FACTORS INFLUENCING GRIP STRENGTH TESTING IN TEENAGERS

Anita Clerke
B.App.Sc.O.T.

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Faculty of Health Science
University of Sydney
2006
STATEMENT OF AUTHORSHIP

The work presented in this thesis is the original work of the author except where as acknowledged in the text. I hereby declare that I have not submitted this material either in whole or in part for any degree at this or any other institute.

Anita M. Clerke PhD Candidate

14.12.06
Date
SUPERVISOR’S STATEMENT BY DR. RON BALNAVE

As co-supervisor of Anita M. Clerke’s doctoral work, I certify that I consider her thesis “Factors influencing grip strength testing in teenagers” to be suitable for examination.

Signed ..

Date 22.12.2006

Dr. Ron Balnave
School of Biomedical Sciences
Faculty of Health Sciences
University of Sydney
SUPERVISOR’S STATEMENT BY DR. ROGER ADAMS

As co-supervisor of Anita M. Clerke’s doctoral work, I certify that I consider her thesis “Factors influencing grip strength testing in teenagers” to be suitable for examination.

Signed

Date

Dr. Roger D. Adams
School of Physiotherapy
Faculty of Health Sciences
University of Sydney
STATEMENT FROM CO-AUTHOR CONFIRMING THE AUTHORSHIP CONTRIBUTION OF THE PhD CANDIDATE

As co-author of the paper entitled “A Literature Review of the Effect of Handedness on Isometric Grip Strength Differences of the Left and Right Hands” published in the American Journal of Occupational Therapy (Vol. 55, 206-211, 2001) I confirm that Anita M. Clerke has made the following contributions:

1. Conception and design of the research project;
2. Data collection, analysis and interpretation of the findings;
3. Writing the paper and critical appraisal of content;
4. Corresponding author for communication with journals.

Signed: (Jonathan P. Clerke) Date: 23/12/2006
STATEMENT FROM CO-AUTHORS CONFIRMING THE AUTHORSHIP CONTRIBUTION OF THE PhD CANDIDATE

As co-authors of the paper entitled “Effects of hand shape on maximal isometric grip strength and its reliability in teenagers” published in the Journal of Hand Therapy (Vol. 18, 19-29, 2005) we confirm that Anita M. Clerke has made the following contributions:

1. Conception and design of the research project;
2. Data collection, analysis and interpretation of the findings;
3. Writing the paper and critical appraisal of content;
4. Corresponding author for communication with journals.

Signed: (Jonathan P. Clerke)
Date: 23/12/2006

Signed: Dr. Roger D. Adams
Date: 26/12/2006

Dr. Roger D. Adams
School of Physiotherapy
Faculty of Health Sciences
University of Sydney
ACKNOWLEDGEMENTS

I would like to extend my thanks and appreciation to my supervisors, Dr. Ron Balnave and Dr. Roger Adams for their enthusiasm, encouragement and guidance of the research and in the completion of this thesis. Many other people also need to be acknowledged and many favours returned. My ever-supportive husband, Jonathan and ever-patient children, Roshan and Sharmini need the greatest thanks. The retired Science Master at Albany Creek High School, Mr. Robin Beiers was an immense help in making the fieldwork possible at his school. Dr. Kylie Baker and other friends have helped in many ways, thanks to you all. And of course the maker of the universe needs to be acknowledged, as nothing is possible without Him.
PUBLICATIONS AND PRESENTATIONS

PAPERS PUBLISHED

PAPERS PRESENTED

Clerke, A. M. (2003, November). *Hand Shape and its Effect Upon the Grip Strength* [Abstract]. Paper presented at the Biomedical Sciences Post Graduate Research Students Conference, Faculty of Health Sciences, University of Sydney, 44.

