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Abstract  

In a series of neurophysiological and neuroimaging studies we investigated the 

neurobiology related to alcohol use in young people with bipolar disorder. Impairments 

were identified across frontal and temporal representations of event-related potential 

and proton magnetic resonance spectroscopy markers; mismatch negativity and in vivo 

glutathione, respectively. We propose these findings reflect impairments in the N-

methyl-D-aspartate receptor and antioxidant capacity. This review seeks to place these 

findings within the broader literature in the context of two propositions:  

1. Pathophysiological impairments in N-methyl-D-aspartate receptor functioning in 

bipolar disorder contribute to susceptibility toward developing alcohol problems 

2. Alcohol aggravates bipolar disorder neuroprogression via oxidative stress  

. A neurobiological model that incorporates these propositions is presented, with a focus 

on the potential for N-methyl-D-aspartate receptor antagonism and glutathione 

augmentation as potential adjunctive pharmacotherapies to treat the comorbidity. While 

this review highlights the importance of alcohol monitoring and reduction strategies in 

the treatment of bipolar disorder, the clinical impact of the proposed model remains 

limited by the lack of controlled trials of novel pharmacological interventions. 

 

Keywords: bipolar disorder; mismatch negativity; magnetic resonance spectroscopy; 

NMDA receptor, glutathione  
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1.0 Introduction 

Alcohol use, abuse and dependence are highly prevalent in bipolar disorder (BD) 

representing the most common mental disorder and alcohol comorbidity (Grant et al, 

2004; Hermens et al, 2013; Regier et al, 1990). The negative implications of alcohol 

use on the trajectory of bipolar illness are severe (Feinman and Dunner, 1996; 

Oquendo et al, 2010; Rakofsky and Dunlop, 2013; Salloum and Thase, 2000), a fate 

that has been well-documented since the 1970’s with the first report of heightened 

suicide risk associated with this comorbidity (Morrison, 1974). Decades later with a 

wealth of information regarding the impact of this destructive comorbidity, it is still 

highly prevalent (Di Florio et al, 2014), which indicates there is room for 

improvement in prevention, early intervention and treatment strategies.  

This may be largely because many of the identified risk factors for development of 

alcohol problems in people with BD cannot be controlled, for example, risk factors 

such as gender (Tsai et al, 2012), personality traits such as sensation-seeking (Bizzarri 

et al, 2007) or impulsivity (Nery et al, 2013), and comorbid diagnoses such as 

attention-deficit hyperactivity disorder (Tamam et al, 2008) or anxiety disorders 

(Kauer-Sant'Anna et al, 2007). Or risk factors that have occurred before the patient 

presents to mental health services, for example, childhood maltreatment (Sala et al, 

2014) or abuse (Du Rocher Schudlich et al, 2014). There is therefore a crucial need 

for a shift in research focus toward understanding the preventable and treatable 

causes, as well as the correlates, of this comorbidity. One of the most promising 

avenues is to probe the underlying neurobiology of this comorbidity, with a view to 

developing targeted psychopharmacological strategies.  

The potential to identify neurobiological biomarkers associated with a shared 

vulnerability is largely supported by evidence that people with BD may have an 
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inherited susceptibility to developing problems with alcohol, a theory which has been 

long hypothesized (Carmiol et al, 2014; Johnson and Leeman, 1977; Pitts and 

Winokur, 1966). This susceptibility is illustrated by familial and behavioural 

evidence.  People with BD have a high prevalence of positive family history of 

alcohol dependence (FHP) (Biederman et al, 2000; Johnson et al, 1977; Mantere et al, 

2012; Todd et al, 1996), and people with BD who have FHP are more likely to 

develop an alcohol use disorder compared to those with a negative family history 

(FHN) (Wilens et al, 2014). Causal genes that are associated with this comorbidity 

have not yet been identified. Though there is evidence of genetic variants that 

increase the risk for both illnesses (Carmiol et al, 2014; Levey et al, 2014), with a 

recent correlational study estimating that 47 – 57% of the genetic variance 

predisposing BD also influences the risk for alcohol use disorders (Carmiol et al, 

2014). However, not all studies have concluded that the two illnesses share familial 

risk factors (Sbrana et al, 2007). 

