MICROBIAL AND GEOCHEMICAL ASPECTS OF SELENIUM CYCLING IN AN ESTUARINE SYSTEM - LAKE MACQUARIE, NSW

Brett Carroll

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Chemical Engineering
University of Sydney
July 1999

© Brett Ian Carroll, 1999
DECLARATION

I hereby certify that this thesis is my original work, and that it has not been submitted to any other University or Institution for the award of a degree.

......................................

Brett Ian Carroll

July 19, 1999
ABSTRACT

This work examined the role of micro-organisms in the biogeochemical cycling of selenium within the benthic ecosystem of Lake Macquarie, a coastal lake in New South Wales with a history of anthropogenic heavy metal contamination. Certain micro-organisms possess the ability to oxidise or reduce selenium (Fleming and Alexander, 1973; Doran and Alexander, 1977), and microbial volatilisation of selenium from contaminated sediments and soils utilising naturally-occurring microflora has been shown in overseas research (Thompson-Eagle and Frankenberger, 1992) to be a potentially effective remediation strategy. In examining the impact of micro-organisms upon the oxidation state of selenium in Lake Macquarie sediments, this work also investigated and characterised selenium (and heavy metal) concentrations, speciation and geochemical phase associations (an indicator of potential bioavailability) in the sediments.

Seven distinct bacterial species indigenous to Lake Macquarie were identified in this work with the ability to reduce selenium as selenite to elemental selenium, and selenium as selenate to organic forms of selenium, including volatile methylated selenium compounds. Metabolic parameters calculated for these organisms compared favourably with those reported in the literature by other researchers. Mixed populations of sediment micro-organisms were also isolated and studied in this work for their selenite and selenate reduction abilities.

Total reduction of added selenite at levels up to 100 mg/L was recorded for a number of the organisms studied in this work. A maximum specific uptake rate for selenite of 3040 µgSe(IV).(gcells)^-1.(h)^-1 for one isolate (Shewanella putrefaciens) was determined, exceeding rates reported in the literature by other authors. Use of the indigenous micro-organisms from Lake Macquarie for the bioremediation of selenium containing waste streams was also examined in this work and selenium reduction in an immobilised cell reactor was demonstrated with such organisms.
Concentrations, speciation, sediment core profiles and geochemical phase associations for selenium were determined for sediment samples collected at a variety of sites throughout Lake Macquarie and from Wyee Creek, a selenium-impacted fluvial input to the lake. The maximum concentration of selenium obtained in this work for the lake proper was 4.04 mg/kg, considerably lower than values reported over a decade ago (Batley, 1987) but consistent with reported reductions of selenium input into the lake from the lead-zinc smelter. Selective extraction methodology (Tessier et al. and BCR methods) studied geochemical phase association of selenium in Lake Macquarie sediments and found up to 44% of selenium was in bioavailable forms. Of interest and environmental concern was levels of selenium found in sediments of Wyee Creek, which previously received overflows from the ash dam associated with the Vales Point Power Station. Sediment selenium levels of up to 300 mg/kg were determined for this creek. These were an order of magnitude or more greater than those recorded for the lake itself and are of concern as to the potential impact on benthic organisms and those animals, including humans, who consume them.

While this work can only provide a “snapshot” of conditions within Lake Macquarie at the time of the sampling events recorded herein, it does make several important contributions to the understanding of selenium biogeochemistry in Lake Macquarie. These include:

- presentation of the hypothesis that selenium levels in surficial sediments being deposited in the north of the lake have decreased in recent years as a result of selenium reduction measures undertaken by the lead-zinc smelter;

- determination that up to 44% of selenium in surficial sediments from the lake is associated with sediment phases in which selenium has the potential to become remobilized and hence possibly bioavailable; and

- documentation of selenium concentrations in Wyee Creek, identifying the area as having selenium concentrations an order of magnitude or more greater than the lake itself.
Concerning the role played by microorganisms in the biogeochemical cycling of selenium in Lake Macquarie, this work has:

- identified individual isolated and mixed cultures of bacteria that can reduce selenium as selenite to lower oxidation states;
- identified individual isolated and mixed cultures of bacteria that can reduce selenium as selenate to lower oxidation states;
- identified volatile methylated selenium compounds in the headspace gases of microorganisms reducing selenate;
- determined Minimum Inhibitory Concentrations for selenate and selenite for organisms isolated from Lake Macquarie;
- identified casein hydrolysate as a preferred carbon source for selenium reducing microorganisms from Lake Macquarie; and
- demonstrated that bioremediation of selenium contaminated waste streams using indigenous organisms from Lake Macquarie is feasible on the laboratory scale.

Further research areas suggested by this work include:

- additional investigations of elevated selenium levels in Wyee Creek sediments;
- determination of the role of microbes in *in-situ* selenium reduction; and
- optimisation of selenium biotreatment/bioremediation of selenium-containing waste streams and sediments.

