The text in this thesis contains no material that has been accepted as part of the requirements for any other degree or diploma in any university, or any material published by another person without due reference being made to the material.

Madeleine Florin
2008
Abstract

Precision Agriculture (PA) strives towards holistic production and environmental management. A fundamental research challenge is the continuous expansion of ideas about how PA can contribute to sustainable agriculture. Some associated pragmatic research challenges include quantification of spatio-temporal variation of crop yield; crop growth simulation modelling within a PA context and; evaluating long-term financial and environmental outcomes from site-specific crop management (SSCM).

In Chapter 1 literature about managing whole farms with a mind towards sustainability was reviewed. Alternative agricultural systems and concepts including systems thinking, agro-ecology, mosaic farming and PA were investigated. With respect to environmental outcomes it was found that PA research is relatively immature. There is scope to thoroughly evaluate PA from a long-term, whole-farm environmental and financial perspective. Comparatively, the emphasis of PA research on managing spatial variability offers promising and innovative ways forward, particularly in terms of designing new farming systems. It was found that using crop growth simulation modelling in a PA context is potentially very useful. Modelling high-resolution spatial and temporal variability with current simulation models poses a number of immediate research issues.

This research focused on three whole farms located in Australia that grow predominantly grains without irrigation. These study sites represent three important grain growing regions within Australia. These are northern NSW, north-east Victoria and South Australia. Note-worthy environmental and climatic differences between these regions such as rainfall timing, soil type and topographic features were outlined in Chapter 2.

When considering adoption of SSCM, it is essential to understand the impact of temporal variation on the potential value of managing spatial variation. Quantifying spatio-temporal variation of crop yield serves this purpose; however, this is a conceptually and practically challenging undertaking. A small number of previous studies have found that the magnitude of temporal variation far exceeds that of spatial variation. Chapter 3 of this thesis dealt with existing and new approaches quantifying the relationship between spatial and temporal variability in crop yield. It was found that using pseudo cross variography to obtain spatial and temporal variation ‘equivalents’ is a promising approach to quantitatively comparing spatial and temporal variation. The results from this research indicate that more data in the temporal dimension is required to enable thorough analysis using this approach. This is particularly relevant when questioning the suitability of SSCM.

Crop growth simulation modelling offers PA a number of benefits such as the ability to simulate a considerable volume of data in the temporal dimension. A dominant challenge recognised within the PA/modelling literature is the mismatch between the spatial resolution of point-based model output (and therefore input) and the spatial resolution of information demanded by PA. This culminates into questions about the conceptual model underpinning the simulation model and the practicality of using point-based models to simulate spatial variability.
The ability of point-based models to simulate appropriate spatial and temporal variability of crop yield and the importance of soil available water capacity (AWC) for these simulations were investigated in Chapter 4. The results indicated that simulated spatial variation is low compared to some previously reported spatial variability of real yield data for some climate years. It was found that the structure of spatial yield variation was directly related to the structure of the AWC and interactions between AWC and climate. It is apparent that varying AWC spatially is a reasonable starting point for modelling spatial variation of crop yield. A trade-off between capturing adequate spatio-temporal variation of crop yield and the inclusion of realistically obtainable model inputs is identified.

A number of practical solutions to model parameterisation for PA purposes are identified in the literature. A popular approach is to minimise the number of simulations required. Another approach that enables modelling at every desired point across a study area involves taking advantage of high-resolution yield information from a number of years to estimate site-specific soil properties with the inverse use of a crop growth simulation model. Inverse meta-modelling was undertaken in Chapter 5 to estimate AWC on 10-metre grids across each of the study farms. This proved to be an efficient approach to obtaining high-resolution AWC information at the spatial extent of whole farms. The AWC estimates proved useful for yield prediction using simple linear regression as opposed to application within a complex crop growth simulation model.

The ability of point-based models to simulate spatial variation was re-visited in Chapter 6 with respect to the exclusion of lateral water movement. The addition of a topographic component into the simple point-based yield prediction models substantially improved yield predictions. The value of these additions was interpreted using coefficients of determination and comparing variograms for each of the yield prediction components. A result consistent with the preceding chapter is the importance of further validating the yield prediction models with further yield data when it becomes available.

Finally, some whole-farm management scenarios using SSCM were synthesised in Chapter 7. A framework that enables evaluation of the long-term (50 years) farm outcomes soil carbon sequestration, nitrogen leaching and crop yield was established. The suitability of SSCM across whole-farms over the long term was investigated and it was found that the suitability of SSCM is confined to certain fields. This analysis also enabled identification of parts of the farms that are the least financially and environmentally viable. SSCM in conjunction with other PA management strategies is identified as a promising approach to long-term and whole-farm integrated management.
Acknowledgements

Thankyou to the GRDC for generously funding this project. Thankyou Michael Ledingham, Malcom Sargent and Adam Inchbold for allowing me to use your farms as study sites and for generously providing all the data and information that I have needed.

There are lots of people to whom I feel personally very grateful. I have learnt a lot, I feel a great sense of achievement and I feel supported by many people around me. This support has made the starting, the continuing and the completing of this thesis possible.

Thankyou very much to Alex and Brett for your guidance. You both have been a prominent part of this whole project. I have a great respect for the many thoughts that you have contributed along the way.

I also want to thank the numerous people that hang around the uni who at one time or another have offered me a full spectrum of useful advice. Importantly, help with statistics, plenty of encouragement and reminding me what time it is on Friday. These people are Budiman, Willem, Damien, Shorty (also for helping me with field work and driving!), James, Raphael, Ronaldo, Uta, Nathan, Claire and Floris. Of course, a special thanks to Grant (RantyG) for bringing some fun and tolerance into the cosy office on a daily basis.

