The effect of COPD on Laryngopharyngeal Sensitivity and Swallow Function

Nicola Clayton

A thesis submitted in fulfilment of the requirements for the degree of Masters of Science in Medicine.

Faculty of Medicine
University of Sydney
November 2007
The relationship between COPD and laryngopharyngeal sensitivity has not been previously determined. Limited research into the relationship between COPD and swallow function suggests that patients with COPD are at increased risk of aspiration. One possible mechanism for this is a reduction in laryngopharyngeal sensitivity (LPS). Reduced laryngopharyngeal sensitivity (LPS) has been associated with an increased risk of aspiration in pathologies such as stroke, however impaired LPS has not been examined with respect to aspiration risk in COPD. The Aims of this study were to investigate the effect of COPD on laryngopharyngeal sensation using Laryngopharyngeal Sensory Discrimination Testing (LPSDT) and to determine whether a relationship between LPS and swallow function in patients with proven COPD exists.

Method: 20 patients with proven COPD and 11 control subjects underwent LPSDT utilising an air-pulse stimulator (Pentax AP4000) via a nasendoscope (Pentax FNL10AP). The threshold of laryngopharyngeal sensation was measured by the air pressure required to elicit the laryngeal adductor reflex (LAR). A number of further examinations were also completed for COPD subjects. These included respiratory function testing, self-reporting questionnaire on swallowing ability (SSQ), bedside clinical examination of swallowing (MASA) and endoscopic assessment of swallowing (EAS). Results: subjects with COPD had a significantly higher LAR threshold when compared to their normal healthy counterparts (p<0.001). Positive correlations were identified for the relationships between MASA score and EAS results for presence of laryngeal penetration / aspiration (p<0.04), vallecular residue (p<0.01) and piriform residue (p<0.01). Conclusion: Patients with COPD have significantly reduced mechanosensitivity in the laryngopharynx. Patients with COPD also have impaired swallow function characterised primarily by pharyngeal stasis. These changes may place patients with COPD at increased risk of aspiration.
ACKNOWLEDGEMENTS

I would like to thank a number of people who have been involved throughout the duration of this research project. I am very grateful for the support you have all given me in order to complete this thesis.

To my supervisors:
- Prof Alvin Ing: Consultant Respiratory Physician, Concord Hospital
- Prof Matthew Peters: Head of Thoracic Medicine, Concord Hospital
- Dr Giselle Carnaby-Mann: Research Associate Scientist, Swallowing Research Laboratory, University of Florida

Thank you for your wisdom, enthusiasm and humour!

To the patients who gave up their time to participate in this project, the staff on the Respiratory Ward and the Speech Pathology Department at Concord Hospital, I hope that this research will assist in improving the care of future patients with COPD.

To my family, colleagues and friends including:
- John & Ann Clayton
- Garry Walters
- James & Beth Clayton
- Monika Kaatzke-McDonald

I could not have achieved this without all of your love and support.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER 1</th>
<th>Introduction .. 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2</td>
<td>Background - The Normal Swallow ... 13</td>
</tr>
<tr>
<td></td>
<td>2.1 Swallowing and Dysphagia .. 13</td>
</tr>
<tr>
<td></td>
<td>Oral phase .. 17</td>
</tr>
<tr>
<td></td>
<td>Pharyngeal Phase ... 20</td>
</tr>
<tr>
<td></td>
<td>Oesophageal Phase .. 23</td>
</tr>
<tr>
<td></td>
<td>2.2 Effect of Age on Normal Swallowing 25</td>
</tr>
<tr>
<td></td>
<td>Bolus Volume ... 25</td>
</tr>
<tr>
<td></td>
<td>Duration of Swallow ... 26</td>
</tr>
<tr>
<td></td>
<td>2.3 Laryngeal Physiology .. 27</td>
</tr>
<tr>
<td></td>
<td>2.4 Sensory Receptors of the Larynx 30</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td>Swallowing & Chronic Obstructive Pulmonary Disease (COPD) 34</td>
</tr>
<tr>
<td></td>
<td>3.1 Chronic Obstructive Pulmonary Disease (COPD) 34</td>
</tr>
<tr>
<td></td>
<td>3.2 Relationship between Respiration and Swallowing 36</td>
</tr>
<tr>
<td></td>
<td>3.3 Cough and Dysphagia .. 40</td>
</tr>
<tr>
<td></td>
<td>3.4 COPD and Dysphagia ... 44</td>
</tr>
</tbody>
</table>
Preface to Chapters 4 & 5 (including Ethics Approval and Consent)52

CHAPTER 4 The effect of COPD on Laryngopharyngeal Sensitivity (LPS) ...53

4.1 Study Aims ..53

4.2 Methodology ...53

4.3 Results ..61

4.4 Discussion ...64

4.5 Study Limitations ...67

4.6 Conclusion ..69

CHAPTER 5 Impaired Laryngopharyngeal Sensitivity in Patients with COPD: the relationship to swallow function70

5.1 Aims ..70

5.2 Methodology ..70

5.3 Results ..75

5.4 Discussion ..82
5.5 Study Limitations ...88

5.6 Conclusion ...89

CHAPTER 6 Summary ..90

APPENDIX A Ethics Approval ...91

APPENDIX B Participant Information Form92

APPENDIX C Participant Consent Form94

APPENDIX D Sydney Swallowing Questionnaire (SSQ)95

APPENDIX E Mann Assessment of Swallowing Ability (MASA)99

APPENDIX F Endoscopic Assessment of Swallowing (EAS)100

REFERENCE LIST ..101

BIBLIOGRAPHY ..111
LIST OF TABLES

Chapter 2
Table 2.1 8-Point Aspiration-Penetration Scale16

Chapter 4
Table 4.1 FEV$_1$ values for case subjects56
Table 4.2 Case subject descriptive data61
Table 4.3 LAR data for cases & controls63

Chapter 5
Table 5.1 Case subject descriptive data76
Table 5.2 SSQ data summary ...77
Table 5.3 EAS data summary for vallecular and piriform residue ...79
Table 5.4 EAS data summary for laryngeal penetration / aspiration ...79
Table 5.5 Relationship between EAS and MASA80
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 2</td>
<td>Figure 2.1</td>
<td>Oral, pharyngeal and laryngeal anatomy - lateral view</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Figure 2.2</td>
<td>Laryngeal anatomy – superior view</td>
<td>28</td>
</tr>
<tr>
<td>Chapter 4</td>
<td>Figure 4.1</td>
<td>LPSDT results</td>
<td>63</td>
</tr>
<tr>
<td>Chapter 5</td>
<td>Figure 5.1</td>
<td>Correlation between laryngeal penetration / aspiration (on EAS) and MASA</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Figure 5.2</td>
<td>Correlation between vallecular residue (on EAS) and MASA</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Figure 5.3</td>
<td>Correlation between piriform residue (on EAS) and MASA</td>
<td>81</td>
</tr>
</tbody>
</table>