PLATES 17a and 17b ILLUSTRATE SURFACES FOLLOWING THE CAVITRON ULTRASONIC SCALER AT THREE QUARTER AMPLITUDE SETTING

PLATE 17a (Upper Photograph) - Infra-attachment root surface (20x). No dentine exposed; cementum intact.

PLATE 17b (Lower Photograph) - Infra-attachment root surface (1000x). Sharpey's fibre mounds present.
PLATES 18a and 18b ILLUSTRATE SURFACES FOLLOWING THE CAVITRON ULTRASONIC SCALER AT THREE QUARTER AMPLITUDE SETTING.

PLATE 18a (Upper Photograph) - Supra-attachment root surface (20x). No dentine exposed; cementum intact.

PLATE 18b (Lower Photograph) - Supra-attachment root surface (1000x). Mineralized pellicle masking underlying cementum.
PLATES 19a and 19b ILLUSTRATE SURFACES FOLLOWING THE CAVITRON ULTRASONIC SCALER AT THREE QUARTER AMPLITUDE SETTING.

PLATE 19a (Upper Photograph) - Acrylic surface (20x)
Little alteration to surface.

PLATE 19b (Lower Photograph) - Acrylic surface (1000x)
Shallow scratch marks occur in areas.
PLATES 20a and 20b ILLUSTRATE SURFACES FOLLOWING THE CAVITRON ULTRASONIC SCALER AT FULL AMPLITUDE SETTING.

PLATE 20a (Upper Photograph) - Infra-attachment root surface (20x). Dentine exposed in large area; surrounding areas of cementum intact.

PLATE 20b (Lower Photograph) - Infra-attachment root surface (1000x). Some shallow irregularities; other areas relatively smooth.
PLATES 21a and 21b ILLUSTRATE SURFACES FOLLOWING THE CAVITRON ULTRASONIC SCALER AT FULL AMPLITUDE SETTING.

PLATE 21a (Upper Photograph) - Supra-attachment root surface (20x); heavy operator pressure used. Shows large area of exposed dentine; calculus is present in upper right hand corner.

PLATE 21b (Lower Photograph) - Supra-attachment root surface (1000x); heavy operator pressure used. Shallow irregularities in areas; other areas relatively smooth.
PLATES 22a and 22b ILLUSTRATE SURFACES FOLLOWING THE CAVITRON ULTRASONIC SCALER AT FULL AMPLITUDE SETTING.

PLATE 22a (Upper Photograph) - Acrylic surface (20x). Removal of acrylic in large area; surrounding areas of acrylic intact.

PLATE 22b (Lower Photograph) - Acrylic surface (1000x). Shallow irregularities in areas; other areas relatively smooth.
PLATES 23a and 23b ILLUSTRATE SURFACES FOLLOWING THE AMDENT ULTRASONIC SCALER AT THREE QUARTER AMPLITUDE SETTING.

PLATE 23a (Upper Photograph) - Infra-attachment root surface (20x). No dentine exposed; cementum intact.

PLATE 23b (Lower Photograph) - Infra-attachment root surface (1000x). Sharpey's fibre mounds are present, however, slightly masked by surface fibrils. Artefactual cracks occurred during specimen preparation.
PLATES 24a and 24b ILLUSTRATE SURFACES FOLLOWING THE AMIDENT ULTRASONIC SCALER AT THREE QUARTER AMPLITUDE SETTING.

PLATE 24a (Upper Photograph) - Supra-attachment root surface (20x). No dentine exposed; cementum intact.

PLATE 24b (Lower Photograph) - Supra-attachment root surface (1000x). Mineralized pellicle (upper right of picture) masking underlying cementum.
PLATES 25a and 25b ILLUSTRATE SURFACES FOLLOWING THE AMDENT ULTRASONIC SCALER AT THREE QUARTER AMPLITUDE SETTING.

PLATE 25a (Upper Photograph) - Acrylic surface (20x).
Little alteration to surface.

PLATE 25b (Lower Photograph) - Acrylic surface (1000x).
Shallow scratch marks occur in areas.
PLATES 26a and 26b ILLUSTRATE SURFACES FOLLOWING THE AMIDENT ULTRASONIC SCALER AT FULL AMPLITUDE SETTING.

PLATE 26a (Upper Photograph) - Infra-attachment root surface (20x). Cementum intact.

PLATE 26b (Lower Photograph) - Infra-attachment root surface (1000x). Shallow irregularities in areas; other areas relatively smooth.
PLATES 27a and 27b ILLUSTRATE SURFACES FOLLOWING
THE Amdent ULTRASONIC SCALER AT FULL AMPLITUDE
SETTING.

PLATE 27a (Upper Photograph) - Supra-attachment root
surface (20x). Cementum intact; calculus is present
in upper right and upper left hand corners.

PLATE 27b (Lower Photograph) - Supra-attachment root
surface (1000x). Shallow irregularities in areas;
other areas relatively smooth.
PLATES 28a and 28b ILLUSTRATE SURFACES FOLLOWING THE AMIDENT ULTRASONIC SCALER AT FULL AMPLITUDE SETTING.

PLATE 28a (Upper Photograph) - Acrylic surface (20x). Little alteration to surface.

PLATE 28b (Lower Photograph) - Acrylic surface (1000x). Shallow scratch marks are evident.
PLATES 29a and 29b ILLUSTRATE SURFACES FOLLOWING THE ODONTOSON ULTRASONIC SCALER AT HALF AMPLITUDE SETTING

PLATE 29a (Upper Photograph) - Infra-attachment root surface (20x). Dentine exposed in area; surrounding areas of cementum intact.

PLATE 29b (Lower Photograph) - Infra-attachment root surface (1000x). Right picture shows deep irregularities; left picture shows a relatively smooth adjacent area.
PLATES 30a and 30b ILLUSTRATE SURFACES FOLLOWING THE ODONTOSON ULTRASONIC SCALER AT HALF AMPLITUDE SETTING

PLATE 30a (Upper Photograph) - Acrylic surface (20x). Removal of acrylic in large area; surrounding areas of acrylic intact.

PLATE 30b (Lower Photograph) Acrylic surface (1000x). Deep irregularities in areas; other areas relatively smooth.
PLATES 31a and 31b ILLUSTRATE SURFACES FOLLOWING THE ODONTOSON ULTRASONIC SCALER AT THREE QUARTER AMPLITUDE SETTING.

PLATE 31a (Upper Photograph) - Infra-attachment root surface (20x). Dentine exposed in large area.

PLATE 31b (Lower Photograph) - Infra-attachment root surface (1000x). Deep irregularities in areas; other areas relatively smooth.
PLATES 32a and 32b ILLUSTRATE SURFACES FOLLOWING THE ODONTOSON ULTRASONIC SCALER AT THREE QUARTER AMPLITUDE SETTING

PLATE 32a (Upper Photograph) - Acrylic surface (20x). Removal of acrylic in large area; surrounding areas of acrylic intact.

PLATE 32b (Lower Photograph) - Acrylic surface (1000x). Deep irregularities in areas; other areas relatively smooth.
PLATES 33a and 33b ILLUSTRATE SURFACES FOLLOWING A SHARP CURETTE

PLATE 33a (Upper Photograph) - Infra-attachment root surface (20x). Dentine exposed to uniform depth in most of instrumented area.

PLATE 33b (Lower Photograph) - Infra-attachment root surface (1000x). Shallow irregularities over most of instrumented area.
PLATES 34a and 34b ILLUSTRATE SURFACES FOLLOWING A SHARP CURETTE

PLATE 34a (Upper Photograph) - Acrylic surface (20x). Acrylic removed in most of instrumented area.

PLATE 34b (Lower Photograph) - Acrylic surface (1000x). Shallow irregularities over most of instrumented area.
PLATES 35a and 35b ILLUSTRATE SURFACES FOLLOWING SHARP HAND INSTRUMENTS

PLATE 35a (Upper Photograph) - Infra-attachment root surface (20x) following use of a sharp hoe. Dentine exposed in large areas (right of picture); varying depths of tooth structure removed.

PLATE 35b (Lower Photograph) Infra-attachment root surface (1000x) following use of a sharp hoe. Deep irregularities evident.
PLATES 36a and 36b ILLUSTRATE SURFACES FOLLOWING SHARP HAND INSTRUMENTS

PLATE 36a (Upper Photograph) - Supra-attachment root surface (20x) following use of a sharp scaler. Dentine exposed in large area.