In summary, this work, in rejecting the null hypothesis that the oxidation states of selenium in sediments from Lake Macquarie, NSW, are independent of microbial
activity and accepting the alternate hypothesis that these oxidation states are not independent of microbial activity, contributes to the understanding of the role of microorganisms in the biogeochemical cycling of selenium, having applicability to both the specific ecosystem of Lake Macquarie, NSW, and also to selenium cycling in the environment in general. In addition, this work has identified selenium contamination in Wyee Creek, one of the fluvial inputs to Lake Macquarie, which was previously been undocumented in the literature and which may pose significant potential risk to humans and the ecosystem due to sediment selenium levels one or more orders of magnitude higher than those recorded in the lake itself. Finally, this work has also identified a number of microorganisms indigenous to Lake Macquarie with the ability to reduce selenium from toxic, mobile forms to less toxic, immobile or volatile forms, and these organisms have been shown to have the potential for use in treatment of selenium contaminated waste streams and also in the bioremediation of selenium-contaminated sediments.
ACKNOWLEDGEMENTS

The work described in this thesis has been supported in part by an ARC Institutional Grant (1995-1997) and by research funds contributed by Lake Macquarie City Council (1995/96). The support of these organisations in the provision of funding is gratefully acknowledged.

The author also acknowledges the endowment of Henry Bertie and Florance Mabel Gritton to the University of Sydney for the establishment of a postgraduate research scholarship designed for the investigation of environmental chemistry, of which this author was a grateful recipient. The Chemical Engineering Foundation and the Department of Chemical Engineering, University of Sydney also provided supplementary scholarships to the author and their support is also gratefully acknowledged.

Notwithstanding declarations elsewhere in respect of the originality of this work, a work such as this cannot ever be said to be truly the work of one individual, and as such I wish to express and offer my thanks to those who have assisted me in various ways throughout my tenure as a postgraduate student and without whom this work would be a pale imitation of what it is. Thanks therefore to:

A/Prof John P Barford, Department of Chemical Engineering, University of Sydney, my supervisor, for his insight, wisdom, knowledge, support and encouragement;

A/Prof Bill Maher, Faculty of Applied Science, University of Canberra, my co-supervisor, for coming on-board when he did, for his great knowledge about things seleniferous, and for his encouragement and support throughout it all;

Mr Denis Nobbs, Department of Chemical Engineering, University of Sydney, my analytical guru, for his generosity and whole-hearted support of my work and myself;
Mr Greg Peters, PhD candidate, Department of Chemical Engineering, University of Sydney, my fellow traveller on the road to understanding selenium in Lake Macquarie, for his lateral thinking, and encouraging me to go that little bit extra and just do one more experiment;

Professor Danny Reible, former Shell Professor of Environmental Engineering in this department, for his support and encouragement during his tenure here;

Dr In Seop Kim, formerly of this Department and now of the University of New South Wales, for taking this work beyond where I left it and for the permission to cite his data concerning identification and experimentation with selenite-reducing bacteria;

The undergraduate students who have worked with me, who have been partners in these investigations and who have contributed to this work in so many ways. Specifically, thanks to: Phyll Chapman, for his assistance in studying selenium volatilisation and identification of volatile selenium compounds; Kait Gotham and Matt Reso, for assistance in my initial studies of the bacterial transformations of selenite, and selenate, respectively; Emily Harston, for assisting with the work on selenium in Wyee Creek; Sally Mitchell, for her tireless efforts with the bioreactors and isolating organisms; Denis Reich, for helping dig-up details of the industrial archaeology of the Lake Macquarie area and for the representation of Lake Macquarie heavy metal data in a Geographic Information Systems form; Geoff Smith, for assisting with the study of bioavailability of sediment-bound selenium; and Kurt Wegenaar, for helping model selenium cycling in the Lake;

Dr Lieke Riadi, University of Surabaya and formerly of this Department, for her work on selenium transformations in ash dam isolates which partly inspired this investigation;

Dr Jeffrey Shi and Mr Adam Lovell, Joint Elemental Analytical Facility, University of Sydney, for grateful assistance with all carbon analyses reported in this study;
The workshop staff, Department of Chemical Engineering, University of Sydney, for building all the strange things I needed built and fixing the broken things;

My fellow postgraduates and other academic members of the Department’s Environmental Research Group, for their encouragement and constructive criticisms of my work;

The other postgraduates in our department, whose conversations about things other than selenium over morning teas have helped keep me sane;

My Friday morning prayer group, Peter Smith and Steve Courtney, for their continual encouragement and banter about all things seleniferous, another contributing factor to the maintenance of my sanity;

To those who laboriously reviewed this manuscript for accuracy, coherence, and typographical and grammatical errors (and any such as remain are the sole responsibility of the author); specifically to John Barford, Denis Nobbs, Bill Maher and Jennifer Wise;

