholarship</td>
<td>$1000</td>
<td>1</td>
<td>1</td>
<td>Awarded for merit in senior Geography to a student proceeding to Geography or Geomorphology honours, to assist in the expenses for field work connected with the thesis.</td>
</tr>
<tr>
<td>Sheila Mitchell Swan Memorial Prize</td>
<td>$250</td>
<td>1</td>
<td>1</td>
<td>Awarded to the senior Geology student who submits the best field report.</td>
</tr>
<tr>
<td>Quodling Testimonial Prize</td>
<td>$350</td>
<td>1</td>
<td>1</td>
<td>Awarded to a student in senior Geology and/or Geophysics who has shown proficiency in petrology.</td>
</tr>
<tr>
<td>Ken Richards Memorial Scholarship</td>
<td>$1250</td>
<td>1</td>
<td>1</td>
<td>For an honours student with interest and aptitude in applied geosciences.</td>
</tr>
<tr>
<td>Slade Prize in Junior Geography Practical</td>
<td>$150</td>
<td>1</td>
<td>1</td>
<td>Proficiency in junior Geology practicals.</td>
</tr>
<tr>
<td>Slade Prize in intermediate Geology Practical</td>
<td>$150</td>
<td>1</td>
<td>1</td>
<td>Proficiency in intermediate Geology practicals.</td>
</tr>
<tr>
<td>University Prize for Geology</td>
<td>$30</td>
<td>1</td>
<td>1</td>
<td>Awarded to the first year student who gains the highest marks in the class examination in Geology.</td>
</tr>
<tr>
<td>History and Philosophy of Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr G.A.M. Heydon Prize</td>
<td>$120</td>
<td>1</td>
<td>1</td>
<td>Merit in intermediate History and Philosophy of Science.</td>
</tr>
<tr>
<td>Ian Langham Memorial Prize</td>
<td>$150</td>
<td>1</td>
<td>1</td>
<td>Merit in senior History and Philosophy of Science.</td>
</tr>
<tr>
<td>Marine Science Prize</td>
<td>$100</td>
<td></td>
<td>1</td>
<td>Merit in senior Marine Science</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>George Allen Scholarship</td>
<td>$1000</td>
<td>1</td>
<td>3</td>
<td>Three scholarships: one to a student proceeding to honours in Applied Mathematics, one to a student proceeding to honours in Mathematical Statistics and one to a student proceeding to honours in Pure Mathematics, each one of whom has shown proficiency in at least 24 credit points of senior units of study in the School of Mathematics & Statistics.</td>
</tr>
<tr>
<td>The MJ and M Ashby Prize for Mathematics in Science</td>
<td>$360</td>
<td>1</td>
<td>1</td>
<td>For the best essay, submitted by a student in the Faculty of Science, that forms part of the requirements of Pure Mathematics honours, Applied Mathematics honours or Mathematical Statistics honours.</td>
</tr>
<tr>
<td>Applied Probability Trust Prize</td>
<td>$200</td>
<td>1</td>
<td>1</td>
<td>Awarded annually to the student enrolled in STAT3911 Stochastic Processes and Time Series (Advanced) who demonstrates the greatest proficiency.</td>
</tr>
<tr>
<td>Australian Federation of University Women (NSW) Prize in Mathematics</td>
<td>$175</td>
<td>1</td>
<td>1</td>
<td>Awarded to the most distinguished woman candidate for the degree of Bachelor of Arts or Bachelor of Science who graduates with first class honours in Applied Mathematics, Pure Mathematics or Mathematical Statistics.</td>
</tr>
<tr>
<td>Barker Prize</td>
<td>$375</td>
<td>1</td>
<td>1</td>
<td>Awarded at the fourth (honours) year examination for proficiency in Pure Mathematics, Applied Mathematics or Mathematical Statistics.</td>
</tr>
<tr>
<td>Barker Scholarship, No. I</td>
<td>$750</td>
<td>1</td>
<td>1</td>
<td>Awarded for proficiency in Intermediate Mathematics. The scholar is required to have attended 30 credit points of Senior units of study in the School of Mathematics and Statistics by the end of the year of the tenure of the scholarship.</td>
</tr>
<tr>
<td>Barker Scholarship, No. II</td>
<td>$750</td>
<td>1</td>
<td>1</td>
<td>Awarded for proficiency in Junior Mathematics. The student must attend 24 credit points of Junior credit points in the School of Mathematics and Statistics during the tenure of the scholarship.</td>
</tr>
<tr>
<td>Barker Scholarship, No. IV</td>
<td>$750</td>
<td>1</td>
<td>1</td>
<td>Awarded for proficiency in Senior Mathematics. The student must attend 24 credit points of Senior credit points in the School of Mathematics and Statistics during the tenure of the scholarship.</td>
</tr>
<tr>
<td>Tim Brown Prize No. 1</td>
<td>$175</td>
<td>1</td>
<td>1</td>
<td>For proficiency in 12 credit points of intermediate Statistics.</td>
</tr>
<tr>
<td>Tim Brown Prize No. 2</td>
<td>$275</td>
<td>1</td>
<td>1</td>
<td>For proficiency in 24 credit points of senior Statistics.</td>
</tr>
<tr>
<td>K.E. Bullen Memorial Prize</td>
<td>$725</td>
<td>1</td>
<td>1</td>
<td>To the most proficient student in Applied Mathematics honours.</td>
</tr>
<tr>
<td>K E Bullen Scholarships Nos. I & II</td>
<td>$1250</td>
<td>1</td>
<td>2</td>
<td>Proficiency in senior Mathematics and Statistics to the student who enrol full-time in Applied Mathematics honours.</td>
</tr>
<tr>
<td>K.E. Bullen Scholarship No III</td>
<td>$1000</td>
<td>1</td>
<td>1</td>
<td>Proficiency in Senior Mathematics and Statistics to the woman student who enrols full-time in Applied Mathematics honours, provided that the candidate has not received any other K E Bullen Scholarship.</td>
</tr>
<tr>
<td>Chris Cannon Prize</td>
<td>$100</td>
<td>1</td>
<td>1</td>
<td>To the student in AM4 giving the best Honours talk.</td>
</tr>
<tr>
<td>David G A Jackson Prize</td>
<td>$1000</td>
<td>1</td>
<td>1</td>
<td>Awarded for creativity and originality in any undergraduate Pure Mathematics unit of study.</td>
</tr>
<tr>
<td>Joyce Prize in Mathematics</td>
<td>$5000 & medal</td>
<td>1</td>
<td>1</td>
<td>To the most outstanding student completing fourth year honours in Applied Mathematics, Pure Mathematics or Mathematical Statistics.</td>
</tr>
<tr>
<td>Norbert Quirk Prizes</td>
<td>$250</td>
<td>1</td>
<td>4</td>
<td>For the best essay on a given mathematical subject by a student enrolled in a junior, intermediate, senior and honours units of study in Mathematics (Pure Mathematics, Applied Mathematics or Mathematical Statistics).</td>
</tr>
</tbody>
</table>
Scholarships

<table>
<thead>
<tr>
<th>Award</th>
<th>Value (pa)</th>
<th>Tenure (yrs)</th>
<th>Number</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSW Institute of Sport Mathematics & Statistics Scholarship</td>
<td>$3000</td>
<td>varies</td>
<td></td>
<td>Established in 2007 by an offer of funding from the NSW Institute of Sport. Awarded on the basis of an application, to students in the honours year undertaking a research topic related to mathematical or statistical modelling relevant to sports science.</td>
</tr>
<tr>
<td>Veronica Thomas Prize</td>
<td>$100</td>
<td>1</td>
<td></td>
<td>For proficiency in General Statistical Methods.</td>
</tr>
<tr>
<td>Cengage Publishers Prize No.1</td>
<td>$125</td>
<td>1</td>
<td></td>
<td>Established in 1981 by the offer of Wadsworth Publishing Company (Australia) to establish a prize for junior Mathematics, this prize is awarded annually to a student for proficiency in Advanced level units of study in junior Mathematics by the annual donation of a book voucher.</td>
</tr>
<tr>
<td>Cengage Publishers Prize No.2</td>
<td>$125</td>
<td>1</td>
<td></td>
<td>Established in 1981 by the offer of Wadsworth Publishing Company (Australia) to establish a prize for junior Mathematics, this prize is awarded annually to a student for proficiency in normal level units of study in junior Mathematics by the annual donation of a book voucher.</td>
</tr>
<tr>
<td>Medical Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Korner Prize</td>
<td>$500</td>
<td>1</td>
<td>1</td>
<td>Awarded for proficiency in the intermediate year of the Bachelor of Medical Science degree.</td>
</tr>
<tr>
<td>Molecular and Microbial Biosciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allman Prize</td>
<td>$300</td>
<td>1</td>
<td>1</td>
<td>Awarded annually to the student in the clinical stream of the honours year in the BSc (Nutrition) who obtains the top aggregate mark in NUTR 4001 and NUTR 4002.</td>
</tr>
<tr>
<td>Australian Society for Microbiology prize</td>
<td>$500</td>
<td>1</td>
<td>1</td>
<td>Awarded to an enrolled Microbiology honours student for outstanding achievement in undergraduate Microbiology.</td>
</tr>
<tr>
<td>G.S. Caird Scholarship (in Biochemistry)</td>
<td>$1500</td>
<td>1</td>
<td>2</td>
<td>Awarded for greatest proficiency in the units of study MBLG 2071 or MBLG 2971, provided that the student's work is of sufficient merit.</td>
</tr>
<tr>
<td>Roslyn Flora Goulston Prize</td>
<td>$375</td>
<td>1</td>
<td></td>
<td>Awarded for greatest proficiency in 24 credit points of senior Biochemistry (taken from BCHM2971/3971; BCHM3081/3981; BCHM3072/3972; BCHM3082/3982; BCHM3092/3992) to an undergraduate in science who intends proceeding to a BSc degree with honours in Biochemistry.</td>
</tr>
<tr>
<td>Mannatech Australia Prize in Modern Metabolic Biochemistry</td>
<td>$1000</td>
<td>1</td>
<td></td>
<td>Established in 2005 by annual donation from Mannatech Australia, this prize is awarded annually to the School of Molecular and Microbial Biosciences to the student who attains the highest performance in their honours year in the School, in the field of modern metabolic biochemistry. Provided the work is of sufficient merit.</td>
</tr>
<tr>
<td>Sigma-Aldrich Molecular Biotechnology Second Year Award</td>
<td>$250</td>
<td>1</td>
<td></td>
<td>The award recognises the best overall grade performance in MCBT2102 by a student enrolled in the BSc (Molecular Biotechnology) undergraduate degree. Students must receive a minimum Distinction average in this unit of study.</td>
</tr>
<tr>
<td>Sigma-Aldrich Molecular Biotechnology Third Year Award</td>
<td>$500</td>
<td>1</td>
<td></td>
<td>The award recognises the best overall grade performance in MCBT3102 by a student enrolled in the BSc (Molecular Biotechnology) undergraduate degree. Students must receive a minimum Distinction average in this unit of study.</td>
</tr>
<tr>
<td>Slade Prize in Intermediate Biochemistry</td>
<td>$100</td>
<td>1</td>
<td></td>
<td>Awarded for proficiency in the units of study MBLG2071 or MBLG2971 and either BCHM2072 or BCHM2972.</td>
</tr>
<tr>
<td>Nestle Australia - Uncle Toby's Prize in Nutrition</td>
<td>$500</td>
<td>1</td>
<td></td>
<td>Awarded annually to a student who is enrolled in both intermediate units of study (NUTR9111 and NUTR2912) who demonstrates the greatest proficiency, provided that the work is of sufficient merit.</td>
</tr>
<tr>
<td>Australian Society for Microbiology Prize</td>
<td>$500</td>
<td>1</td>
<td></td>
<td>Awarded annually to the student enrolled in honours in Microbiology with the most outstanding undergraduate record in Microbiology.</td>
</tr>
<tr>
<td>2M Vending Prize for Proficiency in Introductory Molecular Biology and Genetics</td>
<td>$150</td>
<td>1</td>
<td></td>
<td>Generously donated by Mr Michael Miller, a former member of staff; the 2M vending prize is awarded annually to the student who achieves the highest score in the lab course in MBLG1001.</td>
</tr>
<tr>
<td>Neville Whiffen Scholarship</td>
<td>varies</td>
<td></td>
<td></td>
<td>Established in 2004 by a bequest left as a legacy to the Nutrition Research Foundation by Neville Whiffen US Medal of Freedom, FSTC FRSC FRACI FIE Aust FI ChemE FAIM who was a Life Governor of the Foundation. This scholarship is awarded annually or bi-annually by the Nutrition Research Foundation on the recommendation of the Head of the Human Nutrition Unit to a student in the Human Nutrition Unit to attend a conference in Australia or overseas.</td>
</tr>
<tr>
<td>Pharmacology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorothy Thorp Prize in Science Communication</td>
<td>$250</td>
<td>1</td>
<td></td>
<td>Merit in Pharmacology honours.</td>
</tr>
<tr>
<td>Roland H. Thorp Prize</td>
<td>$500</td>
<td>1</td>
<td></td>
<td>Merit in senior Pharmacology.</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Institute of Physics (N.S.W. Branch) Prize in Physics</td>
<td>$400</td>
<td>1</td>
<td></td>
<td>To the student graduating with the degree of Bachelor of Science with honours in Physics who shows greatest proficiency.</td>
</tr>
<tr>
<td>Geoffrey Builder - AWA Prize</td>
<td>$250</td>
<td>1</td>
<td></td>
<td>Awarded annually to a student for proficiency in practical work in intermediate Physics.</td>
</tr>
<tr>
<td>Walter Burltt Scholarship No. II</td>
<td>$750</td>
<td>1</td>
<td></td>
<td>Awarded annually for proficiency in senior Physics in the Faculty of Science. The scholar shall be required to pursue the study of Physics honours.</td>
</tr>
<tr>
<td>Deas-Thomson Scholarship in Physics</td>
<td>$6500</td>
<td>1</td>
<td></td>
<td>To the student in either the Faculty of Arts or the Faculty of Science who demonstrates the greatest proficiency in senior Physics, provided the student's work is of sufficient merit. The student is required to enrol in Physics honours at the University.</td>
</tr>
<tr>
<td>Henry Chamberlain Russell Prize</td>
<td>$1400</td>
<td>1</td>
<td></td>
<td>Awarded for an essay, a thesis or research report on an astronomical subject written by a student enrolled for a degree within the University.</td>
</tr>
<tr>
<td>Levy Scholarship No. 1 for Physics</td>
<td>$825</td>
<td>1</td>
<td></td>
<td>Awarded for proficiency in junior Physics to a student in the Faculty of Arts, Science or Engineering who enrols in at least 12 credit points of intermediate Physics.</td>
</tr>
<tr>
<td>School of Physics Outstanding Achievement Scholarship</td>
<td>1 x $2000 then 3 x $1000</td>
<td>4</td>
<td>1</td>
<td>Awarded automatically on the basis of academic merit in the HSCI to intending BSc Physics majors. Cannot be held with other scholarships awarded by the Faculty of Science or University of Sydney.</td>
</tr>
<tr>
<td>Science Foundation for Physics Scholarships No. 1</td>
<td>$700</td>
<td>1</td>
<td>5</td>
<td>Up to five scholarships for proficiency in junior Physics, provided that the student's work is of sufficient merit and that the student enrols in at least 12 credit points of intermediate Physics.</td>
</tr>
<tr>
<td>Science Foundation for Physics Scholarships No. 2</td>
<td>$800</td>
<td>1</td>
<td>5</td>
<td>Up to five scholarships for proficiency in intermediate Physics, provided that the student's work is of sufficient merit and that the student enrols in 12 credit points of senior Physics.</td>
</tr>
<tr>
<td>Science Foundation for Physics Scholarships No. 3</td>
<td>$3000</td>
<td>1</td>
<td>5</td>
<td>Up to five scholarships for proficiency in senior Physics, provided that the student's work is of sufficient merit and that the student enrols in Physics honours.</td>
</tr>
<tr>
<td>Shiroki Prize</td>
<td>$750</td>
<td>1</td>
<td></td>
<td>Awarded to the student who submits the best project in Physics honours provided the candidate's work is of sufficient merit.</td>
</tr>
</tbody>
</table>
32. Scholarships

<table>
<thead>
<tr>
<th>Award</th>
<th>Value (pa)</th>
<th>Tenure (yrs)</th>
<th>Number</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>School of Physics Honours Scholarship</td>
<td>$3000</td>
<td>1</td>
<td>1</td>
<td>Awarded to a student who has completed a major in Physics or equivalent and has achieved a result of at least Distinction in senior Physics.</td>
</tr>
<tr>
<td>School of Physics - Julius Sumner Miller Scholarships for Academic Excellence No. 1</td>
<td>$700</td>
<td>1</td>
<td>2</td>
<td>To the most proficient students in junior Physics provided that their work is of sufficient merit and they enrol in at least 12 credit points of intermediate Physics.</td>
</tr>
<tr>
<td>School of Physics - Julius Sumner Miller Scholarships for Academic Excellence No. 2</td>
<td>$800</td>
<td>1</td>
<td>2</td>
<td>To the most proficient students in intermediate Physics provided that their work is of sufficient merit and they enrol in 12 credit points of senior Physics.</td>
</tr>
<tr>
<td>School of Physics - Julius Sumner Miller Scholarships for Academic Excellence No. 3</td>
<td>$3000</td>
<td>1</td>
<td>2</td>
<td>To the most proficient students in senior Physics provided that their work is of sufficient merit and they enrol in Physics honours.</td>
</tr>
<tr>
<td>Slade Prize in Intermediate Physics</td>
<td>$350</td>
<td>1</td>
<td></td>
<td>Proficiency in intermediate Experimental Physics.</td>
</tr>
<tr>
<td>Smith Prize</td>
<td>$200</td>
<td>1</td>
<td></td>
<td>Awarded to the best undergraduate in junior Experimental Physics.</td>
</tr>
<tr>
<td>W.I.B. Smith Prize</td>
<td>$500</td>
<td>1</td>
<td></td>
<td>Awarded to the student who best combines the characteristics of experimental skill, proficiency and exceptional motivation in the senior laboratory classes.</td>
</tr>
<tr>
<td>Malcolm Turki Memorial Scholarship</td>
<td>$1700</td>
<td>1</td>
<td>1</td>
<td>To encourage and assist an outstanding student within the School of Physics in the completion of Physics honours who might not otherwise be able to do so due to insufficient financial support.</td>
</tr>
<tr>
<td>CISRA Postgraduate Physics Prize</td>
<td>$20000</td>
<td>1</td>
<td>1</td>
<td>Awarded to the postgraduate research student that produces the best refereed publication in a leading international journal.</td>
</tr>
<tr>
<td>School of Physics Postgraduate Alumni Prize</td>
<td>$1000</td>
<td>1</td>
<td>1</td>
<td>Awarded to the student who has completed the most outstanding PhD thesis in the School of Physics.</td>
</tr>
<tr>
<td>Physiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claude Bernard Prize</td>
<td>$150</td>
<td>1</td>
<td></td>
<td>Proficiency in PHSI 3003/3903.</td>
</tr>
<tr>
<td>Colin Dunlop Prize</td>
<td>$200</td>
<td>1</td>
<td></td>
<td>Merit in Physiology honours.</td>
</tr>
<tr>
<td>Frank Cotton Memorial Prize</td>
<td>$350</td>
<td>1</td>
<td></td>
<td>For merit in the Human Cellular Physiology units of study (PHSI3005 or 3905) and (PHSI3006 or 3906).</td>
</tr>
<tr>
<td>Intermediate Physiology Merit Award</td>
<td>$300</td>
<td>1</td>
<td></td>
<td>For merit in the units of study PHSI2005 or PHSI2905 and PHSI2006 or PHSI2906.</td>
</tr>
<tr>
<td>Y E Knight Neuroscience Essay Prize</td>
<td>$100</td>
<td>1</td>
<td></td>
<td>For the best essay or report in NEUR3001 or NEUR3901 and NEUR3002 or NEUR3902.</td>
</tr>
<tr>
<td>David J. Monk Adams Award</td>
<td>$600</td>
<td>1</td>
<td></td>
<td>Travel assistance for a student enrolled in Physiology honours.</td>
</tr>
<tr>
<td>Psychology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Psychological Society Prize for Psychology Honours</td>
<td>$200</td>
<td>1</td>
<td></td>
<td>For distinction in Psychology honours. As well as the cash prize, the winner will have the opportunity to present a paper to the annual APS conference, with substantial costs covered.</td>
</tr>
<tr>
<td>Blanka Buring Prize</td>
<td>$1000</td>
<td>1</td>
<td></td>
<td>Awarded to the student enrolled in Arts who demonstrates the greatest proficiency in a minimum of 24 credit points of Psychology 3000 level units of study.</td>
</tr>
<tr>
<td>Dick Champion Prize in Psychology Honours</td>
<td>$200</td>
<td>1</td>
<td></td>
<td>Awarded to the Psychology 4 honours student who presents the best Empirical Thesis in the areas of learning or motivation, providing the thesis is of sufficient merit.</td>
</tr>
<tr>
<td>Dick Thomson Prize</td>
<td>$200</td>
<td>1</td>
<td></td>
<td>Awarded to the best student in Psychology honours, provided the performance is of sufficient merit.</td>
</tr>
<tr>
<td>Frank Albert Prize in Psychology</td>
<td>$200</td>
<td>1</td>
<td></td>
<td>For merit in intermediate Psychology.</td>
</tr>
<tr>
<td>Lithgow Scholarship No. V</td>
<td>$1000</td>
<td>1</td>
<td>1</td>
<td>Awarded for proficiency in Psychology 1001 and 1002. The scholar is required to attend PSYC 2011 and 2012, PSYC 2013 and 2014 during the tenure of the scholarship.</td>
</tr>
<tr>
<td>Lithgow Scholarship No. VI</td>
<td>$1000</td>
<td>1</td>
<td>1</td>
<td>Awarded for proficiency in PSYC 2011 and 2012, PSYC2013 and 2014. The scholar is required to attend a minimum of 24 credit points of Psychology 3000 level units of study during the tenure of the scholarship.</td>
</tr>
<tr>
<td>Lithgow Scholarship No. VII</td>
<td>$1000</td>
<td>1</td>
<td>1</td>
<td>Awarded for proficiency in a minimum of 32 credit points of Psychology 3000 level units of study. The scholar is required to attend Fourth Year Psychology (Honours or GDS).</td>
</tr>
<tr>
<td>O'Neil Prize in Psychology 4 Honours</td>
<td>$200</td>
<td>1</td>
<td></td>
<td>The prize may be awarded to the student who shows greatest proficiency in the theoretical thesis in Psychology honours.</td>
</tr>
<tr>
<td>Winifred O'Neil Sydney University Scholarship</td>
<td>$2500</td>
<td>Up to 3</td>
<td>1</td>
<td>For full-time students in Psychology who achieve the best results in the first or second years of study in Psychology, and who enrol in either 16 credit points of intermediate or 32 credit points of senior units of study in Psychology in the following year. Preference is to be given to students who are blind or who are visually impaired. The scholarship may be awarded to a student who has a different disability.</td>
</tr>
<tr>
<td>Westmead Institute for Cancer Research</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WICR Scholarship</td>
<td>$5000</td>
<td>1</td>
<td></td>
<td>Awarded by application following advertisement to the Westmead Institute for Cancer Research to an honours student in the Bachelor of Science or Bachelor of Medical Science undertaking cancer research. Applications close with the Director, Westmead Institute for Cancer Research, Westmead Hospital on 30 September each year.</td>
</tr>
</tbody>
</table>
Postgraduate Prizes and Scholarships

Research Office – Postgraduate and intending postgraduate research students are advised to consult the Research Office website for comprehensive information on a wide range of scholarships available.

Postgraduate Travelling Scholarships – Each year the University offers five or six travelling scholarships with a closing date in March.

Generally, applicants need to have a first class honours degree approaching medal standard to be considered. Applications for the major travelling scholarships offered by external bodies generally close in August or September. All postgraduate scholarships are advertised in the Bulletin Board, which is available in departments or from the Research Office in the Quadrangle.

The Faculty reserves the right to award and vary the number of scholarships available and the value of scholarships available in line with the amount of funds available for distribution each year without notice.

<table>
<thead>
<tr>
<th>Award</th>
<th>Value (p.a.)</th>
<th>Tenure (yrs)</th>
<th>Number</th>
<th>Brief description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scholarships and prizes awarded by the University</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian Postgraduate Awards (APAs)</td>
<td>$20,007</td>
<td>3.5 max</td>
<td>Varies</td>
<td>For local students enrolling into a higher research degree at the University. Applications close 31 October each year. Applications from the Research Office or web site: http://www.usyd.edu.au/su/reschols/welcome.html.</td>
</tr>
<tr>
<td>University of Sydney Postgraduate Awards (UPAs)</td>
<td>Same as APA</td>
<td>3.5 max</td>
<td>Varies</td>
<td>For local students enrolling into a higher research degree at the University. Applications close 31 October each year. Applications from the Research Office or web site: http://www.usyd.edu.au/su/reschols/welcome.html.</td>
</tr>
<tr>
<td>Henry Chambertin Russell Prize</td>
<td>$1400</td>
<td>1</td>
<td>1</td>
<td>Essay, thesis or research report on Astronomy.</td>
</tr>
<tr>
<td>Scholarships awarded by the International Office</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>International Postgraduate Research Scholarships</td>
<td>up to 3 approx 25</td>
<td></td>
<td></td>
<td>For international students enrolling into a higher research degree at the University. Applications open between 1 May and 31 August each year. Scholarship covers tuition fees, a living allowance of approx. $16,700 p.a. and health cover. Application forms from the International Office.</td>
</tr>
<tr>
<td>Scholarships and prizes awarded by Faculty, Schools and Departments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biological Sciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jabez King Heydon Memorial Prize</td>
<td>$1000</td>
<td>1</td>
<td></td>
<td>For the most meritorious PhD in the preceding 12 months in the School of Biological Sciences.</td>
</tr>
<tr>
<td>Postgraduate Excellence Prize in Biological Sciences</td>
<td>$1000</td>
<td></td>
<td></td>
<td>For research students in the School of Biological Sciences. Awarded after application and seminar to the student who best communicates the aims of their research, its contribution to its field and its likelihood of timely completion.</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agnes Campbell Prizes</td>
<td>Varies</td>
<td></td>
<td></td>
<td>For excellence in Organic Chemistry in either an honours year or in a research Master's or PhD.</td>
</tr>
<tr>
<td>Bruce Veness Chandler Research Support Scholarship in Food Chemistry</td>
<td>Varies</td>
<td>1</td>
<td>Varies</td>
<td>For research support for postgraduate candidates working in the area of food Chemistry.</td>
</tr>
<tr>
<td>John A Lamberton Research Scholarships</td>
<td>Varies</td>
<td>Up to 3 up to 8</td>
<td>Varies</td>
<td>Awarded to a meritorious candidate for the degree of Doctor of Philosophy or Master of Science in the area of natural products, or chemical understanding of the brain.</td>
</tr>
<tr>
<td>C.G. and R.J.W. Le Fevre Postgraduate Student Lectures</td>
<td>$130</td>
<td>up to 3</td>
<td></td>
<td>Awarded to postgraduate students of Chemistry on the recommendation of the Council of the Sydney University Chemistry Society.</td>
</tr>
<tr>
<td>Dr Joan R Clark Research Scholarship</td>
<td>Varies</td>
<td>up to 0.5</td>
<td>Varies</td>
<td>Awarded to a PhD student in Inorganic Chemistry to assist with costs of travel and subsistence while pursuing their research at a leading overseas university for a period of between 6 and 26 weeks.</td>
</tr>
<tr>
<td>George Harris Scholarships</td>
<td>$400</td>
<td>1</td>
<td>3</td>
<td>Awarded to a meritorious candidate for the degree of Doctor of Philosophy in Chemistry.</td>
</tr>
<tr>
<td>RJW Le Fevre Research Travelling Scholarship</td>
<td>Varies</td>
<td>Varies</td>
<td>Varies</td>
<td>Assists an outstanding female postgraduate research student to present a paper or poster at a major international conference.</td>
</tr>
<tr>
<td>Surface Coatings Association Australia Scholarship</td>
<td>Varies</td>
<td>1</td>
<td>1</td>
<td>Awarded to a meritorious candidate for the degree of Doctor of Philosophy or Master of Science in the area of surface coatings (including pigments, polymers, corrosion, weathering, adhesion and methods of manufacture).</td>
</tr>
<tr>
<td>Faculty of Science</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postgraduate Research Prize for Outstanding Academic Achievement</td>
<td>$500</td>
<td>1</td>
<td>up to 8</td>
<td>Established in 2007 by the Faculty of Science to recognise outstanding postgraduate student achievements, particularly during the early phases of candidature.</td>
</tr>
<tr>
<td>Postgraduate Research Prize for Outstanding Academic Achievement and Outreach</td>
<td>$500</td>
<td>1</td>
<td>1</td>
<td>Established in 2007 by the Faculty of Science to recognise outstanding postgraduate student achievements which combine high-quality research with significant science outreach activities.</td>
</tr>
<tr>
<td>John Coutts Scholarship</td>
<td>$2750</td>
<td>3</td>
<td>1</td>
<td>Awarded in September to the top honours student in the Faculty of Science proceeding to postgraduate study at the University the following year.</td>
</tr>
<tr>
<td>Science Centenary Fund Scholarship</td>
<td>$2500</td>
<td>1</td>
<td>1</td>
<td>Awarded to the honours student from the Faculty of Science who is ranked highest over four years and proceeds to a postgraduate research degree in the faculty.</td>
</tr>
<tr>
<td>Geosciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deas-Thomson Scholarship in Geology</td>
<td>$8500</td>
<td>1</td>
<td>1</td>
<td>For proficiency in Geology honours to the student who proceeds to postgraduate study with the School of Geosciences.</td>
</tr>
<tr>
<td>George Harris Scholarships</td>
<td>$1200</td>
<td>1</td>
<td>1</td>
<td>Awarded to a candidate for the degree of Doctor of Philosophy in Geology and Geophysics.</td>
</tr>
<tr>
<td>L.A. Richardson Memorial Prize</td>
<td>$3000</td>
<td>1</td>
<td></td>
<td>For the most outstanding thesis in the field of exploration geophysics in either Geophysics honours or Geology honours by a student who enrols as a full-time research student in the following year.</td>
</tr>
<tr>
<td>Mathematics and Statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T G Room Medal</td>
<td>Medal</td>
<td>1</td>
<td></td>
<td>For a PhD thesis in Pure Mathematics which is considered of outstanding merit.</td>
</tr>
<tr>
<td>Molecular and Microbial Biosciences</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Jo Rogers Memorial Prize</td>
<td>$400</td>
<td>1</td>
<td>1</td>
<td>Awarded annually to the top student in the final year of the Master of Nutrition and Dietetics course at the University of Sydney.</td>
</tr>
<tr>
<td>Award</td>
<td>Value (p.a.)</td>
<td>Tenure (yrs)</td>
<td>Number</td>
<td>Brief description</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>--------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Bruce Veness Chandler Research Support Scholarship in Food Chemistry No.2</td>
<td>Varies</td>
<td>Varies</td>
<td></td>
<td>Established in 2004 by a bequest from the residual estate of Bruce Veness Chandler, this scholarship provides funding for research support for postgraduate or post-doctorate candidates working in the field of Food Chemistry applied to any aspect of food. Applicants must submit a proposal setting out the details of the research support sought and its importance to the applicant’s research.</td>
</tr>
<tr>
<td>Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PhD Bridging Award</td>
<td>same as APA</td>
<td>0.5</td>
<td>varies</td>
<td>Established in 2002 by the School of Physics, the purpose of the award is to provide a six-month living allowance to full-time PhD students commencing mid-year in the School of Physics at the University of Sydney. Applicants must meet the eligibility conditions for the Australian Postgraduate Award (APA/UPA), and must apply for an APA/UPA in their first semester of candidature.</td>
</tr>
<tr>
<td>Denison Postgraduate Award</td>
<td>same as APA</td>
<td>3</td>
<td>varies</td>
<td>To the most academically-able new PhD student who has met eligibility criteria for the APA/UPA awards. Scholarship holders must be enrolled for a full time Doctoral postgraduate research degree at the University of Sydney.</td>
</tr>
<tr>
<td>International Denison Postgraduate Award</td>
<td>same as APA</td>
<td>3</td>
<td>varies</td>
<td>Established in 2005 by the School of Physics, the purpose of the award is to provide a living allowance to international students who are undertaking full-time research towards a Master's or PhD in Physics. The award may be offered to incoming international research students with a first class honours degree, or equivalent. Applicants must make a formal application to the School using the advertised contact details.</td>
</tr>
<tr>
<td>Denison Postgraduate Conversion Award</td>
<td>same as APA</td>
<td>3</td>
<td>varies</td>
<td>Established in 2004 by the School of Physics, the purpose of the award is to provide a living allowance to recently upgraded full-time PhD students undertaking research in the School of Physics. Applicants must not be eligible for the Australian Postgraduate Award (APA), University Postgraduate Award or the Denison Postgraduate Award (DPA), must be previously enrolled in the MSc by research in the School of Physics, in the year prior to application, and must have made a formal application to the Faculty of Science for an upgrade to PhD candidature.</td>
</tr>
<tr>
<td>Denison Merit Award</td>
<td>varies</td>
<td>3</td>
<td>varies</td>
<td>This award is a supplementary scholarship for full-time PhD students with First Class honours and a University medal.</td>
</tr>
<tr>
<td>International Denison Merit Award</td>
<td>varies</td>
<td>3</td>
<td>varies</td>
<td>This award is a supplementary scholarship for full-time PhD international students with First Class honours and a University medal.</td>
</tr>
<tr>
<td>Relocation Scholarship</td>
<td>Up to $3000</td>
<td>-</td>
<td>varies</td>
<td>To assist outstanding incoming PhD students from outside the Sydney metropolitan area who may otherwise be deterred from studying at the University of Sydney by the high cost of relocation. Evidence of relocation costs must be supplied.</td>
</tr>
<tr>
<td>Psychology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lucy Firth Sydney University Postgraduate Scholarship</td>
<td>$10000</td>
<td>3</td>
<td>1</td>
<td>Scholarship holders must be enrolled for a full time Doctoral postgraduate research degree at the University of Sydney. They must be Australian citizens or permanent residents with a Class 1 or high Class II honours degree.</td>
</tr>
<tr>
<td>A.H. Martin Scholarship</td>
<td>$1000</td>
<td>1</td>
<td>1</td>
<td>Awarded to the candidate for the degree of Doctor of Clinical Psychology who performs best in Part I of the course, preferably in the fields of vocational guidance and vocational selection or a related field.</td>
</tr>
<tr>
<td>Martin and Elizabeth Jane Simmat Prize No.1</td>
<td>$350</td>
<td>1</td>
<td></td>
<td>The prize shall be awarded to the candidate most distinguished in meeting requirements for the award of the Graduate Diploma in Science (Psychology).</td>
</tr>
<tr>
<td>Martin and Elizabeth Jane Simmat Prize No.2</td>
<td>$350</td>
<td>1</td>
<td></td>
<td>Awarded to the student with the best performance in Part II of the Doctor of Clinical Psychology course.</td>
</tr>
<tr>
<td>Margaret Stewart Fund Scholarship</td>
<td>Same as APA</td>
<td>up to 4</td>
<td>1</td>
<td>The scholarship is open to suitably qualified graduates in Psychology of the University of Sydney or any other university who wish to undertake research into ethics and behaviour, towards a higher degree.</td>
</tr>
<tr>
<td>School of Psychology Prize for Year 3 DCP/DCN</td>
<td>$300</td>
<td>1</td>
<td></td>
<td>This prize is awarded annually to the candidate who performs best across the group of students enrolled in either the Doctor of Clinical Psychology or Doctor of Clinical Neuropsychology in year 3, provided the performance is of sufficient merit.</td>
</tr>
<tr>
<td>H. Tasman Lovell Memorial Medallion</td>
<td>Medal</td>
<td>1</td>
<td></td>
<td>The medallion is awarded to the candidate who submits the best thesis for the degree of Doctor of Philosophy in the School of Psychology, provided the thesis is of sufficient merit.</td>
</tr>
<tr>
<td>Winifred O’Neill Sydney University Undergraduate Scholarship</td>
<td>2500</td>
<td>1-3</td>
<td>1</td>
<td>Established in 1997 from the estate of Dr Gregory John Lamb O'Neill who was a medical practitioner in Chatswood, NSW, this scholarship is open to full-time postgraduate students in Psychology at the University of Sydney and will be based on meritous performance in Undergraduate Psychology. Preference is given to students who are visually impaired or, if there is no visually impaired applicant, to students with other disability.</td>
</tr>
</tbody>
</table>
The Sydney Summer and Winter Schools

Applications open on:

You apply early.

Most subjects have limited places and fill very quickly. All places are filled strictly on a first-in, first-served basis so it is recommended that you apply early.

Applications are only accepted online (at www.summer.usyd.edu.au).

How to apply

Applications are only accepted online (at www.summer.usyd.edu.au). Most subjects have limited places and fill very quickly. All places are filled strictly on a first-in, first-served basis so it is recommended that you apply early.

Applications open on:

- 1 October 2009 (Summer School)
- 24 May 2010 (Winter School)

Applications close:

- 27 November 2009 (Session 1, Summer December)
- 11 December 2009 (Session 2, Summer Main)
- 8 January 2010 (Session 3, Summer Late)
- 11 June 2010 (Winter School)

Late application fees may apply after these dates.

Census dates

Students can withdraw from their subject without academic penalty and receive a full refund until the census date (based on when the class commences). However, a late withdrawal fee may apply.

There is one census date for the Winter School, and three for the Summer School, as classes start between December and February.

Withdrawal and refund policy

- For Summer School classes starting in December 2010, students who withdraw from a subject between 28 November 2009 and the relevant census date will receive a refund of tuition fees but will be liable for a $500 late withdrawal fee.
- For Summer School classes starting in January 2010, students who withdraw from a subject between 12 December 2009 and the relevant census date will receive a refund of tuition fees but will be liable for a $500 late withdrawal fee.
- For Winter School classes starting on 28 June 2010, students who withdraw from a subject between 21 June 2010 and the relevant census date will receive a refund of their tuition fees but will be liable for a $500 late fee withdrawal.

Students may withdraw from their Summer or Winter School subject(s) up until 4pm on the last day of the teaching period for that particular subject. However, there may be an academic penalty (please refer to our website). The teaching period for purposes of this policy is defined in hours of published classes from the first day through to the last day of classes, excluding any final examination or assessment.

Students who withdraw from a subject after 4pm on the relevant census date will receive no refund of their tuition fee.

Transferring between subjects

Students on a waiting list can transfer between subjects at any time prior to the commencement of class. For all other students, transfers should be completed a week before classes commence. No transfers will be allowed after commencement of the class.

Summer and Winter School scholarships

Merit scholarships

Three undergraduate merit scholarships and one postgraduate merit scholarship are available. These are automatically awarded to the top four students in each subject. Further details are available on our website.

Educational/Financial Disadvantage scholarships

Full Summer School scholarships are available to local undergraduate students who have a good academic record. To be eligible for consideration you will need to provide evidence of long-term and serious educational disadvantage based on two or more criteria, one of which must be financial hardship. Please check our website for further details. Scholarship applications close on 30 October 2009 (Summer School), and 9 June 2010 (Winter School).

For more information

Website: www.summer.usyd.edu.au
Email: info@summer.usyd.edu.au
Phone: +61 2 9351 5542 Fax: +61 2 9351 5888
For further information or advice, please call our toll-free helpline on 1300 362 006.

This section includes information on the following:

- Academic progression
- Accommodation Service
- Admissions Office
- Applying for a course
- Attendance
- Bus service
- Campuses
- Careers Centre
- Centre for Continuing Education (CCE)
- Centre for English Teaching (CET)
- Child Care Information Office
- The Co-op Bookshop
- Counselling Service
- Disability Services
- Employment opportunities for students
- Enrolment
- Environmental Policy
- Equity Support Services
- Examinations
- Fees
- Financial Assistance Office
- Freedom of information
- Graduations Office
- Grievances and appeals
- HECS and Domestic Fees Office
- Information and Communications Technology
- International Office
- International Student Support Unit (ISSU)
- Koori Centre and Yoorroang Garang
- Learning Centre
- Library
- Mathematics Learning Centre
- Museums and galleries
- MyUni student portal
- Orientation and O-Week
- Part-time, full-time attendance
- Policy online
- Printing service (UPS)
- Privacy
- Research Office
- Revenue Services
- Scholarships for undergraduates
- Security Service
- Service Management, Information and Communications Technology (ICT)
- Special Consideration
- Staff and Student Equal Opportunity Unit (SSEOU)
- Student administration and support
- Student Centre
- Student course material (online stores)
- Student identity cards
- Sydney Summer School
- Sydney Talent
- Sydney Welcome Orientation and Transition Program (SWOT)
- The University of Sydney Foundation Program (USFP)
- Timetabling Unit
- University Health Service

Academic progression

The University requires students to maintain a minimum rate of progression throughout their candidature. Any student who does not satisfy progression requirements for their degree will be placed on a monitored academic progression program. This program requires students to consult an academic adviser in their faculty, to attend a support services information session, and to fill in a survey. Students will be advised of program requirements by their faculty.

Students who do not sustain the minimum academic progression requirements may be asked to 'show cause' as to why they should not be excluded from their degree. For further information, please see www.usyd.edu.au/secretariat/students

Accommodation Service

The Accommodation Service helps students find off-campus accommodation. It maintains an extensive database of accommodation close to campus or with easy access to public transport. For more information visit the Accommodation page: www.usyd.edu.au/current_students

Admissions Office

The Admissions Office, located in the Student Centre, is responsible for overseeing the distribution of offers to undergraduate applicants through the Universities Admissions Centre (UAC). They can advise prospective local undergraduate students on admission requirements. Postgraduate students should contact the appropriate faculty.

- If you are an Australian citizen, or permanent resident with qualifications from a non-Australian institution, you can get more information by phoning +61 2 8627 8209.
- For enquiries regarding special admissions (including mature-age entry), phone +61 2 8627 8207.
- Applicants without Australian citizenship or permanent residency should contact the International Office.

To view the latest update, download, purchase or search a handbook visit Handbooks online: www.usyd.edu.au/handbooks
Applying for a course

Domestic applicants for undergraduate courses and programs of study

For the purpose of admission and enrolment, ‘domestic applicant’ refers to citizens and permanent residents of Australia and citizens of New Zealand. If you are in this group and wish to apply for admission to an undergraduate course, you would generally apply through the Universities Admissions Centre (UAC).

The deadline for applications is the last working day in September in the year before enrolment. For more information see www.uac.edu.au

Some faculties have additional application procedures, such as the Conservatorium of Music, Sydney College of the Arts, Pharmacy and Dentistry (for the Bachelor of Oral Health).

Domestic applicants for postgraduate courses and programs of study

For the purpose of admission and enrolment, ‘domestic applicant’ refers to citizens and permanent residents of Australia and citizens of New Zealand. Application is direct to the faculty which offers the course that you are interested in. Application forms for postgraduate coursework, postgraduate research and the master’s qualifying or preliminary program, and for non-award postgraduate study can be found at www.usyd.edu.au/future_students

Note: some faculties use their own specially tailored application forms. Check with the relevant faculty.

International applicants for all course types (undergraduate and postgraduate)

‘International applicants’ refers to all applicants other than Australian citizens, Australian permanent residents and citizens of New Zealand. In the majority of cases international applicants apply for admission through the University’s International Office (IO). All the information international applicants need, including application forms, is available from the IO website (www.usyd.edu.au/internationaloffice).

Attendance

See ‘Special Consideration’.

Bus service

A free bus service operates to, from and around the Camperdown and Darlington campuses each weekday that Fisher Library is open (except for public holidays). The service begins at 4.15pm and ends at Fisher Library closing time.

Two buses operate along the route, starting at Fisher Library and finishing at Redfern station. The buses leave at approximately 10 minute intervals during semester and in semester breaks.

The bus timetable/route guide can be collected from Security Administration or Campus Infrastructure Services reception.

