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1.  Introduction 
 
The growing evidence on the ability of stated choice (SC) experiments to represent 
decisions made in real markets (Burke et al. 1992; Carson et al. 1994) has made them a 
popular data paradigm in the elicitation of behavioral responses of individuals, 
households and organizations over diverse choice situations and contexts. An 
acknowledged limitation of SC experiments is that in order to produce asymptotically 
efficient parameter estimates, it is necessary that choice data from a number of 
respondents be pooled (Huber and Zwerina 1996), unless the number of person-specific 
observations captured is very large. A typical SC experiment might involve respondents 
being asked to undertake a number of choice tasks involving the choice from amongst a 
number of labeled or unlabeled alternatives defined on a number of attribute 
dimensions, each in turn described by pre-specified levels drawn from some underlying 
experimental design. The number of choice tasks undertaken will be up to the total 
number of choice sets drawn from the experimental design. Consequently, an archetypal 
SC experiment might require choice data collected from 200 respondents, each of whom 
were observed to have made eight choices each, thus producing 1600 choice 
observations.  
 
The necessity to pool data has lead several authors to seek ways to reduce the number of 
choice observations necessary for reliable analysis of choice data (e.g., Huber and 
Zwerina 1996; Sándor and Wedel 2001; Carlsson and Martinsson 2003; Kanninen 
2002). Primarily, these research efforts have attempted to produce more statistically 
efficient experimental designs that for a given level of accuracy, allow for either a 
reduction in the number of choice set profiles shown to individual respondents or 
alternatively, a reduction in the number of respondents required to complete the 
experiment. Such designs have been widely studied within the literature. For example, 
Bunch, et al. (1994) studied statistically efficient main effects designs whilst Anderson 
and Wiley (1992) and Laziri and Anderson (1994) introduce methods to generate 
statistically efficient cross-effect designs.  
 
More recently, Huber and Zwerina (1996), Sándor and Wedel (2001) and Kanninen 
(2002), showed that the use of logit models to analyze discrete choice data requires that 
a priori information be known about the parameter estimates in order to derive greater 
statistical efficiency in the generation of SC experimental designs (Kanninen 
demonstrates, however, how the efficiency of a designs may be updated during the 
course of the experiment). Information on the parameter estimates may be used to 
calculate the expected utilities for each of the alternatives present within the design, 
which in turn may be used to calculate the likely choice probabilities via the now 
familiar logit formula. Given knowledge of the attribute levels, expected parameter 
estimate values and choice probabilities, it becomes a straightforward exercise to 
calculate the asymptotic (co)variance matrix. By manipulating the attribute levels of the 
alternatives, for fixed parameter values, the analyst is able to minimize the elements 
within the (co)variance matrix, which in the case of the diagonals means lower standard 
errors and hence greater reliability in the estimates at a fixed sample size.  
 
A number of different efficiency criteria have been proposed within the literature. 
Initially, the preferred criterion was A-error, which attempts to minimize the trace of the 
asymptotic (co)variance matrix. Given that the trace of an asymptotic (co)variance 
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matrix only takes into account the variances and ignores the covariances, the literature 
soon turned towards the use of D-error as a measure of efficiency. The D-error measure 
of the asymptotic (co)variance matrix utilizes the determinant of the matrix, which 
summarizes all the elements of the matrix, including the covariances. The determinant 
of a matrix, however, is a complex calculation, involving the multiplication and 
subtraction of various elements of the matrix. Given the complexity calculations used in 
determining the determinant of the asymptotic (co)variance matrix for SC designs, it is 
not uncommon in attempting to minimize the D-error of a design, to minimize some 
elements of the asymptotic (co)variance matrix at the expense of others. This often 
results in an uneven treatment of the asymptotic standard errors in arriving at a final 
‘efficient’ design. That is, for the final design solution, some parameters may be more 
reliable than others. 
 
In this paper, we demonstrate an alternative efficiency criterion, which we call S-
efficiency. Given that the asymptotic (co)variance matrix is directly scalable to the size 
of the sample contained within a data set, it is possible to determine what values the 
elements contained within the asymptotic (co)variance matrix will take at any sample 
size. Using this property, combined with the fact that the asymptotic t-ratios of the 
parameter estimates are simply equal to the parameters themselves divided by the 
square roots of their related variances, we are able to determine what sample size would 
theoretically be required for each parameter to be observed to be statistically significant. 
Given that the sample size requirement for statistical significance can be calculated for 
each parameter, it becomes possible to generate designs that minimize the sample size 
required for all parameters to be statistically significant, rather than attempt to globally 
maximize all asymptotic t-ratios using a criterion, which may minimize the sample 
required for only some of the parameters. Using the S-efficiency measure, we show how 
substantial gains may be obtained in the sample size requirements of SC designs. 
 
The remainder of the paper is arranged as follows. In section 2, we outline derive the 
log-likelihood function for the MNL model. So as to dispel some of the misconceptions 
that are widely held within the literature, we go onto derive the asymptotic (co)variance 
matrix of the MNL model using both matrix algebra as well as the second derivatives of 
the log-likelihood function. We show in this section why the use of matrix algebra, 
which corresponds with the current state of practice, is limited to models estimated with 
generic parameters only. Section 3 outlines the concepts of A- and D-error and 
introduces the concept of S-efficiency (Sample-efficiency). Section 4 provides a 
numerical example of efficient designs, in which we demonstrate the potential gains that 
may be achieved from using the S-efficient measure when compared with designs 
generated using the D-error measure. The substantive implications of these comparisons 
are then set out followed by some conclusions and directions for ongoing research. 

 

2.  A tail of two approaches: The MNL model 
 

It is possible to derive the asymptotic (co)variance matrix of the MNL model, necessary 
to optimize the statistical efficiency of SC experiments, in one of two ways. To date, the 
literature has tended towards using matrix algebra to derive the asymptotic (co)variance 
matrix of the MNL model (see for example, and Zwerina 1996, Sándor and Wedel 2001 
and Kanninen 2002). An alternative approach is to use the second derivatives of the log-
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likelihood function. As we show in this section, the first method will only allow for the 
derivation of the asymptotic (co)variance matrix for the MNL model assuming generic 
parameters only. Use of the second derivatives of the log-likelihood function, however, 
allows for both generic and alternative-specific parameters in the design. To 
demonstrate, we will derive asymptotic (co)variance matrix of the MNL model utilizing 
both methods.  
 