And finally, but by no means least, to my wife Victoria, who was brave enough to say “yes” to my return to university, who has supported me emotionally and financially throughout it all, who read through all this and who has always been there for me. Thank you Victoria.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>vii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xx</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xxiii</td>
</tr>
<tr>
<td>PAPERS PREPARED FROM THIS WORK</td>
<td>xxxi</td>
</tr>
</tbody>
</table>

CHAPTER 1 - INTRODUCTION

1.1 Overall Aim

1.2 Research Objectives

CHAPTER 2 - SELENIUM BIOGEOCHEMISTRY

2.1 Introduction and Historical Perspectives

2.2 Selenium - Chemical And Physical Properties

2.2.1 Physical Properties

2.2.2 Chemical Properties

2.2.3 Uses of Selenium

2.3 Occurrence

2.3.1 Selenium in the Terrestrial Environment

2.3.2 Selenium in the Aquatic Environment

2.3.1 Selenium in the Atmospheric Environment

2.4 Biological Significance

2.4.1 Biochemistry of Selenium

2.4.2 Selenium in Nutrition

2.4.3 Selenium Toxicity
2.5 Selenium Biogeochemistry

2.5.1 Behaviour of Selenium in the Environment
2.5.2 Impact of Redox Potential and pH on Selenium Speciation
2.5.3 Complexation Reactions and Selenium Availability
2.5.4 Sorption and Desorption Reactions of Selenium
2.5.4 Volatilisation and Methylation of Selenium

2.6 Microbially-Mediated Transformations

2.6.1 Microbial Oxidation and Reduction of Inorganic Selenium
2.6.2 Microbial Mineralisation and Immobilisation Reactions
2.6.3 Microbial Methylation and Volatilisation
2.6.4 Bioremediation of Selenium Using Micro-organisms

CHAPTER 3 - SELENIUM CONTAMINATION OF LAKE MACQUARIE, N.S.W.

3.1 Introduction
3.2 Location and Physical Geography
3.3 Geology
3.4 Hydrology
3.5 History and Land-Use
3.5.1 Environmental Audit
3.6 Aquatic And Benthic Organisms
3.6.1 Benthic Communities
3.6.2 Bacterial and Fungal Communities
3.6.3 Plant Communities
3.6.4 Fish Species and Fish Depletion
3.7 Heavy Metal and Selenium Contamination of Lake Macquarie
3.7.1 Heavy Metal Distribution in Sediments
3.7.2 Heavy Metals in Pore Waters
3.7.3 Heavy Metals in the Water Column
4.5 Microbial Growth Studies
 4.5.1 Selenite Reduction by Individual Bacterial Isolates 148
 4.5.2 Selenate Reduction by Individual Bacterial Isolates 150
 4.5.3 Selenite Reduction by Mixed Bacterial Cultures on Nutrient Media 151
 4.5.4 Minimum Inhibition Concentrations of Selenium for Mixed Cultures 153
 4.5.5 Determination of Preferred Carbon Source for Mixed Cultures 155
 4.5.6 Selenium Reduction by Mixed Cultures on Defined Media Containing Casein Hydrolysate 157
 4.5.7 Identification of Volatile Selenium Compounds Released by Mixed Cultures 158
 4.5.8 Calculation of Metabolic Parameters 163

4.6 Bioremediation of Selenium Using Mixed Cultures 165

4.7 Sediment and Water Studies - Sample Preparation 167
 4.7.1 Glassware Cleaning Procedures 167
 4.7.2 Sample Storage 168
 4.7.3 Sample Preparation 169
 4.7.4 Validation of Sample Preparation Procedures 171
 4.7.5 Sample Digestion 172
 4.7.7 Conversion of Selenium to Se(IV) 176

4.8 Trace Metal Analysis - Selenium 178
 4.8.1 Instrumental Methods for Selenium Determination 178
 4.8.2 Hydride Generation Atomic Absorption Spectroscopy 180
 4.8.3 Apparatus 185
 4.8.4 Reagents and Standards 185
 4.8.5 Instrument Conditions 187
 4.8.6 Calibration Curve 187

4.9 Trace Metal Analyses - Other Metals 188
 4.9.1 Flame Atomic Absorption Spectroscopy 189
4.10 Sequential Extraction Analysis of Sediment-Bound Selenium

