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1. Introduction 

In July, 2007, medical researchers at the University of California at Los Angeles 
uncovered for the first time a direct genetic link between exposure to vehicle exhaust 
pollutants and arteriosclerosis, a primary precursor of cardiovascular diseases (Gong et 
al., 2007). This finding adds to a growing body of scientific evidence suggesting that the 
characteristics of roadway microenvironments coupled with when and for how long 
people are in these microenvironments could be particularly relevant in terms of overall 
health impacts (Burnett, 2003). While pollution concentrations in roadway 
microenvironments have been shown to be consistently higher than ambient levels on 
which air quality standards are assessed, there is evidently great variability across space 
and time due to a range of meteorological, traffic, modal, and personal factors (Kaur et 
al., 2007). The implications are that to deepen our understanding of exposure, we must 
monitor and predict pollution concentrations at increasingly disaggregate levels of 
temporal and spatial resolution (Greaves, 2006). 

 

While methods to measure air pollution have become increasingly refined, prediction 
remains a challenge despite the development of sophisticated vehicular exhaust 
dispersion models. This is largely due to the complexity, non-linearity and unknown 
distributional qualities of air pollution data (Zamurs and Conway, 1991). In response, 
there is growing interest in using data-driven machine-learning techniques, such as 
Artificial Neural Networks (ANN) to model air quality data (Perez, 2000). The appeal of 
ANNs is that they are capable of modelling highly non-linear functions and can be 
trained to accurately generalise from a new independent data set. ANNs are also good at 
detecting the underlying pattern masked by noisy factors in a complex, highly 
disaggregate, system (Zhang et al., 1998). 

 

Despite the potential, ANN-based approaches have largely been applied to the problem 
of predicting regional or city-wide pollution (Perez et al., 2000, Grivas and Chaloulakou, 
2006). Relatively few applications have focused on roadside exposures (Moseholm et 
al., 1996; Nagendra and Khare, 2004). The current paper reports on the development and 
application of ANN-based methods to address the problem of temporally disaggregate-
level prediction of PM2.5

1 near a busy intersection in Sydney, Australia. Following 
details of the data collection required, the paper explains the rationale for the ANN 
structure used for this application. We then apply the ANN and compare to other 
modelling approaches before drawing conclusions on the merits of the approach. 

 

                                                           
1 PM2.5 refers to particulate matter with an aerodynamic diameter of less than 2.5 microns. It is associated with an increased risk of 
cardiopulmonary and lung cancer mortality, reduced lung function, and as a potential trigger for existing respiratory problems such 
as asthma (Kappos et al., 2004). 
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2. Methodology 

2.1 Study Area and Data 
To develop and test the approach, PM2.5 concentration levels were collected on a minute-
by-minute basis over two weeks (25/05/2007 – 06/06/2007) at the intersection of 
Military Road and Wycombe Road in Sydney, Australia (Figure 1). Military Road is a 
major traffic route in Northern Sydney that carries approximately 77,000 vehicles per 
day. The equipment comprised the AM510 SidePak™ personal aerosol monitor (also 
shown in Figure 1), which uses nephelometric (light-scattering) techniques to estimate 
PM2.5 concentrations (see Greaves, 2006 for more details). The monitor was placed in an 
apartment overlooking the intersection. Ambient PM2.5 concentration levels were 
collected at the same time using the same model device at a location approximately 300 
metres south where effects from primary particulates originating from traffic were 
believed to be minimal (Zhu, 2002). One minute temperature, wind speed and direction, 
relative humidity, and mean-sea level pressure were obtained from the closest fixed site 
stations of the Bureau of Meteorology – note precipitation levels were zero during the 
data collection period. Fifteen-minute traffic volumes contiguous with the monitoring 
period were computed from intersection counts – these are automatically collected and 
stored for the vehicle-actuated signal timing system maintained by the Roads and Traffic 
Authority (RTA) of New South Wales. 
 

 
 

Figure 1:  The Monitoring Site and Portable Aerosol Monitor 
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2.2 Data Analysis and Development of ANNs 
The data were screened resulting in 1,200 valid-data point. The data were then analysed 
with ANNs using the ‘back propagation’ technique with momentum term algorithm. The 
neural network architecture used was the fully-connected feed forward multi-layer 
perceptron (MLP) with one hidden layer. This setup is considered able to approximate 
almost every measurable function between input and output vectors by selecting a 
suitable number of neurons, connecting weights and transfer functions (Gardner and 
Dorling, 1998). NeuroSolution software was used for the analysis. 

