PROTEOMICS OF
THE HUMAN
ALCOHOLIC
BRAIN:

Implications for the pathophysiology
of alcohol-related brain damage

Professor Clive G. Harper M.B.B.S., F.R.C.P.A.
Dr Irina Dedova M.B.B.S., Ph.D.
This thesis is submitted in the fulfilment of the requirements for
the degree of Doctor of Philosophy in Medicine.

November, 2007

Neuropathology Unit, Discipline of Pathology,

Faculty of Medicine, The University of Sydney
Statement of Originality

I certify that this thesis describes original research work, the majority of which was undertaken in the Discipline of Pathology, the Faculty of Medicine at the University of Sydney.

These results have not been previously submitted and will not be submitted for any other degree or qualification.

Unless otherwise specified in the text, the author performed all studies reported within this thesis.

Ethical approval for the use of human brain tissue was obtained from the Ethics committee of the Central Sydney Area Health Service (Protocol No.X03-00285) and the University of Sydney.

Signed,

Kimberley L. Alexander-Kaufman

SID: 200005705

November, 2007
Acknowledgements

It is with some reticence that I complete this thesis, for it signifies truly the end of a veritable kinship with the most special people I will continue to know and love.

Clive Harper is an inspiration. I thank the day I gathered the courage to approach you – “what is this thing called brain banking?” Oceans of gratitude and respect, Uncle Cliff! The gems in the pathology crown, Irina and Therese, how I’m going to survive without our midday interludes, I cannot imagine! Irina, you have given me such invaluable guidance in and out of the laboratory. Thank you both so very much for your advice, your patience, your coffee and most of all, your friendship.

Thank you to the past and present members of the Molecular Pathology Lab, namely, Izuru Matsumoto, Danielle Clark, Gabriel James, Kashem Abul, Sara ten Have, Haruka Matsuda and Takeshi Iwasaki. Thanks to the TRC ladies, past and present, Maria, Donna, Lisa, Alisa, Helen, Cheryl, Yen, Juliette, Rebecca, Nina and Claire. The APAF whizzes Dr Stuart Cordwell and Dr Ben Crossett, whose technical advice has simply been invaluable, a big thanks. The Molecular Psychiatry Lab at RIKEN Brain Science Institute Tokyo, where I had the most rewarding experience and made some wonderful tomodachis, Dr Yoshikawa, Dr Ohnishi, Dr Hattori, Yoshimi, Mizuho, Tomoko and Hisako, domo arigato gozaimasu! Thank you A/Prof Peter Wilce from the University of Queensland and the Pathology Department Staff and Students

To my wonderful, newly extended family for your unwavering love and support and to the many friends who’ve frequently endured my rants, a myriad of thanks.

Financial support was provided by grants from the NSW Government BioFirst Award and Brewers’ Foundation (awarded to A/Prof Matsumoto). K. Alexander-Kaufman is an Australia Postgraduate Award (APA) recipient. Human brain tissues were provided by the NSW Tissue Resource Centre, which is supported by the University of Sydney, Neuroscience Institute of Schizophrenia and Allied Disorders, National Institute of Alcohol Abuse and Alcoholism and NSW Department of Health.

Only one animal was harmed during the production of this thesis, My Polish cat, Oskar (aka Ascaris lumbricoides). Sorry about the leg little man.
This thesis is dedicated to Alex,

My friend. my love. my home.
Publications

2005

2006

Conference Attendance

• Australian Neuroscience Society, Melbourne, 2004
• Australian Neuroscience Society, Perth, 2005
• International Neuroscience Society, Innsbruck, Austria, 2005
• Australian Neuroscience Society, Sydney, 2006
• International Society for Biomedical Research on Alcoholism, Sydney, 2006
• Japanese Society for Neuropathology, Tokyo, 2007
• Research Society on Alcoholism, Chicago, 2007

Invited Presentations

Scholarship & Honours

• Australian Postgraduate Award
• Bercovici Prize for Excellence in Medical Research for the publication – *K. Alexander-Kaufman, et al, Molecular Psychiatry, 2006*

(Awarded to the postgraduate student with the most outstanding publication at The University of Sydney, Australia)