A heart felt thankyou to my family who listened and remained enthused when I relayed the intricate details of my erratic, yet consistent ups and downs over the past few years. Finally and of course a big thanks to my friends outside of the uni and especially John for day to day emotional support and encouragement. I am especially thankful for the perspective and the interesting distractions that you have all provided!!
Table of contents

Abstract ... ii
Acknowledgements ... iv
Table of contents .. v
List of tables ... ix
List of figures ... xi
List of equations ... xvii
A general introduction ... xix
Research aims ... xxv

Chapter 1: Managing whole farms using crop growth simulation modelling and precision agriculture .. 1
 1.1 Managing whole farms – integrating multiple goals .. 1
 1.1.1 Farmer decision-making processes .. 1
 1.1.2 Managing for ‘sustainability’ .. 2
 1.1.3 Alternative management systems and concepts ... 4
 1.1.4 Measuring the value of alternative management systems 9
 1.2 Crop growth simulation modelling ... 15
 1.2.1 Conceptual modelling ... 16
 1.2.2 Some available crop growth simulation models ... 20
 1.2.2 Some modelling practicalities ... 23
 1.3 Precision Agriculture with an environmental focus 24
 1.3.1 Discussions with an environmental focus .. 24
 1.3.2 Precision N management .. 25
 1.3.3 PA management for other environmental outcomes 27
 1.4 Crop growth simulation modelling and Precision Agriculture 30
 1.4.1 Minimising the number of simulations required ... 31
 1.4.2 Model parameterisation at a high spatial resolution 32
 1.4.3 Enhancing current models for PA ... 35
 1.5 Towards whole-farm management using PA and crop growth simulation modelling .. 36

Chapter 2: Study sites, whole-farm classification and soil sampling 50
 2.1 Introduction .. 50
 2.2 Study sites .. 51
 2.3 Methods for stratified random soil sampling ... 52
 2.3.1 Data available for farm stratification ... 52
 2.3.2 Predicting data onto a single grid for each farm ... 55
 2.3.3 Calculating terrain attributes ... 57
 2.3.4 Populating GIS and making maps ... 57
 2.3.5 Statistics for farm stratification ... 57
 2.3.6 Stratified random soil sampling ... 58
 2.4. Results and discussion ... 59
 2.4.1 Some maps of soil and landscape attributes ... 59
Chapter 5: Inverse meta-modelling for estimation of high spatial resolution soil available water capacity across whole farms

5.1 Introduction ... 148
5.2 Methods ... 151
 5.2.1 Key assumptions .. 151
 5.2.2 Study sites and available soil, crop and landscape information 152
 5.2.3 Creating an inverse meta-model .. 153
 5.2.4 Applying the inverse model (estimating the ‘best’ ‘effective’ hydraulic properties) ... 156
 5.2.5 Validating the ‘effective’ hydraulic properties ... 156
5.3 Results .. 157
 5.3.1 Generating hydraulic properties using LHS .. 157
 5.3.2 APSIM yield simulation .. 157
 5.3.3 Creating meta-models ... 159
 5.3.4 Inverse meta-modelling across each farm .. 162
 5.3.5 Validating best estimates of ‘effective’ hydraulic properties 169
5.4 Discussion ... 180
 5.4.1 The meta-models for approximating APSIM .. 180
 5.4.2 AWC predictions/optimisation ... 180
 5.4.3 Populating APSIM for yield prediction ... 183
 5.4.4 Simple linear yield predictions ... 184
5.5 Conclusions ... 184

Chapter 6: Improving high-resolution yield predictions with topographical, radiometric and soil apparent electrical conductivity information

6.1 Introduction ... 188
6.2 Methods .. 190
 6.2.1 Proposed alternative yield prediction model .. 190
 6.2.2 Deriving the topographic/spatial component and final yield predictions 191
 6.2.3 Validating the final yield prediction model and interpreting spatial contributions ... 191
6.3 Results .. 192
 6.3.1 The topographic/spatial components of yield variation ... 192
 6.3.4 Geostatistical model verification ... 208
6.4 Discussion ... 214
 6.4.1 Deriving the spatial components ... 214
 6.4.2 Final predictions ... 215
6.5 Conclusions ... 218

Chapter 7: Variable-rate management and whole-farm planning: hypothetically demonstrating with long-term modelling scenarios

7.1 Introduction ... 222
7.2 Method ... 223
 7.2.1 Crop yield simulations ... 224
 7.2.2 Calculating annual soil carbon inputs ... 224
7.2.3 Calculating nitrogen leaching potential .. 226
7.2.4 Delineating potential performance classes 226
7.2.5 Using potential performance classes ... 227
7.3 Results ... 228
 7.3.1 Yield simulations .. 229
 7.3.2 Soil carbon decomposition modelling 232
 7.3.3 Nitrogen leaching potential ... 239
 7.3.4 Delineating potential performance classes 241
 7.3.5 Using potential performance classes .. 249
7.4 Discussion ... 257
 7.4.1 Data simulation .. 257
 7.4.2 Data integration ... 258
 7.4.3 Uniform management versus variable-rate management 258
 7.4.4 Whole-farm planning ... 260
7.5 Conclusions ... 261

Chapter 8 : General discussion, conclusions and future work 266
 8.1 General discussion ... 266
 8.1.1 Spatio-temporal crop-yield variation 266
 8.1.2 Crop growth simulation modelling ... 267
 8.1.3 Whole-farm management ... 270
 8.2 General conclusions ... 272
 8.3 Future work .. 273
List of tables

Chapter 1
Table 1.1 Examples of some available crop growth simulation and hydrological models; distinguishing between available models in terms of the approach to modelling soil water flow.. 22
Table 1.2 Examples of some precision nitrogen management research distinguishing between the spatial extent, temporal extent and the approach used to account for the management outcomes.. 29
Table 1.3 Summary of research parameterising models for PA... 33

Chapter 2
Table 2.1 The type of data available, its spatial resolution and extent for each study farm 54
Table 2.2 Crop yield data available for each study farm. The headings in this table indicate the years for which crop yield monitoring has been operating on each farm. .. 54
Table 2.3 Kriging parameters used for each variable.. 57
Table 2.4 An example of the subjective decision process for inclusion of variables in the fuzzy k-means classification (from “Merinda”)... 70
Table 2.5 The number of classes identified and variables used in the fuzzy k-means classification for each of the farms .. 70
Table 2.6 Variables used in the discriminant analysis used for allocating classes across the remainder of the farms ... 74
Table 2.7 Centroid values for the seven classes across “Merinda”... 74
Table 2.8 Centroid values for the six classes across “Grandview”... 74
Table 2.9 Centroid values for the six classes across “BrookPark”.. 74
Table 2.10 Class means and class ranks calculated for wheat yield from 2002 to 2006 for ”Merinda”........ 75
Table 2.11 Class means and class ranks calculated for wheat yield from 2000 to 2006 for ”Grandview”...... 75
Table 2.12 Class means and class ranks calculated for wheat yield from 1999 to 2006 for “BrookPark”..... 75
Table 2.13 Soil analysis results for ”Merinda”; means and standard deviations for each class as well as for the whole farm are displayed. Classes with the same subscripted letter are not significantly different with respect to the student’s t-test .. 77
Table 2.14 Soil physical properties for ”Merinda”; means and standard deviations for each class as well as for the whole farm are displayed. Classes with the same subscripted letter are not significantly different with respect to the student’s t-test .. 77
Table 2.15 Soil analysis results for ”Grandview”; means and standard deviations for each class as well as for the whole farm are displayed. Classes with the same subscripted letter are not significantly different with respect to the student’s t-test .. 78
Table 2.16 Soil physical properties for ”Grandview”; means and standard deviations for each class as well as for the whole farm are displayed. Classes with the same subscripted letter are not significantly different with respect to the student’s t-test .. 78
Table 2.17 Soil analysis results for ”BrookPark”; means and standard deviations for each class as well as for the whole farm are displayed. Classes with the same subscripted letter are not significantly different with respect to the student’s t-test .. 79
Table 2.18 Soil physical properties for ”BrookPark”; means and standard deviations for each class as well as for the whole farm are displayed. Classes with the same subscripted letter are not significantly different with respect to the student’s t-test .. 79