PLATE 36b (Lower Photograph) - Supra-attachment root surface (1000x) following use of a sharp scaler. Deep irregularities evident.
PLATES 37a and 37b ILLUSTRATE SURFACES FOLLOWING DULL HAND INSTRUMENTS

PLATE 37a (Upper Photograph) - Infra-attachment root surface (20x) following a dull curette. Small areas of dentine exposed; most of cementum intact.

PLATE 37b (Lower Photograph) - Infra-attachment root surface (1000x) following a dull curette. Smoothness over most of instrumented area.
PLATES 38a and 38b ILLUSTRATE SURFACES FOLLOWING DULL HAND INSTRUMENTS

PLATE 38a (Upper Photograph) - Supra-attachment root surfaces (20x) following a dull scaler. Small areas of dentine exposed; most of cementum intact.

PLATE 38b (Lower Photograph) - Supra-attachment root surface (1000x) following a dull scaler. Smoothness over most of instrumented area; mineralized pellicle not removed.
PLATES 39a and 39b COMPARE SURFACES FOLLOWING COMBINATIONS OF HAND AND ULTRASONIC INSTRUMENTS WITH A SURFACE FOLLOWING A SHARP CURETTE

PLATE 39a (Upper Photograph) - Infra-attachment root surface (100x) following a sharp curette. Dentine surface shows friction-produced undulating ridges running perpendicular to direction of stroke. Shallower, finer grooves run vertically across the larger ridges.

PLATE 39b (Lower Photograph) - Infra-attachment root surface (1000x) following a sharp curette. Shallow irregularities are present.
PLATES 40a and 40b COMPARE SURFACES FOLLOWING
COMBINATIONS OF HAND AND ULTRASONIC INSTRUMENTS
WITH A SURFACE FOLLOWING A SHARP CURETTE

PLATE 40a (Upper Photograph) - Infra-attachment root
surface (100x) following a sharp curette, then
Cavitron at three quarter setting. Perpendicular
ridges and finer grooves have been smoothed in areas
by the ultrasonic instrument.

PLATE 40b (Lower Photograph) - Infra-attachment root
surface (1000x) following sharp curette, then
Cavitron at three quarter setting. Shows relatively
smooth area. (Cut dentinal tubulues can be seen).
PLATES 41a and 41b compare surfaces following combinations of hand and ultrasonic instruments with a surface following a sharp curette.

PLATE 41a (Upper Photograph) - Infra-attachment root surface (100x) following Cavitron at three quarter setting, than a sharp curette. Perpendicular ridges and finer grooves (though shallower than in Plate 39a) can be seen.

PLATE 41b (Lower Photograph) - Infra-attachment root surface (1000x) following Cavitron at three quarter setting, then a sharp curette. Shallow irregularities (as produced by the Curette in Plate 39b) are present.
SUMMARY OF RESULTS

TABLE 4

Comparison of tooth root surfaces and acrylic surfaces following instrumentation

<table>
<thead>
<tr>
<th>INSTRUMENT</th>
<th>TOOTH ROOT SURFACE</th>
<th>ACRYLIC SURFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavitron three-quarter setting</td>
<td>i.a.* Little alteration to original surface. Sharpey's fibre mounds visible (1000x) (Refer Plate 17) s.a.* Surface relatively smooth Mineralized pellicle still adherent (1000x) (Refer Plate 18).</td>
<td>Little alteration to original surface. Shallow scratch marks occur in some areas. (1000x) (Refer Plate 19)</td>
</tr>
<tr>
<td>Cavitron full setting</td>
<td>Tooth substance removed in moderately large areas (20x). Shallow irregularities in areas; other areas relatively smooth (1000x) (Refer Plate 20)</td>
<td>Acrylic substance removed in moderately large areas. (20x) Shallow irregularities in areas; other areas relatively smooth (1000x) (Refer Plate 22)</td>
</tr>
<tr>
<td>Amdent three-quarter setting</td>
<td>As for Cavitron three-quarter setting. (Refer Plates 23, 24)</td>
<td>As for Cavitron three-quarter setting. (Refer Plate 25).</td>
</tr>
<tr>
<td>Amdent full setting</td>
<td>Little removal of tooth substance. (20x) Shallow irregularities in areas; other areas relatively smooth (1000x) (Refer Plate 26)</td>
<td>Little removal of acrylic substance (20x) Shallow scratch marks in areas; other areas relatively smooth (1000x) (Refer Plate 28).</td>
</tr>
</tbody>
</table>

* A distinction between infra-attachment (i.a.) and supra-attachment (s.a.) root surfaces in these cases was made; i.e., here, post-instrumentation differences in surface features were observed.
<table>
<thead>
<tr>
<th>INSTRUMENT</th>
<th>TOOTH ROOT SURFACE</th>
<th>ACRYLIC SURFACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odontoson half setting</td>
<td>Tooth substance removed in moderately large areas (20x), Deep irregularities in areas; other areas relatively smooth (1000x) (Refer Plate 29)</td>
<td>Acrylic substance removed in moderately large areas (20x) Deep irregularities in areas; other areas relatively smooth (1000x) (Refer Plate 30).</td>
</tr>
<tr>
<td>Odontoson three-quarter setting</td>
<td>As for Odontoson half-setting (though throughout larger area) (Refer Plate 31)</td>
<td>As for Odontoson half-setting (Refer Plate 32)</td>
</tr>
<tr>
<td>Sharp curette</td>
<td>Tooth substance removed to approximately uniform depth; (20x) shallow irregularities occur throughout area (1000x) (Refer Plate 33)</td>
<td>Acrylic substance removed to approximately uniform depth (20x); shallow irregularities occur throughout area (1000x) (Refer Plate 34).</td>
</tr>
</tbody>
</table>
TABLE 5 - Smoothing of tooth root surfaces

(A) Criteria for describing instrumented surfaces
(Evaluated 1000x)

Surface type 1 - Smoothness over most of instrumented area.

Surface type 2 - Shallow irregularities in areas; other areas relatively smooth.

Surface type 3 - Shallow irregularities over most of instrumented area.

Surface type 4 - Deep irregularities in areas; other areas relatively smooth.

Surface type 5 - Deep irregularities over most of instrumented area.

(B) Instrumentation producing different types of surfaces

(1) Surface type 1 was produced by:-
 - Cavitron three-quarter setting on supra-attachment surface (Refer Plate 18b)
 - Amdent three-quarter setting on supra-attachment surface (Refer Plate 24b)
 - Sharp curette then Cavitron three-quarter setting (Refer Plate 40b)
 - Sharp curette then Amdent three-quarter setting
 - Dull curette (Refer Plate 37b)
 - Dull scaler (Refer Plate 38b)

(2) Surface type 2 was produced by:-
 - Cavitron full setting (Refer Plate 20b)
 - Amdent full setting (Refer Plate 21b)

(3) Surface type 3 was produced by:-
 - Cavitron three-quarter setting on infra-attachment surface. (Refer Plate 17b)
 - Amdent three-quarter setting on infra-attachment surface (Refer Plate 23b)
 - Sharp curette (Refer Plate 33b)
 - Cavitron three-quarter setting then sharp curette (Refer Plate 41b)
 - Amdent three-quarter setting then sharp curette.

(4) Surface type 4 was produced by:-
 - Odontoson set half (Refer Plate 29b)
 - Odontoson set three-quarters. (Refer Plate 31b)

(5) Surface type 5 was produced by:-
 - Sharp hoe. (Refer Plate 35b)
 - Sharp scaler (Refer Plate 36b)
TABLE 6 - Removal of tooth root structure

(A) Criteria for describing instrumented surfaces

(Evaluated at 20X)

Surface type 1	No dentine exposed; cementum intact.
Surface type 2	Small areas of dentine exposed, most of cementum intact.
Surface type 3	Dentine exposed in moderately large areas; however, surrounding areas of cementum intact.
Surface type 4	Dentine exposed in large areas. Varying depths of tooth structure removed.
Surface type 5	Dentine exposed to uniform depth in most of instrumented area.

(b) Instrumentation producing different types of surfaces

1. Surface type 1 was produced by:
 - Cavitron three-quarter setting (Refer Plates 17a, 18a)
 - Amdent three-quarter setting (Refer Plates 23a, 24a)
 - Amdent full setting (Refer Plates 26a, 27a)

2. Surface type 2 was produced by:
 - Dull curette (Refer Plate 37a)
 - Dull scaler (Refer Plate 38a)

3. Surface type 3 was produced by:
 - Cavitron full setting (Refer Plates 20a, 21a)
 - Odontoson half setting (Refer Plate 29a)
 - Odontoson three-quarter setting (Refer Plate 31a)

4. Surface type 4 was produced by:
 - Sharp hoe (Refer Plate 35a)

5. Surface type 5 was produced by:
 - Sharp curette (Refer Plate 33a)
 - Sharp scaler (Refer Plate 36a)
 - Cavitron three-quarter setting, then sharp curette
 - Amdent three-quarter setting, then sharp curette
 - Sharp curette, then Cavitron three-quarter setting
 - Sharp curette, then Amdent three-quarter setting.
DISCUSSION

Previous reports in the literature comparing the effects of ultrasonic versus hand instrumentation of root surfaces, point to the controversy which remains as to the nature of the surface produced.