TABLE OF CONTENTS

STATEMENT OF AUTHORSHIP ... i
SUPERVISORS’ STATEMENTS .. ii
COAUTHORS’ STATEMENTS iv
ACKNOWLEDGEMENTS .. vi
PUBLICATIONS AND PRESENTATIONS vii
TABLE OF CONTENTS .. ix
LIST OF TABLES .. xv
LIST OF FIGURES .. xix
ABSTRACT .. xxii

CHAPTER 1 INTRODUCTION 1
Statement of the problem 1
Research objectives ... 2
Thesis organization ... 3
Terminology .. 4
Functional anatomy and the impact of hand injuries 4
Assessing grip strength 18
Variations in grip strength 19

CHAPTER 2 HAND ASSESSMENT INSTRUMENTS 22
1. Pen and paper tests ... 22
2. Tools to measure sensory nerves 24
3. Medico-legal implications of loss of hand function as reflected in loss of grip strength, according to various authorities .. 25
4. History of grip strength tools 27
 Early dynamometers 28
 Standard muscle testing positions 37
 Dynamometers of the late 19th century and after 38
Experiment 1

CHAPTER 6 RELIABILITY AND VALIDITY OF THE MODIFIED EDINBURGH HANDEDNESS INVENTORY .. 97

Methods for part A, B and C 99
Methods for part D 101
Results 101
Discussion 108
Limitations and future recommendations 114
Conclusion 115

Experiment 2

CHAPTER 7 REPRESENTATIVENESS OF THE RESEARCH PARTICIPANTS ... 116

Part 7.1A Anthropometric values ... 117
Methods 122
Statistical analysis 122
Results 124
Discussion 130
Study limitations 136
Summary 138

Part 7.1B Lifetime Injury Prevalence ... 139
Methods 139
Statistical analysis 140
Results 140
Discussion 142
Summary 144

Part 7.1C Exercise levels ... 146
Methods 147
Statistical analysis 147
Results 147
Discussion 150

xi
APPENDIX A A literature review of the effect of handedness on isometric grip strength differences of the left and right hands. 294

APPENDIX B Effects of hand shape on maximal isometric grip strength and its reliability in teenagers. 300

APPENDIX C Movements of the wrist, fingers and thumb 320

APPENDIX D Edinburgh Handedness Inventory 326

APPENDIX E Adults Bio-data forms 327

APPENDIX F School conent and information forms 331

APPENDIX G Personal profile forms (Teenagers) 334

APPENDIX H Anthropometric norms and outliers for anthropometric comparisons 335

APPENDIX I t test results for height, weight and BMI comparisons 337

xv
LIST OF TABLES

Table 5.1. Organization of the Three Experiments of the Thesis 84
Table 6.1. Reliability Values for the LQ of the EHI for Teenagers and Adults 102
Table 6.2. Test-retest Agreement for Individual Scores of the EHI_{10} 104
Table 6.3. Numbers (%) of Teenagers and Adults Who Always Used Their Dominant Hand (Dom) for the Listed Tasks in the EHI_{10} 106
Table 6.4. Numbers (%) of Teenagers and Adults Who Always Used Their Dominant Hand for the Listed Tasks in the EHI_{14} 107
Table 6.5. Numbers of Teenagers and Adults Who Always Used Their Non-dominant Hand for the Listed Tasks in the EHI_{14} 107
Table 6.6. Test-retest Agreement for the Four New Tasks Considered for the EHI 108
Table 7.1. Mean Height in cm, Mean Weight in kg and BMI for all Groups 125
Table 7.2. Number (%) of Students That Were Over-Weight and Obese 126
Table 7.3. Means of Hand Length in cm, Hand Width in cm, Hand Surface Area in cm^2 and Hand Length/Body Height Ratio for all Groups 127
Table 7.4. Correlation Values for Hand Width with Hand Length and the W/L Ratio Values 129
Table 7.5. Mean Number of Fractures per Teenager 141
Table 7.6. Number (%) of Teenagers Reporting Past Upper Limb Surgery 141
Table 7.7. Number (%) of Teenagers Participating in Sport Each Week 148
Table 7.8. Number (%) of Teenagers Exercising Throughout the Year Compared with Those Who Did No Exercise. 149
Table 7.9. The Strongest Dominant Hand (DomT1) and Strongest Non-dominant Hand (Non-domT1) Grip Strength Scores For All Males and Females 161
Table 7.10. Correlation Statistics Between DomT1 and Non-DomT1 for the Age and Gender Split Groups 163
Table 7.11. Correlation Statistics Between Left and Right Hands for the Age and Gender Split Groups. 163
Table 7.12. Correlation Statistics Between Dominant and Right Hands for the Age and Gender Split Groups 164
Table 7.13. Correlation Statistics Between Non-dominant and Left Hands for the Age and Gender Split Groups 164
Table 7.14. Description of Comparable Isometric Grip Strength Studies. 169
Table 7.15. Comparison of Younger Teenage Males Grip Strength in Kg Force (SD). 170
Table 7.16. Comparison of Younger Teenage Females Grip Strength in Kg Force (SD). 171
Table 7.17. Comparison of Older Teenage Males Grip Strength in Kg Force (SD). 172
Table 7.18. Comparison of Older Teenage Females Grip Strength in Kg Force (SD). 173
Table 7.19. Bivariate Correlations (R) and Adjusted R^2 (R^2_{adj}) Between Dominant and Non-Dominant Hand Grip Strength and Other Variables for the Males and Females. 187
Table 7.20. Prediction Models, R and R^2 and R^2_{adj} for the Dominant and Non-dominant Grip Strength. 187

