Clinical and Molecular Biological Studies in Hirschsprung’s Disease.

GDH Croaker
MB BS (Syd), FRACS, FRCS.

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, University of Sydney.

Department of Surgery,
Children’s Hospital at Westmead,
(to end 1998)
and
Department of Paediatric Surgery,
Nottingham City Hospital and Queen’s Medical Centre and University Hospital,
Nottingham,
UK.
(1999 to present)
March 2002
I hereby certify that the work presented herein is the result of original research, and is not being submitted for a higher degree to any other university or institution. All laboratory work was principally carried out by the author, with some assistance, as noted in the acknowledgements on page 4.

Geoffrey David Hain Croaker
Date
Ethics Clearance.

The studies described in this thesis were approved by the ethics committee of the New Children’s Hospital at Westmead, and by the ethics committee at the Queen’s Medical Centre, Nottingham. (Studies in chapters on respiratory control and electrogastrography.) All involved families gave informed consent for the studies.
Dedication

To my family who tolerated my preoccupation and many absences.

And to the patients, who were (mostly) patient with me.

Acknowledgements

The author wishes to thank:

The Royal Australasian College of Surgeons, whose support partly financed this work.

Individual members of the RACS who were gracious in allowing access to clinical material.

The Australian Pseudo-Obstruction Support Association who provided invaluable help with patient follow up. I am especially grateful to Eunice Gribbin of that organisation for the benefit of her time and experience.

All the individual patients and their parents in both Britain and Australia who were helpful and supportive.

Prof. Aravinda Chakravarti for his help and hospitality in Cleveland, Ohio.

Prof. Lois Mulligan, and her lab. for help and hospitality in Kingston, Ontario.

Prof. Sandy Raeburn and Dr Harish Vyas of Nottingham for their invaluable support.

Dr Pär-Johan Svensson and his family of Stockholm for their hospitality.

Dr Richard Hubbard of Nottingham City Hospital for statistical advice.

Juan Carlos Echeverria’s advice, enthusiasm for the arcana of fractal analysis, and mathematical expertise is gratefully acknowledged, and with it, the contribution of the Mexican Council for Science and Technology (CONACYT) to his financial support is duly acknowledged.

Dr C Seton & Dr K Waters of the Royal Alexandra Hospital sleep unit for their comments and advice on issues related to studies of sleep apnoea.

Dr Jeff Wright of QMC, Nottingham for sharing his experience with the EGG machine.

Ms Christiane Arndt, who spent a month visiting from Germany doing EGG studies for me.

Mr Jonathon Sutcliffe of Nottingham for suggesting the title of Chapter 8. (“Ondine’s Grumble.”)

Mr Mark Linder for help with the hard work of screening many exons of GFRα1, and for composing a hymn to chocolate cake still remembered by my family.

The members of the Paediatric Surgical Lab. at the New Children’s Hospital, Westmead: in particular Pat Manglick, and Guo-Chen Yang.

The Australian Paint Horse Society for enthusiastic support and help in work with the overo paint horse, and an insight into horse breeding. I also have to thank their members for the photographs reprinted in appendix 8.

And of course, my thanks to Prof. Danny Cass for inviting me to try my hand at last at basic research, and giving me his patient support over a number of years.
Abstract:

HSCR has been felt to be a polygeneic disease on the basis of an incompletely penetrant sex modified transmission, which may be either autosomal dominant or recessive in different kindreds. During the 1990’s several of the genes involved in this transmission have come to light. Other genes remain to be discovered.

This thesis contributes to the understanding of the phenotype and genotype of polygeneic HSCR.

- A unique distribution of aganglionosis and sex distribution is shown for Ondine’s Curse, Hirschsprung disease (Haddad syndrome). Certain other features of this condition are defined.
- The distribution of associated abnormalities in Down Syndrome is shown to be affected by the presence of HSCR.
- A locus on chromosome 2 was defined which has since been shown to be the site of the SMADIP1 gene, mutated in some syndromic cases of HSCR.
- GDNF mutations are shown to be rare contributors to HSCR. One particular polymorphism (“R93W”) is demonstrated which probably contributes to the phenotype in association with RET mutations.
- The T366A polymorphism in GFRα1 shows a tendency to be under-represented in HSCR.
- The RET haplotype comprising polymorphisms in exons 11 and 15 is shown to be rarer in HSCR than in control populations.
- Consistent with the presence of mutations in genes widely expressed in the developing nervous system, more widespread subtle abnormalities are demonstrated in the autonomic system of HSCR patients than simply colonic aganglionosis.
- The outcome of DS/HSCR is shown to be dependent on not only length of aganglionosis, and the presence of other associated malformations, but also the child’s developmental capacity.

