MECHANISMS OF INTRAVENOUS IMMUNOGLOBULIN IN THE TREATMENT OF EXPERIMENTAL AUTOIMMUNE NEURITIS

Hsin Hsin Lin

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Department of Medicine
The University of Sydney

July 2006
SUMMARY

The aims of this study were to test the efficacy of immunoglobulin and its Fab and Fc fragment in the treatment of experimental autoimmune neuritis (EAN) in Lewis rats, to investigate which portion of immunoglobulin is operative in the effect of IVIg, and to clarify the possible mechanisms by which immunoglobulin exerts its action in the treatment of EAN in the rat.

EAN was induced by immunization with whole bovine peripheral nerve myelin. The immunized rats were randomized into groups, assessed clinically, electrophysiologically, and histologically, and intravenously injected with normal saline, albumin, human IVIg preparation, purified Fab or Fc fragments. The clinical disease severity was evaluated by the daily clinical grading and weight change. The electrophysiological studies included the spinal somatosensory evoked potential (S wave) and the compound muscle action potential (CMAP). The histopathological findings were analysed semiquantitatively. The treatment efficacy was compared between the normal saline and albumin groups, albumin and IVIg groups, albumin and Fab groups, albumin and Fc groups, Fab and Fc groups, Fab and IVIg groups, and Fc and IVIg groups. Methods of myelin isolation, antibody purification, and Western blot techniques were also applied.

The results revealed that treatment with Fc fragment and IVIg administered at the onset of signs of disease effectively prevented further progression of disease, shortened disease duration, and facilitated recovery from illness as shown in clinical, electrophysiological and histological parameters.

In the study in which the efficacy of the normal saline and albumin was compared, no significant difference was noted between these two groups. By day 30, 1 out of 9 rats
(11%) in the normal saline group and 2 out of 9 (22%) in the albumin group completely recovered from the clinical disease. In the study in which the efficacy of the albumin and IVIg was compared, more rats completely recovered from the clinical disease in the IVIg group (29% in the albumin group and 71% in the IVIg group) by day 30. The animals receiving IVIg treatment exhibited significantly lower clinical scores, less prolongation of S wave latencies, better maintained S wave amplitudes, less reduction of distal motor conduction velocities (MCVs), better maintained distal and proximal amplitudes of CMAPs, and lower histological grades. In the study in which the efficacy of the albumin, Fab fragment, Fc fragment, and IVIg was compared, more rats completely recovered from the clinical disease in the Fc and IVIg groups (0% in the albumin group, 13% in the Fab group, 50% in the Fc group, and 67% in the IVIg group) by day 30. The animals receiving Fc fragment and IVIg treatment exhibited significantly lower clinical scores, less prominent weight loss, less prolongation of S wave latencies, better maintained S wave amplitudes, less reduction of distal MCVs, better maintained distal and proximal CMAP amplitudes, and lower histological grades.
DECLARATION

I hereby declare that this submission is my own work and to the best of my knowledge it contains no material previously published or written by other person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at the University of Sydney or any other educational institution. Any contribution made to the research by others, with whom I have worked at the University of Sydney, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project’s design and conception or in style, presentation and linguistic expression is acknowledged.

All the experiment described in this thesis was performed in the Neurology laboratory of the Department of Medicine at the University of Sydney between April 2003 to December 2005.
ACKNOWLEDGEMENT

I sincerely thank Professor John Pollard for his encouragement, patience, and generous support throughout this project and for his advice and proofreading this thesis. I am grateful to Dr Judith Spies for her expertise and comment on the area studied. I would also like to express my special thanks to Dr. Min Xia Wang for her valuable support, guidance in laboratory techniques and kindly advice.

I am grateful to all colleagues in the Neurology laboratory of the University of Sydney for their assistance in laboratory techniques. I would like to thank Dr. Wei Xing Yan, Dr. Jude Taylor, and Tom Lin for their help in animal experiment techniques. The helpful advice of Toan Nguyen in the fixing and embedding nerve tissue and preparation of Toluidine Blue sections is also gratefully acknowledged.

This work was supported by the National Health and Medical Research Council of Australia.