Table 8.1. Sample Numbers and Retest Time Intervals Measured in Days. 211
Table 8.2. Mean (SD) Strongest Dominant (Dom) and Non-dominant (Non-dom) Grip Strengths in Kilograms Force From Test 1 (T1) to Test 2 (T2) for Each Age and Gender Group. 211
Table 8.3. Correlation Statistics Split by Age and Time Interval for the Dominant Hand. 212
Table 8.4. Correlation Statistics Split by Age and Time Interval for the Non-dominant Hand. 213
Table 8.5. ANOVA for Time Interval and Age for the Dominant Hand 213
Table 8.6. ANOVA for Time Interval and Age for the Non-Dominant Hand. 214
Table 8.7.	Correlation Statistics and Absolute Mean % (Mean %) Change in Grip Strength Split by Gender and Time Interval for the Dominant Hand.	215
Table 8.8.	Correlation Statistics Based and Absolute Mean % (Mean %) Change in Grip Strength Split by Gender and Time Interval for the Non-dominant Hand.	215
Table 8.9.	ANOVA for Gender and Time Interval for the Dominant Hand.	216
Table 8.10.	ANOVA for Gender and Time Interval for the Non-dominant Hand.	216
Table 8.11.	Correlation Statistics and Absolute Mean % (Mean %) Change in Grip Strength Split by Age and Gender for the Dominant Hand.	217
Table 8.12.	Correlation Statistics and Absolute Mean % (Mean %) Change in Grip Strength Split by Age and Gender for the Non-dominant Hand.	217
Table 8.13.	ANOVA for Age and Gender for the Dominant Hand.	219
Table 8.14.	ANOVA for Age and Gender for the Non-Dominant Hand.	219
Table 8.15.	Correlation Statistics for the Dominant Hands Sorted by Handedness Classifications.	220
Table 8.16.	Correlation Statistics for the Non-Dominant Hands Sorted by Handedness Classifications.	220
Table 8.17.	Correlation Statistics and Absolute Mean % (Mean %) Change Split by Handedness Classification and Gender for the Dominant Hand.	221
Table 8.18.	Correlation Statistics and Absolute Mean % (Mean %) Change Split by Handedness Classification and Gender for the Non-dominant Hand.	222
Table 8.19.	ANOVA for Handedness Group and Gender for the Dominant Hand.	222
Table 8.20.	ANOVA for Handedness Group and Gender for the Non-dominant Hand.	223
Table 9.1.	Grip Strength Ratios for First (T1) and Second Test (T2) Sorted by Gender and Time Interval.	240
Table 9.2.	Statistical Analysis of the GSR, Sorted by Gender and Time Interval.	241
Table 9.3. Two-Way Independent Groups ANOVA for Gender and Time Interval for the GSR.
242

Table 9.4. Gender and Age Split GSR for T1 and T2.
243

Table 9.5. Statistical Analysis of the GSR, Sorted by Gender and Age.
244

Table 9.6. Two-Way Independent Groups ANOVA for Gender and Age for the GSR.
245

Table 10.1. Mean Width/Length (W/L) Ratios, SDs and Range for the Original Male and Female Hand Shape Groups.
253

Table 10.2. Mean Width/Length (W/L) Ratios, SDs and Range for the Reliability Sample of Male and Female Hand Shape Groups.
254

Table 10.3. Male and Female Mean (SD) Grip Strengths Sorted by Dominance and Hand Shape.
255