The MNL model was first fully derived by McFadden (1974) based on random utility 
theory (RUT). To demonstrate RUT, consider a situation in which an individual is faced 
with a number of choice tasks in each of which they must make a discrete choice from a 
universal but finite number of alternatives. Let subscripts s and j refer to choice 
situation s = 1, 2, …, S, and alternative j = 1, 2, …, J. RUT posits that the utility 
possessed by an individual for alternative j present in choice set s may be expressed as: 
 

,js js jsU V ε= +  (1) 
 
where Ujs is the overall utility associated with alternative j in choice situation s, Vjs is the 
component of utility associated with alternative j that is observed by the analyst in 
choice situation s, and εjs represents the component of utility that is not observed by the 
analyst.  
 
RUT assumes that individuals attach parameter weights to each of the attributes 
associated with the alternatives specified within an experiment. For a given attribute, a 
parameter weight may be the same for any two alternatives (i.e., generic) or different 
across alternatives (i.e., alternative-specific). Let there be *K  attributes which have 
generic parameter weights, and jK  attributes with alternative specific parameters. 
Assuming a linear additive utility function, the observed component of utility may be 
expressed as: 
 

*

* *

1 1
, 1, , , 1, , .

jKK

js k jks jk jks
k k

V x x j J s Sβ β
= =

= + ∀ = ∀ =∑ ∑ K K  (2) 

 
The generic and alternative-specific parameters are denoted by *

kβ  and ,jkβ respectively, 
with their associated attribute levels *

Jksx  and jksx  for each choice situation s. Under the 
assumption that the unobserved component of utility, ,jsε  are independently and 
identically extreme value type I distributed, we are able to derive the multinomial logit 
model in which jsP  is the probability of choosing alternative j in choice situation s: 
 

( )
( )

1

exp
, 1, , , 1, , .

exp

js
js J

is
i

V
P j J s S

V
=

= ∀ = ∀ =

∑
K K  (3) 

 
Most commonly used to determine the parameters *( , )β β in the MNL model (2)-(3) is a 
method known as maximum likelihood estimation. Consider a single respondent facing 
S choice situations. The log-likelihood as a function of the parameters is given by: 
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*

1 1
( , ) log

S J

js js
s j

L y Pβ β
= =

=∑∑   (4) 

 
where the vector y describes the outcomes of all choice tasks, that is, yjs is one if 
alternative j is chosen in choice task s and is zero otherwise. The probability jsP  will 
depend on the values of *

Jksx  and jksx  as well as upon *( , )β β . 
 
In section 2.1, we derive the asymptotic (co)variance matrix for the MNL model using 
matrix algebra. We show using a numerical example, that the use of matrix algebra that 
using this method has implications as to the estimation of alternative-specific 
parameters.  

 

2.1  Deriving asymptotic (co)variance matrix of the MNL using 
matrix algebra 
 

Maximising equation (4) will yield the maximum likelihood estimator,  *( , ),β β
) )

 for the 
choice model, for given values of *

Jksx  and .jksx  McFadden (1974) showed that the 

distribution of *( , )β β
) )

is asymptotically normal with a mean *( , )β β and (co)variance 
 

1
1 1 '

1 1
( ' ) ,

S J

js js js
s J

Z PZ Z P ZΩ
−

− −

= =

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
∑∑  (5) 

 
where P is an M×M diagonal matrix of choice probabilities with elements Pjn, and Z is 
an M×K matrix with rows, such that 
 

1
.

sJ

js js is is
i

Z x x P
=

= −∑  (6) 

 
Taking a numerical example, it is possible to show that use of equations (5) and (6) will 
only hold if the analyst is prepared to assume that all parameters of the model are 
generic. Consider an experiment involving two alternatives, each with three attributes 
defined by two levels each. The utility functions for the experiment may be represented 
as follows. 
 

1 10 11 11 12 12 13 13

2 21 21 22 22 23 23

  
          .

U x x x
U x x x

β β β β
β β β

= + + +

= + +
 

 
Let the priors for the experiment be alternative specific, as shown in Table 11 and let 

10β  = 0.1. Table 1 also shows a design and resulting Z matrix obtained for the design, 
derived by using equation (1). 
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Table 1:  Efficient ‘alternative-specific’ design using current design methods 
 

Situations X 
Matrix Parameters Probs  Z Matrix 

Situation alternative A B C 1jβ 2jβ 3jβ Pjn  ZA ZB ZC 
1 1 -1 -1 -1 0.3 0.4 0.5 0.27  0 0 -1.46212 
1 2 -1 -1 1 0.2 0.3 0.4 0.73  0 0 0.537883
2 1 -1 1 -1 0.3 0.4 0.5 0.40  -1.29131 0 0 
2 2 1 1 -1 0.2 0.3 0.4 0.60  0.708687 0 0 
3 1 1 1 1 0.3 0.4 0.5 0.69  0.708687 0 0 
3 2 -1 1 1 0.2 0.3 0.4 0.31  -1.29131 0 0 
4 1 1 -1 1 0.3 0.4 0.5 0.73  0 0 0.537883
4 2 1 -1 -1 0.2 0.3 0.4 0.27  0 0 -1.46212 
5 1 -1 1 1 0.3 0.4 0.5 0.60  -0.90033 0.900332 0 
5 2 1 -1 1 0.2 0.3 0.4 0.40  1.099668 -1.09967 0 
6 1 -1 -1 1 0.3 0.4 0.5 0.55  0 -0.90033 0.900332
6 2 -1 1 -1 0.2 0.3 0.4 0.45  0 1.099668 -1.09967 
7 1 1 -1 -1 0.3 0.4 0.5 0.20  0 -1.7163 -1.7163 
7 2 1 1 1 0.2 0.3 0.4 0.80  0 0.283702 0.283702
8 1 1 1 -1 0.3 0.4 0.5 0.77  0.395632 0.395632 0 
8 2 -1 -1 -1 0.2 0.3 0.4 0.23  -1.60437 -1.60437 0 

 
The resulting (co)variance matrix obtained from 'Z PZ is shown as equation (7). 
 