Profilometer studies have reported the following findings:

- The curette produces a "smoother" surface than the Cavitron ultrasonic instrument66, 100, 192, 262.
- The Cavitron used on a surface previously curetted, did not significantly affect root "smoothness" obtained with the curette262.
- A curette used after the Cavitron, produced a "smoother" surface than the one produced by the Cavitron alone100, 262.

Reports from studies using scanning electron microscopy vary, and at first sight, seem in conflict with many profilometer studies. Jones and co-workers93, and Pameijer and co-workers163, claim that the Cavitron leaves the root surface virtually unaltered and microscopically smoother than hand curettes. Results from the author's present study agree with these findings for the Cavitron at three-quarter (medium) amplitude setting, though the same is not necessarily true for the Cavitron at high amplitude setting (Refer Tables 5 and 6). Ewen and Gwinnett39 agree

* 39, 66, 93, 100, 147, 163, 262, 271.
with the reports that a dull ultrasonic tip at medium setting leaves a smooth surface on supra-attachment root surfaces. At lower magnifications, Pameijer and co-workers⁶³ found that hand curettes removed substantially more tooth structure than did the Cavitron. Sharp curettes effectively planed the root surface. Other studies⁵, 25, 34, 153, claim that surface structure is also removed with the ultrasonic scaler. The author agrees with this for the Cavitron at high amplitude setting, and the Odontoson at half and three quarter amplitude settings. (Refer Table 6).

Contrary to the findings by Jones and co-workers⁹³, by Pameijer and co-workers⁶³, and by Ewen and Gwinnett⁴⁹; three scanning electron microscope studies⁵⁴, 262, 271, have reported that the Cavitron ultrasonic scaler produces a "rougher" surface than the sharp curette.

The degree and depth of tissue effects observed following instrumentation may be influenced by several factors. Those considered important to a discussion of the results obtained by the author, as compared to previous researchers, comprise the following aspects:

(1) the instrument itself;
(2) the dental hard tissues being instrumented;
(3) the operator; and
(4) the method of observation and evaluation of surface changes.
Instrument Variables

Variables associated with the instrument which may affect the surface produced, are both macroscopic and microscopic.

The shape of the blade or tip is important. The sharp end of some ultrasonic tips directed towards the tooth surface will produce surface irregularity26, 39, 163. Wilkinson and Maybury271, when evaluating hand and ultrasonic instruments on tooth roots, used sharp sickle-shaped Cavitron P-11 tips. These, by virtue of their shape, would tend to gouge the root surface. Other studies of this type have used dull P-10, or the modern equivalent TFI-10 "universal" tips.

The relative dimensions, thickness, and flexibility of the blade, shank, and handle are also important. These may influence the operator's ability to reach the area required to gain tactile sense, and to effect control of the instrument.

In addition, one should consider the unique features of the ultrasonic instrument when compared with hand instruments. For example, the power (amplitude) setting is adjustable. Specific power settings have not been reported in many studies39, 93, 100, 163, 275, when evaluating effects produced by the ultrasonic instrument. The present study has shown significant differences between surfaces produced by the Cavitron at medium amplitude setting, and surfaces produced by the Cavitron at high amplitude setting. (Refer Tables 5 and 6). The Odontoson unit possesses a much higher frequency (42 kHz) than either the Cavitron or
the Amdent (25 kHz). The OdontoSon also claims to have a lower amplitude than the other two brands56.

Different claims have been made for the pattern of vibratory motion by the three ultrasonic scaling units used in this study. The Cavitron claims elliptical motion6, the Amdent linear motion219, and the OdontoSon rotary motion56. It may be that the degree of surface changes (shown in Tables 5 and 6,) is related to the type of motion for each instrument. In the clinical situation, it has been pointed out by Jacobson89, that the irregular anatomy of the tooth makes it difficult to keep the angle between instrument motion and the tooth at its correct theoretical value at all times.

The water available at the tip of ultrasonic instruments may also vary in relation to the amount and direction of the water spray present. (Refer Table 2). Allen and Rhoads4, reported increased irregularities produced where sufficient water was not available at the tip.

Where the energy output of the unit was low, the hand pressure light, and the tip broad and polished where it contacted the tooth, it was possible to perform a certain amount of instrumentation in which the surface was not changed. As the factors listed above increase the amount of energy per unit area, the likelihood of changing the surface texture increased. (Refer Tables 5 and 6.) If a surface alteration occurred, the surface produced was
relatively characteristic of the type of instrumentation. The author found the "all-or-none" type of phenomenon, described by Clark26, was most noticeable for surfaces following use of the Odontoson ultrasonic scaling unit. (Refer Plates 29 to 32).

Microscopic features of the instrument may also affect the type of surface produced. For example, grain size, and the material used in the construction of the instrument blade, have been found to produce slight differences in the surface finish of tooth roots93. The edges of steel instruments are more rounded than those of tungsten-carbide instruments. Any grooving produced can be expected to be shallower and less angular93. Similarly, the radius of curvature of an edge suffers increasing plastic deformation in use93. Dull curettes have been found to produce "smoother" surfaces than sharp curettes39. The author has substantiated these findings (Refer Table 5).

Dental Hard Tissue Variables

Features of the dental hard tissues may affect the surface observed following instrumentation. The tissue may be predominant Sharpey fibre cementum, or partial Sharpey fibre cementum, or it may be dentine. The root surface may have been exposed to the oral environment, or it may be covered with periodontal fibres. Where an instrument has little tendency to alter the surface, such as a Cavitron or Amdent ultrasonic scaler at medium amplitude setting, the
resultant surface would exhibit features characteristic of its own morphology, rather than features caused by the instrument. This aspect has been neglected by workers such as Van Volkinburg and colleagues262, Figure 3, who have interpreted normal cemental features in an infra-attachment root surface as irregularities due to the Cavitron; and by Ewen and Gwinnett39, Figure 17, who have described a smooth "cemental surface", which is actually a mineralized pellicle sheet on a supra-attachment root surface.

The physical properties of the dental hard tissues may vary. These include hardness, scratch resistance, abrasion resistance, and acoustic impedance. Properties may vary with age, state and duration of the disease; from person to person, from tooth to tooth in the same person, and from area to area in the same tooth. Routiola and Craig177 showed, however, that cementum exposed by periodontal disease had similar Knoop hardness values as normal cementum. Further, hardness values for the dental hard tissues are not necessarily related to the ease with which they may be removed by curettage32.

It was found, in this study, that polished acrylic surfaces proved useful as an easily controlled, homogeneous, model surface to test the potential for periodontal instruments to damage tooth roots. (Refer Table 4).
Operator Variables

Operator variables which may affect the surface produced include the following aspects:

(1) Knowledge - how the instrument is used;
(2) Aims - what the operator wishes to achieve;
(3) Access - related to many factors including design of instrument, position of tooth in arch, depth of pocket, root morphology, and patient cooperation.
(4) Manual dexterity - this may vary with certain factors such as fatigue.
(5) Thoroughness and care during use of technique, including amount of pressure applied, direction of stroke, number of strokes, continuity of stroke, and angle of application.
(6) Criteria for completion of instrumentation desired. Some step differences between tooth substance and acquired accretion, or between tooth substance and adherent fibre debris, may be too small to register by touch.

The operator may intend to remove acquired accretions only, or he may wish to definitively plane the root surface, ideally removing pathologically affected cementum and producing a clinically smooth surface*. Tables 5 and 6 in the present study show results obtained for each of these desired features.