4.11 Total Organic Carbon Analysis

CHAPTER 5 - RESULTS

5.1 Bacterial Studies

5.1.1 Identification of Bacterial Isolates

5.1.2 Selenite (Se(IV)) Reduction by Individual Bacterial Isolates

5.1.3 Selenate (Se(VI)) Reduction by Individual Bacterial Isolates

5.1.4 Selenite Reduction by Mixed Bacterial Cultures on Nutrient Media

5.1.5 Minimum Inhibition Concentrations of Selenium for Mixed Cultures

5.1.6 Determination of Preferred Carbon Source for Mixed Cultures

5.1.7 Selenium Reduction by Mixed Cultures on Defined Media Containing Casein Hydrolysate

5.1.8 Identification of Volatile Selenium Compounds Released by Mixed Cultures

5.1.9 Bioremediation of Selenium Using Indigenous Micro-organisms

5.2 Sediment Studies

5.2.1 Validation of Sample Preparation Procedures

5.2.2 Sediment Phase Associations of Selenium

5.2.3 Selenium Concentrations and Speciation Profiles in Sediments from Lake Macquarie
5.2.4 Water Column Concentrations of Selenium in Lake Macquarie 240
5.2.5 Heavy Metal Concentrations in Lake Macquarie Sediment 241

5.3 Case Study: Selenium and Heavy Metal Contamination of Wyee Creek 242
5.3.1 Selenium Concentration and Speciation Profiles 242
5.3.2 Heavy Metal Profiles in Wyee Creek 242

5.4 Total Organic Carbon Analysis of Sediments 245

CHAPTER 6 - DISCUSSION 248
6.1 Bacterial Studies 248
6.1.1 Identification of Bacterial Isolates 249
6.1.2 Selenite Reduction by Micro-organisms 252
6.1.3 Selenate Reduction by Micro-organisms 265

6.2 Sediment Studies 273
6.2.1 Sediment Phase Associations of Selenium 277
6.2.2 Selenium Concentrations and Profiles from Lake Macquarie 283
6.2.3 Heavy Metal Concentrations and Profiles from Lake Macquarie 288
6.2.4 Selenium Concentrations and Profiles from Wyee Creek 289
6.2.5 Heavy Metal Concentrations and Profiles from Wyee Creek 292
6.2.6 Total Organic Carbon Analyses 295

CHAPTER 7 - CONCLUSION 297

APPENDICES 303
APPENDIX 1 - VALIDATION OF SAMPLE PREPARATION PROCEDURES 303
A1.1 The Need for Validation 303
A1.2 Validation Methodology 303
A1.3 Validation Results 304
A1.3.1 Selenium Partitioning Between Sediment Size Fractions 304
A1.3.2 Remobilisation and Loss of Selenium in Wet Sieving 310
A1.4 Dry Weight Corrections 311