Chapter 3
Table 3.1 The fields used for this study, the farm in which they are located, the location of the farms and the number of years of wheat yield data available for each field is displayed................................. 87
Table 3.2 Mean temporal semi-variance for wheat from the fields ‘Comet’ and ‘Glens’ located on the farms “Burrendah” and “Tarnee” respectively.. 93
Table 3.3 Mean temporal semi-variance for wheat from the fields ‘Bills’ and ‘Road’ located on the farm “BrookPark” and from the fields ‘Blackflat’ located on the farm “Clifton Farm”... 94
Table 3.4 Mean temporal semi-variance for wheat from the fields ’12’ and ’41’ located on the farms “Grandview” and “RayvillePark” respectively... 94
The parameters printed in brown are those that differed between climate regimes.

Table 4.2 Soil parameters for different layers that vary with depth describing saturated hydraulic conductivity, soil carbon and nitrogen cycling and crop root growth and water uptake. The parameters printed in brown are those that differed between climate regimes.

Table 4.3 Soil parameters for the whole profile describing evaporation, unsaturated water flow and surface runoff. The parameters printed in brown are those that differed between climate regimes.

Table 4.4 Crop management parameters describing sowing dates, plant density, sowing depth, crop cultivar and crop row spacing.

Table 4.5 Rough crop phenology in APSIM including seven stages within a crop season.

Table 4.6 Mean soil available water capacity (fraction) and variogram parameters for the hypothetical field.

Table 4.7 Descriptive statistics for the simulated field under both climate scenarios.

Table 4.8 Median spatial variogram parameters for both regimes.

Table 4.9 Rank correlations between simulated yield for four focus years under ‘North regime’.

Table 4.10 Rank correlations between simulated yield for four focus years under ‘South regime’.

Table 3.13 Fitted variogram parameters for daily rainfall data for the three representative climates.

Table 3.12 Fitted variogram parameters for simulated wheat yield and annual rainfall for the three theoretical soil types and their corresponding climates.

Table 3.11 Correlation matrix calculated from wheat yield for ‘Bills’ field from ‘BrookPark’.

Table 3.10 Correlation matrix calculated from wheat yield for ‘Road’ field from ‘BrookPark’.

Table 3.9 Correlation matrix calculated from wheat yield for ‘12’ field from ‘Grandview’.

Table 3.8 Correlation matrix calculated from wheat yield for ‘Glens’ field from ‘Burrendah’.

Table 3.7 APSIM parameters describing evaporation, unsaturated soil water flow and runoff obtained from calibration and subsequently used for the meta-model creation.

Table 3.6 APSIM parameters describing soil depth and saturated hydraulic conductivity obtained from calibration and subsequently used for the meta-model creation.

Table 3.5 APSIM parameters describing soil organic carbon percentage and soil pH obtained from calibration and subsequently used for the meta-model creation.

Table 3.4 APSIM parameters describing root growth and root water uptake obtained from calibration and subsequently used for the meta-model creation.

Table 3.3 Sample of soil available water capacity fractions obtained from the APSIM soil database.

Chapter 4

Table 4.1 Some variables required for populating APSIM.

Table 4.2 Soil parameters for different layers that vary with depth describing saturated hydraulic conductivity, soil carbon and nitrogen cycling and crop root growth and water uptake. The parameters printed in brown are those that differed between climate regimes.

Table 4.3 Soil parameters for the whole profile describing evaporation, unsaturated water flow and surface runoff. The parameters printed in brown are those that differed between climate regimes.

Table 4.4 Crop management parameters describing sowing dates, plant density, sowing depth, crop cultivar and crop row spacing.

Table 4.5 Rough crop phenology in APSIM including seven stages within a crop season.

Table 4.6 Mean soil available water capacity (fraction) and variogram parameters for the hypothetical field.

Table 4.7 Descriptive statistics for the simulated field under both climate scenarios.

Table 4.8 Median spatial variogram parameters for both regimes.

Table 4.9 Rank correlations between simulated yield for four focus years under ‘North regime’.

Table 4.10 Rank correlations between simulated yield for four focus years under ‘South regime’.

Chapter 5

Table 5.1 The APSIM variables that were used for model calibration in this study.

Table 5.2 The range and mean values of hydraulic properties at two depths generated for each farm using LHS and those predicted using PTFs. The mean values are displayed within brackets.

Table 5.3 Sample of soil available water capacity fractions obtained from the APSIM soil database.

Table 5.4 APSIM parameters describing soil depth and saturated hydraulic conductivity obtained from calibration and subsequently used for the meta-model creation.

Table 5.5 APSIM parameters describing evaporation, unsaturated soil water flow and runoff obtained from calibration and subsequently used for the meta-model creation.

Table 5.6 APSIM parameters describing soil organic carbon percentage and soil pH obtained from calibration and subsequently used for the meta-model creation (each row corresponds with the soil depth illustrated in Table 4).

Table 5.7 APSIM parameters describing root growth and root water uptake obtained from calibration and subsequently used for the meta-model creation (each row corresponds with the soil depth illustrated in Table 4).

Table 5.8 APSIM parameters describing management decisions for sowing a wheat crop obtained from calibration and subsequently used for the meta-model creation.

Table 5.9 Predictors used in neural network analysis for inverse meta-modelling of hydraulic properties.

The rainfall variables in this table were selected in the stepwise regressions previously described.

Table 5.10 Number of nodes used for neural network models for each crop, for each farm. The table also displays the corresponding cross-validated r² values for each of the models.

Table 5.11 Crop rotations and available wheat and chickpea yield data for the fields located on “Merinda”.

Table 5.12 Crop rotations and available wheat yield data for field ‘12’ located on ‘Grandview’.