 

While readers are referred to texts such as Haykin (1999) for more details on ANNs, 
there were important considerations for the application detailed here. First was the 
choice of a suitable transfer function. Previous studies have shown the logistic sigmoid 
transfer function (Perez et al., 2000) and the hyperbolic sigmoid transfer function 
(Nagendra and Khare, 2004) are among the most efficient functions in mapping the input 
and output patterns for atmospheric pollution. This study assessed both transfer 
functions for the most accurate results. The formula for the proposed transfer functions 
and the back propagation algorithm are presented below: 

 

Logistic function: ue
uf −+

=
1

1)(  

Hyperbolic tangent: u

u

e
euf −

−

+
−

=
1
1)(  

Back propagation algorithm: [ ])1()()()1( −−++=+ twtwxetwtw ijijijijij μη  

 

where u is the sum of the adjusted input signals, wij is the connecting weight between 
neuron i and neuron j, xi is the output from neuron (i), η is the learning rate, μ is the 
momentum factor to ensure network stability and t is a set of input data. 

 

A second consideration was the selection of the optimal number of neurons in the hidden 
layer. Networks with fewer hidden neurons are preferable since it is easier to generalise 
but networks with too few hidden neurons have limited power in mapping and predicting 
data. The number of neurons in the network is directly proportion to the number of 
weight needed to be estimated. Here we followed an empirical rule suggested by Haykin 
(1999) to restrict the number of weight needed to be estimated to not more than ten 
percent of the total number of data point used to train the network. The final procedural 
issue related to how to split the sample for training, cross-validation2 and testing. In this 
case, we decided to use 720 data point (60 percent of the sample) to train the network, 
240 data point (20 percent) to cross-validate, and 240 data point (20 percent) to test the 
network. 
 
                                                           
2 Cross-validation helps prevent overfitting of the data and determines the stopping point of the training process. In this study, the 
training networks were trained 20 times with a maximum epoch of 3,000 each time. The network will be stopped if the performance 
of the cross-validating set is not improved after 300 repetitive runs. 
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The performance of the ANN models were evaluated using the root mean square error 
(RMSE), mean absolute error (MAE) and coefficient of determination (R2). The better 
the model performance means the smaller RMSE and MAE and the closer R2 is to 1. 
The formulas for these evaluation criteria are presented below: 
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where N is the total number of observations, Oi is the observed value, Pi is the predicted 
value and O is the mean of the observed value. 

 

3. Results and Discussion 

Initially the minute-by-minute data were used as this captures the most information. 
However, the traffic data were available at 15-minute intervals necessitating use of this 
averaging interval. Figure 2 shows a time-series plots of the roadside (i.e., collected at 
the intersection) PM2.5 concentration, ambient PM2.5 concentration and the traffic 
volume on Military Road over the two week sampling period. The plot shows the 
roadside PM2.5 concentrations (R_PM2.5) generally track the ambient PM2.5 
concentrations (A_PM2.5) at a higher level, with more pronounced differences observed 
during the peak traffic periods. The statistics in Table 1. confirm this with the average 
for the roadside PM2.5 (21.09 μg/m3) being 45% higher than the ambient average (14.54 
μg/m3). 
 

Looking in more detail at the results both the average ambient and roadside PM2.5 
concentrations were below the proposed Australian standard of 25 μg/m3 
(Environmental Protection and Heritage Council, 2007). However, this hides the fact 
that for 385 out of 1,200 data points (around one-third of the monitoring time), levels 
exceeded this value. Four of the days had substantial periods of time above 50 μg/m3 
and the maximum observed concentration was 72.67 μg/m3. 
 

A natural logarithm transformation was applied to the PM2.5 concentrations and the 
traffic variables to reduce fluctuations in data. Several experiments were performed to 
determine the best combination of network parameters. A fully-connected feed-forward 
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network, with seven neurons in the input layer, night neurons in the single hidden layer 
and one neuron in the output layer, using the hyperbolic tangent as a transfer function 
yielded the best prediction on the test data set. The total number of weight needed to be 
estimated were 72 which was sufficient achieved by the training data set. The 
architecture of the network with input labels is shown in Figure 3.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 2:  Time-Series Plot of PM2.5 and Traffic Volume over the Sampling Period 
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Table 1:  Descriptive Statistics for the Two Week Monitoring Period 

 

 Mean Std. Deviation Min. Max. 

Roadside PM2.5 (μg/m3) 21.09 14.31 0.00 72.67 

Ambient PM2.5 (μg/m3) 14.54 10.99 0.67 55.33 

Traffic (vehicles/15min) 698.89 380.75 28.00 1266.00 

Temperature (Celsius) 14.71 3.52 7.81 23.93 

Relative Humidity (%) 68.73 15.54 24.93 94.37 

MSL Pressure (hPa) 1023.42 2.89 1015.22 1029.30 

Wind Speed (km/hr) 13.06 6.36 0.00 33.60 

 Median Mode Std. Deviation 

Wind Direction (degree) 273 281 90.40 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3:  Structure of 7:9:1 ANN based roadside PM2.5 model 
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Table 2 compares the performance of the ANN with the multivariate ARIMA model on 
the training data set and the testing data set. The multivariate ARIMA model considers 
the effects of past values of PM2.5 levels (autocorrelation) in addition to the input 
variables on predicted levels of PM2.5 and has been shown to be particularly useful for 
drawing insights from the type of data with which we are dealing here (Issarayangyun 
and Greaves, 2007). Note that for the comparison presented here, time-lag data (i.e., 
previous PM2.5, traffic volumes etc) were used for the development of the ARIMA 
model. This may be practical during the development of the model but is unlikely to be 
available in a real-time sense for prediction. 