1 1
0.29 0.03 0.01

( ' ) 0.03 0.34 0.06
0.01 0.06 0.34

Z PZΩ− −
⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

 (7) 

 
Note that the (co)variance matrix represented by equation (7) is a (3×3) matrix, when in 
fact it should be a (7×7) matrix if each ‘alternative-specific’ parameter (including the 
alternative-specific constant) is to have its own row and column in the matrix, as it 
should if the model were truly alternatively specific. Whilst we have allowed for 
alternative-specific parameter estimates in arriving at the choice probabilities, the 
asymptotic (co)variance matrix that we arrive at using matrix algebra treats the 
parameter estimates as generic. As such, whilst it is possible to attempt to optimize the 
design based on (Z), doing so will not minimize the elements of the asymptotic 
(co)variance matrix for each ‘alternative-specific’ parameter to be estimated (see for 
example, Carlsson and Martinsson (2003) who use matrix algebra to generate 
alternative-specific efficient  designs).  

 

2.2  Deriving asymptotic (co)variance matrix using the second 
derivatives of the log-likelihood function 
 

The asymptotic (co)variance matrix of the MNL model may also be derived by taking 
the second derivatives of the log-likelihood function. Allowing for both alternative-
specific and generic parameters, this leads to the following: 
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1 2 2

1 2

2 *
* * * *

1 2* *
1 1 1

( , ) , , 1, , ,
S J J

jk s js jk s is ik s
s j ik k

L x P x P x k k Kβ β
β β = = =

∂ ⎛ ⎞
= − − ∀ =⎜ ⎟∂ ∂ ⎝ ⎠
∑∑ ∑ K  (8a) 

 

1 1 1 1 2 2 1

1 1 2

2 *
* * *

1 1 2*
1 1

( , ) , 1, , , 1, , , 1, , ,
S J

j k s j s j k s ik s is j
s ij k k

L x P x x P j J k K k Kβ β
β β = =

∂ ⎛ ⎞
= − − ∀ = = =⎜ ⎟∂ ∂ ⎝ ⎠
∑ ∑ K K K  (8b) 

( )

1 1 2 2 1 2

1 1 2 2
1 1 2 2 1 2

1 22 *
1

1 2
1

, if  ;
( , ) 1, , , 1, , .

1 , if  .
i

S

j k s j k s j s j s
s

i i jS
j k j k

j k s j k s j s j s
s

x x P P j j
L j J k K

x x P P j j

β β
β β

=

=

⎧
≠⎪∂ ⎪= ∀ = =⎨

∂ ∂ ⎪− − =
⎪⎩

∑

∑
K K   (8c) 

 
Note that these second derivatives do not depend on the outcomes y. It is also worth 
noting that assuming M respondents each complete the same S choice situations, then 
equations (8a,b,c) will be simply multiplied by M.  
 
The maximum likelihood (ML) parameter estimates (both generic and alternative 
specific) can be found by maximizing the log-likelihood function, or alternatively, 
setting the first derivatives (the score vector) equal to zero (it can be shown that the log-
likelihood function is concave). Call these ML estimates *ˆ ˆ( , ),β β  then 
 

*

* *

( , )

ˆ ˆ( , ) arg max ( , ).L
β β

β β β β=  (9) 

 
Suppose that the true parameter values are *( , ).β β  The ML estimates *β̂  are 
asymptotically normally distributed with mean *β  and (co)variance matrix, Ω , which is 
equal to the negative inverse of the Fisher information matrix (McFadden 1974). It can 
be shown that the same holds for the more general specification of the MNL model 
allowing for generic and alternative-specific parameter estimates. The Fisher 
information matrix I  is defined as the expected values of the second derivative of the 
log-likelihood function, hence with M respondents 
 

2 *
* ( , )ˆ ˆ( , ) .

'
LI M β ββ β
β β

∂
= ⋅

∂ ∂
 (10) 

 
Therefore, the asymptotic (co)variance matrix may be computed as  
 

12 *1* 1 ( , )ˆ ˆ( , ) .
'

LI
M

β ββ β
β β

−
− ⎡ ⎤∂⎡ ⎤Ω = − = − ⎢ ⎥⎣ ⎦ ∂ ∂⎣ ⎦

 (11) 

 
This symmetric asymptotic (co)variance matrix will be of dimension corresponding to 
the total number of parameters, ,K  where * .jj

K K K= +∑ ∑  Clearly, the (co)variances 
become smaller with larger sample sizes, that is, with an increasing number of 
respondents M. Summarising, 
 



Sample optimality in the design of stated choice experiments 
Rose & Bliemer 

 

7 

12 *
* * 1 ( , )ˆ ˆ( , ) ( , ), .

'
LN

M
β ββ β β β
β β

−⎛ ⎞⎡ ⎤∂⎜ ⎟→ − ⎢ ⎥⎜ ⎟∂ ∂⎣ ⎦⎝ ⎠
 (12) 

 

3.  Measuring Statistical Efficiency in SC Experimental 
Designs: Statistical Efficient designs 
 

A statistically efficient design is a design that minimizes the elements of the asymptotic 
(co)variance matrix, resulting in more reliable parameter estimates for a fixed number 
of choice observations. In order to be able to compare the statistical efficiency of SC 
experimental designs, a number of alternative approaches have been proposed within 
the literature (see e.g., Bunch et al. 1994). The two most commonly used measures 
found within the literature are those of A-error and D-error.  
 

( )
( )2

( ) 1A-error trace trace
'

jj
jj

K K
K K L

M β β

+
+

∑ ∑⎛ ⎞⎛ ⎞∂∑ ∑= Ω = − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (13) 

 

( )
1

( )
1

( )
21D-error det det .

'

K K jj

K K jj
L

M β β

+∑ ∑

+∑ ∑

−
⎛ ⎞⎛ ⎞∂

= Ω = − ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
 (14) 

 
where it is usual to assume M = 11. 
 