Table 5.13 Crop rotations and available wheat yield data for the fields located on “BrookPark”.

Table 5.14 Measured versus predicted mean wheat yield across each field (based on 10-metre resolution spatial resolution).
Figure 2.7 Elevation map for "Grandview" ... 62
Figure 2.8 Wetness index map for "Grandview" .. 62
Figure 2.9 Gamma radiometric total counts map for "Grandview" 63
Figure 2.10 Detailed EM38V survey of ECa for some fields on "Grandview". These fields represent different soil types occurring across the farm .. 63
Figure 2.11 Elevation map for "BrookPark" .. 64
Figure 2.12 Wetness index map for "BrookPark" .. 65
Figure 2.13 Gamma radiometric total counts map for "Brookpark" 65
Figure 2.14 Detailed EM38V survey of ECa for some fields on "BrookPark". These fields represent different soil types occurring across the farm .. 66
Figure 2.15 Examples of wheat crop yield data available for "Merinda"; (a) 2002, (b) 2003, (c) 2004 and (d) 2005 ... 67
Figure 2.16 Examples of crop yield data available for "Grandview"; (a) 2001, (b) 2003, (c) 2004 and (d) 2005 ... 67
Figure 2.17 Examples of wheat crop yield data available for "BrookPark" (a) 1999, (b) 2000, (c) 2001 and (d) 2002 ... 68
Figure 2.18 Example of evidence based approach for determining the optimal number of classes identified (from "Grandview"). The criteria is to minimise each of the indicators displayed in this figure ... 70
Figure 2.19 Class identification (a) and class allocation (b) for "Merinda" 71
Figure 2.20 Class identification (a) and class allocation (b) for "Grandview" 72
Figure 2.21 Class identification (a) and class allocation (b) for "BrookPark" 73

Chapter 3

Figure 3.1 Wheat yield from the 2000 season on 'Bills' field from "BrookPark" 91
Figure 3.2 Wheat yield from the 2006 season on 'Bills' field from "BrookPark" 91
Figure 3.3 Wheat yield from the 2003 season on 'Bills' field from "BrookPark" 91
Figure 3.4 Temporal semivariance between 2000 and 2003 yield from 'Bills' field from "BrookPark" ... 91
Figure 3.5 Temporal semivariance between 2000 and 2006 yield from 'Bills' field from "BrookPark" ... 91
Figure 3.6 Temporal semivariance between 2003 and 2006 yield from 'Bills' field from "BrookPark" ... 91
Figure 3.7 Wheat yield from 1999 season on 'Road' field from "BrookPark" 91
Figure 3.8 Wheat yield from 2002 season on 'Road' field from "BrookPark" 91
Figure 3.9 Wheat yield from 2005 season on 'Road' field from "BrookPark" 92
Figure 3.10 Wheat yield from 2003 season on 'Road' field from "BrookPark" 92
Figure 3.11 Temporal semivariance between 1999 and 2002 yield from 'Road' field from "BrookPark" ... 92
Figure 3.12 Temporal semivariance between 1999 and 2003 yield from 'Road' field from "BrookPark" ... 92
Figure 3.13 Temporal semivariance between 1999 and 2005 yield from 'Road' field from "BrookPark" ... 92
Figure 3.14 Temporal semivariance between 2002 and 2003 yield from 'Road' field from "BrookPark" ... 92
Figure 3.15 Temporal semivariance between 2002 and 2005 yield from 'Road' field from "BrookPark" ... 92
Figure 3.16 Temporal semivariance between 2003 and 2005 yield from 'Road' field from "BrookPark" ... 92
Figure 3.17 Mean temporal semivariance map for 'Bills' field from "BrookPark" 93
Figure 3.18 Mean temporal semivariance map for 'Road' field from "BrookPark" 93
Figure 3.19 Eigenvector plot calculated from the correlation matrices displayed in Tables 3.5 to 3.11 ... 96
Figure 3.20 Temporal yield variogram for a Grey Vertosol .. 97
Figure 3.21 Temporal rainfall variogram for the Moree climate (Dec to May cumulative rainfall) ... 97
Figure 3.22 Temporal yield variogram for a Red Chromosol ... 97
Figure 3.23 Temporal rainfall variogram for the Yarrawonga climate (May to September cumulative) ... 98
Figure 3.24 Temporal yield variogram for a Calcarosol .. 98
Figure 3.25 Temporal rainfall variogram for the Crysta Brook climate (May to November cumulative) ... 98
Figure 3.26 Spatio-temporal variograms for 'Road' field from "BrookPark" 99
Figure 3.27 Spatio-temporal variograms for 'Bills' field from "BrookPark" 99
Figure 3.28 Spatio-temporal variograms for '12' field from "Grandview" 100
Figure 3.29 Spatio-temporal variograms for 'Blackflat' field from "Clifton Farm" 100
Figure 3.30 Spatio-temporal variograms for 'Glens' field from "Burrendah" 100
Figure 3.31 Spatio-temporal variograms for '41' field from "Rayville Park" 101
Figure 3.32 Spatio-temporal variograms for 'Comet' field from "Taree" 101
Figure 3.33 Pseudo cross variograms for 'Road' field from “BrookPark”... 101
Figure 3.34 Pseudo cross variograms for 'Bills' field from “BrookPark”... 102
Figure 3.35 Pseudo cross variogram for ‘Glens’ field from “Burrendah”... 102
Figure 3.36 Contour plot of space versus time for 'Bills' field from “BrookPark”... 103
Figure 3.37 Contour plot of space versus time for 'Road' field from “BrookPark”... 103
Figure 3.38 Contour plot of space versus time for 'Blackflat' field from “Clifton Farm”... 104
Figure 3.39 Contour plot of space versus time for 'Glens' field from “Burrendah”.. 104