Floor 2, Services Building, G12
Corner of Codrington and Abercrombie streets
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 4753
Fax: +61 2 9351 5699
Website: www.facilities.usyd.edu.au/security

Campuses

The University has 10 different teaching campuses, located throughout the Sydney area. For information on each campus, including maps, contact details and parking information, see www.usyd.edu.au/about/campuses

Campus	Faculties
Camperdown and Darlington campuses | Faculty of Agriculture, Food and Natural Resources, Faculty of Architecture, Design and Planning, Faculty of Arts, Faculty of Economics and Business, Faculty of Education and Social Work, Faculty of Engineering and Information Technologies, Faculty of Law (Sydney Law School), Faculty of Medicine (Sydney Medical School), Faculty of Pharmacy, Faculty of Science, Faculty of Veterinary Science, The Sydney Summer School
Cumberland Campus | Faculty of Health Sciences
St James Campus | Faculty of Law (teaching spaces only)
Maitland Street Campus | Faculty of Nursing and Midwifery, The Centre for English Teaching, The NHMRC Clinical Trials Centre
Sydney Conservatorium of Music | Sydney Conservatorium of Music
Sydney College of the Arts | Sydney College of the Arts (SCA)
Camden Campus | Faculty of Veterinary Science, Faculty of Agriculture, Food and Natural Resources
Surry Hills Campus | Faculty of Dentistry
Burren Street Campus | Institute of Transport and Logistics Studies

Careers Centre

The University’s Careers Centre provides students with career planning and employability skills development.

The Careers Centre services are free and include:

- help finding casual, part-time, full-time and graduate employment
- an internet job vacancy database
- individual careers counselling
- a comprehensive resource centre and online resources
- workshops in resume writing, interview skills, job searching and skills development
- careers fairs and employer information sessions.

Careers Centre
Level 5, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Phone: +61 2 8627 8402
Fax: +61 2 8627 8477
Email: careers.information@usyd.edu.au
Website: www.careers.usyd.edu.au

Centre for Continuing Education (CCE)

The CCE provides the community with the opportunity to engage with the University of Sydney, offering people access to the academic expertise of one of Australia’s finest educational institutions.

The CCE provides lifelong learning opportunities for people at all stages of life who want to undertake a course in self-enrichment, engage in active retirement learning, upgrade their professional skills and qualifications, or bridge a gap between previous study and university. CCE offers short courses in all areas of the humanities and social sciences, languages, science and technology, business and management, and continuing professional development.

160 Missenden Road
Newtown NSW 2042
(Postal address: Locked Bag 2020, Glebe NSW 2037)
Phone: +61 2 9036 4789
Fax: +61 2 9036 4799
Email: cce.info@usyd.edu.au
Website: www.cce.usyd.edu.au
Centre for English Teaching (CET)
The CET offers English language and academic study skills programs to international students who need to develop their English language skills in order to meet academic entry requirements.

Wentworth Building, G01
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9036 7900
Fax: +61 2 9036 7910
Email: info@cet.usyd.edu.au
Website: www.usyd.edu.au/cet

Child Care Information Office
Five child care centres operate on or near the Camperdown, Darlington and Cumberland campuses, catering for over 220 children aged from six weeks to five years. The centres are managed by qualified staff and provide programs that are developmentally appropriate and responsive to the needs of the individual child. The Child Care Information Office is the first point of contact for students and staff looking for information about child care services such as long day care, occasional care, vacation care and family day care.

For more information visit the student services page at www.usyd.edu.au/current_students

Child Care Information Office
Level 5, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Phone: +61 2 8627 8419
Fax: +61 2 8627 8480
Email: childc@stuserv.usyd.edu.au
Website: www.usyd.edu.au/child_care

The Co-op Bookshop
The Co-op Bookshop is a one-stop store for:

- text and reference books
- general books
- University of Sydney clothing and memorabilia
- DVDs
- flash drives
- software at academic prices.

Take advantage of a lifetime of membership benefits. For a one-time fee of $20, you are entitled to great member pricing, promotional offers and much more.

The Co-op Bookshop
Sports and Aquatic Centre Building, G09
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 3705
Fax: +61 2 9660 5256
Email: sydu@coop-bookshop.com.au
Website: www.coop-bookshop.com.au

Counselling Service
Counsellors are qualified professionals who aim to help people fulfill their academic, individual and social goals. The Counselling Service helps students develop effective and realistic coping strategies and master essential study and life management skills.

Students can make appointments for 50-minute sessions. Walk-in (25-minute) sessions are available for urgent problems every day from 11am to 3pm during semesters, and after-hours appointments are also available. In addition, the service offers workshops each semester on a wide range of student concerns. These are open to local and international, undergraduate and postgraduate students. There are specific workshops to help first-year students successfully adapt to university study.

For more information visit the student services page at www.usyd.edu.au/current_students

Camperdown and Darlington campuses
Level 5, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Phone: +61 2 8627 8433
Fax: +61 2 8627 8482
Email: counsell@stuserv.usyd.edu.au
Website: www.usyd.edu.au/counselling

Cumberland Campus
Ground Floor, A Block, C42
The University of Sydney
East Street, Lidcombe
NSW 2141 Australia
Phone: +61 2 9351 9638
Fax: +61 2 9351 9635
Email: cs.cumberland@stuserv.usyd.edu.au

Disability Services
Disability Services is the principal point of contact providing advice for students with disabilities. Disability Services staff work closely with academic and administrative staff to ensure that students receive reasonable adjustments in their study. The unit produces a number of publications explaining the disability support services available within the University.

Students are encouraged to make contact with Disability Services prior to commencement or as early in their studies as possible. Available help includes assistive technology, note-taking, interpreters, and advocacy with academic staff to negotiate assessment and course requirement modifications where appropriate. Students must register with Disability Services to receive assistance.

For more information visit www.usyd.edu.au/current_students

Camperdown and Darlington campuses
Level 5, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Phone: +61 2 8627 8422
Fax: +61 2 8627 8482
Email: disserv@stuserv.usyd.edu.au
Website: www.usyd.edu.au/disability

Cumberland Campus
Ground Floor, A Block, C42
The University of Sydney
East Street, Lidcombe
NSW 2141 Australia
Phone: +61 2 9351 9638
Fax: +61 2 9351 9635
Email:ds.cumberland@stuserv.usyd.edu.au
Employment opportunities for students

See 'Careers Centre', 'SydneyTalent'.

Enrolment

Domestic and international students entering their first year via UAC

Details of enrolment procedures will be sent to students with their UAC offer of enrolment. Enrolment takes place during the last week of January or in February for the later offer rounds.

Domestic and international students entering their first year via a direct offer from the University

Details of the enrolment procedures will be sent to students with their University offer of enrolment. Enrolment takes place during the first two weeks of February.

All continuing domestic and international students

A pre-enrolment package is sent to all enrolled students in late September and contains instructions on the procedure for web-based pre-enrolment.

Environmental Policy

The University of Sydney’s Environmental Policy promotes sustainable resource and product use and encourages the practice of environmental stewardship by staff and students. The policy is supported by the University-wide Sustainable Campus Program. Enquiries can be directed to:

Manager, Campus Sustainability
Phone: +61 2 9036 5441
Email: sustainable@usyd.edu.au

Visit the website www.usyd.edu.au/sustainable to find out what the University is doing, and learn how you can get involved or make suggestions.

Equity Support Services

Equity Support Services brings together a number of student support services that provide practical assistance and information to help students meet their academic and personal goals while at University.

Services include the Accommodation Service, Child Care Information Office, Disability Services and the Financial Assistance Office.

For more information visit www.usyd.edu.au/current_students

Examinations

The Examinations Office arranges the end-of-semester examination periods in June and November each year and provides assistance for faculty staff with examinations held at other times. Staff and students can find information about examinations at www.usyd.edu.au/current_students/student_administration/examinations or contact the Examinations Office directly.

Student Centre
Level 3, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia

Phone: +61 2 8627 8200 or +61 2 8627 8217
Fax: +61 2 8627 8279
Email: exams.office@exams.usyd.edu.au
Website: www.usyd.edu.au/current_students/student_administration/examinations

Fees

See ‘Revenue Services Office’.

Financial Assistance Office

The University has a number of loan funds and bursaries to help students who experience financial difficulties. Assistance is not intended to provide the principal means of support but to help in emergencies and supplement other income. Financial assistance is available for undergraduate and postgraduate students enrolled at the University of Sydney in degree and diploma programs. It is for essential living and study expenses.

Financial assistance consists of loans, which are usually repayable within one year, and bursaries, which may be awarded as part of a financial assistance package, depending on financial need and academic merit (average marks at credit level or higher). Advertised bursaries are also available and must be applied for separately by 30 April (see website for details). Bursaries are generally only available to local full-time undergraduate students.

For more information visit www.usyd.edu.au/current_students

Level 5, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia

Phone: +61 2 9351 2416
Fax: +61 2 8627 8480
Email: fao@stuserv.usyd.edu.au
Website: www.usyd.edu.au/financial_assistance

Freedom of information

The University of Sydney falls within the jurisdiction of the NSW Freedom of Information Act 1989. The Act:

• requires information concerning documents held by the University to be made available to the public
• enables a member of the public to obtain access to documents held by the University
• enables a member of the public to ensure that records held by the University concerning his or her personal affairs are not incomplete, incorrect, out of date or misleading

A ‘member of the public’ includes staff and students of the University.

It is a requirement of the Act that applications be processed and a determination made within a specified time period, generally 21 days. Determinations are made by the University’s Deputy Registrar.

While an application may be made to access University documents, some may not be released in accordance with particular exemptions provided by the Act. There are review and appeal mechanisms which apply when access has been refused.

The University is required to report to the public on its freedom of information activities on a regular basis and to produce two documents: a Statement of Affairs (annually) and a Summary of Affairs (every six months).

The Statement of Affairs contains information about the University, its structure, function and the kinds of documents held. The Summary of Affairs identifies the University’s policy documents and provides information on how to make an application for access to University documents. More information and copies of the reports can be found at www.usyd.edu.au/arms/info_freedom
Graduations Office
The Graduations Office is responsible for organising graduation ceremonies and informing students of their graduation arrangements.

Student Centre
Level 3, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Phone: +61 2 8627 8223 or +61 2 8627 8224
Protocol enquiries: +61 2 8627 8221
Fax: +61 2 8627 8281
Email: grads.office@usyd.edu.au

Grievances and appeals
You may consider that a decision affecting your candidature for a degree or other activities at the University has not taken into account all relevant matters. In some cases the by-laws or resolutions of the Senate provide for a right of appeal against particular decisions. For example, there is provision for appeal against academic decisions, disciplinary decisions and exclusion after failure.

A document outlining the current procedures for appeals against academic decisions is available at the Student Centre, the Student Representative Council, and on the Policy Online website (www.usyd.edu.au/policy click on 'Study at the University', then 'Appeals' – see the Academic Board and Senate resolutions).

For assistance or advice regarding an appeal contact:

Undergraduates
Students' Representative Council
Level 1, Wentworth Building, G01
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9660 5222
www.src.usyd.edu.au

Postgraduates
Sydney University Postgraduate Representative Association (SUPRA) Corner of Raglan and Abercrombie
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 3115
www.supra.usyd.edu.au

HECS and Domestic Fees Office
The HECS and Domestic Fees Office assists domestic students with queries relating to their entitlements for Commonwealth Support, HELP-Loans, domestic full fees and the Research Training Scheme (RTS). Students' entitlements are also assessed based on their citizenship or residency status.

Student Centre
Level 3, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Phone: +61 2 8627 8239
Fax: +61 2 8627 8285
Email: hecs.fees@records.usyd.edu.au

Information and Communications Technology (ICT)
See 'Service Management, Information and Communications Technology'.

International Office
The International Office helps international students with application, admission and enrolment procedures. It has units responsible for international marketing, government and student relations, international scholarships (including AusAID scholarships and administrative support for international financial aid programs), and compliance with government regulations relating to international students. The Study Abroad and Student Exchange units help domestic and international students who wish to enrol for overseas study or exchange programs.

International Office
Level 4, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Phone: +61 2 8627 8300
Fax: +61 2 8627 8387
Email: info@io.usyd.edu.au
Website: www.usyd.edu.au/internationaloffice

Study Abroad
Phone: +61 2 8627 8322
Fax: +61 2 8627 8390
Email: studyabroad@io.usyd.edu.au
Website: www.usyd.edu.au/studyabroad

Student Exchange
Phone: +61 2 8627 8322
Fax: +61 2 8627 8482
Email: exchange@io.usyd.edu.au
Website: www.usyd.edu.au/studentexchange

International Student Support Unit (ISSU)
The International Student Support Unit (ISSU) aims to help international students develop successful strategies for coping with the challenges of living and studying in an unfamiliar culture, to achieve success in their studies, and to make the experience of being an international student rewarding and enjoyable.

ISSU's student counsellors are qualified professionals with extensive experience in cross-cultural counselling. They provide an integrated service to international students and their families, which includes free and confidential counselling, welfare advice, information, and assistance with accessing other support services and resources on campus and in the community.

Other ISSU services include pre-departure information, on-arrival information sessions and an orientation program for new international students. There is also a program of social and cultural activities which runs throughout the year. International students also have access to all University student support services.

Camperdown and Darlington campuses
Level 5, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Phone: +61 2 8627 8437
Fax: +61 2 8627 8482
Email: info@issu.usyd.edu.au
Website: www.usyd.edu.au/issu

Cumberland Campus
Ground Floor, A Block, Cumberland Campus, C42
The University of Sydney
East Street, Lidcombe
NSW 2141 Australia
Phone: +61 2 9351 9638
Fax: +61 2 9351 9635
Email: issu.cumberland@stuserv.usyd.edu.au
Website: www.usyd.edu.au/issu
Koori Centre and Yooroang Garang
The Koori Centre and Yooroang Garang support Aboriginal and Torres Strait Islander people in all aspects of tertiary education at the University of Sydney. The Cadigal Special Entry Program helps Indigenous Australians enter undergraduate study across all areas of the University.

As well as delivering block-mode courses for Indigenous Australian students, the Koori Centre teaches Indigenous Australian Studies in various faculties across mainstream courses. The Koori Centre also provides tutorial assistance, and student facilities including a computer lab, Indigenous research library and study rooms for the University's Indigenous Australian students.

In particular, the Koori Centre aims to increase the successful participation of Indigenous Australians in undergraduate and postgraduate degrees, develop the teaching of Aboriginal studies, conduct research in the field of Aboriginal education, and establish working ties with schools and communities.

The Koori Centre works in close collaboration with Yooroang Garang, Indigenous Student Support Unit in the Faculty of Health Sciences at the Cumberland Campus. Yooroang Garang provides assistance, advice and academic support for Indigenous students in the faculty, as well as preparatory undergraduate and postgraduate courses.

Koori Centre
Ground Floor, Old Teachers College, A22
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 2046 (general enquiries)
Toll-free within Australia: 1800 622 742
Community Liaison Officer: +61 2 9351 7003
Fax: +61 2 9351 6923
Email: koori@koori.usyd.edu.au
Website: www.koori.usyd.edu.au

Yooroang Garang
T Block, Level 4, Cumberland Campus, C42
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 9066
Toll free: 1800 009 418
Fax: +61 2 9351 9400
Email: yginfo@fhs.usyd.edu.au
Website: www.fhs.usyd.edu.au/yooroang_garang

Learning Centre
The Learning Centre helps students develop the generic learning and communication skills that are necessary for university study and beyond. The centre is committed to helping students achieve their academic potential during their undergraduate and postgraduate studies.

Learning Centre staff can be found at the Camperdown and Cumberland campuses. The centre's program includes a wide range of workshops on study skills, academic reading and writing, oral communication skills and postgraduate writing and research skills. Other services include an individual learning program, a faculty-based program and access to online and print-based learning resources.

For details of programs, activities and online resources available from the Learning Centre, see its website.

Camperdown and Darlington campuses
Level 7, Education Building, A35
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 3853
Fax: +61 2 9351 4865
Email: learningcentre@usyd.edu.au
Website: www.usyd.edu.au/mlc

Cumberland Campus
Ground Floor, A Block, C42
The University of Sydney
East Street, Lidcombe
NSW 2141 Australia
Phone: +61 2 9351 9638
Fax: +61 2 9351 9635
Email: lc.cumberland@usyd.edu.au
Website: www.usyd.edu.au/stuserv/learning_centre/cumberl.shtml

Library
The University of Sydney Library provides services via a network of libraries on eight campuses, and online at www.library.usyd.edu.au
The location, opening hours and specific subject focus of each library is listed on the website. Over 5.5 million items are available via the library catalogue, including more than 67,000 online journals and 325,000 online books.

Enrolled students are entitled to borrow from any of the University libraries. Reading list books and articles are available via the reserve service either online or in print. Past examination papers are also available online.

Library facilities include individual and group study spaces, computers, printers, multimedia equipment, photocopiers and adaptive technologies. Refer to the ‘Libraries’ link on the University website to find out about services and facilities in specific libraries.

Library staff are available in every library to support students with their study and research. Faculty liaison librarians help students find great information on any topic and provide training in using a wide range of resources. For contact details of faculty liaison librarians, see www.library.usyd.edu.au/contacts/subjectcontacts.html

It is also possible to learn research and information skills online; see www.library.usyd.edu.au/skills

Mathematics Learning Centre
The Mathematics Learning Centre helps undergraduate students to develop the mathematical knowledge, skills and confidence that are needed for studying first-level mathematics or statistics units at university. The centre runs bridging courses in mathematics at the beginning of the academic year (fees apply). The centre also provides ongoing support to eligible students during the year through individual assistance and small group tutorials.

For details of activities and online resources provided by the centre see the centre’s website.

Level 4, Carslaw Building, F07
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 4061
Fax: +61 2 9351 5797
Email: mlc@usyd.edu.au
Website: www.usyd.edu.au/mlc
Museums and galleries

The University of Sydney has one of the largest and finest university collections of antiquities, art, ethnography and natural history in Australia. While these collections are used for teaching, they also provide an opportunity for the University to contribute to the cultural life of the country.

University Art Gallery

Founded in the 1860s, the University of Sydney Art Collection now holds more than 7000 paintings, sculptures and works on paper by Australian, Asian and European artists, as well as more than 700 works from the University Union Art Collection. One of the most significant collections derives from the John Wardell Power Bequest. The gallery showcases changing exhibitions of works from the collection as well as high-quality exhibitions of both contemporary and historical works.

War Memorial Arch
The Quadrangle, A14
Camperdown Campus
Phone: +61 2 9351 6883
Fax: +61 2 9351 7785
Website: www.usyd.edu.au/museums

Macleany Museum

The Macleay Museum originated with the 18th century collection of insects owned by Alexander Macleay. The oldest of its kind in Australia, the museum today holds significant collections of ethnographic artefacts, scientific instruments, biological specimens and historic photographs. Changing exhibitions engage with the diversity of the collection.

Macleay Building, A12
Gosper Lane (off Science Road)
Camperdown Campus
Phone: +61 2 9036 5253
Fax: +61 2 9351 5646
Email: macleaymuseum@usyd.edu.au
Website: www.usyd.edu.au/museums

Nicholson Museum

The Nicholson Museum contains the largest and most prestigious collection of antiquities in Australia. It is also the country’s oldest university museum, and features works of ancient art and objects of daily life from Greece, Italy, Egypt, Cyprus, the Near and Middle East, as well as Northern Europe. A regular changing schedule of exhibitions highlights various parts of the collection.

The Quadrangle, A14
Camperdown Campus
Phone: +61 2 9351 2812
Fax: +61 2 9351 7305
Email: nicholsonmuseum@usyd.edu.au
Website: www.usyd.edu.au/museums

The Tin Sheds Gallery

The Tin Sheds Gallery is part of the Art Workshop complex within the University of Sydney’s Faculty of Architecture, Design and Planning. The gallery hosts exhibitions across a wide variety of contemporary visual arts practices from individuals and groups, as well as community projects and curated exhibitions.

Tin Sheds Gallery and Art Workshops
Faculty of Architecture
Wilkinson Building, G04
Phone: +61 2 9351 3115
Fax: +61 2 9351 4184
Email: tinsheds@arch.usyd.edu.au
Website: www.arch.usyd.edu.au/art_workshop.shtml

MyUni Student Portal

The MyUni student portal (http://myuni.usyd.edu.au) is the starting point and ‘one-stop’ environment for students to access all their web-based University information and services.

MyUni automatically tailors what a student sees based on their login and offers personalisation options.

MyUni enables students to access:

- student administration systems for obtaining examination results, enrolment and variations, timetabling, email services and links to courses and unit of study information
- the University’s e-learning tools
- library services
- important messages and student alerts
- information and communications technology and support services
- campus maps, with descriptions of cultural, sporting and campus facilities.

Orientation and O-Week

Orientation

Starting university study brings both opportunities and challenges. A successful transition is important in developing a sense of belonging and better academic adjustment and success. The University of Sydney seeks to facilitate students’ successful transition through a wide range of programs and activities.

Orientation activities for both undergraduate and postgraduate students are scheduled at the beginning of each semester. Transition support continues throughout the academic year within faculties, while student support services are available to help students throughout their study.

For more information visit www.usyd.edu.au/current_students/orientation

Undergraduate students

In the week before Semester One, the Sydney Welcome Orientation and Transition (SWOT) program offers all commencing undergraduate students an opportunity to learn more about the University of Sydney.

During this week you can get to know the University, develop key skills for success, discover other key resources for getting the most out of university life and develop a sense of belonging. All students are welcome to attend activities, which are based at the Camperdown and Darlington campuses. Faculties based on other campuses also provide orientation activities and programs.

SWOT 2010 will run from 24 to 26 February 2010. For more information, see www.swot.usyd.edu.au

Postgraduate students

Postgraduate students are supported by their faculties in transitioning to postgraduate study at the University of Sydney.

For more information visit www.usyd.edu.au/current_students/orientation

O-Week

O-Week is the orientation event at the beginning of Semester One. Organised by the University of Sydney Union (USU) and other student organisations, it runs in parallel with the SWOT program. O-Week 2010 will run from 24 to 26 February 2010.

For more information visit www.usuonline.com
Part-time, full-time attendance

Undergraduate students
Undergraduate students are usually considered full-time if they have a student load of at least 0.375 each semester. Anything under this amount is considered a part-time study load.

Note that some faculties have minimum study load requirements for satisfactory progress.

Postgraduate students (coursework)
Part-time or full-time status for postgraduate coursework students is determined by credit-point load. Enrolment in units of study which total at least 18 credit points in a semester is classed as full time. Anything under this amount is a part-time study load.

Please note that classes for some coursework programs are held in the evenings (usually 6pm to 9pm).

Postgraduate students (research)
Full-time candidates for research degrees do not keep to the normal semester schedule. Instead they work continuously throughout the year with a period of four weeks recreation leave.

There is no strict definition of what constitutes full-time candidature but if you have employment or other commitments that would prevent you from devoting at least the equivalent of a 35-hour working week to your candidature (including attendance at the University for lectures, seminars, practical work and consultation with your supervisor) you should enrol as a part-time candidate. If in doubt, consult your faculty or supervisor.

International students
Student visa regulations require international students to undertake full-time study. International students on visas other than student visas may be permitted to study part-time.

Policy Online
In addition to the resolutions covering specific courses, there are a number of University policies that apply to students. These include:

- Code of Conduct for students
- Academic Honesty in Coursework
- Student Plagiarism: Coursework Assessment and Examination of Coursework
- Identifying and Supporting Students at Risk.

All of these policies can be accessed at the University's Policy website (www.usyd.edu.au/policy).

Printing service
The University Printing Service (UPS) provides printing and binding services including high-volume printing and copying, short run/low-volume printing, and four-colour process printing. It also offers finished artwork and design, including website design, document scanning, file conversion and CD burning.

UPS products range from stationery, books, brochures, handbooks, graduation certificates and examination papers through to invitations, flyers and banners.

UPS also offers a variety of finishing options plus collating, addressing and filling of envelopes, mail merge options and print-broking services.

University Printing Service
Room 314, Level 3
Services Building, G12
Codrington Street
Phone: +61 2 9351 2004
Fax: +61 2 9351 7757
Email: ups@ups.usyd.edu.au
Website: www.usyd.edu.au/ups

Privacy
The University is subject to the NSW Privacy and Personal Information Protection Act 1998 and the NSW Health Records and Information Privacy Act 2002. Central to both pieces of legislation are the sets of information protection principles (IPPs) and health privacy principles which regulate the collection, management, use and disclosure of personal and health information.

In compliance with the Privacy and Personal Information Protection Act the University developed a Privacy Management Plan which includes the University Privacy Policy. The Privacy Management Plan sets out the IPPs and how they apply to functions and activities carried out by the University. Both the plan and the University Privacy Policy were endorsed by the Vice-Chancellor on 28 June 2000.

Further information and a copy of the plan may be found at www.usyd.edu.au/arms/privacy

Any questions regarding the Freedom of Information Act, the Privacy and Personal Information Protection Act, the Health Records and Information Privacy Act or the Privacy Management Plan should be directed to Archives and Records Management Services. See www.usyd.edu.au/arms for contact details.

Research Office
The Research Office administers the major government-funded research scholarships to postgraduate research students. Details of these scholarships and many others may be obtained from www.usyd.edu.au/ro/training

The closing date for applications for Australian Postgraduate Awards (APA) and University of Sydney Postgraduate Awards (UPA) is October every year.

Applications for National Health and Medical Research Council (NHMRC) Postgraduate Research Scholarships usually close in mid-July. It is wise to check in advance the exact closing date.

Research Office
Level 6, Jane Foss Russell Building, G02
Phone: +61 2 8627 8112
Email: research.training@usyd.edu.au
Website: www.usyd.edu.au/ro/training

Revenue Services
Revenue Services provides information on HECS/fee payment methods and can confirm the receipt of payments. The office can also provide information on the steps necessary to obtain a refund. More details are available on its website (listed below).

Revenue Services (domestic students)
Margaret Telfer Building, K07
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 5222
Fax: +61 2 9114 0556
Email: feespay@usyd.edu.au
Website: www.finance.usyd.edu.au/revenue_income/fees.shtml

Cashier's Office (domestic and international student payments)
Level 3, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Office hours: 9am to 5pm, Monday to Friday
Scholarships for undergraduates

The Scholarships and Prizes Office administers scholarships and prizes for undergraduate and postgraduate coursework degrees at the University of Sydney. To learn more, see the website.

Scholarships and Prizes Office
Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 6870
Fax: +61 2 9351 6870
Email: scholarships.reception@usyd.edu.au
Website: www.usyd.edu.au/scholarships

Security Service

Security staff patrol the University's Camperdown and Darlington campuses 24 hours a day, seven days a week and are easily identified by their blue uniforms and distinguishing badges.

Security Escort Service

The University's Security Escort Service may be booked by phoning 9351 3487. This service provides transportation around the Camperdown and Darlington campuses as well as to the nearest transport point at its edge (it generally operates after the security bus has ceased). The service is for security situations and is not designed for convenience use. Requests for this service will be prioritised against other security demands.

Emergency contact
Phone: +61 2 9351 3333 (13333 from an internal phone)

Enquiries
Phone: +61 2 9351 3487 or (toll-free within Australia) 1800 063 487
Fax: +61 2 9351 4555
Email: security.admin@mail.usyd.edu.au
Website: www.facilities.usyd.edu.au/security

Traffic
Phone: +61 2 9351 3336

Lost property
Phone: +61 2 9351 5325

Service Management, Information and Communications Technology (ICT)

ICT is responsible for the delivery of many of the computing services provided to students. Students can contact ICT by phoning the helpdesk on (02) 9351 6000, through the IT Assist website (www.usyd.edu.au/ict/switch) or by visiting the staff at one of the University Access Labs. The location details of Access Labs can be found at www.usyd.edu.au/ict/switch/locations

The labs provide students free access to computers, including office productivity and desktop publishing software. Some services are available on a fee-for-service basis, such as internet access, printing facilities, and the opportunity for students to host their own non-commercial website.

Each student is supplied with an account, called a 'UniKey' account, which allows access to a number of services including:

- free email
- WebCT/elearning online resources
- access to the Internet from home or residential colleges
- facilities, such as exam results, enrolment variations and timetabling
- free courses in basic computing (such as MS Office, basic html and Excel), run by Access Lab staff in the week following orientation week. To register contact the Access Lab Supervisor on +61 2 9351 6870.

See www.usyd.edu.au/ict/switch for more information on these services.

Service Management, Helpdesk
University Computer Centre, H08
Camperdown Campus
Phone: +61 2 9351 6000
Fax: +61 2 9351 6004
Email: support@usyd.edu.au
Website: www.usyd.edu.au/ict/switch

Special Consideration

In cases of illness or misadventure, students should complete an Application for Special Consideration form, accompanied by relevant documentation, such as medical certificates, and submit it to the relevant faculty office. The forms are available at faculty offices, the Student Centre, and online at www.usyd.edu.au/current_students/student_administration/forms

Exemption from re-attendance

Although you may have attended certain lectures or practical classes before, exemption from re-attendance is granted only in exceptional circumstances. In any case, you are required to enrol in all units of study in which you propose to take examinations, whether or not you have been granted leave of absence (or exemption) from re-attendance at lectures and/or practical work. To obtain exemption from re-attendance, apply at your faculty office.

Staff and Student Equal Opportunity Unit (SSEOU)

The Staff and Student Equal Opportunity Unit works with the University community to promote equal opportunity in education and employment, to create opportunities for staff and students who have traditionally been disadvantaged by mainstream practices and policies, and to create an environment that is free from discrimination and harassment.

The Staff and Student Equal Opportunity Unit is responsible for:

- providing policy advice to staff on harassment and discrimination
- providing equal opportunity policy development, promotion and training for staff and students
- coordinating and monitoring equity programs and initiatives
- providing information and advice to staff and students on equal opportunity matters
- resolving individual staff and student concerns about harassment and discrimination
- overseeing the University's Harassment and Discrimination Resolution procedure
- monitoring and reporting to external bodies on the University's progress in the equal opportunity area.

Every student and staff member at the University of Sydney has the right to expect that their fellow students and colleagues behave in a way that reflects these key values, irrespective of background, beliefs or culture.

In addition, every student and employee has a right to expect from the University equitable practices that preserve and promote equal opportunity to access, participate, and excel in their chosen field.

Rooms 228 to 235
The Demountables, H11
Codrington Street
Darlington Campus
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 2212
Fax: +61 2 9351 3195
Email: admin@eeo.usyd.edu.au
Website: www.usyd.edu.au/eeo

General University information

445
Student administration and support
The University provides personal, welfare, administrative and academic support services to facilitate your success. Many factors can have an impact on your wellbeing while studying, and student services can help you to manage these more effectively.

For details of services and online resources provided, visit www.usyd.edu.au/current_students

Student Centre
The Student Centre is responsible for the central functions of UAC admissions, enrolments, HECS, class timetabling, student records, examinations and graduations. In addition to the above matters, general information and academic transcripts can be obtained at the counter of the Student Centre.

Level 3, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia

General enquiries: +61 2 8627 8200
Academic records: +61 2 8627 8200
Handbooks: +61 2 8627 8200
Fax: +61 2 8627 8279 or +61 2 8627 8284 (academic records)
Email: studentcentre@usyd.edu.au
Website: www.usyd.edu.au/current_students/student_administration

Student course material (online stores)
Students in several faculties can purchase course collateral through an online eStore (available on their faculty website). Course collateral includes laboratory coats, uniforms, safety boots and other equipment required for units of study. All items have been selected and approved by the faculty concerned to ensure they meet course requirements.

Student identity cards
The student identity card functions as a library borrowing card, a transport concession card (when suitably endorsed) and a general identity card. The card must be carried at all times on the grounds of the University and must be shown on demand and taken to all examinations.

University Card Services
Level 2, Fisher Library, F03
The University of Sydney
NSW 2006 Australia

Phone: +61 2 9351 2423
Email: university.cards@usyd.edu.au
website: www.usyd.edu.au/card_centre

Sydney Summer School
Nine faculties at the University offer subjects from undergraduate and postgraduate degree programs during a Summer School program. As the University uses its entire quota of Commonwealth-supported places in Semesters One and Two, these units are full fee-paying for both local and international students and enrolment is entirely voluntary.

Summer School enables students to accelerate their degree progress, make up for a failed subject or fit in a subject which otherwise would not suit their timetables. New students may also gain an early start by completing subjects before they commence their degrees.

Three sessions are offered during the semester break (commencing in mid-December, the first week of January, and the third week of January) and normally run for up to six weeks (followed by an examination week). Details of the available subjects are on the Summer School website.

A smaller Winter School is also offered. It will commence on 28 June 2010 and run for three weeks (followed by an examination week). The Winter School offers both postgraduate and undergraduate subjects.

To find out information about subjects offered and to enrol, see the Summer School website: www.summer.usyd.edu.au

SydneyTalent
SydneyTalent is a University initiative that offers course-related employment at market leading rates and with flexible hours. It connects students with meaningful roles in their chosen field of study, allowing them to develop vital professional skills and graduate with marketable career experience. With SydneyTalent, students are able to successfully manage the work-study balance while building for future success.

Level 5, Jane Foss Russell Building G02
The University of Sydney
NSW 2006 Australia

Phone: +61 2 8627 8000
Fax: +61 2 8627 8630
Email: sydney.talent@usyd.edu.au
Website: www.sydneytalent.com.au

Sydney Welcome Orientation and Transition Program (SWOT)
The Sydney Welcome Orientation and Transition program (SWOT) offers a head start to commencing undergraduate students at the University, helping you to become familiar with the University and its student support services. The library and central student support services work together with faculties to provide the SWOT program.

SWOT 2010 runs from 24 to 26 February 2010. For more information, see www.swot.usyd.edu.au or visit www.usyd.edu.au/current_students/orientation

The University of Sydney Foundation Program (USFP)
The University of Sydney provides a foundation program to international students as a preparation for undergraduate degrees at several Australian universities.

The program is conducted by Taylors College on behalf of Study Group Australia and the University of Sydney. It allows both first and second semester entry to undergraduate courses at the University of Sydney and other universities within Australia.

Contact details
Phone: +61 2 8263 1888
Fax: +61 2 9267 0531
Email: info@taylorscollege.edu.au
Website: www.usyd.edu.au/foundationprogram

College address
The University of Sydney Foundation Program
Taylors College
985 Bourke St
Waterloo NSW 2017
Phone: +61 2 8303 9700
Fax: +61 2 8303 9777
Timetabling Unit
The Timetabling Unit in the Student Centre is responsible for producing personalised student timetables which are available through MyUni. Semester One timetables are available 10 days before that semester begins. Semester Two timetables are available from the beginning of Semester One examinations.

Website: www.usyd.edu.au/current_students/student_administration/timetables

University Health Service (UHS)
The University Health Service provides a full experienced general practitioner service and emergency medical care to all members of the University community. You can consult a doctor either by appointment or on a walk-in basis (for more urgent matters only). The UHS bills Medicare or your overseas student health care provider (Worldcare or Medibank Private) directly for the full cost of most consultations.

Email: i.marshall@unihealth.usyd.edu.au
Website: www.unihealth.usyd.edu.au
Phone: +61 2 9351 3484
Fax: +61 2 9351 4110

University Health Service (Wentworth)
Level 3, Wentworth Building, G01
The University of Sydney
NSW 2006 Australia
Opening hours: 8.30am to 5.30pm, Monday to Friday
Phone: +61 2 9351 3484
Fax: +61 2 9351 4110

University Health Service (Holme)
Holme Building, A09
Entry Level, Science Road
The University of Sydney
NSW 2006 Australia
Opening hours: 8.30am to 5.30pm, Monday to Friday
Phone: +61 2 9351 4095
Fax: +61 2 9351 4338
Student organisations

Students' Representative Council (SRC)
The Students' Representative Council represents, campaigns and advocates for undergraduate students throughout the University.

SRC caseworkers advise students on a range of issues, including academic appeals, Centrelink and Austudy, tenancy, harassment and discrimination. The solicitor (from Redfern Legal Centre) provides legal assistance and court representation. These services are free and confidential. The SRC also offers financial support in the form of emergency loans of up to $50.

SUPRA Council, committees and networks
The SUPRA Council is elected annually by and from the postgraduate student community. Council meetings are held monthly and postgraduate students are encouraged to attend. SUPRA committees and networks help to coordinate activities and run campaigns, and are a great way to get involved. All postgraduates can stand for the council or attend any SUPRA events provided they are a SUPRA subscriber (see below).

Advice and advocacy
SUPRA employs professional student advice and advocacy officers (SAAOs) to help postgraduate students with any academic or personal problems that may affect their study, such as:
- fee payment and administrative issues
- academic appeals and exclusions
- supervision problems
- tenancy issues
- Centrelink and financial assistance concerns
- harassment and discrimination.

This is a free and confidential service for all postgraduates at the University of Sydney. To access the SAAO service, you must be a SUPRA subscriber. It's free to subscribe and you can do it online, in the office, or when you see an SAAO. To find out more about the SAAO service, email help@supra.usyd.edu.au

Publications
SUPRA places the highest priority upon communication, being responsive to postgraduates and encouraging maximum participation in SUPRA through the following publications:
- eGrad, a regular email bulletin
- The Postgraduate Survival Manual
- Thesis Guide
- our weekly double-page spread in Honi Soit, the student newspaper
- a range of handbooks, fact sheets and brochures.

Electronic versions are available at www.supra.usyd.edu.au

All of SUPRA's services, activities and publications are free to SUPRA subscribers. By subscribing, you also show your support for all the work that SUPRA does on your behalf. It's free to subscribe and you can sign up online or drop into the SUPRA offices and fill out a form.

SUPRA Office
Raglan Street Building, G10
Corner Raglan Street and Abercrombie Street
Phone: +61 2 9351 3715 (local) or 1800 249 950 (toll free within Australia)
Fax: +61 2 9351 6400
Email: admin@supra.usyd.edu.au
Website: www.supra.usyd.edu.au

University of Sydney Union (USU)
As the largest university union in Australia, the USU is a major provider of exciting cultural, social, political, and charitable activities, as well as quality on-campus food and retail services, entertainment, events and programs that serve the entire university community.

The USU offers an array of programs to its members to promote cultural life on campus, including awards, grants and prizes in leadership, literature, debating, photography, film, drama, philanthropy,
music and art. The USU Debating Team is a formidable force, currently ranked first in the world, and the USU also funds the oldest continuing theatre group in Australia, the Sydney University Dramatic Society.

The USU keeps the campus alive with big-name gigs and exhilarating events held throughout the year at its bars Manning and Hermann's. Each year the USU holds major festivals and events such as O-Week, Beachball and the Verge Arts Festival.

For more information on USU, see www.usuonline.com

Access Card Benefits Program
The USU offers membership to its award-winning Access Benefits Program, your gateway to benefits and discounts at more than 55 selected food, retail and entertainment partners on and off campus, as well as access to USU's programs including internships, student positions and volunteering opportunities.

For more information, see www.accessbenefits.com.au

Clubs and societies
The USU funds, accommodates, trains and supports more than 200 clubs and societies – groups that USU members can join and operate to meet others with shared interests. Clubs and societies organise their own activities and events with funding from the USU. Being part of a club or society is the best way to connect, socialise, network and gain valuable skills, training and experience.

There are clubs and societies focused on politics, culture, the arts, the environment, religion, volunteering, faculties, games, hobbies and passions. If there isn’t a club or society that suits your interests, the USU will help you start your own.

For more information, see the clubs and societies section of the USU website www.usuonline.com

C&S Office
University of Sydney Union
Level 1, Manning House, Manning Road
Phone: +61 2 9563 6161
Email: clubsandsocs@usu.usyd.edu.au

The USU Student Leadership Program
The USU offers a range of development opportunities for its student members, ranging from board director positions, club and society executives, festival directors, debate directors, editors, volunteers, and community portfolio convenors.

The USU's programs not only entertain, but teach and prepare participants for life beyond graduation. USU programs include mentoring, personal development, and leadership training, providing the opportunity to add a different dimension to your tertiary education.

For more details, see the 'Get Involved' section of www.usuonline.com

Sydney Uni Sport & Fitness
Sydney Uni Sport & Fitness invites you to enjoy a healthier University experience.

Get access to three world-class, on-campus facilities, over 40 different sports clubs, more than 30 dance, recreation and sport short courses, plus get involved in popular social sporting activities through our range of maximum value membership options.

The vast array of sports clubs for men and women ranges from AFL to water polo, with competitions ranging from local social competitions to nationwide leagues, all giving you the chance to improve your performance under the guidance of some of Australia’s most accomplished coaches and sportspeople.

Purpose-built venues offer tennis and squash courts, rock-climbing, fitness equipment, a martial arts room and an Olympic-size heated swimming pool.

Check out the historic and panoramic sporting ovals, rowing sheds and a multipurpose facility at Tempe, and don’t forget the on-campus Grandstand sports bar and restaurant.

Sydney Uni Sport & Fitness
University Sports & Aquatic Centre
Corner Cordrington Street and Darlington Road
Phone: +61 2 9351 4960
Fax: +61 2 9351 4962
Email: admin@sport.usyd.edu.au
Website: www.susf.com.au

Facilities
Sydney Uni Sport & Fitness has three main fitness centres.

University Sports & Aquatic Centre
Corner Cordrington Street and Darlington Road
Darlington Campus
Phone: +61 2 9351 4978
Email: nmrc@sport.usyd.edu.au

Facilities at the centre include:
- 50-metre heated Olympic swimming pool
- modern fitness centre
- group fitness studio
- RPM studio
- six synthetic tennis courts
- four squash courts
- multifunction sports hall
- health assessments and fitness testing
- personal training
- Sports Bistro & Mint Cafe.

Arena Sports Centre and the Ledge Climbing Centre
Western Avenue
Camperdown Campus
Phone: +61 2 9351 8111
Email: arenaman@sport.usyd.edu.au

Facilities at the centre include:
- extensive weights training room
- yoga classes
- 8-metre-tall rock climbing walls
- bouldering facilities
- personal training
- multipurpose sports hall
- two squash courts
- sports clinic
- Ralph’s Café.

HK Ward Gymnasium
Between Ovals 1 and 2
Camperdown Campus
Phone: +61 2 9351 4988
Email: hk@sport.usyd.edu.au

Facilities at the gymnasium include:
- martial arts facility
- sports hall
- boxing ring and gymnasium
- group fitness studio
- boxercise and kickboxing classes
- ergometer training
- sports equipment hire.
International students

The following information is for international students studying onshore on an Australian student visa.

Completion within the expected duration

Education providers are required to ensure that international students complete their studies within the duration specified on the electronic Confirmation of Enrolment (eCoE). Extensions to a student’s course duration are allowed only in limited circumstances (for example, for compassionate or compelling reasons, where an intervention strategy has been implemented or where there has been an approved leave of absence or suspension).

It is important students ensure they are on track to complete their studies within the expected duration, or that they have permission from their faculty to extend their duration.

Satisfactory academic progress

Maintaining satisfactory course progress is a mandatory student visa condition. Education providers are required to monitor course progress, intervene where students are at risk of failing to achieve satisfactory course progress, notify students who fail to achieve satisfactory course progress, and report students who fail to achieve satisfactory course progress to the Department of Immigration and Citizenship (DIAC).

It is important that every student is aware of the progress rules for their course and participates in the intervention strategies implemented by their faculty. Exclusion from a course due to unsatisfactory progress can have serious implications for student visa holders including visa cancellation and restrictions on returning to Australia.

The University provides many avenues of support for students who are struggling academically. International students who experience any difficulties with their academic progress should consult their faculty, the international student advisers in the International Office or the counsellors in the International Student Support Unit (ISSU).

Distance/web-based study

International students may undertake no more than 25 per cent of their total course by distance and/or online learning. Students must not enrol in exclusively distance or online study in any compulsory study period.

Students who are supported by United States Financial Aid are not permitted to undertake distance and/or online learning at any time during their course of study.

Work permits

International students with a work permit are permitted to work for up to 20 hours per week during semester and full-time during the University's official holiday periods. Contact the international student advisers in the International Office for more information.

Change of address

International students must notify the University of their residential address within seven days of arrival and notify any subsequent change of address within seven days. This should be done online via the University's MyUni student portal (http://myuni.usyd.edu.au).

Sponsored students

Sponsored students need permission from their sponsors before transferring courses, suspending their studies or varying their study load. Students sponsored by the Australian Government (AusAID, Endeavour), or Asia Development Bank (ADB) should contact the International Office in the early stages of considering a change to their program.

Suspension/discontinuation

The University is required to report to DIAC any international students who discontinue or suspend their studies. Students who suspend their studies for medical or compassionate reasons should contact the international student advisers in the International Office urgently.

Health cover

The Australian Government requires that all international students and their families pay for health insurance in Australia through the Overseas Student Health Cover (OSHC) scheme. The University-preferred provider is OSHC Worldcare. The International Office will, on receipt of the student's first payment of tuition fees and the OSHC premium, pay the compulsory amount to OSHC Worldcare on their behalf.