 

During training, the multivariate ARIMA (RMSE = 0.196 μg/m3, MAE = 0.145 μg/m3) 
performed slightly better than the ANN (RMSE = 0.213 μg/m3, MAE = 0.157 μg/m3). 
Both techniques explained approximately 95 percent of the total variation in the training 
set. After training, both techniques were then presented with the test data. The trained 
ANN (RMSE = 0.282 μg/m3, MAE = 0.207 μg/m3), however, outperformed the 
multivariate ARIMA (RMSE = 0.308 μg/m3, MAE = 0.245 μg/m3). Without 
significantly losing its ability to predict 15-minute PM2.5 concentrations (which reflects 
the absence of an overfitting problem), the trained ANN explained 71 percent of the total 
variation in the test set while the multivariate ARIMA only explained 65 percent of the 
total variation. 
 

Table 2:  Model Comparison 

Dependent Variable: Ln(R_PM2.5) (μg/m3) 

Performance Index 
Technique Data Set 

RMSE MAE R2 

Training 0.213 0.157 0.94 Neural Network – 
 MLP (7:9:1) Testing 0.282 0.207 0.71 

Training 0.196 0.145 0.95 
Multivariate ARIMA1 

Testing 0.308 0.245 0.65 
Note: 1. The significant multivariate ARIMA model was ARIMA (1, 1, 13) with Ln(A_PM2.5), Ln(traffic), 
Pressure and wind speed as statistically significant input variables. The study employed TSMODEL_EM 
with automatic outliers detection incorporated in SPSS version 14 to do the analysis. 

 
Sensitivity analysis about the mean was performed on the trained network to gain insight 
into the correlation and the relative importance among the input variables to the output 
variable. Each input was varied between its mean (± one standard deviation) while all 
other inputs were fixed at their respective means. The sensitivity plots of each input are 
shown in Figure 4. The plots confirm the ambient PM2.5 concentration was the most 
important factor in predicting the roadside PM2.5 concentration. The plots show the 
roadside PM2.5 concentration decreased when either wind speed or temperature 
increased. Relative humidity, pressure and wind direction were marginally important in 
predicting the PM2.5 concentration. Even though it may be argued these meteorological 
variables are redundant in the network, we prefer to keep them in because from the 
sensitivity analysis we can never be completely sure what impact omitting these 
variables will have on the network. As expected, the roadside PM2.5 concentration has a 
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positive correlation with the traffic volume, the higher traffic volume the more PM2.5 
concentration measured. However, the absolute change in PM2.5 concentration due to 
the change in traffic volume was low. 
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Figure 4:  Sensitivity Analysis Plots for Input Variables in the ANN 
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4. Conclusions 

This study investigates the potential for applying Artificial Neural Network to the 
problem of predicting roadside PM2.5 concentrations near a busy intersection at a highly 
disaggregate temporal level (15-minute interval). The MLP (7:9:1) network was trained 
and cross-validated using the back propagation algorithm. The network captured the 
complex correlation between the observed variation in ambient PM concentration, traffic 
and weather conditions. The ANN outperformed the traditional statistical techniques by 
explaining 71 percent of the total variation in the pollution data on the testing data set. 

 

While these evaluation measures seem impressive, there are several issues that need to 
be raised. First, the strength of performance is largely down to the availability of 
contiguous ambient readings, which as the plot in Figure 2 shows are highly correlated 
(as logic dictates). In a practical application, these data would not be available in a 
timely manner to predict roadside concentrations raising the question of how close we 
could get with say the previous day(s) ambient readings. Second, while the sensitivity 
analysis showed the expected reaction of PM2.5 to changes in levels of input variables 
such as wind speed and traffic, the magnitude of this change was in reality, marginal. 
This could be down to the use of the fifteen minute averaging interval (dictated by 
available traffic data) or simply that other traffic parameters (such as proportion of 
trucks) are more critical than volume per se. Third, while ANNs are designed to (and 
invariably find) patterns and meaning in the data, often it is difficult to interpret or 
explain results as one might from classical statistical methods. Finally, the real potential 
of ANNs appears to lie in prediction. In the study presented here, given the trained ANN 
was applied to test data collected at the same location under similar conditions we would 
expect prediction to be good. The real test will come when an ANN developed at one 
time and location is applied elsewhere. 
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