The claimed advantages of definitive root planing include the following:

On exposed roots, cytotoxic substances such as endotoxins, whether in plaque entrapped in surface imperfections, in mineralized pellicle, or bound within the structure of cementum, may be more predictably eliminated by removal of the cementum itself. This would enhance the chances of new attachment.1, 2, 45, 185

Removal of substances which may bind to hydroxyapatite such as lipoteichoic acids and endotoxins may temporarily affect the ability of organisms to adhere to the tooth.105

Creation of "fresh" areas during planing produces dentine and cemental resorption, which in turn tends to accentuate cemental redeposition when the root surface is covered by a soft tissue flap.167, 237

Removal of mineralized fibres running parallel to the exposed root surface may encourage new attachment at these sites.276

The increased time that root planing takes, may also improve the chances of removing otherwise untouched bacterial deposits.93

The lodgement of calculus into crevices of cementum surfaces means that some removal of tooth substance is necessary if total accretion removal is to be achieved.94, 95, 199, 277

Zander277 and Schaffer202 suggest that planing aids in achieving a smooth tooth surface. However, the
damage to tooth surfaces following many types of instrumentation often produces a surface of increased roughness. Total removal of all cementum does not appear to be related to successful microscopic smoothing of the root surface. The present study illustrates this. (Refer Plates 20 and 26).

The possible disadvantages of definitive root planing include the following:

Clinical and microscopic findings suggest that root planing alone is of rather short-lived benefit to the patient. In studies where root planing was performed without definitive pocket elimination procedures, inflammation in the gingival corium, although diminished after two weeks, returned to pretreatment levels by four to eight weeks.

Sensitive cervical root areas are a common result of definitive root planing.

In flap procedures, removal of tooth structure may also involve removal of fibre ends attached to root surfaces. Under such circumstances, connective tissue attachment levels may be decreased.

A discussion of factors relating to smoothness during root preparation will now be presented.

A smooth surface is claimed to minimize the rate of recurrence of deposits, though no well controlled studies have shown surface texture, by itself, to be a direct determinant in the rate of plaque deposition. Clayton and Green have shown that surfaces which were smoother than could be obtained
with any type of conventional periodontal instrument, still required regular mechanical cleaning to prevent accumulation of dental plaque. In this respect, all tooth surfaces are relatively rough when considered at an ultrastructural level, and perhaps the grosser "roughness" may not be important \(^93\), \(^215\). It is, however, conceivable that grooves may act as microstagnation areas, which would provide an environment that encourages colonization of the surface \(^93\). Many procedures traditionally thought to "smooth" the root surface, do so on a macroscopic scale, where levellness is a criterion; but tend to produce a greater microscopic roughness, as in the case of sharp curettes \(^93\), \(^163\). (Refer Table 5.)

A smooth surface is also said to make plaque removal easier for the patient \(^*\). However, studies by Donzé and colleagues \(^29\), and by Rosenberg and Ash \(^192\), have not demonstrated any biological significance to differences in degrees of roughness following different types of periodontal instrumentation.

Where dentogingival healing is concerned, it is possible for epithelial cells to attach to a great variety of surfaces, whether they are smooth or not \(^122\), \(^125\), \(^126\), \(^127\), \(^208\). However, microscopic roughness of the tooth surface seems to favour adhesion of the cells of the junctional epithelium \(^18\), \(^122\), \(^206\). Such roughness may also facilitate the attachment of connective tissue following definitive periodontal treatment \(^25\), \(^271\).

\(^*\) 18, 22, 23, 61, 66, 93, 163, 248, 259, 265, 266, 275.
Variables Associated with the Method of Observation and Evaluation

Clinical evaluations of root surface texture, as performed by Forrest41, and Stewart and colleagues244, were immediately limited by both tactile and unaided visual senses. Histologic, or dissection microscopic methods4, 11, 92, 153, 199, 240, were limited by resolution. More recently however, the profilometer has been advocated as being a reliable, objective method of evaluating root surface roughness20, 66, 100, 147, 192, 262. However, its shortcomings have been noted93, 163, 263. (Refer Introduction)

Volchansky and co-workers263, performed four simple assessments using the profile tracings of different materials. Although criteria for assessing recordings appeared valid, (ie using line-length index, peak per mm, maximum peak-to-valley height, and visual), different orders of roughness for each method were found.

When studying root surface texture using the profilometer, investigators20, 66, 100, 192, 262, have used a "centre-line average (CLA) index, ie, a numerical assessment of the average height of the irregularities263. However, the CLA value is used in engineering only on planar surfaces, or surfaces having a regular curvature. It is not suited to measuring irregular tooth surfaces263. At best, the profilometer values cited in the literature, report the
degree of surface flatness, not microscopic smoothness*.

* A smooth surface has been defined as being "free from projections, irregularities, or inequalities; presenting no roughness or unevenness to the sight or touch." There are two main components in this definition. One refers to a microscopic assessment; that is, not rough, "free of projections, points, bristles." The second component refers to a more macroscopic assessment; that is, evenness, "flat, plane, level," "being without gross deviation from a geometrical plane." Where the profilometer tracing device is limited to a more macroscopic assessment of levellness, microscopic smoothness should not be implied.
For example, Table 5 shows surface types for removal of tooth substance, assessed at 20X magnification. Surface type 5, was produced by a sharp curette. This "flat, even" surface would show on profilometer tracings as a "smooth" surface. Table 6, however, assessing surface texture at 1000X magnification, shows the sharp curetted surface to consist of shallow irregularities over most of the instrumented area. Similarly, supra-attachment root surfaces following the Cavitron at medium amplitude setting were assessed by the author as "smooth" at 1000X magnification. However, since the surface was not planed, the profilometer tracing would record normal cemental undulations as irregularities. This has been interpreted by investigators, as surface roughness due to the instrument.

The use of scanning electron microscopy has given valuable information regarding root surface morphology following periodontal instrumentation. Two studies, have used scanning electron microscopy in conjunction with the profilometer. Unfortunately, neither study utilized sufficient magnification to observe the more minute surface texture as used by the present author. Both Van Volkinburg and co-workers, and Meyer and Lie, reported a correlation between profilometer and scanning electron microscope results. This is reasonable, since low magnification electron images only show gross surface topography. The author's results in
Table 6 at 20X magnification, also indicate that the sharp curette produces the most uniform topography.

The limitations of a scanning electron microscope study are apparent, in that it does not produce quantitative results. Meyer and Lie147, did use a S.E.M. Roughness Index (SRI) for quantitating results, however, all scoring was performed at a standard magnification of 72X, which only indicates gross topography. The results shown in Tables 5 and 6 may be modified to quantitate results in future studies.
SUMMARY AND CONCLUSIONS

Scanning electron microscopy was used to examine tooth root surfaces and polished acrylic surfaces following hand and ultrasonic instrumentation. Gross topography was assessed at 20X magnification; more minute surface texture was assessed at 1000X magnification.

It was evident that different methods of instrumentation produced dissimilar root surface topography.

Polished acrylic proved useful as an easily controlled model surface to test the potential for periodontal instruments to damage root surfaces.

An instrument blade, or tip with a dull working edge, produced a smoother surface texture than its sharp counterpart; however, it had less tendency to remove tooth structure.

Although the removal of some surface structure is possible with the ultrasonic instrument, true, definitive root planing, where the operator wishes to remove tooth structure in a given area, is probably best performed with a sharp curette.

The flattest root surfaces (assessed 20X) were produced by:

- a sharp curette;
- a sharp scaler;
- a Cavitron or Amdent at three-quarter (medium) amplitude setting, followed by a sharp curette; and
- a sharp curette, followed by a Cavitron or Amdent at three-quarter (medium) amplitude setting.

The smoothest root surfaces (assessed at 1000X) were produced by:

- a Cavitron, or Amdent at three-quarter (medium) amplitude setting, on supra-attachment root surfaces;
- a sharp curette, followed by either a Cavitron, or Amdent at three-quarter (medium) amplitude setting;
- a dull curette; and
- a dull scaler.

Mineralized pellicle was still present on supra-attachment root surfaces following instrumentation by the Cavitron at medium setting, the Amdent at medium setting, and a dull scaler.

The Cavitron and Amdent ultrasonic instruments at similar amplitude settings produced surfaces of similar texture. The Cavitron, however, showed a tendency to remove more tooth structure than the Amdent. The OdontoSon produced areas with deeper irregularities than the other two types of ultrasonic scalers.

Whether or not there is a biological significance corresponding to the differences in root surface topography following use of various methods of root surface instrumentation, has not been definitely established.
REFERENCES

 The presence and biologic activity of cementum-bound endotoxin.

 In vitro attachment of human gingival fibroblasts to root surfaces.

3. ALLEN, D.L., and KERR, D.A. --
 Tissue response in the guinea pig to sterile and non-sterile calculus.

4. ALLEN, E.F., and RHOADS, R.H.--
 Effects of high speed periodontal instruments on tooth surface.

5. ALEXANDER, A.G. --
 The effect of subgingival scaling on gingival inflammation.
6. AMALGAMATED DENTAL. --
Brochure for Dentsply Cavitron ultrasonic instrument.