Internship (July-August 2006)

Molecular Psychiatry Laboratory, Brain Science Institute, RIKEN, Tokyo, Japan
under the guidance of Dr Takeo Yoshikawa
Summary

Proteomics is rapidly achieving recognition as a complimentary and perhaps superior approach to examine global changes in protein abundance in complex biological systems and the value of these techniques in neuropsychiatry is beginning to be acknowledged. Characterizing the brain’s regional proteomes provides a foundation for the detection of proteins that may be involved in disease-related processes. Firstly, optimal conditions were achieved for the application of two dimensional-gel electrophoresis (2D-GE)-based proteomics with postmortem human brain tissue. These optimized techniques were then applied to soluble fractions of adjacent grey and white matter of a single cytoarchitecturally defined area (Brodmann area 9; BA9) and of two adjacent regions of frontal white matter (BA9 and CC body) from healthy individuals. These normative proteomic comparisons highlighted the importance of correct tissue sampling, i.e. proper separation of regional white matter, as heterogeneity in the respective proteomes was demonstrated. Furthermore, they stressed the necessity for future molecular brain mapping studies.

The main focus of this thesis however, was to examine the proteomes of brain regions specifically vulnerable to alcohol-induced damage underlying cognitive dysfunction. Alcoholic patients commonly experience mild to severe cognitive decline. It is postulated that cognitive dysfunction is caused by an alcohol-induced region selective brain damage, particularly to the prefrontal cortex. The cerebellum is increasingly recognized for its role in various aspects of cognition and alcohol–induced damage to the cerebellar vermis could indirectly affect neurocognitive functions attributed to the frontal lobe. We used a 2D-GE-based proteomics approach to compare protein
abundance profiles of BA9 grey and white matter and the cerebellar vermis from human alcoholics (neurologically uncomplicated and alcoholics complicated with liver cirrhosis) and healthy control brains. Among the protein level changes observed are disturbances in the levels of a number of thiamine-dependent enzymes. A derangement in energy metabolism perhaps related to thiamine deficiency seems to be important in all regions analysed, even where there are no clinical or pathological findings of Wernicke-Korsakoff Syndrome. Evidence of oxidative changes was also seen in all regions and effects of liver dysfunction in the vermis found. However, overall, these results highlight the complexity of this disease process in that a number of different proteins from different cellular pathways appear to be affected. By identifying changes in protein abundance levels in the prefrontal grey and white matter and the cerebellar vermis, hypotheses may draw upon more mechanistic explanations as to how chronic ethanol consumption causes the structural and functional alterations associated with alcohol-related brain damage. Furthermore, by comparing these results, we may be able to isolate disturbances in molecular pathways specific to the brain damage caused by alcohol, severe liver dysfunction and thiamine deficiency.
Table of Contents

CHAPTER 1 ~ GENERAL INTRODUCTION

1.1 A WORLD VIEW ON ALCOHOLISM ... 2
1.2 ALCOHOL CONSUMPTION: HOW MUCH IS TOO MUCH? 3
1.3 CHRONIC ALCOHOL USE DISORDERS ... 4
1.4 NEUROPHARMACOLOGICAL ACTION OF ETHANOL 7
1.5 ALCOHOL-RELATED COGNITIVE DYSFUNCTION 10
 1.5.1 THE PREFRONTAL CORTEX (PFC) & COGNITION 11
 1.5.2 THE CEREBELLUM & COGNITION .. 14
1.6 NEUROPATHOLOGICAL CHANGES IN THE CHRONIC ALCOHOLIC BRAIN 16
 1.6.1 BRAIN ‘SHRINKAGE’ .. 16
 1.6.2 WHITE MATTER CHANGES ... 19
 1.6.3 NEUROPATHOLOGICAL CHANGES UNDERLYING ALCOHOL-RELATED
 COGNITIVE DYSFUNCTION .. 22
 1.6.3.1 The Dorsolateral Prefrontal Cortex (dPFC) 22
 1.6.3.2 The Cerebellar Vermis ... 24
1.7 PATHOPHYSIOLOGY OF ALCOHOL-RELATED BRAIN DAMAGE 28
 1.7.1 MECHANISMS UNDERPINNING ALCOHOL-SPECIFIC BRAIN DAMAGE 29
 1.7.2 THIAMINE DEFICIENCY AND BRAIN DAMAGE 31
 1.7.3 LIVER DYSFUNCTION AND BRAIN DAMAGE 34
 1.7.4 SYNERGISTIC EFFECTS OF ALCOHOL, THIAMINE DEFICIENCY
 AND ALCOHOLIC LIVER DISEASE .. 36
1.8 ALCOHOL-RELATED BRAIN DAMAGE: CURRENT MOLECULAR DATA 38
1.9 PROTEOMICS DEFINED .. 39
 1.9.1 PROTEOMICS IN MOLECULAR BRAIN MAPPING - NEUROPROTEOMICS .. 42
 1.9.2 NEUROPROTEOMICS IN PSYCHIATRIC DISEASE AND ALCOHOLISM 43
1.10 HYPOTHESES ... 45
1.11 RESEARCH AIMS .. 46
CHAPTER 2 ~ METHODOLOGICAL PRINCIPLES, OPTIMISATION STUDIES & PROTEOME ANALYSIS PROTOCOL