Behavioural evidence also provides support for a shared vulnerability. Diagnosis of 

BD aside, the predominant theories behind the increased risk of developing alcohol 

use problems in those with FHP is (an inherited) reduced sensitivity to the 

behavioural consequences of alcohol use (Schuckit, 1994; Schuckit and Smith, 1996; 

Schuckit et al, 2004). This “tolerance” to the subjective effects of alcohol is also a 

symptom of alcohol dependence. Inherited tolerance has been put forth as one of the 

prominent phenotypic risk factors for heavy drinking and the subsequent development 

of alcohol dependence (Schuckit et al, 1996).  This notion has since been supported 

by a meta-analytic finding that FHP individuals have reduced subjective responses to 

alcohol compared to those with FHN (Quinn and Fromme, 2011). Importantly, it has 

been hypothesized that reduced sensitivity to the effects of alcohol is also present in 
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people with BD who go on to develop problems with alcohol (Le Strat and Gorwood, 

2008). Early investigations into this theory have found that young at-risk BD males 

show “blunted” subjective effects to acute alcohol administration compared to 

controls. Notably, this finding is not attributed to FHP in these participants (Yip et al, 

2012).  

The second key aspect in understanding neurobiological biomarkers of the BD-

alcohol misuse comorbidity is to tease out the ‘neural consequences’ of the interaction 

itself, in other words, what is happening to the brain when people with BD drink 

alcohol? Answering this question allows us to determine how alcohol use contributes 

to worse illness outcomes, thereby providing another avenue for identification of 

treatment targets and better guidance for treatment selection.  For example, 

identifying the neural sequela associated with the comorbidity may enable an 

understanding of the mechanisms responsible for the severe consequences of the 

comorbidity, such as suicide, and hence develop targets to diminish these disturbed 

pathways (in conjunction with alcohol reduction strategies).  

Whilst there is a dearth of BD-alcohol comorbidity studies with a neurobiological 

approach there is a wealth of evidence addressing BD and alcohol separately, and 

from this we have investigated two neurobiological commonalities heavily associated 

with the two. The first of these was the NMDA receptor. The NMDA receptor has 

been implicated in the pathophysiology of BD (for review see: (Ghasemi et al, 2014)), 

is a well-known recipient of the neural effects of alcohol, including tolerance (for 

review see: Krystal et al, 2003c) and it is an established treatment target for mood 

(Sanacora et al, 2008) and alcohol use (Krystal et al, 2003c) disorders with genetic 

links to both BD and alcohol dependence (Schuckit et al, 2003). The second BD-

alcohol neurobiological ‘intersection’ we selected for enquiry was neural oxidative 
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stress. Oxidative stress is believed to contribute to the neuroprogression of BD (Berk 

et al, 2011) which may be a consequence of the effects of xenobiotic substances in the 

brain, such as alcohol (Tsai et al, 1998; Zhong et al, 2012). 

While these are certainly not the only commonly affected neurobiological systems 

between BD and alcohol, both are targets of treatments available for other indications; 

hence investigation within these domains may result in pre-existing treatment options 

for the BD-alcohol comorbidity. Furthermore they are both systems that can be 

probed clinically via electroencephalography (EEG) and magnetic resonance imaging 

(MRI). Through a number of studies we have investigated the neurobiology 

associated with alcohol use in BD using these measures (Chitty et al, 2014a; Chitty et 

al, 2013a; 2014b; Chitty et al., 2015a; 2015b).  

In this current review, we summarise our findings in the context of the broader 

literature. Collectively, our findings have led us to consider two key propositions: 1. 

Pathophysiological impairments in NMDA receptor functioning in BD contribute to 

susceptibility toward developing problems with alcohol use. As such, agents that 

target the NMDA receptor may show treatment efficacy, and 2. Alcohol aggravates 

BD neuroprogression predominantly through oxidative stress pathways (either 

directly or indirectly), as a result of its allostatic load on other neural systems. 

Pharmacological implications for both propositions are discussed highlighting the 

potential firstly, for memantine as an adjunctive pharmacotherapy for both treatment 

of BD and reduction of alcohol use and secondly, N-acetly-cysteine (NAC) as an add-

on therapy for reducing the neural sequela of alcohol use in BD. Finally, we tie the 

propositions together in order to formulate the beginnings of a neurobiological model 

for the BD-alcohol comorbidity.  
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2.0 Proposition 1: Pathophysiological impairments in NMDA receptor 

functioning in BD contribute to susceptibility toward developing problems with 

alcohol use. As such, agents that target the NMDA receptor may show treatment 

efficacy 

 

2.1. Introduction to the NMDA receptor 

The NMDA receptor (see Figure 1) is one of three ionotropic glutamate receptors in 

the central nervous system (CNS), along with AMPA (α-Amino-3-hydroxy-5-methyl-

4-isoxazolepropionic acid) and kainate receptors. The NMDA receptor is a target of 

much neuroscience and psychiatric research owing to its central role many CNS 

functions, including brain plasticity.  