OSHC provides free access to the University health service and public hospitals. Higher-level coverage (e.g. access to private hospitals for spouse and family) is the student's responsibility. Alternatively, international students may arrange their own OSHC through an approved provider. You can find a list of approved OSHC providers by searching for 'OSHC' on the federal government's Department of Health and Ageing website: www.health.gov.au

The University of Sydney Foundation Program (USFP)

The University of Sydney offers its foundation program to international students as a preparation for undergraduate degrees at several Australian universities.

The Foundation Program is conducted by Taylors College on behalf of Study Group Australia and the University of Sydney. It allows both international students as a preparation for undergraduate degrees at several Australian universities.

The University of Sydney Foundation Program

Taylors College
965 Bourke Street
Waterloo NSW 2017

Phone: +61 2 8303 9700
Fax: +61 2 8303 9777
Email: info@taylorscollege.edu.au
Website: www.usyd.edu.au/foundationprogram
International Office
The International Office provides advice and assistance with application, admission and enrolment procedures for international students. The International Office also includes units responsible for international marketing, government and student relations, international scholarships, including AusAID scholarships and administrative support for international financial aid programs, and compliance with government regulations related to international students.

The International Office also coordinates student exchange and study abroad programs, and other inter-institutional links. The Study Abroad and Exchange unit helps domestic and international students who wish to enrol in such programs.

International Admissions and Customer Services
Level 4, Jane Foss Russell Building, G02
The University of Sydney
NSW 2006 Australia
Phone: +61 2 8627 8300
Future student enquiries: 1800 899 376 (domestic free call)
Fax: +61 2 8627 8387
Email: info@io.usyd.edu.au
Website: www.usyd.edu.au/internationaloffice

Study Abroad
Phone: +61 2 8627 8322
Fax: +61 2 8627 8390
Email: studyabroad@io.usyd.edu.au
Website: www.usyd.edu.au/studyabroad

International Student Support Unit
The International Student Support Unit (ISSU) provides support to international students through the provision of information, orientation programs, welfare advice and counselling.

The ISSU provides advice to international students on:
- preparations before leaving their home country
- what to expect upon arrival in Sydney
- emotional changes that can take place when moving to a different country
- academic concerns, including understanding the University system and liaising with staff members
- organising letters for family visits
- preparing to return to their home country.

The ISSU has two offices:

Darlington Campus
Level 5, Jane Foss Russell Building, G02
University of Sydney
NSW 2006 Australia
Phone: +61 2 8627 8437
Fax: +61 2 8627 8482
Email: info@issu.usyd.edu.au
Website: www.usyd.edu.au/stuserv/issu

Cumberland Campus
Ground Floor, A Block, C42
75 East St, Lidcombe
NSW 2141 Australia
Phone: +61 2 9351 9638
Email: ISSU.Cumberland@stuserv.usyd.edu.au
Website: www.usyd.edu.au/stuserv/issu

International students
Essential information for students

Calendar
The annual University of Sydney Calendar and its online updates are the University of Sydney's central source of official information.

The Calendar provides general and historical information about the University of Sydney, the statutes and regulations under which it operates and the resolutions of the Senate relating to constitutions of and courses in each faculty. The statutes and regulations, as well as some resolutions of the Senate, are also available on Policy Online (www.usyd.edu.au/policy).

Along with the University of Sydney handbooks, the Calendar forms the official legal source of information relating to study at the University of Sydney.

The latest Calendar is available in hard copy from the Student Centre. It is also available online (at www.usyd.edu.au/calendar). The PDF and Word document files can be downloaded and printed if required.

Coursework Rule
It is very important that students are aware of the University of Sydney (Coursework) Rule 2000, which governs all coursework award courses in the University.

The Coursework Rule relates to:
- award course requirements
- credit points and assessment
- enrolment
- credit
- cross-institutional study and its upper limits
- progression
- discontinuation of enrolment and suspension of candidature
- unsatisfactory progress and exclusion
- exceptional circumstances
- award of degrees
- diplomas and certificates
- transitional provisions.

It should be read in conjunction with two other documents:
- The University of Sydney (Amendment Act) Rule 1999
- Senate resolutions and faculty resolutions relating to each award course (found in the relevant faculty handbook).

The Coursework Rule can be found in the following places:
- The University of Sydney Calendar (print or online version): www.usyd.edu.au/calendar
- Policy Online: www.usyd.edu.au/policy
- Handbooks Online: www.usyd.edu.au/handbooks/university_information/01_uni_coursework_rule

PhD Rule
The University of Sydney (Doctor of Philosophy (PhD)) Rule 2004 deals with matters relating to the degree of Doctor of Philosophy, including admission, probation, supervision and submission of theses.

It should be read in conjunction with two other documents:
- The University of Sydney (Amendment Act) Rule 1999
- Senate and faculty resolutions relating to each award course (found in the relevant faculty handbook).

The PhD Rule can be found in the following locations:
- The University of Sydney Calendar (print or online version): www.usyd.edu.au/calendar
- Policy Online: www.usyd.edu.au/policy
- Handbooks Online: www.usyd.edu.au/handbooks/postgrad_hb/ap04_phd_rule.shtml

Plagiarism
The University of Sydney is opposed to and will not tolerate plagiarism. It is the responsibility of all students to:
- ensure that they do not commit or collude with another person to commit plagiarism
- report possible instances of plagiarism
- comply with the University’s policy and procedure on plagiarism.

The policy and procedure on plagiarism can be found at the Policy Online website (www.usyd.edu.au/policy).

The Policy Online website also lists related policies and procedures, including:
- Academic Honesty in Coursework (plagiarism) policy
- Code of Conduct for Responsible Research Practice and Guidelines for Dealing with Allegations of Research Misconduct

The University will treat all identified cases of student plagiarism seriously, in accordance with this policy and procedure, and with Chapter 8 of the University of Sydney By-Law 1999 (as amended), which deals with student discipline.

Students at Risk Policy
The Students at Risk Policy enables early detection of students who are making poor or unsatisfactory progress and are therefore at risk of exclusion from their degree.

The policy outlines procedures and processes to support students in their ongoing studies, including:
- timely intervention and the provision of advice and assistance
- regularly and effectively advising students of progress requirements
- identifying students at risk
- alerting students that they are at risk
- providing assistance to address the risk
- tracking the progress of students after they are identified as being at risk.

For more information on this policy, please see the Secretariat website (www.usyd.edu.au/secretariat/students/riskstudents).

Grievance Procedure
The University's policy and procedures document on student grievances, appeals and applications for review is available on the Policy Online website (www.usyd.edu.au/policy).

The Grievance Procedure document is a statement of the University’s processes for handling student grievances, appeals and applications for review regarding academic and non-academic matters.

Study at the University presents opportunities for interacting with other members of the University community. The University recognises and values the diversity of student experiences and expectations, and is committed to treating students, both academically and administratively, in a fair and transparent manner.
Abbreviations

Listed below are commonly used acronyms that appear in University documents and publications. (See also the Glossary.)

<table>
<thead>
<tr>
<th>A</th>
<th>Australian Academic Research Network</th>
<th>AARNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Australian Awards for University Teaching</td>
<td>AAM</td>
</tr>
<tr>
<td>A</td>
<td>Annual Average Mark</td>
<td>AAUT</td>
</tr>
<tr>
<td>A</td>
<td>Activity-based costing</td>
<td>ABC</td>
</tr>
<tr>
<td>A</td>
<td>Aboriginal Study Assistance Scheme</td>
<td>ABSTUDY</td>
</tr>
<tr>
<td>A</td>
<td>Academic Consortium 21</td>
<td>AC21</td>
</tr>
<tr>
<td>A</td>
<td>Australian Council for Educational Research</td>
<td>ACER</td>
</tr>
<tr>
<td>A</td>
<td>Australian Learning and Teaching Council</td>
<td>ALTC</td>
</tr>
<tr>
<td>A</td>
<td>Australian and New Zealand Association for the Advancement of Science</td>
<td>ANZAAS</td>
</tr>
<tr>
<td>A</td>
<td>Australian Postgraduate Awards</td>
<td>APA</td>
</tr>
<tr>
<td>A</td>
<td>Australian Partnership for Advanced Computing</td>
<td>APAC</td>
</tr>
<tr>
<td>A</td>
<td>Australian Postgraduate Awards (Industry)</td>
<td>APAI</td>
</tr>
<tr>
<td>A</td>
<td>Australian Postgraduate Awards in Information Technology</td>
<td>APA-IT</td>
</tr>
<tr>
<td>A</td>
<td>Australian Postdoctoral Fellowships Industry</td>
<td>APD</td>
</tr>
<tr>
<td>A</td>
<td>Asia-Pacific Economic Cooperation</td>
<td>APEC</td>
</tr>
<tr>
<td>A</td>
<td>Australian Professorial Fellowship</td>
<td>APF</td>
</tr>
<tr>
<td>A</td>
<td>Association of Pacific Rim Universities</td>
<td>APRU</td>
</tr>
<tr>
<td>A</td>
<td>Australian Qualifications Framework</td>
<td>AQF</td>
</tr>
<tr>
<td>A</td>
<td>Australian Research Council</td>
<td>ARC</td>
</tr>
<tr>
<td>A</td>
<td>Automated Results Transfer System</td>
<td>ARTS</td>
</tr>
<tr>
<td>A</td>
<td>Assessment Fee Subsidy for Disadvantaged Overseas Students</td>
<td>ASDOT</td>
</tr>
<tr>
<td>A</td>
<td>Australian Tertiary Admissions Rank</td>
<td>ATAR</td>
</tr>
<tr>
<td>A</td>
<td>Australian Technology Network</td>
<td>ATN</td>
</tr>
<tr>
<td>A</td>
<td>Australian Technology Park</td>
<td>ATP</td>
</tr>
<tr>
<td>A</td>
<td>Australian Universities Quality Agency</td>
<td>AUQA</td>
</tr>
<tr>
<td>A</td>
<td>Australian Agency for International Development</td>
<td>AusAID</td>
</tr>
<tr>
<td>A</td>
<td>Australian Universities Teaching Committee</td>
<td>AUTC</td>
</tr>
<tr>
<td>A</td>
<td>Australian Workplace Agreements</td>
<td>AWA</td>
</tr>
<tr>
<td>B</td>
<td>Backing Australia’s Ability</td>
<td>BAA</td>
</tr>
<tr>
<td>B</td>
<td>Business Intelligence Lab</td>
<td>BITLab</td>
</tr>
<tr>
<td>C</td>
<td>Cost adjustment factor</td>
<td>CAF</td>
</tr>
<tr>
<td>C</td>
<td>Centre for Continuing Education</td>
<td>CCE</td>
</tr>
<tr>
<td>C</td>
<td>Capital Development Program</td>
<td>CDP</td>
</tr>
<tr>
<td>C</td>
<td>Country Education Profile</td>
<td>CEP</td>
</tr>
<tr>
<td>C</td>
<td>Course Experience Questionnaire</td>
<td>CEQ</td>
</tr>
<tr>
<td>C</td>
<td>Chief Financial Officer</td>
<td>CFO</td>
</tr>
<tr>
<td>C</td>
<td>Commonwealth Higher Education System Student Number</td>
<td>CHESSN</td>
</tr>
<tr>
<td>C</td>
<td>Chief Information Officer</td>
<td>CIO</td>
</tr>
<tr>
<td>C</td>
<td>Campus Infrastructure Services</td>
<td>CIS</td>
</tr>
<tr>
<td>C</td>
<td>Confirmation of Enrolment</td>
<td>COE</td>
</tr>
<tr>
<td>C</td>
<td>Community and Public Sector Union</td>
<td>CPSU</td>
</tr>
<tr>
<td>C</td>
<td>Credit (grade)</td>
<td>CR</td>
</tr>
<tr>
<td>C</td>
<td>Cooperative Research Centre</td>
<td>CRC</td>
</tr>
<tr>
<td>C</td>
<td>Centre for Regional Education, Orange</td>
<td>CREO</td>
</tr>
<tr>
<td>C</td>
<td>Commonwealth Register of Institutions and Courses for Overseas Students</td>
<td>CRICOS</td>
</tr>
<tr>
<td>C</td>
<td>Centre for Rural and Regional Innovation</td>
<td>CRRI</td>
</tr>
<tr>
<td>C</td>
<td>Cumberland Student Guild</td>
<td>CSG</td>
</tr>
<tr>
<td>C</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
<td>CSIRO</td>
</tr>
<tr>
<td>C</td>
<td>Commonwealth Supported Place</td>
<td>CSP</td>
</tr>
<tr>
<td>C</td>
<td>Combined Universities Language Test</td>
<td>CULT</td>
</tr>
<tr>
<td>C</td>
<td>Committee for University Teaching and Staff Development</td>
<td>CUTSD</td>
</tr>
<tr>
<td>D</td>
<td>Distinction (grade)</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>Data Audit Committee</td>
<td>DAC</td>
</tr>
<tr>
<td>D</td>
<td>Commonwealth Department of Education, Employment and Workplace Relations</td>
<td>DEEWR</td>
</tr>
<tr>
<td>D</td>
<td>Commonwealth Department of Education, Science and Training (now known as DEEWR)</td>
<td>DEST</td>
</tr>
<tr>
<td>D</td>
<td>NSW Department of Education and Training</td>
<td>DET</td>
</tr>
<tr>
<td>D</td>
<td>Department of Immigration and Citizenship</td>
<td>DIAC</td>
</tr>
<tr>
<td>D</td>
<td>Discovery-Indigenous Researchers Development Program</td>
<td>D-IRD</td>
</tr>
<tr>
<td>D</td>
<td>Director of Graduate Studies</td>
<td>DOGS</td>
</tr>
<tr>
<td>D</td>
<td>Deputy Vice-Chancellor</td>
<td>DVC</td>
</tr>
<tr>
<td>E</td>
<td>Enterprise bargaining</td>
<td>EB</td>
</tr>
<tr>
<td>E</td>
<td>Equivalent full-time student load</td>
<td>EFTSL</td>
</tr>
<tr>
<td>E</td>
<td>Equivalent full-time student unit (replaced by EFSTL)</td>
<td>EFTSU</td>
</tr>
<tr>
<td>E</td>
<td>Evaluations and Investigations Program</td>
<td>EIP</td>
</tr>
<tr>
<td>E</td>
<td>English Language Intensive Course of Study</td>
<td>ELICOS</td>
</tr>
<tr>
<td>E</td>
<td>Electron Microscope Unit</td>
<td>EMU</td>
</tr>
<tr>
<td>E</td>
<td>Education Services for Overseas Student Act</td>
<td>ESOS Act</td>
</tr>
<tr>
<td>F</td>
<td>Fail</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>Fee - Higher Education Loan Program</td>
<td>FEE-HELP</td>
</tr>
<tr>
<td>F</td>
<td>Flexible Student Information System</td>
<td>FlexSIS</td>
</tr>
<tr>
<td>F</td>
<td>Fractional full-time (equivalent staff)</td>
<td>FFT</td>
</tr>
<tr>
<td>F</td>
<td>Faculty of Health Sciences</td>
<td>FHS</td>
</tr>
<tr>
<td>F</td>
<td>Field of study</td>
<td>FOS</td>
</tr>
<tr>
<td>F</td>
<td>Full-time equivalent (staff)</td>
<td>FTE</td>
</tr>
<tr>
<td>G</td>
<td>General Agreement on Trade in Services</td>
<td>GATS</td>
</tr>
<tr>
<td>G</td>
<td>Graduate Careers Council of Australia</td>
<td>GCCA</td>
</tr>
<tr>
<td>G</td>
<td>Graduate destination survey</td>
<td>GDS</td>
</tr>
<tr>
<td>G</td>
<td>Group of Eight</td>
<td>Go8</td>
</tr>
<tr>
<td>G</td>
<td>General Purpose Operating Funds</td>
<td>GPOF</td>
</tr>
<tr>
<td>G</td>
<td>Graduate Skills Assessment</td>
<td>GSA</td>
</tr>
<tr>
<td>G</td>
<td>Graduate School of Government</td>
<td>GSG</td>
</tr>
<tr>
<td>G</td>
<td>Greater Western Sydney Learning Network</td>
<td>GWSLN</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>HD</td>
<td>High distinction</td>
<td></td>
</tr>
<tr>
<td>HDR</td>
<td>Higher degree research</td>
<td></td>
</tr>
<tr>
<td>HECS</td>
<td>Higher Education Contribution Scheme (replaced by HECS-HELP)</td>
<td></td>
</tr>
<tr>
<td>HECS-HELP</td>
<td>Higher Education Contribution Scheme - Higher Education Loan Program</td>
<td></td>
</tr>
<tr>
<td>HEEP</td>
<td>Higher Education Equity Program</td>
<td></td>
</tr>
<tr>
<td>HEIMS</td>
<td>Higher Education Information Management System</td>
<td></td>
</tr>
<tr>
<td>HEIP</td>
<td>Higher Education Innovation Program (DEEWR)</td>
<td></td>
</tr>
<tr>
<td>HELP</td>
<td>Higher Education Loan Program</td>
<td></td>
</tr>
<tr>
<td>HEO</td>
<td>Higher education officer</td>
<td></td>
</tr>
<tr>
<td>HEP</td>
<td>Higher education provider</td>
<td></td>
</tr>
<tr>
<td>HERDC</td>
<td>Higher Education Research Data Collection</td>
<td></td>
</tr>
<tr>
<td>HESA</td>
<td>Higher Education Support Act</td>
<td></td>
</tr>
<tr>
<td>ROA</td>
<td>Head of administrative unit</td>
<td></td>
</tr>
<tr>
<td>HOD</td>
<td>Head of department</td>
<td></td>
</tr>
<tr>
<td>HOS</td>
<td>Head of school</td>
<td></td>
</tr>
<tr>
<td>IAF</td>
<td>Institutional Assessment Framework</td>
<td></td>
</tr>
<tr>
<td>IAS</td>
<td>Institute of Advanced Studies</td>
<td></td>
</tr>
<tr>
<td>ICT</td>
<td>Information and communication technology</td>
<td></td>
</tr>
<tr>
<td>IELTS</td>
<td>International English Language Testing Scheme</td>
<td></td>
</tr>
<tr>
<td>IGS</td>
<td>Institutional Grants Scheme (DEEWR)</td>
<td></td>
</tr>
<tr>
<td>IO</td>
<td>International Office</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td>Intellectual property</td>
<td></td>
</tr>
<tr>
<td>IPRS</td>
<td>International Postgraduate Research Scholarships</td>
<td></td>
</tr>
<tr>
<td>IREX</td>
<td>International Researcher Exchange Scheme</td>
<td></td>
</tr>
<tr>
<td>ISFP</td>
<td>Indigenous Support Funding Program</td>
<td></td>
</tr>
<tr>
<td>ISIG</td>
<td>Innovation Summit Implementation Group</td>
<td></td>
</tr>
<tr>
<td>ISSU</td>
<td>International Student Services Unit</td>
<td></td>
</tr>
<tr>
<td>ITL</td>
<td>Institute for Teaching and Learning</td>
<td></td>
</tr>
<tr>
<td>JASON</td>
<td>Joint Academic Scholarships Online Network</td>
<td></td>
</tr>
<tr>
<td>LBOTE</td>
<td>Language background other than English</td>
<td></td>
</tr>
<tr>
<td>MISG</td>
<td>Management Information Steering Group</td>
<td></td>
</tr>
<tr>
<td>MNRF</td>
<td>Major National Research Facilities Scheme</td>
<td></td>
</tr>
<tr>
<td>MOU</td>
<td>Memorandum of understanding</td>
<td></td>
</tr>
<tr>
<td>MRB</td>
<td>Medical Rural Bonded Scholarship Scheme</td>
<td></td>
</tr>
<tr>
<td>NBCOTP</td>
<td>National Bridging Courses for Overseas Trained Program</td>
<td></td>
</tr>
<tr>
<td>NCGR</td>
<td>National Competitive Grant</td>
<td></td>
</tr>
<tr>
<td>NESB</td>
<td>Non-English-speaking background</td>
<td></td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
<td></td>
</tr>
<tr>
<td>NOIE</td>
<td>National Office for the Information Economy</td>
<td></td>
</tr>
<tr>
<td>NOOSSR</td>
<td>National Office for Overseas Skill Recognition</td>
<td></td>
</tr>
<tr>
<td>NRSL</td>
<td>Non-recent school leaver</td>
<td></td>
</tr>
<tr>
<td>NSW VCC</td>
<td>New South Wales Vice-Chancellors' Conference</td>
<td></td>
</tr>
<tr>
<td>NTEU</td>
<td>National Tertiary Education Industry Union</td>
<td></td>
</tr>
<tr>
<td>NUS</td>
<td>National Union of Students</td>
<td></td>
</tr>
<tr>
<td>OECD</td>
<td>Organisation for Economic Cooperation and Development</td>
<td></td>
</tr>
<tr>
<td>OLA</td>
<td>Open Learning Australia</td>
<td></td>
</tr>
<tr>
<td>OPRS</td>
<td>Overseas Postgraduate Research Scholarships</td>
<td></td>
</tr>
<tr>
<td>OS-HELP</td>
<td>Overseas Student - Higher Education Loan Program</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>Pass</td>
<td></td>
</tr>
<tr>
<td>PCON</td>
<td>Pass (Concessional)</td>
<td></td>
</tr>
<tr>
<td>PELS</td>
<td>Postgraduate Education Loans Scheme</td>
<td></td>
</tr>
<tr>
<td>PSO</td>
<td>Planning Support Office</td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td>Pro-Vice-Chancellor</td>
<td></td>
</tr>
<tr>
<td>QA</td>
<td>Quality assurance</td>
<td></td>
</tr>
<tr>
<td>QACG</td>
<td>Quality Advisory and Coordination Group</td>
<td></td>
</tr>
<tr>
<td>R&D</td>
<td>Research and development</td>
<td></td>
</tr>
<tr>
<td>R&R</td>
<td>Restructuring and Rationalisation Program</td>
<td></td>
</tr>
<tr>
<td>RC</td>
<td>Responsibility Centre</td>
<td></td>
</tr>
<tr>
<td>REG</td>
<td>Research and earmarked grants</td>
<td></td>
</tr>
<tr>
<td>REP</td>
<td>Research Education Program</td>
<td></td>
</tr>
<tr>
<td>RFM</td>
<td>Relative Funding Model</td>
<td></td>
</tr>
<tr>
<td>RIAP</td>
<td>Research Institute for Asia and the Pacific</td>
<td></td>
</tr>
<tr>
<td>RIBG</td>
<td>Research Infrastructure Block Grant (DEEWR)</td>
<td></td>
</tr>
<tr>
<td>RIEF</td>
<td>Research Infrastructure Equipment and Facilities Scheme</td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>Research Information Management System</td>
<td></td>
</tr>
<tr>
<td>RISF</td>
<td>Restructuring Initiatives Support Fund</td>
<td></td>
</tr>
<tr>
<td>RMO</td>
<td>Risk Management Office</td>
<td></td>
</tr>
<tr>
<td>ROA</td>
<td>Record of Achievement</td>
<td></td>
</tr>
<tr>
<td>RQ</td>
<td>Research Quantum</td>
<td></td>
</tr>
<tr>
<td>RQF</td>
<td>Research Quality Framework</td>
<td></td>
</tr>
<tr>
<td>RQF</td>
<td>Recognition Quality Unit (Higher Education Division, DEEWR)</td>
<td></td>
</tr>
<tr>
<td>RRTMR</td>
<td>Research and Research Training Management Reports</td>
<td></td>
</tr>
<tr>
<td>RSL</td>
<td>Recent school leaver</td>
<td></td>
</tr>
<tr>
<td>RTS</td>
<td>Research Training Scheme (DEEWR)</td>
<td></td>
</tr>
<tr>
<td>SASCA</td>
<td>Student Association of Sydney College of the Arts</td>
<td></td>
</tr>
<tr>
<td>SCA</td>
<td>Sydney College of the Arts</td>
<td></td>
</tr>
<tr>
<td>SCEQ</td>
<td>Sydney Course Experience Questionnaire</td>
<td></td>
</tr>
<tr>
<td>SCM</td>
<td>Sydney Conservatorium of Music</td>
<td></td>
</tr>
<tr>
<td>SCR</td>
<td>Science Capability Review</td>
<td></td>
</tr>
<tr>
<td>SDF</td>
<td>Strategic Development Fund</td>
<td></td>
</tr>
<tr>
<td>SEG</td>
<td>Senior Executive Group</td>
<td></td>
</tr>
<tr>
<td>SES</td>
<td>Socioeconomic status</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>Scholarship Index</td>
<td></td>
</tr>
<tr>
<td>SLE</td>
<td>Student Learning Entitlement</td>
<td></td>
</tr>
<tr>
<td>SNA</td>
<td>Safety net adjustment</td>
<td></td>
</tr>
<tr>
<td>SPR</td>
<td>Student Progress Rate</td>
<td></td>
</tr>
<tr>
<td>SRC</td>
<td>Students' Representative Council</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Special Studies Program</td>
<td></td>
</tr>
<tr>
<td>SSR</td>
<td>Student–staff ratio</td>
<td></td>
</tr>
<tr>
<td>STABEX</td>
<td>Study Abroad Exchange (database)</td>
<td></td>
</tr>
<tr>
<td>SUPRA</td>
<td>Sydney University Postgraduate Representative Association</td>
<td></td>
</tr>
<tr>
<td>SUSF</td>
<td>Sydney Uni Sport & Fitness</td>
<td></td>
</tr>
<tr>
<td>TAFE</td>
<td>Technical and Further Education</td>
<td></td>
</tr>
<tr>
<td>TOEFL</td>
<td>Test of English as a foreign language</td>
<td></td>
</tr>
<tr>
<td>TPI</td>
<td>Teaching performance indicator</td>
<td></td>
</tr>
<tr>
<td>Abbreviations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAC</td>
<td>Universities Admissions Centre</td>
<td></td>
</tr>
<tr>
<td>UAI</td>
<td>Universities Admission Index (replaced by ATAR)</td>
<td></td>
</tr>
<tr>
<td>UMAP</td>
<td>University Mobility in Asia and the Pacific</td>
<td></td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific and Cultural Organisation</td>
<td></td>
</tr>
<tr>
<td>UNSW</td>
<td>University of New South Wales</td>
<td></td>
</tr>
<tr>
<td>UPA</td>
<td>University Postgraduate Awards</td>
<td></td>
</tr>
<tr>
<td>USU</td>
<td>University of Sydney Union</td>
<td></td>
</tr>
<tr>
<td>UTS</td>
<td>University of Technology, Sydney</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VCAC</td>
<td>Vice-Chancellor's Advisory Committee</td>
<td></td>
</tr>
<tr>
<td>VET</td>
<td>Vocational Education and Training</td>
<td></td>
</tr>
<tr>
<td>VSU</td>
<td>Voluntary Student Unionism</td>
<td></td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAM</td>
<td>Weighted Average Mark</td>
<td></td>
</tr>
<tr>
<td>WRP</td>
<td>Workplace Reform Program</td>
<td></td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YFE</td>
<td>Year of first enrolment</td>
<td></td>
</tr>
</tbody>
</table>
Abbreviations
Glossary

For a table of commonly used acronyms and abbreviations that appear in University documents and publications, see Abbreviations.

This glossary describes terminology in use at the University of Sydney.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

A

Academic Board
The senior academic body within the University. The Academic Board has, as principal responsibility, to maintain the highest standards in teaching, scholarship and research at the University and advises Senate and the Vice-Chancellor in that regard. In conjunction with faculties, the Academic Board has responsibility for approving new or amended courses and endorsing faculty development of units of study. The Board is also responsible for the formulation and review of policies, guidelines and procedures in relation to academic matters. For further information, see the University of Sydney (Academic Governance) Rule 2003 (as amended).

Academic Consortium 21 (AC21)
An international network, of which the University is a member, which comprises educational, research and industrial organisations throughout the world with the objective of encouraging the further advancement of global cooperation to the benefit of higher education and to contribute to world and regional society.

Academic cycle
The program of teaching sessions offered over a year. Currently the cycle runs from the enrolment period for Semester One to the completion of the processing of results at the end of Semester Two. See also 'Academic year', 'Stage'.

Academic dishonesty
Academic dishonesty occurs when one person presents another person’s ideas, findings or written work as his or her own by copying or reproducing them without due acknowledgement of the source and with intent to deceive. Academic dishonesty also covers recycling, fabrication of data, engaging another person to complete an assessment or cheating in exams. See also 'Plagiarism'.

Academic record
The complete academic history of a student at the University. It includes, among other things: personal details; all units of study and courses taken; assessment results (marks and grades); awards and prizes obtained; infringements of progression rules; approvals for variation in course requirements and course leave; thesis and supervision details.

Access to a student’s academic record is restricted to authorised University staff and is not released to a third party without the written authorisation of the student. See also 'Academic transcript'.

Academic transcript
A printed statement setting out a student’s academic record at the University. There are two forms of academic transcript: external and internal. See also 'Academic record', 'External transcript', 'Internal transcript'.

Academic year
The current calendar year in which a student is enrolled. See also 'Academic cycle', 'Stage'.

Ad eundem gradum
Long-standing full-time members of the University’s academic and general staff who are not graduates of the University may be considered by Senate, upon their retirement, for admission Ad eundem gradum (‘to the same degree’) to an appropriate degree of the University.

Admission
Governed by the University’s admission policy, this is the process for identifying applicants eligible to receive an initial offer of enrolment in a course at the University. Admission to most undergraduate courses is based on performance in the HSC, with applicants ranked on the basis of their Australian Tertiary Admissions Rank (ATAR). Other criteria such as a portfolio, interview, audition, or results in standard tests may also be taken into account for certain courses. Admission to postgraduate courses is normally on the basis of performance in a prior undergraduate degree and other criteria as specified in the relevant degree resolutions.

Admission basis
The main criterion used by a faculty in assessing an application for admission to a course. The criteria used include, among other things, previous secondary, TAFE or tertiary studies, work experience, special admission, and the Australian Tertiary Admissions Rank (ATAR).

Admission (Deferment)
An applicant who receives an offer of admission to a course may apply to defer enrolment in that course for one semester or one academic cycle. (Note: this policy is currently under review.)

Admission mode
A classification based on how a student was admitted to a course, for example 'UAC' or 'direct'.

Admission period
The period during which applications for admission to courses are considered.

Admission year
The year the student expects to begin the course. See also 'Commencement date'.

Advanced diplomas
See 'Course'.

Advanced standing
See 'Credit'.

Aegrotat
In exceptional circumstances involving serious illness or death of a student prior to completion of their course, the award of an aegrotat, or posthumous degree or diploma, may be conferred.

Alumni
See 'Graduate'.

Alumni sidneiensis
A searchable database of graduates of the University from 1857 to approximately 30 years prior to the current year.

For further information, see the University of Sydney (Academic Governance) Rule 2003 (as amended).
Annual average mark (AAM)
The average mark over all units of study attempted in a given academic year (equivalent to the calendar year). The formula for this calculation is:

\[AAM = \frac{\sum (\text{marks} \times \text{credit point value})}{\sum \text{credit point value}} \]

(Sums over all units of study completed in the selected period.)

The mark is the actual mark obtained by the student for the unit of study, or in the case of a failing grade with no mark – 0. Pass/fail assessed subjects and credit transfer subjects (from another institution) are excluded from these calculations. However, the marks from all attempts at a unit of study are included.

Annual progress report
A form used to monitor a research student's progress each year. The form provides for comments by the student, the supervisor, the head of the department and the dean (or their nominee). The completed form is attached to the student's official file.

Annual Report
The University's yearly financial and audit report, submitted to the NSW Parliament. It also includes a broad range of the University's activities and the strength of their performance in relation to the University's stated roles, values and goals.

Appeals
Students may lodge an appeal against academic or disciplinary decisions. See also 'Student Appeals Body', 'Student Disciplinary Appeals Committee'.

Appeals against an academic decision
A student may appeal to the Student Appeals Body against a decision by the University that affects the academic assessment or progress of a student within his or her award course, including a decision:

(a) to exclude a student in accordance with the University of Sydney (Coursework) Rule 2000 (as amended)
(b) not to readmit or re-enrol a student following exclusion in accordance with the University of Sydney (Coursework) Rule 2000 (as amended)
(c) to terminate a student's candidature for a postgraduate award.

Appeal against a disciplinary decision
A student may appeal to the Student Disciplinary Appeals Committee against a determination being:

(a) a finding by the Vice-Chancellor or the Student Proctorial Board that the student is guilty of misconduct
(b) the imposition of a penalty upon the student by the Vice-Chancellor or the Student Proctorial Board
(c) an order made by the Vice-Chancellor or the Student Proctorial Board.

Assessment
The process of measuring the performance of students in units of study and courses. Performance may be assessed by examinations, essays, laboratory projects, assignments, theses, treatises or dissertations. See also 'Result processing'.

Formative assessment
Used principally to provide students with feedback on their progress in learning. It reinforces successful learning, and is an opportunity for students to expose the limits in their knowledge and understanding.

Summative assessment
Summative assessment is used to certify competence, or to rank students by order of merit. It certifies the attainment of a standard, and is used as the basis for progression to the next part of a program, or to graduation.

Associate supervisor
A person who is appointed in addition to the supervisor of a research student to provide particular expertise or additional experience in supervision. See also 'Instrumental supervisor/teacher', 'Research supervisor', 'Supervision'.

Association of Pacific Rim Universities (APRU)
A consortium of leading research universities in the Pacific Rim, of which the University is a member. APRU aims to foster education, research and enterprise, thereby contributing to economic, scientific and cultural advancement in the Pacific Rim.

Assumed knowledge
For some units of study, a student is assumed to have passed a relevant subject in the HSC – this is called assumed knowledge. While students are generally advised against taking a unit of study for which they do not have the assumed knowledge, they are not prevented from enrolling in that unit of study. See also 'Prerequisite'.

Attendance mode or attendance pattern
The attendance pattern for a course is full-time, part-time or external, depending on the student attendance requirements and student load.

Australian Qualifications Framework (AQF)
The framework for recognition and endorsement of qualifications established by the Ministerial Council on Education, Employment, Training and Youth Affairs (MCEETYA).

Australian Tertiary Admissions Rank (ATAR)
A measure of overall academic achievement in the HSC that helps universities rank applicants for university selection. The ATAR is calculated from the aggregate of scaled marks in 10 units of the HSC (two best English units plus eight other units, including only two category B units) and is presented as a number between 0.00 and 99.95 with increments of 0.05. The ATAR replaced the Universities Admissions Index (UAI) in June 2009.

Austudy
Provides financial help to students who are 25 years old or over who meet the required criteria, and are undertaking an approved full-time course at an approved institution. See also 'Youth allowance'.

Automated Results Transfer System (ARTS)
This system was developed by the Australasian Conference of Tertiary Admissions Centres (ACTAC) to allow access to a student's electronic academic record, via an admission centre or tertiary institution.
Glossary

C

Cadigal program
A program, named in recognition of the Aboriginal people of the land on which the University is located, designed to increase the successful participation of Aboriginal and Torres Strait Islander people in degree courses in all faculties at the University of Sydney.

Calendar
See 'University Calendar'.

Campus
The grounds on which the University is situated. There are 10 campuses of the University of Sydney:
- Burren Street (Institute for International Health, Institute of Transport and Logistics Studies)
- Camperdown and Darlington (formerly known as Main Campus)
- Camden (Agriculture, Food and Natural Resources; and Veterinary Science)
- Conservatorium (Sydney Conservatorium of Music)
- Cumberland (Health Sciences)
- Mallett Street (Nursing and Midwifery)
- Rozelle (Sydney College of the Arts)
- St James (Law teaching spaces)
- Surry Hills (Dentistry).

Cancellation of enrolment
The University may cancel a student's enrolment for non-payment of fees.

Candidature
A person is 'admitted to candidature' on the date on which he or she accepts the University's offer of admission to an award course, in accordance with University and government requirements as amended from time to time. There are maximum periods and in some cases minimum periods of candidature depending on the award course and whether the candidate is a full-time or part-time student.

Census date
The date at which a student's enrolment, load and HECS liability are finalised before this information is reported to DEEWR. See also 'Commonwealth Supported Place', 'HECS-HELP'.

Ceremony
See 'Graduation ceremony'.

Chancellor
The non-executive head of the University. An honorary position, the Chancellor presides over meetings of the University's governing body, the Senate, and important ceremonial occasions such as graduations.

Clinical experience
Students undertake clinical placements in a professional environment as part of their course requirements. Many require University-approved supervision. In order to undertake clinical placements a student may be required to fulfil additional requirements.

Combined degree
A single program with a single set of course resolutions leading to the award of two degrees (unless otherwise specified in the resolutions). See also 'Double degree'.

Commencement date
The date a student commences their candidature.

Commonwealth Supported Place (CSP)
(Previously known as a HECS Place.) A student in a Commonwealth Supported Place makes a contribution towards the cost of their education (known as the student contribution) while the Australian Government contributes the majority of the cost.

Confirmation of Enrolment notice (COE)
This notice is issued to each student after enrolment, showing the course and the units of study in which the student is enrolled, together with the credit point value of the units of study and the student-contribution weights. Until all fees are paid, it is issued provisionally. A new confirmation of enrolment notice is produced every time a student's enrolment is varied.

Conjoint ventures
This is when two or more institutions cooperate to provide a unit or course of study to postgraduate coursework students. In these arrangements, students enrolled for a degree at one institution complete one or more units of study at the other institution to count towards the award program at their 'home' institution.

Continuing professional education
A process which provides a number of programs of continuing education courses for professionals as they move through their career. These programs are currently administered by the Centre for Continuing Education (CCE) and a number of departments and foundations across the University. This process supports the whole of life learning concept and involves the maintenance of a long-term relationship between the student and the University.

Convocation
A body that comprises: the Fellows and former Fellows of the Senate of the University of Sydney; members of the former governing bodies of the institutions with which the University has amalgamated or their predecessors; the graduates of the University of Sydney, including graduates of the institutions with which the University has amalgamated or their predecessors; professors and other full-time members of the academic staff of the University; and principals of the incorporated colleges.

Core unit of study
A unit of study that is compulsory for a particular course or subject area. See also 'Unit of study'.

Corequisite
A unit of study that must be taken in the same semester or year as a given unit of study (unless it has already been completed). These are determined by the faculty or board of studies concerned, published in the faculty handbook and shown in FlexSIS. See also 'Prerequisite', 'Waiver'.

Cotutelle Scheme
Agreement between the University and any overseas university for joint supervision and examination of a PhD student as part of an ongoing cooperative research collaboration. If successful, the student receives a doctorate from both universities with each testamur acknowledging the circumstances under which the award was made.

Course
A program of study at the University of Sydney. The main types of course are:

- Award course
A formal course of study that will see attainment of a recognised award. Award courses are approved by Academic Board and endorsed by Senate. The University broadly classifies courses as undergraduate, postgraduate coursework or postgraduate research. See also 'Bachelor's degree', 'Course rules', 'Diploma', 'Doctorate', 'Major', 'Master's degree', 'Minor', PhD, 'Stream'.

- Non-award course
Studies undertaken by students that do not lead to an award from the University. Non-award courses include professional development programs. See also 'Cross-institutional enrolment'.

Coursework
An award course not designated as a research award course. While the program of study in a coursework award course may include a component of original work, other forms of instruction and learning will normally be dominant.
Course alias
A unique five character alpha-numeric code which identifies a University course.

Course code
See 'Course alias'.

Course leave
Students are permitted to apply for a period away from their course without losing their place. Course leave is formally approved by the supervising faculty for a minimum of one semester. Students on leave are regarded as having an active candidature, but they are not entitled to a student card. At undergraduate level, leave is not counted towards the total length of the course. Students who are absent from study without approved leave may be discontinued and may be required to formally reapply for admission. See also 'Progression'.

Credit
The recognition of previous studies successfully completed at the University of Sydney (or another university or tertiary institution recognised by the University of Sydney), as contributing to the requirements of the course to which the applicant requesting such recognition has been admitted. It may be granted as specified credit or non-specified credit.

Specified credit
The recognition of previously completed studies as directly equivalent to units of study.

Non-specified credit
A 'block credit' for a specified number of credit points at a particular level. These credit points may be in a particular subject area but are not linked to a specific unit of study. See also 'Annual average mark (AAM)', 'Waiver', 'Weighted average mark (WAM)'.

Credit points
The value of the contribution each unit of study provides towards meeting course completion requirements. Each unit of study normally has a six credit point value assigned to it. The total number of credit points required for completion of award courses will be specified in the Senate resolutions relevant to the award course.

Cross-institutional enrolment
Enrolment in units of study to count towards an award course at another university. See also 'Course (Non-award course)'.

Data Audit Committee (DAC)
The Data Audit Committee’s role is to oversee the integrity and accuracy of the course and unit of study data as strategic University data. It also advises the Academic Board on suggested policy changes related to course and unit of study data. A subcommittee of the VCAC Enrolment Working Party, it is chaired by the Registrar, with membership including the deans, the Student Centre, FlexSIS and Planning and Statistics.

Deadlines (Enrolment variations)
See 'Enrolment variation'.

Deadlines (Fees)
The University has deadlines for the payment of course and other fees. Students who do not pay fees by these deadlines may have their enrolment cancelled or they may have a barrier placed on the release of their record. See also 'Cancellation of enrolment'.

Dean
The head of a faculty, or the principal/director of a college, such as the Sydney Conservatorium of Music, or Sydney College of the Arts.

Dean's Certificate
A statement from a faculty dean certifying that all requirements, including fieldwork and practical work, have been met and that the student is eligible to graduate. Not all faculties use Dean's Certificates. In faculties that do, qualified students have 'Dean's Certificate' noted on their academic record.

Deferment (Deferral)
See also 'Admission (Deferral)', 'Course leave'.

Degree
See also 'Bachelor's degree', 'Course'.

Delivery mode
Indicates how students receive the instruction for a unit of study. The delivery mode must be recorded for each unit as distinct from the attendance mode of the student. For example, an internal student may take one or more units by distance mode and an external student may attend campus for one or more units.

Distance education
Where subject matter is delivered in a more flexible manner, such as correspondence notes, a student may only attend campus if required. See also 'Distance education', 'Extended semester', 'International student (Offshore studies)'.

Intensive on-campus
Core content is delivered with support learning in an intensive (one or more days) format on campus. Participation is usually compulsory. Previously this may have been called residential, block mode, or weekend workshop.

On-campus (normal)
Attendance of scheduled lectures, tutorials etc at a campus of the University.

Department
A department is the academic unit responsible for teaching and examining a unit of study. It may be called a school, a department, a centre or a unit within the University. See 'School'.

Department of Education, Employment and Workplace Relations (DEEWR)
The federal government department responsible for higher education.

Department of Education, Science and Training (DEST)
Previous name of the federal government department now known as DEEWR.
Diploma
The award granted following successful completion of diploma course requirements. A diploma course usually requires less study than a degree course. See also 'Course'.

Direct admissions
For some courses, applications may be made directly to the University. Applications are received by faculties or the International Office, and considered by the relevant department or faculty body. Decisions are recorded and letters are forwarded to applicants advising them of the outcome. See also 'Admission', "Universities Admissions Centre".

Disability information
Students may inform the University of any temporary or permanent disability which affects their life as a student. Disability information is recorded but is only available to authorised users because of its sensitive nature. Students will be informed about how it is used.

Disciplinary action
Undertaken as the result of academic or other misconduct, for example plagiarism, cheating, security infringement, criminal activity.

Discipline
A defined area of study, such as chemistry, physics or economics.

Discipline group
A DEEWR code used to classify units of study in terms of the subject matter being taught or being researched.

Discontinuation (course)
See 'Enrolment variation'.

Discontinuation (unit of study)
See 'Enrolment variation'.

Dissertation
A written exposition of a topic which may include original argument substantiated by reference to acknowledged authorities. It is a required unit of study for some postgraduate award courses in the faculties of Law, and Architecture, Design and Planning.

Distance education
Where a student does not attend campus on a daily basis for a given course or unit of study. See also 'Delivery mode', 'Extended semester'.

Doctorate
A high-level postgraduate award. A doctorate course may involve research only or a mixture of research and coursework; the candidate submits a thesis that is an original contribution to the field of study. See also 'Course', 'PhD'.

Domestic student
A student who is not an international student. See also 'Local student'.

Double degree
A double degree is a program where students are permitted by participating faculties (and/or by specific resolutions within a single award) to transfer between courses in order to complete two awards.

Downgrade
In some circumstances a student enrolled in a PhD may transfer to a master's by research, either on the recommendation of the University on the basis that the research they are undertaking is not at an appropriate level for a PhD, or at the student's own request for personal or academic reasons.