The A-error is computed by taking the trace of the asymptotic (co)variance matrix, 
whilst the D-error is calculated by taking the determinant, with both scaled to take into 
account the number of parameters to be estimated. The trace of a matrix is calculated as 
the sum of the diagonals of that matrix. As such, minimizing the trace of the asymptotic 
(co)variance matrix will minimize the variances (standard errors) of the associated 
parameter estimates, without consideration being given to the covariances. Given that 
the trace is calculated as the sum of the diagonal elements, if one of these elements is 
large in magnitude, then that element will tend to dominate the calculation. For this 
reason, the A-error measure has fallen out of favor. The D-error computation is a little 
more complicated as the determinant of a matrix is calculated as a series of 
multiplications and subtractions over all the elements of the matrix (see for example, 
Kanninen 2002). As such, the determinant (and by implication, the D-error measure) 
summarizes all the elements of the matrix in a single ‘global’ value. Thus, whilst 
attempts to minimize the D-error measure, on average, minimize all the elements within 
the matrix, it is possible that in doing so, some elements (variances and/or covariances) 
may in fact become larger. Despite this property, the D-error measure has become the 
most common measure of statistical efficiency within the literature.  
 
In the past, the literature has considered two different approaches for computing the D-
error of a design, both related to the priors assumed in generating the design. The first 
approach results in what has been termed the Dz-error measure and is used when the 
                                                           
1 The assumption of a single respondent is not inconsistent with the MNL model which assumes that all 
respondents act behaviourally in a similar fashion. 
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choice analyst has no prior information on the true parameter values (including sign). In 
such cases as when there exists absolutely no information on the likely parameter 
estimates, the approach adopted in the past has been to assume that all the β  are 
simultaneously equal to zero. . Hence, the Dz-error can be computed as: 
 

( )
1

( )
zD -error det (0 | ) .K K jjI x +∑ ∑−=  (15) 

 
In contrast, if information about the parameter estimates is available in advance 
(whether from pilot studies, other research, etc.), then this information can be used as 
the priors for β  used to compute the D-error. In such instances, the D-error measure 
has been termed Dp-error. The Dp-error assuming knowledge of prior parameter 
estimates, ,β%  can be computed as 
 

( )
1

( )

pD -error det ( | ) .K K jjI xβ +∑ ∑−
= %  (16) 

 
For designs of the same dimensions (i.e., number of choice sets, alternatives, attributes 
and attribute levels), the design(s) with the lowest D-error is (are) termed the D-optimal 
design(s). Given the large number of possible attribute level combinations for a design 
of fixed dimensions, it will be unlikely that for all but the smallest of designs the D-
error measure will be calculable for all possible design permutations. Unless one can 
examine all design permutations keeping the design dimensions constant, it will 
therefore be impossible to demonstrate that a design has the lowest possible D-error, 
and hence, it will often be more appropriate to discuss D-efficient designs rather than D-
optimal designs.  
 
The presence of M in equations (11) and (12) allows for an alternative optimization 
strategy directly linked to the sample size. Dividing each element of the asymptotic 
(co)variance matrix for the single respondent case by M will produce the asymptotic 
(co)variance matrix for that sample size. This will be equivalent to the asymptotic 
(co)variance matrix obtained from Monte Carlo experiments conducted over a large 
number of iterations, thus negating the need to conduct such experiments for problems 
of this type. Denote the asymptotic standard errors when the number of respondents are 
M by *ˆ( )M kse β  and ˆ( )M jkse β  for each of the generic and alternative-specific parameters. 
Then it holds that: 
 

* *
1

ˆ ˆ( ) ( ) / ,M k kse se Mβ β=    and   1
ˆ ˆ( ) ( ) / .M jk jkse se Mβ β=  (17) 

 
Equation (15) allows for an examination of the influences of sample size upon the 
statistical significance of the parameter estimates likely to be obtained from the 
experiment. Given that the asymptotic t-statistic is calculated as the ratio of the 
parameter estimate to the asymptotic standard error (equation (18) for the case of 
alternative-specific parameters), it is possible to determine what sample size will be 
required in order to demonstrate statistical significance for each of the parameter 
estimates.  
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( )2

ˆ
.

( )

jk
jk

M jk

t
se

M

β

β
=  (18) 

 
Rearranging equation (18) yields:  
 

( )2

2

( )
.jk M jk

jk

t se
M

β

β
=  (19) 

 
A similar equation holds for the generic parameters case. We can view the sample size 
requirement stated in equation (19) as a theoretical lower bound for finding a 
statistically significant parameter estimate for that parameter. Different parameters may 
have different lower bounds. Parameters with high lower bounds will be more difficult 
to estimate than parameters with low lower bounds. In case we would like to find the 
minimum theoretical sample size for which all parameters are statistically significant, 
then we would probably prefer to change the design in such a way that the parameters 
that are difficult to estimate obtain more information from the design in order to 
decrease its standard error. In other words, we may prefer to have all parameter 
estimates in the same range with their asymptotic t-values such that all parameters get 
equal attention in the design. We term a design that minimizes the sample size needed 
for all parameters to be statistically significant an S-efficient design.  
 
Manipulation of the attribute levels of the alternatives within a design will result in 
different D-error (Dz or Dp) and S-efficiency values, assuming fixed prior parameter 
estimates. Over a number of iterations, it may be possible to locate designs with lower 
D-error and S-efficiency values. Methods of manipulating the attribute levels so as to 
generate and locate D-efficient and S-efficient designs are discussed in detail in Kuhfeld 
et al. (1994), Huber and Zwerina (1996), Sándor and Wedel (2001), Kanninen (2002), 
Carlsson and Martinsson (2002), and Burgess and Street (2005) amongst other sources. 
 
One important point of clarification is necessary before we move on. The objective of 
deriving statistically efficient SC experiments is to minimize the asymptotic standard 
errors, and hence maximise the asymptotic t-ratios, of models estimated from data 
collected using the efficient design. Whilst this point seems obvious, it is a point that 
has sometimes been missed by the literature. It is extremely important that one should 
always use the attribute level values that are to be used in estimating the final choice 
model (i.e., the values that will be used in the data) rather than codes that are to be used 
exclusively in generating the design. To demonstrate why, consider the experiment 
discussed in section 2.1., the utility specifications of which are reproduced below.  
 

1 11 12 13

2 21 22 23

  0.1 0.3 0.4 0.5
          0.2 0.3 0.4 .