APPENDIX 2 - CALIBRATION CURVES FOR HEAVY METALS 314

APPENDIX 3 - IDENTIFICATION OF BACTERIAL ISOLATES 319

APPENDIX 4 - SELENITE REDUCTION BY BACTERIAL ISOLATES 329

APPENDIX 5 - SELENATE REDUCTION BY BACTERIAL ISOLATES 335

APPENDIX 6 - PLATE COUNT RESULTS FOR ORGANISMS ISOLATED FROM LAKE SEDIMENTS 337

APPENDIX 7 - SELENIUM METHYLATION STUDIES - GAS CHROMATOGRAMS 340

APPENDIX 8 - SELENIUM METHYLATION STUDIES - SELENATE REDUCTION AND GROWTH CURVES 351

APPENDIX 9 - SELENIUM CONCENTRATIONS AND SPECIATION FROM LAKE MACQUARIE 360
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2TY</td>
<td>Tryptone Yeast Media</td>
</tr>
<tr>
<td>AAS</td>
<td>Atomic Absorption Spectroscopy</td>
</tr>
<tr>
<td>AEROCE</td>
<td>Atmosphere/Ocean Chemistry Experiment</td>
</tr>
<tr>
<td>AES</td>
<td>Atomic Emission Spectroscopy</td>
</tr>
<tr>
<td>ANZECC</td>
<td>Australian and New Zealand Environment Conservation Council</td>
</tr>
<tr>
<td>BCR</td>
<td>European Community Bureau of Reference</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Organisation</td>
</tr>
<tr>
<td>DMDSe</td>
<td>Dimethyl Diselenide</td>
</tr>
<tr>
<td>DMSe</td>
<td>Dimethyl Selenide</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminepentaacetic acid</td>
</tr>
<tr>
<td>Eh</td>
<td>Redox Potential</td>
</tr>
<tr>
<td>EPA</td>
<td>Environment Protection Authority (NSW)</td>
</tr>
<tr>
<td>FAAS</td>
<td>Flame Atomic Absorption Spectroscopy</td>
</tr>
<tr>
<td>GC</td>
<td>Gas Chromatography</td>
</tr>
<tr>
<td>GFAAS</td>
<td>Graphite Furnace Atomic Absorption Spectroscopy</td>
</tr>
<tr>
<td>HEPA</td>
<td>High Efficiency Particulate Air</td>
</tr>
<tr>
<td>HG</td>
<td>Hydride Generation</td>
</tr>
<tr>
<td>HGAAS</td>
<td>Hydride Generation Atomic Absorption Spectroscopy</td>
</tr>
<tr>
<td>MIC</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>MIS</td>
<td>Microbial Identification System</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectroscopy</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>NMR</td>
<td>Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>pE + pH</td>
<td>log activity-redox</td>
</tr>
<tr>
<td>Q_{substrate}</td>
<td>Specific Uptake Rate of a Substrate/Electron Acceptor</td>
</tr>
<tr>
<td>Q_{Se}</td>
<td>Specific Uptake Rate of Selenium</td>
</tr>
<tr>
<td>RNAA</td>
<td>Radiochemical Neutron Activation Analysis</td>
</tr>
<tr>
<td>RSD</td>
<td>Relative Standard Deviation</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Se(0)</td>
<td>Elemental Selenium</td>
</tr>
<tr>
<td>Se(II)</td>
<td>Selenide</td>
</tr>
<tr>
<td>Se(II + 0), [Se(II) + Se(0)]</td>
<td>“Organic Selenium”</td>
</tr>
<tr>
<td>Se(IV)</td>
<td>Selenite</td>
</tr>
<tr>
<td>Se(VI)</td>
<td>Selenate</td>
</tr>
<tr>
<td>[Se(VI) + Se(IV)]</td>
<td>Selenate and Selenite Fraction</td>
</tr>
<tr>
<td>SeGSHpx</td>
<td>Glutathione Peroxidase Enzyme System</td>
</tr>
<tr>
<td>[Se(Tot)]</td>
<td>Total Selenium</td>
</tr>
<tr>
<td>SPCC</td>
<td>State Pollution Control Commission</td>
</tr>
<tr>
<td>SRM</td>
<td>Standard Reference Material</td>
</tr>
<tr>
<td>t</td>
<td>time</td>
</tr>
<tr>
<td>TC</td>
<td>Total Carbon</td>
</tr>
<tr>
<td>TIC</td>
<td>Total Inorganic Carbon</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TSBA</td>
<td>Tryptophan Soy Base Agar</td>
</tr>
<tr>
<td>μ</td>
<td>Specific Growth Rate</td>
</tr>
<tr>
<td>USEPA</td>
<td>United States Environment Protection Authority</td>
</tr>
<tr>
<td>VWA</td>
<td>Volume Weighted Average</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
<tr>
<td>$[X]$</td>
<td>Concentration of “X”</td>
</tr>
<tr>
<td>x</td>
<td>Cell Dry Weight</td>
</tr>
<tr>
<td>Y_{XSe}</td>
<td>Yield (based on selenium)</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.1</td>
<td>Selenium Concentrations in Terrestrial and Geological Materials</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Selected Selenium Concentrations in Freshwater Systems</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Selected Total Selenium Concentrations in Marine Waters</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Selenium Speciation and Concentrations in Marine Waters</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Selenium Concentrations in Sediments</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Transformations of Selenium Mediated by Micro-Organisms - Reduction and Oxidation Reactions</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Transformations of Selenium Mediated by Micro-Organisms - Methylation Reactions</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Heavy Metal Concentrations in Lake Macquarie Sediment</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Heavy Metal Concentrations in Lake Macquarie Waters</td>
</tr>
<tr>
<td>Table 3.3</td>
<td>Heavy Metal Concentrations in Aquatic and Benthic Organisms in Lake Macquarie</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Media and Selenium Volumes for MIC Experiments</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Basal Salts Media Composition</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Instrument Conditions for Analysis of Selenium by HGAAS</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Instrument Conditions for Heavy Metal Analyses</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Identification of Bacterial Isolates Based on GC Fatty Acid Analysis</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Metabolic Parameters Associated with Isolates</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>5.3</td>
<td>Metabolic Parameters Associated with Isolates Reducing Selenate from an Initial Concentration of 100 mg/L Se</td>
</tr>
<tr>
<td>5.4</td>
<td>Minimum Inhibition Concentrations of Selenium for Mixed Cultures</td>
</tr>
<tr>
<td>5.5</td>
<td>Growth of Mixed Cultures on Basal Salts Media Containing 10 mg/L Selenium and One of Four Carbon Sources</td>
</tr>
<tr>
<td>5.6</td>
<td>Selenium Speciation and Concentration in Cultures After 12 Days Growth in Basal Salts Media with Casein Hydrolysate and Selenium</td>
</tr>
<tr>
<td>5.7</td>
<td>Metabolic Growth Parameters for Sediment Micro-organisms Grown on Selenate</td>
</tr>
<tr>
<td>5.8</td>
<td>Volatile Species Identified in Culture Headspace Gases</td>
</tr>
<tr>
<td>5.9</td>
<td>Turbidity Observations for Growth of C1A1 in Different Media</td>
</tr>
<tr>
<td>5.10</td>
<td>Metabolic Parameters Calculated for Bacteria C1A1</td>
</tr>
<tr>
<td>5.11</td>
<td>pH and Se Concentration of Waters from Lake Macquarie</td>
</tr>
<tr>
<td>5.12</td>
<td>Sediment Concentrations of Selected Heavy Metals from Lake Macquarie</td>
</tr>
<tr>
<td>6.1</td>
<td>Metabolic Parameters Associated with Selenite Reduction by Bacterial Isolates</td>
</tr>
<tr>
<td>A1.1</td>
<td>Remobilisation of Selenium Due to Wet-Sieving</td>
</tr>
<tr>
<td>A4.1</td>
<td>Selenite Reduction and Growth rate Data for Lake Macquarie Isolates at an Initial Media Selenite Level of 100 mg/L - Organisms 1 - 4</td>
</tr>
<tr>
<td>A4.2</td>
<td>Selenite Reduction and Growth Rate Data for Lake Macquarie Isolates at an Initial Media Selenite Level</td>
</tr>
</tbody>
</table>
Table A4.3: Selenite Reduction and Growth rate Data for Lake Macquarie Isolates at an Initial Media Selenite Level of 10 mg/L - Organisms 1 - 4