E
Elective
A unit of study within a degree, usually an option within a course. Electives allow more detailed study of a particular subject.

Embedded courses
Award courses in the graduate certificate, graduate diploma and master's degree by coursework sequence which allow unit of study credit points to count in more than one of the awards, for example the Graduate Certificate in Information Technology, Graduate Diploma in Information Technology, and Master of Information Technology.

Enrolled student
A person enrolled in an award course of the University.

Enrolment
Refers to a period of time in a student's candidature. This period:
(a) commences at the time the student has complied with all government and University requirements for enrolment
(b) unless the student re-enrols, ceases at the date on which:
 i. the University cancels, or the student withdraws from or discontinues enrolment; or
 ii. the next new enrolment period commences.

A student enrols in a course by registering with the supervising faculty in the units of study or program of research to be taken in the coming year, semester or session.

Commencing
An enrolment is classified as commencing if a student has enrolled in a particular degree or diploma for the first time.

Continuing
Students already in a course at the University re-enrol each year or semester. Most continuing students are required to pre-enrol. See also 'Pre-enrolment'.

Enrolment list
A list of all currently enrolled students in a particular unit of study. See also 'Unit of study'.

Enrolment variation
Students may vary their enrolment at the start of each semester. Each faculty determines its deadlines for variations, but student-contribution liability depends on the Commonwealth census date. See also 'Commonwealth Supported Place'.

Equivalent full-time student load (EFTSL)
The equivalent full-time student load for a year. It represents the annual study load of a student undertaking a particular course of study on a full-time basis.

Equivalent full-time student unit (EFTSU)
See 'Equivalent full-time student load'.

Examination
A set of questions or exercises evaluating on a given subject given by a department or faculty. See also 'Assessment', 'Examination period'.

Examination period
The time set each semester for the conduct of formal examinations.

Examiner (Coursework)
The person assessing a student or group of students, for example through oral or written examinations, coursework assignments, and presentations.

Exchange student
Either a University of Sydney student participating in a formally agreed program involving study at an overseas university, or an overseas student studying here on the same basis. The International Office provides administrative support for some exchanges.
Exclusion
A faculty may ask a student whose academic progress is considered to be unsatisfactory to 'show good cause' why the student should be allowed to re-enrol. If the faculty deems the student's explanation unsatisfactory, or if the student does not provide an explanation, the student may be excluded either from a unit of study or from a course or faculty.

An excluded student may apply to the faculty for permission to re-enrol. Normally, at least two years must have elapsed before such an application would be considered. University policy relating to exclusions is set out in the Calendar. See also 'Appeals', 'Progression'.

Exemption
A decision made at a sub-unit of study level to allow a student to complete a unit of study without also completing all the prescribed components of coursework and/or assessment. See also 'Credit', 'Waiver'.

Expulsion
The ultimate penalty of disciplinary action is to expel the student from the University. The effect of expulsion is:

- the student is not allowed to be admitted or to re-enrol in any course at the University
- the student does not receive their results
- the student is not allowed to graduate
- the student does not receive a transcript or testamur.

Extended semester
A distance-learning student may be allowed more time to complete a module or program if circumstances beyond the student's control, such as illness, affect the student's ability to complete the module or program in the specified time. See also 'Distance education'.

External
See 'Attendance mode or attendance pattern', 'Distance education'.

External transcript
A certified statement of a student's academic record printed on official University security paper. It includes the student's name, any credit granted, all courses the student was enrolled in, the final course result, and all units of study attempted within each course. It also acknowledges prizes the student has received. Marks can be included or omitted, as required. See also 'Academic transcript', 'Internal transcript'.

G

Grade
The outcome for a unit of study linked with a mark range. For example, a mark in the range 85 to 100 attracts the grade 'high distinction' (HD). See also 'Mark'.

Graduand
A student who has completed all the requirements for an award course but has not yet graduated. See also 'Graduation', 'Potential graduand'.

Graduate
A person who holds an award from a recognised tertiary institution. See also 'Graduand', 'Graduation'.

Graduate certificate/graduate diploma
See 'Course'.

Graduate-entry degree
A bachelor's degree (or other undergraduate degree), that requires another undergraduate degree as a prerequisite of entry. Examples of graduate-entry degrees at the University of Sydney include the Medical Program, Graduate Law and the Bachelor of Dentistry.

Graduation
The formal conferring of awards either at a ceremony or in absentia. See also 'In absentia', 'Potential graduand'.

Graduation ceremony
A ceremony where the Chancellor confers awards upon graduands.

Group of Eight (Go8)
The Group of Eight represents Australia's major research-intensive universities. Its membership comprises the vice-chancellors (presidents) of the Australian National University, Monash University, the University of Adelaide, the University of Melbourne, the University of New South Wales, the University of Queensland, the University of Sydney and the University of Western Australia. The Go8 works to ensure a consistent and sustainable policy environment which maximises the wide-ranging economic, social and cultural benefits to the Australian community of higher education and ensures Australian universities are recognised as among the best in the world.

Group work
A formally established project to be carried out by a number of students working together, resulting in a single piece (or assorted pieces) of assessment. See also 'Legitimate cooperation'.

F

Faculty
A formal part of the University's academic governance structure, consisting mainly of academic staff members and headed by a dean, which is responsible for all matters concerning the award courses that it supervises. Usually, a faculty office administers the faculty and student or staff enquiries related to its courses. The University Calendar sets out the constitution of each of the University's faculties. See also 'Board of studies', 'Supervising faculty'.

Faculty handbook
An annual University publication for each faculty, that provides detailed information about the faculty, its courses and resolutions.

FEE-HELP
An interest-free loan facility available to fee-paying postgraduate students who are undertaking coursework programs.

Fee-paying students
Students who pay tuition fees to the University and are not liable for student contributions to a Commonwealth Supported Place. The Commonwealth does not contribute towards the cost of the education of fee-paying students. Annual fees vary between the faculties. Students pay a per-semester fee.
Handbook
See ‘Faculty handbook’.

Head of department/Head of school (HOD/HOS)
The head of the academic unit that has responsibility for the relevant unit of study, or equivalent program leader.

Higher Education Contribution Scheme (HECS)
See ‘HECS-HELP’.

HECS-HELP
An eligible student in a Commonwealth Supported Place can apply for assistance in paying their student contribution. This may take the form of a HECS-HELP loan to pay for all or some of the student’s contribution, or a HECS-HELP discount if all (or at least $500) of the student’s contribution is paid by the census date.

Honorary degrees
A degree honoris causa is conferred on a person whom the University wishes to honour. It derives from the Latin translation of ‘for the purpose of honouring’.

Honours
Some degrees may be completed ‘with honours’. This may involve the completion of a separate honours year or additional work in the later years of the course. Honours are awarded in a class (Class I, Class II, which may have two divisions, or Class III).

NSW Higher School Certificate (HSC)
The NSW Higher School Certificate (HSC), which is normally completed at the end of year 12 of secondary school. The Australian Tertiary Admissions Rank (ATAR) is computed from a student’s performance in the HSC and gives a maximum rank of 99.95.

In absentia
Latin for ‘in the absence of’. Awards are conferred in absentia when graduands do not, or cannot, attend the graduation ceremony scheduled for them. Those who have graduated in absentia may later request that they be presented to the Chancellor at a graduation ceremony. See also ‘Graduation’.

Instrumental supervisor/teacher
All students at the Sydney Conservatorium of Music have an instrumental teacher appointed. See also ‘Associate supervisor’, ‘Research supervisor’, ‘Supervision’.

Internal mode
See ‘Attendance mode or attendance pattern’.

Internal transcript
A record of a student’s academic record for the University’s own internal use. It includes the student’s name, student identifier (SID), address, all courses in which the student was enrolled and the final course result, and all units of study attempted within each course, together with the unit of study result. See also ‘Academic transcript’, ‘External transcript’.

International student
Any student who is not an Australian or New Zealand citizen or a permanent resident of Australia. An international student is required to hold a visa that allows study in Australia and may be liable for international tuition fees.

Fee-paying
A private international student who is liable to pay tuition fees for their studies with the University.

Fee-paying – outgoing exchange
An international fee-paying student undertaking short-term study at a recognised overseas institution with which the University has a student exchange agreement. Exchange study counts towards the student’s University of Sydney award, and students remain enrolled in their University of Sydney course during the period of exchange.

International – non-award or cross-institutional
An international fee-paying student undertaking non-award study at the University on a cross-institutional basis. They are liable to pay fees for the study they undertake at the University, but there is no compliance reporting requirement – this rests with their ‘home’ institution.

International – sponsored
A private international student who is fully sponsored for their tuition. Their sponsorship may also include overseas health cover and compulsory subscriptions.

Offshore studies
International offshore students undertake their program of study at one of the University’s offshore campuses and do not enter Australia. Therefore they do not require a visa. They are distinct from international students who are on outbound exchange programs as they never enter Australia during their program of study.

Short course
An international fee-paying student undertaking a short course with the University of Sydney such as international development programs, executive training or study visits. The study undertaken by these students is non-award and generally a student visa is not required.

Sponsored award
An international student sponsored by the Australian Government, undertaking a program of study at the University. Currently, holders of Australian Development Scholarships funded by AusAID are the only students in this category. These students are fully sponsored for their tuition and other costs such as travel and health cover, and are paid a stipend.

Study Abroad
An international student who is undertaking short-term study at the University under the Study Abroad scheme. Study Abroad students must have completed at least one year of study towards a degree at a recognised institution in their home country and must be continuing towards the degree of their home institution. See also ‘Local student’, ‘Student type’.

Learning entitlement
See ‘Student learning entitlement’.

Leave
See ‘Course leave’.

Legitimate cooperation
Any constructive educational and intellectual practice that aims to facilitate optimal learning outcomes through student interaction. See also ‘Group work’.

Load
The sum of the weights of all the units of study in which a student is enrolled. The weight is determined by the proportion of a full year’s work represented by the unit of study in the degree or diploma for which the student is a candidate. Student load is measured in terms of Equivalent Full-Time Student Load (EFTSL). See also ‘Equivalent full-time student load’.

Local student
Local students are defined as an Australian or New Zealand citizen or an Australian permanent resident. See also ‘Commonwealth Supported Place’, ‘Domestic student’, ‘International student’.
M

Major
A field of study, chosen by a student to represent their principal interest. This is comprised of specified units of study from later stages of the award course. Students select and transfer between majors by virtue of their selection of units of study. One or more majors may be awarded upon the graduand's assessment of study. See also 'Course', 'Minor', 'Stream'.

Major timetable clash
The term used when a student attempts to enrol in units of study that have so much overlap in the teaching times that it is decided they may not enrol in the units simultaneously.

Mark
An integer (rounded if necessary) from 0 to 100 indicating a student's performance in a unit of study. See also 'Grade'.

Master's degree
A postgraduate award. Master's degree courses may be offered by coursework, research only or a combination of coursework and research. Entry to the course often requires completion of an honours year at an undergraduate level. See also 'Course'.

Mature-age student
A student who is 21 years or older on 1 March of the year in which they commence studies, and who has not completed the high school qualifications normally needed to gain entry.

Method of candidature
A course is either a research course or a coursework course and so the methods of candidature are 'research' and 'coursework'. See also 'Course (Coursework)', 'Course (Research)'.

Mid-year intake
Admission to degree programs for Semester Two.

Minor
Studies undertaken to support a major. Minor studies require smaller number of credit points than a major. Students select and transfer between minors (and majors) by virtue of their selection of units of study. One or more minors may be awarded upon the graduand's assessment of study. See also 'Course', 'Major', 'Stream'.

Mixed mode
See 'Attendance mode or attendance pattern'.

MPhil
The Master of Philosophy (MPhil) is a master's by research degree offered by some (but not all) of the University's faculties. See also 'Course', 'Master's degree'.

Mutually exclusive units of study
See 'Prohibited combinations of units of study'.

MyUni
The University of Sydney's student portal system. It provides access to email, library services, student self-administration, support services, e-learning software such as Blackboard and WebCT, as well as information about the University and its courses.

O

Orientation Week
Orientation Week, or 'O Week', takes place in the week before lectures begin in Semester One. During O Week students can join various clubs, societies and organisations, register for courses with departments and take part in activities provided by the University of Sydney Union.

P

Part-time student
See also 'Attendance mode or attendance pattern', 'Equivalent full-time student load'.

Permanent home address
The address used for all official University correspondence with a student, both inside and outside of semester time (eg during semester breaks), unless the student provides a different address for use during the semester. See also 'Semester address'.

PhD
The Doctor of Philosophy (PhD) and other doctorate awards are the highest awards available at the University. A PhD course is normally purely research-based; the candidate submits a thesis that is an original contribution to the field of study. See also 'Course', 'Doctorate'.

Plagiarism
Presenting another person's ideas, findings or work as one's own by copying or reproducing them without acknowledging the source. See also 'Academic dishonesty'.

Policy Online
The website which provides access to the University's current policies, procedures and guidelines.

Postgraduate
A term used to describe a course leading to an award such as a graduate diploma, a master's degree or a PhD, which usually requires prior completion of a relevant undergraduate degree (or diploma) course. A 'postgraduate' is a student enrolled in such a course. See also 'Course (Coursework)', 'Course (Research)'.

Postgraduate Education Loans Scheme (PELS)
See 'FEE-HELP'.

Potential graduand
A student who has been identified as being eligible to graduate on the satisfactory completion of their current studies. See also 'Graduand', 'Graduation'.

Pre-enrolment
Pre-enrolment – also known as provisional re-enrolment – takes place in October, when students indicate their choice of unit of study enrolment for the following year. After results are approved, pre-enrolment students are regarded as enrolled in those units of study for which they are qualified. Their status is 'enrolled' and remains so provided they pay any money owing and comply with other requirements by the due date.

Students who do not successfully pre-enrol in their units of study for the next regular session are required to attend the University on set dates during the January/February enrolment period. See also 'Enrolment'.

Prerequisite
A unit of study that is required to be successfully completed before another unit of study can be attempted. Prerequisites can be mandatory (compulsory) or advisory. See also 'Assumed knowledge', 'Corequisite', 'Qualifier', 'Waiver'.

Prizes
Awarded in recognition of outstanding performance, academic achievement or service to the community or University.
Probationary candidature
A student who is enrolled in a postgraduate course on probation for a period of time up to one year. The head of department/school is required to consider the candidate's progress during the period of probation and make a recommendation for normal candidature or otherwise to the faculty.

Professional practice
Some students undertake placement in a professional practice as part of their course requirements. This may require University-approved supervision. Professional placements are located in a wide range of professional practice environments, and may not require additional criteria to be fulfilled.

Program
Each degree is composed of various units of study. The way the units are put together for a degree is referred to as a student's 'program'.

Progression
Satisfactory progression is satisfying all course and faculty rules (normally assessed on an annual basis) to enable the completion of the chosen award within the (maximum) completion time allowed. See also 'Exclusion'.

Prohibited combinations of units of study
When two or more units of study contain a sufficient overlap of content, enrolment in any one such unit prohibits enrolment in any other identified unit. See also 'Unit of study'.

Provisional re-enrolment
See 'Pre-enrolment'.

Qualification
An academic attainment recognised by the University.

Qualifier
A mandatory (compulsory) prerequisite unit of study which must have a grade of pass or better. See also 'Assumed knowledge', 'Corequisite', 'Prerequisite', 'Waiver'.

Recycling
The submission for assessment of one's own work, or of work which is substantially the same, that has previously been counted towards the satisfactory completion of another unit of study, and credited towards a university degree, and where the examiner has not been informed that the student has already received credit for that work.

Registration
In addition to enrolling with the faculty in units of study, students must register with the department responsible for teaching each unit. This is normally done during Orientation Week. Note that unlike enrolment, registration is not a formal record of units attempted by the student.

Research course
See 'Course (Research)'.

Research supervisor
A supervisor is appointed to each student undertaking a research postgraduate degree. The supervisor will be a full-time member of the academic staff or a person external to the University recognised for their association with the clinical teaching or the research work of the University. See also 'Associate supervisor', 'Instrumental supervisor/teacher', 'Supervision'.

Research Training Scheme (RTS)
The RTS provides Commonwealth-funded higher degree by research (HDR) students with an 'entitlement' to a HECS exemption for the duration of an accredited HDR course, up to a maximum period of four years full-time equivalent study for a doctorate by research and two years full-time equivalent study for a master's by research.

Result
The official statement of a student's performance in each unit of study attempted as recorded on the academic transcript, usually expressed as a mark and grade. See also 'Grade', 'Mark'.

Result processing
Refers to the processing of assessment results for units of study. For each unit of study, departments/schools tabulate results for all assessment activities and assign preliminary results. See also 'Assessment', 'Examination period', 'Formative assessment'.

Result processing schedule
The result processing schedule will be determined for each academic cycle. All schools and faculties are expected to comply with this schedule. See also 'Assessment', 'Examination period'.

S
Scholarships
Financial or other form of support made available to enable students to further their studies. See also 'Bursaries'.

School
A school or academic unit that encourages and facilitates teaching, scholarship and research, and coordinates the teaching and examining duties of members of staff in their subjects or courses of study.

Semester
A half-yearly teaching session, the dates for which are determined by the Academic Board. Normally all undergraduate sessions will conform to the semesters approved by the Academic Board. Any offering of an undergraduate unit not conforming to the semester dates (non-standard session) must be given special permission by the Academic Board. See also 'Non-standard session', 'Session'.

Semester address
The address to which all official University correspondence is sent during semester time, if different to the permanent address.

Senate
The governing body of the University. See the University Calendar (www.usyd.edu.au/calendar) for more details of its charter and powers.

Session
Any period of time during which a unit of study is taught. A session differs from a semester in that it need not be a six-month teaching period, but it cannot be longer than six months. Each session maps to either Semester One or Two for DEEWR reporting purposes. Session offerings are approved by the relevant dean, taking into account all the necessary resources, including teaching space and staffing. The Academic Board must approve variation to the normal session pattern. See also 'Non-standard session', 'Semester'.

Session address
See 'Semester address'.

Short course
A fee-paying student undertaking a short course with the University of Sydney such as professional development or executive training. The study undertaken by these students is a non-award course.

Show cause
See 'Exclusion', 'Progression'.

Special consideration
Candidates who suffer serious illness or misadventure which may affect performance in any assessment may request that they be given special consideration in relation to the determination of their results.

Special Studies Program (SSP)
A period of release from normal duties to allow academic staff to undertake a planned program of academic activity and development.

Sponsorship
Financial support of a student by a company or government body.
Glossary

Stage
A normal full-time course of study taken in a year. See also 'Course rules', 'Equivalent full-time student load', 'Progression'.

Strategic Directions
See also 'University Strategic Directions'.

Stream
A defined award course, which requires the completion of set units of study as specified by the course rules for the particular stream, in addition to the core program specified by the course rules. A stream will appear with the award course name on testamurs, eg Bachelor of Engineering in Civil Engineering (Construction Management). See also 'Course', 'Major', 'Minor'.

Student
A person enrolled as a candidate for an award course or unit of study.

Student Appeals Body
Any student may appeal to the Student Appeals Body against an academic decision on the ground that due academic process has not been observed by the relevant faculty in relation to the academic decision. Refer to the University of Sydney (Student Appeals against Academic Decisions) Rule 2006 for more details. See also 'Appeals'.

Student Disciplinary Appeals Committee
Any student may appeal to the Student Disciplinary Appeals Committee against a misconduct determination by the Vice-Chancellor or a Student Proctorial Board. See also 'Appeals'.

Student identifier (SID)
A nine-digit number that uniquely identifies a student at the University.

Student ID Card
All full-time or part-time students who successfully enrol at the University of Sydney will receive a Student Card. New students will have their card issued in person at the time of enrolment. Successful re-enrolling students will receive their card by mail.

The Student Card includes the student’s name, student identification number (SID), a digitised photo and the library borrower’s number and barcode. Where applicable, it will also display a travel concession logo from the Ministry of Transport (if student eligibility requirements are met).

The card has a number of interoperable uses, such as the ability to purchase printing and photocopying services at the University's libraries and gain access to certain secure buildings. The card identifies the student as eligible to attend classes and must be displayed at formal examinations. It must also be presented to secure student concessions and to borrow books from all sections of the University Library.

For more information about Student ID Cards please visit the Card Centre (or see the website: www.usyd.edu.au/card_centre).

Student learning entitlement
All Australian citizens, New Zealand citizens and holders of a permanent visa are allocated a Student Learning Entitlement (SLE) of up to seven years equivalent full-time study. This is measured in equivalent full-time student load (EFTSL), which is the proportion of a full-time load that a unit of study represents. The University sets an EFTSL value for each unit of study it offers. To be Commonwealth-supported for a unit, a student must have enough SLE to cover the EFTSL value of that unit.

Student progress rate (SPR)
A calculation that measures the rate at which the load undertaken is passed annually in each award program.

Student type
Student type identifies whether a student is local or international and the type of study the student is undertaking. See also 'Domestic student', 'Exchange student', 'International student'.

Study Abroad program
A scheme administered by the International Office that allows international students who are not part of an exchange program to take units of study at the University of Sydney, but not towards an award program. In most cases the units of study taken here are credited towards an award at the student's home institution. See also 'Exchange student'.

Subject area
A unit of study may be associated with one or more subject areas. The subject area can be used to define prerequisite and course rules, for example the unit of study 'History of Momoyama and Edo Art' may count towards the requirements for the subject areas 'Art History and Theory' and 'Asian Studies'.

Summative assessment
See 'Assessment'.

Summer School
See 'Sydney Summer School'.

Supervising faculty
The faculty which has the responsibility for managing the academic administration of a particular course, such as the interpretation and administration of course rules, approving students' enrolments and variations to enrolments.

Normally the supervising faculty is the faculty offering the course. However, in the case of combined courses, one of the two faculties involved will usually be designated the supervising faculty. In the case where one course is jointly offered by two or more faculties (eg the Liberal Studies course), a joint committee may make academic decisions about candidature and the student may be assigned a supervising faculty for administration.

Supervision
Refers to a one-to-one relationship between a student and a nominated member of the academic staff or a person specifically appointed to the role. See also 'Associate supervisor', 'Instrumental supervisor/teacher', 'Research supervisor'.

Suspension of candidature
See also 'Course leave'.

Suppression of results
Results for a particular student can be suppressed by the University when the student has an outstanding debt to the University (this particularly applies to international students who have not paid their tuition fees), or when the student is facing disciplinary action. A student may also request a suppression for personal reasons.

Sydney Summer School
A program of accelerated, intensive study running for approximately six weeks during January and February each year. Both undergraduate and postgraduate units are offered. Sydney Summer School provides an opportunity for students at Sydney and other universities to catch up on required units of study, to accelerate completion of a course or to undertake a unit that is outside their award course. All units attract full fees, but some scholarships are available.

Sydney Winter School
An intensive session offered by the University in July during the mid-year break. See 'Sydney Summer School'.
T
Teaching department
See ‘School’.

Teaching end date
Official finish date of formal timetabled classes.

Teaching start date
Official commencement date of formal timetabled classes.

Terminated
Term used when a student’s candidature has been officially closed because they are not able to complete the course requirements. See also ‘Candidature’.

Testamur
A certificate of award provided to a graduand, usually at a graduation ceremony. The University award conferred is displayed along with other appropriate details.

Thesis
A major work that is the product of an extended period of supervised independent research. See also ‘Course (Research)’.

Timetable
The schedule of lectures, tutorials, laboratories and other academic activities that a student must attend.

Transcript
See ‘Academic transcript’.

Transfer
See ‘Course transfer’.

Tuition fees
Tuition fees may be charged to students in designated tuition fee-paying courses. Students who pay fees are not liable for HECS.

U
Universities Admissions Centre (UAC)
The UAC receives and processes applications for admission to undergraduate courses at recognised universities in NSW and the ACT. Most local undergraduate students at the University of Sydney apply through the UAC.

Universities Admission Index (UAI)
A measure of overall academic achievement in the HSC that helps universities rank applicants for university selection. The UAI is a rank of any student’s performance relative to other students. It is calculated from the aggregate of scaled marks in 10 units of the HSC (two best English units plus eight other units, including only two category B units) and is presented as a number between 0.00 and 99.95 with increments of 0.05.

In June 2009 the UAI was replaced by the Australian Tertiary Admissions Rank (ATAR). See ‘Australian Tertiary Admissions Rank’.

Undergraduate
A term used to describe both a course leading to a diploma or bachelor’s degree and a student enrolled in such a course.

Unit of study
Unit of study or unit means a stand-alone component of an award course. Each unit of study is the responsibility of a department. See also ‘Prohibited combinations of unit of study’.

Unit of study enrolment status
This indicates whether the student is still actively attending the unit of study (currently enrolled) or is no longer enrolled. See also ‘Cancellation of enrolment’, ‘Discontinuation’.

Unit of study level
Units of study are divided into junior, intermediate, senior, honours, Year 5, and Year 6. Most majors consist of 32 senior credit points in a subject area (either 3000 level units of study or a mix of 2000 and 3000 level units of study).

University
Unless otherwise indicated, the term ‘University’ in this document refers to the University of Sydney.

University Calendar
The annual University publication available in print and online that provides general and historical information about the University of Sydney, the statutes and regulations under which it operates and the Senate resolutions relating to constitutions and courses in each faculty.

University Medal
A faculty may recommend the award of a University Medal to a student qualified for the award of an undergraduate honours degree whose academic performance is judged to be outstanding.

University Strategic Directions
This refers to the University of Sydney Strategic Plan 2007–2010. A new plan is currently in development.

Upgrade
Where a student enrolled in a master’s by research course is undertaking research at such a standard that either the University recommends that the student upgrade their degree to a PhD, or the student seeks to upgrade to a PhD and this is supported by the University.

V
Variation of enrolment
See ‘Enrolment variation’.

Vice-Chancellor and Principal
The chief executive officer of the University, responsible for its leadership and management. The Vice-Chancellor and Principal is head of both academic and administrative divisions.

W
Waiver
In a prescribed course, a faculty may waive the prerequisite or corequisite requirement for a unit of study or the course rules for a particular student. Unlike credit, waivers do not involve a reduction in the number of credit points required for a course. See also ‘Credit’, ‘Exemption’.
WAM weight
A weight assigned to each unit of study to assist in the calculation of WAMs.

Weighted average mark (WAM)
This mark uses the unit of study credit point value in conjunction with an agreed 'weight'. The formula for this calculation is:

\[WAM = \frac{\sum (W_c \times M_c)}{\sum W_c} \]

(Sums over all units of study completed in the selected period.)

The mark is the actual mark obtained by the student for the unit of study, or in the case of a failing grade with no mark = 0. Pass/Fail assessed subjects and credit transfer subjects (from another institution) are excluded from these calculations. However, the marks from all attempts at a unit of study are included. (Effective from 1 January 2004.)

In addition, faculties may adopt other average mark formulae for specific progression or entry requirements. If such a formula is not specified in the faculty resolutions, the formula outlined above is used. See also 'WAM weight'.

Winter School
See 'Sydney Winter School'.

Y

Year of first enrolment (YFE)
The year in which a student first enrolls at the University. See also 'Commencement date'.

Youth allowance
Youth allowance is payable to a full-time student or trainee aged 16 to 24 years of age who is enrolled at an approved institution such as a school, college, TAFE or university, and who is undertaking at least 15 hours a week face-to-face contact.
ARBC3616 Arabic Language and Literature 6B, 243
ARBC3635 Arabic Advanced Translation & Writing 5A, 243
ARBC3636 Arabic Advanced for Media Studies 6A, 243
ARBC3637 Arabic Advanced Translation & Writing 7A, 243
ARBC3638 Arabic Advanced for Media Studies 8A, 243
ARCA1001 Ancient Civilisations, 244
ARCA1002 Archaeology: An Introduction, 244
ARCA2602 Field Methods, 244
ARCA2603 Archaeology of Sydney, 244
ARCA2605 Archaeology of Aboriginal Australia, 244
ARCA2607 Digital Methods, 244
ARCA2611 Ancient Mediterranean Lives, 244
ARCA2613 Athenian Art, Architecture and Society, 244
ARCA2615 Etruscans and Romans, 244
ARCA2616 Early East and Southeast Asian Cultures, 244
ARCA2801 Archaeology Exchange, 244
ARCA2802 Archaeology Exchange, 244
ARCA2803 Archaeology Exchange, 244
ARCA2804 Archaeology Exchange, 244
ARCA2805 Archaeology Exchange, 244
ARCA2806 Archaeology Exchange, 244
ARCA2807 Archaeology Exchange, 244
ARCA2808 Archaeology Exchange, 244
ARCA3600 Archaeological Research Principles, 245, 246
ARCA3601 Research in Australasian Archaeology, 244
ARCA3603 Ionia and the East Greek World, 244
ARCA4011 Archaeology Honours A, 245
ARCA4012 Archaeology Honours B, 245
ARCA4013 Archaeology Honours C, 245
ARCA4014 Archaeology Honours D, 245
ARCL1801 Archaeology (Classical) Exchange, 245
ARCL2605 The Archaeology of the Roman East, 245
ARCL2804 Archaeology (Classical) Exchange, 245
ARCL2805 Archaeology (Classical) Exchange, 245
ARCL2806 Archaeology (Classical) Exchange, 245
ARCL2810 Archaeology (Classical) Exchange, 245
ARCL2811 Archaeology (Classical) Exchange, 245
ARCL4011 Archaeology (Classical) Honours A, 245
ARCL4012 Archaeology (Classical) Honours B, 245
ARCL4013 Archaeology (Classical) Honours C, 245
ARCL4014 Archaeology (Classical) Honours D, 245
ARHT1001 Art and Experience, 246
ARHT1002 Modern Times: Art and Film, 247
ARHT1801 Art History and Theory Exchange, 247
ARHT2616 High Renaissance Art, 247
ARHT2618 French Art, Salon to Post-Impressionism, 247
ARHT2621 Modernism, 247
ARHT2631 Australian Painting, Colony to Nation, 247
ARHT2641 Art and Archaeology of South East Asia, 247
ARHT2645 China: Art and Empire, 247
ARHT2652 From Silent to Sound Cinema, 247
ARHT2653 Memory of the World: Film and Directors, 247
ARHT2657 Contemporary Hollywood, 247
ARHT2664 Special Studies: Costume and Fashion, 247
ARHT2810 Art History and Theory Exchange, 247
ARHT2811 Art History and Theory Exchange, 247
ARHT2812 Art History and Theory Exchange, 247
ARHT2813 Art History and Theory Exchange, 247
ARHT2814 Art History and Theory Exchange, 247
ARHT2815 Art History and Theory Exchange, 247
ARHT2816 Art History and Theory Exchange, 247
ARHT2817 Art History and Theory Exchange, 247
ARHT4011 Art History and Theory Honours A, 247
ARHT4012 Art History and Theory Honours B, 247
ARHT4013 Art History and Theory Honours C, 247
ARHT4014 Art History and Theory Honours D, 247
ARIN2600 Technocultures, 240, 253
ARIN2610 Web Production, 240, 253
ARIN2620 Cyberworlds, 240, 253
ARIN2630 Digital Arts, 253
ARIN2801 Digital Cultures Exchange, 253
ARIN2802 Digital Cultures Exchange, 253
ARIN2803 Digital Cultures Exchange, 253
ARIN2804 Digital Cultures Exchange, 253
ARIN2805 Digital Cultures Exchange, 253
ARIN2806 Digital Cultures Exchange, 253
ARIN2807 Digital Cultures Exchange, 253
ARIN2808 Digital Cultures Exchange, 253
ARIN3620 Researching Digital Cultures, 253
ARIN3640 Computer Games and Simulation, 253
ARIN3650 Digital Cultures Project 1, 253
ARIN3660 Digital Cultures Project 2, 253
ARIN3670 Digital Cultures Internship, 253
ARIN3680 Digital Cultures Internship Project, 253
ARIN4011 Digital Cultures Honours A, 253
ARIN4012 Digital Cultures Honours B, 253
ARIN4013 Digital Cultures Honours C, 253
ARIN4014 Digital Cultures Honours D, 253
ARIS1671 Arabs, Islam & Middle East: Introduction, 243
ARIS1672 Arab-Islamic Civilisation: Introduction, 243
ARIS2801 Arab World Islam & Middle East Exchange, 243
ARIS2802 Arab World Islam & Middle East Exchange, 243
ARIS2803 Arab World Islam & Middle East Exchange, 243
ARIS2804 Arab World Islam & Middle East Exchange, 243
ARIS2805 Arab World Islam & Middle East Exchange, 243
ARIS2806 Arab World Islam & Middle East Exchange, 243
ARIS3675 Society and Politics in the Middle East, 243
ARIS3676 Issues and Debates in Arab Culture Today, 243
ARIS3680 Approaches to Arabic and Islamic Studies, 243, 244
ARIS4011 Arabic and Islamic Studies Honours A, 244
ARIS4012 Arabic and Islamic Studies Honours B, 244
ARIS4013 Arabic and Islamic Studies Honours C, 244
ARIS4014 Arabic and Islamic Studies Honours D, 244
ARNE1801 Archaeology (Near Eastern) Exchange, 245
ARNE2601 Egyptian Archaeology, 245
ARNE2602 Ancient Mesopotamia, 245
ARNE2804 Archaeology (Near Eastern) Exchange, 246
ARNE2805 Archaeology (Near Eastern) Exchange, 246
BETH5102 Philosophy of Medicine, 314, 315, 316, 318
BETH5103 Biomedicine and Society, 314, 315, 316, 318
BETH5104 Bioethics, Law and Society, 314, 315, 316, 319
BETH5201 Ethics and Biotech: Genes and Stem Cells, 314, 315, 316, 317, 319, 324, 325, 359, 360
BETH5202 Human and Animal Research Ethics, 314, 315, 316, 317, 319
BETH5203 Ethics and Public Health, 314, 315, 316, 317, 319
BETH5204 Clinical Ethics, 314, 315, 316, 317, 319
BETH5205 Ethics and Mental Health, 314, 317, 320
BETH5301 Research Project A, 315, 318, 320
BETH5302 Research Project B, 315, 318, 320
BINF3101 Bioinformatics Project, 51, 58, 152
BINF5002 Bioinformatics Research Project A, 324, 325, 326
BINF5003 Bioinformatics Research Project B, 324, 325, 326
BIOL1001 Concepts in Biology, 51, 106, 152
BIOL1002 Living Systems, 51, 153
BIOL1003 Human Biology, 51, 106, 153
BIOL1902 Living Systems (Advanced), 51, 153
BIOL1903 Human Biology (Advanced), 51, 106, 153
BIOL1911 Concepts in Biology (Advanced), 51, 106, 153
BIOL2011 Invertebrate Zoology, 51, 154, 155
BIOL2012 Vertebrates and their Origins, 52, 154, 155
BIOL2016 Cell Biology, 52, 154, 155
BIOL2017 Entomology, 52, 154, 155
BIOL2018 Introduction to Marine Biology, 52, 70, 94, 154, 155, 156, 192
BIOL2911 Invertebrate Zoology (Advanced), 52, 154
BIOL2912 Vertebrates and their Origins (Advanced), 52, 155
BIOL2916 Cell Biology (Advanced), 52, 155
BIOL2917 Entomology (Advanced), 52, 155
BIOL2918 Introduction to Marine Biology (Adv), 53, 70, 94, 156, 192
BIOL3006 Ecological Methods, 53, 58, 69, 71, 92, 94, 156, 192
BIOL3007 Ecology, 54, 69, 71, 94, 156, 157, 192
BIOL3008 Marine Field Ecology, 54, 69, 71, 94, 156, 157, 192
BIOL3009 Terrestrial Field Ecology, 54, 85, 156, 157, 192
BIOL3010 Tropical Wildlife Biology and Management, 53, 156, 158
BIOL3011 Ecophysiology, 53, 69, 71, 95, 156, 158, 192
BIOL3012 Animal Physiology, 53, 156, 158
BIOL3013 Marine Biology, 53, 69, 71, 95, 156, 158, 192
BIOL3017 Fungi in the Environment, 53, 85, 156, 159
BIOL3018 Applications of Recombinant DNA Tech, 53, 67, 156, 159
BIOL3025 Evolutionary Genetics & Animal Behaviour, 54, 159
BIOL3026 Developmental Genetics (Advanced), 54, 67, 160
BIOL3906 Marine Field Ecology (Advanced), 54, 85, 157, 230
BIOL3910 Tropical Wildlife Biol & Management Adv, 53, 158
BIOL3911 Ecophysiology (Advanced), 53, 69, 71, 156, 158
BIOL3912 Animal Physiology (Advanced), 53, 158
BIOL3913 Marine Biology (Advanced), 53, 69, 71, 156, 159
BIOL3917 Fungi in the Environment (Advanced), 53, 85, 159, 231
BIOL3918 Applications of Recombinant DNA Tech Adv, 53, 67, 159
BIOL3925 Evolutionary Gen. & Animal Behaviour Adv, 54, 159
BIOL3926 Developmental Genetics (Advanced), 54, 67, 160
BIOL3927 Bioinformatics and Genomics (Advanced), 51, 54, 58, 67, 160
BIOL4012 Biology Honours B, 114, 285
BIOL4013 Biology Honours C, 114, 285
BIOL4014 Biology Honours D, 114, 286
BIOL4015 Scientific Research in Biology, 114, 160, 285, 324, 325, 326
BIOL4016 Biology Honours A, 114, 285
BIOL5001 Molecular Genetics and Inheritance, 323, 326
BIOL5002 Bioinformatics: Sequences and Genomes, 323, 324, 326, 359, 360
BIOMS006 Statistics for the Natural Sciences, 87, 204
BIOS1168 Functional Musculoskeletal Anatomy A, 103
BIOS1169 Functional Musculoskeletal Anatomy B, 103
BIOS1171 Neuroscience, 103
BMED2801 Cell Structure and Function, 113, 204
BMED2802 Molecular Basis of Medical Sciences, 113, 205
BMED2803 Cardiac, Respiratory and Renal Function, 113, 205
BMED2804 Digestion, Absorption and Metabolism, 113, 205
BMED2805 Hormones, Reproduction and Development, 113, 205
BMED2806 Sensory and Motor Functions, 113, 206
BMED2807 Microbes and Body Defences, 113, 113, 206, 206
BMED2808 Disease in Society, 113, 113, 206, 206

C
CHEM1001 Fundamentals of Chemistry 1A, 56, 106, 161
CHEM1002 Fundamentals of Chemistry 1B, 56, 106, 161
CHEM1011 Chemistry 1A, 56, 106, 161, 162
CHEM1012 Chemistry 1B, 56, 106, 162
CHEM1108 Chemistry 1A Life Sciences, 100, 162
CHEM1109 Chemistry 1B Life Sciences, 100, 162
CHEM1901 Chemistry 1A, 56, 106, 162
CHEM1902 Chemistry 1B, 56, 106, 162
CHEM1903 Chemistry 1A Life Sciences, 56, 106, 162
CHEM1904 Chemistry 1B, 56, 106, 163
CHEM2401 Molecular Reactivity and Spectroscopy, 56, 163
CHEM2402 Chemical Structure and Stability, 56, 163
CHEM2403 Chemistry of Biological Molecules, 57, 163, 164
CHEM2404 Forensic and Environmental Chemistry, 56, 163, 164
Index by alpha code

CLST4011 Celtic Studies Honours A, 249
CLST4012 Celtic Studies Honours B, 249
CLST4013 Celtic Studies Honours C, 249
CLST4014 Celtic Studies Honours D, 249
COMP2007 Algorithms and Complexity, 59, 68, 185
COMP2129 Operating Systems and Machine Principles, 59, 68, 185
COMP2907 Algorithms and Complexity (Advanced), 59, 68, 185
COMP3109 Programming Languages and Paradigms, 59, 186
COMP3308 Introduction to Artificial Intelligence, 58, 59, 186
COMP3419 Graphics and Multimedia, 59, 186
COMP3456 Computational Methods for Life Sciences, 51, 58, 59, 186
COMP3520 Operating Systems Internals, 59, 186
COMP3608 Intro. to Artificial Intelligence (Adv), 58, 59, 186
COMP3615 Software Development Project, 59, 187
COMP4011 Computer Science Honours A, 188, 286
COMP4012 Computer Science Honours B, 188, 286
COMP4013 Computer Science Honours C, 188, 286
COMP4014 Computer Science Honours D, 188, 286
COMP5028 Object-Oriented Design, 323, 324, 326
COMP5206 Introduction to Information Systems, 325, 327
COMP5211 Algorithms, 325, 327
COMP5213 Computer and Network Organisation, 324, 327
COMP5214 Software Development in Java, 324, 327
COMP5318 Knowledge Discovery and Data Mining, 323, 324, 327
COMP5338 Advanced Data Models, 397, 398
COMP5424 Information Technology in Biomedicine, 324, 325, 327
COMP5426 Parallel and Distributed Computing, 324, 327
COSC1001 Computational Science in Matlab, 57, 128, 167
COSC1002 Computational Science in C, 57, 167
COSC1901 Computational Science in Matlab (Adv), 57, 167
COSC1902 Computational Science in C (Adv), 57, 168
COSC3011 Scientific Computing, 57, 82, 168
COSC3911 Scientific Computing (Advanced), 57, 82, 168
COSC4001 Computational Science Honours A, 286
COSC4002 Computational Science Honours B, 286
COSC4003 Computational Science Honours C, 286
COSC4004 Computational Science Honours D, 286
CPAT3201 Pathogenesis of Human Disease 1, 54, 67, 160
CPAT3202 Pathogenesis of Human Disease 2, 54, 67, 161
CPAT4011 Cell Pathology Honours A, 114, 286
CPAT4012 Cell Pathology Honours B, 114, 286
CPAT4013 Cell Pathology Honours C, 114, 286
CPAT4014 Cell Pathology Honours D, 114, 286
D
DECO1006 Understanding Design and Cognition, 124
DECO1008 3D Modelling, 125
DECO1012 Design Programming, 125
DECO1100 Digital Design Studio, 125
DECO2010 Collaborative Virtual Environments, 125
DECO2013 Generative Design Systems, 126
DECO2101 Digital Image Design & Representation, 126
DECO2102 Interactive Multimedia Design, 126
DECO2204 Principles of AutoCAD, 126
DECO2205 Principles of ArchiCAD, 126
DECO2606 Real Time Multimedia, 126
DECO3003 Design Computing Research Opportunity, 126
DECO3005 Advanced Interaction Design, 126
DECO3006 Principles of Animation, 126
DECO3100 Information Visualisation Design Studio, 126
DECO3200 Human-Computer Experience Design Studio, 126
EC
ECOP1001 Economics as a Social Science, 277
ECOP1003 International Economy and Finance, 277
ECOP1004 Economy and Society, 277
ECOP1551 Political Economy Exchange, 277
ECOP1552 Political Economy Exchange, 277
ECOP2011 Economics of Modern Capitalism, 277
ECOP2012 Social Foundations of Modern Capitalism, 277
ECOP2550 Political Economy Exchange, 277
ECOP2551 Political Economy Exchange, 277
ECOP2552 Political Economy Exchange, 277
ECOP2612 Economic Policy in Global Context, 277
ECOP2911 Political Economy Honours II, 277
ECOP3012 Global Political Economy, 277
ECOP3014 Political Economy of Development, 277
ECOP3015 Political Economy of the Environment, 277
ECOP3017 Human Rights in Development, 277
ECOP3019 Finance: Volatility and Regulation, 277
ECOP3551 Political Economy Exchange, 277
ECOP3552 Political Economy Exchange, 277
ECOP3553 Political Economy Exchange, 277
ECOP3620 Distribution of Income and Wealth, 277
ECOP3911 Theories in Political Economy, 277
ECOP3912 Research in Political Economy, 277
ECOP4001 Political Economy Honours A, 277
ECOP4002 Political Economy Honours B, 278
ECOP4003 Political Economy Honours C, 278
ECOP4004 Political Economy Honours D, 278
EDUF1018 Education, Teachers and Teaching, 124
EDUF1019 Human Development and Education, 124
ELEC1103 Fundamentals of Elec and Electronic Eng, 125
ELEC1601 Foundations of Computer Systems, 58, 125
ELEC2103 Simulation & Numerical Solutions in Eng, 128
ELEC2104 Electronic Devices and Basic Circuits, 128
ELEC2104 Electronic Devices and Circuits, 128
ELEC2302 Signals and Systems, 128
ELEC2602 Digital System Design, 128
ELEC3204 Power Electronics and Applications, 128
ELEC3304 Control, 128
ELEC3305 Digital Signal Processing, 128
ELEC3404 Electronic Circuit Design, 128
ELEC3405 Communications Electronics and Photonics, 128, 375
ELEC3506 Data Communications and the Internet, 59
Index by alpha code