The above findings support the polygeneic nature of HSCR, and expand the range of genetic loci in the disease, as well as expanding the range of phenotype in the condition.
Publications and presentations directly arising from the thesis:

“Congenital Central Hypoventilation Syndrome and Hirschsprung’s Disease” Croaker GDH, Shi E, Simpson E, Cartmill T, Cass DT. Archives of Disease in Childhood, 78(4):316 - 322. (April 1998.)

Presentations:

"Late presentation of Hirschsprung's disease." Kumar R, Croaker GDH, Cass DT. PAPS meeting, Peking, May 1999

“Electrogastrogram (EGG) suggests diffuse disorder in Hirschsprung’s (HSCR) gut.” C Arndt, B Davies, GDH Croaker. Presented to surgical research club of BAPS, London, July 2001
Publications and presentations arising in conjunction with the thesis:

“Segregation of 9q susceptibility gene in RET-linked Hirschsprung Families” S Bolk, M Angrist, D Croaker, L Kruglyak, A Chakravarti. Poster at Annual Meeting of American Society of Human Genetics, San Francisco. October 1996. (Work contributing to a PhD project for S Bolk, Case Western Reserve University, Cleveland Ohio.)

Published as:

Presentations:

“Nottingham experience of primary laparoscopic endorectal pullthrough for Hirschsprung’s.” AR Williams, RJ Stewart, GDH Croaker. AAPS meeting (with RACS), Melbourne. May 2000

Index:
Declaration 2
Dedication & Acknowledgements 4
Abstract. 5
Publications. 6
Index. 8
List of tables. 11
List of figures 11
Abbreviations 13

Chap 1. Aims and hypotheses 17

Chap 2. Literature review. 20
2.1 Background. 21
2.2 Genetics. 22
2.3 RET 23
2.4 Other genes.
 2.4.1 GDNF 30
 2.4.2 Importance of GFRα1 33
 2.4.3 NTN and other TGFβ related proteins 34
 2.4.4 RET downstream signalling. 35
 2.4.5 Endothelin related genes. 35
 2.4.6 SOX 10 42
 2.4.7 Putting it together: 44
2.5 Associated conditions. 46
 2.5.1 Down syndrome. 48
 2.5.2 Goldberg/Shprintzen syndrome 51
 2.5.3 Haddad Syndrome and related disturbances. 51
 2.5.4 Other conditions. 54
 2.5.5 Reports of karyotype anomalies 55
 2.5.6 Children presenting late. 56
2.6 Alternative theories of aetiology. 56
2.7 Summary 57
2.8 Molecular biology summary 58

Chap 3. Clinical cases and demographics. 61
3.1 Aims 62
3.2 Materials and methods: 62
3.3 Results: Details of NSW HSCR population. 63
 3.3.1 Incidence 63
 3.3.2 Maternal & neonatal details 65
 3.3.3 Fam. hist., length, sex. 66
 3.3.4 Associated features. 69
 3.3.5 Enterocolitis 77
 3.3.6 Late diagnosed HSCR. 77
3.4 Discussion. 80
3.5 Summary. 84

Chap 4. Down Syndrome/ Hirschsprung Association. 86
4.1 Hypothesis. 87
4.2 Introduction. 87
4.3 Materials and methods. 88
4.4 Results. 88
 4.4.1 Epidemiology. 88
 4.4.2 Karyotype. 90
 4.4.3 Length of aganglionosis. 91
 4.4.4 Family History. 92
4.4.5 Associated conditions. 92
4.5 Discussion. 96
4.5.1 Incidence and associated features. 96
4.5.2 Karyotype and genetic considerations: 99
4.5.3 Congenital heart disease. 100
4.5.4 Neuronal dysplasia. 101
4.5.5 Neuroblastoma 102
4.5.6 Enterocolitis. 102
4.7 Summary. 102

