Mechanism and Modelling of the Partial Oxidation of Methanol over Silver

A thesis submitted to the Faculty of Engineering for the degree of

Doctor of Philosophy

By

Anna Schlunke

School of Chemical and Biomolecular Engineering

The University of Sydney

March 2007
I hereby declare that the work presented in this thesis is solely my own work. To the best of my knowledge the work presented is original except where otherwise indicated by reference to other authors. No part of this work has been submitted for any other degree.

Anna Schlunke

Acknowledgements

I would like to thank my supervisor Professor Brian Haynes for his wise guidance, character building and rigorous approach to research. Thanks to the amiable Dr Alejandro Montoya for his professionalism and quirky sense of humour. I would like to thank all the members of the Combustion Group for creating such a friendly and cooperative work environment as well as the Australian Postgraduate Awards Scheme and Heatric for funding.

It was a combination of the admiration I had for my postgraduate tutors (especially Omar who supervised my undergraduate thesis), encouragement from friends like Herbert and the enthusiasm and help from Associate Professor Tim Langrish that made me decide to undertake a PhD.

Thank you to all the fantastic administration staff, especially Annette who is never too busy to help. Thanks to Javier who solved all my computer problems while providing useful colour coordination tips and thanks to chirpy Dennis who was always there when my experimental rig needed his workshop expertise.

I am grateful for the sense of community created by all members of the Department (School), especially the postgraduate students. In particular I would like to thank Damien for all the important discussions over coffee. Then there is Melita who I want to thank for everything from showing me the ropes in the lab to cheering me up when things were tough to being a great friend and so much fun to be around.

I would like to thank the BASIX team (which is full of so many lovely, talented people that it seems unfair to the rest of the world), especially Rob Helstroom who has been so keen to listen to me talk about my research.

Finally, thanks to my family for supporting me without question and to my wonderful husband Sam who never hesitated to make sacrifices so I could continue with my studies.
Summary

This work involves an experimental and kinetic modelling study of the silver catalysed reaction of methanol to formaldehyde. The motivation for this was the desire to investigate the potential for Process Intensification in formaldehyde production. Formaldehyde production from methanol over silver catalyst is a fast, exothermic process where dilution is used to control heat release, and these properties are both indicators of Process Intensification potential. The process is run adiabatically and produces hydrogen (which is currently burnt). Oxygen is consumed during the reaction but is also required to activate the catalyst and is fed in under-stoichiometric quantities.

The central overall reactions in the silver catalysed process for formaldehyde production are oxydehydrogenation \(\text{CH}_3\text{OH} + \frac{1}{2} \text{O}_2 \rightarrow \text{CH}_2\text{O} + \text{H}_2\text{O} \) (\(\Delta H = -159\text{kJ/mol} \)) and dehydrogenation \(\text{CH}_3\text{OH} \leftrightarrow \text{CH}_2\text{O} + \text{H}_2 \) (\(\Delta H = 84\text{kJ/mol} \)). When sufficient oxygen is available, formaldehyde can be further oxidised to carbon dioxide \(\text{CH}_2\text{O} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \) (\(\Delta H = -519\text{kJ/mol} \)). Formaldehyde can decompose to carbon monoxide and hydrogen \(\text{CH}_2\text{O} \rightarrow \text{CO} + \text{H}_2 \) (\(\Delta H = 12.5\text{kJ/mol} \)). Oxidation of methanol and hydrogen also occurs and other minor products of the reaction are methyl formate, methane and formic acid. These overall reactions do not adequately describe the silver catalysed reaction mechanism. In particular, the overall dehydrogenation reaction does not include oxygen as a reactant, but it will not occur over silver that does not have active atomic oxygen species adsorbed on the surface, and these atomic oxygen species are formed from gas phase oxygen.

In the absence of a complete mechanism for silver catalysed formaldehyde production, the intensification of the process was investigated using a thermodynamic model (based on the overall oxydehydrogenation and dehydrogenation reactions, not reaction kinetics). It was found that by using heat exchange (rather than heat generated from the exothermic oxydehydrogenation path) and a lower oxygen concentration in the feed stream, hydrogen selectivity could be increased while maintaining the required methanol conversion. Before this
opportunity could be further investigated, a complete reaction mechanism that would allow the requirement of oxygen for catalyst activation to be included was required.