G

GBST2602 Human Rights & the Global Public Sphere, 259
GBST2801 Global Studies Exchange 1, 259
GBST2802 Global Studies Exchange 2, 259
GBST2803 Global Studies Exchange 3, 260
GBST2804 Global Studies Exchange 4, 260
GBST2805 Global Studies Exchange 5, 260
GBST2806 Global Studies Exchange 6, 260
GBST2807 Global Studies Exchange 7, 260
GBST2808 Global Studies Exchange 8, 260
GBST4011 Global Studies Honours A, 260
GBST4012 Global Studies Honours B, 260
GBST4013 Global Studies Honours C, 260
GBST4014 Global Studies Honours D, 260
GCST2601 Introducing Media and Popular Culture, 252, 257
GCST2602 Introducing Gender, 257
GCST2604 Sex, Violence and Transgression, 257
GCST2607 Bodies, Sexualities, Identities, 257
GCST2608 Gender, Communities and Belonging, 252, 257
GCST2609 Cultures of Masculinities, 257
GCST2610 Intimacy, Love and Friendship, 257
GCST2612 Youth Cultures, 257
GCST2613 Everyday Life: Theories and Practices, 258
GCST2614 The Body: Theories, Practices, Cultures, 258
GCST2804 Gender Studies Exchange, 258
GCST2805 Gender Studies Exchange, 258
GCST2806 Gender Studies Exchange, 258
GCST2810 Gender Studies Exchange, 258
GCST2811 Gender Studies Exchange, 258
GCST2812 Cultural Studies Exchange, 252
GCST2813 Cultural Studies Exchange, 252
GCST2814 Cultural Studies Exchange, 252
GCST2815 Cultural Studies Exchange, 252
GCST2816 Cultural Studies Exchange, 252
GCST2817 Cultural Studies Exchange, 252
GCST2818 Cultural Studies Exchange, 252
GCST2819 Cultural Studies Exchange, 252
GCST3603 Consumer Cultures, 252, 258
GCST3604 Cultural Theory, 252, 258
GCST3690 Transnationalism, Gender & Globalisation, 258
GCST4011 Cultural Studies Honours A, 252
GCST4012 Cultural Studies Honours B, 252
GCST4013 Cultural Studies Honours C, 252
GCST4014 Cultural Studies Honours D, 252
GCST4015 Gender Studies Honours A, 258
GCST4016 Gender Studies Honours B, 258
GCST4017 Gender Studies Honours C, 258
GCST4018 Gender Studies Honours D, 258
GCST4101 Arguing the Point, 252, 258
GCST4102 Research Skills, 252, 258
GCST4103 Gender Studies Honours Seminar A, 258
GCST4104 Gender Studies Honours Seminar B, 258
GCST4105 Gender Studies Honours Thesis A, 258
GCST4106 Gender Studies Honours Thesis B, 258
GCST4107 Gender Studies Honours Thesis C, 258
GCST4108 Gender Studies Honours Thesis D, 258
GCST4111 Cultural Studies Honours Seminar A, 252
GCST4112 Cultural Studies Honours Seminar B, 252
GCST4113 Cultural Studies Honours Thesis A, 252
GCST4114 Cultural Studies Honours Thesis B, 252
GCST4115 Cultural Studies Honours Thesis C, 253
GCST4116 Cultural Studies Honours Thesis D, 253
GEOG2321 Fluvial and Groundwater Geomorphology, 63, 172
GEOG3521 Sustainable Cities, 64, 175
GEOG3921 Sustainable Cities (Adv), 64, 178
GEOG4011 Geography Honours A, 286
GEOG4012 Geography Honours B, 286
GEOG4013 Geography Honours C, 286
GEOG4014 Geography Honours D, 286
GEOG5001 Geographic Information Science A, 331, 332, 337, 339, 343, 345, 397, 398
GOVT3994 Research Preparation, 261
GOVT4101 Government Honours A, 261
GOVT4102 Government Honours B, 261
GOVT4103 Government Honours C, 261
GOVT4104 Government Honours D, 261
GRKA1600 Introduction to Ancient Greek 1, 261
GRKA1601 Introduction to Ancient Greek 2, 261
GRKA2600 Intermediate Greek 1, 261
GRKA2601 Intermediate Greek 2, 261
GRKA2620 Reading Greek 1, 261
GRKA2621 Reading Greek 2, 261
GRKA2804 Greek (Ancient) Exchange, 261
GRKA2805 Greek (Ancient) Exchange, 261
GRKA3600 Advanced Greek, 261
GRKA3601 The Language of the Greek Bible, 261
GRKA3603 Greek Oratory and Historiography, 261
GRKA3605 Greek Drama, 261
GRKA4011 Greek Honours A, 261
GRKA4012 Greek Honours B, 261
GRKA4013 Greek Honours C, 262
GRKA4014 Greek Honours D, 262
GRMN1111 Junior German 1, 258
GRMN1122 Junior German 2, 259
GRMN1211 Junior German 3, 259
GRMN1222 Junior German 4, 259
GRMN1311 Junior German 5, 259
GRMN1322 Junior German 6, 259
GRMN2611 Senior German 1, 259
GRMN2612 Senior German 2, 259
GRMN2613 Senior German 3, 259
GRMN2614 Senior German 4, 259
GRMN2615 Senior German 5, 259
GRMN2616 Senior German 6, 259
GRMN2617 Senior German 7, 259
GRMN2618 Senior German 8, 259
GRMN2631 Reading Comprehension and Text Study, 259
GRMN2632 Early 20th Century German Culture, 259
GRMN2634 The Fantastic in German Literature, 259
GRMN2635 Contemporary German Fiction, 259
GRMN2637 Business German, 259
GRMN2682 Foreign & Exotic in the German World, 259
GRMN2684 Myth in German Literature, 259
GRMN2811 Germanic Studies Exchange, 259
GRMN2812 Germanic Studies Exchange, 259
GRMN2813 Germanic Studies Exchange, 259
GRMN2814 Germanic Studies Exchange, 259
GRMN2815 Germanic Studies Exchange, 259
GRMN4011 German Honours A, 259
GRMN4012 German Honours B, 259
GRMN4013 German Honours C, 259
GRMN4014 German Honours D, 259
H
HBRW1011 Hebrew Modern B1, 262
HBRW1102 Hebrew Modern B2, 262
HBRW1111 Hebrew Classical B1, 262
HBRW1112 Hebrew Classical B2, 262
HBRW2603 Hebrew Modern 3, 262
HBRW2604 Hebrew Modern 4, 262
HBRW2605 Hebrew Modern 5, 262
HBRW2606 Hebrew Modern 6, 262
HBRW2607 Hebrew Modern 7, 263
HBRW2608 Hebrew Modern 8, 263
HBRW2609 Hebrew Modern 9, 263
HBRW2610 Hebrew Modern 10, 263
HBRW2611 Hebrew Modern 11, 263
HBRW2612 Hebrew Modern 12, 263
HBRW2625 Hebrew Classical 5, 262
HBRW2626 Hebrew Classical 6, 262
HBRW2631 Hebrew Accelerated C1, 262
HBRW2632 Hebrew Accelerated C2, 262
HBRW2643 Aramaic 3, 262
HBRW2644 Aramaic 4, 262
HBRW2651 Syriac 1, 262
HBRW2652 Syriac 2, 262
HBRW2801 Hebrew (Classical) In-Country Study A, 262
HBRW2802 Hebrew (Classical) In-Country Study B, 262
HBRW3653 Syriac 3, 262
HBRW3654 Syriac 4, 262
HBRW4011 Hebrew (Classical) Honours A, 262
HBRW4012 Hebrew (Classical) Honours B, 262
HBRW4013 Hebrew (Classical) Honours C, 262
HBRW4014 Hebrew (Classical) Honours D, 262
HBRW4021 Hebrew (Modern) Honours A, 263
HBRW4022 Hebrew (Modern) Honours B, 263
HBRW4023 Hebrew (Modern) Honours C, 263
HBRW4024 Hebrew (Modern) Honours D, 263
HIUR3601 Hindi and Urdu Advanced 1, 263
HIUR3602 Hindi and Urdu Advanced 2, 263
HORT3005 Production Horticulture, 85, 231
HPSC1000 Bioethics, 65, 124, 179, 239, 385, 386
HPSC1900 Bioethics (Advanced), 65, 179, 239
HPSC2100 The Birth of Modern Science, 66, 179, 240
HPSC2101 What Is This Thing Called Science?, 66, 179, 240
HPSC2900 The Birth of Modern Science (Advanced), 66, 180
HPSC3002 History of Biological/Medical Sciences, 66, 180
HPSC3016 The Scientific Revolution, 66, 180
HPSC3021 Philosophy and Sociology of Biology, 66, 180
HPSC3022 Science and Society, 65, 66, 180
HPSC3023 Psychology & Psychiatry: History & Phil, 66, 85, 86, 181, 380
HPSC3024 Science and Ethics, 66, 125, 181
HPSC4101 Philosophy of Science, 181, 287, 349
HPSC4102 History of Science, 181, 287, 349, 350
HPSC4103 Sociology of Science, 181, 287, 349, 350
HPSC4104 Recent Topics in HPS, 182, 287, 349, 350
HPSC4105 HPS Research Methods, 182, 287, 349, 350
HPSC4108 Core topics: History & Philosophy of Sci, 182, 287, 349, 350
HPSC4201 HPS Research Project 1, 181, 182, 287
HPSC4202 HPS Research Project 2, 181, 182, 287
HPSC4203 HPS Research Project 3, 181, 182, 287
HPSC4204 HPS Research Project 4, 181, 182, 287
HPSC4999 History & Philosophy of Science Honours, 182, 287
HRTG2601 Approaching Heritage Studies, 263
HRTG2602 The Museum and Cultural Heritage, 263
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRTG2804</td>
<td>Heritage Studies Exchange</td>
<td>263</td>
</tr>
<tr>
<td>HRTG2805</td>
<td>Heritage Studies Exchange</td>
<td>263</td>
</tr>
<tr>
<td>HRTG2806</td>
<td>Heritage Studies Exchange</td>
<td>263</td>
</tr>
<tr>
<td>HRTG2809</td>
<td>Heritage Studies Exchange</td>
<td>263</td>
</tr>
<tr>
<td>HRTG2810</td>
<td>Heritage Studies Exchange</td>
<td>263</td>
</tr>
<tr>
<td>HRTG3601</td>
<td>Heritage Museums and the Public Sphere</td>
<td>263</td>
</tr>
<tr>
<td>HSTO3001</td>
<td>Microscopy & Histochemistry Theory</td>
<td>48, 54, 146</td>
</tr>
<tr>
<td>HSTO3002</td>
<td>Microscopy & Histochemistry Practical</td>
<td>48, 54, 146</td>
</tr>
<tr>
<td>HSTO3003</td>
<td>Cells and Development: Theory</td>
<td>49, 55, 147</td>
</tr>
<tr>
<td>HSTO3004</td>
<td>Cells and Development: Practical (Adv)</td>
<td>49, 55, 147</td>
</tr>
<tr>
<td>HSTY1025</td>
<td>The Middle Ages</td>
<td>263</td>
</tr>
<tr>
<td>HSTY1031</td>
<td>Renaissance and Reformation (1498-1648)</td>
<td>263</td>
</tr>
<tr>
<td>HSTY1044</td>
<td>Twentieth Century Europe</td>
<td>239, 263</td>
</tr>
<tr>
<td>HSTY1045</td>
<td>Modern European History 1750-1914</td>
<td>263</td>
</tr>
<tr>
<td>HSTY1076</td>
<td>American History from Lincoln to Clinton</td>
<td>263</td>
</tr>
<tr>
<td>HSTY1089</td>
<td>Australia: Colonies to Nation</td>
<td>263</td>
</tr>
<tr>
<td>HSTY1090</td>
<td>History of Chinese Culture</td>
<td>263</td>
</tr>
<tr>
<td>HSTY1801</td>
<td>History Exchange</td>
<td>263</td>
</tr>
<tr>
<td>HSTY1802</td>
<td>History Exchange</td>
<td>263</td>
</tr>
<tr>
<td>HSTY2604</td>
<td>Popular Culture in Australia 1850-1945</td>
<td>239, 263</td>
</tr>
<tr>
<td>HSTY2605</td>
<td>Contemporary Europe</td>
<td>239, 263</td>
</tr>
<tr>
<td>HSTY2608</td>
<td>European Film and History</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2614</td>
<td>Australian Social History</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2621</td>
<td>China's Economy: From Mao to Market</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2622</td>
<td>The Opium Wars in China (1839-1860)</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2625</td>
<td>Culture and Society in Modern Britain</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2656</td>
<td>A House Divided: The American Civil War</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2667</td>
<td>Politics and Cultures of US Imperialism</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2668</td>
<td>The Rise and Fall of the First Reich</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2674</td>
<td>Pilgrim to Backpacker: Travel Histories</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2678</td>
<td>Race Around the World</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2681</td>
<td>Colonialism in Modern Asia</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2683</td>
<td>Violence in Chinese History</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2684</td>
<td>Darwinism, Nationalism and Eugenics</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2685</td>
<td>Gender and Historical Change: East Asia</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2686</td>
<td>Food, Environment and Culture in Europe</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2687</td>
<td>Alliance: Australia-USA Relations</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2690</td>
<td>Australia's Underworld: Stories & Method</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2691</td>
<td>Writing History</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2805</td>
<td>History Exchange</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2806</td>
<td>History Exchange</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2809</td>
<td>History Exchange</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2810</td>
<td>History Exchange</td>
<td>264</td>
</tr>
<tr>
<td>HSTY2811</td>
<td>History Exchange</td>
<td>264</td>
</tr>
<tr>
<td>HSTY4011</td>
<td>History Honours A</td>
<td>264</td>
</tr>
<tr>
<td>HSTY4012</td>
<td>History Honours B</td>
<td>264</td>
</tr>
<tr>
<td>HSTY4013</td>
<td>History Honours C</td>
<td>264</td>
</tr>
<tr>
<td>HSTY4014</td>
<td>History Honours D</td>
<td>264</td>
</tr>
<tr>
<td>ICLS2622</td>
<td>Great Books 3: The Twentieth Century</td>
<td>265</td>
</tr>
<tr>
<td>ICLS2623</td>
<td>Literature and Revolution</td>
<td>265</td>
</tr>
<tr>
<td>ICLS2635</td>
<td>Science Fiction: The Future is Now</td>
<td>265</td>
</tr>
</tbody>
</table>

ICLS2801-ICLS2804: Int Comparative Literary Studies Exchange | 265
HSTY4011-ICLS4014: Int Comparative Literary Studies Honours | 266
IMMU4011-IMMU4014: Immunology Honours | 266
Index by alpha code

INMS3603 Indonesian Advanced Studies A, 265
INMS3603 Indonesian Advanced Studies B, 265
INMS4011 Indonesian and Malay Studies Honours A, 265
INMS4012 Indonesian and Malay Studies Honours B, 265
INMS4013 Indonesian and Malay Studies Honours C, 265
INMS4014 Indonesian and Malay Studies Honours D, 265
ISYS2140 Information Systems, 68, 186
ISYS3400 Information Systems Project, 69, 187
ISYS3401 Analytical Methods & Information Systems, 69, 187
ISYS4301 Information Systems Honours A, 188, 287
ISYS4302 Information Systems Honours B, 188, 287
ISYS4303 Information Systems Honours C, 188, 287
ISYS4304 Information Systems Honours D, 188, 288
ITLN1611 Introductory Italian 1, 266
ITLN1612 Introductory Italian 2, 266
ITLN1801 Italian Exchange, 266
ITLN1802 Italian Exchange, 266
ITLN2611 Intermediate Italian 3, 266
ITLN2612 Intermediate Italian 4, 266
ITLN2631 Senior Italian 3, 266
ITLN2632 Senior Italian 4, 266
ITLN2811 Italian Exchange, 266
ITLN2812 Italian Exchange, 266
ITLN2813 Italian Exchange, 266
ITLN2814 Italian Exchange, 266
ITLN2815 Italian Exchange, 266
ITLN2816 Italian Exchange, 266
ITLN2817 Italian Exchange, 266
ITLN3611 Senior Italian 5, 266
ITLN3612 Senior Italian 6, 266
ITLN3631 Senior Italian 7, 266
ITLN3662 Machiavelli and Renaissance Italy, 267
ITLN3668 Issues of Language and Society in Italy, 267
ITLN3671 Dante: Inferno, 267
ITLN3676 Contemporary Italian Fiction, 267
ITLN3679 Filming Fiction: The Italian Experience, 267
ITLN3681 Representations of Southern Italy, 267
ITLN3687 Focus on Writing in Italian, 267
ITLN3688 Advanced Italian: Translation, 267
ITLN3691 Italian Literature: 1200-1860, 267
ITLN4011 Italian Honours A, 267
ITLN4012 Italian Honours B, 267
ITLN4013 Italian Honours C, 267
ITLN4014 Italian Honours D, 267

J

JCTC1001 Palestine: Roman Rule to Islam, 239, 268
JCTC1002 Jewish Settlement Outside Palestine, 268
JCTC1801 Jewish Civilization Exchange, 268
JCTC2603 Jews Under the Crescent and the Cross, 268
JCTC2604 From Expulsion to Regeneration, 268
JCTC2605 From Emancipation to the Holocaust, 268
JCTC2606 The Holocaust: History and Aftermath, 268
JCTC2607 Israel in the Modern Middle East, 268
JCTC2811 Jewish Civilisation Exchange, 268
JCTC2812 Jewish Civilisation Exchange, 268
JCTC2813 Jewish Civilisation Exchange, 268
JCTC2814 Jewish Civilisation Exchange, 268
JCTC2815 Jewish Civilisation Exchange, 268
JCTC2816 Jewish Civilisation Exchange, 268
JCTC4011 Judaic Studies Honours A, 269
JCTC4012 Judaic Studies Honours B, 269
JCTC4013 Judaic Studies Honours C, 269
JCTC4014 Judaic Studies Honours D, 269
JPNS1611 Japanese 1, 267
JPNS1612 Japanese 2, 267
JPNS1801 Japanese Exchange, 267
JPNS2611 Japanese 3, 267
JPNS2612 Japanese 4, 267
JPNS2621 Japanese 5, 267
JPNS2622 Japanese 6, 267
JPNS2660 Introduction to Japan, 267
JPNS2670 Modern Japanese Literary Masterpieces, 267
JPNS2671 Japanese Sociolinguistics, 267
JPNS2672 Japanese Media Culture and New Japan, 267
JPNS2811 Japanese Exchange 3, 267
JPNS2812 Japanese Exchange 4, 267
JPNS2813 Japanese Exchange 5, 267
JPNS2814 Japanese Exchange 6, 268
JPNS2815 Japanese Exchange 7, 268
JPNS3621 Japanese 7, 268
JPNS3622 Japanese 8, 268
JPNS3631 Japanese 9, 268
JPNS3632 Japanese 10, 268
JPNS3673 Japanese Society, 268
JPNS3675 Japanese Cinema, 268
JPNS3676 Monsters & Ghosts: Japanese Fantasy & SF, 268
JPNS3841 Japan In-Country Study 1, 268
JPNS3842 Japan In-Country Study 2, 268
JPNS4011 Japanese Honours A, 268
JPNS4012 Japanese Honours B, 268
JPNS4013 Japanese Honours C, 268
JPNS4014 Japanese Honours D, 268

K

KOCR2600 Indigenous Australia: An Introduction, 239, 239, 264, 264
KOCR2601 Indigenous Australia: Land and Culture, 264, 264
KOCR2603 Indigenous Health and Communities, 264, 264
KOCR2604 Colours of Identity: Indigenous Bodies, 264
KOCR2605 Speaking Gamilaraay 1, 265, 265
KOCR2607 Indigenous Creative Expression, 265, 265
KRNS1621 Korean 1, 269
KRNS1622 Korean 2, 269
KRNS1801 Korean Exchange, 269
KRNS2621 Korean 3, 269
KRNS2622 Korean 4, 269
KRNS2671 Translation and Interpretation, 269
KRNS2675 Contemporary Korean Society and Culture, 269
MATH1011 Life Sciences Calculus, 104
MATH1013 Mathematical Modelling, 72, 106, 194
MATH1014 Introduction to Linear Algebra, 72, 106, 194
MATH1015 Biostatistics, 72, 104, 106, 194
MATH1111 Introduction to Calculus, 106, 194
MATH1901 Differential Calculus (Advanced), 61, 72, 107, 196
MATH1902 Linear Algebra (Advanced), 61, 72, 107, 196
MATH1903 Integral Calculus and Modelling Advanced, 61, 72, 107, 196
MATH1905 Statistics (Advanced), 61, 72, 107, 196
MATH1906 Mathematics (Special Studies Program) A, 72, 107, 196
MATH1907 Mathematics (Special Studies Program) B, 72, 107, 196
MATH2061 Linear Mathematics and Vector Calculus, 72, 126, 127, 197
MATH2063 Math Computing and Nonlinear Systems, 72, 197
MATH2065 Partial Differential Equations (Intro), 73, 198
MATH2068 Number Theory and Cryptography, 73, 198
MATH2069 Discrete Mathematics and Graph Theory, 73, 198
MATH2070 Optimisation and Financial Mathematics, 61, 73, 198
MATH2161 Working Seminar A (SSP), 73, 198
MATH2162 Working Seminar B (SSP), 73, 198
MATH2917 Working Seminar B (SSP), 73, 197
MATH2961 Linear Mathematics & Vector Calculus Adv, 73, 197
MATH2962 Real and Complex Analysis (Advanced), 73, 197
MATH2963 Math Computing & Nonlinear Systems (Adv), 73, 198
MATH2965 Partial Differential Equations Intro Adv, 73, 198
MATH2968 Algebra (Advanced), 73, 198
MATH2969 Discrete Mathematics & Graph Theory Adv, 73, 198
MATH2970 Optimisation & Financial Mathematics Adv, 61, 73, 199
MATH2988 Number Theory and Cryptography Advanced), 73, 198
MATH3061 Geometry and Topology, 73, 199
MATH3062 Algebra and Number Theory, 73, 199, 200
MATH3063 Differential Equations and Biomaths, 58, 73, 199, 200
MATH3065 Logic and Foundations, 73, 199, 200
MATH3067 Information and Coding Theory, 62, 73, 199, 201
MATH3068 Analysis, 73, 201
MATH3075 Financial Mathematics, 61, 74, 199, 201
MATH3076 Mathematical Computing, 57, 62, 73, 168, 199, 202
MATH3078 PDEs and Waves, 58, 62, 74, 199, 202
MATH3091 Metric Spaces (Advanced), 73, 199
MATH3092 Rings, Fields and Galois Theory (Adv), 73, 199, 200
MATH3093 Differential Equations & Biomaths (Adv), 58, 73, 200
MATH3094 Complex Analysis with Applications (Adv), 74, 200
MATH3096 Modules and Group Representations (Adv), 74, 199, 201
MATH3098 Differential Geometry (Advanced), 74, 201
MATH3099 Measure Theory & Fourier Analysis (Adv), 62, 74, 201
MATH3962 Real and Complex Analysis (Advanced), 58, 62, 73, 168, 199, 202
MATH3974 Fluid Dynamics (Advanced), 62, 73, 199, 201
MATH3975 Financial Mathematics (Advanced), 62, 74, 199, 202
MATH3976 Mathematical Computing (Advanced), 58, 62, 73, 168, 199, 202
MATH3977 Lagrangian & Hamiltonian Dynamics (Adv), 74, 199, 202
MATH3978 PDEs and Waves (Advanced), 58, 62, 74, 199, 202
MATH4301 Pure Mathematics Honours A, 288
MATH4302 Pure Mathematics Honours B, 288
MATH4303 Pure Mathematics Honours C, 288
MATH4304 Pure Mathematics Honours D, 288
MATH4401 Applied Mathematics Honours A, 288
MATH4402 Applied Mathematics Honours B, 288
MATH4403 Applied Mathematics Honours C, 288
MATH4404 Applied Mathematics Honours D, 288
MATH4405 Molecular Biology and Genetics (Intro), 75, 107, 153, 210
MATH4406 Molecular Biology and Genetics (Adv), 75, 98, 154
MATH4409 Molecular Biology & Genetics Seminar A, 98, 211
MATH4410 Molecular Biology and Genetics A, 75, 77, 107, 154, 156, 211
MATH4411 Molecular Biology and Genetics B, 75, 77, 107, 154, 156, 211
MATH4412 Molecular Biology and Genetics A (Adv), 75, 77, 107, 211
MATH4413 Molecular Biology and Genetics B (Adv), 75, 77, 211
MATH4414 Molecular Biology & Genetics Seminar B, 98, 211
MCAN5005 Introductory Microscopy & Microanalysis, 353, 354
MCAN5006 Electron Microscopy, 353, 354
MCAN5101 Confocal and Fluorescence Microscopy, 354
MCAN5102 Biological Specimen Preparation, 353, 354
MCAN5103 Materials Preparation and Microscopy, 353, 354
MCAN5104 Image Analysis, 324, 325, 327, 353, 354
MCAN5109 Nanostructural Analysis of Materials, 353, 354
MCAN5112 Advances in Modern Microscopy, 353, 355
MCAN5201 Project and Report A, 353, 354, 355
MCAN5202 Project and Report B, 353, 354, 355
MCAN5203 Project and Report Part C, 353, 354, 355
MCAN5210 Research Methodology, 353, 354, 355
MDST2608 The First Crusade, 272
MDST2609 Crusade and Jihad, 272
MDST2614 The Legend of King Arthur, 272
MDST2615 Intellectual History of the Middle Ages, 272
MDST4011 Medieval Studies Honours A, 272
MDST4012 Medieval Studies Honours B, 272
MDST4013 Medieval Studies Honours C, 272
MDST4014 Medieval Studies Honours D, 273
MECH2400 Mechanical Design 1, 127
MECH3260 Thermodynamics, 127
MECH3261 Fluid Mechanics, 127
MECH3361 Mechanics of Solids 2, 76, 127
MECH3362 Materials 2, 76
MECH3460 Mechanical Design 2, 127
MECO1001 Australian Media Studies, 271
MECO1003 Principles of Media Writing, 271
MECO2601 Radio Broadcasting, 271
MECO2603 Media Relations, 271
MECO2805 Media and Communications Exchange, 271
MECO2806 Media and Communications Exchange, 271
MECO2807 Media and Communications Exchange, 271
MECO2808 Media and Communications Exchange, 271
MECO3601 Video Production, 271
MECO3602 Online Media, 271
MECO3603 Media, Law and Ethics, 272
MECO3605 Media Globalisation, 272
MECO3606 Advanced Media Writing, 272
MECO3609 Critical Practice in Media, 272
MECO3671 Media and Communications Internship, 272
MECO3672 Internship Project, 272
MECO4011 Media and Communications Honours A, 272
MECO4012 Media and Communications Honours B, 272
MECO4013 Media and Communications Honours C, 272
MECO4014 Media and Communications Honours D, 272
MECO4601 Honours Research Methods A, 272
MECO4602 Honours Research Methods B, 272
MECO4603 Honours Seminar A, 272
MECO4604 Honours Seminar B, 272
MECO4605 Honours Thesis A, 272
MECO4606 Honours Thesis B, 272
MECO4607 Honours Thesis C, 272
MECO4608 Honours Thesis D, 272
MGRK1601 Junior Modern Greek 1, 273
MGRK1602 Junior Modern Greek 2, 273
MGRK1621 Junior Modern Greek 3, 273
MGRK1622 Junior Modern Greek 4, 273
MGRK2601 Senior Modern Greek 1, 273
MGRK2602 Senior Modern Greek 2, 273
MGRK2603 Style and Expression, 273
MGRK2609 Theory and Practice of Translation A, 273
MGRK2621 Greek Modernism, 273
MGRK2631 Cultural Identities, 273
MGRK2633 Social Norms/Stereotypes in Greek Cinema, 273
MGRK2653 Sex, Drugs and Music in Modern Greece, 273
MGRK2676 New Testament Greek and its World B, 273
MGRK2691 Sociolinguistics in the Greek Diaspora, 273
MGRK2811 Modern Greek Exchange, 273
MGRK2812 Modern Greek Exchange, 273
MGRK2813 Modern Greek Exchange, 273
MGRK2814 Modern Greek Exchange, 273
MGRK2815 Modern Greek Exchange, 273
MGRK3692 Theories of Literature, 273
MGRK4011 Modern Greek Honours A, 273
MGRK4012 Modern Greek Honours B, 273
MGRK4013 Modern Greek Honours C, 273
MGRK4014 Modern Greek Honours D, 273
MICR2021 Microbial Life, 74, 207
MICR2022 Microbes in Society, 74, 208
MICR2024 Microbes in the Environment, 74, 208, 208
MICR2921 Microbial Life (Advanced), 74, 207
MICR2922 Microbes in Society (Advanced), 74, 208
MICR3011 Microbes in Infection, 55, 67, 74, 208
MICR3012 Molecular Biology of Pathogens, 55, 74, 208
MICR3022 Microbial Biotechnology, 55, 74, 208
MICR3911 Microbes in Infection (Advanced), 55, 67, 74, 208
MICR3912 Molecular Biology of Pathogens (Adv), 55, 74, 208
MICR3922 Microbial Biotechnology (Advanced), 55, 74, 208
MICR4011 Microbiology Honours A, 114, 288
MICR4012 Microbiology Honours B, 114, 288
MICR4013 Microbiology Honours C, 114, 288
MICR4014 Microbiology Honours D, 114, 288
MOBT2102 Molecular Biotechnology 2, 100, 211
MOBT3101 Molecular Biotechnology 3A, 100, 212
MOBT3202 Molecular Biotechnology 3B Project, 100, 212
MOBT5101 Applied Molecular Biotechnology A, 359, 360
MOBT5102 Applied Molecular Biotechnology B, 359, 360
MOBT5201 Applied Molecular Biotech A (Theory), 323, 324, 325
MOBT5303 Applied Molecular Biotech C (Project), 359, 360
MOBT5304 Applied Molecular Biotech D (Project), 359, 360
MUSC1501 Concepts of Music, 273, 274
MUSC1503 Fundamentals of Music I, 273
MUSC1504 Fundamentals of Music II, 274
MUSC1506 Music in Western Culture, 274
MUSC1507 Sounds, Screens, Speakers: Music & Media, 274
MUSC2612 Arts Music Concert Performance 1, 274
MUSC2613 Arts Music Concert Performance 2, 274
MUSC2614 Composition Workshop 1, 274
MUSC2615 Advanced Concepts, 274
MUSC2618 Arts Music Ensemble 1, 274
MUSC2619 Arts Music Ensemble 2, 274
MUSC2621 The Mediaeval Spanish Melting Pot, 274
MUSC2631 Fieldwork, Ethnography and Transcription, 274
MUSC2651 Australian and Asian Music 1, 274
MUSC2653 Introduction to Digital Music Techniques, 274
MUSC2654 Popular Music, 274
MUSC2662 Film Music, 274
MUSC2666 A Global Sound: African American Music, 274
MUSC2670 Music Festivals and their Administration, 274
MUSC2671 Arts Music Ensemble 2, 274
MUSC2672 A Certain Beat: Australian Popular Music, 274
MUSC2673 First Nights: Musical Premieres, 274
MUSC2674 History of the Musical, 274
MUSC2679 The Music of Christianity, 274
MUSC2691 Revolutionary Voices: Music and Politics, 274
MUSC2693 Advanced Fundamentals of Music, 274
MUSC2810 Music Exchange, 274
MUSC2812 Music Exchange, 274
MUSC2813 Music Exchange, 274
MUSC3604 Arts Music Concert Performance 3, 274
MUSC3605 Arts Music Concert Performance 4, 274
MUSC3609 Musicology, 274, 275
MUSC3611 Composition Workshop 2, 274
Index by alpha code

MUSC4011 Music Honours A, 275
MUSC4012 Music Honours B, 275
MUSC4013 Music Honours C, 275
MUSC4014 Music Honours D, 275

N
NEUR3001 Neuroscience: Special Senses, 48, 77, 83, 225
NEUR3002 Neuroscience: Motor Systems & Behaviour, 49, 77, 83, 147
NEUR3003 Cellular and Developmental Neuroscience, 49, 78, 84, 225
NEUR3004 Integrative Neuroscience, 49, 78, 84, 147
NEUR3901 Neuroscience: Special Senses (Advanced), 48, 77, 83, 225
NEUR3902 Neuroscience: Motor Systems & Behav. Adv, 49, 78, 83, 147
NEUR3903 Cellular & Developmental Neurosci. (Adv), 49, 78, 84, 225
NEUR3904 Integrative Neuroscience (Advanced), 49, 78, 84, 148
NTDT5305 Food Service Management, 363, 364
NTDT5307 Clinical Nutrition and Dietetics, 363, 364, 365
NTDT5308 Community and Public Health Nutrition, 363, 364
NTDT5309 Communication, 363, 364
NTDT5310 Nutrition Research Project, 364
NTDT5311 Nutrition Practice, 364
NTDT5312 Nutrition & Dietetics Training Placement, 364
NTDT5501 Nutritional Science, 363, 364
NTDT5502 Food Science, 363, 365
NTDT5503 Dietary Intake & Nutritional Assessment, 363, 365
NTDT5504 Communications A, 363, 364, 365
NTMP3001 Coral Reef Ecosystems, 95, 193
NTMP3003 Fisheries Biology and Management, 95, 193
NTMP3004 Aquaculture, 96, 193
NTMP3005 Coastal Management, 96, 193
NTMP5005 Tropical Coastal Management, 333, 346
NURS5024 Cancer Nursing Practice, 385, 386
NURS5025 Understanding Cancer Causes & Therapies, 385, 386
NURS5026 Health Promotion in Cancer Recovery, 385, 386
NURS6010 Clinical Qualitative Research, 385, 387
NUTR2911 Food Science Introductory (Advanced), 102, 104, 213
NUTR2912 Nutritional Science Introductory (Adv), 102, 213
NUTR3911 Nutritional Assessment Methods, 103, 104, 213
NUTR3912 Community and Public Health Nutrition, 103, 213
NUTR3921 Methods in Nutrition Practice, 103, 104, 9781741751024
NUTR3922 Nutrition and Chronic Disease, 103, 104, 9781741751024
NUTR4001 Clinical Nutritional Science A, 9781741751024
NUTR4002 Clinical Nutritional Science B, 9781741751024

P
PACS2002 History and Politics of War and Peace, 239, 275
PALI1001 Pali A, 275
PALI1002 Pali B, 275
PCOL2011 Pharmacology Fundamentals, 77, 78, 9781741751024
PCOL2012 Pharmacology: Drugs and People, 77, 78, 9781741751024
PCOL2555 Essentials of Pharmacology, 9781741751024
PCOL3011 Toxicology, 78, 215
PCOL3012 Drug Design and Development, 78, 215
PCOL3021 Drug Therapy, 79, 215
PCOL3022 Neuropharmacology, 77, 79, 215
PCOL3911 Toxicology (Advanced), 79, 215
PCOL3912 Drug Design and Development (Adv), 79, 215
PCOL3921 Drug Therapy (Advanced), 79, 215
PCOL3922 Neuropharmacology (Advanced), 77, 79, 215
PCOL4011 Pharmacology Honours A, 114, 288
PCOL4012 Pharmacology Honours B, 115, 288
PCOL4013 Pharmacology Honours C, 115, 288
PCOL4014 Pharmacology Honours D, 115, 288
PHIL1011 Reality, Ethics and Beauty, 276
PHIL1012 Introductory Logic, 238, 276
PHIL1013 Society, Knowledge and Self, 124, 276
PHIL1016 Mind and Morality HSC, 276
PHIL1801 Philosophy Exchange, 276
PHIL2600 Twentieth Century Philosophy, 276
PHIL2605 Locke and Empiricism, 276
PHIL2606 Knowledge, Reason and Action, 276
PHIL2615 Intermediate Logic, 238, 276
PHIL2617 Practical Ethics, 239, 276
PHIL2621 Truth, Meaning and Language, 276
PHIL2622 Reality, Time & Possibility: Metaphysics, 276
PHIL2623 Moral Psychology, 239, 276
PHIL2625 Hannah Arendt, 276
PHIL2626 Philosophy and Psychoanalysis, 276
PHIL2629 Descartes and Continental Philosophy, 276
PHIL2633 Theorising Modernity, 276
PHIL2634 Democratic Theory, 276
PHIL2635 Contemporary Political Philosophy, 276
PHIL2642 Critical Thinking, 238, 276
PHIL2643 Philosophy of Mind, 276
PHIL2644 Critical Theory: From Marx to Foucault, 276
PHIL2645 Philosophy of Law, 276
PHIL2646 Philosophy and Literature, 276
PHIL2647 The Philosophy of Happiness, 276
PHIL2648 German Philosophy, Leibniz to Nietzsche, 276
PHIL2649 The Classical Mind, 276
PHIL2650 Logic and Computation, 238, 276
PHIL2804 Philosophy Exchange, 276
PHIL2805 Philosophy Exchange, 276
PHIL2806 Philosophy Exchange, 276
PHIL2810 Philosophy Exchange, 276
PHIL2811 Philosophy Exchange, 276
PHIL2812 Philosophy Exchange, 276
PHIL3618 Pre-Honours Seminar, 385, 387
PHIL4011 Philosophy Honours A, 277
PHIL4012 Philosophy Honours B, 277
PHIL4013 Philosophy Honours C, 277
PHIL4014 Philosophy Honours D, 277
PHIL7840 Philosophy and the Science of Happiness, 382, 383, 392, 394
PHIS2005 Integrated Physiology A, 77, 83, 107, 224
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS3006</td>
<td>Integrated Physiology B. 83, 108, 224</td>
<td></td>
</tr>
<tr>
<td>PHYS3005</td>
<td>Integrated Physiology A (Advanced), 77, 83, 107, 224</td>
<td></td>
</tr>
<tr>
<td>PHYS3006</td>
<td>Integrated Physiology B (Advanced), 83, 108, 225</td>
<td></td>
</tr>
<tr>
<td>PHYS3005</td>
<td>Human Cellular Physiology: Theory, 55, 67, 83, 226</td>
<td></td>
</tr>
<tr>
<td>PHYS3006</td>
<td>Human Cellular Physiology: Research, 55, 67, 83, 226</td>
<td></td>
</tr>
<tr>
<td>PHYS3007</td>
<td>Heart and Circulation: Normal Function, 83, 226</td>
<td></td>
</tr>
<tr>
<td>PHYS3008</td>
<td>Heart and Circulation: Dysfunction, 84, 227</td>
<td></td>
</tr>
<tr>
<td>PHYS3905</td>
<td>Human Cellular Physiology (Adv): Theory, 55, 67, 83, 226</td>
<td></td>
</tr>
<tr>
<td>PHYS3906</td>
<td>Human Cellular Physiology (Adv): Research, 56, 68, 83, 226</td>
<td></td>
</tr>
<tr>
<td>PHYS3907</td>
<td>Heart & Circulation: Normal Function Adv, 84, 227</td>
<td></td>
</tr>
<tr>
<td>PHYS3908</td>
<td>Heart & Circulation: Dysfunction Adv, 84, 227</td>
<td></td>
</tr>
<tr>
<td>PHYS4011</td>
<td>Physiology Honours A, 115, 288</td>
<td></td>
</tr>
<tr>
<td>PHYS4012</td>
<td>Physiology Honours B, 115, 288</td>
<td></td>
</tr>
<tr>
<td>PHYS4013</td>
<td>Physiology Honours C, 115, 288</td>
<td></td>
</tr>
<tr>
<td>PHYS4014</td>
<td>Physiology Honours D, 115, 288</td>
<td></td>
</tr>
<tr>
<td>PHYS1001</td>
<td>Physics 1 (Regular), 79, 216</td>
<td></td>
</tr>
<tr>
<td>PHYS1002</td>
<td>Physics 1 (Fundamentals), 79, 216</td>
<td></td>
</tr>
<tr>
<td>PHYS1003</td>
<td>Physics 1 (Technological), 79, 216</td>
<td></td>
</tr>
<tr>
<td>PHYS1004</td>
<td>Physics 1 (Environmental & Life Science), 79, 217</td>
<td></td>
</tr>
<tr>
<td>PHYS1500</td>
<td>Astronomy, 79, 216, 217, 239</td>
<td></td>
</tr>
<tr>
<td>PHYS1901</td>
<td>Physics 1A (Advanced), 79, 217</td>
<td></td>
</tr>
<tr>
<td>PHYS1902</td>
<td>Physics 1B (Advanced), 79, 217</td>
<td></td>
</tr>
<tr>
<td>PHYS2011</td>
<td>Physics 2A, 79, 217</td>
<td></td>
</tr>
<tr>
<td>PHYS2012</td>
<td>Physics 2B, 79, 218</td>
<td></td>
</tr>
<tr>
<td>PHYS2013</td>
<td>Astrophysics and Relativity, 79, 218</td>
<td></td>
</tr>
<tr>
<td>PHYS2911</td>
<td>Physics 2A (Advanced), 79, 218</td>
<td></td>
</tr>
<tr>
<td>PHYS2912</td>
<td>Physics 2B (Advanced), 79, 218</td>
<td></td>
</tr>
<tr>
<td>PHYS2913</td>
<td>Astrophysics and Relativity (Advanced), 79, 218</td>
<td></td>
</tr>
<tr>
<td>PHYS3915</td>
<td>Topics in Senior Physics A, 79, 218</td>
<td></td>
</tr>
<tr>
<td>PHYS3925</td>
<td>Topics in Senior Physics B (Advanced), 80, 219</td>
<td></td>
</tr>
<tr>
<td>PHYS3940</td>
<td>Electromagnetism and Physics Lab (Adv), 81, 219</td>
<td></td>
</tr>
<tr>
<td>PHYS3941</td>
<td>Electromagnetism & Special Project (Adv), 81, 219</td>
<td></td>
</tr>
<tr>
<td>PHYS3951</td>
<td>Thermodynamics/Biophysics & Lab (Adv), 81, 219</td>
<td></td>
</tr>
<tr>
<td>PHYS3952</td>
<td>Nanoscience/Thermodynamics & Lab (Adv), 81, 220</td>
<td></td>
</tr>
<tr>
<td>PHYS3954</td>
<td>Nanoscience/Plasma Physics & Lab (Adv), 81, 220</td>
<td></td>
</tr>
<tr>
<td>PHYS3955</td>
<td>Nanoscience/Plasma/Thermodynamics (Adv), 81, 220</td>
<td></td>
</tr>
<tr>
<td>PHYS3959</td>
<td>Plasma/Thermodynamics/Biophysics (Adv), 81, 220</td>
<td></td>
</tr>
<tr>
<td>PHYS3960</td>
<td>Quantum Mechanics and Physics Lab (Adv), 81, 220</td>
<td></td>
</tr>
<tr>
<td>PHYS3961</td>
<td>Quantum Mechanics & Special Project(Adv), 81, 220</td>
<td></td>
</tr>
<tr>
<td>PHYS3962</td>
<td>Quantum/Cond Matter Physics & Lab (Adv), 81, 220</td>
<td></td>
</tr>
<tr>
<td>PHYS3963</td>
<td>Quantum Mechanics & Special Project (Adv), 81, 220</td>
<td></td>
</tr>
<tr>
<td>PHYS3964</td>
<td>Quantum Mechanics and Physics Lab (Adv), 81, 220</td>
<td></td>
</tr>
<tr>
<td>PHYS3965</td>
<td>Quantum/Thermodynamic/Biophysics (Adv), 81, 220</td>
<td></td>
</tr>
<tr>
<td>PHYS3968</td>
<td>Optics/Cond. Matter and Lab (Adv), 82, 222</td>
<td></td>
</tr>
<tr>
<td>PHYS3969</td>
<td>Optics/High Energy Physics & Lab (Adv), 82, 222</td>
<td></td>
</tr>
<tr>
<td>PHYS3971</td>
<td>High Energy/Astrophysics and Lab (Adv), 82, 222</td>
<td></td>
</tr>
<tr>
<td>PHYS3974</td>
<td>High Energy/Cond. Matter Phys.& Lab(Adv), 82, 222</td>
<td></td>
</tr>
<tr>
<td>PHYS3979</td>
<td>Cond. Matter/High Energy/Astrophys (Adv), 82, 222</td>
<td></td>
</tr>
<tr>
<td>PHYS3980</td>
<td>Optics/Matter/High Energy Phys(Adv), 82, 222</td>
<td></td>
</tr>
<tr>
<td>PHYS3981</td>
<td>Optics/Cond. Matter/Astrophysics (Adv), 82, 222</td>
<td></td>
</tr>
<tr>
<td>PHYS3982</td>
<td>Optics/High Energy/Astrophysics (Adv), 82, 222</td>
<td></td>
</tr>
<tr>
<td>PHYS4011</td>
<td>Physics Honours A, 289</td>
<td></td>
</tr>
<tr>
<td>PHYS4012</td>
<td>Physics Honours B, 289</td>
<td></td>
</tr>
<tr>
<td>PHYS4013</td>
<td>Physics Honours C, 289</td>
<td></td>
</tr>
<tr>
<td>PHYS4014</td>
<td>Physics Honours D, 289</td>
<td></td>
</tr>
<tr>
<td>PHYS5002</td>
<td>Anatomy and Physiology, 369, 370</td>
<td></td>
</tr>
<tr>
<td>PHYS5005</td>
<td>Radiotherapy Physics, 369, 370</td>
<td></td>
</tr>
<tr>
<td>PHYS5006</td>
<td>Medical Imaging Physics, 369, 370</td>
<td></td>
</tr>
<tr>
<td>PHYS5011</td>
<td>Nuclear Physics, 369, 370</td>
<td></td>
</tr>
<tr>
<td>PHYS5012</td>
<td>Radiation Physics and Dosimetry, 369, 370</td>
<td></td>
</tr>
<tr>
<td>PHYS5013</td>
<td>Nuclear Instrumentation, 372, 373</td>
<td></td>
</tr>
<tr>
<td>PHYS5014</td>
<td>Applications of Nuclear Physics, 372, 373</td>
<td></td>
</tr>
<tr>
<td>PHYS5015</td>
<td>Reactor Physics and Systems, 372, 373</td>
<td></td>
</tr>
<tr>
<td>PHYS5016</td>
<td>Nuclear Chemistry and Nuclear Fuel Cycle, 372, 373</td>
<td></td>
</tr>
<tr>
<td>PHYS5017</td>
<td>Energy Options and Environment, 372, 373</td>
<td></td>
</tr>
<tr>
<td>PHYS5018</td>
<td>Health Physics and Radiation Protection, 369, 372, 373, 375, 376</td>
<td></td>
</tr>
<tr>
<td>PHYS5019</td>
<td>Research Methodology and Project, 369, 372, 373, 375, 376, 377</td>
<td></td>
</tr>
<tr>
<td>PHYS5020</td>
<td>Computation and Image Processing, 369, 370</td>
<td></td>
</tr>
<tr>
<td>PHYS5021</td>
<td>Optical Instrumentation and Imaging, 375, 376</td>
<td></td>
</tr>
<tr>
<td>PHYS5022</td>
<td>Optical Materials and Methods, 375, 376</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
<td>Year</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>PSYC3011</td>
<td>Learning and Behaviour, 78, 86, 233, 380</td>
<td></td>
</tr>
<tr>
<td>PSYC3012</td>
<td>Cognition, Language and Thought, 78, 86, 233, 380</td>
<td></td>
</tr>
<tr>
<td>PSYC3013</td>
<td>Perceptual Systems, 78, 86, 233, 380</td>
<td></td>
</tr>
<tr>
<td>PSYC3014</td>
<td>Behavioural and Cognitive Neuroscience, 78, 86, 233, 380</td>
<td></td>
</tr>
<tr>
<td>PSYC3015</td>
<td>Personality and Intelligence 2, 86, 233, 380</td>
<td></td>
</tr>
<tr>
<td>PSYC3016</td>
<td>Developmental Psychology, 86, 233, 380</td>
<td></td>
</tr>
<tr>
<td>PSYC3017</td>
<td>Social Psychology, 86, 234, 380</td>
<td></td>
</tr>
<tr>
<td>PSYC3018</td>
<td>Abnormal Psychology, 86, 234, 380</td>
<td></td>
</tr>
<tr>
<td>PSYC3020</td>
<td>Applications of Psychological Science, 86, 234, 380</td>
<td></td>
</tr>
<tr>
<td>PSYC4011</td>
<td>Psychology Honours A, 289</td>
<td></td>
</tr>
<tr>
<td>PSYC4012</td>
<td>Psychology Honours B, 289</td>
<td></td>
</tr>
<tr>
<td>PSYC4013</td>
<td>Psychology Honours C, 289</td>
<td></td>
</tr>
<tr>
<td>PSYC4014</td>
<td>Psychology Honours D, 289</td>
<td></td>
</tr>
<tr>
<td>PSYC4721</td>
<td>Theories & Techniques of Coaching Psych, 382, 391, 392, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC4722</td>
<td>Fundamentals of Coaching Practice, 391, 392, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC4723</td>
<td>Socio-cognitive Issues in Coaching Psych, 392, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC4724</td>
<td>Coaching Practice, 391, 392, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC4725</td>
<td>Assessment and Selection, 392, 393, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC4727</td>
<td>Positive Organisational Coaching, 382, 392, 393, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC4729</td>
<td>Groups, Teams and Systems, 392, 393, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC4730</td>
<td>Applied Positive Psychology, 382, 392, 393, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC4731</td>
<td>Psychology of Peak Performance, 382, 392, 393, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC5010</td>
<td>Applying Psychology to Health, 385, 387, 392, 393, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC5011</td>
<td>Applying Models of Health Behaviour, 385, 387, 392, 393, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC5012</td>
<td>Advanced Communication Skills, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC5013</td>
<td>Coping and Adjustment to Illness, 385, 387</td>
<td></td>
</tr>
<tr>
<td>PSYC5014</td>
<td>Developments in Health Psychology, 385, 387, 392, 394, 395</td>
<td></td>
</tr>
<tr>
<td>PSYC5015</td>
<td>Research Project, 386, 387, 391, 392, 394</td>
<td></td>
</tr>
<tr>
<td>PSYC6032</td>
<td>Health Psychology, 301, 302</td>
<td></td>
</tr>
<tr>
<td>PSYC6049</td>
<td>Child Psychological Disorders, 301, 302</td>
<td></td>
</tr>
<tr>
<td>PSYC6051</td>
<td>Adult Psychological Disorders, 301, 303</td>
<td></td>
</tr>
<tr>
<td>PSYC6054</td>
<td>Neuropsychopathology, 301, 303</td>
<td></td>
</tr>
<tr>
<td>PSYC6055</td>
<td>Advanced Adult Psychological Disorders, 301, 302</td>
<td></td>
</tr>
<tr>
<td>PSYC6056</td>
<td>Advanced Seminars, 301, 303</td>
<td></td>
</tr>
<tr>
<td>PSYC6058</td>
<td>Clinical Internship 5, 301, 304</td>
<td></td>
</tr>
<tr>
<td>PSYC6061</td>
<td>Clinical Internship 4, 301, 303</td>
<td></td>
</tr>
<tr>
<td>PSYC6065</td>
<td>Psychological Assessment, 301</td>
<td></td>
</tr>
<tr>
<td>PSYC6066</td>
<td>Clinical Internship 3, 301, 303</td>
<td></td>
</tr>
<tr>
<td>PSYC6067</td>
<td>Clinical Internship 1, 301, 302</td>
<td></td>
</tr>
<tr>
<td>PSYC6068</td>
<td>Clinical Internship 2, 301, 302</td>
<td></td>
</tr>
<tr>
<td>PSYC6069</td>
<td>Ethics and Professional Practice, 301, 302</td>
<td></td>
</tr>
<tr>
<td>PSYC6070</td>
<td>Neuropsychology and Disability, 301, 303</td>
<td></td>
</tr>
<tr>
<td>PSYC6071</td>
<td>Research Project, 301, 303</td>
<td></td>
</tr>
<tr>
<td>PSYC6072</td>
<td>Case and Research Seminars 1, 301, 302, 303</td>
<td></td>
</tr>
<tr>
<td>PSYC6073</td>
<td>Case and Research Seminars 2, 301, 303</td>
<td></td>
</tr>
<tr>
<td>PSYC6074</td>
<td>Advanced Models of Therapy, 301, 303</td>
<td></td>
</tr>
</tbody>
</table>
PUBH5010 Epidemiology Methods and Uses, 385, 388
PUBH5018 Introductory Biostatistics, 385, 388, 391