U x x x
U x x x

= + + +
= + +

 

 
Taking the first choice situation in Table 1, and using the same coding structure, the 
choice probabilities for alternatives 1 and 2 respectively are 0.27 and 0.73. However, 
assuming that in the final data set we let -1 equal five and 1 equal 10, then the choice 
probabilities for the first choice situation will become 0.08 and 0.92. Clearly, the 
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resulting (co)variance matrix used in optimizing the design will be different to that 
obtained when estimating models based on the data. Given that we wish to minimize the 
asymptotic standard errors for models estimated from colleted data and not from the 
actual design itself, it stands to reason that what is of primary importance is the 
efficiency of the data. Whilst this may seem logical, it is a point that has sometimes 
been missed within the literature. For example, Huber and Zwerina (1996) use design 
codes to establish the choice probabilities for each of the alternatives of their design. 
Using these choice probabilities, they then go onto generate an efficient design after 
effects coding the attributes. This design will likely be inefficient when it comes to data 
analysis as the choice probabilities should have been derived using the effects coded 
variables.  
 
Taking the above into account, it is not necessarily clear what is meant by those who 
call for the generation of tables of statistically optimal designs (for example, Viney et al. 
2005) similar to those produced for orthogonal designs (for example, Hahn and Shapiro 
1966; Lazari and Anderson 1994). Whilst it may be possible to do so for designs for 
data that will adhere to strict coding guidelines (such as for data that will use effects or 
dummy coding only), there may exist an infinite number of possible applications using 
different continuous attributes with different attribute levels, making it impossible to 
produce such tables for all but a small subset of problems. It is therefore more likely 
that practitioners will have to generate statistically efficient designs as required. 

 

4.  A Numerical comparison of Efficiency Measures 
 

In order to illustrate the theory of efficient designs using both D-error and S-efficiency, 
we will consider the following discrete choice problem. Suppose there are two 
alternatives, each having several generic and alternative-specific attributes. Assume that 
all attributes have three attribute levels. For this experiment, the first two attributes are 
to be treated as generic across both alternatives. The third attribute of both alternatives 
will be assigned an alternative specific parameter, whilst the forth will be effects coded 
and also allow for alternative specific parameters. For both alternatives, we will also 
allow for the generation of an interaction effect between the second and third attributes 
of the design. The second alternative will also be assigned an alternative-specific 
constant. The two utility functions are therefore: 
 

* * 1 1 2 2
1 1 11 2 12 13 13 14 14 14 14 15 12 13

* * 1 1 2 2
2 20 1 21 2 22 23 23 24 24 24 24 25 22 23

          

.

U x x x x x x x

U x x x x x x x

β β β β β β

β β β β β β β

= + + + + +

= + + + + + +
 

 
In total, there are 11 parameters to estimate, whilst there are eight attributes that change 
attribute levels (i.e., 11 12 13 14 21 22 23 24, , , , , ,  and x x x x x x x x . The values of 1 2

14 14 and x x  will 

depend on changes of 14.x Likewise, 1 2
24 24and x x  will depend on changes of 24.).x  The 

constant, 21,β has a fixed attribute level of one. Within the SC experiment, the eight 
attributes can take on different levels over the different choice situations shown to 
respondents. Assume that each respondent observes twelve choice situations and let the 
attributes take on the following levels: * *

11 21 22 {2,4,6},L L L= = =  
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* *
12 22 21 {1,3,5},L L L= = =  and 12 23 {4,6,8}.L L= =  Following common practice, we 

constrain ourselves to designs which are balanced in the attribute levels observed over 
choice situations (although such a constraint may result in the generation of a sub-
optimal design).  
 
In generating an efficient design, it is necessary to assume a set of prior parameter 
estimates. For the numerical example used within this paper, the priors were 
 

1 2
1 11 12 13 14 14 12 13

1 2
2 21 22 23 24 24 22 23

     0.8 0.4 0.7 0.2 0.5 0.3

1 0.8 0.4 0.8 0.3 0.4 0.4 .

U x x x x x x x

U x x x x x x x

= + + − + +

= + + + − + +
 

 
We generate three different design types: (a) a Dp-efficient design, (b) an orthogonal 
design, and (c) an S-efficient design. For any given SC experiment, it is possible to 
generate multiple orthogonal designs. In line with practice, the orthogonal design we 
report here was randomly selected. The three designs are presented in Table 2. Although 
we show the interaction columns of the designs in Table 2, it is important to note that in 
generating the Dp-efficient and S-efficient designs, the interactions were directly 
computed from the relevant attributes and hence were not directly manipulated as part 
of the designs. 
 
As is to be expected, the Dp-efficient design produces the lowest Dp-error measure, 
however, this design produces the highest Dz-error. The randomly selected orthogonal 
design produces the worst Dp-error measure but the lowest Dz-error. The S-optimal 
design produces Dz and Dp-error values in between. Table 2 also reports the minimum 
sample size required for each of the three designs at which all attribute related 
parameters would likely be statistically significant (i.e., the t-ratios for each attribute 
related parameter are greater than or equal to 1.96). In calculating these minimum 
sample sizes, we ignore the constant. The constant is typically ignored in SC studies, 
given that typically the constant is of less importance to the researcher (indeed the 
constant is often considered meaningless in SC experiments as it is based on the choice 
shares over the hypothetical situations, S). Further, in many SC studies, it is often the 
ratios of two parameter values (e.g., to derive willingness to pay) that is of primary 
importance. The constant is not eliminated whilst obtaining the asymptotic (co)variance 
matrix however (although it is ignored in obtaining the S-efficient design). 
 