There is agreement in the literature that two active atomic oxygen species react with methanol on silver. These are weakly bound atomic oxygen (O$_\alpha$) and strongly bound atomic oxygen (O$_\gamma$). The location of O$_\alpha$ is on the surface of the silver, while the location of O$_\gamma$ has been described as being in the silver surface (where it substitutes for silver atoms). Both species react with methanol to form formaldehyde. When the concentration of O$_\alpha$ is high enough, O$_\alpha$ will also react with formaldehyde forming carbon dioxide (while O$_\gamma$ will not). The literature presents differing views on the extent of involvement of each atomic oxygen species in industrial formaldehyde production. There is also disagreement on the pathways for water and hydrogen formation.

An extensive experimental investigation of the partial oxidation of methanol to formaldehyde was carried out using a flow reactor. The effect of temperature (250-650°C), reactant concentration (7000-40000ppm methanol) and the feed ratio of methanol to oxygen (2.5-5.5) were studied. The extreme case of methanol reaction with O$_\gamma$ in the absence of gas phase oxygen was also investigated. To isolate the effect of secondary reactions, the oxidation of formaldehyde, carbon monoxide and hydrogen were investigated, both in the presence and absence of silver catalyst.

When methanol was exposed to silver catalyst that had been activated by being covered in O$_\gamma$ (with this being the only source of oxygen) the catalytic nature of O$_\gamma$ was demonstrated by the high selectivity to formaldehyde and hydrogen that was achieved (with very little carbon dioxide or water production).

When gas phase oxygen was fed to the reactor along with methanol, hydrogen selectivity over silver increased up to about 40% as the concentration of reactants was increased. This result is consistent with the general rule of thumb from industrial practice that hydrogen selectivity is about 50%. When formaldehyde and oxygen were exposed to silver in the flow reactor, the only reaction products were carbon
dioxide and water and the combination of high temperature and excess oxygen was required for complete conversion of formaldehyde.

A pseudo-microkinetic model (based on a Langmuir-Hinshelwood mechanism) for the partial oxidation of methanol to formaldehyde (over silver) was taken from the literature and investigated. This model predicts formaldehyde production using only O$_\alpha$ (no other active atomic oxygen species are included) but lacks pathways for reactions between O$_\alpha$ and adsorbed hydrogen or hydroxyl (so the only possible fate of adsorbed H atoms is to desorb as H$_2$). The O$_\alpha$ model was combined with literature models for hydrogen desorption and the reactions involving adsorbed hydroxyl (desorption, self reaction, decomposition and reaction with adsorbed hydrogen). Comparison of this Hybrid model with experimental data showed that reactions involving O$_\alpha$ will predict formaldehyde formation and oxidation, but not hydrogen formation (because the rate of hydrogen desorption is too slow compared with the rate of water formation). It is concluded that any detailed model must include the reaction between methanol and O$_\gamma$ (producing hydrogen). Although the reaction between two adsorbed O$_\gamma$H species has been suggested as the pathway for hydrogen formation from O$_\gamma$, this is not certain and so all possible reactions involving O$_\gamma$ and hydrogen need be investigated and the appropriate pathways added to the Hybrid model.

Once a complete microkinetic mechanism for the partial oxidation of methanol to formaldehyde over silver is available it can be used to further investigate the process intensification of this process. In particular, the use of staged addition of oxygen (to keep the catalyst active) combined with heat exchange (to replace the heat normally supplied by the oxydehydrogenation path) with the aim of simultaneously maximizing methanol conversion and selectivity to formaldehyde and hydrogen.
Table of Contents

TABLE OF CONTENTS .. 1

CHAPTER 1: INTRODUCTION .. 3

- Process Intensification .. 3
 - Advantages of Process Intensification ... 6
 - Opportunities for the Application of Process Intensification .. 10
 - Blocks to Process Intensification .. 11

- Formaldehyde and Heat Exchange ... 12
 - Formaldehyde Properties and Uses .. 12
 - Production Processes ... 14
 - Use of Heat Exchange to Maximize Hydrogen Production .. 18