Chap 5. Outcome in Down Syndrome Hirschsprung Disease. 104
5.1 Introduction. 105
5.2 Materials and methods. 105
5.3 Results. 106
5.3.1 Mortality. 106
5.3.2 Follow up. 107
5.3.2.1 Growth. 107
5.3.2.2 Constipation. 108
5.3.2.3 Continence. 108
5.4 Discussion. 113
5.4.1 General. 113
5.4.2 Prediction of outcome. 116
5.5 Summary. 119

Chap 6. Characterisation of microcephaly, mental retardation, HSCR syndrome associated with 2q22 locus. 120
6.1 Background 121
6.2 Materials and methods. 121
6.2.1 Microsatellites. 122
6.3 Results. 123
6.4 Discussion. 125
6.5 Gene screening. 125
6.6 Future work. 127

Chap 7. Ondine’s Curse and Hirschsprung’s Disease. 130
7.1 Introduction. 131
7.2 Materials and methods. 131
7.3 Case presentations. 132
7.4 Review of published cases. 138
7.5 Discussion: Features of the syndrome. 139
7.5.1 Sex ratio and length of aganglionosis. 140
7.5.2 Patterns of Hypoventilation. 142
7.5.3 Associated features. 143
7.5.4 Incidence. 145
7.5.5 Genetics. 146
7.6 Recommendations for treatment. 147
7.7 Summary. 149

Chap 8. Autonomic monitoring of HSCR patients. 150
8.1 Ondine’s Grumble, not Ondine’s Curse?: Pulse oximetry and pulse variability in HSCR.
8.1.1 Hypothesis and introduction. 151
8.1.2 Materials and methods. 152
8.1.3 Results. 1) Desaturation. 154
2) Pulse variability. 157
3) Response to hypoxia. 158
8.1.4 Discussion. 158
8.1.5 Conclusion. 162
8.1.6 Further work and long term follow up. 162
References (by chapter.)
Chap. 1 229
Chap. 2 229
Chap. 3 242
Chap. 4 244
Chap. 5 247
Chap. 6 248
Chap. 7 249
Chap. 8 252
Chap. 9 255
Chap. 10 260

List of tables.
Table 2.1 RET mutation screening papers. 26
Table 2.2 RET genotype - phenotype correlation. (Eng 1996) 29
Table 2.3 Summary of results of screening GDNF. 33
Table 2.4 Summary of selected HSCR genes. 46
Table 3.1 HSCR associated conditions (NSW series.) 70
Table 3.2 Details of patients with structural cardiac lesions. 74
Table 4.1 DS demographic features. 90
Table 4.2 DS & HSCR associated features. 94
Table 5.1 Overall DS/HSCR series numbers. 107
Table 5.2 Scoring incontinence risk factors. 118
Table 6.1 Chromosome 2 microsatellites. 122
Table 6.2 Mapping of loss of heterozygosity. 124
Table 7.1 Details of NSW Ondine’s Curse (OC) patients. 137
Table 7.2 Review of published OC/HSCR patients. 138
Table 8.1 Desaturation times for HSCR and controls. 154
Table 8.2 Pulse variability results 157
Table 8.3 EGG patient details. 167
Table 8.4 EGG power and frequency in 12 studies. 168
Table 9.1 Primers and results for GFRα1 screening. 189
Table 9.2 Carriers of Y85N polymorphism of GFRα1. 191
Table 9.4 Comparison of T366A alleles in HSCR and controls. 194
Table 9.5 Primers and SSCP results for RET screening. 197
Table appendix 2 DS demographic data. 211
Table Appendix 4. Chromosome 2 microsatellite details. 213

List of figures.
Fig. 2.1 Distribution of mutations in published RET screening series. 26
Fig. 3.1 Incidence of HSCR in NSW and the ACT by year. 63
Fig. 3.2 Incidence of HSCR by month of birth. 64
Fig. 3.3 Variation of sex ratio with length aganglionosis. 68
Fig. 3.4 Distribution of lengths of aganglionosis in NSW. 68
Fig. 3.5 Pigmentary anomalies. 71
Fig. 3.6 Percentage early diagnosis by 5 year period. 78
Abbreviations.