Chapter 4
Figure 4.1 Contour map of soil available water capacity (AWC) (fraction) across the field.............................. 122
Figure 4.2 Relationships between AWC and mean yield (a), standard deviation (b) and coefficient of variation (c) for ‘North regime’.. 123
Figure 4.3 Relationships between AWC and mean yield (a), standard deviation (b) and coefficient of variation (c) for ‘South regime’... 124
Figure 4.4 Distributions of correlation coefficients between yield and AWC that were calculated for each year for (a) the north regime and for (b) the south regime... 125
Figure 4.5 CDF plot for summed rainfall between and including December and May from ‘North regime’. The four different years labeled in this figure are random representatives of each quartile calculated from the cumulative rainfall.. 125
Figure 4.6 CDF plot for summed rainfall between and including May and November from ‘South regime’. The four different years labeled in this figure are random representatives of each quartile calculated from the cumulative rainfall.. 126
Figure 4.7 Simulated wheat yield for 1933 (quartile 1) under ‘North regime’... 126
Figure 4.8 Simulated wheat yield for 1966 (quartile 2) under ‘North regime’... 127
Figure 4.9 Simulated wheat yield for 1949 (quartile 3) under ‘North regime’... 127
Figure 4.10 Simulated wheat yield for 1977 (quartile 4) under ‘North regime’... 128
Figure 4.11 Spatial variograms for 1933, 1949, 1966 and 1977 from simulated yield under 'North regime'.. 128
Figure 4.12 Simulated wheat yield for 1976 (quartile 1) under ‘South regime’... 129
Figure 4.13 Simulated wheat yield for 1965 (quartile 2) under ‘South regime’... 129
Figure 4.14 Simulated wheat yield for 1951 (quartile 3) under ‘South regime’... 130
Figure 4.15 Simulated wheat yield for 1973 (quartile 4) under ‘South regime’... 130
Figure 4.16 Spatial variograms for 1951, 1965, 1973 and 1976 from simulated yield under 'South regime'.. 131
Figure 4.17 Temporal variograms for simulated yield at four different points under 'North regime'................. 132
Figure 4.18 Temporal variograms for simulated yield at four different points under 'South regime'................. 133
Figure 4.19 Mean temporal semi-variance for a one year lag based on 50 years of yield simulated at each point across the field under 'North regime'... 134
Figure 4.20 Mean temporal semi-variance for a one year lag based on 50 years of yield simulated at each point across the field under 'South regime'... 134

Chapter 5
Figure 5.1 Flowchart outlining the methods implemented in this chapter; creating a meta-model of APSIM; using the meta-model to estimate soil available water capacity and; validating the estimates in terms of predicting wheat yield. .. 154
Figure 5.2 Simulated yield versus profile AWC. The X-axis in figures (a), (c) and (g) represent profile AWC that was generated using LHS and the X-axis in figures (b), (d) and (g) represent profile AWC that was estimated using the inverse APSIM meta-model. In these plots the different colours represent different years. .. 160
Figure 5.3 Linear regression predicting APSIM yield using AWC at two depths and some monthly rainfall (“Merinda” - wheat); the different colours represent different years... 161
Figure 5.4 Linear regression predicting APSIM yield using AWC at two depths and some monthly rainfall (“Grandview” - wheat); the different colours represent different years... 161
Figure 5.5 Linear regression predicting APSIM yield using AWC at two depths and some monthly rainfall (“BrookPark” – wheat); the different colours represent different years... 162
Figure 5.6 Profile AWC estimates using wheat and chickpea yield from 2002 across “Merinda”.................. 163
Figure 5.7 Profile AWC estimates using wheat and chickpea yield from 2003 across “Merinda”.................. 163
Figure 5.8 Profile AWC estimates using wheat and chickpea yield from 2006 across “Merinda” 164
Figure 5.9 Profile AWC estimates using wheat yield from 2000 across “Grandview” 164
Figure 5.10 Profile AWC estimates using wheat yield from 2003 across “Grandview” 165
Figure 5.11 Profile AWC estimates using wheat yield from 2006 across “Grandview” 165
Figure 5.12 Profile AWC estimates using wheat yield from 2004 across “BrookPark” 166
Figure 5.13 Profile AWC estimates using wheat yield from 2005 across “BrookPark” 166
Figure 5.14 Profile AWC estimates using wheat yield from 2006 across “BrookPark” 167
Figure 5.15 ‘Best’ estimates of profile AWC across “Merinda” using yield data using three or four years of yield data.. 168
Figure 5.16 ‘Best’ estimates of profile AWC for field ‘12’ on “Grandview” using three years of yield data .. 168
Figure 5.17 ‘Best’ estimates of profile AWC across “BrookPark” using four or five ‘years of yield data 168
Figure 5.18 Comparing inversely modelled AWC with some PTF-estimated AWC (mm) values on each of the farms; (a) Merinda; (b) “Grandview” and (c) “BrookPark” .. 169
Figure 5.19 Validation APSIM simulations for ‘Kilrosewood’ field located on “Merinda” (10 metre resolution); (a) simulating 2003 wheat yield and (b) simulating 2004 wheat yield. .. 171
Figure 5.20 Validation APSIM simulations for field ‘12’ located on “Grandview” (10 metre resolution); (a) simulating 2000 wheat yield and (b) simulating 2004 wheat yield................................. 171
Figure 5.21 Validation APSIM simulations for fields ‘Hill’, ‘Randals’ and ‘Quarry’ located on “BrookPark” (10 metre resolution). (a) simulating 1999 ‘Hill’ wheat yield; (b) simulating 2006 ‘Hill’ wheat yield; (c) simulating 2001 ‘Randals’ wheat yield; (d) simulating 2004 ‘Randals’ wheat yield; (e) simulating 2002 ‘Quarry’ wheat yield and (f) simulating 2005 ‘Quarry’ wheat yield.. 172
Figure 5.22 Validation APSIM simulations based on 100 random points within each field (50 metre resolution), (a) simulating 2004 ‘Kilrosewood’ wheat yield; (b) simulating 2003 ‘12’ wheat yield; (c) simulating 2006 ‘Hill’ wheat yield and (d) simulating 2001 ‘Randals’ wheat yield. .. 173
Figure 5.23 Examples of linear yield predictions for “Merinda” for 2003 and 2004; (a) simulating 2003 ‘Kilrosewood’; (b) simulating 2004 ‘Kilrosewood’; (c) simulating 2003 ‘Rosewood1-3’; (d) simulating 2004 ‘Rosewood1-3’; (e) simulating 2003 ‘Kilrosewood’, ‘Rosewood1-3’ and ‘Hol1-3’ together; and (f) simulating 2004 ‘Kilrosewood’, ‘Rosewood1-3’ and ‘Hol1-3’ together.. 174
Figure 5.24 Examples of linear yield predictions for field ‘12’ on “Grandview”; (a) simulating 2000; (b) simulating 2002 and; (c) simulating 2003. ... 177
Figure 5.25 Examples of linear yield predictions for “BrookPark”; (a) simulating 2005 ‘Griegs’; (b) simulating 2006 ‘Griegs’; (c) simulating 2005 ‘Hill’; (d) simulating 2006 ‘Hill’; (e) simulating 2005 ‘Griegs’ and ‘Hill’ together and; (f) simulating 2006 ‘Griegs’ and ‘Hill’ together and.............................. 178