PART I: METHODOLOGICAL PRINCIPLES

2.1 HUMAN POSTMORTEM BRAIN TISSUE: RESEARCH CONSIDERATIONS48
2.2 CASE SELECTION: HUMAN BRAIN TISSUE ...49
2.3 PROTEOMICS TECHNOLOGY ...52
 2.3.1 OVERVIEW ..52
 2.3.2 PROTEIN SAMPLE PREPARATION ...53
 2.3.2.1 Protein Extraction ..53
 2.3.2.2 Protein Quantification ..53
 2.3.3 TWO-DIMENSIONAL GEL ELECTROPHORESIS (2D-GE) ..55
 2.3.3.1 Isoelectric Focusing (IEF) ...55
 2.3.3.2 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)56
 2.3.4 PROTEIN SPOT VISUALISATION & DATA ACQUISITION ...57
 2.3.5 IMAGE ANALYSIS ...57
 2.3.6 MATRIX-ASSISTED, LASER DESORPTION/IONIZATION TIME OF FLIGHT
 MASS SPECTROMETRY (MALDI-TOF MS) ...59

PART II: OPTIMISATION STUDIES

2.4 OPTIMISATION OF PROTEOMICS TECHNIQUES FOR USE
 WITH HUMAN BRAIN TISSUE ...61
 2.4.1 OPTIMISATION OF PROTEIN QUANTIFICATION ..62
 2.4.2 OPTIMISATION OF PROTEIN LOAD ..64
 2.4.3 REPRODUCIBILITY OF 2D-GE ...67
 2.4.4 REPRODUCIBILITY OF SAMPLE PREPARATION ..68

PART III: PROTEOME ANALYSIS PROTOCOL

2.5 PROTOCOL DEVELOPED FOR PROTEOME ANALYSES ON HUMAN BRAIN70
 2.5.1 SAMPLE PREPARATION ...70
 2.5.1.1 Materials ...70
 2.5.1.3 Protein Quantification ...71
 2.5.2 TWO-DIMENSIONAL GEL ELECTROPHORESIS ..72
 2.5.3 IMAGE ANALYSIS ..73
 2.5.4 STATISTICAL ANALYSES ..74
 2.5.5 MASS SPECTROMETRY ..75
 2.5.6 DATABASE SEARCHING ..75
 2.5.7 INGENUITY® PATHWAY ANALYSES ...76

XII
CHAPTER 4 ~ DIFFERENTIAL PROTEIN ABUNDANCE IN THE HUMAN ALCOHOLIC
DORSOLATERAL PREFRONTAL BA9 REGION: GREY & WHITE MATTER PROFILES