The molecular composition of NMDA receptors is diverse, a consequence of a 

number of possible subunit compositions that vary across brain regions and 

developmental stages and exhibit distinct permeation and gating properties (Paoletti et 

al, 2013). Each receptor is composed of a tetrameric combination of a possible 7 

subunits: GluN1, GluN2A, GluN2B, GluN2C, GluN2D, GluN3A and GluN3B. Each 

receptor contains an obligatory glycine-binding GluN1 subunit, of which binding of 

glycine or D-serine is required for NMDA receptor activation by glutamate. Under 

baseline conditions, the NMDA receptor channel is blocked by magnesium and when 

the membrane depolarizes as a result of glutamate binding the magnesium is 

displaced allowing Ca2+ to enter the neuron. Hyper-excitability of the NMDA receptor 

is neurotoxic, hence tight regulation of channel opening is mediated by multiple 

regulatory sites are embedded within the ionophore. Binding at these sites allows 

either positive or negative allosteric modulation, which is again specific to the subunit 

composition of the receptor (Paoletti et al, 2013). 
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Synaptic plasticity of NMDA receptors occurs via NMDA receptor mediated long-

term potentiation (LTP) and long-term depression (LTD), which are induced after an 

increase in synaptic activity (as a result of a post-synaptic rise in Ca2+) following a 

brief and intense stimulus. These sustained changes in NMDA receptor components 

are responsible for altered regulation of the neuron. This profound mediation of brain 

plasticity underlies the role of the NMDA receptor in higher order cognitive 

functions, particularly learning and memory (Paoletti et al, 2013; Woodward, 2000). 

Next, we describe the NMDA receptor system in BD and alcohol use, separately; 

followed by the potential intersection of the NMDA with the comorbidity.  

2.1.1 Bipolar disorder and NMDA receptors 

The role of NMDA receptors in the pathophysiology of BD is receiving increased 

attention and has been described in depth previously (Ghasemi et al, 2014; Sanacora 

et al, 2008). There have been several investigations that have revealed abnormalities 

in NMDA receptor expression, binding and functioning in BD.  Many of these 

abnormalities have been detected in the temporal region, with hippocampal decreases 

in GluN1 mRNA (Law and Deakin, 2001), decreased transcript expression of GluN1 

and GluN2A in the hippocampus (McCullumsmith et al, 2007), GluN1 and GluN2B 

in the perirhinal cortex (Beneyto et al, 2007), and hippocampal reductions in open 

NMDA receptor ion channels (Beneyto et al, 2007; Scarr et al, 2003). Cumulatively 

these results suggest a reduction in the total number of NMDA receptors in this region 

and accordingly, decreases in GluN1 binding in the superior temporal cortex has been 

found (Nudmamud-Thanoi and Reynolds, 2004). Though conversely, increased 

binding at the glycine site of the NMDA receptor was shown in the hippocampus of 

BD indicating an increase in the number of NMDA-receptor containing glycine-

binding sites in this region (Beneyto et al, 2007).  
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In the prefrontal cortex decreased density of interneurons that express the NMDA 

GluN2A subunit has been found in BD (Woo et al, 2004), as well as a decrease in 

mRNA expression of GluN1 (Beneyto and Meador-Woodruff, 2008; Rao et al, 2010) 

and GluN3 (Rao et al, 2010), with no changes in GluN2B or GluN2D (Beneyto et al, 

2008). Despite this decrease, changes in NMDA receptor binding were not evident 

leading authors to suggest that while there is no change in total receptor number, the 

stoichiometry of these receptors is abnormal (Beneyto et al, 2008). It is noteworthy 

that these post-mortem findings seem to be specific to NMDA receptors, with no 

corresponding abnormalities found in AMPA or kainate receptors (Beneyto et al, 

2007; Scarr et al, 2003). Given this evidence, especially with regards to the GluN1 

receptor, it is not surprising that linkage disequilibrium between the gene coding for 

GluN1 (GRIN1) has been found in BD, suggesting that this may confer susceptibility 

to the disorder (Mundo et al, 2003). Additionally, abnormalities in the 

neurometabolites involved in the regulation and modulation of the NMDA receptor 

have been reported. Perhaps the most convincing evidence implicating NMDA 

receptors in BD pathophysiology is the treatment success of NMDA receptor 

antagonists. For example, memantine and ketamine (which are reviewed in more 

detail in section 2.3), amantadine, D-cycloserine, magnesium and zinc have all shown 

therapeutic action in BD, and in many cases have shown efficacy in treatment 

resistant patients (for review see Ghasemi et al, 2014).  

2.1.2 Alcohol and NMDA receptors  

The NMDA receptor is a high affinity target for both the acute and chronic actions of 

alcohol in the brain and has therefore been proposed as a critical mediator of 

vulnerability toward alcohol use disorders (Krystal et al, 2003c). Evidence of this 

relationship originated from a patch-clamping experiment showing that ethanol 
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decreased NMDA receptor current flow in the hippocampus, and this decrease was 

proportional to the dose and the potency of the ethanol used (Lovinger et al, 1989). 