7. ARMITAGE, G.C. --
Cementum.
in Bhaskar, S.N. (edit)
Orban's oral histology and embryology.
(pp. 182-205).

8. ARMSTRONG, W.G. --
Origin and nature of the acquired pellicle.

9. BARNES, J.E., and SCHAFFER, E.M. --
Subgingival root planing: A comparison using files, hoes, and curettes.

10. BELANGER, L.F. --
Osteolysis: An outlook on its mechanism and causation.
in Gaillard, P.J; Talmage, R.V., and Budy, A.M.
(edits.)
The parathyroid glands, ultrastructure, secretion and function.
(pp. 137-143).
11. BELTING, C.M., and SPJUT, P.J. --
Effects of high-speed periodontal instruments
on the root surface during subgingival calculus
removal.

12. BEUBE, F.E. --
A study on reattachment of the supporting
structures of the teeth.

Gingival healing after hand and ultrasonic
scaling - biochemical and histologic analysis.

14. BJORN, H. --
Experimental studies on reattachment.

15. BJORN, H., and LINDHE, J. --
The influence of periodontal instruments on
the tooth surface. A methodological study.

16. BODECKER, C.F. --
The difficulty of completely removing
subgingival calculus.
17. BOWDEN, G.H., HARDIE, J.M., and SLACK, G.L.--
Microbial variations in approximal dental plaque.

18. BOYDE, A.--
The tooth surface.
in Eastoe, J.E., Picton, D.C.A., and Alexander, A.G. (eds.)
The prevention of periodontal disease.
(PP. 46-62).

19. BRANDT, C.L., KORN, N.A., and SCHAFFER, E.M.--
Bacteremias from ultrasonic and hand instrumentation.

20. BURKE, S.W., and GREEN, E.--
Effectiveness of periodontal files.

21. BURMAN, L.R., ALDERMAN, N.E., and EWEN, S.J.--
Clinical application of ultrasonic vibrations for subgingival calculus and stain removal.
22. CHACE, R. --
Methods and values of tooth planing in periodontal therapy.

23. CHACE, R. --
Subgingival curettage in periodontal therapy.

24. CHERASKIN, E., and RINGSDORF, E.M. Jr. --
Resistance and susceptibility to oral disease I. A study in gingivitis and carbohydrate metabolism.

25. CLARK, S.M., GRUPE, H.E., and MAHLER, D.B. --
The effect of ultrasonic instrumentation on root surfaces.

26. CLARK, S.M. --
The ultrasonic dental unit: A guide for the clinical application of ultrasonics in dentistry and in dental hygiene.
27. CLAYTON, J.A., and GREEN, E. --
 Roughness of pontic materials and dental plaque.

28. DIAB, M.A., and STALLARD, R.E. --
 A study of the relationship between epithelial root
 sheath and root development.
 Periodontics. 3: 1, 10-14, Jan.-Feb. 1965.

29. DONZE, Y., KRUGER, J., KETTERL, W., and
 RATEITSCHAK, K.H. --
 Treatment of gingivitis with Cavitron or
 hand instruments: a comparative study.

30. DRAGOO, M.R., and SULLIVAN, H.C. --
 A clinical and histologic evaluation of
 autogenous iliac bone grafts in humans. II.
 External root resorption.

31. ELLEGAARD, B., KARRING, T., and LOE, H. --
 Retardation of epithelial migration in new
 attachment attempts in intrabony defects in
 monkeys.
32. EMSLIE, R.D., and STACK, M.V. --
 The microhardness of roots of teeth with
 periodontal disease.

33. EWEN, S.J. --
 Ultrasound and periodontics.

34. EWEN, S.J., and SORRIN, S. --
 Ultrasonics and periodontal therapy.

35. EWEN, S.J., and GLICKSTEIN, C. --
 Ultrasonic therapy in periodontics.
 Springfield, Illinois. Thomas Publishers,

36. EWEN, S.J., and GLICKSTEIN, C.--
 Ultrasonic therapy in periodontics.
 Springfield, Illinois. Thomas Publishers,

37. EWEN, S.J., and GLICKSTEIN, C. --
 Ultrasonic therapy in periodontics.
 Springfield, Illinois. Thomas Publishers,
 1st ed., 1968 (p. 34).
38. EWEN, S.J., and GLICKSTEIN, C. --
Ultrasonic therapy in periodontics.

39. EWEN, S.J., and GWINNETT, A.J. --
A scanning electron microscopic study of
teeth following periodontal instrumentation.

40. FLOTRA, L., GJEMO, P., ROLLA, G., and
WAERHAUG, J. --
A four month study on the effect of chlorhexidine
mouthwashes on fifty soldiers.

41. FORREST, J.O. --
Ultrasonic scaling: a five year assessment.

42. FRANK, R.M., and BRENDEL, A. --
Ultrastructure of the approximal dental plaque
and the underlying normal and carious enamel.

43. PURSETH, R. --
The fine structure of the cellular cementum
of young human teeth.
44. FURSETH, R. --
Further observations on the fine structure of orally exposed and carious human dental cementum.

45. GARRETT, J.S. --
Cementum in periodontal disease.
Periodont. Abstr. 23: 1, 6-12, Spring 1975.

46. GENC0, R.J. --
Immunoglobulins and periodontal disease.

47. GENC0, R.J. --
Microbiology of periodontal disease.
in Goldman, H.M., and Cohen, D.W.
Periodontal therapy.
(pp. 178-195).

48. GIBBONS, R.J., and BANGHART, S. --
Induction of dental caries in gnotobiotic rats with a levan-forming streptococcus and a streptococcus isolated from subacute bacterial endocarditis.
49. GIBBONS, R.J., and SPINELL, D.M. --
Salivary-induced aggregation of plaque bacteria.
in McHugh, W.D. (edit)
Dental plaque.
Dundee, Scotland. D.C. Thomson and Co. Ltd.
1970. (pp. 207-215).

50. GLICKMAN, I. --
Clinical periodontology.

51. GLICKMAN, I. --
Clinical periodontology

52. GOLDMAN, H.M. --
Histologic assay of healing following ultrasonic curettage versus hand instrument curettage.

53. GOLDMAN, H.M., and COHEN, D.W. --
Periodontal therapy.
(pp. 73-75, 124-128, 198-199.)
54. GOLDMAN, H.M., and COHEN, D.W. ---
Instrumentation for scaling and root planing.
in Goldman, H.M., and Cohen, D.W.
Periodontal therapy.
(pp. 381-392).

55. GOLDMAN, H.M., and COHEN, D.W. ---
Periodontal therapy.
(p. 388).

56. GOOF. ---
Brochure for Odontoson ultrasonic instrument.
Herlev, Denmark.

57. GOTTLIEB, B. (1922). ---
cited in Stahl, S.S.
The nature of healthy and diseased root surfaces.

58. GOTTLIEB, B. ---
Biology of cementum.

59. GOTTLIEB, B. ---
Continuous deposition of cementum.
J. Am. Dent. Assoc. 30: 11, 842-847, June 1943.
60. GOTT Lieb, B. --
 A new concept in periodontoclasia.
 J. Periodontol. 17: 1, 7-23, Jan. 1946.

61. GRAHAM, C.J. --
 Home care effectiveness upon planed teeth and
 scaled teeth following surgery.

62. GRANT, D.A., STERN, I.B., and EVERETT, F.G. --
 Orban's periodontics - A concept - theory and
 practice.
 (p. 59).

63. GRANT, D.A., STERN, I.B., and EVERETT, F.G. --
 Orban's periodontics - A concept - theory
 and practice.
 (pp. 366, 367).

64. GRANT, D.A., STERN, I.B., and EVERETT, F.G. --
 Orban's periodontics - A concept - theory
 and practice.
 (pp. 123, 135-136).
65. GREEN, G.H., and SANDERSON, A.D. --
Ultrasonics and periodontal therapy - a review of clinical and biological effects.

66. GREEN, E., and RAMFJORD, S.P. --
Tooth roughness after subgingival root planing.

67. GREEN, E. --
Root planing with dull and sharp curettes.

68. GREENE, J.C. --
Oral hygiene and periodontal disease.

69. GRIGSBY, W.R., and SABISTON, C.B., Jr. --
The periodontal disease process.

70. GUENTHER, H., CROISSANT, R., SCHONFELD, S., and
SLAVKIN, H.C. --
in Slavkin, H.C., and GREULICH, R.C. (edits.)
Extracellular matrix influences on gene expression.
71. HAGGERTY, P.C. --
Ultrasonics: a practice building, work saving adjunct to the practice of periodontics.