R
RESP5001 Fundamentals of Research, 390, 399
RLST1001 Paths to Enlightenment, 278
RLST1002 The History of God, 278
RLST1801 Religious Studies Exchange, 278
RLST2610 Mahayana Buddhism, 278
RLST2612 Dualism: Zoroaster, Gnosis & Manichaeanism, 278
RLST2614 Philosophy of Religion: Reason & Belief, 278
RLST2623 Meditation and Self Transformation, 278
RLST2624 The Birth of Christianity, 278
RLST2628 Religion and Film, 278
RLST2631 Celtic and Germanic Mythology, 278
RLST2633 Religion and Television, 278
RLST2634 Religion, Media and Consumerism, 278
RLST2635 Sex, Desire and the Sacred, 278
RLST2636 Ancient Egyptian Religion and Magic, 278
RLST2804 Religious Studies Exchange, 278
RLST2805 Religious Studies Exchange, 278
RLST2806 Religious Studies Exchange, 278
RLST2809 Religious Studies Exchange, 278
RLST2810 Religious Studies Exchange, 278
RLST4011 Religious Studies Honours A, 278
RLST4012 Religious Studies Honours B, 278
RLST4013 Religious Studies Honours C, 278
RLST4014 Religious Studies Honours D, 278

S
SANS1001 Sanskrit Introductory 1, 278
SANS1002 Sanskrit Introductory 2, 278
SANS2601 Sanskrit Intermediate 1, 278
SANS2602 Sanskrit Intermediate 2, 278
SANS2612 Sanskrit Research Preparation 1, 278
SANS3601 Sanskrit Advanced 1, 278
SANS3602 Sanskrit Advanced 2, 278
SANS4001 Sanskrit IV Honours A, 279
SANS4002 Sanskrit IV Honours B, 279
SANS4003 Sanskrit IV Honours C, 279
SANS4004 Sanskrit IV Honours D, 279
SCLG1001 Introduction to Sociology 1, 280
SCLG1002 Introduction to Sociology 2, 280
SCLG1801 Sociology Exchange, 280
SCLG2601 Sociological Theory, 280
SCLG2602 Social Inquiry: Research Methods, 280
SCLG2604 Social Inequality in Australia, 280
SCLG2605 Social Justice Law and Society, 280
SCLG2606 Media in Contemporary Society, 280
SCLG2607 Social Movements and Policy Making, 280
SCLG2608 Social Construction of Difference, 280
SCLG2609 Contemporary Cultural Issues, 280
SCLG2610 Science, Technology and Social Change, 280
SCLG2611 Welfare States: A Comparative Analysis, 280
SCLG2612 Self and Society, 280
SCLG2613 Sociology of Childhood and Youth, 280
SCLG2615 Law and Social Theory, 280
SCLG2616 Global Transformations, 280
SCLG2618 Violence, Imaginaries and Symbolic Power, 280
SCLG2621 Power, Politics and Society, 280
SCLG2624 Human Rights and Social Protest, 280
SCLG2625 Sociology of Friendship, 280
SCLG2626 Sociology of Religion, 280
SCLG2634 Crime, Punishment and Society, 280
SCLG2805 Sociology Exchange, 280
SCLG2806 Sociology Exchange, 280
SCLG2809 Sociology Exchange, 280
SCLG2810 Sociology Exchange, 280
SCLG2811 Sociology Exchange, 280
SCLG2812 Sociology Exchange, 280
SCLG3601 Contemporary Sociological Theory, 281
SCLG3602 Empirical Sociological Methods, 281
SCLG3603 Quantitative Methods for Social Science, 281
SCLG3604 Environmental Sociology, 281
SCLG3605 Urban Sociology, 281
SCLG4011 Sociology Honours A, 281
SCLG4012 Sociology Honours B, 281
SCLG4013 Sociology Honours C, 281
SCLG4014 Sociology Honours D, 281
SCLPL2601 Australian Social Policy, 279
SCLPL2602 The Principles of Social Policy, 279
SCLPL2603 Development and Welfare in East Asia, 279
SLSS1001 Introduction to Socio-Legal Studies, 124, 270, 279
SLSS1003 Law and Contemporary Society, 270, 279
SLSS2601 Socio-Legal Research, 279

SOIL2003 Soil Properties and Processes, 86, 142
SOIL2603 Indigenous Social and Legal Justice, 279
SOIL2604 Indigenous Social and Legal Justice, 279
SOIL2801 Socio-Legal Studies Exchange, 279
SOIL2802 Socio-Legal Studies Exchange, 279
SOIL2803 Socio-Legal Studies Exchange, 279
SOIL2804 Socio-Legal Studies Exchange, 279
SOIL2805 Socio-Legal Studies Exchange, 279
SOIL2806 Socio-Legal Studies Exchange, 279
SOIL2807 Socio-Legal Studies Exchange, 279
SOIL2808 Socio-Legal Studies Exchange, 279
SOIL2809 Socio-Legal Studies Exchange, 279
SOIL2810 Socio-Legal Studies Exchange, 279
SOIL2811 Socio-Legal Studies Exchange, 279
SOIL2812 Socio-Legal Studies Exchange, 279
SOIL2813 Socio-Legal Studies Exchange, 279
SOIL2814 Socio-Legal Studies Exchange, 279
SOIL2815 Socio-Legal Studies Exchange, 279
SOIL2816 Socio-Legal Studies Exchange, 279
SOIL2817 Socio-Legal Studies Exchange, 279
SOIL2818 Socio-Legal Studies Exchange, 279
SOIL2819 Socio-Legal Studies Exchange, 279

SPAN2601 Spanish Level 1, 278
SPAN2602 Spanish Level 2, 278
SPAN2603 Spanish Level 3, 278
SPAN2604 Spanish Level 4, 278
SPAN2605 Spanish Level 5, 278
SPAN2611 Spanish Level 3, 280
SPAN2612 Spanish Level 4, 280
SPAN2613 Spanish Level 5, 280
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPAN2614</td>
<td>Spanish Level 6</td>
<td>281</td>
</tr>
<tr>
<td>SPAN2621</td>
<td>Spanish Culture 1</td>
<td>281</td>
</tr>
<tr>
<td>SPAN2622</td>
<td>Latin American Culture 1</td>
<td>281</td>
</tr>
<tr>
<td>SPAN2631</td>
<td>Cultural and Social Change in Spain</td>
<td>281</td>
</tr>
<tr>
<td>SPAN2641</td>
<td>Filmmaking in the Latin American Context</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3611</td>
<td>Spanish Level 7</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3612</td>
<td>Spanish Level 8</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3621</td>
<td>Latin American Film and Literature</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3622</td>
<td>Introduction to Spanish Translation</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3623</td>
<td>Argentina for Export</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3811</td>
<td>Spanish Studies Exchange</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3812</td>
<td>Spanish Studies Exchange</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3813</td>
<td>Spanish Studies Exchange</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3814</td>
<td>Spanish Studies Exchange</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3815</td>
<td>Spanish Studies Exchange</td>
<td>281</td>
</tr>
<tr>
<td>SPAN3816</td>
<td>Spanish Studies Exchange</td>
<td>282</td>
</tr>
<tr>
<td>SPAN3817</td>
<td>Spanish Studies Exchange</td>
<td>282</td>
</tr>
<tr>
<td>SPAN3818</td>
<td>Spanish Studies Exchange</td>
<td>282</td>
</tr>
<tr>
<td>SPAN4011</td>
<td>Spanish & Latin American Studies Hons A</td>
<td>282</td>
</tr>
<tr>
<td>SPAN4012</td>
<td>Spanish & Latin American Studies Hons B</td>
<td>282</td>
</tr>
<tr>
<td>SPAN4013</td>
<td>Spanish & Latin American Studies Hons C</td>
<td>282</td>
</tr>
<tr>
<td>SPAN4014</td>
<td>Spanish & Latin American Studies Hons D</td>
<td>282</td>
</tr>
<tr>
<td>SSCI3601</td>
<td>Social Sciences Internship</td>
<td>279</td>
</tr>
<tr>
<td>SSCI3602</td>
<td>Internship Research Paper</td>
<td>279</td>
</tr>
<tr>
<td>STAT1021</td>
<td>General Statistical Methods</td>
<td>238</td>
</tr>
<tr>
<td>STAT2011</td>
<td>Statistical Models</td>
<td>61, 87, 203</td>
</tr>
<tr>
<td>STAT2012</td>
<td>Statistical Tests</td>
<td>61, 87, 104, 203, 238</td>
</tr>
<tr>
<td>STAT2911</td>
<td>Probability and Statistical Models (Adv)</td>
<td>61, 87, 203</td>
</tr>
<tr>
<td>STAT2912</td>
<td>Statistical Tests (Advanced)</td>
<td>61, 87, 203</td>
</tr>
<tr>
<td>STAT3011</td>
<td>Stochastic Processes and Time Series</td>
<td>58, 62, 203</td>
</tr>
<tr>
<td>STAT3012</td>
<td>Applied Linear Methods</td>
<td>203</td>
</tr>
<tr>
<td>STAT3013</td>
<td>Statistical Inference</td>
<td>62, 87, 203, 204</td>
</tr>
<tr>
<td>STAT3014</td>
<td>Applied Statistics</td>
<td>51, 62, 87, 203, 204</td>
</tr>
<tr>
<td>STAT3911</td>
<td>Stochastic Processes and Time Series Adv</td>
<td>58, 62, 87, 203</td>
</tr>
<tr>
<td>STAT3912</td>
<td>Applied Linear Methods Advanced</td>
<td>203</td>
</tr>
<tr>
<td>STAT3912</td>
<td>Applied Linear Models (Advanced)</td>
<td>51, 58, 62, 87, 204</td>
</tr>
<tr>
<td>STAT3913</td>
<td>Statistical Inference Advanced</td>
<td>62, 87, 203, 204</td>
</tr>
<tr>
<td>STAT3914</td>
<td>Applied Statistics Advanced</td>
<td>51, 62, 87, 203, 204</td>
</tr>
<tr>
<td>STAT4201</td>
<td>Mathematical Statistics Honours A</td>
<td>289</td>
</tr>
<tr>
<td>STAT4202</td>
<td>Mathematical Statistics Honours B</td>
<td>289</td>
</tr>
<tr>
<td>STAT4203</td>
<td>Mathematical Statistics Honours C</td>
<td>289</td>
</tr>
<tr>
<td>STAT4204</td>
<td>Mathematical Statistics Honours D</td>
<td>289</td>
</tr>
<tr>
<td>STAT5001</td>
<td>Applied Statistics for Bioinformatics</td>
<td>323, 324, 328</td>
</tr>
<tr>
<td>USSC1010</td>
<td>America: Rebels, Heroes & Renegades</td>
<td>241</td>
</tr>
<tr>
<td>USSC2601</td>
<td>US in the World</td>
<td>241</td>
</tr>
<tr>
<td>USSC2602</td>
<td>Introduction to US Politics</td>
<td>241</td>
</tr>
<tr>
<td>VIRO3001</td>
<td>Virology</td>
<td>68, 75, 209</td>
</tr>
<tr>
<td>VIRO3002</td>
<td>Medical and Applied Virology</td>
<td>68, 75, 209</td>
</tr>
<tr>
<td>VIRO3901</td>
<td>Virology (Advanced)</td>
<td>68, 75, 209</td>
</tr>
<tr>
<td>VIRO3902</td>
<td>Medical and Applied Virology (Advanced)</td>
<td>68, 75, 210</td>
</tr>
<tr>
<td>WILD5001</td>
<td>Australasian Wildlife: Introduction</td>
<td>337, 339, 343, 346, 401, 402</td>
</tr>
<tr>
<td>WILD5002</td>
<td>Australasian Wildlife: Field Studies</td>
<td>338, 339, 343, 346, 401, 402</td>
</tr>
<tr>
<td>WILD5003</td>
<td>Wildlife Health</td>
<td>401, 402</td>
</tr>
<tr>
<td>WILD5004</td>
<td>Vertebrate Pest Management</td>
<td>401, 402</td>
</tr>
<tr>
<td>WILD5005</td>
<td>In Situ Wildlife Management</td>
<td>401, 402</td>
</tr>
<tr>
<td>WILD5006</td>
<td>Ex Situ Wildlife Management</td>
<td>401, 402</td>
</tr>
<tr>
<td>WILD5009</td>
<td>Research Project</td>
<td>401, 403</td>
</tr>
<tr>
<td>WILD5010</td>
<td>Southern Ocean Vertebrates Conservation</td>
<td>401, 403</td>
</tr>
<tr>
<td>WRIT1001</td>
<td>Academic English</td>
<td>236, 238, 282</td>
</tr>
<tr>
<td>WRIT1002</td>
<td>Academic Writing</td>
<td>239, 282</td>
</tr>
<tr>
<td>YDDH1101</td>
<td>Yiddish 1</td>
<td>282</td>
</tr>
<tr>
<td>YDDH1102</td>
<td>Yiddish 2</td>
<td>282</td>
</tr>
<tr>
<td>YDDH2603</td>
<td>Yiddish 3</td>
<td>282</td>
</tr>
<tr>
<td>YDDH2604</td>
<td>Yiddish 4</td>
<td>282</td>
</tr>
<tr>
<td>YDDH3605</td>
<td>Yiddish 5</td>
<td>282</td>
</tr>
<tr>
<td>YDDH3606</td>
<td>Yiddish 6</td>
<td>282</td>
</tr>
</tbody>
</table>
Index by name

Numeric
3D Modelling DECO1008, 125

A
Abnormal Psychology PSYC3018, 86, 234, 380
Aboriginal Australia: Cultural Journeys ANTH2605, 242
Academic English WRIT1001, 236, 238, 282
Academic Writing ENGL1000, 124
Academic Writing WRIT1002, 239, 282
A Certain Beat: Australian Popular Music MUSC2672, 274
Action Research BACH5300, 385, 386
Adult Psychological Disorders PSYC6051, 301, 303
Advanced Adult Psychological Disorders PSYC6055, 301, 302
Advanced Chinese Studies A CHNS3605, 251
Advanced Chinese Studies B CHNS3606, 251
Advanced Communication Skills PSYC5012, 395
Advanced Concepts MUSC2615, 274
Advanced Data Models COMP5338, 397, 398
Advanced Fundamentals of Music MUSC2693, 274
Advanced Greek GRKA3600, 261
Advanced Interaction Design DECO3005, 126
Advanced Italian: Translation ITLN3888, 267
Advanced Latin LATN3600, 270
Advanced Media Writing MECO3606, 272
Advanced Models of Therapy PSYC6074, 301, 303
Advanced Mycology and Plant Pathology PPAT4004, 85
Advanced Seminars PSYC6056, 301, 303
Advanced Statistics for Psychology PSYC3010, 86, 207, 379
Advances in Modern Microscopy MCANS112, 353, 355
A Global Sound: African American Music MUSC2666, 274
Agricultural Chemistry Honours A AGCH4021, 285
Agricultural Chemistry Honours B AGCH4022, 285
Agricultural Chemistry Honours C AGCH4023, 285
Agricultural Chemistry Honours D AGCH4024, 285
Agronomy 3 AGRO3002, 85
A House Divided: The American Civil War HSTY2656, 264
Algebra (Advanced) MATH2968, 73, 198
Algebra and Number Theory MATH3062, 73, 199, 200
Algorithms and Complexity (Advanced) COMP2907, 59, 68, 185
Algorithms and Complexity COMP2007, 59, 68, 185
Algorithms COMP5211, 325, 327
Alliance: Australia-USA Relations HSTY2687, 264
America: Rebels, Heroes & Renegades USSC1010, 241
American Foundations AMST2601, 241
American History from Lincoln to Clinton HSTY1076, 263
American Literature: Imagining America ENGL2603, 254
American Politics and Foreign Policy GOVT2445, 260
American Studies Exchange AMST2801, 241
American Studies Exchange AMST2802, 241
American Studies Exchange AMST2803, 241
American Studies Exchange AMST2804, 241
American Studies Exchange AMST2805, 241
American Studies Exchange AMST2806, 241
Analysis MATH3068, 73, 201
Analysis of Stone Technology ARPH2617, 246
Analytical Methods & Information Systems ISYS3401, 69, 187
Analytical Thinking ATHK1001, 236, 238
Anatomy and Physiology PHYS5002, 369, 370
Anatomy Honours A ANAT4011, 113, 285
Anatomy Honours B ANAT4012, 113, 285
Anatomy Honours C ANAT4013, 113, 285
Anatomy Honours D ANAT4014, 113, 285
Anatomy of the Literary Hoax A SLT2618, 255
Ancient Civilisations ARCA1001, 244
Ancient Egyptian Religion and Magic RLST2636, 278
Ancient Greece and Rome on Film ANHS2613, 241
Ancient History Exchange ANHS1801, 241
Ancient History Exchange ANHS2804, 241
Ancient History Exchange ANHS2805, 241
Ancient History Exchange ANHS2806, 241
Ancient History Exchange ANHS2810, 241
Ancient History Exchange ANHS2811, 241
Ancient History Honours A ANHS4011, 242
Ancient History Honours B ANHS4012, 242
Ancient History Honours C ANHS4013, 242
Ancient History Honours D ANHS4014, 242
Ancient Mediterranean Lives ARCA2611, 244
Ancient Mesopotamia ARNE2602, 245
Animal Physiology (Advanced) BIOL3912, 53, 158
Animal Physiology BIOL3012, 53, 156, 158
Anthropology and the Global ANTH1002, 239, 242
App Ecology for Environmental Scientists ENVIS808, 331, 332, 337, 338, 343, 344
Applications of Calculus MATH1011, 72, 106, 194
Applications of Nuclear Physics PHYS5014, 372, 373
Applications of Psychological Science PSYC3020, 86, 234, 380
Applications of Recombinant DNA Tech Adv BIOL3918, 53, 67, 159
Applications of Recombinant DNA Tech BIOL3018, 53, 67, 156, 159
Applied International Studies GOVT2801, 260
Applied Linear Methods Advanced STAT3912, 203
Applied Linear Methods STAT3012, 203
Applied Linear Models (Advanced) STAT3912, 51, 58, 62, 87, 204
Applied Linear Models STAT3012, 51, 58, 62, 87, 203
Applied Mathematics Honours A MATH4401, 288
Applied Mathematics Honours B MATH4402, 288
Applied Mathematics Honours C MATH4403, 288
Applied Mathematics Honours D MATH4404, 288
Arabic Advanced Translation & Writing 3A ARBC2633, 243
Arabic Advanced Language & Literature 4A ARBC2634, 243
Arabic Advanced Translation & Writing 5A ARBC3635, 243
Arabic Advanced Translation & Writing 7A ARBC3637, 243
Arabic and Islamic Studies Honours A ARIS4011, 244
Arabic and Islamic Studies Honours B ARIS4012, 244
Arabic and Islamic Studies Honours C ARIS4013, 244
Arabic and Islamic Studies Honours D ARIS4014, 244
Arabic Exchange ARBC2811, 243
Arabic Exchange ARBC2812, 243
Arabic Exchange ARBC2813, 243
Arabic Exchange ARBC2814, 243
Arabic Introductory 1B ARBC1611, 242
Arabic Introductory 2B ARBC1612, 243
Arabic Language and Literature 3B ARBC2613, 243
Arabic Language and Literature 4B ARBC2614, 243
Arabic Language and Literature 5B ARBC3615, 243
Arabic Language and Literature 6B ARBC3616, 243
Arabs, Islam & Middle East: Introduction ARIS1671, 243
Arab World Islam & Middle East Exchange ARIS2801, 243
Arab World Islam & Middle East Exchange ARIS2802, 243
Arab World Islam & Middle East Exchange ARIS2803, 243
Arab World Islam & Middle East Exchange ARIS2804, 243
Arab World Islam & Middle East Exchange ARIS2805, 243
Arab World Islam & Middle East Exchange ARIS2806, 243
Aramaic 3 HBRW2643, 262
Aramaic 4 HBRW2644, 262
Archaeological Research Principles ARCA3600, 245, 246
Archaeology (Classical) Exchange ARCL1801, 245
Archaeology (Classical) Exchange ARCL2804, 245
Archaeology (Classical) Exchange ARCL2805, 245
Archaeology (Classical) Exchange ARCL2806, 245
Archaeology (Classical) Exchange ARCL2810, 245
Archaeology (Classical) Exchange ARCL2811, 245
Archaeology (Classical) Honours A ARCL4011, 245
Archaeology (Classical) Honours B ARCL4012, 245
Archaeology (Classical) Honours C ARCL4013, 245
Archaeology (Classical) Honours D ARCL4014, 245
Archaeology (Near Eastern) Exchange ARNE1801, 245
Archaeology (Near Eastern) Exchange ARNE2801, 245
Archaeology (Near Eastern) Exchange ARNE2805, 245
Archaeology (Near Eastern) Exchange ARNE2806, 245
Archaeology (Near Eastern) Exchange ARNE2810, 245
Archaeology (Near Eastern) Exchange ARNE2811, 245
Archaeology (Near Eastern) Honours A ARNE4011, 245
Archaeology (Near Eastern) Honours B ARNE4012, 245
Archaeology (Near Eastern) Honours C ARNE4013, 245
Archaeology (Near Eastern) Honours D ARNE4014, 245
Archaeology (Prehist/Historical) Honors A ARPH4011, 246
Archaeology (Prehist/Historical) Honors B ARPH4012, 246
Archaeology (Prehist/Historical) Honors C ARPH4013, 246
Archaeology (Prehist/Historical) Honors D ARPH4014, 246
Archaeology (Prehistoric & Historic) Exchange ARPH1801, 246
Archaeology (Prehistoric & Historic) Exchange ARPH2804, 246
Archaeology (Prehistoric & Historic) Exchange ARPH2805, 246
Archaeology (Prehistoric & Historic) Exchange ARPH2806, 246
Archaeology: An Introduction ARCA1002, 244
Archaeology Exchange ARCA2801, 244
Archaeology Exchange ARCA2802, 244
Archaeology Exchange ARCA2803, 244
Archaeology Exchange ARCA2804, 244
Archaeology Exchange ARCA2805, 244
Archaeology Exchange ARCA2806, 244
Archaeology Exchange ARCA2807, 244
Archaeology Exchange ARCA2808, 244
Archaeology Honours A ARCA4011, 245
Archaeology Honours B ARCA4012, 245
Archaeology Honours C ARCA4013, 245
Archaeology Honours D ARCA4014, 245
Archaeology of Aboriginal Australia ARCA2605, 244
Archaeology of Sydney ARCA2603, 244
Argentina for Export SPAN3623, 281
Arguing the Point GCST4101, 252, 258
Art and Archaeology of South East Asia ARHT2641, 247
Art and Experience ARHT1001, 246
Art History and Theory Exchange ARHT1801, 247
Art History and Theory Exchange ARHT2810, 247
Art History and Theory Exchange ARHT2811, 247
Art History and Theory Exchange ARHT2812, 247
Art History and Theory Exchange ARHT2813, 247
Art History and Theory Exchange ARHT2814, 247
Art History and Theory Exchange ARHT2815, 247
Art History and Theory Exchange ARHT2816, 247
Art History and Theory Exchange ARHT2817, 247
Art History and Theory Honours A ARHT4011, 247
Art History and Theory Honours B ARHT4012, 247
Art History and Theory Honours C ARHT4013, 247
Art History and Theory Honours D ARHT4014, 247
Arts Exchange ARTS2801, 247
Arts Exchange ARTS2802, 247
Arts Exchange ARTS2803, 247
Arts Exchange ARTS2804, 247
Arts Music Concert Performance 1 MUSC2612, 274
Arts Music Concert Performance 2 MUSC2613, 274
Arts Music Concert Performance 3 MUSC3604, 274
Arts Music Concert Performance 4 MUSC3605, 274
Arts Music Ensemble 1 MUSC2618, 274
Arts Music Ensemble 2 MUSC2619, 274
Asia-Pacific Field School-A (Adv) GEOS3953, 64, 178
Asia-Pacific Field School-Assessment A GEOS3053, 64, 177
Asia-Pacific Field School-Assessment B GEOS3054, 64, 177
Asia-Pacific Field School-Assessment B Adv GEOS3954, 64, 178
Asian Studies Exchange ASNS1801, 248
Asian Studies Exchange ASNS2651, 248
Asian Studies Exchange ASNS2652, 248
Asian Studies Exchange ASNS2653, 248
Asian Studies Exchange ASNS2654, 248
Asian Studies Exchange ASNS2655, 248
Asian Studies Exchange ASNS2656, 248
Asian Studies Honours A ASNS4011, 248
Asian Studies Honours B ASNS4012, 248
Asian Studies Honours C ASNS4013, 248
Asian Studies Honours D ASNS4014, 248
Asia Pacific Environmental Law LAWS6141, 340
Assessment and Selection PSYC4725, 392, 393, 395
Astronomy PHYS1500, 79, 216, 217, 239
Astrophysics and Relativity (Advanced) PHYS2913, 79, 218
Astrophysics and Relativity PHYS2013, 79, 218
Athenian Art, Architecture and Society ARCA2613, 244
Atmospheric Processes and Climate ENVI2112, 60, 92, 169
Aust Flora: Ecology & Conservation Adv PLNT2902, 52, 84, 228
Aust Flora: Ecology and Conservation PLNT2002, 52, 84, 228
Australasian Wildlife: Introduction WILD5001, 337, 339, 343, 346, 401, 402
Australasian Wildlife: Introduction WILD5001, 337, 339, 343, 346, 401, 402
Australia’s Underworld: Stories & Method HSTY2690, 264
Australia: Colonies to Nation HSTY1089, 263
Australia: Land and Nation ASTR2601, 239, 249
Australian and Asian Music 1 MUSC2651, 274
Australian Foreign and Defence Policy GOVT2116, 260
Australian Literature 1988 to Present ASLT2609, 255
Australian Literature Honours A ASLT4011, 255
Australian Literature Honours B ASLT4012, 255
Australian Literature Honours C ASLT4013, 255
Australian Literature Honours D ASLT4014, 255
Australian Media Studies MECO1001, 271
Australian Painting, Colony to Nation ARHT2631, 247
Australian Politics GOVT1101, 239, 260
Australian Social History HSTY2614, 264
Australian Social Policy SCPL2601, 279
Australian Stage and Screen ASLT2616, 255
Australian Texts: International Contexts ENGL1008, 238, 253

B
Beach Management MAR5003, 331, 333
Behavioural and Cognitive Neuroscience PSYC3014, 78, 86, 233, 380
Being There: Method in Anthropology ANTH2631, 242
Being There: Theories of Performance PRFM2601, 275
Beyond the Geisha/Samurai Binary ASNS2677, 248
Biblical In-Country Study A BBCL2801, 249
Biblical In-Country Study B BBCL2802, 249
Biblical Studies 1 BBCL1001, 249
Biblical Studies 2 BBCL1002, 249
Biblical Studies Honours A BBCL4011, 249
Biblical Studies Honours B BBCL4012, 249
Biblical Studies Honours C BBCL4013, 249
Biblical Studies Honours D BBCL4014, 249
Biblical Writings BBCL2604, 249
Biochemistry Honours A BCHM4011, 113, 285
Biochemistry Honours B BCHM4012, 113, 285
Biochemistry Honours C BCHM4013, 113, 285
Biochemistry Honours D BCHM4014, 114, 285
Biodiversity Law LAWS6165, 338, 340, 343
Bioethics (Advanced) HPSC1900, 65, 179, 239
Bioethics, Law and Society BETH5104, 314, 315, 316, 319
Bioethics HPSC1000, 65, 124, 179, 239, 385, 386
Bioinformatics: Sequences and Genomes BIOL5002, 323, 324, 325, 359, 360
Bioinformatics and Genomics (Advanced) BIOL3927, 51, 54, 58, 67, 160
Bioinformatics and Genomics BIOL3027, 50, 54, 58, 67, 156, 160
Bioinformatics Project B INF5001, 51, 58, 152
Bioinformatics Research Project A BINF5002, 324, 325, 326
Bioinformatics Research Project B BINF5003, 324, 325, 326
Biological Specimen Preparation MCANS102, 353, 354
Biography Honours A BIOL4016, 114, 285
Biography Honours B BIOL4012, 114, 285
Biography Honours C BIOL4013, 114, 285
Biography Honours D BIOL4014, 114, 286
Biomechanics of Human Movement EXSS1018, 103
Biomedical and Society BETH5103, 314, 315, 316, 318
Biomolecules: Properties & Reactions Adv CHEM3910, 57, 164
Biomolecules: Properties and Reactions CHEM3110, 57, 164
Biophotonics and Microscopy PHYS5025, 375, 376
Biostatistics MATH1015, 72, 104, 106, 194
Bodies, Sexualities, Identities GCST2607, 257
Brain and Behaviour PSYC2011, 77, 85, 2007, 379
Buddhism in Modern Asia ASNS2625, 279
Buddhist Philosophy ASNS2621, 279
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRMN2637</td>
<td>Business German</td>
</tr>
<tr>
<td>ENGL3605</td>
<td>Canonical Poetry</td>
</tr>
<tr>
<td>GOVT2611</td>
<td>Capitalism and Democracy in East Asia</td>
</tr>
<tr>
<td>BMED2803</td>
<td>Cardiac, Respiratory and Renal Function</td>
</tr>
<tr>
<td>PSYC6072</td>
<td>Case and Research Seminars 1</td>
</tr>
<tr>
<td>PSYC6073</td>
<td>Case and Research Seminars 2</td>
</tr>
<tr>
<td>CHEM9313</td>
<td>Catalysis and Sustainable Processes</td>
</tr>
<tr>
<td>BIOL2916</td>
<td>Cell Biology (Advanced)</td>
</tr>
<tr>
<td>BIOL2016</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>CPAT4011</td>
<td>Cell Pathology Honours A</td>
</tr>
<tr>
<td>CPAT4012</td>
<td>Cell Pathology Honours B</td>
</tr>
<tr>
<td>CPAT4013</td>
<td>Cell Pathology Honours C</td>
</tr>
<tr>
<td>CPAT4014</td>
<td>Cell Pathology Honours D</td>
</tr>
<tr>
<td>HSTO3004</td>
<td>Cells and Development: Practical (Adv)</td>
</tr>
<tr>
<td>HSTO3003</td>
<td>Cells and Development: Theory</td>
</tr>
<tr>
<td>BMED2801</td>
<td>Cell Structure and Function</td>
</tr>
<tr>
<td>NEUR3903</td>
<td>Cellular & Developmental Neuroscience</td>
</tr>
<tr>
<td>CLST2631</td>
<td>Celtic and Germanic Mythology</td>
</tr>
<tr>
<td>CLST4011</td>
<td>Celtic Studies Honours A</td>
</tr>
<tr>
<td>CLST4012</td>
<td>Celtic Studies Honours B</td>
</tr>
<tr>
<td>CLST4013</td>
<td>Celtic Studies Honours C</td>
</tr>
<tr>
<td>CLST4014</td>
<td>Celtic Studies Honours D</td>
</tr>
<tr>
<td>HSTO3004</td>
<td>Celts in History</td>
</tr>
<tr>
<td>CHNG2804</td>
<td>Chemical & Biological Systems Behaviour</td>
</tr>
<tr>
<td>CHEM2912</td>
<td>Chemical Structure and Biological (Adv)</td>
</tr>
<tr>
<td>CHEM2916</td>
<td>Chemical Structure and Stability (SSP)</td>
</tr>
<tr>
<td>CHEM2402</td>
<td>Chemical Structure and Stability</td>
</tr>
<tr>
<td>CHEM1901</td>
<td>Chemistry 1A (Advanced)</td>
</tr>
<tr>
<td>CHEM1903</td>
<td>Chemistry 1A (Special Studies Program)</td>
</tr>
<tr>
<td>CHEM1101</td>
<td>Chemistry 1A</td>
</tr>
<tr>
<td>CHEM1108</td>
<td>Chemistry 1A Life Sciences</td>
</tr>
<tr>
<td>CHEM1902</td>
<td>Chemistry 1B (Advanced)</td>
</tr>
<tr>
<td>CHEM1904</td>
<td>Chemistry 1B (Special Studies Program)</td>
</tr>
<tr>
<td>CHEM1102</td>
<td>Chemistry 1B</td>
</tr>
<tr>
<td>CHEM1109</td>
<td>Chemistry 1B Life Sciences</td>
</tr>
<tr>
<td>AGCH3025</td>
<td>Chemistry and Biochemistry of Foods A</td>
</tr>
<tr>
<td>AGCH3025</td>
<td>Chemistry and Biochemistry of Foods</td>
</tr>
<tr>
<td>CHEM4011</td>
<td>Chemistry Honours A</td>
</tr>
<tr>
<td>CHEM4012</td>
<td>Chemistry Honours B</td>
</tr>
<tr>
<td>CHEM4013</td>
<td>Chemistry Honours C</td>
</tr>
<tr>
<td>CHEM4014</td>
<td>Chemistry Honours D</td>
</tr>
<tr>
<td>CHEM2403</td>
<td>Chemistry of Biological Molecules</td>
</tr>
<tr>
<td>PSYC6049</td>
<td>Child Psychological Disorders</td>
</tr>
<tr>
<td>HSTY2621</td>
<td>China's Economy: From Mao to Market</td>
</tr>
<tr>
<td>ARHT2645</td>
<td>China: Art and Empire</td>
</tr>
<tr>
<td>CHNS1101</td>
<td>Chinese 1A (For Beginners)</td>
</tr>
<tr>
<td>CHNS1102</td>
<td>Chinese 1B (For Beginners)</td>
</tr>
<tr>
<td>CHNS1201</td>
<td>Chinese 1C (For Advanced Beginners)</td>
</tr>
<tr>
<td>CHNS1202</td>
<td>Chinese 1D (For Advanced Beginners)</td>
</tr>
<tr>
<td>CHNS2601</td>
<td>Chinese 2A (Lower Intermediate)</td>
</tr>
<tr>
<td>CHNS2602</td>
<td>Chinese 2B (Lower Intermediate)</td>
</tr>
<tr>
<td>CHNS3601</td>
<td>Chinese 3A (Upper Intermediate)</td>
</tr>
<tr>
<td>CHNS3602</td>
<td>Chinese 3B (Upper Intermediate)</td>
</tr>
<tr>
<td>CHNS3603</td>
<td>Chinese 4A (Advanced)</td>
</tr>
<tr>
<td>CHNS3604</td>
<td>Chinese 4B (Advanced)</td>
</tr>
<tr>
<td>CHNS3639</td>
<td>Chinese Cinema</td>
</tr>
<tr>
<td>CHNS1801</td>
<td>Chinese Exchange</td>
</tr>
<tr>
<td>CHNS1802</td>
<td>Chinese Exchange</td>
</tr>
<tr>
<td>CHNS2810</td>
<td>Chinese Exchange</td>
</tr>
<tr>
<td>CHNS2811</td>
<td>Chinese Exchange</td>
</tr>
<tr>
<td>CHNS2812</td>
<td>Chinese Exchange</td>
</tr>
<tr>
<td>CHNS2813</td>
<td>Chinese Exchange</td>
</tr>
<tr>
<td>CHNS2650</td>
<td>Chinese In-Country Study A</td>
</tr>
<tr>
<td>CHNS2651</td>
<td>Chinese In-Country Study B</td>
</tr>
<tr>
<td>CHNS2652</td>
<td>Chinese In-Country Study C</td>
</tr>
<tr>
<td>CHNS2653</td>
<td>Chinese In-Country Study D</td>
</tr>
<tr>
<td>CHNS2654</td>
<td>Chinese In-Country Study E</td>
</tr>
<tr>
<td>CHNS2655</td>
<td>Chinese In-Country Study F</td>
</tr>
<tr>
<td>CHNS2656</td>
<td>Chinese In-Country Study G</td>
</tr>
<tr>
<td>CHNS2657</td>
<td>Chinese In-Country Study H</td>
</tr>
<tr>
<td>CHNS3641</td>
<td>Chinese Philosophy</td>
</tr>
<tr>
<td>GEOS3922</td>
<td>Cities and Citizenship (Advanced)</td>
</tr>
<tr>
<td>GEOS3522</td>
<td>Cities and Citizenship</td>
</tr>
<tr>
<td>LAWS1014</td>
<td>Civil and Criminal Procedure</td>
</tr>
<tr>
<td>CHNS2611</td>
<td>Classical Chinese A</td>
</tr>
<tr>
<td>CHNS2612</td>
<td>Classical Chinese B</td>
</tr>
<tr>
<td>CHNS3646</td>
<td>Classical Chinese Fiction</td>
</tr>
<tr>
<td>CLCV1801</td>
<td>Classical Civilisation Exchange</td>
</tr>
<tr>
<td>CLCV1802</td>
<td>Classical Civilisation Exchange</td>
</tr>
<tr>
<td>CLCV1803</td>
<td>Classical Civilisation Exchange</td>
</tr>
<tr>
<td>ASNS2620</td>
<td>Classical Indian Philosophy</td>
</tr>
<tr>
<td>CLSS4011</td>
<td>Classics Honours A</td>
</tr>
<tr>
<td>CLSS4012</td>
<td>Classics Honours B</td>
</tr>
<tr>
<td>CLSS4013</td>
<td>Classics Honours C</td>
</tr>
<tr>
<td>CLSS4014</td>
<td>Classics Honours D</td>
</tr>
<tr>
<td>CHNS2650</td>
<td>Chinese In-Country Study A</td>
</tr>
<tr>
<td>CHNS2651</td>
<td>Chinese In-Country Study B</td>
</tr>
<tr>
<td>CHNS2652</td>
<td>Chinese In-Country Study C</td>
</tr>
<tr>
<td>CHNS2653</td>
<td>Chinese In-Country Study D</td>
</tr>
<tr>
<td>CHNS2654</td>
<td>Chinese In-Country Study E</td>
</tr>
<tr>
<td>CHNS2655</td>
<td>Chinese In-Country Study F</td>
</tr>
<tr>
<td>CHNS2656</td>
<td>Chinese In-Country Study G</td>
</tr>
<tr>
<td>CHNS2657</td>
<td>Chinese In-Country Study H</td>
</tr>
<tr>
<td>CHNS2802</td>
<td>Chinese Philosophy</td>
</tr>
</tbody>
</table>