Table 10.4. Mean (SD) Grip Strengths (kg f) Sorted by Dominance and Hand Shape for Initial Test of Repeat-Tested Group With Standard Errors of Measurement (SEM) in kg f.
257
LIST OF FIGURES

Figure 1.1 The cerebral cortex with the primary motor areas marked as areas 6 and 4 respectively and the primary somatosensory areas marked as areas 1, 2 and 3. There is also some sensory representation in the motor area 4 (from Werner, 1980). View A is the lateral view of the cortex; view B is the medial view. 6

Figure 1.2 Sensory nerve distribution to the upper limbs (from Swanson, de Groot Swanson & Göran-Hagert, 1995). 7

Figure 1.3 The tenodesis effect (from Brand & Hollister, 1999). 9

Figure 1.4 Distal ulnar palsy (from Tubiana et al., 1996). 10

Figure 1.5 Proximal ulnar palsy. Note the relative lack of deformity secondary to paralysis of the long flexors (from Tubiana et al., 1996). 11

Figure 1.6 Figure A normal contact with a cylinder, Figure B contact only with the finger tips and the metacarpal heads (from Brand & Hollister, 1999). 12

Figure 1.7 Similarity between the sensory and motor homunculi (from Penfield & Rasmussen, 1968). 14

Figure 2.1 The dynamometer invented by Edme Régnier in 1798 and used by Péron in his Australian experiments. From the original engraving accompanying Régnier’s work Description et usage du dynamomètre. S: position to test the muscular strength of the thighs; R: the hand-grip position to test the force of the grasp (from Pearn, 1978a). 29

Figure 2.2 Diagrammatic sketch of Régnier’s dynamometer (from Hunsicker & Donnelly, 1955). 30

Figure 2.3 Régnier’s dynamometer (from Pearn, 1978b). 30

Figure 2.4 Régnier’s dynamometer with attachments as it stands in the Paris Musée de l’Armée (from Horne & Talbot, 2002). 30

Figure 2.5 George Tiemann dynamometer from www.collectmedicalantiques.com/potpourri2.html accessed 11/8/04. 34

Figure 2.6 Collin elliptical spring steel dynamometer (from Hunsicker & Donnelly, 1955). 35

Figure 2.7 Mathieu dynamometer (from Hammond 1876). 35

Figure 2.8 The Mathieu dynamograph (from Hammond 1868). 35
Figure 2.9. Hammond dynamometer of 1891 (from Lanska, 2000). 36
Figure 2.10. The ergograph of Mosso (from Hunsicker & Donnelly, 1955). 39
Figure 2.11. Kellogg mercurial dynamometer (from Kellogg, 1893). 41
Figure 2.12. Kellogg mercurial dynamometer (from Hunsicker & Donnelly, 1955). 41
Figure 2.13. Smedley/Stoelting dynamometer (from Hunsicker & Donnelly, 1955). 42
Figure 2.14. Water-filled dynamometer (from Hamilton, 1875). 43
Figure 2.15. Adapted cable tensiometer (from Bechtol, 1954). 45
Figure 2.16. The Jamar™ dynamometer (from Bechtol, 1954). 45
Figure 2.17. Isometric tool to measure tangential and grasp forces when gripping a cylinder (from Amis, 1987).

Figure 4.1 Child at 14 weeks gestation sucking thumb. This image was taken by a sonographer who was able to view the sucking motions of the baby in real time on an ultrasound monitor. This picture is a side profile of the head, nose pointing upward and thumb in mouth, as indicated by the white arrow. 72

Figure 5.1. The author conducting testing in the school laboratory. 92

Figure 6.1. Number of response changes per task. 103
Figure 6.2. Percentage of teenagers and adults who stated that they were comfortable performing these tasks with either hand. 105

Figure 7.1. Comparison of % of hand dominance groups between the entire pool of teenagers and the grip strength tested teenagers. 153
Figure 7.2. Relationship between dominant (DomT1) and non-dominant handgrip strength (Non-domT1) in kilograms force (kg f) for the males. 186
Figure 7.3. Relationship between dominant (DomT1) and non-dominant handgrip strength (Non-domT1) in kilograms force (kg f) for the females. 186
Figure 7.4. Relationship between body mass index (BMI) and dominant handgrip strength in kilograms force (DomT1) for all males. 188

xx
Figure 7.4. Relationship between body mass index (BMI) and dominant handgrip strength in kilograms force (DomT1) for all females. 188