72. HALIK, F.J. --
The role of subgingival curettage in periodontal therapy.

73. HAMPP, E.G. --
Blood sampling and cultural studies in the detection of postoperative bacteraemias.

74. HANDELMAN, S.L., and HESS, C. --
Effect of dental prophylaxis on tooth-surface flora.

75. HATFIELD, C.G., and BAUMHAMMERS, A. --

76. HATFIELD, C.G., and BAUMHAMMERS, A. --
Cytotoxic effects of periodontally involved root surfaces.
77. HAUSMANN, E.M RAISZ, L.G., and MILLER, W.A. --
Endotoxin: Stimulation of bone resorption in
tissue culture.

78. HAUSMANN, E. --
Potential pathways for bone resorption in
human periodontal disease.

79. HAVEY, L., and ZANDER, H. --
Root-surface resorption in periodontally
diseased teeth. (Abstr. 129)
1959.

80. HEARLE, J.W.S. --
Introduction to scanning electron microscopy,
in Hearle, J.W.S., Sparrow, J.T., and
Cross, P.M. (eds.)
The use of the scanning electron microscope.
Pergamon Press. 1972. (p. 6).

81. HENRY, J.L., and WEINMANN, J.P. --
The pattern of resorption and repair of
human cementum.
82. HERTING, H.C. --
Electron microscope studies of the cementum surface structures of periodontally healthy and diseased teeth. (Abstr. 18).

83. HIRSCHFELD, L. --
Subgingival curettage in periodontal treatment.

84. HIRSCHFELD, L. --
cited in Chace, R.
Subgingival curettage in periodontal therapy.

85. HUETER, T.F., and BOLT, R.H. --
Sonics.
(p. 225).

86. HURZELER, B., and ZANDER, H.A. --
Cementum apposition in periodontally diseased teeth.
87. IRVING, J.T., NEWMAN, M.G., SOCRANSKY, S.S., and HEELY, J.D. --
Histological changes in experimental periodontal disease in rats monoinfected with a gram-negative organism.

88. JACOBSON, L., and SOHLBERG, F. (1970) --
cited in Jacobson, L.
Ultrasonic scaling.

89. JACOBSON, L. --
Ultrasonic scaling.

90. JANDE, S.S., and BELANGER, L.F. --
Fine structural study of rat molar cementum.

91. JENSEN, S.B., LOE, H., SCHIOTT, C.R., and THEILADE, E. --
Experimental gingivitis in man.
92. JOHNSON, W.N., and WILSON, J.R. --
 Application of the ultrasonic dental unit to scaling procedures.

93. JONES, S.J., LOZDAN, J., and BOYDE, A. --
 Tooth surfaces treated in situ with periodontal instruments. Scanning electron microscopic studies.

94. JONES, S.J. --
 The tooth surface in periodontal disease.

95. JONES, S.J. --
 Morphology of calculus formation on the human tooth surface.

96. KALKWARG, K.L. --
 Periodontal new attachment without the placement of osseous potentiating grafts.

97. KARDEL, M. (1972) --
 cited in Suppapat, N.
 Ultrasonics in periodontics.
98. KERR, D.A. --
The cementum: its role in periodontal health and disease.

World workshop in periodontics.

100. KERRY, G.J. --
Roughness of root surfaces after use of ultrasonic instruments and hand curettes.

101. KERRY, G.J. --
New method for viewing root surfaces.

102. KEYES, P.H., and JORDAN, H.V. --
Periodontal lesions in the Syrian hamster.

103. KIRKANE, J.A., and GLYNN, L.E. --
Immunology of collagen.
in Hall, D.A. (edit).
104. KNOX, K.W. --
Antigens of oral bacteria.

105. KNOX, K.W. --
Discovery of an important component of plaque bacteria.
Dental Outlook 1: 2, 6-9, Aug. 1975.

106. KNOX, K.W. --
The potential role of bacteria and their antigens in periodontal disease.

107. KOHLER, C.A., and RAMFJORD, S.P. --
Healing of gingival mucoperiosteal flaps.

108. KOLL, L. --
Ultrasonics in dental hygiene.

The attachment of calculus to root planed surfaces.
Periodontics 6: 2, 78-83, April 1968.
110. KOTANYI, E. --

Cementum.
in Sicher, H. (edit)
Orban's oral histology and embryology.
(p. 168).

111. KRAMER, G.M. --

Rationale of periodontal therapy.
in Goldman, H.M., and Cohen, D.W.
Periodontal therapy.
(pp. 327-344).

112. KVAM, E. --

Preparation of human premolar roots for
scanning electron microscopy.

113. LANDAY, M.A., HEIDERE, J., and RITMAN, L. --

A scanning electron microscopic study of human
cementum. (Abstr. 37).

114. LANDAY, M.A. --

A scanning electron microscopic study of human
cementum exposed by periodontal disease.
(Abstr. 36).
115. LEACH, S.A. and SAXTON, C.A. --

An electron microscopic study of the acquired pellicle and plaque formed on the enamel of human incisors.

116. LEACH, S.A. --

A review of the biochemistry of dental plaque.
in McHugh, W.D. (edit.)
Dental plaque.
Dundee, Scotland. D.C. Thomson and Co. Ltd.
1970. (pp. 143-156).

117. LENZ, H., and MUHLEMANN, H.R. --

Repair of etched enamel exposed to the oral environment.

118. LESTER, K.S. --

The unusual nature of root formation in molar teeth of the laboratory rat.

119. LEVINE, H.L. --

in Zander H.A., Wade, A.B., and Levine, H.L.
Is root preparation important in achieving reattachment?
120. LEVINE, H.L., and STAHL, S.S. --
Repair following periodontal flap surgery with the retention of gingival fibres.

121. LINGHORNE, W.J. --
Studies in the regeneration and reattachment of the supporting structures in teeth.

122. LISTGARTEN, M.A. --
Phase-contrast and electron microscopic study of the junction between reduced enamel epithelium and enamel in unerupted human teeth.

123. LISTGARTEN, M.A. --
A light and electron microscopic study of coronal cementogenesis.

124. LISTGARTEN, M.A., and KAMIN, A. --
The development of a cementum layer over the enamel surface of rabbit molars - a light and electron microscopy study.
125. LISTGARTEN, M.A. --
Electron microscopic study of the junction between surgically denuded root surfaces and regenerated periodontal tissues.

126. LISTGARTEN, M.A. --
Ultrastructure of the dento-gingival junction after gingivectomy.

127. LISTGARTEN, M.A., and ELLEGAARD, B. --
Electron microscopic evidence of a cellular attachment between junctional epithelium and dental calculus.

128. LISTGARTEN, M.A. --
Structure of surface coatings on teeth. A review.
J. Periodontol. 47: 3, 139-147, March 1976.

129. LOE, H., THEILADE, E., and JENSEN, S.B. --
Experimental gingivitis in man.
130. LOE, H., and LISTGARTEN, M.A. --

Periodontium.
(pp. 1-56).

131. LOESCHE, W.J., GREEN, E., KENNEY, E.B., and
NAFE, D.E. --

Effect of topical kanamycin sulfate on plaque accumulation.

132. LOESCHE, W.J., and NAFE, D.E. --

Reduction of supragingival plaque accumulations in institutionalized Down's syndrome patients by periodic treatment with topical kanamycin.

133. LOESCHE, W.J., and SYED, S.A. --

The predominant cultivable flora of carious plaque and carious dentine.

134. LOESCHE, W.J., and SYED, S.A. --

135. LOESCHE, W.J. --
Chemotherapy of dental plaque infections.
in Melcher, A.H., and Zarb, G.A. (eds.).

136. LORATO, D.C., RUSKIN, P.F., and MARTIN, A. --
Effect of an ultrasonic scaler on bacterial
counts in air.

137. McCALL, C.M., Jr., and SZMYD, L. --
Clinical evaluation of ultrasonic scaling.

138. McDOUGALL, W.A. --
Studies on the dental plaque I. The
histology of the dental plaque and its
attachment.

139. MANDEL, I.D., and LEVY, B.M. --
Studies on salivary calculus I. Histo-
chemical and chemical investigation of
supra- and subgingival calculus.

140. MANDEL, I.D. --
Calculus formation: The role of bacteria
and mucoprotein.
141. MANDEL, I.D. --
Dental plaque: nature, formation and effects.

142. MANSON, J.D. --
Periodontics.

143. MARSHALL-DAY, C.D., and SCHOURIE, K.L.
Gingival disease in the Virgen Islands.

144. MAYHALL, C.W. --
Concerning the composition and source of the
acquired enamel pellicle of human teeth.

145. MELCHER, A.H. --
Repair of wounds in the periodontium of the
rat. Influence of periodontal ligament on
osteogenesis.