494
Index by name

Cultural Studies Honours Seminar A GCST4111, 252
Cultural Studies Honours Seminar B GCST4112, 252
Cultural Studies Honours Thesis A GCST4113, 252
Cultural Studies Honours Thesis B GCST4114, 252
Cultural Studies Honours Thesis C GCST4115, 253
Cultural Studies Honours Thesis D GCST4116, 253
Cultural Theory GCST3604, 252, 258
Culture and Development ANTH2625, 239, 242
Culture and Society in Modern Britain HSTY2625, 264
Cultures of Masculinities GCST2609, 257
Cyberworlds ARIN2620, 240, 253

D
Dante: Inferno ITLN3671, 267
Darwinism, Nationalism and Eugenics HSTY2684, 264
Database Systems 1 (Advanced) INFO2820, 59, 68, 186
Database Systems 1 INFO2120, 59, 68, 185
Database Systems 2 (Adv) INFO3504, 59, 62, 69, 187
Database Systems 2 INFO3404, 59, 62, 69, 187
Data Communications and the Internet ELEC3506, 59
Data Structures (Advanced) INFO1905, 59, 68, 185
Data Structures INFO1105, 59, 68, 125, 185
Defining the Cells CLST2601, 249
Democratic Theory PHIL2634, 276
Descartes and Continental Philosophy PHIL2629, 276
Design Computing Research Opportunity DECO3003, 126
Design Programming DECO1012, 125
Developing a Research Project BACH4047, 385, 386
Developmental Genetics BIOL3026, 54, 67, 160
Developmental Genetics BIOL3026, 54, 67, 156, 159, 160
Developmental Psychology PSYC3016, 86, 233, 380
Development and Welfare in East Asia SCPL2603, 279
Developments in Health Psychology PSYC5014, 385, 387, 392, 394, 395
Dietary Intake & Nutritional Assessment NTDTS503, 363, 365
Differential Calculus (Advanced) MATH1901, 61, 72, 107, 196
Differential Calculus MATH1001, 61, 72, 107, 127, 128, 195
Differential Equations & Biomaths (Adv) MATH3963, 58, 73, 200
Differential Equations and Biomaths MATH3063, 58, 73, 199, 200
Differential Geometry (Advanced) MATH3968, 74, 201
Digestion, Absorption and Metabolism BMED2804, 113, 205
Digital Arts ARIN2630, 253
Digital Cultures Exchange ARIN2801, 253
Digital Cultures Exchange ARIN2802, 253
Digital Cultures Exchange ARIN2803, 253
Digital Cultures Exchange ARIN2804, 253
Digital Cultures Exchange ARIN2805, 253
Digital Cultures Exchange ARIN2806, 253
Digital Cultures Exchange ARIN2807, 253
Digital Cultures Exchange ARIN2808, 253
Digital Cultures Honours A ARIN4011, 253
Digital Cultures Honours B ARIN4012, 253
Digital Cultures Honours C ARIN4013, 253
Digital Cultures Honours D ARIN4014, 253

Digital Cultures Internship ARIN3670, 253
Digital Cultures Internship Project ARIN3680, 253
Digital Cultures Project 1 ARIN3650, 253
Digital Cultures Project 2 ARIN3660, 253
Digital Design Studio DECO1100, 125
Digital Image Design & Representation DECO2101, 126
Digital Methods ARCA2607, 244
Digital Signal Processing ELEC3305, 128
Digital System Design ELEC2602, 128
Discourse Analysis LNSG2604, 270
Discrete Mathematics & Graph Theory Adv MATH2969, 73, 198
Discrete Mathematics and Graph Theory MATH2069, 73, 198
Discrete Mathematics MATH1004, 72, 107, 195
Disease in Society BMED2808, 113, 113, 206, 206
Distribution of Income and Wealth ECOP3620, 277
Drama: Classical to Renaissance ENGL2607, 254
Dramaturgy PRFM3611, 275
Drug Design and Development (Adv) PCOL3912, 79, 215
Drug Design and Development PCOL3012, 78, 215
Drug Therapy (Advanced) PCOL3921, 79, 215
Drug Therapy PCOL3021, 79, 215
Dualism: Zoroaster, Gnosis & Manichaeism RLST2612, 278

E
E-Business Analysis and Design ELEC3610, 59, 68
Early 20th Century German Culture GRMN2632, 259
Early East and Southeast Asian Cultures ARCA2616, 244
Earth's Structure and Evolution GEOS3101, 65, 176
Earth's Structure and Evolutions (Adv) GEOS3801, 65, 177
Earth, Environment and Society Advanced GEOS1901, 60, 62, 64, 171, 239
Earth, Environment and Society GEOS1001, 60, 62, 64, 171, 239
Ecological Methods (Advanced) BIOL3906, 53, 58, 69, 71, 94, 156
Ecological Methods BIOL3006, 53, 58, 69, 71, 92, 94, 156, 192
Ecolog Principles for Environ Scientists ENVI5705, 331, 332, 337, 338, 343, 344
Ecology (Advanced) BIOL3907, 54, 69, 71, 94, 157
Ecology BIOL3007, 54, 69, 71, 94, 156, 157, 192
Economic Geography of Global Dev. Adv. GEOS2912, 63, 173
Economic Geography of Global Development GEOS2112, 63, 172
Economic Policy in Global Context ECOP2612, 277
Economics as a Social Science ECOP1001, 277
Economics of Modern Capitalism ECOP2011, 277
Economy and Culture ANTH2653, 242
Economy and Society ECOP1004, 277
Ecophysiology (Advanced) BIOL3911, 53, 69, 71, 95, 158
Ecophysiology BIOL3011, 53, 69, 71, 95, 156, 158, 192
Education, Teachers and Teaching EDUF1018, 124
Egyptian Archaeology ARNE2601, 245
Electromagnetism & Special Project (Adv) PHYS3941, 81, 219
Electromagnetism and Physics Lab (Adv) PHYS3940, 81, 219
Index by name

Electromagnetism and Physics Lab PHYS3040, 80, 219
Electronic Circuit Design ELEC3404, 128
Electronic Devices and Basic Circuits ELEC2104, 128
electronic Devices and Circuits ELEC2104, 128
Electron Microscopy and Imaging/Prac EMHU3002, 49, 146
Electron Microscopy and Imaging/Theory EMHU3001, 49, 146
Embedded Computing ELEC3607, 128
Embodied Histories PRFM3604, 275
Empirical Sociological Methods SCLG3602, 281
Energy - Sources, Uses and Alternatives ENVI5707, 337, 338, 343, 344
Energy and Climate Law LAWS6163, 338, 340, 343
Energy and the Environment ENV1314, 60, 92, 170
Energy Options and Environment PHYS5017, 372, 373
Engineering & Industrial Management Fund ENGG3005, 125
Engineering and Society CIVL3010, 124
Engineering Construction and Surveying CIVL2810, 127
Engineering Disciplines (Intro) Stream A ENGG1800, 125
Engineering Dynamics AMME2500, 126
Engineering Geology 1 GEOL1501, 171
Engineering Mechanics ENGG1802, 127
English Exchange ENGL1801, 254
English Exchange ENGL1802, 254
English Exchange ENGL2811, 254
English Exchange ENGL2812, 254
English Exchange ENGL2813, 254
English Exchange ENGL2814, 254
English Exchange ENGL2815, 254
English Exchange ENGL2816, 254
English Exchange ENGL2817, 254
English Exchange ENGL2818, 254
English Honours A ENGL4101, 255
English Honours B ENGL4102, 255
English Honours C ENGL4103, 255
English Honours D ENGL4104, 255
Entomology (Advanced) BIOL2917, 52, 155
Entomology BIOL2017, 52, 154, 155
Environmental & Fluids Eng: Viscous Flow CIVL3612, 127
Environmental & Resource Management Adv GEOS2921, 60, 63, 65, 174
Environmental & Sedimentary Geology(Adv) GEO3803, 65, 70, 72, 95, 177
Environmental and Resource Management GEOS2121, 60, 63, 64, 173
Environmental and Sedimentary Geology GEOS3103, 65, 70, 71, 95, 176
Environmental Assessment ENVI3112, 60, 92, 169
Environmental Dispute Resolution LAWS6041, 338, 339, 343
Environmental Geomorphology (Advanced) GEOS3915, 63, 70, 178
Environmental Geomorphology GEO3015, 63, 70, 175, 192
Environmental GIS ENVX3001, 86
Environmental Impact Assessment Law LAWS6043, 338, 339, 343
Environmental Law and Ethics ENVI3111, 60, 92, 169
Environmental Law and Policy LAWS6044, 337, 339, 343
Environmental Litigation LAWS6041, 338, 339, 343
Environmental Mapping and Monitoring GEO5004, 345, 397, 399
Environmental Planning Law LAWS6045, 338, 339, 343
Environmental Remote Sensing GEOG5003, 397, 398
Environmental Research Project ENVI5501, 338, 344
Environmental Simulation Modelling ENVI5809, 331, 332, 337, 339, 343, 345, 397, 398
Environmental Sociology SCLG3604, 281
Environmental Studies Honours A ENVI4011, 286
Environmental Studies Honours B ENVI4012, 286
Environmental Studies Honours C ENVI4013, 286
Environmental Studies Honours D ENVI4014, 286
Epidemiology Methods and Uses PUBH5010, 385, 388
Essentials of Pharmacology PCOL2555, 9781741751024
Ethics and Biotech: Genes and Stem Cells BETH5201, 314, 315, 316, 317, 319, 324, 325, 359, 360
Ethics and Mental Health BETH5205, 314, 317, 320
Ethics and Professional Practice PSYC6069, 301, 302
Ethics and Public Health BETH5203, 314, 315, 316, 317, 319
Etruscans and Romans ARCA2615, 244
European & Middle Eastern Myth & Legend EUST2611, 239, 255
European Environmental Law LAWS6833,
European Film and History HSTY2608, 264
European Studies Exchange EUST2805, 255
European Studies Exchange EUST2806, 255
European Studies Exchange EUST2807, 255
European Studies Exchange EUST2808, 255
European Studies Honours A EUST4011, 256
European Studies Honours A EUST4011, 256
European Studies Honours B EUST4012, 256
European Studies Honours C EUST4013, 256
European Studies Honours D EUST4014, 256
Everyday Life: Theories and Practices GCST2613, 258
Evolutionary Gen. & Animal Behaviour Adv BIOL3925, 54, 159
Evolutionary Genetics & Animal Behaviour BIOL3025, 54, 159
Exercise Physiology - Acute Responses EXSS2019, 104
Exercise Physiology Training Adaptations EXSS2022, 104
Ex Situ Wildlife Management WILD5006, 401, 402

F
Federal Constitutional Law LAWS3003, 132, 191
Fiction, Film and Power ENGL1025, 254
Field Geology and Geophysics (Advanced) GEO3908, 65, 177
Field Geology and Geophysics GEOS3008, 65, 174
Field Methods ARCA2602, 244
Field Methods LNEGS3604, 271
Fieldwork, Ethnography and Transcription MUSC2631, 274
Filming Fiction: The Italian Experience ITLN3679, 267
Filmmaking in the Latin American Context SPAN2641, 281
Film Music MUSC2662, 274
Film Studies Exchange FILM2810, 256
Film Studies Exchange FILM2811, 256

497
Index by name

Film Studies Exchange FILM2812, 256
Film Studies Exchange FILM2813, 256
Film Studies Exchange FILM2814, 256
Film Studies Exchange FILM2815, 256
Film Studies Honours A FILM4101, 256
Film Studies Honours B FILM4102, 256
Film Studies Honours C FILM4103, 256
Film Studies Honours D FILM4104, 256
Finance: Volatility and Regulation ECOP3019, 277
Financial Accounting Concepts ACCT1003, 124
Financial Mathematics (Advanced) MATH3975, 62, 74, 199, 202
Financial Mathematics MATH3075, 61, 74, 199, 201
First Nights: Musical Premieres MUSC2673, 274
Fisheries Biology and Management NTMP3003, 95, 193
Fluid Dynamics (Advanced) MATH3974, 62, 73, 199, 201
Fluid Mechanics: Inviscid Flow CIVL2611, 127
Fluid Mechanics CIVL2611, 127, 167
Fluid Mechanics MECH3261, 127
Fluvial and Groundwater Geomorphology GEOG2321, 63, 172
Focus on Writing in Italian ITLN3887, 267
Food, Environment and Culture in Europe HSTY2686, 264
Food Biotechnology AGCH3026, 48, 142
Food Science Introductory (Advanced) NUTR2911, 102, 104, 213
Food Science NDSS5502, 363, 365
Food Service Management NDSS5502, 363, 364
Foreign & Exotic in the German World GRMN2682, 259
Foreign and Environmental Chemistry CHEM2404, 56, 163, 164
Forensic Osteology ANAT3006, 48, 145
Fossils and Tectonics (Advanced) GEOS2924, 65, 174
Fossils and Tectonics GEOS2124, 64, 173
Foundation Engineering CIVL3411, 127
Foundations for Ancient Rome ANHS1601, 241
Foundations of Computer Systems ELEC1103, 56, 106, 161
Foundations of Research RESP5001, 398, 399
Generative Design Systems DECO2013, 258
Gender, Communities and Belonging GCST2608, 252, 257
Gender: Anthropological Studies ANTH2623, 242
Gender and Historical Change: East Asia HSTY2685, 264
Gender and Sexuality in Modern Asia ANTH2623, 258
Gender Studies Exchange GCST2804, 258
Gender Studies Exchange GCST2805, 258
Gender Studies Exchange GCST2806, 258
Gender Studies Exchange GCST2810, 258
Gender Studies Exchange GCST2811, 258
Gender Studies Honours A GCST4015, 258
Gender Studies Honours B GCST4016, 258
Gender Studies Honours C GCST4017, 258
Gender Studies Honours D GCST4018, 258
Gender Studies Honours Seminar A GCST4103, 258
Gender Studies Honours Seminar B GCST4104, 258
Gender Studies Honours Thesis A GCST4105, 258
Gender Studies Honours Thesis B GCST4106, 258
Gender Studies Honours Thesis C GCST4107, 258
Gender Studies Honours Thesis D GCST4108, 258
General Statistical Methods 1 STAT1021, 238
Generative Design Systems DECO2013, 126
Genre de l'Invention, Invention du Genre FRNC3681, 257
Geographic Information Science A GEOG5001, 331, 332, 337, 339, 343, 345, 397, 398
Geographic Information Science B GEOG5002, 332, 337, 339, 343, 345, 397, 398
Geography Honours A GEOG4011, 286
Geography Honours B GEOG4012, 286
Geography Honours C GEOG4013, 286
Geography Honours D GEOG4014, 286
Geology Honours A GEOL4011, 286
Geology Honours B GEOL4012, 286
Geology Honours C GEOL4013, 286
Geology Honours D GEOL4014, 286
Geometry and Topology MATH3061, 73, 199
French Enlightenment FRNC3687, 257
From Emancipation to the Holocaust JCTC2605, 268
From Expulsion to Regeneration JCTC2604, 268
From Silent to Sound Cinema ARHT2652, 247
From the Metaphysicals to Milton ENGL2656, 254
Functional Grammar LNGS2603, 270
Functional Musculoskeletal Anatomy A BIOS1168, 103
Functional Musculoskeletal Anatomy B BIOS1169, 103
Fundamentals of Biomedical Engineering ELEC3802, 128
Fundamentals of Chemistry 1A CHEM1001, 56, 106, 161
Fundamentals of Chemistry 1B CHEM1002, 56, 106, 161
Fundamentals of Coaching Practice PSYC4722, 391, 392, 395
Fundamentals of Elect and Electronic Eng ELEC1103, 125
Fundamentals of Music II MUSC1504, 274
Fundamentals of Music I MUSC1503, 273
Fundamentals of Research RESP5001, 398, 399
Fungi in the Environment (Advanced) BIOL3917, 53, 85, 159, 231
Fungi in the Environment BIOL3017, 53, 85, 156, 159, 230
G
Gender, Communities and Belonging GCST2608, 252, 257
Gender: Anthropological Studies ANTH2623, 242
Gender and Historical Change: East Asia HSTY2685, 264
Gender and Sexuality in Modern Asia ANTH2623, 258
Geomorphic Environments ENVI1002, 92
Geophysical Methods (Advanced) GEOS3804, 65, 70, 72, 95, 177
Geophysical Methods GEOS3104, 65, 70, 71, 95, 176, 192
Geophysics Honours A GEOP4011, 287
Geophysics Honours B GEOP4012, 287
Geophysics Honours C GEOP4013, 287
Geophysics Honours D GEOP4014, 287
Geopolitics GOVT1105, 260
German Honours A GRMN4011, 259
German Honours B GRMN4012, 259
German Honours C GRMN4013, 259
German Honours D GRMN4014, 259
Germanic Studies Exchange GRMN2811, 259
Germanic Studies Exchange GRMN2812, 259
Germanic Studies Exchange GRMN2813, 259
Germanic Studies Exchange GRMN2814, 259
Germanic Studies Exchange GRMN2815, 259
German Philosophy, Leibniz to Nietzsche PHIL2648, 259
Germanic Studies Exchange GRMN2816, 259
Germanic Studies Exchange GRMN2817, 259
Germanic Studies Exchange GRMN2818, 259
Hebrew Modern B2 HBRW1102, 262
Hebrew Modern B1 HBRW1011, 262
Hebrew Modern 12 HBRW2612, 263
Hebrew Modern 11 HBRW2611, 263
Hebrew Modern 10 HBRW2610, 263
Hebrew Modern 9 HBRW2609, 263
Hebrew Modern 7 HBRW2607, 263
Hebrew Modern 6 HBRW2606, 263
Hebrew Modern 5 HBRW2605, 263
Hebrew Modern 3 HBRW2603, 263
Global and Small Area Studies INGS1002, 266
Global Energy and Resources (Adv) GEOS3802, 65, 177
Global Transformations SCLG2616, 280
Government, Business and Society GOVT2558, 280
Government Exchange GOVT2801, 259
Government Exchange GOVT2802, 259
Government Exchange GOVT2803, 260
Government Exchange GOVT2804, 260
Government Exchange GOVT2805, 260
Government Exchange GOVT2806, 260
Government Exchange GOVT2807, 260
Government Exchange GOVT2808, 260
Government Exchange GOVT2811, 260
Government Exchange GOVT2812, 260
Government Exchange GOVT2813, 260
Government Exchange GOVT2814, 260
Government Exchange GOVT2815, 260
Government Exchange GOVT2816, 260
Government Honours A GOVT4101, 261
Government Honours B GOVT4102, 261
Government Honours C GOVT4103, 261
Government Honours D GOVT4104, 261
Great Books 3: The Twentieth Century ICLS2622, 265
Greek (Ancient) Exchange GRKA2804, 261
Greek (Ancient) Exchange GRKA2805, 261
Greek and Roman Myth ANHS1602, 241
Greek Oratory and Historiography GRKA3603, 261
Greek Drama GRKA3605, 261
Greek Honours A GRKA4011, 261
Greek Honours B GRKA4012, 261
Greek Honours C GRKA4013, 262
Greek Honours D GRKA4014, 262
Greek Modernism MGRK2621, 273
Health Communication: Risk and Decisions PSYC5012, 385, 387, 394
Health and Circulation: Dysfunction Adv PHSI3908, 84, 227
Heart and Circulation: Normal Function Adv PHSI3907, 84, 227
Health Promotion in Cancer Recovery NURS5026, 385, 386
Heritage Law LAWS6055, 338, 340, 343
Heritage Studies Exchange HRTG2801, 263
Heritage Studies Exchange HRTG2802, 263
Heritage Studies Exchange HRTG2803, 263
Heritage Studies Exchange HRTG2804, 263
Heritage Studies Exchange HRTG2805, 263
Heritage Studies Exchange HRTG2806, 263
Heritage Studies Exchange HRTG2807, 263
Heritage Studies Exchange HRTG2808, 263
Heritage Studies Exchange HRTG2809, 263
Heritage Studies Exchange HRTG2810, 263
Hannah Arendt PHIL2625, 276
Hebrew (Classical) Honours A HBRW4011, 262
Hebrew (Classical) Honours B HBRW4012, 262
Hebrew (Classical) Honours C HBRW4013, 262
Hebrew (Classical) Honours D HBRW4014, 262
Hebrew (Classical) In-Country Study A HBRW2801, 262
Hebrew (Classical) In-Country Study B HBRW2802, 262
Hebrew (Modern) Honours A HBRW4021, 263
Hebrew (Modern) Honours B HBRW4022, 263
Hebrew (Modern) Honours C HBRW4023, 263
Hebrew (Modern) Honours D HBRW4024, 263
Hebrew Accelerated C1 HBRW2631, 262
Hebrew Accelerated C2 HBRW2632, 262
Hebrew Classical 5 HBRW2625, 262
Hebrew Classical 6 HBRW2626, 262
Hebrew Classical 11 HBRW1111, 262
Hebrew Classical 12 HBRW1112, 262
Hebrew Modern 3 HBRW2603, 262
Hebrew Modern 4 HBRW2604, 262
Hebrew Modern 5 HBRW2605, 262
Hebrew Modern 6 HBRW2606, 262
Hebrew Modern 7 HBRW2607, 263
Hebrew Modern 8 HBRW2608, 263
Hebrew Modern 9 HBRW2609, 263
Hebrew Modern 10 HBRW2610, 263
Hebrew Modern 11 HBRW2611, 263
Hebrew Modern 12 HBRW2612, 263
Hebrew Modern 1 B HBRW1011, 262
Hebrew Modern 2 B HBRW1012, 262
Heritage Law LAWS6055, 338, 340, 343
Heritage Museums and the Public Sphere HRTG3601, 263
Heritage Studies Exchange HRTG2804, 263
Heritage Studies Exchange HRTG2805, 263
Heritage Studies Exchange HRTG2806, 263
Heritage Studies Exchange HRTG2807, 263
Heritage Studies Exchange HRTG2808, 263
Heritage Studies Exchange HRTG2809, 263
Heritage Studies Exchange HRTG2810, 263
Index by name
<table>
<thead>
<tr>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Cellular Physiology: Research PHSI3005, 55, 67, 83, 226</td>
<td></td>
</tr>
<tr>
<td>Human Development and Education EDUF1019, 124</td>
<td></td>
</tr>
<tr>
<td>Human Molecular Cell Biology (Advanced) BCHM3972, 50, 55, 67, 150</td>
<td></td>
</tr>
<tr>
<td>Human Molecular Cell Biology BCHM3072, 50, 67, 104, 150</td>
<td></td>
</tr>
<tr>
<td>Human Rights & the Global Public Sphere GBST2602, 259</td>
<td></td>
</tr>
<tr>
<td>Human Rights and Australian Politics GOVT2111, 260</td>
<td></td>
</tr>
<tr>
<td>Human Rights and Social Protest SCLG2624, 280</td>
<td></td>
</tr>
<tr>
<td>Human Rights and the Environment GEOS5501, 345</td>
<td></td>
</tr>
<tr>
<td>Human Rights in Development ECOP3017, 277</td>
<td></td>
</tr>
<tr>
<td>Image Analysis MCAN5104, 324, 325, 327, 353, 354</td>
<td></td>
</tr>
<tr>
<td>Imagining Camelot ENGL2661, 254</td>
<td></td>
</tr>
<tr>
<td>Immunology Honours A IMMU4011, 114, 287</td>
<td></td>
</tr>
<tr>
<td>Immunology Honours B IMMU4012, 114, 287</td>
<td></td>
</tr>
<tr>
<td>Immunology Honours C IMMU4013, 114, 287</td>
<td></td>
</tr>
<tr>
<td>Immunology Honours D IMMU4014, 114, 287</td>
<td></td>
</tr>
<tr>
<td>Immunology in Human Disease IMMU3202, 66, 183</td>
<td></td>
</tr>
<tr>
<td>India: Tradition and Modernity ASNS2623, 279</td>
<td></td>
</tr>
<tr>
<td>Indigenous Australia: An Introduction KOCR2600, 239, 239, 264, 264</td>
<td></td>
</tr>
<tr>
<td>Indigenous Australia: Land and Culture KOCR2601, 264, 264</td>
<td></td>
</tr>
<tr>
<td>Indigenous Creative Expression KOCR2607, 265, 265</td>
<td></td>
</tr>
<tr>
<td>Indigenous Health and Communities KOCR2603, 264, 264</td>
<td></td>
</tr>
<tr>
<td>Indigenous Social and Legal Justice SLSS2604, 279</td>
<td></td>
</tr>
<tr>
<td>Indonesian 1A INMS1101, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian 1B INMS1102, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian 2A INMS2601, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian 2B INMS2602, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian 3A INMS3601, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian 3B INMS3602, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian Advanced Studies A INMS3603, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian Advanced Studies B INMS3604, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian and Malay Studies Honours A INMS4011, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian and Malay Studies Honours B INMS4012, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian and Malay Studies Honours C INMS4013, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian and Malay Studies Honours D INMS4014, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian Exchange INMS2805, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian Exchange INMS2806, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian Exchange INMS2807, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian Exchange INMS2808, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian In-Country Study A INMS2650, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian In-Country Study B INMS2651, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian In-Country Study C INMS2652, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian In-Country Study D INMS2653, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian In-Country Study E INMS2654, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian In-Country Study F INMS2655, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian In-Country Study G INMS2656, 265</td>
<td></td>
</tr>
<tr>
<td>Indonesian In-Country Study H INMS2657, 265</td>
<td></td>
</tr>
<tr>
<td>Infectious Diseases Honours A INFD4011, 114</td>
<td></td>
</tr>
<tr>
<td>Infectious Diseases Honours B INFD4012, 114</td>
<td></td>
</tr>
<tr>
<td>Infectious Diseases Honours C INFD4013, 114</td>
<td></td>
</tr>
</tbody>
</table>

Index by name

<table>
<thead>
<tr>
<th>Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herodotus and His World ANHS3609, 241</td>
<td></td>
</tr>
<tr>
<td>High Energy/Astrophysics & Lab PHYS3071, 80, 222</td>
<td></td>
</tr>
<tr>
<td>High Energy/Astrophysics and Lab (Adv) PHYS3971, 82, 222</td>
<td></td>
</tr>
<tr>
<td>High Energy/Cond. Matter Phys.& Lab(Adv) PHYS3974, 82, 222</td>
<td></td>
</tr>
<tr>
<td>High Energy/Cond. Matter Physics & Lab PHYS3074, 80, 222</td>
<td></td>
</tr>
<tr>
<td>High Renaissance Art ARHT2616, 247</td>
<td></td>
</tr>
<tr>
<td>Hindi and Urdu Advanced 1 HIUR3601, 263</td>
<td></td>
</tr>
<tr>
<td>Hindi and Urdu Advanced 2 HIUR3602, 263</td>
<td></td>
</tr>
<tr>
<td>Historiography Ancient and Modern ANHS2612, 241</td>
<td></td>
</tr>
<tr>
<td>History & Philosophy of Science Honours HPSC4999, 182, 287</td>
<td></td>
</tr>
<tr>
<td>History and Politics of War and Peace PACS2002, 239, 275</td>
<td></td>
</tr>
<tr>
<td>History Exchange HSTY1801, 263</td>
<td></td>
</tr>
<tr>
<td>History Exchange HSTY1802, 263</td>
<td></td>
</tr>
<tr>
<td>History Exchange HSTY2805, 264</td>
<td></td>
</tr>
<tr>
<td>History Exchange HSTY2806, 264</td>
<td></td>
</tr>
<tr>
<td>History Exchange HSTY2809, 264</td>
<td></td>
</tr>
<tr>
<td>History Exchange HSTY2810, 264</td>
<td></td>
</tr>
<tr>
<td>History Exchange HSTY2811, 264</td>
<td></td>
</tr>
<tr>
<td>History Honours A HSTY4011, 264</td>
<td></td>
</tr>
<tr>
<td>History Honours B HSTY4012, 264</td>
<td></td>
</tr>
<tr>
<td>History Honours C HSTY4013, 264</td>
<td></td>
</tr>
<tr>
<td>History Honours D HSTY4014, 264</td>
<td></td>
</tr>
<tr>
<td>History of Biological/Medical Sciences HPSC3002, 66, 180</td>
<td></td>
</tr>
<tr>
<td>History of Chinese Culture HSTY1090, 263</td>
<td></td>
</tr>
<tr>
<td>History of Modern Indonesia ASNS2661, 248</td>
<td></td>
</tr>
<tr>
<td>History of Science HPSC4102, 181, 287, 349, 350</td>
<td></td>
</tr>
<tr>
<td>History of the Musical MUSC2674, 274</td>
<td></td>
</tr>
<tr>
<td>Honours Research Methods A MECO4601, 272</td>
<td></td>
</tr>
<tr>
<td>Honours Research Methods B MECO4602, 272</td>
<td></td>
</tr>
<tr>
<td>Honours Seminar A MECO4603, 272</td>
<td></td>
</tr>
<tr>
<td>Honours Seminar B MECO4604, 272</td>
<td></td>
</tr>
<tr>
<td>Honours Thesis A MECO4605, 272</td>
<td></td>
</tr>
<tr>
<td>Honours Thesis B MECO4606, 272</td>
<td></td>
</tr>
<tr>
<td>Honours Thesis C MECO4607, 272</td>
<td></td>
</tr>
<tr>
<td>Honours Thesis D MECO4608, 272</td>
<td></td>
</tr>
<tr>
<td>Hormones, Reproduction and Development BMED2805, 113, 205</td>
<td></td>
</tr>
<tr>
<td>HPS Research Methods HPSC4105, 182, 287, 349, 350</td>
<td></td>
</tr>
<tr>
<td>HPS Research Project 1 HPSC4201, 181, 182, 287</td>
<td></td>
</tr>
<tr>
<td>HPS Research Project 2 HPSC4202, 181, 182, 287</td>
<td></td>
</tr>
<tr>
<td>HPS Research Project 3 HPSC4203, 181, 182, 287</td>
<td></td>
</tr>
<tr>
<td>HPS Research Project 4 HPSC4204, 181, 182, 287</td>
<td></td>
</tr>
<tr>
<td>Human-Computer Experience Des Stdo DECO3200, 126</td>
<td></td>
</tr>
<tr>
<td>Human-Computer Interaction INFO3315, 59, 69, 187</td>
<td></td>
</tr>
<tr>
<td>Human and Animal Research Ethics BETH5202, 314, 315, 316, 317, 319</td>
<td></td>
</tr>
<tr>
<td>Human Biochemistry (Advanced) BCHM2972, 50, 107, 149</td>
<td></td>
</tr>
<tr>
<td>Human Biochemistry BCHM2072, 50, 104, 107, 148</td>
<td></td>
</tr>
<tr>
<td>Human Biology (Advanced) BIOL1903, 51, 106, 153</td>
<td></td>
</tr>
<tr>
<td>Human Biology BIOL1003, 51, 106, 153</td>
<td></td>
</tr>
<tr>
<td>Human Cellular Physiology (Ad): Research PHSI3906, 56, 68, 83, 226</td>
<td></td>
</tr>
<tr>
<td>Human Cellular Physiology (Adv): Theory PHSI3905, 55, 67, 83, 226</td>
<td></td>
</tr>
<tr>
<td>Human Cellular Physiology: Research PHSI3006, 55, 67, 83, 226</td>
<td></td>
</tr>
</tbody>
</table>
Infectious Diseases Honours D INF4014, 114
Infectious Diseases INF3012, 113, 206
Informatics (Advanced) INFO1903, 59, 68, 125, 185, 240
Information and Coding Theory MATH3067, 62, 73, 199, 201
Information Systems Honours A ISYS4301, 188, 287
Information Systems Honours B ISYS4302, 188, 287
Information Systems Honours C ISYS4303, 188, 287
Information Systems Honours D ISYS4304, 188, 288
Information Systems ISYS2140, 68, 186
Information Systems Project ISYS3400, 69, 187
Information Technology in Biomedicine COMP5424, 324, 325, 327
Information Visualisation Design Studio DECO3100, 126
Initiation Rituals ANTH2621, 242
Innovation/Technology Commercialisation ENGG4061, 125
In Situ Wildlife Management WILD5005, 401, 402
Int Comparative Literary Studies Exch ICLS2801, 265
Int Comparative Literary Studies Exch ICLS2802, 266
Int Comparative Literary Studies Exch ICLS2803, 266
Int Comparative Literary Studies Exch ICLS2804, 266
Int Comparative Literary Studies Honours A ICLS4011, 266
Int Comparative Literary Studies Honours B ICLS4012, 266
Int Comparative Literary Studies Honours C ICLS4013, 266
Int Comparative Literary Studies Honours D ICLS4014, 266
Integral Calculus and Modelling Advanced MATH1903, 61, 72, 107, 196
Integral Calculus and Modelling MATH1003, 61, 72, 107, 195
Integrated Physiology A (Advanced) PHSI2905, 77, 83, 107, 224
Integrated Physiology A PHSI2005, 77, 83, 107, 224
Integrated Physiology B (Advanced) PHSI2906, 83, 108, 225
Integrated Physiology B PHSI2006, 83, 108, 224
Integrative Neuroscience (Advanced) NEUR3904, 49, 78, 84, 148
Integrative Neuroscience NEUR3004, 49, 78, 84, 147
Intellectual History of the Middle Ages MDST2615, 272
Interactive Multimedia Design DECO2102, 126
Intermediate Greek 1 GRKA2600, 261
Intermediate Greek 2 GRKA2601, 261
Intermediate Italian 3 ITLN2611, 266
Intermediate Italian 4 ITLN2612, 266
Intermediate Latin 1 LATN2600, 269
Intermediate Latin 2 LATN2601, 269
Intermediate Logic PHIL2615, 238, 276
International Economy and Finance ECOP1003, 277
International Environmental Law LAWS6061, 338, 340, 343
International Law LAWS1018, 132, 190
International Organisations GOVT2226, 260
International Security in 21st Century GOVT2225, 260
International Sociology of Literature ICLS3630, 266
International Studies Practicum GOVT2802, 260
Internet Software Platforms ELEC3609, 59
Internship 1 ARTS2600, 247
Internship Project MECO3672, 272
Internship Research Paper SSCI3602, 279
Intimacy, Love and Friendship GCST2610, 257
Intro. to Artificial Intelligence (Adv) COMP3608, 58, 59, 186
Introducing Gender GCST2602, 257
Introducing Media and Popular Culture GCST2601, 252, 257
Introduction to Ancient Greek 1 GRKA1600, 261
Introduction to Ancient Greek 2 GRKA1601, 261
Introduction to Artificial Intelligence COMP3308, 58, 59, 186
Introduction to Asian Cultures ASNS1601, 239, 248
Introduction to Calculus MATH1111, 106, 194
Introduction to Digital Music Techniques MUSC2653, 274
Introduction to Environmental Chemistry ENVI5708, 332, 337, 338, 343, 344
Introduction to Ethical Reasoning BETH5101, 314, 315, 316, 318
Introduction to Geology (Advanced) GEOS1903, 60, 64, 172
Introduction to Geology GEOS1003, 60, 64, 171
Introduction to Information Systems COMP5206, 325, 327
Introduction to IT Security INFO2315, 59, 68, 186, 239
Introduction to Japan JPNS2660, 267
Introduction to Linear Algebra MATH1014, 72, 106, 194
Introduction to Marine Biology (Adv) BIOL2918, 53, 70, 94, 156, 192
Introduction to Marine Biology BIOL2018, 52, 70, 94, 154, 155, 156, 192
Introduction to Old English ENGL3633, 254
Introduction to Old Norse ENGL3635, 254
Introduction to Programming INFO1103, 58, 68, 125, 184
Introduction to Socio-Legal Studies SLSS1001, 124, 270, 279
Introduction to Sociology 1 SCLG1001, 280
Introduction to Sociology 2 SCLG1002, 280
Introduction to Spanish Translation SPAN3622, 281
Introduction to US Politics USSC2602, 241
Introductory Behavioural Health Sciences BACH1161, 103
Introductory Biostatistics PUBH5018, 385, 388, 391
Introductory Geography (Advanced) GEOS1902, 60, 62, 171
Introductory Geography GEOS1002, 60, 62, 171, 239
Introductory Immunology IMMU2101, 66, 183
Introductory Italian 1 ITLN1611, 266
Introductory Italian 2 ITLN1612, 266
Introductory Latin 1 LATN1600, 269
Introductory Latin 2 LATN1601, 269
Introductory Logic PHIL1012, 238, 276
Introductory Microscopy & Microanalysis MCAN5005, 353, 354
Intro to Structural Concepts and Design CIVL2230, 127
Invertebrate Zoology (Advanced) BIOL2911, 52, 154
Invertebrate Zoology BIOL2011, 51, 154, 155
Ionia and the East Greek World ARCA3603, 244
Islam, Trade & Society-Arabia to SE Asia ASNS2660, 248
Israel in the Modern Middle East JCTC2607, 267
Issues of Language and Society in Italy ITLN3668, 267
<table>
<thead>
<tr>
<th>Course Name</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Italian Exchange</td>
<td>ITLN1801, 266</td>
</tr>
<tr>
<td>Italian Exchange</td>
<td>ITLN1802, 266</td>
</tr>
<tr>
<td>Italian Exchange</td>
<td>ITLN2811, 266</td>
</tr>
<tr>
<td>Italian Exchange</td>
<td>ITLN2812, 266</td>
</tr>
<tr>
<td>Italian Exchange</td>
<td>ITLN2813, 266</td>
</tr>
<tr>
<td>Italian Exchange</td>
<td>ITLN2814, 266</td>
</tr>
<tr>
<td>Italian Exchange</td>
<td>ITLN2815, 266</td>
</tr>
<tr>
<td>Italian Exchange</td>
<td>ITLN2816, 266</td>
</tr>
<tr>
<td>Italian Exchange</td>
<td>ITLN2817, 266</td>
</tr>
<tr>
<td>Italian Honours A</td>
<td>ITLN4011, 267</td>
</tr>
<tr>
<td>Italian Honours B</td>
<td>ITLN4012, 267</td>
</tr>
<tr>
<td>Italian Honours C</td>
<td>ITLN4013, 267</td>
</tr>
<tr>
<td>Italian Honours D</td>
<td>ITLN4014, 267</td>
</tr>
<tr>
<td>Italian Literature: 1200-1860</td>
<td>ITLN3691, 267</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Jane Austen and Her Contemporaries</td>
<td>ENGL2611, 254</td>
</tr>
<tr>
<td>Japanese 1</td>
<td>JPNS1611, 267</td>
</tr>
<tr>
<td>Japanese 2</td>
<td>JPNS1612, 267</td>
</tr>
<tr>
<td>Japanese 3</td>
<td>JPNS2611, 267</td>
</tr>
<tr>
<td>Japanese 4</td>
<td>JPNS2612, 267</td>
</tr>
<tr>
<td>Japanese 5</td>
<td>JPNS2621, 267</td>
</tr>
<tr>
<td>Japanese 6</td>
<td>JPNS2622, 267</td>
</tr>
<tr>
<td>Japanese 7</td>
<td>JPNS3621, 268</td>
</tr>
<tr>
<td>Japanese 8</td>
<td>JPNS3622, 268</td>
</tr>
<tr>
<td>Japanese 9</td>
<td>JPNS3631, 268</td>
</tr>
<tr>
<td>Japanese 10</td>
<td>JPNS3632, 268</td>
</tr>
<tr>
<td>Japanese Cinema</td>
<td>JPNS3675, 268</td>
</tr>
<tr>
<td>Japanese Exchange 3</td>
<td>JPNS2811, 267</td>
</tr>
<tr>
<td>Japanese Exchange 4</td>
<td>JPNS2812, 267</td>
</tr>
<tr>
<td>Japanese Exchange 5</td>
<td>JPNS2813, 267</td>
</tr>
<tr>
<td>Japanese Exchange 6</td>
<td>JPNS2814, 268</td>
</tr>
<tr>
<td>Japanese Exchange 7</td>
<td>JPNS2815, 268</td>
</tr>
<tr>
<td>Japanese Exchange 8</td>
<td>JPNS2816, 268</td>
</tr>
<tr>
<td>Japanese Exchange 9</td>
<td>JPNS2817, 268</td>
</tr>
<tr>
<td>Japanese Exchange A</td>
<td>JPNS4011, 268</td>
</tr>
<tr>
<td>Japanese Exchange B</td>
<td>JPNS4012, 268</td>
</tr>
<tr>
<td>Japanese Exchange C</td>
<td>JPNS4013, 268</td>
</tr>
<tr>
<td>Japanese Exchange D</td>
<td>JPNS4014, 268</td>
</tr>
<tr>
<td>Japanese Media Culture and New Japan</td>
<td>JPNS2672, 267</td>
</tr>
<tr>
<td>Japanese Society</td>
<td>JPNS3673, 268</td>
</tr>
<tr>
<td>Japanese Sociolinguistics</td>
<td>JPNS2671, 267</td>
</tr>
<tr>
<td>Japan In-Country Study 1</td>
<td>JPNS3841, 268</td>
</tr>
<tr>
<td>Japan In-Country Study 2</td>
<td>JPNS3842, 268</td>
</tr>
<tr>
<td>Japan in East Asia from 1840 until Today</td>
<td>ASNS2672, 248</td>
</tr>
<tr>
<td>Jewish Civilisation Exchange</td>
<td>JCTC2811, 268</td>
</tr>
<tr>
<td>Jewish Civilisation Exchange</td>
<td>JCTC2812, 268</td>
</tr>
<tr>
<td>Jewish Civilisation Exchange</td>
<td>JCTC2813, 268</td>
</tr>
<tr>
<td>Jewish Civilisation Exchange</td>
<td>JCTC2814, 268</td>
</tr>
<tr>
<td>Jewish Civilisation Exchange</td>
<td>JCTC2815, 268</td>
</tr>
<tr>
<td>Jewish Civilization Exchange</td>
<td>JCTC1801, 268</td>
</tr>
<tr>
<td>Jewish Civilization Exchange</td>
<td>JCTC4014, 254</td>
</tr>
<tr>
<td>Jewish Settlement Outside Palestine</td>
<td>JCTC1002, 268</td>
</tr>
<tr>
<td>Jews Under the Crescent and the Cross</td>
<td>JCTC2603, 268</td>
</tr>
<tr>
<td>Judaic Studies Honours A</td>
<td>JCTC4011, 269</td>
</tr>
<tr>
<td>Judaic Studies Honours B</td>
<td>JCTC4012, 269</td>
</tr>
<tr>
<td>Judaic Studies Honours C</td>
<td>JCTC4013, 269</td>
</tr>
<tr>
<td>Judaic Studies Honours D</td>
<td>JCTC4014, 269</td>
</tr>
<tr>
<td>Junior French Advanced 5</td>
<td>FRNC1631, 256</td>
</tr>
<tr>
<td>Junior French Advanced 6</td>
<td>FRNC1632, 256</td>
</tr>
<tr>
<td>Junior French Intermediate 3</td>
<td>FRNC1621, 256</td>
</tr>
<tr>
<td>Junior French Intermediate 4</td>
<td>FRNC1622, 256</td>
</tr>
<tr>
<td>Junior French Introductory 1</td>
<td>FRNC1611, 256</td>
</tr>
<tr>
<td>Junior French Introductory 2</td>
<td>FRNC1612, 256</td>
</tr>
<tr>
<td>Junior German 1</td>
<td>GRMN1111, 258</td>
</tr>
<tr>
<td>Junior German 2</td>
<td>GRMN1122, 259</td>
</tr>
<tr>
<td>Junior German 3</td>
<td>GRMN1211, 259</td>
</tr>
<tr>
<td>Junior German 4</td>
<td>GRMN1222, 259</td>
</tr>
<tr>
<td>Junior German 5</td>
<td>GRMN1311, 259</td>
</tr>
<tr>
<td>Junior German 6</td>
<td>GRMN1322, 259</td>
</tr>
<tr>
<td>Junior Modern Greek 1</td>
<td>MGRK1601, 273</td>
</tr>
<tr>
<td>Junior Modern Greek 2</td>
<td>MGRK1602, 273</td>
</tr>
<tr>
<td>Junior Modern Greek 3</td>
<td>MGRK1621, 273</td>
</tr>
<tr>
<td>Junior Modern Greek 4</td>
<td>MGRK1622, 273</td>
</tr>
<tr>
<td>Junior Modern Greek 5</td>
<td>MGRK1623, 273</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Knowledge, Reason and Action</td>
<td>PHIL2606, 276</td>
</tr>
<tr>
<td>Knowledge Discovery and Data Mining</td>
<td>COMP5318, 233, 324, 327</td>
</tr>
<tr>
<td>Korean 1</td>
<td>KRNS1621, 269</td>
</tr>
<tr>
<td>Korean 2</td>
<td>KRNS1622, 269</td>
</tr>
<tr>
<td>Korean 3</td>
<td>KRNS2621, 269</td>
</tr>
<tr>
<td>Korean 4</td>
<td>KRNS2622, 269</td>
</tr>
<tr>
<td>Korean 5</td>
<td>KRNS3621, 269</td>
</tr>
<tr>
<td>Korean 6</td>
<td>KRNS3622, 269</td>
</tr>
<tr>
<td>Korean Exchange</td>
<td>KRNS1801, 269</td>
</tr>
<tr>
<td>Korean Honours A</td>
<td>KRNS4011, 269</td>
</tr>
<tr>
<td>Korean Honours B</td>
<td>KRNS4012, 269</td>
</tr>
<tr>
<td>Korean Honours C</td>
<td>KRNS4013, 269</td>
</tr>
<tr>
<td>Korean Honours D</td>
<td>KRNS4014, 269</td>
</tr>
<tr>
<td>Korean In-Country Study A</td>
<td>KRNS2681, 269</td>
</tr>
<tr>
<td>Korean In-Country Study B</td>
<td>KRNS2682, 269</td>
</tr>
<tr>
<td>Korean Studies Exchange</td>
<td>KRNS2811, 269</td>
</tr>
<tr>
<td>Korean Studies Exchange A</td>
<td>KRNS2812, 269</td>
</tr>
<tr>
<td>Korean Studies Exchange B</td>
<td>KRNS2813, 269</td>
</tr>
<tr>
<td>Korean Studies Exchange C</td>
<td>KRNS2814, 269</td>
</tr>
<tr>
<td>Korean Studies Exchange D</td>
<td>KRNS2815, 269</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Lagrangian & Hamiltonian Dynamics (Adv)</td>
<td>MATH3977, 74, 199, 202</td>
</tr>
<tr>
<td>Land and Water Ecochemistry</td>
<td>AGCH3032, 48, 86, 142, 144</td>
</tr>
<tr>
<td>Landscape Hydrology and Management</td>
<td>LWSC3006, 86, 142, 144</td>
</tr>
<tr>
<td>Language, Brain and Mind</td>
<td>LNGS2615, 270</td>
</tr>
<tr>
<td>Language, Texts and Time</td>
<td>ENGL1007, 191, 238, 253</td>
</tr>
<tr>
<td>Language Acquisition</td>
<td>LNGS2614, 270</td>
</tr>
<tr>
<td>Language and Social Context</td>
<td>LNGS1002, 238, 270</td>
</tr>
<tr>
<td>Latin American Culture</td>
<td>SPAN2622, 281</td>
</tr>
<tr>
<td>Latin American Film and Literature</td>
<td>SPAN3621, 281</td>
</tr>
<tr>
<td>Latin Epic 1</td>
<td>LATN3601, 270</td>
</tr>
<tr>
<td>Latin Exchange</td>
<td>LATN1801, 269</td>
</tr>
<tr>
<td>Latin Exchange</td>
<td>LATN1802, 269</td>
</tr>
<tr>
<td>Latin Exchange</td>
<td>LATN2804, 270</td>
</tr>
<tr>
<td>Latin Exchange</td>
<td>LATN2805, 270</td>
</tr>
<tr>
<td>Latin Exchange</td>
<td>LATN2806, 270</td>
</tr>
<tr>
<td>Latin Exchange</td>
<td>LATN2810, 270</td>
</tr>
<tr>
<td>Latin Exchange</td>
<td>LATN2811, 270</td>
</tr>
</tbody>
</table>
Latin Honours A LATN4011, 270
Latin Honours B LATN4012, 270
Latin Honours C LATN4013, 270
Latin Honours D LATN4014, 270
Latin Imperial Prose LATN3606, 270
Latin Republican Poetry LATN3604, 270
Law, Lawyers and Justice LAWS3004, 132, 191
Law and Contemporary Society SLSS1003, 270, 279
Law and Social Theory SCLG2615, 280
Law and the Environment ENVI5803, 332, 344
Learning and Behaviour PSYC3011, 78, 86, 233, 380
Legal Reasoning & the Common Law System LAWS252, 337, 343
Legal Research II LAWS1019, 132, 190
Legal Research I LAWS1013, 132, 189
Libertine Literature: Sex and Liberty ENGL3654, 255
Life Sciences Calculus MATH1011, 104
Linear Algebra (Advanced) MATH1902, 61, 72, 107, 196
Linear Algebra MATH1002, 61, 72, 107, 128, 195
Linear Mathematics & Vector Calculus MATH2961, 73, 197
Linear Mathematics and Vector Calculus MATH2061, 72, 126, 127, 197
Linguistics Exchange LNGS1801, 270
Linguistics Exchange LNGS2805, 270
Linguistics Exchange LNGS2806, 271
Linguistics Exchange LNGS2809, 271
Linguistics Exchange LNGS2810, 271
Linguistics Exchange LNGS2811, 271
Linguistics Exchange LNGS2812, 271
Linguistics Honours A LNGS4011, 271
Linguistics Honours B LNGS4012, 271
Linguistics Honours C LNGS4013, 271
Linguistics Honours D LNGS4014, 271
Linguistics Research Issues LNGS3699, 271
Literature and Revolution ICLS2634, 265
Literature and Theatre FRNC2615, 256
Literature of Travel and Discovery ENGL2648, 254
Living Systems (Advanced) BIOL1902, 51, 153
Living Systems BIOL1002, 51, 153
Locke and Empiricism PHIL2605, 276
Logic and Computation PHIL2650, 238, 276
Logic and Foundations MATH3065, 73, 199, 200

