Canine Neural Angiostrongyliasis

By Julian Alexander Lunn BVSc MACVSc

A thesis submitted for the degree of
Master of Veterinary Clinical Studies

Faculty of Veterinary Science
University of Sydney
Sydney NSW 2006

March 2006
“The inflammatory reaction is a host defence mechanism, acquired and refined through the millennia of evolution. Inflammation is never a primary event; it is a reaction to local injury that may range from trivial to life threatening. In all inflammatory disease, the reaction itself contributes something to tissue damage, reaching the most dramatic expression in the immunopathological disorders in which there is aggressive reactivity to autoantigens or to exogenous agents that in themselves may be inconsequential pathogens.”

Summers, Cummings and de Lahunta, 1995¹
Table of Contents

Abbreviations .. 5
List of Figures .. 6
List of Tables .. 7
SUMMARY .. 9
AIMS .. 11
CANINE NEURAL ANGIOSTRONGYLIASIS .. 12
INTRODUCTION ... 12

CHAPTER 1: LITERATURE REVIEW ... 14
1.1 HISTORY .. 14
1.2 CLASSIFICATION .. 16
1.3 IDENTIFICATION ... 18
1.4 LIFE CYCLE .. 19
 1.4.1 Comparisons between A. cantonensis and A. mackerrasae ... 22
1.5 HOSTS .. 24
1.6 EPIDEMIOLOGY ... 26
 1.6.1 Spread of Angiostrongylus cantonensis ... 26
 1.6.2 The Role of Achatina fulica .. 29
 1.6.3 Route of Infection .. 32
1.7 ANGIOSTRONGYLU S CANTONENSIS IN AUSTRALIA ... 34
 1.7.1 Angiostrongylus mackerrasae ... 35
1.8 ANGIOSTRONGYLIASIS IN DOGS .. 36
1.9 EXPERIMENTAL INFECTIONS IN DOGS .. 38
1.10 EXPERIMENTAL INFECTIONS IN OTHER NON-MURINE SPECIES .. 41
 1.10.1 Cats .. 41
 1.10.2 Rabbits ... 41
 1.10.3 Pigs and Calves .. 42
 1.10.4 Rhesus Monkeys .. 42
 1.10.5 Guinea Pigs ... 42
1.11 PATHOPHYSIOLOGY ... 43
 1.11.1 Eosinophils .. 46
 1.11.2 T Cells ... 48
 1.11.3 Interleukin-5 ... 50
 1.11.4 Immunoglobulins ... 50
 1.11.5 NF-kB Protein and iNOS ... 51
 1.11.6 Plasminogen and Plasminogen Activators .. 52
 1.11.7 Zinc ... 52
 1.11.8 Matrix Metalloproteinases .. 52
 1.11.9 Pulmonary Disease ... 53
1.12 DIAGNOSIS ... 54
 1.12.1 History ... 54
 1.12.2 Clinical Presentation .. 54
 1.12.3 Laboratory findings .. 55
 1.12.4 Imaging ... 55
 1.12.5 Histopathology .. 56
1.13 TREATMENT .. 59
 1.13.1 Glucocorticoids ... 59
 1.13.2 Anthelmintics ... 59
 1.13.3 Cyclosporin .. 60
 1.13.4 Matrix Metalloproteinase Inhibitors ... 60
 1.13.5 Symptomatic Therapy ... 61
 1.13.6 Antibiotics ... 61
1.14 ACQUIRED IMMUNITY ... 62
1.15 ELISA ... 65
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBB</td>
<td>Blood Brain Barrier</td>
</tr>
<tr>
<td>CNA</td>
<td>Canine Neural Angiostrongyliasis</td>
</tr>
<tr>
<td>CNS</td>
<td>Central Nervous System</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular Matrix</td>
</tr>
<tr>
<td>EME</td>
<td>Eosinophilic Meningoencephalitis</td>
</tr>
<tr>
<td>GIT</td>
<td>Gastrointestinal Tract</td>
</tr>
<tr>
<td>HES</td>
<td>Hypereosinophilic Syndrome</td>
</tr>
<tr>
<td>ICPMR</td>
<td>Institute for Clinical Pathology and Medical Research</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>MHC</td>
<td>Major Histocompatibility Complex</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix Metalloproteinase</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic Resonance Imaging</td>
</tr>
<tr>
<td>UVCS</td>
<td>University Veterinary Centre, Sydney</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1: Life cycle of *Angiostrongylus cantonensis*
Figure 1.2: Global distribution of *Angiostrongylus cantonensis*
Figure 1.3: *Achatina fulica* adult
Figure 2.1: Calculation of ELISA cut-off value
Figure 3.1: Comparison between retrospective and prospective cases as they occurred by month
Figure 3.2: Comparison between Sydney and Brisbane cases as they occurred by month
Figure 3.3: Distribution of prospective cases in the Sydney region
Figure 3.4: Comparison of age, mortality and eosinophils counts between cohorts
Figure 3.5: Example of eosinophilic pleocytosis within the CSF
Figure 3.6: Example of ELISA results (Case 3)
Figure 3.7: ELISA titres for Prospective Group
Figure 3.8: ELISA titres for Control Group A
Figure 3.9: ELISA titres for Control Group B
List of Tables