CHAPTER 2: THE SILVER CATALYSED REACTION MECHANISM .. 30

- Oxygen Activation of the Catalyst ... 30
 - Oxygen Species .. 32
 - Silver Catalyst Morphology .. 40
 - Temperature Effects .. 41
 - Oxygen Effects .. 41
 - Effect of Methanol .. 44
 - Effect of Methanol and Oxygen .. 45
 - Effect of Water .. 47

- Mechanism ... 48
 - Rate Limiting Step ... 49
 - Reactivity of O_α, O_β and O_γ .. 50
 - O_α is the only active species ... 51
 - O_β is responsible for water and hydrogen ... 51
 - O_γ forms water and is not responsible for hydrogen ... 52
 - Oxygen Concentration ... 54
 - Surface and Subsurface Hydroxyl Species .. 56

- Conclusions on the Silver Catalysed Reaction Mechanism .. 58

CHAPTER 3: EXPERIMENTAL METHOD .. 60

- Reactor Design ... 60
 - Functions .. 60
 - Temperature Profile .. 63
 - Pressure Drop Calculations ... 64
 - Flowrate and Catalyst Bed ... 65

- Catalyst .. 66
 - Catalyst Activation ... 67

- Temperature Control and Measurement .. 67

- Reaction Conditions .. 67

- Experimental Apparatus .. 68
 - Formaldehyde Decomposition and Oxidation ... 70
 - Hydrogen Oxidation .. 71
 - Carbon Monoxide Oxidation ... 71

- Product Analysis .. 71
 - Oxygen Measurement .. 75

- Carbon, Hydrogen and Oxygen Balances ... 81

- Calibration Error Calculation .. 85

CHAPTER 4: EXPERIMENTAL RESULTS ... 88

- Terminology .. 88
 - Approach to Steady State .. 88
 - Effect of Temperature and Feed Composition ... 89
 - Temperature ... 89
 - Temperature (steady-state) and Feed Composition .. 93
CHAPTER 5: KINETIC MODELLING .. 115

ADAPTATION OF ANDREASEN MODEL TO THE CHEMKIN ENVIRONMENT 115
Thermodynamic parameters ... 115
Kinetic parameters .. 117
The Andreassen Mechanism ... 118
Adding to the Andreassen Model ... 119
Hydrogen Desorption .. 119
Water formation ... 124
Hybrid Model construction .. 125
Hybrid Model Predicted Hydrogen Production and Sensitivity Analysis 129
Andreassen and Hybrid Model .. 131
Partial Oxidation of Methanol .. 131
Oxidation of Formaldehyde ... 134
O2 Desorption Mechanism .. 138
Rate parameters ... 139

CHAPTER 6: DISCUSSION ... 147

O, IS CATALYTIC .. 148
Reactivity of Oa .. 152
Formaldehyde Oxidation by Oa .. 154
Hydrogen Selectivity .. 156
Hybrid Model .. 156

CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 158

APPENDIX 1: DESCRIPTION OF VLE IN FORMALDEHYDE-METHANOL-WATER MIXTURES .. 160

Introduction ... 160
The Formaldehyde-Water System .. 161
A Model Including Methylene Glycol and Poly(oxymethylene) Glycol Formation 161
Pseudo-component Description of the Formaldehyde-Water System 163
The Formaldehyde-Methanol-Water System .. 165
Addition of Methanol to the Quasi-Formaldehyde-Water Model 165
Implementation in a Property Package Simulator ... 167

APPENDIX 2: REACTOR DESIGN CALCULATION DETAILS 169

Reactor Temperature Profile Calculation .. 169
Calculation Details .. 171
Predicted and Measured Reactor Temperature Profiles .. 172
Reactor Pressure Drop Calculation .. 174

APPENDIX 3: CALIBRATION CURVES .. 177

Micro Gas Chromatograph Calibrations .. 177
Mass Flow Controller Calibrations ... 182

APPENDIX 4: REACTOR MODELLING .. 184

Effect of Gas Phase Formaldehyde Concentration on Selectivity 184

REFERENCES ... 187