I would like to dedicate this work to my husband and daughter, Chien Hui and Yu Ling.
SCIENTIFIC COMMUNICATIONS ARISING
FROM THIS THESIS

Papers

HH Lin, JM Spies, JD Pollard
Effective treatment of experimental autoimmune neuritis with human immunoglobulin
(submitted)

HH Lin, MX Wang, JM Spies, JD Pollard
Effective treatment of experimental autoimmune neuritis with Fc fragment of human
immunoglobulin (submitted)

Published abstracts

HH Lin, JM Spies, JD Pollard
Effective treatment of experimental autoimmune neuritis with human immunoglobulin –
Journal of Neuroimmunology 2004, 154: 145

HH Lin, MX Wang, JM Spies, JD Pollard
Effective treatment of experimental autoimmune neuritis with Fc fragment of human

HH Lin, MX Wang, JM Spies, JD Pollard
Effective treatment of experimental autoimmune neuritis with Fc fragment of human
immunoglobulin – Journal of the Neurological Sciences 2005, 238 (Suppl. 1): S190
Best Poster Award

Effective treatment of experimental autoimmune neuritis with human immunoglobulin

IVIG in Neurological disease – 1st Asia Pacific Symposium, Singapore, November 2004

Oral presentations

Effective treatment of experimental autoimmune neuritis with human immunoglobulin

11th Asian & Oceanic Congress of Neurology, Singapore, November 2004

Poster presentations

Effective treatment of experimental autoimmune neuritis with human immunoglobulin

7th International Congress of Neuroimmunology, Venice, Italy, September 2004

Effective treatment of experimental autoimmune neuritis with human immunoglobulin

IVIG in Neurological disease – 1st Asia Pacific Symposium, Singapore, November 2004

Effective treatment of experimental autoimmune neuritis with Fc fragment of human immunoglobulin

2005 Meeting of the Peripheral Nerve Society, Tuscany, Italy, July 2005

Effective treatment of experimental autoimmune neuritis with Fc fragment of human immunoglobulin