Table 1.1: Comparison of *Angiostrongylus cantonensis* and *A mackerrasae*
Page 23

Table 3.1: Lesser clinical signs noted in 55 naturally occurring cases of CNA.
Page 85

Table 3.2: CSF cytology results and details of Retrospective cases
Page 86

Table 3.3: Prospective case breeds
Page 88

Table 3.4: Clinical signs of CNA
Page 92

Table 3.5: CSF cytology results from Prospective cases
Page 97

Table 3.6: ELISA titres for Prospective Group, Control Group A and Control Group B
Page 100

Table 3.7: ELISA and Western Blot assay results for Prospective Group
Page 101
Acknowledgements

I would like to acknowledge all of the veterinary practitioners and pathologists who were so generous with their time in collecting samples and filling out questionnaires. I would especially like to thank some individual veterinarians for their help and support; Ken Mason for his time and a copy of his thesis, David Snow, Mayne Vetnostics, deserves special thanks for his efforts in contacting referring veterinarians, and Terry King who was gracious enough to provide a number of the cases involved in this study.

I would also thank the Faculty’s Clinical Pathology department for their tireless help with sample analysis, histopathology and sample storage. Particularly Patricia Martin, who gave many hours of help with the CSF samples and Mark Krockenberger, for providing support for spinal cord histology.

Rogan Lee, ICPMR, was instrumental in this thesis and without his input I would never have been able to complete the study. He provided his time and expertise in conducting all the ELISA. Jo Smaller was good enough to run the Western Blot analysis in conjunction with her own work.

Terry Practchet, a British satirist, once said, ‘A University very much like a coral reef. It provides calm waters and food particles for delicate but marvellously constructed organisms that couldn’t possibly survive in the pounding surf of reality where people ask questions like “is what you do of any use?”’ With out the support of my two supervisors, Geraldine Hunt and Richard Malik, I think this statement would have summed up my thesis. Their constant guidance, enthusiasm, experience and intellectual input were crucial to the creation and (eventual) completion of this thesis.

This thesis was supported by the H. Loxton Postgraduate Research Scholarship with a grant-in-aid from the Neil & Allie Lesue Scholarship.
Summary

Canine Neural Angiostrongyliasis (CNA) is caused by the obligatory neural migration of Angiostrongylus cantonensis larvae in dogs. Characteristically, cases are juvenile dogs with progressive CNS dysfunction characterised by hyperaesthesia and often associated with eosinophilic pleocytosis of the CSF. In Australia, most cases occur between March and June.

The rat lungworm, A cantonensis was first described by Chen in 1935 in Canton, China. While initially called Pulmonema cantonensis the parasite was later reclassified as A cantonensis. A disease diagnosed as eosinophilic meningoencephalitis was first described in 1944 in Taiwan. The same disease was reported in 1948 in the East Caroline Islands but it was not until 1961 that A cantonensis was confirmed as the aetiological agent when a patient in a Hawaiian mental institution, who had died of eosinophilic meningoencephalitis, had A cantonensis larvae recovered from the brain and spinal cord.