4.1 INTRODUCTION .. 112
4.2 MATERIALS AND METHODS .. 116
4.3 DIFFERENTIAL PROTEIN ABUNDANCE IN THE BA9 WHITE MATTER OF
HUMAN ALCOHOLICS .. 117
4.4 DIFFERENTIAL PROTEIN ABUNDANCE IN THE BA9 GREY MATTER OF
HUMAN ALCOHOLICS .. 124
4.5 PROTEIN CHANGES COMMON TO THE BA9 GREY AND WHITE MATTER OF
HUMAN ALCOHOLICS .. 131
4.6 DISCUSSION .. 134
 4.6.1 Transketolase & Thiamine Deficiency .. 136
 4.6.2 Pyridoxal Kinase & Vitamin B6 Deficiency .. 138
 4.6.3 Metabolic Disturbances .. 139
 4.6.4 Oxidative Damage .. 141
 4.6.5 Cytoskeletal Changes .. 144
 4.4.6 Signal Transduction .. 146
 4.6.7 Recovered Alcoholic Case ... 147
4.7 CONCLUSIONS ... 148

CHAPTER 5 ~ DIFFERENTIAL PROTEIN ABUNDANCE IN THE HUMAN ALCOHOLIC
CEREBELLAR VERMIS

5.1 INTRODUCTION .. 151
5.2 MATERIALS & METHODS .. 154
5.3 RESULTS .. 155
5.4 COMPARISON OF CEREBELLAR VERMIS PROTEOME TO
BA9 REGION STUDIES ... 161
5.5 DISCUSSION .. 164
 5.5.1 Thiamine Deficiency .. 165
 5.5.2 Energy Metabolism ... 166
 5.5.3 Oxidative Stress .. 167
 5.5.4 Liver Cirrhosis-Specific Changes ... 169
5.6 CONCLUSIONS ... 170
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1</td>
<td>The ethanol molecule</td>
<td>7</td>
</tr>
<tr>
<td>1.5.1.1</td>
<td>Brodmann area 9 (BA9), part of the dorsolateral prefrontal cortex (dLPEC)</td>
<td>12</td>
</tr>
<tr>
<td>1.5.1.2</td>
<td>A Brightfield photomicrograph of normal human BA9</td>
<td>13</td>
</tr>
<tr>
<td>1.5.2.1</td>
<td>The human cerebellum or “little brain”</td>
<td>15</td>
</tr>
<tr>
<td>1.5.2.2</td>
<td>Cellular organization of the cerebellar cortex</td>
<td>15</td>
</tr>
<tr>
<td>1.6.1.1</td>
<td>Brain shrinkage of the alcoholic brain</td>
<td>17</td>
</tr>
<tr>
<td>1.6.1.2</td>
<td>Significant increase in PICS values in the three groups of chronic alcoholics</td>
<td>18</td>
</tr>
<tr>
<td>1.6.2.1</td>
<td>Brain shrinkage is largely accounted for by loss of white matter volume</td>
<td>19</td>
</tr>
<tr>
<td>1.6.2.2</td>
<td>Early brain regeneration in the brains uncomplicated alcoholics after abstinence</td>
<td>20</td>
</tr>
<tr>
<td>1.6.3.1.1</td>
<td>Neuronal loss in the superior frontal gyrus of uncomplicated alcoholics</td>
<td>24</td>
</tr>
<tr>
<td>1.6.3.2.1</td>
<td>Alcohol-related atrophy of the cerebellar foliae</td>
<td>26</td>
</tr>
<tr>
<td>1.7.4</td>
<td>Synergistic mechanisms of “alcohol-related brain damage”</td>
<td>37</td>
</tr>
<tr>
<td>1.9.1</td>
<td>Overview of the variety of research fields in proteomics</td>
<td>40</td>
</tr>
<tr>
<td>2.1.1</td>
<td>Overview of antemortem & postmortem variables</td>
<td>48</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Overview of experimental techniques used in proteomics-based analyses</td>
<td>52</td>
</tr>
<tr>
<td>2.3.2.1.1</td>
<td>An illustration of the Bradford assay</td>
<td>54</td>
</tr>
<tr>
<td>2.3.3.1.1</td>
<td>Isoelectric focusing employs an immobilised pH gradient</td>
<td>55</td>
</tr>
<tr>
<td>2.3.3.2.1</td>
<td>Example of a 2D-GE gel image</td>
<td>56</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Diagrammatic representation of matching protein spots across various sub-gels</td>
<td>58</td>
</tr>
<tr>
<td>2.3.6.1</td>
<td>Schematic representation of protein identification using MALDI-TOF MS</td>
<td>60</td>
</tr>
<tr>
<td>2.4.1.1</td>
<td>Example of standard curves yielded by BSA and our human brain protein complex</td>
<td>63</td>
</tr>
<tr>
<td>2.4.2.1-4</td>
<td>Running titration to determine the optimal protein concentration for gel loading</td>
<td>65</td>
</tr>
<tr>
<td>2.4.2.5</td>
<td>Graph of running titration to determine optimal protein load</td>
<td>66</td>
</tr>
<tr>
<td>2.4.3.1-4</td>
<td>Reproducibility of 2D-GE methodology</td>
<td>67</td>
</tr>
<tr>
<td>2.4.4.1-2</td>
<td>Reproducibility of sample extraction methodology</td>
<td>69</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>Example of ProteomIQ™ IPG strips</td>
<td>72</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>Example of 2D GelChip™</td>
<td>72</td>
</tr>
</tbody>
</table>
Figure 4.4.3: Map of identified proteins with differential abundance in the BA9 grey matter of human alcoholics .. 130
Figure 4.5.1: Summary of identified proteins in the BA9 grey and white matter of alcoholics..........131
Figure 4.5.2: Protein categories identified in the BA9 grey and white matter of alcoholics133
Figure 4.6.3.1: The glycolysis, TCA and pentose phosphate pathways appear to be affected in alcohol-related brain damage... 140