18th World Congress of Neurology, Sydney, Australia, 2005 November
Abbreviations

ADCC antibody-dependent cellular cytotoxicity
AIDP acute inflammatory demyelinating polyradiculoneuropathy
Alb albumin
AM adhesion molecule
AMAN acute motor axonal neuropathy
AMSAN acute motor sensory axonal neuropathy
ANOVA analysis of variance
AP alkaline phosphatase
APC antigen-presenting cell
AT-EAN adoptive transfer experimental autoimmune neuritis
BCR B-cell receptor
BNB blood-nerve barrier
C complement
C domain constant domain of IgG molecule
C. jejuni Campylobacter jejuni
CMAP compound muscle action potential
CMV Cytomegalovirus
CNS central nervous system
CR complement receptor
CSF cerebrospinal fluid
C terminal carboxyl terminal of IgG molecule
CV conduction velocity
EAN experimental autoimmune neuritis
ELISA enzyme-linked immunosorbent assay
EM electro-microscopy
FcγR Fc gamma receptor
FcR Fc receptor
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gal-C</td>
<td>galactocerebroside</td>
</tr>
<tr>
<td>GalNAc-GD1a</td>
<td>ganglioside N-acetylgalactosaminyl GD1a</td>
</tr>
<tr>
<td>GBS</td>
<td>Guillain-Barré syndrome</td>
</tr>
<tr>
<td>GD1a</td>
<td>disialoganglioside-GD1a</td>
</tr>
<tr>
<td>GD1b</td>
<td>disialoganglioside-GD1b</td>
</tr>
<tr>
<td>GM1</td>
<td>monosialoganglioside-GM1</td>
</tr>
<tr>
<td>GQ1b</td>
<td>tetrasiologanglioside-GQ1b</td>
</tr>
<tr>
<td>GT1a</td>
<td>trisialoganglioside-GT1a</td>
</tr>
<tr>
<td>H/A ratio</td>
<td>proximal/distal CMAP amplitude ratio</td>
</tr>
<tr>
<td>H chain</td>
<td>heavy chain of IgG molecule</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>Haemophilus influenzae</td>
</tr>
<tr>
<td>HIV</td>
<td>human immunodeficiency virus</td>
</tr>
<tr>
<td>HLA</td>
<td>human leukocyte antigen</td>
</tr>
<tr>
<td>HNK</td>
<td>human natural killer</td>
</tr>
<tr>
<td>IC</td>
<td>immune complex</td>
</tr>
<tr>
<td>ICAM</td>
<td>intercellular adhesion molecule</td>
</tr>
<tr>
<td>IFN</td>
<td>interferon</td>
</tr>
<tr>
<td>Ig</td>
<td>immunoglobulin</td>
</tr>
<tr>
<td>IgA</td>
<td>immunoglobulin A</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>immunoglobulin M</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>ITAM</td>
<td>immune-receptor tyrosine-based activation motif</td>
</tr>
<tr>
<td>ITIM</td>
<td>immune-receptor tyrosine-based inhibitory motif</td>
</tr>
<tr>
<td>ITP</td>
<td>idiopathic thrombocytopenic purpura</td>
</tr>
<tr>
<td>i.v.</td>
<td>intravenous injection</td>
</tr>
<tr>
<td>IVIg</td>
<td>intravenous immunoglobulin</td>
</tr>
<tr>
<td>kDa</td>
<td>kilo dalton</td>
</tr>
<tr>
<td>L chain</td>
<td>light chain of IgG molecule</td>
</tr>
<tr>
<td>LFA</td>
<td>lymphocyte function associated antigen</td>
</tr>
<tr>
<td>LM</td>
<td>light microscopy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>LM1</td>
<td>sialosylneolactotetraosylceramide</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>mAb</td>
<td>monoclonal antibody</td>
</tr>
<tr>
<td>MAC</td>
<td>membranolytic attack complex</td>
</tr>
<tr>
<td>MAG</td>
<td>myelin-associated glycoprotein</td>
</tr>
<tr>
<td>MBP</td>
<td>myelin basic protein</td>
</tr>
<tr>
<td>MCV</td>
<td>motor conduction velocity</td>
</tr>
<tr>
<td>MFS</td>
<td>Miller Fisher syndrome</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MIP</td>
<td>macrophage inflammatory protein</td>
</tr>
<tr>
<td>MMP</td>
<td>matrix metalloproteinases</td>
</tr>
<tr>
<td>MS</td>
<td>multiple sclerosis</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>NK</td>
<td>natural killer</td>
</tr>
<tr>
<td>NMJ</td>
<td>neuromuscular junction</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>N/S</td>
<td>non significance</td>
</tr>
<tr>
<td>N terminal</td>
<td>amino terminal of IgG molecule</td>
</tr>
<tr>
<td>P0</td>
<td>peripheral myelin protein zero</td>
</tr>
<tr>
<td>P2</td>
<td>peripheral myelin protein 2</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PE</td>
<td>plasma exchange</td>
</tr>
<tr>
<td>PNM</td>
<td>peripheral nerve myelin</td>
</tr>
<tr>
<td>PNS</td>
<td>peripheral nervous system</td>
</tr>
<tr>
<td>SC</td>
<td>Schwann cell</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>SDS-polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>SSEP</td>
<td>spinal somatosensory evoked potential</td>
</tr>
<tr>
<td>S wave</td>
<td>spinal somatosensory evoked response</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris buffered saline</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>TCR</td>
<td>T-cell receptor</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>Th cell</td>
<td>T helper cell</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
</tr>
<tr>
<td>TTBS</td>
<td>Tris buffered saline with Tween 20</td>
</tr>
<tr>
<td>VCAM</td>
<td>vascular cell adhesion molecule</td>
</tr>
<tr>
<td>V domain</td>
<td>variable domain of IgG molecule</td>
</tr>
<tr>
<td>VLA</td>
<td>very late antigen</td>
</tr>
</tbody>
</table>
Table of Contents

SUMMARY ii
DECLARATION iv
ACKNOWLEDGEMENT v
SCIENTIFIC COMMUNICATIONS ARISING FROM THIS THESIS vi

Abbreviations viii

Table of Contents xii

Chapter 1 Literature Review 1

1.1 Components and structure of peripheral nerve 1
 1.1.1 Axon 1
 1.1.2 Myelin 2
 1.1.2.1 Characteristics of myelin 2
 1.1.2.2 Composition of myelin 4
 I. Myelin proteins 4
 i. Peripheral myelin protein zero (P0) 4
 ii. Myelin basic protein (MBP) and peripheral myelin protein 2 (P2) 5
 iii. Peripheral myelin protein 22 (PMP22) 5
 iv. Myelin-associated glycoprotein (MAG) 6
 II. Myelin lipids 7