Table A4.4: Selenite Reduction and Growth rate Data for Lake Macquarie Isolates at an Initial Media Selenite Level of 10 mg/L - Organisms 5 - 7 and Controls

Table A4.5: Selenite Reduction and Growth rate Data for Lake Macquarie Isolates at an Initial Media Selenite Level of 1 mg/L - Organisms 1 - 4

Table A4.6: Selenite Reduction and Growth rate Data for Lake Macquarie Isolates at an Initial Media Selenite Level of 1 mg/L - Organisms 5 - 7 and Controls

Table A5.1: Selenate Reduction and Growth Rate Data for Lake Macquarie Isolates

Table A6.1: Plate Count Results for Organisms Isolated From Lake Sediments (Cultures Isolated from Site 1A)

Table A6.2: Plate Count Results for Organisms Isolated From Lake Sediments (Cultures Isolated from Site 1B)

Table A6.3: Plate Count Results for Organisms Isolated From Lake Sediments (Cultures Isolated from Sites 3A, 3B, 4A, 4B, 5A, 5B, 6A, 6B)

Table A9.1: Selenium Concentrations and Speciation Cores 1A, 1B, 2A and 2B from Lake Macquarie

Table A9.2: Selenium Concentrations and Speciation from Cores 3A, 3B, 4A and 4B from Lake Macquarie

Table A9.3: Selenium Concentrations and Speciation from Cores 5A, 5B, 6A and 6B from Lake Macquarie

Table A11.1: Total Selenium Concentrations in Wyee Creek

Table A11.2: Se(IV) + Se(VI) Concentrations in Wyee Creek (by HGAAS)

Table A11.3: Se(IV) Concentrations in Wyee Creek (by HGAAS)
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Selenium Cycling in the Environment Due to Natural and Anthropogenic Activities</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Selenium Cycling in a Marine Environment</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Biogeochemical Cycling of Selenium</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Aqueous Speciation of Selenium at pH 7.5</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Solubility of Selenium in Seawater at pH 7.5</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Microbially Mediated Transformations of Selenium</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Location of Lake Macquarie</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Lakeside Profile and Sediment Progression for Embayments, Lake Macquarie, N.S.W.</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Location of Heavy Metals Sources at Lake Macquarie</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Sediment Redox Potential as a Result of Bioturbation</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Eluted selenium from a sediment plug</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Location of Sampling Sites in Lake Macquarie</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Sampling Sites and Sediment Classifications at Nords Wharf, Lake Macquarie</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Sampling Sites in Wyee Creek, Lake Macquarie Catchment</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Hydraulic transport of fly ash at Vales Point Power Station since 1995</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Sediment Core Sampler</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Culture vessel for remediation of selenium-containing wastewaters</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Wet Sieve Apparatus for Sediment Sieving</td>
</tr>
</tbody>
</table>
Figure 4.8 Typical Calibration Curve for Selenium by Hydride Generation Atomic Absorption Spectroscopy 188

Figure 5.1 Growth and Formation of Red Precipitate Over Time 200

Figure 5.2 Variation in Colour of Precipitate with Initial Media Selenite Levels 200