Chapter 6
Figure 6.1 Spatial data layers relevant to ‘Kilrosewood’. (a) elevation, (b) apparent electrical conductivity and (c) radiometric total counts .. 194
Figure 6.2 Spatial data layers relevant to ‘Rosewood1-3’. (a) ECa, (b) radiometric potassium and (c) aspect .. 195
Figure 6.3 Spatial data layers relevant to ‘Kilrosewood’, ‘Kilhouse’ and ‘Hol1-3’ when modelled together ... 196
Figure 6.4 Spatial data layers relevant to ‘12’; (a) elevation; (b) relative slope position and; (c) radiometric total counts ... 197
Figure 6.5 Spatial data layers relevant to ‘Hill’; (a) elevation; (b) log(upslope area) and (c) radiometric potassium counts .. 198
Figure 6.6 Spatial data layers relevant to ‘Randals’; (a) slope; (b) wetness index and; (c) radiometric potassium counts .. 199
Figure 6.7 Spatial data layers relevant to ‘Hill’ and ‘Griegs’ when modelled together; (a) elevation; (b) sine(aspect) and; (c) gamma radiometric potassium counts ... 200
Figure 6.8 Year-specific spatial component of yield predictions (t/ha) for ‘Kilrosewood’; (a) and (b) modelling ‘Kilrosewood’ alone; (c) and (d) modelling across the farm. ... 201
Figure 6.9 Year-specific spatial component of yield predictions (t/ha) for ‘12’; (a) 2000; (b) 2002................. 201
Figure 6.10 Year-specific spatial component of yield predictions (t/ha) for ‘Hill’ and ‘Randals’; (a) and (b) modelling ‘Hill’ alone; (c) and (d) modelling across the farm; (e) and (f) modelling ‘Randals’ 202
Figure 6.11 Plots of predicted yield versus yield monitor yield; (a) ‘Kilrosewood’; (b) ‘Kilrosewood’ from
Chapter 7

Figure 7.1 Annual rainfall between 1920 and 1969 used for management scenarios across “Merinda”........ 228
Figure 7.2 Annual rainfall between 1920 and 1969 used for management scenarios across “BrookPark”... 228
Figure 7.3 Mean wheat yield (t/ha) calculated from 50 years of uniform management across “Merinda”.... 229
Figure 7.4 Potential management classes for variable-rate management scenario across “Merinda”........ 230
Figure 7.5 Mean wheat yield (t/ha) calculated from 50 years of variable-rate management across “Merinda” ... 230
Figure 7.6 Mean wheat yield (t/ha) calculated from 50 years of uniform management across “BrookPark” 230
Figure 7.7 Potential management classes for variable-rate management scenario across “BrookPark”........ 231
Figure 7.8 Mean wheat yield (t/ha) calculated from 50 years of variable-rate management across “BrookPark” .. 231
Figure 7.9 Soil carbon (0-30cm) after 50 years of continuous wheat cropping across “Merinda” calculated using different $k_{optimum}$ values. (a) $k=0.2$, (b) $k=0.3$ and (c) $k=0.4$.................. 232
Figure 7.10 Soil carbon (0-30cm) after 50 years of continuous wheat cropping across “BrookPark” calculated using different $k_{optimum}$ values. (a) $k=0.2$, (b) $k=0.3$ and (c) $k=0.4$................................. 233
Figure 7.11 Median (across each field on “Merinda”) soil carbon versus time under variable and uniform management; ‘Kilrosewood’; (b) ‘Rosewood1-3’; (c) ‘Hill-1-3’ and; (d) ‘Kilhouse’................................. 234
Figure 7.12 Median (across each field on “BrookPark”) soil carbon versus time under uniform and variable management; (a) ‘Quarry’; (b) ‘House’; (c) ‘Clothier’ and; (d) ‘Griegs’................................. 236
Figure 7.13 Initial soil carbon content (0-30cm) across “Merinda” .. 237

across farm modelling; (c) ‘Rosewood 1-3’; (d) ‘12’; (e) ‘Hill’ and; (f) ‘Randals’ 203
Figure 6.12 Maps of final yield predictions compared with maps of yield-monitor yield for ‘Kilrosewood’ in 2003; (a) final prediction from individual field modelling; (b) final prediction from across farm modelling and; (c) yield monitor yield... 205
Figure 6.13 Maps of final yield predictions compared with maps of yield-monitor yield for ‘Kilrosewood’ in 2004; (a) final prediction from individual field modelling; (b) final prediction from across farm modelling and; (c) yield monitor yield... 206
Figure 6.14 Maps of final yield predictions compared with maps of yield-monitor yield for ‘Hill’ in 2005; (a) final prediction from individual field modelling; (b) final prediction from across farm modelling and; (c) yield monitor yield .. 207
Figure 6.15 Maps of final yield predictions compared with maps of yield-monitor yield for ‘Hill’ in 2006; (a) final prediction from individual field modelling; (b) final prediction from across farm modelling and; (c) yield monitor yield .. 208
Figure 6.16 Variograms for ‘Kilrosewood’ 2003 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 209
Figure 6.17 Variograms for ‘Kilrosewood’ 2004 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 210
Figure 6.18 Variograms for ‘Rosewood1-3’ 2003 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 210
Figure 6.19 Variograms for ‘Rosewood1-3’ 2004 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 211
Figure 6.20 Variograms for ‘12’ 2000 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 211
Figure 6.21 Variograms for ‘12’ 2002 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 212
Figure 6.22 Variograms for ‘Hill’ 2005 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 212
Figure 6.23 Variograms for ‘Hill’ 2006 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 213
Figure 6.24 Variograms for ‘Randals’ 2001 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 213
Figure 6.25 Variograms for ‘Randals’ 2002 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 214