1.2 Guillain-Barré syndrome (GBS) 8
 1.2.1 Epidemiology and clinical features 8
 1.2.2 Subtypes 9
1.2.2.1 Acute inflammatory demyelinating polyradiculoneuropathy (AIDP) 10
1.2.2.2 Acute motor axonal neuropathy (AMAN) 11
1.2.2.3 Acute motor sensory axonal neuropathy (AMSAN) 11
1.2.2.4 Miller Fisher syndrome (MFS) 11
1.2.3 Antecedent infections and molecular mimicry 12
1.2.4 Treatments 13
1.2.4.1 Supportive treatment 14
1.2.4.2 Plasma exchange (PE) 15
1.2.4.3 High-dose intravenous immunoglobulin (IVIg) 15
1.2.4.4 Potentially interesting treatments 16

1.3 Immunopathogenesis in Guillain-Barré Syndrome 19
1.3.1 Experimental autoimmune neuritis (EAN) 19
1.3.1.1 Induction of EAN 19
1.3.1.2 Clinical features of rat EAN 20
1.3.1.3 Neuropathology in EAN 20
1.3.1.4 Immune responses in EAN 23
 I. Induction phase 23
 i. Antigen presentation and activation of T helper (Th) cell 23
 ii. Release of cytokines 24
 iii. Lymphocytes homing, adhesion, and migration 25
 II. Effector phase 26
 i. Cytotoxic T cell-mediated attack 26
 ii. Antibody-mediated attack 27
 iii. Direct nonspecific effects of macrophages 29
 III. Termination of the immune action: apoptosis 29
1.3.2 Humoral immunity 30
1.3.2.1 Relationship between anti-ganglioside antibodies and different types of GBS 31
 I. Acute inflammatory demyelinating polyradiculoneuropathy (AIDP) 31
II. Acute motor axonal neuropathy (AMAN) 31
III. Acute motor sensory axonal neuropathy (AMSAN) 31
IV. Miller Fisher syndrome (MFS) 32

1.3.2.2 Pathogenic mechanisms of anti-ganglioside antibodies 32
 I. Pathogenicity of ganglioside auto-antibodies 33
 II. Molecular mimicry 33
 III. Anti-ganglioside antibody-mediated pathomechanisms 34

1.3.3 Cellular immunity 36
 1.3.3.1 The role of T cells 36
 I. Observations in EAN 36
 II. Evidence for T-cell activation 37
 III. T-cell responses in GBS 37
 IV. Mechanisms of T cell-mediated nerve damage 38
 V. Synergy of T cells and antibody 39
 1.3.3.2 The role of macrophages 39
 I. Macrophage recruitment into the inflamed peripheral nerve 40
 II. Macrophages as sources of pro-inflammatory cytokines 41
 III. Effector functions of macrophages 41
 IV. Role of macrophages during recovery 42

1.3.4 Conclusions 43

1.4 Intravenous immunoglobulins (IVIg) 47
 1.4.1 Immunoglobulin G (IgG) 47
 1.4.1.1 Structure 47
 1.4.1.2 Protease digestion 48
 1.4.2 Composition, pharmacokinetics and administration of IVIg preparations 49
 1.4.2.1 Composition of IVIg 49
 1.4.2.2 Pharmacokinetics of IVIg 50
 1.4.2.3 Administration of IVIg 51
 1.4.3 Immunomodulatory action of IVIg for GBS 51
1.4.3.1 Effect on autoantibodies 51
1.4.3.2 Inhibition of complement binding and prevention of MAC formation 52
1.4.3.3 Modulation or blockade of FcRs on macrophages 53
1.4.3.4 Suppression of pathogenic cytokines and AMs 53
1.4.3.5 Modulation of T-cell function and antigen recognition 54
1.4.3.6 Interaction with APCs 54
1.4.3.7 Effect of substances other than antibody within IVIg preparations 54
1.4.3.8 Possible effect on remyelination 54

1.5 IgG Fc receptors (FcγRs) 55
1.5.1 FcγR polymorphisms and functions 55
1.5.2 FcγR polymorphisms and the pathogenesis in GBS 57