Figure 5.3.1: Summary of significant protein abundance level changes in the vermis of alcoholics ..156
Figure 5.3.2: Map of identified proteins with differential abundance in the vermis from alcoholics..159
Figure 5.3.3: Protein categories identified in the cerebellar vermis of alcoholics.........................160
Figure 5.4.1: Identified protein spots in 3 brain regions, the cerebellar vermis, BA9 grey matter and white matter, which change significantly in uncomplicated alcoholics. ..161
Figure 5.4.2: Comparison of identified, significant protein spot changes across the 3 brain regions in alcoholics complicated with hepatic cirrhosis ... 162

Figure 6.2.1: Biological functions significantly associated with the proteins identified in the BA9 white matter of human alcoholics .. 176
Figure 6.2.2: Biological functions significantly associated with the BA9 grey matter proteins identified in human alcoholics .. 177
Figure 6.2.3: Biological functions significantly associated with the proteins identified in the cerebellar vermis study ... 178
Figure 6.3.1: Metabolic pathways significantly associated to the proteins identified in the vermis, BA9 grey and white matter from uncomplicated and complicated alcoholics180
Figure 6.3.2: Metabolic networks associated with the alcohol-related damage to BA9 white matter 182
Figure 6.3.3: Metabolic pathways associated with the alcohol-related damage to BA9 grey matter .183
Figure 6.3.4: Metabolic pathways associated with the alcohol-related damage to the vermis184
Figure 6.4.1: Signaling pathways significantly associated to the proteins identified in the vermis, BA9 grey and white matter from uncomplicated and complicated alcoholics185
Figure 6.4.2: Signaling pathways associated with the BA9 grey and white matter studies187
Figure 6.4.3: Signaling pathways associated with the cerebellar vermis study188
List of Tables

Table 1.6: Summary of quantitative neuropathological data from different groups of alcoholics........27

Table 2.2.1: Human brain tissue cases provided by the NSW TRC..50
Table 2.4.1.1: Standard stock solutions (SSS)...62
Table 2.4.3.1: Comparison of normalised volumes between multiple gels of the same sample68
Table 2.4.4.1: Comparison of spot normalised volumes across 4 gels of the same sample..............69

Table 3.3.1: Proteins more abundant in BA9 grey matter as identified by MALDI-TOF...............83
Table 3.3.2: Proteins More Abundant in BA9 white matter as identified by MALDI-TOF84
Table 3.8.1: Summary of protein abundance changes in the CC body and BA9 white matter.........99
Table 3.8.2: Proteins more abundant in the body of the CC as identified by MALDI-TOF100
Table 3.8.3: Protein spots more abundant in BA9 white matter as identified by MALDI-TOF101