Despite producing a higher Dp-error than the Dp-efficient design, the S-efficient design 
would theoretically require a substantially smaller sample size in order for all design 
related parameters to be found to be statistically significant. Indeed, for the numerical 
example explored within this paper, the S-efficient design would theoretically require a 
sample of 108 respondents compared with a minimum sample size of 137 respondents 
for the Dp-efficient design (representing a reduction of 21.17 percent in sample size) 
before all parameters were likely to be statistically significant. The orthogonal design 
found for this example performs extremely badly in terms of sample size requirements, 
requiring a sample size of 188,469 before all parameters would be expected to be 
statistically significant. 
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Table 2:  SC experimental designs 

 

Design 1: Dp-efficient design 

S 11x  12x 13x  1
14x  2

14x  12 13x x 21x 22x 23x 1
24x 2

24x 22 23x x  P1 P2 
1 2 1 8 1 0 8 2 1 6 -1 -1 6 0.43 0.57 
2 6 1 4 1 0 4 6 3 2 1 0 6 0.15 0.85 
3 6 5 4 -1 -1 20 2 5 4 0 1 20 0.29 0.71 
4 6 3 8 0 1 24 6 3 6 1 0 18 0.65 0.35 
5 4 3 4 0 1 12 2 5 2 -1 -1 10 0.77 0.23 
6 4 5 6 1 0 30 4 3 6 1 0 18 0.75 0.25 
7 2 3 6 -1 -1 18 4 1 6 0 1 6 0.48 0.52 
8 4 1 8 -1 -1 8 2 5 2 -1 -1 10 0.77 0.23 
9 6 5 8 0 1 40 6 3 4 0 1 12 1.00 0.00 

10 4 5 6 0 1 30 6 5 4 -1 -1 20 0.50 0.50 
11 2 1 6 1 0 6 4 1 2 0 1 2 0.60 0.40 
12 2 3 4 -1 -1 12 4 1 4 1 0 4 0.45 0.55 

DZ-error = 0.2249     Dp-error = 0.3494     Min M = 137 
Design 2: Orthogonal Design 

S 11x  12x 13x  1
14x  2

14x  12 13x x 21x 22x 23x 1
24x 2

24x 22 23x x  P1 P2 
1 4 5 4 -1 -1 20 6 1 4 -1 -1 4 0.94 0.06 
2 4 3 6 1 0 18 6 5 2 1 0 10 0.67 0.33 
3 2 1 8 -1 -1 8 6 1 4 1 0 4 0.27 0.73 
4 4 3 6 0 1 18 2 3 6 1 0 18 0.27 0.73 
5 6 1 4 -1 -1 4 4 5 2 0 1 10 0.04 0.96 
6 6 1 4 1 0 4 4 1 6 0 1 6 0.04 0.96 
7 4 1 8 0 1 8 2 3 4 -1 -1 12 0.60 0.40 
8 2 3 6 0 1 18 2 3 2 -1 -1 6 0.99 0.01 
9 2 3 6 1 0 18 6 5 6 -1 -1 30 0.00 1.00 

10 6 5 8 -1 -1 40 4 5 6 0 1 30 0.67 0.33 
11 6 5 8 1 0 40 4 1 2 0 1 2 1.00 0.00 
12 2 5 4 0 1 20 2 3 4 1 0 12 0.80 0.20 

DZ-error = 0.2085     Dp-error = 1.857     Min M = 188,469 
Design 3: S-optimal Design 

S 11x  12x 13x  1
14x  2

14x  12 13x x 21x 22x 23x 1
24x 2

24x 22 23x x  P1 P2 
1 2 1 8 1 0 8 2 1 6 -1 -1 6 0.43 0.57 
2 6 1 4 1 0 4 4 3 2 1 0 6 0.48 0.52 
3 6 5 4 0 1 20 2 5 4 0 1 20 0.48 0.52 
4 6 3 8 0 1 24 6 3 6 1 0 18 0.65 0.35 
5 4 3 4 0 1 12 2 5 2 -1 -1 10 0.77 0.23 
6 4 5 6 1 0 30 4 3 6 1 0 18 0.75 0.25 
7 2 3 6 -1 -1 18 4 1 6 0 1 6 0.48 0.52 
8 2 1 8 -1 -1 8 2 3 2 -1 -1 6 0.88 0.12 
9 6 5 8 0 1 40 6 5 4 0 1 20 1.00 0.00 

10 4 5 6 -1 -1 30 6 5 4 -1 -1 20 0.31 0.69 
11 4 1 6 1 0 6 6 1 2 0 1 2 0.60 0.40 
12 2 3 4 -1 -1 12 4 1 4 1 0 4 0.45 0.55 

DZ-error = 0.2505     Dp-error =0.3575     Min M = 217 
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Table 3 shows the asymptotic (co)variance matrices of the three designs. As would be 
expected, the Dp-efficient design generally produces lower asymptotic standard errors 
than the two other designs. Examination of the asymptotic (co)variance matrices 
reveals, however, that despite being more efficient overall, the Dp-efficient design will 
not necessarily produce lower asymptotic standard errors for all parameters. As a 
consequence of this, whilst overall the asymptotic t-ratios of the Dp-efficient design will 
generally be higher than those of the S-optimal (and orthogonal) design, the use of a 
‘global’ measure of efficiency allows for the possibility that some elements of the 
matrix being measured will be sub-optimal in terms of efficiency. For the numerical 
example shown here, this has significant implications for sample size requirements of 
the design. In particular, we observe the asymptotic standard error for 1

14β  to be 1.42 for 
the Dp-efficient design but only 1.12 for the S-efficient design, and given the priors 
assumed, it is this attribute which determines the theoretical minimum sample size 
required for the design.  
 

Table 3:  Asymptotic (co)variance matrices of SC experimental designs 

 
Design 1: Dp-efficient design 

 
*
1β  *

2β  13β  1
14β  2

14β  15β  20β  23β  1
24β  2

24β  25β  
*
1β  0.83 0.56 0.46 -0.12 0.48 0.20 -0.11 0.59 -0.20 0.28 0.31 
*
2β  0.56 2.62 1.18 -0.77 0.82 -0.26 -1.17 1.63 -0.01 1.00 -0.27 
13β  0.46 1.18 0.90 -0.41 0.38 -0.02 0.79 1.00 -0.22 0.40 0.00 
1
14β  -0.12 -0.77 -0.41 1.42 -1.20 0.14 0.50 -0.36 0.14 -0.14 0.09 
2

14β  0.48 0.82 0.38 -1.20 2.29 -0.07 -1.35 0.33 -0.08 -0.25 0.08 
15β  0.20 -0.26 -0.02 0.14 -0.07 0.15 0.27 -0.01 -0.06 -0.04 0.19 
20β  -0.11 -1.17 0.79 0.50 -1.35 0.27 9.73 -0.46 -0.28 -0.67 0.16 
23β  0.59 1.63 1.00 -0.36 0.33 -0.01 -0.46 1.50 -0.23 0.70 0.00 
1
24β  -0.20 -0.01 -0.22 0.14 -0.08 -0.06 -0.28 -0.23 1.06 -0.49 -0.10 
2
24β  0.28 1.00 0.40 -0.14 -0.25 -0.04 -0.67 0.70 -0.49 1.61 -0.04 
25β  0.31 -0.27 0.00 0.09 0.08 0.19 0.16 0.00 -0.10 -0.04 0.26 