146. MELCHER, A.H. --
On the repair potential of periodontal
tissues.
147. MEYER, K., and LIE, T. --
Root surface roughness in response to periodontal instrumentation studied by combined use of microroughness measurements and scanning electron microscopy.

148. MEZL, J. --
Caries and calculus.

149. MINAH, and LOESCHE, W.J. --
cited in Loesche, S.J.
Chemotherapy of dental plaque infections.
in Melcher, A.H., and Zarb, G.A. (edits.).

150. MOLLER, P., GREVSTAD, A.O., and KRISTOFFERSEN, T. --
Ultrasonic scaling of maxillary teeth causing tinnitus and temporary hearing shifts.

151. MORRIS, M. --
The subcutaneous implantation of periodontally diseased roots.
152. MOSKOW, B.S. --

The response of the gingival sulcus to instrumentation.
A histological investigation.

153. MOSKOW, B.S., and BRESSMAN, E. --

Cemental response to ultrasonic and hand instrumentation.

154. MOSTEHY, M.R., and STALLARD, R.E. --

Intermediate cementum.

155. NADLER, H. --

Removal of crevicular epithelium by ultrasonic curettes.

156. NEIDERS, M.E., and WEISS, L. --

The effects of endotoxin on cell detachment in vitro.
157. NEWMAN, M.G., and SOCRANSKY, S.S. --
 cited in Loesche, W.J.
 Chemotherapy of dental plaque infections.
 in Melcher, A.H., and Zarb, G.A. (eds.).

 In vitro bone inhibition in the presence of
 histamine and endotoxins.

159. O'BANNON, J.Y., Jr. --
 Gingival tissues before and after scaling
 the teeth.

160. ODLAND, G., and ROSE, R. --
 Human wound repair I: epidermal regeneration.

161. ORBAN, B. --
 Resorption and repair of the surface of the
 tooth.
 1928.
162. OSBORNE, J.W., and TEN CATE, A.R. --
Advanced dental histology.
Bristol. John Wright and Sons Ltd. 3rd ed.
1976. (p. 121).

163. PAMEIJER, C., STALLARD, R., and HIEP, N. --
Surface characteristics of teeth following periodontal instrumentation.

164. PARFITT, G.J. --
A survey of the oral health of Navajo Indian children.

165. PAYNE, W.A., PAGE, R.C., OGILVIE, A.L., and HALL, W.B. --
Histopathologic features of the initial and early stages of experimental gingivitis in man.

166. PAYNTER, J.J., and PUDY, G. --
A study of structure, chemical nature and development of cementum in the rat.
167. PERSSON, P.A. --

The regeneration of the marginal periodontium after flap operation.

168. PRICHARD, J.F. --

Advanced periodontal disease: surgical and prosthetic management.
Philadelphia, London, Toronto. W.B. Saunders Co. 2nd ed. 1972. (pp. 6-10, 14.).

Glossary of terms.

170. PROVENZA, D.V. --

Oral histology: inheritance and development.

171. RAMFJORD, S.P. --

Experimental periodontal reattachment in Rhesus monkeys.

172. RAMFJORD, S.P., and KIESTER, G. --

Gingival sulcus and periodontal pocket immediately following scaling of teeth.
173. RAMPFJORD, S.P. --

The periodontal status of boys 11 to 17 years old in Bombay, India.

174. RAMPFJORD, S.P., and COSTICH, E.R. --

Healing after gingivectomy.

175. RATCLIFF, P.A. --

An analysis of repair systems in periodontal therapy.

176. RATCLIFF, P.A. --

An analysis of repair systems in periodontal therapy.

177. RAUTIOLA, C.A., and CRAIG, R.G. --

The microhardness of cementum and underlying dentin of normal teeth and teeth exposed to periodontal disease.

178. REGISTER, A.A., and BURDICK, F.A. --

'Accelerated reattachment with cementogenesis to dentin, demineralized in situ: optimum range.'

179. RIFFLE, A.B. --
The cementum during curettage.
J. Periodontol. 23: 3, 170-177, July 1952.

180. RIFFLE, A.B. --
Dentin: its physical characteristics
during curettage.

181. RIFFLE, A.B. --
The dentin, its physical characteristics
during curettage II. Statistical findings.

182. RITZ, H.L. --
Microbial population shifts in developing human dental plaque.

183. ROBINSON, P.J., and ROWLANDS, D.T., Jr. --
Evidence of the alloimmunogenic potential of donor periodontal ligament.

184. ROBINSON, P.J., and SHAPIRO, I.M. --
Effects of endotoxin on isolated osteocytes.
(Abstr. 343)
185. ROBINSON, P.J. --
Possible roles of diseased cementum in periodontitis.

186. RODRIGUEZ, M.S., and WILDERMAN, M.N. --
Amino acid composition of the cementum matrix from human molar teeth.

187. ROJAS-CORONA, R., SKARNES, R., TAMAKURA, S., and FINE, J. --
The Limulus coagulation test for endotoxin.
A comparison with other assay methods.

188. ROLLA, G., KORNSTAD, L., MATHIESON, P., and PAVATONG, L. --
Selective adsorption of an acidic glycoprotein from human saliva to tooth surfaces.

189. ROLLA, G., and MATHIESON, P. --
The adsorption of salivary proteins and dextrans to hydroxyapatite.
in McHugh, W.D. (edit.).
Dental plaque.
190. ROLLA, G. --

Adsorption of salivary glycoproteins and bacteria to hydroxyapatite.

191. ROSENBERG, M.M.--

Osseous tissue autografts as a predictable procedure.

192. ROSENBERG, D.M., and ASH, M.M. --

The effect of root roughness on plaque accumulation and gingival inflammation.

193. ROSLING, B., NYMAN, S., and LINDHE, J. --

The effect of systematic plaque control on bone regeneration in infrabony pockets.

194. ROSS, S.E., and COHEN, D.W. --

The fate of a free osseous tissue autograft: a clinical and histologic case report.
195. ROVIN, S., COSTICH, E.R., and GORDON, H.A. --
The influence of bacteria and irritation in
the initiation of periodontal disease in
germfree and conventional rats.

196. RUSSELL, A.L. --
Epidemiology of periodontal disease.

197. SANDERSON, A.D. --
Gingival curettage by hand and ultrasonic
instruments: a histologic comparison.

198. SATO, M. --
Histopathological study of the healing process
after surgical treatment for alveolar pyorrhea.

199. SCHAEFFER, E.M. --
Histological results of root curettage of
human teeth.

200. SCHAEFFER, E.M. --
Objective evaluation of ultrasonic versus
hand instrumentation in periodontics.
Dent. Clin. North Am. 8: 2, 165-174,
March 1964.
Healing of periodontal pocket tissues
following ultrasonic scaling and hand planing.

202. SCHAFFER, E.M. --
Periodontal instrumentation: scaling and root
planing.

203. SCHEI, O., WAERHAUG, J., LOVDAL, A., and ARNO, A.--
Alveolar bone loss as related to oral hygiene
and age.
J. Periodontol. 30: 1, 7-16, Jan. 1959.

204. SCHONFELD, S.E. --
Demonstration of an alloimmune response to
embryonic enamel matrix proteins.

205. SCHROEDER, H.C.,
Crystal morphology and gross structures of
mineralizing plaque and of calculus.
Helv. Odontol. Acta. 9: Suppl. 2, 73-86,
April 1965.

206. SCHROEDER, H.C.,
Formation and inhibition of dental calculus.
207. SCHROEDER, H.C., and DE BOEVER, J. --
The structure of microbial dental plaque.
in McHugh, W.D. (edit).
Dental plaque,
Dundee, Scotland. D.C. Thomson and Co. Ltd.
1970. (pp. 49-74).

208. SCHROEDER, H.C., and LISTGÄRTEN, M.A. --
Fine structure of the developing epithelial
attachment of human teeth.
in Wolsky, A. (edit.).

209. SCHROFF, F.R. --
An observation on the attachment of calculus.

210. SELTZER, S., SOLTANOFF, W., BENDER, I.B., and
ZIONTZ, M.--
Histologic observations of the anatomy and
morphology of root apices and surrounding
structures.

211. SELVIG, K.A., and ZANDER, H.A. --
Chemical analysis and microradiography of
cementum and dentin from periodontally diseased
human teeth.
212. SELVIG, K.A. --

The fine structure of human cementum.