Figure 6.26 Variograms for ‘Randals’ 2000 yield predictions; yield monitor; residuals; final yield prediction (Y); spatial component of yield prediction (S); point-based component (P); error (E).......................... 214

xv
Figure 7.14 Initial soil carbon content (0-30cm) across “BrookPark” ... 237
Figure 7.15 Soil carbon (0-30cm) across “Merinda” after 50 years of uniform management ... 238
Figure 7.16 Soil carbon (0-30cm) across “Merinda” after 50 years of variable management .. 238
Figure 7.17 Soil carbon (0-30cm) across “BrookPark” after 50 years of uniform management 239
Figure 7.18 Soil carbon (0-30cm) across “BrookPark” after 50 years of variable management 239
Figure 7.19 50 year mean N-leaching fraction under uniform management across “Merinda” 240
Figure 7.20 50 year mean N-leaching fraction under variable management across “Merinda” 240
Figure 7.21 50 year mean N-leaching fraction under uniform management across “BrookPark” 241
Figure 7.22 50 year mean N-leaching fraction under variable management across “BrookPark” 241
Figure 7.23 Simple classifications for each of the properties under uniform and variable management across “Merinda”; (a) soil carbon accumulation for uniform and variable management; (b) crop yield for uniform and variable management and; (c) nitrogen leaching potential for uniform and variable management; 243
Figure 7.24 Simple integrated classification due to uniform management across “Merinda” .. 244
Figure 7.25 Simple integrated classification due to variable management across “Merinda” .. 244
Figure 7.26 Principle components and location of centroids across “Merinda” (red is uniform management and blue is variable management) .. 245
Figure 7.27 Fuzzy classification due to uniform management across “Merinda” ... 246
Figure 7.28 Fuzzy classification due to variable-rate management across “Merinda” ... 246
Figure 7.29 Principle components and location of centroids across “BrookPark” (red is uniform management and blue is variable management) ... 247
Figure 7.30 Fuzzy k-means classification due to uniform management across “BrookPark” .. 248
Figure 7.31 Fuzzy k-means classification due to variable-rate management across “BrookPark” 248
Figure 7.32 Annual rainfall generated using the SCL for “Merinda” .. 249
Figure 7.33 Annual rainfall generated using the SCL for “BrookPark” ... 249
Figure 7.34 50 year mean yield due to uniform management across “Merinda” under the stochastic climate scenario ... 251
Figure 7.35 50 year mean yield due to variable management across “Merinda” under the stochastic climate scenario ... 251
Figure 7.36 50 year mean yield due to uniform management across “BrookPark” under the stochastic climate scenario ... 252
Figure 7.37 50 year mean yield due to variable management across “BrookPark” under the stochastic climate scenario ... 252
Figure 7.38 Principle component analysis with location of centroids for “Merinda” under the stochastic climate scenarios (red is uniform management and blue is variable management) ... 253
Figure 7.39 Principle component analysis with location of the centroids for “BrookPark” under the stochastic climate scenarios (red is uniform management and blue is variable management) ... 254
Figure 7.40 Across farm classification due to uniform management across “Merinda” under the stochastic climate scenario ... 255
Figure 7.41 Across farm classification due to variable management across “Merinda” under the stochastic climate scenario ... 255
Figure 7.42 Across farm classification due to uniform management across “BrookPark” under the stochastic climate scenario ... 256
Figure 7.43 Across farm classification due to variable management across “BrookPark” under the stochastic climate scenario ... 256
List of equations

Chapter 3
Equation 3.1 Semi-variance calculation ... 87
Equation 3.2 General estimator for the pseudo cross variogram 89

Chapter 5
Equation 5.1 Estimating moisture content at saturation ... 156

Chapter 6
Equation 6.1 Proposed yield prediction model .. 191

Chapter 7
Equation 7.1 Carbon content of the soil .. 224
Equation 7.2 Annual input of plant carbon (above and below ground) 225
Equation 7.3 Annual decomposition rate .. 225
Equation 7.4 Moisture function .. 225
Equation 7.5 Temperature function .. 225
Equation 7.6 Burns leaching equation .. 226
Equation 7.7 Input for Burns leaching equation ... 226
A general introduction

Continuing and future research into Precision Agriculture (PA) will impart on PA the status of a viable entity within society on a variety of different levels. An individual field, a whole farm, the agriculture industry, a research institute and the natural resource management industry are some of the places where PA is important. With this in mind a very general research issue for PA is continuous broadening of conceptions about what PA has the potential to do or where in society PA can exert influence.

PA can be approached as a philosophy or a concept that realises aspirations towards holistic production and environmental management. PA utilises advances in information technology with the potential to make agricultural production both economically and environmentally more efficient (National Research Council, 1997). This approach to PA enables scope for new and exciting contributions to many realms of society. Considering this scope, a serious premise for this research is that there is a necessity for diversity in research foci about PA.

Beyond this perspective of defining PA, some more focussed critical research issues exist. Various avenues for further research have been identified. For example, McBratney et al. (2005) suggested six critical issues for PA. Recognising and understanding temporal variation, movement towards a whole-farm focus and accounting for environmental outcomes are included in this list. Considering these three challenges further, allows identification of some subject-specific research opportunities.

Site-specific crop management (SSCM) is the subject of significant amounts of research. SSCM is an application of the idea that spatial variation in soil and crop factors can be managed. It is known that managing spatial variation is not a static activity. Consequently, temporal variation requires due consideration. Some research has addressed spatial and temporal crop variation at the same time. There have been a number of examples of research assessing the stability of yield patterns. A consistent result has been apparent instability across years (e.g. Bakhsh et al., 2000; Jaynes and Colvin, 1997). Most studies have had between three and six years of yield data available. It has repeatedly been reported that this volume of data is inadequate to properly assess spatial variability. A relatively small amount of literature has directly commented on the value of managing spatial variation in the light of temporal variation. Some examples are McBratney and Whelan (1999), Eghball and Varvel (1997) and Scherpers et al., (2004). The consensus from these publications is that temporal variation of crop yields is large. It is also clear that more research is required to enable quantitative understanding about spatio-temporal variation. This would provide particularly useful knowledge for assessing the value and furthering the scope of SSCM.

There is a substantial amount of research about whole-farm management that is not PA focused. Some of this research can be attributed to relationships between sustainability discussions, systems approaches to research/management and alternative agriculture systems. Something that is clear and consistent amongst most sustainability discussion is
a call for design and implementation of alternative agriculture systems. This challenge
has provided the impetus to reject a reductionist outlook and instead embrace a systems
approach. An overarching necessity perceived in all systems approaches is the integration
of knowledge from different disciplines in order to realise some well defined objectives
(Ison et al., 1997). Whole-farm planning, defined as the necessity to consider total assets
of a farm (soil, water, trees, stock, wildlife, etc.) in order to make best use of them
(Garrett, 1993) provides some examples of alternative agriculture systems. Mosaic
farming is one example of whole-farm planning. Mosaic farming provides a vision of a
land use system that is made up of patches of annual crops, pastures and perennial crops.
These three elements are matched to soil and landscape attributes in space to maximise
environmental and economic benefits (Brennan et al., 2004). Motivation behind mosaic
farming is the idea that diversity is a necessary aspect of a farm or landscape. Discussions
along these lines suggest that agro-ecosystem stability increases when land use diversity
increases (Carter, 2001).