Design 2: Orthogonal Design 

 
*
1β  *

2β  13β  1
14β  2

14β  15β  20β  23β  1
24β  2

24β  25β  
*
1β  2771.71 1717.23 1696.61 1361.45 -3317.58 -6.78 -768.11 1866.09 -3496.94 1452.41 297.34
*
2β  1717.23 1104.65 1058.51 886.78 -2102.60 -15.24 -555.89 1188.67 -2174.53 914.29 167.27
13β  1696.61 1058.51 1041.07 840.59 -2036.19 -5.88 -479.77 1148.24 -2140.83 887.71 179.47
1
14β  1361.45 886.78 840.59 719.38 -1684.49 -15.27 -459.93 949.90 -1727.01 733.21 127.63
2

14β  -3317.58 -2102.60 -2036.19 -1684.49 4038.44 21.81 1019.05 -2270.15 4199.50 -1770.35 -334.46
15β  -6.78 -15.24 -5.88 -15.27 21.81 3.11 24.59 -13.38 11.12 -8.53 4.04 
20β  -768.11 -555.89 -479.77 -459.93 1019.05 24.59 407.95 -583.98 986.36 -438.10 -47.25
23β  1866.09 1188.67 1148.24 949.90 -2270.15 -13.38 -583.98 1283.37 -2360.59 988.31 186.61
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1
24β  -3496.94 -2174.53 -2140.83 -1727.01 4199.50 11.12 986.36 -2360.59 4417.23 -1842.47 -370.97
2
24β  1452.41 914.29 887.71 733.21 -1770.35 -8.53 -438.10 988.31 -1842.47 788.52 147.44
25β  297.34 167.27 179.47 127.63 -334.46 4.04 -47.25 186.61 -370.97 147.44 39.31 

Design 3: S-optimal Design 

 
*
1β  *

2β  13β  1
14β  2

14β  15β  20β  23β  1
24β  2

24β  25β  
*
1β  1.08 0.60 0.65 -0.10 -0.39 0.25 1.36 0.67 -0.14 0.32 0.34 
*
2β  0.60 2.34 0.87 -0.24 0.33 -0.14 -1.12 1.38 -0.03 1.08 -0.15 
13β  0.65 0.87 0.85 -0.25 -0.12 0.07 1.58 0.84 -0.26 0.29 0.09 
1
14β  -0.10 -0.24 -0.25 1.12 -0.63 0.05 -0.01 -0.16 0.26 -0.18 0.00 
2

14β  -0.39 0.33 -0.12 -0.63 2.40 0.02 -2.05 0.13 0.07 0.51 0.10 
15β  0.25 -0.14 0.07 0.05 0.02 0.15 0.43 0.07 -0.01 0.00 0.19 
20β  1.36 -1.12 1.58 -0.01 -2.05 0.43 11.74 -0.06 -0.75 -1.17 0.45 
23β  0.67 1.38 0.84 -0.16 0.13 0.07 -0.06 1.29 -0.18 0.62 0.08 
1
24β  -0.14 -0.03 -0.26 0.26 0.07 -0.01 -0.75 -0.18 0.95 -0.34 -0.02 
2
24β  0.32 1.08 0.29 -0.18 0.51 0.00 -1.17 0.62 -0.34 1.51 0.03 
25β  0.34 -0.15 0.09 0.00 0.10 0.19 0.45 0.08 -0.02 0.03 0.26 

 
 
Tables 2 and 3 assume that the priors have been correctly specified. In many instances, 
the analyst will not have a clear picture as to what the true priors are. In such cases, the 
analyst may have to make a best guess as to the priors ‘true’ value. By fixing the design 
and changing the priors, the analyst is able to recalculate the asymptotic (co)variance 
matrix of the design (without the need to resort to Monte Carlo simulation). Doing so 
will allow the analyst to examine the robustness of SC designs to misspecifications of 
the priors. Table 4 demonstrates the new predicted sample size requirements assuming a 
misspecification of the 1

14β  prior over a range of values. For all values assumed, the S-
efficient design outperforms the Dp-efficient and orthogonal designs in terms of the 
theoretical minimum sample size required for statistical significance of all parameters. 
Misspecification of other priors can be examined in the same manner. 
 

Table 4:  Asymptotic t-ratios by designs  
 

1
14β  

Design 
1 

Design 
2 Design 3

-0.1 550 253,313 434 
-0.2* 137 188,469 108 
-0.3 65 207,678 57 
-0.4 67 228,767 57 
-0.5 69 251,888 58 
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Note that, keeping the design constant, a misspecification of prior for any attribute will 
have an impact upon the asymptotic standard errors (and hence asymptotic t-ratios) for 
all parameter estimates within the model. This is because for any given design, a change 
in any parameter value for an attribute will influence the choice probabilities within all 
choice sets n where that attribute appears. Changes in the choice probabilities will in 
turn feed through to the asymptotic (co)variance matrix and hence influence the 
resulting expected standard errors for all parameters.   

 

6. Conclusion and Discussion  
 

This paper introduces a new form of design efficiency criterion which we have titled S-
efficiency. We have demonstrated through use of a numerical example that S-efficient 
designs may yield significant improvements in the sample size requirements necessary 
for SC studies. Whilst D-efficient designs will in general provide greater reliability to a 
greater number of parameters, it is unlikely to do so in a way that will minimize the 
sample sizes required for statistical significance to be observed. We have also shown 
that given the often random selection of orthogonal designs, that anything is possible in 
terms of the outcomes of SC experiments to which such designs are applied. We would 
therefore strongly recommend against their use, unless the analyst has no knowledge of 
the priors to assume in generation more efficient experimental designs.  
 