Figure 5.3 Adsorption or Loss of Selenium From Flasks 201

Figure 5.4 Selenium Concentrations in Control Flasks 201

Figure 5.5 Selenite Reduction by Isolate 5 Showing Lag Time 202

Figure 5.6 Selenite Reduction by Isolate 6, 100 mg/L Se(IV) 205

Figure 5.7 Selenite Reduction by Isolate 6, 10 mg/L Se(IV) 205

Figure 5.8 Selenite Reduction by Isolate 6, 1 mg/L Se(IV) 206

Figure 5.9 Selenite Reduction by Isolate 2 at 100 mg/L Se(IV) 206

Figure 5.10 Selenite Reduction by Isolate 2 at 10 mg/L Se(IV) 207

Figure 5.11 Selenite Reduction by Isolate 2 at 1 mg/L Se(IV) 207

Figure 5.12 Selenite Reduction by Isolate 1 at 100 mg/L Se(IV) 208

Figure 5.13 Selenite Reduction by Isolate 3 at 100 mg/L Se(IV) 208

Figure 5.14 Selenite Reduction by Isolate 7 at 100 mg/L Se(IV) 209

Figure 5.15 Selenate Reduction by Isolate 1 at 100 mg/L Se(VI) 212

Figure 5.16 Selenate Reduction by Isolate 2 on 100 mg/L Se(VI) 212

Figure 5.17 Selenate Reduction by Isolate 3 on 100 mg/L Se(VI) 213

Figure 5.18 Selenate Reduction by Isolate 4 on 100 mg/L Se(VI) 213

Figure 5.19 Selenate Reduction by Isolate 5 on 100 mg/L Se(VI) 214

Figure 5.20 Selenate Reduction by Isolate 7 on 100 mg/L Se(VI) 214

Figure 5.21 Selenium Oxyanion Reduction with Depth in Mixed Cultures from Vales Point Sediments 216

Figure 5.22 Selenium Oxyanion Reduction by Mixed Cultures Isolated from Sediments at Six Locations within Lake Macquarie 216

Figure 5.23 Selenite Reduction in Casein Hydrolysate-Amended Basal Salts Media by a Mixed Culture (1A5(4)) from Surficial Sediment at Mannering Park 223
Figure 5.24 Selenate Reduction and Growth Curves for Micro-organisms from Vales Point, Culture 1A1 224

Figure 5.25 Selenate Reduction and Growth Curves for Micro-organisms from Vales Point, Culture 1A2 225

Figure 5.26 Selenate Reduction and Growth Curves for Micro-organisms from Vales Point, Culture 1B1 225

Figure 5.27 Correlation of Biomass and Absorbance 229

Figure 5.28 Effect of Time and Microbial Growth of Bacterial Culture C1A1 on Selenite Reduction - Run 1 (500 mg/L) 230

Figure 5.29 Effect of Time and Microbial Growth of Bacterial Culture C1A1 on Selenite Reduction - Run 2 (250 mg/L) 230

Figure 5.30 Effect of Time and Microbial Growth of Bacterial Culture C1A1 on Selenite Reduction - Run 3 (100 mg/L) 231

Figure 5.31 Selenium Distribution Between Geochemical Phases: Modified Tessier et al. Method 236

Figure 5.32 Selenium Distribution Between Geochemical Phases: BCR Procedure 237

Figure 5.33 Selenium Concentrations in Surficial Sediments from Four Sites in Lake Macquarie 238

Figure 5.34 Selenium Concentration and Speciation Profiles in Core 6B from Cockle Bay, Lake Macquarie 239

Figure 5.35 Spatial distribution of Selenium in Wyee Creek, 0-5cm sections 243

Figure 5.36 Spatial distribution of Selenium in Wyee Creek, 5-10 cm sections 243

Figure 5.37 Spatial distribution of Selenium in Wyee Creek, 10-15 cm sections 244