The first reports of animals infected with A cantonensis were made by Mason in 1976 when he described a syndrome occurring in puppies in the Brisbane area, characterised by urinary incontinence, hind limb paresis and hyperaesthesia, often associated with eosinophilic pleocytosis of the CSF. Reports of infection in other species followed including macropods, bats, horses, primates and birds.

Twenty-two cases of suspected CNA were collected prospectively to compare with those previously described, including 37 cases published by Mason in 1983, and to examine the accuracy of an ELISA used to diagnose human neural angiostrongyliasis in Australia. Samples were collected from two control populations in an attempt to validate the ELISA results. In the prospective series of cases, there was a significantly older subpopulation of dogs in addition to “classical” young dogs, suggesting that this syndrome can occur at any age and should be considered a differential in any dog with progressive neurological disease. The mortality rate in the prospective group was lower than in the published group, which is a reflection of the severity of the disease in younger animals as is the case with human patients.

Definitive diagnosis of neural angiostrongyliasis in human patients has been achieved by identifying A cantonensis larvae within the CSF or aqueous humour. In dogs, the only definitive way to diagnose CNA has been via necropsy. While many cases of CNA are characteristic and presumptive
diagnosis can be made based on typical history, signalment, clinical signs, CSF analysis and response to glucocorticoids, there appear to be an increasing number of cases occurring in older dogs, that displaying focal, atypical clinical signs or that develop permanent sequelae.

Serology has been a useful tool in diagnosing neural angiostrongyliasis in humans. In its current form the ELISA is not sensitive or specific enough to allow a definitive diagnosis of CNA to be made using serum but is useful when applied to CSF specimens. Further refinement of the antigen or using monoclonal rather than polyclonal antibodies may improve the accuracy of the serology. Alternatively, methods such as Western Blot, Immuno-PCR or dot-blot ELISA, which have been successfully used to diagnoses angiostrongyliasis in humans, may be worthy of investigation.

The major differential diagnosis for CNA is neosporosis. Other differential diagnoses include idiopathic eosinophilic meningoencephalitis, parasitic infections including *Toxoplasma gondii, Taenia solium, Gnathostoma spinigerum*, visceral larval migrans (*Toxocara canis*) and schistosomiasis, fungal, bacterial, viral and rickettsial infections as well as neoplasia, trauma, drug reactions and toxicities.

Treatment of CNA has been limited to glucocorticoids, however there may be adjunct therapies including anthelmintics, cyclosporine, and matrix metalloproteinase inhibitors. In Mason’s series of cases the use of anthelmintics significantly worsened the clinical outcome for patients. It does not appear, however, that the use of these agents in species other than the dog exacerbates clinical signs. Acquired immunity is short lived in rats and mice, which would suggest the same is true in dogs. Routine heartworm and intestinal parasite prophylaxis appears to have no influence on the occurrence of CNA.
Aims

The major aims of this thesis are; (i) to compare the published cases to those collected prospectively, contrasting signalment, clinical signs, response to treatment and seasonality, (ii) to evaluate the use of ELISA in the diagnoses of CNA, and (iii) discussion of the important aspects of neural angiostrongyliasis with particular reference to alternative/adjunct treatments, permanent sequelae, pathophysiology, route of infection, and prevention.

Obtaining a definitive diagnosis is difficult in dogs that survive. Serology has proven useful in human patients and may be of benefit in dogs and other species. An ELISA based on crude adult antigens developed at ICMPR and Western Blot analysis developed in conjunction with another project will be evaluated in a number of groups of dogs including suspected cases of CNA, dogs with no evidence of infection with *A. cantonensis* based on necropsy and apparently healthy dogs presenting to the UVCS for reasons unrelated to neurological dysfunction. CSF and serum will be obtained from all of the dogs within the groups where possible.