In writing this paper, we have also attempted to demystify some of the more prevalent 
misconceptions that exist within the literature. The literature in its current form rely on 
the use of matrix algebra to derive the asymptotic (co)variance matrices used in 
generating statistically efficient SC designs. In doing, the literature has limited itself to 
the generation of designs allowing for generic parameters only. Unfortunately, this 
limitation is not immediately obvious and several researchers have tended to 
inappropriately employ matrix algebra to derive efficient designs for SC studies 
involving the estimation of alternative-specific parameter estimates. By deriving the 
asymptotic (co)variance matrix by taking the second derivatives of the log-likelihood 
function, it becomes possible to correctly obtain the asymptotic (co)variance matrix for 
models requiring the estimation of both alternative-specific and generic parameter 
estimates. 
 
In using the methods we outline within this paper, we show that for any given sample 
size, one may determine the likely standard errors and asymptotic t-statistics of a design 
to be estimated using the MNL model directly from the asymptotic (co)variance matrix. 
This means that for this class of models, one does not have to rely on Monte Carlo 
simulations to determine the expected standard errors for various sample sizes for 
different designs as has been done by some researchers in the past (e.g., Sándor and 
Wedel 2001). The ability to use the asymptotic (co)variance matrix to estimate the 
standard errors directly extends to being able to examine likely biases in the expected t-
statistics given misspecification of the parameter priors. This can be done relatively 
quickly, allowing for an assessment of the implications of misspecification of the priors 
even before an experiment has been implemented.   
 
The ability to derive efficient alternative specific designs introduces a number of 
possible interesting research directions. First, the limitation of being only able to 
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estimate efficient designs for generic SC experiments has meant that the literature has 
not addressed the issue of efficient designs assuming differences in scale across 
alternatives. An interesting research direction therefore would be to extend the 
designing of SC experiments beyond the MNL model to models that allow for scale 
differences such as the nested logit model (Sándor and Wedel (2002) have examined 
efficient design generation for the mixed logit model). Second, the designs generated 
here do not assume the presence of a no-choice base alternative. Although only a simple 
extension, the effect of having a no-choice alternative needs to be examined for 
alternative-specific designs, as has occurred with the unlabeled SC case (see for 
example, Carlsson and Martinsson 2003).  
 
We would also promote research into wider aspects of constructing efficient 
experimental designs. Of particular interest is the construction of efficient designs for 
experiments in which the attribute levels are pivoted from the revealed levels obtained 
from respondents prior to the commencement of a SC experiment (see for example, 
Greene et al. 2005). Of issue for such designs is that not only are the prior parameter 
estimates needed to generate efficient designs not known with any certainty, but so are 
the attribute levels for each respondent. Urgent research examining the use of internet or 
CAPI technology with in-built design optimization routines is required for such 
experiments. 
 
A further research issue involves the investigation of what constitutes the best source 
for determining the priors used in generating optimal designs. Should the analyst 
conduct a pilot study, and if so, what represents a sufficient sample size to obtain the 
priors? Alternatively, should the analyst rely upon managers and other practitioners 
beliefs and how best should such beliefs be captured?  

 

References 
 

Anderson, Donald A. and James B. Wiley (1992) Efficient Choice Set Designs for 
Estimating Cross Effect Models, Marketing Letters, 3 (October), 357-370. 

Bunch, D.S., Louviere, J.J., and Anderson D. (1994) A Comparison of Experimental 
Design Strategies for Choice-Based Conjoint Analysis with Generic-Attribute 
Multinomial Logit Models, Working Paper, Graduate School of Management, 
University of California, Davis. 

Burgess, Leonie and Deborah J. Street (2005) Optimal designs for choice experiments 
with asymmetric attributes, Journal of Statistical Planning and Inference, forthcoming. 

Burke, Raymond R., Bari A. Harlam, Barbara E. Kahn, and Leonard M. Lodish (1992) 
Comparing Dynamic Consumer Choice in Real and Computer-Simulated Environments, 
Journal of Consumer Research, 19 (June), 71–82. 

Carlsson, Fredrik and Peter Martinsson (2003) Design techniques for stated preference 
methods in health economics, Health Economics, 12, 281-294. 

Carson, Richard T., Jordan J. Louviere, Don Anderson, Phipps Arabie, David Bunch, 
David A. Hensher, Richard M. Johnson, Warren F. Kuhfeld, Dan Steinberg, Joffre D. 
Swait, Harry Timmermans, and James B. Wiley (1994) Experimental Analysis of 
Choice, Marketing Letters, 5 (October), 351-367. 



Sample optimality in the design of stated choice experiments 
Rose & Bliemer 

 

17 

Greene, William H., David A. Hensher, and John M. Rose (2005) Accounting for 
Heterogeneity in the Variance of Unobserved Effects in Mixed Logit Models, 
Transportation Research B, forthcoming. 

Hahn, G.J. and S.S. Shapiro (1966) A Catalog and Computer Program for the Design 
and Analysis of Orthogonal Symmetric and Asymmetric Fractional Factorial 
Experiments, Report no. 66-C-165, General Electric Research and Development Center, 
New York.  

Huber, Joel and Klaus Zwerina (1996) The Importance of utility Balance and Efficient 
Choice Designs, Journal of Marketing Research, 33 (August), 307-317. 

Kanninen, Barbara J. (2002) Optimal Design for Multinomial Choice Experiments, 
Journal of Marketing Research, 39 (2), 214-217. 

Kuhfeld, Warren F., Randall D. Tobias, and Mark Garratt, (1994) Efficient 
Experimental Design with Marketing Research Applications. Journal of Marketing 
Research, 21 (November), 545-557. 

Lazari, Andreas G. and Donald A. Anderson (1994) Designs of Discrete Choice 
Experiments for Estimating Both Attribute and Availability Cross Effects, Journal of 
Marketing Research, 31 (3), 375-383. 

McFadden, Dan (1974) Conditional Logit Analysis of Qualitative Choice Behaviour. In 
Zarembka, P. (ed.), Frontiers of Econometrics, Academic Press, New York, 105-142. 

Sándor, Zsolt and Michel Wedel (2001) Designing Conjoint Choice Experiments Using 
Managers’ Prior Beliefs, Journal of Marketing Research, 38 (4), 430-444. 

Sándor, Zsolt and Michel Wedel (2002) Profile Construction in Experimental Choice 
Designs for Mixed Logit Models, Marketing Science, 21(4), 455-475. 

Viney, R. Savage, E. and Louviere, J. Empirical investigation of experimental design 
properties of discrete choice experiments in health 2005; 14, 349-362. 
 