Figure 5.38 Spatial distribution of Selenium in Wyee Creek, 15-20cm sections 244
Figure A2.4 Sample Calibration Curve for Fe 316
Figure A2.5 Sample Calibration Curve for Mn 316
Figure A2.6 Sample Calibration Curve for Ni 317
Figure A2.7 Sample Calibration Curve for Pb 317
Figure A2.8 Sample Calibration Curve for Zn 318
Figure A3.1 Similarity Indices for Bacterial Isolates from Lake Macquarie 321
Figure A3.2 Similarity Dendogram for Lake Macquarie Isolates 322
Figure A3.3 Fatty Acid Comparison Chart for Isolate 5 Against *P. putida* biotype A and *L. buchneri* (MRSA) 323
Figure A3.4 Integration Charts for Solvent Control and Isolates 1-2 324
Figure A3.5 Integration Charts for Isolates 3-5 325
Figure A3.6 Integration Charts for Isolates 6-7 326
Figure A3.7 Integration Charts for Isolate 4 After Re-extraction (Sample Contaminated) 327
Figure A3.8 Integration Charts for Isolate 4 After Re-extraction (Sample Not Contaminated) 328
Figure A7.1 Mass Spectrum for Headspace of Culture 1A2 for DMSe 341
Figure A7.2 Mass Spectrum for Headspace of Culture 1A2 for DMTS 342
Figure A7.3 Magnified Gas Chromatogram for Headspace of Culture 4B1 343
Figure A7.4 Mass Spectrum for Headspace of Culture 4B1 for DMDS 344
Figure A7.5 Mass Spectrum for Headspace of Culture 4B1 for DMSeS 345
Figure A7.6 Mass Spectrum for Headspace of Culture 4B1 for DMTS 346
Figure A7.7 Mass Spectrum for Headspace of Culture 4B1 for DMSeDS
Figure A7.8 Mass Spectrum for Headspace of Culture 1B1 for DMDS
Figure A7.9 Molecular Fragment Pattern for DMSe
Figure A7.10 Molecular Fragment Pattern for DMDSe
Figure A8.1 Curves for Microorganisms from Vales Point, Culture 1A1
Figure A8.2 Selenate Reduction and Growth Curves for Microorganisms from Vales Point, Culture 1A2
Figure A8.3 Selenate Reduction and Growth Curves for Microorganisms from Vales Point, Culture 1B1
Figure A8.4 Selenate Reduction and Growth Curves for Microorganisms from Vales Point, Culture 1B2
Figure A8.5 Selenate Reduction and Growth Curves for Microorganisms from Nords Wharf, Culture 12A1
Figure A8.6 Selenate Reduction and Growth Curves for Microorganisms from Nords Wharf, Culture 2A2
Figure A8.7 Selenate Reduction and Growth Curves for Microorganisms from Nords Wharf, Culture 2B1
Figure A8.8 Selenium Reduction and Growth Curves for Microorganisms from Nords Wharf, Culture 2B2
Figure A8.9 Selenium Reduction and Growth Curves for Microorganisms from Cockle Creek, Culture 3A1
Figure A8.10 Selenium Reduction and Growth Curves for Microorganisms from Cockle Creek, Culture 3A2
Figure A8.11 Selenium Reduction and Growth Curves for Microorganisms from Cockle Creek, Culture 3B1
Figure A8.12 Selenium Reduction and Growth Curves for Microorganisms from Cockle Creek, Culture 3B1
Figure A8.13 Selenium Reduction and Growth Curves for Microorganisms from Myuna Bay, Culture 4A1

Figure A8.14 Selenium Reduction and Growth Curves for Microorganisms from Myuna Bay, Culture 4A2

Figure A8.15 Selenium Reduction and Growth Curves for Microorganisms from Myuna Bay, Culture 4B1

Figure A8.16 Selenium Reduction and Growth Curves for Microorganisms from Myuna Bay, Culture 4B2

Figure A8.17 Selenium Concentrations in Selenate-only Control

Figure A10.1 Co Concentrations in Surface Sediment from Lake Macquarie

Figure A10.2 Cu Concentrations in Surface Sediment from Lake Macquarie

Figure A10.3 Mn Concentrations in Surface Sediment from Lake Macquarie

Figure A10.4 Ni Concentrations in Surface Sediment from Lake Macquarie

Figure A10.5 Pb Concentrations in Surface Sediment from Lake Macquarie

Figure A10.6 Zn Concentrations in Surface Sediment from Lake Macquarie

Figure A12.1 Spatial distribution of Zinc in Wyee Creek, 0-5 cm sections

Figure A12.2 Spatial distribution of Zinc in Wyee Creek, 5-10 cm sections

Figure A12.3 Spatial distribution of Zinc in Wyee Creek, 10-15 cm sections

Figure A12.4 Spatial distribution of Zinc in Wyee Creek, 15-20 cm sections

Figure A12.5 Spatial distribution of Copper in Wyee Creek, 0-5 cm sections
Figure A12.6 Spatial distribution of Copper in Wyee Creek, 5-10 cm sections 373
Figure A12.7 Spatial distribution of Copper in Wyee Creek, 10-15 cm sections 374
Figure A12.8 Spatial distribution of Copper in Wyee Creek, 15-20 cm sections 374
Figure A12.9 Spatial distribution of Lead in Wyee Creek, 0-5 cm sections 375
Figure A12.10 Spatial distribution of Lead in Wyee Creek, 5-10 cm sections 375
Figure A12.11 Spatial distribution of Lead in Wyee Creek, 10-15 cm sections 376
Figure A12.12 Spatial distribution of Lead in Wyee Creek, 15-20 cm sections 376
Figure A12.13 Spatial distribution of Cadmium in Wyee Creek, 0-5 cm sections 377
Figure A12.14 Spatial distribution of Cadmium in Wyee Creek, 5-10 cm sections 377
Figure A12.15 Spatial distribution of Cadmium in Wyee Creek, 10-15 cm sections 378
Figure A12.16 Spatial distribution of Cadmium in Wyee Creek, 15-20 cm sections 378
PAPERS PREPARED FROM THIS WORK