1.6 Aims of this study 59

Chapter 2 Materials and Methods 60

2.1 Experimental design 60

2.1.1 Experiment 1: comparison of treatment with normal saline and albumin 60
2.1.2 Experiment 2: comparison of treatment with albumin and IVIg 60
2.1.3 Experiment 3: comparison of treatment with albumin, Fab fragments, Fc fragments, and IVIg 61

2.2 Experimental autoimmune neuritis (EAN) 62

2.2.1 Experimental animals 62
2.2.2 Anesthesia 62
2.2.3 Preparation of myelin antigen 62
2.2.4 Induction of EAN by immunization with bovine PNM 63
2.2.5 Clinical score 63
2.2.6 Electrophysiologic studies 64
2.2.6.1 Sciatic nerve motor studies 64
2.2.6.2 Spinal somatosensory evoked potentials (SSEPs) 64
2.2.7 Histological techniques 65
2.2.8 Morphometric analysis 65
2.2.9 Statistical analysis 66

2.3 IVIg fractions 67
2.3.1 Human IVIg and albumin 67
2.3.2 Preparation of Fab and Fc fragments 67
2.3.2.1 Equipment 67
2.3.2.2 Reagents 68
2.3.2.3 Buffers 69
2.3.2.4 Procedures 70
I. Cleavage of IgG molecule with papain 70
II. Affinity chromatography 70
III. Dialysis and concentration of protein 71
IV. Size exclusion chromatography (gel filtration) 72
V. Protein assay 73
VI. SDS-PAGE (SDS-polyacrylamide gel electrophoresis) (Laemmli, 1970) 73
VII. Transfer and immunoblotting 74
VIII. Sterile filtration 76

Chapter 3 Results 77

3.1 Treatment of rat EAN with normal saline and albumin 77
3.1.1 Clinical scores and weight changes 77
3.1.2 Electrophysiological changes 78
3.1.2.1 Somatosensory evoked potentials (SSEPs) 78
3.1.2.2 Motor conduction velocity (MCV) and compound muscle action potential (CMAP) amplitude 78

3.2 Treatment of rat EAN with albumin and IVIg 86
3.2.1 Clinical scores and weight changes 86
3.2.2 Electrophysiological changes 87
3.2.2.1 Somatosensory evoked potentials (SSEPs) 87
3.2.2.2 Motor conduction velocity (MCV) and compound muscle action potential (CMAP) amplitude 87
3.2.3 Histological changes 88

3.3 Treatment of rat EAN with albumin, Fab fragments, Fc fragments, and IVIg 103
3.3.1 Clinical scores and weight changes 103
3.3.2 Electrophysiological changes 104
3.3.2.1 Somatosensory evoked potentials (SSEPs) 104
3.3.2.2 Motor conduction velocity (MCV) and compound muscle action potential (CMAP) amplitude 105
3.3.3 Histological changes 107

Chapter 4 Discussion 128

4.1 Treatment of rat EAN with normal saline and albumin 128
4.2 Treatment of rat EAN with albumin and IVIg 129
4.2.1 Comparisons with other studies 129
4.2.2 Comparisons with other treatments 131
4.2.3 Activity of human Ig in animal models 132
4.2.4 Effectiveness of human IVIg in the treatment of rat EAN 132

4.3 Treatment of rat EAN with albumin, Fab fragments, Fc fragments, and IVIg 136

4.3.1 Studies concerning the Fab and Fc-mediated mechanisms of IVIg 136
4.3.1.1 Studies supporting Fab-mediated mechanism of IVIg 136
4.3.1.2 Studies supporting Fc-mediated mechanism of IVIg 138

4.3.2 IVIg and FεR 140
4.3.2.1 Inhibition of phagocytosis via blockade of FεRs on macrophages and effector cells 140
4.3.2.2 Inhibition of phagocytosis via inhibitory FεR 140
4.3.2.3 Increased catabolism of IgG antibody 141

4.3.3 Purification of Fab and Fc fragments 142
4.3.3.1 Affinity chromatography 142
4.3.3.2 Purity of Fab and Fc fragments 144
4.3.3.3 Change of Fab and Fc biological features after digestion and purification 146

4.3.4 Effectiveness of Fc fragment and IVIg in the treatment of rat EAN 147

Conclusions 151

Bibliography 153