ACE Antegrade Continence Enema
ADHD Attention Deficit Hyperactivity Disorder
AS/AI Aortic Stenosis/Aortic Incompetence
ASD Atrial Septal Defect
BAER Brain Stem Auditory Evoked Response
BAPS British Association of Paediatric Surgeons
BSAER Brain Stem Auditory Evoked Response
BW Birth Weight
CA Colonic Atresia
CCHS Congenital Central Hypoventilation Syndrome. (Also Ondine’s Curse.)
CHD Congenital Heart Disease
CNS: Central nervous system
CSC Chronic Severe Constipation
CXR Chest X ray
DA Duodenal Atresia
DC Descending Colon
DGGE Denaturing Gradient Gel Electrophoresis.
DS: Down syndrome
ECE-1 Endothelin converting enzyme 1.
EDNRB: endothelin B receptor.
EGG ElectroGastroGram
ENS: Enteric nervous system
ET3: endothelin 3
FISH Fluorescence In Situ Hybridisation.
FMTC Familial Medullary Thyroid Carcinoma
GA General Anaesthetic
GDNF: Glial Derived Neurotrophic Factor.
GFRα1: GDNF family receptor alpha type 1. (Also types 2, 3, and 4 are known, and may be mentioned.)

GOR Gastro-Oesophageal Reflux

HAEC: Hirschsprung’s associated enterocolitis.

HSCR: Hirschsprung’s disease.

DS/HSCR: Down syndrome and Hirschsprung disease.

HVA HomoVanillic Acid

ICU Intensive Care Unit

IMV Intermittent Mandatory Ventilation

IND Intestinal Neuronal Dysplasia

ICAM1 Intercellular Adhesion Molecule 1

IET Impedance Electrical Tomography. A method of measuring the gastric (or other hollow viscus) volume indirectly by passage of an electric current.

IVH Intra Ventricular Haemorrhage

LICAM Cell Adhesion molecule, the gene for which is mutated in X linked hydrocephalus.

LS Long segment (aganglionosis)

LWF Lethal White Foal (Horse model of aganglionosis.)

MASH-1 Mammalian AchaeteScute Homologous gene

Mb Megabase. (One million DNA bases.)

MEN Multiple Endocrine Neoplasia. (Types, 1, 2a and 2b)

MITF Microphthalmia-Associated Transcription Factor. (Associated with Waardenberg type 2.)

MIS Mullerian Inhibitory Substance

µl microlitres

mM millimoles

MRI Magnetic Resonance Imaging

NEC Necrotising EnteroColitis

NID See IND

NR Normal Range

NTN Neurturin

OA/TOF Oesophageal Atresia/Tracheo-Oesophageal Fistula

OC: Ondine’s curse. (Also known as: CCHS: Congenital Central Hypoventilation Syndrome)
PAGE: PolyAcrylamide Gel Electrophoresis

PAX3 Paired Box 3. (Homeobox gene involved in Waardenburg type 1.)

PCR Polymerase Chain Reaction

PDA Patent Ductus Arteriosus

PDF Period Dominant Frequency (in EGG recordings)

PJ Proximal Jejunum

PPG Pulse PlethysmoGraphy

R93W Change from arginine to tryptophan at position 93 in GDNF. (This shorthand is generally used for amino acid changes due to mutation. [original amino acid-position number-new amino acid] The same letter before and after the number indicates a silent base pair substitution, e.g. R143R.)

REM Rapid Eye Movement (sleep)

RET: The full name of a membrane bound tyrosine kinase receptor. (Originally: “REarranged through Transfection)

RFLP Restriction Fragment Length Polymorphism

rnx Homeobox gene Hox11L2

RSB: Rectal suction biopsy

SD Standard Deviation

SIDS Sudden Infant Death Syndrome

SIP1 See SMADIP1

SLOS Smith Lemli Opitz Syndrome

SMADIP1 SMAD Interacting Protein 1. (Also known as SIP1, a HSCR gene on chromosome 2.)

SOX10 Sry related bOX 10. A gene for a transcription factor implicated in some HSCR.

SpO2 Pulse Oxygen Saturation

SS Short Segment (Aganglionosis)

SSCP: Single Stranded Conformational Polymorphism

taq Type of DNA polymerase enzyme used in PCR

TCA Total Colonic Aganglionosis

TGFβ Transforming Growth Factor Beta

TIA Total Intestinal Aganglionosis

TPN Total Parenteral Nutrition
UDT Undescended Testis
UTI Urinary Tract Infection.

VATER VATER association: Vertebral Ano-rectal Tracheo-Esophageal Renal association.

VMA Vanillyl Mandelic Acid
VSD Ventricular Septal Defect
VUR Vesico-Ureteric Reflux
WS Waardenburg Syndrome