M
Machiavelli and Renaissance Italy ITLN3662, 267
Mahayana Buddhism RLST2610, 278
Major Development Project (Advanced) INFO3600, 59, 69, 187
Making the Australian Landscape GEOS2113, 60, 63, 172
Management Accounting Concepts ACCT1004, 124
Management of Industrial Systems CHNG3806, 127
Management of IT Projects and Systems INFO3402, 59, 69, 187
Management of Parks ENVI5905, 332, 345
Marine Biology (Advanced) BIOL3913, 53, 69, 71, 95, 159
Marine Biology BIOL3013, 53, 69, 71, 95, 156, 158, 159, 192
Marine Field Ecology (Advanced) BIOL3908, 54, 69, 71, 95, 157
Marine Field Ecology BIOL3008, 54, 69, 71, 94, 156, 157, 192
Marine Sciences Honours A MARS4011, 288
Marine Sciences Honours B MARS4012, 288
Marine Sciences Honours C MARS4013, 288
Marine Sciences Honours D MARS4014, 288
Mass Media in East Asia ASNS2670, 248
Materials 1 AMME2302, 126
Materials 2 MECH3362, 76
Materials Chemistry (Adv) CHEM3912, 57, 76, 165
Materials Chemistry CHEM3112, 57, 76, 165
Materials CIVL2110, 127
Materials Preparation and Microscopy MCAN5103, 353, 354
Math Computing & Nonlinear Systems (Adv) MATH2963, 73, 198
Math Computing and Nonlinear Systems MATH2063, 72, 197
Mathematical Computing (Advanced) MATH3976, 58, 62, 73, 168, 199, 202
Mathematical Computing MATH3076, 57, 62, 73, 168, 199, 202
Mathematical Modelling MATH1013, 72, 106, 194
Mathematical Statistics Honours A STAT4201, 289
Mathematical Statistics Honours B STAT4202, 289
Mathematical Statistics Honours C STAT4203, 289
Mathematical Statistics Honours D STAT4204, 289
Mathematics (Special Studies Program) A MATH1906, 72, 107, 196
Mathematics (Special Studies Program) B MATH1907, 72, 107, 196
Measure Theory & Fourier Analysis (Adv) MATH3969, 62, 74, 201
Mechanical Design 1 MECH2400, 127
Mechanical Design 2 MECH3460, 127
Mechanics of Solids 2 MECH3361, 76, 127
Mechanics of Solids AMME2301, 126
Media, Law and Ethics MECO3603, 272
Media and Communications Exchange MECO2805, 271
Media and Communications Exchange MECO2806, 271
Media and Communications Exchange MECO2807, 271
Media and Communications Exchange MECO2808, 271
Media and Communications Honours A MECO4011, 272
Media and Communications Honours B MECO4012, 272
Media and Communications Honours C MECO4013, 272
Media and Communications Honours D MECO4014, 272
Media and Communications Internship MECO3671, 272
Media Globalisation MECO3605, 272
Media in Contemporary Society SCLG2606, 280
Media Relations MECO2603, 271
Medical and Applied Virology (Advanced) VIRO3902, 68, 75, 210
Medical and Applied Virology VIRO3002, 68, 75, 209, 210
Medical and Metabolic Biochemistry (Adv) BCHM3982, 50, 55, 67, 151
Medical and Metabolic Biochemistry BCHM3082, 50, 55, 67, 104, 150
Medical Anthropology ANTH2627, 242
Medical Imaging Physics PHYS5006, 369, 370
Medico-Legal and Forensic Criminology SLSS2603, 279
Medieval Studies Honours A MDST4011, 272
Medieval Studies Honours B MDST4012, 272

503
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDST4013</td>
<td>Medieval Studies Honours C</td>
<td>272</td>
</tr>
<tr>
<td>MDST4014</td>
<td>Medieval Studies Honours D</td>
<td>273</td>
</tr>
<tr>
<td>RLST2623</td>
<td>Meditation and Self Transformation</td>
<td>278</td>
</tr>
<tr>
<td>CHEM3916</td>
<td>Membranes, Self Assembly & Surfaces(Adv)</td>
<td>76, 166</td>
</tr>
<tr>
<td>CHEM3116</td>
<td>Membranes, Self Assembly and Surfaces</td>
<td>57, 76, 166</td>
</tr>
<tr>
<td>ARHT2653</td>
<td>Memory of the World: Film and Directors</td>
<td>247</td>
</tr>
<tr>
<td>CHEM3914</td>
<td>Metal Complexes: Medic. & Mater. (Adv)</td>
<td>57, 166</td>
</tr>
<tr>
<td>CHEM3114</td>
<td>Metal Complexes: Medicine and Materials</td>
<td>57, 166</td>
</tr>
<tr>
<td>NUTR3921</td>
<td>Methods in Nutrition Practice</td>
<td>103, 104, 9781741751024</td>
</tr>
<tr>
<td>MATH3961</td>
<td>Metric Spaces (Advanced)</td>
<td>73, 199</td>
</tr>
<tr>
<td>BMED2807</td>
<td>Microbes and Body Defences</td>
<td>113, 113, 206, 206</td>
</tr>
<tr>
<td>MICR3911</td>
<td>Microbes in Infection (Advanced)</td>
<td>55, 67, 74, 208</td>
</tr>
<tr>
<td>MICR3011</td>
<td>Microbes in Infection</td>
<td>55, 67, 74, 208</td>
</tr>
<tr>
<td>MICR2922</td>
<td>Microbes in Society (Advanced)</td>
<td>74, 208</td>
</tr>
<tr>
<td>MICR2022</td>
<td>Microbes in Society</td>
<td>74, 208</td>
</tr>
<tr>
<td>MICR2024</td>
<td>Microbes in the Environment</td>
<td>74, 208</td>
</tr>
<tr>
<td>MICR3922</td>
<td>Microbial Biotechnology (Advanced)</td>
<td>55, 75, 209</td>
</tr>
<tr>
<td>MICR3022</td>
<td>Microbial Biotechnology</td>
<td>55, 75, 209</td>
</tr>
<tr>
<td>MICR2921</td>
<td>Microbial Life (Advanced)</td>
<td>74, 207</td>
</tr>
<tr>
<td>MICR2021</td>
<td>Microbial Life</td>
<td>74, 207</td>
</tr>
<tr>
<td>AICR4011</td>
<td>Microbiology Honours A</td>
<td>114, 288</td>
</tr>
<tr>
<td>MICR4012</td>
<td>Microbiology Honours B</td>
<td>114, 288</td>
</tr>
<tr>
<td>MICR4013</td>
<td>Microbiology Honours C</td>
<td>114, 288</td>
</tr>
<tr>
<td>MICR4014</td>
<td>Microbiology Honours D</td>
<td>114, 288</td>
</tr>
<tr>
<td>HSTO3002</td>
<td>Microscopy & Histochemistry Practical</td>
<td>48, 54, 146</td>
</tr>
<tr>
<td>MATH3967</td>
<td>Microscopy & Histochemistry Theory</td>
<td>48, 54, 146</td>
</tr>
<tr>
<td>CLST2604</td>
<td>Middle Welsh 1</td>
<td>249</td>
</tr>
<tr>
<td>CLST2603</td>
<td>Middle Welsh 2</td>
<td>249</td>
</tr>
<tr>
<td>ANTH2628</td>
<td>Migration and Migrants Cultures</td>
<td>242</td>
</tr>
<tr>
<td>PHIL1016</td>
<td>Mind and Morality</td>
<td>276</td>
</tr>
<tr>
<td>ENGL2655</td>
<td>Modern British Literature</td>
<td>254</td>
</tr>
<tr>
<td>HSTY1045</td>
<td>Modern European History</td>
<td>1750-1914 HSTY1045, 263</td>
</tr>
<tr>
<td>MGRK4011</td>
<td>Modern Greek Honours A</td>
<td>273</td>
</tr>
<tr>
<td>MGRK4012</td>
<td>Modern Greek Honours B</td>
<td>273</td>
</tr>
<tr>
<td>MGRK4013</td>
<td>Modern Greek Honours C</td>
<td>273</td>
</tr>
<tr>
<td>MGRK4014</td>
<td>Modern Greek Honours D</td>
<td>273</td>
</tr>
<tr>
<td>CLST2610</td>
<td>Modern Irish Language and Culture 1</td>
<td>249</td>
</tr>
<tr>
<td>CLST2611</td>
<td>Modern Irish Language and Culture 2</td>
<td>249</td>
</tr>
<tr>
<td>CLST2609</td>
<td>Modern Irish Linguistics</td>
<td>249</td>
</tr>
<tr>
<td>ARHT2621</td>
<td>Modernism</td>
<td>247</td>
</tr>
<tr>
<td>ASNS1602</td>
<td>Modernity in Asia</td>
<td>239, 248</td>
</tr>
<tr>
<td>JPNS2670</td>
<td>Modern Japanese Literary Masterpieces</td>
<td>267</td>
</tr>
<tr>
<td>ASNS2642</td>
<td>Modern Korea</td>
<td>248</td>
</tr>
<tr>
<td>ARHT1002</td>
<td>Modern Times: Art and Film</td>
<td>247</td>
</tr>
<tr>
<td>CLST2608</td>
<td>Modern Welsh Language and Culture 1</td>
<td>249</td>
</tr>
<tr>
<td>CLST2609</td>
<td>Modern Welsh Language and Culture 2</td>
<td>249</td>
</tr>
<tr>
<td>ARHT2621</td>
<td>Morals and Group Representations (Adv)</td>
<td>74, 199, 201</td>
</tr>
<tr>
<td>CHEM3917</td>
<td>Mol. Spectroscopy & Quantum Theory (Adv)</td>
<td>57, 167</td>
</tr>
<tr>
<td>BCHM3981</td>
<td>Mol Biology & Biochemistry- Proteins</td>
<td>50, 55, 67, 150</td>
</tr>
<tr>
<td>BCHM3081</td>
<td>Mol Biology & Biochemistry- Proteins</td>
<td>50, 55, 67, 149</td>
</tr>
<tr>
<td>IMMU3102</td>
<td>Molecular and Cellular Immunology (Adv)</td>
<td>66, 183</td>
</tr>
<tr>
<td>MBLG2071</td>
<td>Molecular Biology and Genetics A</td>
<td>75, 77, 107, 211</td>
</tr>
<tr>
<td>MBLG2072</td>
<td>Molecular Biology and Genetics B</td>
<td>75, 77, 107, 211</td>
</tr>
<tr>
<td>CHEM2917</td>
<td>Molecular Spectroscopy & Quantum Theory (Adv)</td>
<td>74, 199, 201</td>
</tr>
<tr>
<td>MATH3966</td>
<td>Modules and Group Representations (Adv)</td>
<td>74, 199, 201</td>
</tr>
<tr>
<td>ANAT3008</td>
<td>Musculoskeletal Anatomy</td>
<td>242</td>
</tr>
<tr>
<td>MUSC2810</td>
<td>Music Exchange</td>
<td>274</td>
</tr>
<tr>
<td>MUSC2812</td>
<td>Music Exchange</td>
<td>274</td>
</tr>
<tr>
<td>MUSC2813</td>
<td>Music Exchange</td>
<td>274</td>
</tr>
<tr>
<td>MUSC2670</td>
<td>Music Festivals and their Administration</td>
<td>274</td>
</tr>
<tr>
<td>MUSC4011</td>
<td>Music Honours A</td>
<td>275</td>
</tr>
<tr>
<td>MUSC4012</td>
<td>Music Honours B</td>
<td>275</td>
</tr>
<tr>
<td>MUSC4013</td>
<td>Music Honours C</td>
<td>275</td>
</tr>
<tr>
<td>MUSC4014</td>
<td>Music Honours D</td>
<td>275</td>
</tr>
<tr>
<td>MUSC1506</td>
<td>Music in Western Culture</td>
<td>275</td>
</tr>
<tr>
<td>MUSC3609</td>
<td>Musicology</td>
<td>274, 275</td>
</tr>
<tr>
<td>GRMN2684</td>
<td>Myth in German Literature</td>
<td>259</td>
</tr>
<tr>
<td>ENGL2657</td>
<td>Myths, Legends and Heroes</td>
<td>254</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>504</td>
</tr>
</tbody>
</table>
Nanoscience/Plasma/Thermodynamics (Adv) PHYS3955, 76, 81, 220
Nanoscience/Plasma/Thermodynamics PHYS3055, 76, 80, 220
Nanoscience/Plasma Physics & Lab (Adv) PHYS3954, 76, 81, 220
Nanoscience/Plasma Physics & Physics Lab PHYS3054, 76, 80, 220
Nanoscience/Thermodynamic/Biophys.(Adv) PHYS3957, 76, 81, 220
Nanoscience/Thermodynamic/Biophysics PHYS3057, 76, 80, 220
Nanoscience/Thermodynamics & Lab (Adv) PHYS3952, 76, 81, 220
Nanoscience/Thermodynamics & Lab PHYS3052, 76, 80, 219
Nanostuctural Analysis of Materials MCANS110, 353, 354
Narratives of Romance and Adventure ENGL1002, 253
Natural Hazards: a GIS Approach Advanced GEOG2911, 60, 63, 65, 173
Natural Hazards: a GIS Approach GEOG2111, 60, 63, 64, 172
Neuropharmacology (Advanced) PCOL3922, 77, 79, 215
Neuropharmacology PCOL3222, 77, 79, 215
Neuropsychology and Disability PSYC6070, 301, 303
Neuropsychopathology PSYC6054, 301, 303
Neuroscience: Motor Systems & Behav. Adv NEUR3902, 49, 78, 83, 147
Neuroscience: Motor Systems & Behaviour NEUR3002, 49, 77, 83, 147
Neuroscience: Special Senses (Advanced) NEUR3901, 48, 77, 83, 225
Neuroscience: Special Senses NEUR3001, 48, 77, 83, 225
Neuroscience BIOS1171, 103
New Testament Greek and its World A MGRK2675, 273
New Testament Greek and its World B MGRK2676, 273
Nuclear Chemistry and Nuclear Fuel Cycle PHYS5016, 372, 373
Nuclear Instrumentation PHYS5013, 372, 373
Nuclear Medicine Physics PHYS5029, 369, 370
Nuclear Physics PHYS5011, 369, 370, 372
Number Theory and Cryptography Advanced) MATH2968, 73, 198
Number Theory and Cryptography MATH2068, 73, 198
Nutrition & Dietetics Training Placement NTDT3512, 364
Nutritional Assessment Methods NUTR3911, 103, 104, 213
Nutritional Science Introductory (Adv) NUTR2912, 102, 213
Nutritional Science NTDT5501, 363, 364
Nutrition and Chronic Disease NUTR3901, 103, 104, 9781741751024
Nutrition Practice NTDT3511, 364
Nutrition Research Project NTDT5310, 364
Object-Oriented Design COMP5028, 323, 324, 326
Object Oriented Design INFO3220, 59, 69, 187
Oceans, Coasts and Climate Change (Adv) GEOG2915, 63, 65, 71, 94, 192
Oceans, Coasts and Climate Change GEOG2115, 63, 65, 70, 94, 173, 191
Old Irish 1 CLST2606, 249
Old Irish 2 CLST2602, 249
Online Media MECO3602, 271
Operating/Improving Industrial Systems CHNG3802, 127
Operating Systems and Machine Principles COMP2129, 59, 68, 185
Operating Systems Internals COMP3520, 59, 186
Optical Communication Systems ELEC5511, 375
Optical Instrumentation and Imaging PHYS5021, 375, 376
Optical Materials and Methods PHYS5022, 375, 376
Optical Sources and Detectors PHYS5024, 375, 376
Optics/Cond. Matter/Astrophysics (Adv) PHYS3981, 82, 223
Optics/Cond. Matter/Astrophysics PHYS3081, 81, 223
Optics/Cond.Matter/High Energy Physics PHYS3080, 81, 223
Optics/Cond. Matter and Lab (Adv) PHYS3968, 82, 222
Optics/Cond. Matter and Lab PHYS3068, 80, 222
Optics/High Energy/Astrophysics (Adv) PHYS3982, 82, 224
Optics/High Energy/Astrophysics PHYS3082, 81, 223
Optics/High Energy Physics & Lab (Adv) PHYS3969, 82, 222
Optics/High Energy Physics & Lab PHYS3069, 80, 222
Optics in Industry PHYS5028, 375, 377
Optimisation & Financial Mathematics Adv MATH2970, 61, 73, 199
Optimisation and Financial Mathematics MATH2070, 61, 73, 198
Organic Structure and Reactivity (Adv) CHEM3911, 57, 164
Organic Structure and Reactivity CHEM3111, 57, 164
Palestine: Roman Rule to Islam JCTC1001, 239, 268
Pali A PALI1001, 275
Pali B PALI1002, 275
Parallel and Distributed Computing COMP5426, 324, 327
Partial Differential Equations (Intro) MATH2065, 73, 198
Partial Differential Equations Intro Adv MATH2965, 73, 198
Pathogenesis of Human Disease 1 CPAT3201, 54, 67, 160
Pathogenesis of Human Disease 2 CPAT3202, 54, 67, 161
Paths to Enlightenment RLST1001, 278
PDEs and Waves (Advanced) MATH3978, 58, 62, 74, 199, 202
PDEs and Waves MATH3078, 58, 62, 74, 199, 202
Perceptual Systems PSYC3013, 78, 86, 233, 380
Performance: Production & Interpretation PRFM2602, 275
Performance Histories PRFM3602, 275
Performance Studies Exchange PRFM1801, 275
Performance Studies Exchange PRFM2812, 275
Performance Studies Exchange PRFM2811, 275
Performance Studies Exchange PRFM2810, 275
Performance Studies Exchange PRFM2807, 275
Performance Studies Honours A PRFM4011, 275
Performance Studies Honours B PRFM4012, 275
Performance Studies Honours C PRFM4013, 275
Performance Studies Honours D PRFM4014, 275
Personality and Intelligence 1 PSYC2014, 86, 2007, 379
Personality and Intelligence 2 PSYC3015, 86, 233, 380
Pharmacology: Drugs and People PCOL2012, 77, 78, 9781741751024
Pharmacology Fundamentals PCOL2011, 77, 78, 9781741751024
Pharmacology Honours A PCOL4011, 114, 288
Pharmacology Honours B PCOL4012, 115, 288
Pharmacology Honours C PCOL4013, 115, 288
Pharmacology Honours D PCOL4014, 115, 288
Pharmacy and Literature PHIL6246, 276
Pharmacy and Psychoanalysis PHIL6266, 276
Pharmacy and Sociology of Biology HPSC3021, 66, 180
Pharmacy and the Science of Happiness PHIL7840, 382, 383, 392, 394
Pharmacy Exchange PHIL1801, 276
Pharmacy Exchange PHIL2804, 276
Pharmacy Exchange PHIL2805, 276
Pharmacy Exchange PHIL2806, 276
Pharmacy Exchange PHIL2810, 276
Pharmacy Exchange PHIL2811, 276
Pharmacy Exchange PHIL2812, 276
Pharmacy Honours A PHIL4011, 277
Pharmacy Honours B PHIL4012, 277
Pharmacy Honours C PHIL4013, 277
Pharmacy Honours D PHIL4014, 277
Pharmacy Law PHIL6245, 276
Pharmacy of Medicine BETH5102, 314, 315, 316, 318
Pharmacy of Mind PHIL6243, 276
Pharmacy of Religion: Reason & Belief RLST2621, 278
Philosophy of Science HPSC4101, 181, 287, 349
Phonetics LNGS2620, 270
Phonological Theory LNGS3606, 271
Phonology LNGS3621, 270
Physics 1A (Advanced) PHYS1901, 79, 217
Physics 1A (Regular) PHYS1001, 79, 216
Physics 1B (Advanced) PHYS1902, 79, 217
Physics 1B (Regular) PHYS1002, 79, 216
Physics 2A (Advanced) PHYS2911, 79, 218
Physics 2A PHYS2011, 79, 217
Physics 2B (Advanced) PHYS2912, 79, 218
Physics 2B PHYS2012, 79, 218
Physics Honours A PHYS4011, 289
Physics Honours B PHYS4012, 289
Physics Honours C PHYS4013, 289
Physics Honours D PHYS4014, 289
Physiology Honours A PHSI4011, 115, 288
Physiology Honours B PHSI4012, 115, 288
Physiology Honours C PHSI4013, 115, 288
Physiology Honours D PHSI4014, 115, 288
Plagiarism to Backpacker: Travel Histories HSTY2674, 264
Plant, Cell and Environment (Advanced) PLNT3901, 85, 229
Plant, Cell and Environment PLNT3001, 85, 229
Plant Biochem & Molecular Biology (Adv) PLNT2901, 52, 84, 228
Plant Biochemistry and Molecular Biology PLNT2001, 52, 84, 227
Plant Disease PPAT3003, 85, 231
Plant Form and Function (Advanced) PLNT2903, 53, 85, 229
Plant Form and Function PLNT2003, 53, 84, 154, 156, 228
Plant Growth and Development (Advanced) PLNT3902, 85, 230
Plant Growth and Development PLNT3002, 85, 156, 160, 229, 230
Plasma/Thermodynamics/Biophysics (Adv) PHYS3959, 81, 221
Plasma/Thermodynamics/Biophysics PHYS3059, 80, 221
Policy Analysis GOVT2552, 260
Political Analysis GOVT2991, 261
Political Economy Exchange ECOP3551, 277
Political Economy Exchange ECOP3552, 277
Political Economy Exchange ECOP3555, 277
Political Economy Exchange ECOP3556, 277
Political Economy Honours A ECOP4001, 277
Political Economy Honours B ECOP4002, 278
Political Economy Honours C ECOP4003, 278
Political Economy Honours D ECOP4004, 278
Political Economy Honours II ECOP2991, 277
Political Economy of Development ECOP3014, 277
Political Economy of the Environment ECOP3015, 277
Political Speech in Early Modern Drama ENGL3653, 255
Politics and Cultures of US Imperialism HSTY2667, 264
Politics of International Economic Rels GOVT2221, 260
Popular China ASNS3618, 248
Popular Culture in Australia 1850-1945 HSTY2604, 239, 263
Popular Music MUSC2654, 274
Positive Organisational Coaching PSYC4727, 382, 392, 393, 395
Power, Politics and Society SCLG2621, 280
Power and Money in Global Society INGS1001, 266
Power Electronics and Applications ELEC3204, 128
Power GOVT3993, 261
Power in Society GOVT1104, 260
Practical Ethics PHIL6217, 239, 276
Pre-Honours Seminar PHIL6218, 277
Principles of Animation DECO3006, 126
Principles of AutoCAD DECO2205, 126
Principles of Architecture DECO2204, 126
Principles of Histology ANAT2008, 126
Principles of ArchiCAD DECO3006, 127
Principles of Animation DECO3006, 126
Principles of Architecture DECO2205, 126
Principles of Animation DECO2204, 126
Principles of Histology ANAT2008, 126
Principles of Media Writing MECO1003, 271
Probability and Statistical Models (Adv) STAT2911, 61, 87, 203
Process Design CHNG3801, 127
Product Formulation and Design CHNG3805, 127
Production Horticulture HORT3005, 85, 231
Professional Engineering 1 ENGG1803, 125
Programming Languages and Paradigms COMP3109, 59, 186
Project and Report A MCAN5201, 353, 354, 355
Project and Report B MCAN5202, 353, 354, 355
Project and Report Part C MCAN5203, 354, 355
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>SANS3601</td>
<td>Sanskrit Advanced 1</td>
</tr>
<tr>
<td>SANS3602</td>
<td>Sanskrit Advanced 2</td>
</tr>
<tr>
<td>SANS2601</td>
<td>Sanskrit Intermediate 1</td>
</tr>
<tr>
<td>SANS2602</td>
<td>Sanskrit Intermediate 2</td>
</tr>
<tr>
<td>SANS1001</td>
<td>Sanskrit Introductory 1</td>
</tr>
<tr>
<td>SANS1002</td>
<td>Sanskrit Introductory 2</td>
</tr>
<tr>
<td>SANS4001</td>
<td>Sanskrit IV Honours A</td>
</tr>
<tr>
<td>SANS4002</td>
<td>Sanskit IV Honours B</td>
</tr>
<tr>
<td>SANS4003</td>
<td>Sanskrit IV Honours C</td>
</tr>
<tr>
<td>SANS4004</td>
<td>Sanskrit IV Honours D</td>
</tr>
<tr>
<td>SANS2612</td>
<td>Sanskrit Research Preparation 1</td>
</tr>
<tr>
<td>ICLS2635</td>
<td>Scientific Analysis of Materials</td>
</tr>
<tr>
<td>COSC3911</td>
<td>Scientific Computing (Advanced)</td>
</tr>
<tr>
<td>COSC3011</td>
<td>Scientific Computing</td>
</tr>
<tr>
<td>BIOL4015</td>
<td>Scientific Research in Biology</td>
</tr>
<tr>
<td>SCLG2612</td>
<td>Scottish Identity, History and Culture</td>
</tr>
<tr>
<td>SCLG2613</td>
<td>Self and Society</td>
</tr>
<tr>
<td>LNGS3601</td>
<td>Semiotics of Language</td>
</tr>
<tr>
<td>ENGL2619</td>
<td>Senior French Advanced 5</td>
</tr>
<tr>
<td>FRNC2621</td>
<td>Senior French Intermediate 2</td>
</tr>
<tr>
<td>FRNC2622</td>
<td>Senior French Intermediate 3</td>
</tr>
<tr>
<td>GRMN2611</td>
<td>Senior German 1</td>
</tr>
<tr>
<td>GRMN2612</td>
<td>Senior German 2</td>
</tr>
<tr>
<td>GRMN2613</td>
<td>Senior German 3</td>
</tr>
<tr>
<td>GRMN2614</td>
<td>Senior German 4</td>
</tr>
<tr>
<td>GRMN2615</td>
<td>Senior German 5</td>
</tr>
<tr>
<td>GRMN2616</td>
<td>Senior German 6</td>
</tr>
<tr>
<td>GRMN2617</td>
<td>Senior German 7</td>
</tr>
<tr>
<td>GRMN2618</td>
<td>Senior German 8</td>
</tr>
<tr>
<td>ITLN2631</td>
<td>Senior Italian 3</td>
</tr>
<tr>
<td>ITLN2632</td>
<td>Senior Italian 4</td>
</tr>
<tr>
<td>ITLN3611</td>
<td>Senior Italian 5</td>
</tr>
<tr>
<td>ITLN3612</td>
<td>Senior Italian 6</td>
</tr>
<tr>
<td>ITLN3613</td>
<td>Senior Italian 7</td>
</tr>
<tr>
<td>ITLN3614</td>
<td>Senior Modern Greek 1</td>
</tr>
<tr>
<td>GCRK2601</td>
<td>Social Anthropology Exchange</td>
</tr>
<tr>
<td>ANTH2810</td>
<td>Social Anthropology Exchange</td>
</tr>
<tr>
<td>ANTH2811</td>
<td>Social Anthropology Honours A</td>
</tr>
<tr>
<td>ANTH4011</td>
<td>Social Anthropology Honours B</td>
</tr>
<tr>
<td>ANTH2804</td>
<td>Social Anthropology Exchange</td>
</tr>
<tr>
<td>ANTH2805</td>
<td>Social Anthropology Exchange</td>
</tr>
<tr>
<td>ANTH2806</td>
<td>Social Anthropology Exchange</td>
</tr>
<tr>
<td>ANTH2810</td>
<td>Social Anthropology Exchange</td>
</tr>
<tr>
<td>ANTH2811</td>
<td>Social Anthropology Honours A</td>
</tr>
<tr>
<td>ANTH4011</td>
<td>Social Anthropology Honours B</td>
</tr>
<tr>
<td>ANTH4012</td>
<td>Social Anthropology Honours C</td>
</tr>
<tr>
<td>ANTH4013</td>
<td>Social Anthropology Honours D</td>
</tr>
<tr>
<td>GOVT2331</td>
<td>Social Change and Politics</td>
</tr>
<tr>
<td>SCLG2608</td>
<td>Social Construction of Difference</td>
</tr>
<tr>
<td>ECOP2012</td>
<td>Social Foundations of Modern Capitalism</td>
</tr>
<tr>
<td>SCLG2604</td>
<td>Social Inequality in Australia</td>
</tr>
<tr>
<td>SCLG2602</td>
<td>Social Inquiry: Research Methods</td>
</tr>
<tr>
<td>SCLG2605</td>
<td>Social Justice and Society</td>
</tr>
<tr>
<td>SCLG2607</td>
<td>Social Movements and Policy Making</td>
</tr>
<tr>
<td>MGRK2633</td>
<td>Social Norms/Stereotypes in Greek Cinema</td>
</tr>
<tr>
<td>PSYC3017</td>
<td>Social Psychology</td>
</tr>
<tr>
<td>ENVIS801</td>
<td>Social Science of Environment</td>
</tr>
<tr>
<td>SSCI3601</td>
<td>Social Sciences Internship</td>
</tr>
<tr>
<td>ARIS3675</td>
<td>Society, Knowledge and Self</td>
</tr>
<tr>
<td>PHIL1013</td>
<td>Society and Politics in the Middle East</td>
</tr>
<tr>
<td>SCLG2605</td>
<td>Social Justice Law and Society</td>
</tr>
<tr>
<td>SCLG2604</td>
<td>Social Inquiry: Research Methods</td>
</tr>
<tr>
<td>SCLG4011</td>
<td>Sociology Honours A</td>
</tr>
<tr>
<td>SCLG4012</td>
<td>Sociology Honours B</td>
</tr>
<tr>
<td>SCLG4013</td>
<td>Sociology Honours C</td>
</tr>
<tr>
<td>SCLG4014</td>
<td>Sociology Honours D</td>
</tr>
<tr>
<td>MGRK2691</td>
<td>Sociolinguistics in the Greek Diaspora</td>
</tr>
<tr>
<td>SCLG2601</td>
<td>Sociolinguistics in the Greek Diaspora</td>
</tr>
<tr>
<td>SCLG1801</td>
<td>Sociology Exchange</td>
</tr>
<tr>
<td>SCLG2805</td>
<td>Sociology Exchange</td>
</tr>
<tr>
<td>SCLG2806</td>
<td>Sociology Exchange</td>
</tr>
<tr>
<td>SCLG2809</td>
<td>Sociology Exchange</td>
</tr>
<tr>
<td>SCLG2810</td>
<td>Sociology Exchange</td>
</tr>
<tr>
<td>SCLG2811</td>
<td>Sociology Exchange</td>
</tr>
<tr>
<td>SCLG2812</td>
<td>Sociology Exchange</td>
</tr>
<tr>
<td>SCLG4011</td>
<td>Sociology Honours A</td>
</tr>
<tr>
<td>SCLG4012</td>
<td>Sociology Honours B</td>
</tr>
<tr>
<td>SCLG4013</td>
<td>Sociology Honours C</td>
</tr>
<tr>
<td>SCLG4014</td>
<td>Sociology Honours D</td>
</tr>
<tr>
<td>SCLG2613</td>
<td>Sociology of Childhood and Youth</td>
</tr>
<tr>
<td>SCLG2625</td>
<td>Sociology of Friendship</td>
</tr>
<tr>
<td>SCLG2626</td>
<td>Sociology of Religion</td>
</tr>
<tr>
<td>SCLG2605</td>
<td>Sociology of Science</td>
</tr>
<tr>
<td>PRFM2604</td>
<td>Sociology of Theatre</td>
</tr>
<tr>
<td>COMP5214</td>
<td>Software Development Project</td>
</tr>
<tr>
<td>SOIL2003</td>
<td>Soil Properties and Processes</td>
</tr>
<tr>
<td>SOIL4021</td>
<td>Soil Science Honours A</td>
</tr>
</tbody>
</table>
Index by name

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL3615</td>
<td>The Rhetoric of the Streets</td>
</tr>
<tr>
<td>HSTY2668</td>
<td>The Rise and Fall of the First Reich</td>
</tr>
<tr>
<td>MECH3260</td>
<td>Thermal Engineering</td>
</tr>
<tr>
<td>PHYS3951</td>
<td>Thermodynamics/Biophysics & Lab (Adv)</td>
</tr>
<tr>
<td>PHYS3051</td>
<td>Thermodynamics/Biophysics & Lab</td>
</tr>
<tr>
<td>AMME2200</td>
<td>Thermodynamics and Fluids</td>
</tr>
<tr>
<td>HPSC3016</td>
<td>The Scientific Revolution</td>
</tr>
<tr>
<td>FRNC2692</td>
<td>The Second French Revolution</td>
</tr>
<tr>
<td>ANTH2655</td>
<td>The Social Production of Space</td>
</tr>
<tr>
<td>SOIL3010</td>
<td>The Soil at Work</td>
</tr>
<tr>
<td>SOIL2004</td>
<td>The Soil Resource</td>
</tr>
<tr>
<td>ANHS2608</td>
<td>The World Turned Upside Down</td>
</tr>
<tr>
<td>PHYS3915</td>
<td>Topics in Senior Physics A (Advanced)</td>
</tr>
<tr>
<td>PHYS3915</td>
<td>Topics in Senior Physics A</td>
</tr>
<tr>
<td>PHYS3025</td>
<td>Topics in Senior Physics B</td>
</tr>
<tr>
<td>LAWS1017</td>
<td>Torts and Contracts II</td>
</tr>
<tr>
<td>LAWS1010</td>
<td>Torts</td>
</tr>
<tr>
<td>LAWS1012</td>
<td>Torts</td>
</tr>
<tr>
<td>PCOL3911</td>
<td>Toxicology (Advanced)</td>
</tr>
<tr>
<td>PCOL3011</td>
<td>Toxicology (Advanced)</td>
</tr>
<tr>
<td>ASNS2641</td>
<td>Traditional Korea</td>
</tr>
<tr>
<td>ENGL2651</td>
<td>Transatlantic Negotiations</td>
</tr>
<tr>
<td>KRNS2671</td>
<td>Transnationalism, Gender & Globalisation</td>
</tr>
<tr>
<td>GEOS2922</td>
<td>Transnational Spaces and Networks</td>
</tr>
<tr>
<td>GEOS2122</td>
<td>Tropical Wildlife Biol & Management</td>
</tr>
<tr>
<td>BIOL3010</td>
<td>Tropical Wildlife Biology and Management</td>
</tr>
<tr>
<td>HPIL2621</td>
<td>Truth, Meaning and Language</td>
</tr>
<tr>
<td>HSTY1044</td>
<td>Twentieth Century Europe</td>
</tr>
<tr>
<td>HPIL2600</td>
<td>Twentieth Century Philosophy</td>
</tr>
<tr>
<td>GEOS3911</td>
<td>Understanding Australia's Regions (Adv)</td>
</tr>
<tr>
<td>GEOS3511</td>
<td>Understanding Australia's Regions</td>
</tr>
<tr>
<td>BIOL3025</td>
<td>Understanding Cancer Causes & Therapies</td>
</tr>
<tr>
<td>CHNS1601</td>
<td>Understanding Contemporary China</td>
</tr>
<tr>
<td>DECO1006</td>
<td>Understanding Design and Cognition</td>
</tr>
<tr>
<td>ENVI5904</td>
<td>Understanding Environmental Uncertainty</td>
</tr>
<tr>
<td>GEOS2914</td>
<td>Volcanoes, Hot Rocks and Minerals (Adv)</td>
</tr>
<tr>
<td>GEOS2114</td>
<td>Volcanoes, Hot Rocks and Minerals</td>
</tr>
<tr>
<td>LAWS6191</td>
<td>Water Law</td>
</tr>
<tr>
<td>ARIN2610</td>
<td>Web Production</td>
</tr>
<tr>
<td>SCLG2611</td>
<td>Welfare States: A Comparative Analysis</td>
</tr>
<tr>
<td>HPSC2101</td>
<td>What Is This Thing Called Science?</td>
</tr>
<tr>
<td>HSTY2683</td>
<td>Violence in Chinese History</td>
</tr>
<tr>
<td>WILD5003</td>
<td>Wildlife Health</td>
</tr>
<tr>
<td>MATH2916</td>
<td>Working Seminar A (SSP)</td>
</tr>
<tr>
<td>MATH2917</td>
<td>Working Seminar B (SSP)</td>
</tr>
<tr>
<td>GOVT1202</td>
<td>World Politics</td>
</tr>
<tr>
<td>ASLT2617</td>
<td>Writing and Justice</td>
</tr>
<tr>
<td>ASLT2620</td>
<td>Writing Australian Nature</td>
</tr>
<tr>
<td>HSTY2691</td>
<td>Writing History</td>
</tr>
<tr>
<td>YDDH1101</td>
<td>Yiddish 1</td>
</tr>
<tr>
<td>YDDH1102</td>
<td>Yiddish 2</td>
</tr>
<tr>
<td>YDDH2603</td>
<td>Yiddish 3</td>
</tr>
<tr>
<td>YDDH2604</td>
<td>Yiddish 4</td>
</tr>
<tr>
<td>YDDH3605</td>
<td>Yiddish 5</td>
</tr>
<tr>
<td>YDDH3606</td>
<td>Yiddish 6</td>
</tr>
<tr>
<td>GCST2612</td>
<td>Youth Cultures</td>
</tr>
</tbody>
</table>

510
2010 handbook
maps

Quick links:
www.usyd.edu.au/maps
Campuses
Bicycle map
Precincts
Disability access
Parking layout

Set a course for Handbooks online: www.usyd.edu.au/handbooks
Course planner

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester</th>
<th>Unit of study 1 & credit points</th>
<th>Unit of study 2 & credit points</th>
<th>Unit of study 3 & credit points</th>
<th>Unit of study 4 & credit points</th>
<th>Total credit points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>summer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>winter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total credit points