Table 4.3.1: Summary of significant abundance changes in the alcoholic groups........................118
Table 4.3.2: Identified proteins with altered abundance in the BA9 white matter of alcoholics120
Table 4.4.1: Summary of significant protein abundance changes in the alcoholic BA9 grey matter ..125
Table 4.4.2: Identified proteins with altered abundance in the BA9 grey matter of alcoholics127
Table 4.5.1: Proteins identified in both BA9 grey and white matter from alcoholics132

Table 5.3.1: Proteins identified in the cerebellar vermis of alcoholics......................................157
Table 5.4.1: Identified Vermis Proteins Common to BA9 Studies..163
Abbreviations

2D-GE, 2 dimensional gel electrophoresis; 2DIGE, 2 dimensional differential gel electrophoresis

A
δALAD, δ-Aminolevulinic acid dehydratase; AC, Adenyl cyclase; AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate; ANOVA, Analysis of variance; APAF, Australian proteome analysis facility

B
BA9, Brodmann area 9; BAL, Blood alcohol level; BSA, Bovine serum albumin

C
CA, Complicated alcoholics; CA-2, Carbonic anhydrase-2; cAMP, cyclic adenosine 3’, 5’-monophosphate CC, Corpus callosum; CNS, Central nervous system; CT, Computerised tomography;

D
DALYS, Disability adjusted life years; dlPFC, Dorsolateral prefrontal cortex; DRP, Dihydropyrimidinase-related protein; DSM-IV, Diagnostic and statistical manual of mental disorders, 4th ed.; DTI, Diffusion tensor imaging; DTT, Dithiothreitol

E
E-MS, Electrospray mass spectrometry

F
FDR, False discovery rate

G
GABA, γ-Aminobutyric acid; GAPDH, Glyceraldehyde-3-phosphate dehydrogenase; GDH-1, glutamate dehydrogenase 1; GDP, Guanosine Diphosphate; GFAP, Glial fibrillary acidic protein; GM, Grey matter; GRPs, Glucose regulated proteins; GTP, Guanosine triphosphate

H
H₂O₂, Hydrogen peroxide; HE, Hepatic encephalopathy; hNP22, Human neuronal protein 22; HSP, Heat shock protein

I
ICAT, isotope coded affinity tag; IEF, Isoelectric focusing; IEGs, Immediate early genes; IPA, Ingenuity pathway analysis; IPGs, Immobilised pH gradient strips;

K
KP, Korsakoff’s psychosis

M
MALDI-TOF, Mass Absorption/Desorption Ionisation Time of Flight; MRI, Magnetic resonance Imaging; MRS, Magnetic resonance spectroscopy; MS, Mass spectrometry; MS/MS, Tandom mass spectrometry; MW, Molecular weight
N
NAA, N-acetylaspartate; NF-L, Neurofilament light protein; NMDA, N-methyl-D-aspartate; NO, Nitric oxide; nNOS, Neuronal nitric oxide synthase, NSF, N ethylmaleimide sensitive factor; NSW TRC, New South Wales tissue resource centre

P
PA, Phosphatidic acid; PFC, Prefrontal cortex; PE, Phosphatidylethanolamine; PEBP, Phosphatidylethanolamine-binding protein; PEth, phosphatidylethanol; PI, phosphoinositol; PICS, Pericerebral space; PIMT, Protein-L-isoaspartate O-methyl transferase; PMI, Post-mortem interval; PLC, Phospholipase C; PLD, Phospholipase D; PLP, pyridoxal-5-phosphate; PPP, Pentose phosphate pathway

R
Rho GDI 1, Rho GDP-dissociation inhibitor 1; ROS, Reactive oxygen species;

S
SDS-PAGE. Sodium dodecyl sulphate polyacrylamide gel electrophoresis; SNAP-β, Beta-soluble NSF attachment protein; SSS, Standard stock solution

T
TCA, Tricarboxylic acid cycle; TPP, Thiamine pyrophosphate;

U
UA, Uncomplicated alcoholics

V
V-ATPase, Vacuolar H+ -ATP synthase

W
WE, Wernicke’s encephalopathy; WKS, Wernicke-Korsakoff’s syndrome; WM, White matter; WHO, World health organization;