There are a relatively small number of studies about PA that are applied to a whole-farm.
Stoorvogel et al., (2004) demonstrate a role for aspects of PA within an approach to
agricultural research that integrates whole production systems. Four research steps are
illustrated with an example on a Costa Rican banana plantation. They found that for the
whole farm site-specific fertilisation was deemed favourable over uniform applications
by the farmer while this was not the case for nematocide application. Johnson et al.,
(2004) undertook to link microbial scale findings to a farm-scale. They found that
electrical conductivity mapping delineated significant differences for some measured
biological parameters (microbial biomass C, microbial biomass N and potentially
mineralisable N). These results were discussed in the context of potentially monitoring
ecological and economic outcomes and agroecosystem trends. van Alphen and
Stoorvogel, (2002) looked at the effect of pesticide leaching at the farm level in the
Netherlands. An interesting finding was that precision management for pesticide leaching
risk using threshold values is different depending on the scale of assessment (sub-field,
field or farm). These studies are few, however, the outcomes from this work suggests it is
a valid undertaking.

This lack of substantial intersection between PA research and whole-farm approaches to
farm management implies that the research challenges are many. Some opportunities are
enhancement of current whole-farm planning approaches with a PA input. There is also
scope to apply current embodiments of PA across whole-farms. Prioritisation of parts of a
farm for SSCM is one potential benefit. Additionally, research about whole farms would
make the scale of physical research consistent with social and economic analysis
improving the point from which to quantify benefits from PA.

PA research with environmental considerations exist. Studies considering nitrogen (N)
management from a waste and hence water quality perspective have been particularly
popular. This is consistent with such a conclusion that the primary environmental benefit
from PA is the reduction in waste by better targeting inputs (Bongiovanni and
Lowenberg-Deboer, 2004). A number of studies have demonstrated that variable rate N
management can result in a reduction of excess N leaving a field as pollution (Eg. Wang
et al., 2003; Thrikawala et al., 1999 and; Roberts et al., 2001). Another application of this type of study has been potentially contributing to the derivation of harmonious environmental regulation and management (Bouma, et al., 2002). A research issue identified from these studies is how to measure N loss. Direct measurements, indicators and simulation modelling have all been attempted and there are opportunities for further development of these.

There is considerable scope to account for any number of environmental outcomes beyond N pollution. This assertion is well aligned with the prior mentioned whole-farm planning concept where a number of management goals are considered simultaneously. In terms of measuring environmental outcomes, simulation modelling has the potential to be a useful PA tool. This is because a valid model can provide output for a number of outcomes at the same time while different management scenarios can be tested with relative ease across time. This temporal extent also lends itself to the research challenge of understanding temporal variability.

Some PA studies are already utilising simulation models as tools (eg. Thorp et al., 2005). Notably, there is also a vein of research focused on the challenge of validating and adapting models for PA purposes. Given that the majority of crop growth simulation models are point-based, capturing yield variation at a spatial resolution that is relevant to PA is an issue. Another issue that using point-based models poses is capturing spatial processes impacting yield variability.

Broadly, three different approaches to obtaining a representative number of simulations across an area of interest have been documented in the literature. The most common approach is to divide the field (or farm) of interest into ‘homogeneous’ units and model representative soil profiles for each of these units (Eg. Booltink et al., 2001). Another approach is to model a number of soil profiles and interpolate model outcomes across the remainder of the study area (Eg. van Alphen and Stoorvogel, 2002). A third approach is to run the simulation model at every point across a grid that encapsulates the desired spatial resolution. Link et al., (2006) documented such on a single field divided into 30 grid cells (each cell measuring 15m X 27.5m or 22.5m X 27.5m). Modelling across a grid is an appealing approach as high resolution model output is produced. However, this process is the most information and computer power intensive of the different approaches. For example to simulate yield information at a resolution similar to yield monitor data (10m X 10m grid) across a typical Australian field, the number of points would be in the order of thousands.

An attempt to deal with a lack of spatial processes encapsulated in a point-based model has been to develop spatially coupled water balance models. Ferreya et al., (2006) compared limitations to yield predictions for both a coupled and an uncoupled model. They found that data requirements for the coupled model is more intense and as a result undermines the improved yield prediction potential.

These areas of research demonstrate that there is scope to continue development of simulation modelling that is specifically suited to PA. The capacity to acquire enough
information for model population at the required spatial resolution is one challenge. It follows that simulating crop growth at such resolutions is definitely at the high end of computer capacity. It is equally important that these simulations capture the spatial processes impacting yield variation. This implies further development of the ‘best’ conceptual model is required.

Some future directions for PA research are quantification of spatio-temporal yield variation with explicit reference to the value of SSCM; whole-farm studies that integrate PA information into systems approaches to farm management with an environmental focus and; studies that enhance the suitability of simulation modelling for spatial and temporal variability relevant to PA. This thesis will address quantification and understanding of spatio-temporal crop yield variation, modelling crop yield variation and the management benefits of this for whole-farms.
References:

Conference on Precision Agriculture" (G. Grenier and S. Blackmore, eds.), pp. 545-550. agro Montpellier, Montpellier.

Research aims

This thesis involves four broad research aims to improve understanding about the management value of Precision agriculture (PA) at a farm level using simulation modelling and spatially dense soil and crop information. Within some of these aims, a number of practical subsidiary aims are outlined:

1. To review the literature in order to understand how whole farms are managed for economic and environmental goals; how simulation modelling impacts management decisions and; how PA impacts management decisions.

2. To quantify spatial crop yield variability, temporal crop yield variability and the spatio-temporal relationship using real yield data.

3. To model crop yield variability across farms at a resolution useful for PA.
 3.1 To quantitatively evaluate the potential of the Agricultural Production Systems Simulator (APSIM) to predict realistic amounts of spatial and temporal yield variation.
 3.2 To identify the importance of soil available water capacity (AWC) as an input into APSIM.
 3.3 To use APSIM to inversely model hydraulic properties onto a ten metre grid across farms.
 3.4 To validate the inversely modelled hydraulic properties for model population to predict yield across farms.
 3.5 To incorporate a spatial component into APSIM yield predictions using terrain attributes derived from a DEM.

4. To apply long-term modelling scenarios across some farms and consider management benefits from a whole-farm planning perspective.
 - To discuss the role of SSCM across whole farms for management of multiple environmental outcomes such as yield, soil carbon and nitrogen leaching.