Figure 9.1. Percentage close agreement for GSR sorted by gender and time interval. 242

Figure 9.2. Percentage close agreement for GSR sorted by age and gender. 244

Figure 10.1. Mean grip strength and 95% CIs for males and females with six different hand types. 254

Figure 10.2. Reliability indices (ICC) and 95% CIs for handgrip test-retest on males and females with six different hand types. 257
ABSTRACT

The aims of the Thesis were: to investigate and quantify the factors influencing the production of maximum isometric grip strength force in a sample of Australian teenagers when using Jamar™-like handgrip dynamometers; to determine the reliability of this measure over long and short retest intervals; to establish a database of anthropometric and strength values for this group and prediction equations for premorbid strengths to aid assessment of recovery in those with upper limb pathologies.

The history of these handgrip dynamometers demonstrates that they have been employed in one form or another for over three hundred years and are still widely used today in hand rehabilitation and medical examinations. Many new types of dynamometers have been constructed subsequent to the ubiquitous Jamar™ and have all been briefly reviewed here.

Handedness (dominance) was thought to be a possible factor influencing grip strength performance and was later evaluated. But first, the Edinburgh Handedness Inventory was tested with 658 teenagers and 64 adults and confirmed to be a valid tool for assessing handedness. Its validity was improved by substituting the tasks of sweeping and opening the lid of a box for hammering and use of a screwdriver. Its excellent reliability \((ICC = .78, p < 0.01)\) was confirmed with 45 teenagers and 45 adults.

There were 235 teenagers who performed maximal isometric grip strength tests and from the results a local database was created. It was confirmed that the grip strength difference in males and females becomes significant after the age of 13 years, and that the average teenaged male is stronger than the average teenaged female by 11.2 Kg force \((p < .01)\). Height, weight, BMI, hand dimensions, past upper limb injuries, degrees of handedness and exercise levels were measured and compared with known norms to establish that the grip strength tested sample of teenagers was representative of urban teenagers in Australia.

The influence of handedness on maximal grip strength in dominant and non-dominant hands was unable to be completely ascertained due to the vast majority of the sample
of teenagers being right-handed. Only 13 of the 235 teenagers used their left hand for most tasks, with another 20 using their left hands for a small majority of tasks. There was a grip strength bias towards the dominant hand of 2.63 kg force ($p < .01$).

The most accurate way to predict the grip strength of one hand is by knowing the grip strength of the other hand. Prediction models found that 90% ($R^2_{adj} .902$) and 70% ($R^2_{adj} .702$) of the variance in one hand could be accounted for by the grip strength of their other hand for male and female teenagers, respectively. Prediction equations were also created to assist in estimating the pre-morbid grip strength of teenagers suffering from bilateral hand injuries. If for the males, measurements for height and hand surface area were entered into these models, the grip strength of the dominant and non-dominant hands could be estimated with 62.6 and 63.5% of the variance between the real and predicted scores accounted for, respectively. For the females the prediction models using height and hand surface area could only account for 33.9 and 42.8% of the variances, with no other independent variables improving the prediction equations.

The reliability of the maximal grip strength performance of 154 of these teenagers was retested after one or four weeks. A number of sub-group permutations were created for age, gender, retest time interval and handedness groups. The measures of grip strength for males were highly reliable with $ICC (3,1)$ values ranging from .91 to .97. These measures were significantly higher than that obtained from the females, where reliability values ranged from .69 to .83. Handedness played a significant part in grip strength reliability. The dominant hand of right-handed teenagers achieved an $ICC (3,1)$ of .97, as contrasted with the non-dominant hand of left-handers who attained a very poor $ICC (3,1)$ of .27.

The shape of the hands of the males did not influence their grip strength or their reliability values, which ranged from .954 to .973. The shape of female hands did not affect their ability to generate maximal grip strength, only its reliability. The females with hands shaped squarer-than-average had mean grip strength reliability values of $ICC (3,1)$ at only .48, in contrast to those with longer-than-average hands who achieved a mean $ICC (3,1)$ of .92. The handle shape of the dynamometer may disadvantage square-handed females, and this should be further investigated.