213. SELVIG, K.A. --

Ultrastructural changes in cementum and adjacent connective tissue in periodontal disease.

214. SELVIG, K.A. --

Biologic changes at the tooth-saliva interface in periodontal disease.

215. SELVIG, K.A. --

Attachment of plaque and calculus to tooth surfaces.

216. SHAPIRO, M. --

Reattachment in periodontal disease.

217. SHARAWY, A.M., and SOCRANSKY, S.S. --

Effect of human streptococcus strain GS-5 on caries and alveolar bone loss in conventional mice and rats.
218. SHORTER OXFORD ENGLISH DICTIONARY. --
Onions, C.T. (edit).
(p. 1926).

219. SIEMENS. --
Brochure for Amdent 6 ultrasonic instrument.
Bensheim, West Germany.

220. SILNESS, J., and LOE, H. --
Periodontal disease in pregnancy. II.
Correlation between oral hygiene and periodontal condition.

221. SKILLEN, W.G., and LUNDQUIST, G.R. --
An experimental study of periodontal membrane reattachment in healthy and pathologic tissues.

222. SLAVKIN, H.C. --
in Slavkin, H.C., Ranney, R.R., and Alfano, M.C.
What is the role of the host in periodontal disease?
223. SLAVKIN, H.C. --

in Slavkin, H.C., Ranney, R.R., and Alfano, M.C.

What is the role of the host in periodontal disease?

224. SLAVKIN, H.C. --

Towards a cellular and molecular understanding of periodontics: cementogenesis revisited.

225. SNYDERMAN, R. --

Role of endotoxin and complement in periodontal tissue destruction.

226. SOCRANSKY, S.S. --

Relationship of bacteria to the etiology of periodontal disease.

227. SORRIN, S., and EWEN, S.J. --

Ultrasonics in periodontics.

228. STAFILENO, H., WENTZ, F., and ORBAN, B. --
Histologic study of healing of split thickness flap surgery in dogs.

229. STAHL, S.S. --
Healing gingival injury in normal and systemically stressed young adult male rats.

230. STAHL, S.S. --
Prolonged healing sequences following gingival injuries in adult rats.

231. STAHL, S.S., WEINER, J.M., BENJAMIN, S.D., and YAMADA, L.M. --
Soft tissue healing following curettage and root planing.

232. STAHL, S.S., SLAVKIN, H.C., YAMADA, L., and LEVINE, S. --
Speculations about gingival repair.
233. STAHL, S.S. --
Considerations regarding gingival healing.
in Ward, H.L. (edit.).
A periodontal point of view.
1973. (pp. 409-413).

234. STAHL, S.S. --
Considerations regarding gingival healing.
in Ward, H.L. (edit.).
A periodontal point of view.

235. STAHL, S.S. --
The nature of healthy and diseased root
surfaces.

236. STAHL, S.S. --
Gingival repair potential.

237. STALLARD, R.E., and HIATT, W.H. --
The introduction of new bone and cementum
formation.
238. STEFFIN, C., TIMPL, R., and WOLFE, I. --
Immunogenicity and specificity of collagen V.
Demonstration of three different antigenic
determinants on calf collagen.
Immunology 15: 1, 135-144, July 1968.

239. STEFFIN, C., DICHTL, M., KNAPP, W., and
BRUNNER, H. --
Immunogenicity and specificity of collagen XII.
Demonstration by immunofluorescence and
haemagglutination of antibodies with
different specificity to human collagen.

240. STENDE, G.W., and SCHAFFER, E.M. --
A comparison of ultrasonic and hand scaling

241. STERN, I.B. --
An electron microscopic study of the cementum,
Sharpey's fibres and periodontal ligament in
the rat incisor.

242. STEWART, H.T. --
Partial removal of cementum and decalcification
of tooth in the treatment of pyorrhea alveolaris.
243. STEWART, R.T., and RATCLIFFE, P.A. --
The source of components of subgingival
plaque and calculus.

244. STEWART, J.I., DRISCO, R.R., and HERLACH, A.D. --
Comparison of ultrasonic and hand instruments
for the removal of calculus.

245. STOICOVICI, E., DUMA, I., and BABA, I. --
Structural and mineralogic findings in
healthy, carious, and periodontally involved
teeth.

246. STONE, S., RAMFJORD, S.P., and WALDRON, J. --
Scaling and gingival curettage: a radiographic study.
1966.

247. SUPPIPAT, N. --
Ultrasonics in periodontics.

248. SWARTZ, M.L., and PHILLIPS, R.W. --
Comparison of bacterial accumulations on
rough and smooth enamel surfaces.
249. TAGGE, D.L., O'LEARY, T.J., and EL-KAPRAWY, A.H. ---

The clinical and histological response of periodontal pockets to root planing and oral hygiene.

250. TASCHER, P.J., and EWEN, S.J. ---

An ultrasonic method for root scalings - preliminary report.

251. TEN CATE, A.R. ---

Morphologic studies of fibrocytes in connective tissue undergoing rapid remodelling.

252. THEILADE, J., FITZGERALD, R.J., SCOTT, D.B., and NYLEN, M.U. ---

Electron microscopic observations of dental calculus in germfree and conventional rats.

253. THEILADE, J. ---

Electron microscopic study of calculus attachment to smooth surfaces.

254. THEILADE, E., WRIGHT, W.H., JENSEN, S.B., and LOE, H. --
Experimental gingivitis in man.

255. THILANDER, H. --
Some structural changes in periodontal disease.

256. TIBER, A., STAHL, S.S., and WEINER, J.M. --
Histologic and autoradiographic evaluations of long-term gingival wound sites in adult rats.

257. TONNA, E.A., and STAHL, S.S. --
A polarized light microscopic study of rat periodontal ligament following surgical and gingival trauma.

258. TONNA, E.A. --
Electron microscopic evidence of alternating osteocytic - osteoclastic and osteoplastic activity in the perilacunar walls of aging mice.

264. VORDEADIS, E.G., and ZANDER, H.A. --
 Cuticular calculus attachment.

265. WAERHAUG, J. --
 Effect of rough surfaces upon gingival tissue.
 J. Dent. Res. 35: 2; 323-325, April 1956.

266. WAERHAUG, J. (1972) --
 cited in Suppipat, N.
 Ultrasonics in periodontics.

267. WAHL, L.M., WAHL, S.M., MERGENHAGEN, S.E., and
 MARTIN, G.R. --
 Collagenase production by endotoxin-activated
 macrophages.

268. WEBSTER'S THIRD NEW INTERNATIONAL DICTIONARY OF
 THE ENGLISH LANGUAGE - UNABRIDGED.
 Gove, P.B. (chief edit.).
 Springfield, Massachusetts, U.S.A. 1966 (p. 2152)
269. WICKEN, A.J., and KNOX, K.W. --
Lipoteichoic acids - a new class of bacterial antigen.

270. WILDERMAN, M., and WENTZ, F. --
Repair of dentogingival defect with a pedicle flap.

271. WILKINSON, R.F., and MAYBURY, J.E. --
Scanning electron microscopy of the root surface following instrumentation.

272. WILLIAMS, B.L., PANTALONE, R.M., and SHERRIS, J.C. --
Subgingival microflora and periodontitis: predominant cultivable bacteria and humoral antibodies from periodontal patients and control subjects.
cited in Loesche, W.J.
Chemotherapy of dental plaque infections.
in Melcher, A.H., and Zarb, G.A. (eds.).
273. WILLOUGHBY, D., and DI ROSA, M. --

in Immunopathology of inflammation.
Forscher, B.K., and Houck, J.C. (edits.).

274. WILSON, J.R. --

The use of ultrasonics in periodontal treatment.

275. WOODRUFF, H.C., LEVIN, M.P., and BRADY, J.M. --
The effects of two ultrasonic instruments on root surfaces.

276. YOUNG, L.L. --

Scanning electron microscopy of cementum in the pocket area. (Abstr. 766).

277. ZANDER, H.A. --
The attachment of calculus to root surfaces.

278. ZANDER, H.A., and HURZELER, B. --

Continuous cementum apposition.
Goals of periodontal therapy.
APPENDIX

PLATES 42a (100x) and 42b (1000x)

Supra-attachment root surface following Amdent ultrasonic scaler at high amplitude setting. The burnished calculus layer was not detected by instrument touch.

PLATE 42a (100x)

PLATE 42b (1000x)
PLATES 43a (100x) and 43b (1000x)

Infra-attachment root surface following Amdent ultrasonic at three quarter (medium) amplitude setting. Periodontal fibre remnants were not detected by instrument touch.

PLATE 43a (100x)

PLATE 43b (1000x)