Collective research since then suggests that ethanol acts to inhibit the NMDA receptor 

by decreasing the frequency and duration of the opening time for the channel, rather 

than competitive action at agonist binding sites (Ren et al, 2012; Woodward, 2000). 

There does not appear to be a specific site on the receptor where ethanol exerts this 

action but rather a number of various residues arising from a combination of 

transmembrane domains (Smothers and Woodward, 2006) predominantly located 

within GluN1 (Ronald et al, 2001; Smothers et al, 2006) and GluN2 (Honse et al, 

2004; Ren et al, 2012) subunits (see Figure 1). As such differing subunit compositions 

of NMDA receptors mediate differences in ethanol sensitivity from receptor to 

receptor (Woodward, 2000). 

Chronic blockade of the NMDA receptor by ethanol as a result of continuous heavy 

drinking leads to compensatory up-regulation of NMDA receptor activity (Krystal et 

al, 2003c). The result of which is reduced sensitivity to ethanol that is believed to 

contribute to alcohol tolerance (Krystal et al, 2003c). This is evidenced by post-

mortem studies of people with alcohol dependence that found an increased binding 

capacity of NMDA receptors in cortical tissue (Freund and Anderson, 1996), 

suggesting that a greater amount of alcohol is required to elicit the same effect. 

Notably, the same study found no differences in binding capacity at AMPA and 

kainite receptors between groups, highlighting the specificity of these effects (Freund 

et al, 1996).  

The NMDA receptor system is also implicated in state and trait behavioural effects of 

alcohol. Acutely, ethanol’s blockade of the NMDA receptor, and the corresponding 

inhibition of LTP, is believed to contribute to the cognitive effects associated with 
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intoxication, such as alcohol-induced blackout and amnesia (Ryabinin, 1998; 

Woodward, 2000). Furthermore, there is compelling evidence implicating the NMDA 

receptor in dampened subjective effects of alcohol which are associated with 

increased vulnerability to developing drinking problems (Krystal et al, 2003a; Krystal 

et al, 2003c). This has been demonstrated in studies of FHP individuals showing 

increased tolerance (or reduced sensitivity) to NMDA receptor antagonism compared 

with FHN individuals. For example, one study that found that the otherwise strong 

dysphoric effects of intravenous ketamine (non-competitive NMDA receptor 

antagonist) in individuals with FHP were significantly “blunted” compared to FHN 

(Petrakis et al, 2004). Likewise, FHP individuals also show reduced sensitivity to the 

inhibitory effects of memantine (uncompetitive NMDA receptor antagonist) on fMRI 

activity (Jamadar et al, 2012) and in an EEG study differential effects in event-related 

oscillations between FHP and FHN were found after a dose of memantine (Narayanan 

et al, 2013). Specifically, less marked decreases in theta activity and increased alpha 

activity in FHP during P300 trials were found with authors concluding this provides 

further evidence that NMDA receptor regulation is distinct between groups.  

2.2 Investigations leading to proposition 1 

We believe the evidence described above supports the hypothesis that people with BD 

(or those who go on to develop BD) are susceptible to alcohol misuse due to 

pathophysiological impairments in the NMDA receptor. This proposition is reinforced 

by preliminary evidence from our lab, whereby an electrophysiological marker for 

NMDA receptor functioning (described below) has been utilized to investigate this 

intersection. 

2.2.1 Mismatch negativity  

Mismatch negativity (MMN) is an event-related potential (ERP) elicited 
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automatically around 200ms after a deviant stimulus is presented within a set of 

standard stimuli. There are two identified intracranial processes that contribute to the 

generation of MMN, a temporal component and a frontal component (Naatanen et al, 

2007). MMN has been extensively used as a model in psychopharmacology 

(Kenemans and Kahkonen, 2011), in part due to its reliable and replicable modulation 

by the NMDA receptor system (Garrido et al, 2009). Studies with NMDA receptor 

antagonists have shown that signaling through the NMDA receptor is necessary for 

MMN elicitation (Javitt et al, 1995; Javitt et al, 1996), and therefore this ERP is 

considered a robust marker for detecting NMDA receptor disturbances (Javitt et al, 

2011). Cognitively, MMN is thought to index the formation of memory and cortical 

plasticity (Baldeweg and Hirsch, 2014), both of which are neural processes reliant on 

intact NMDA receptor functioning (Bennett, 2000; Woodward, 2000). MMN 

“impairments” are predominantly viewed as decreased electrophysiological 

amplitudes compared with a healthy control group, though increased MMN 

amplitudes and/or lengthened MMN latencies, have also been found in various 

populations and are thought to reflect a hyper-excitatory state. 

2.2.1.1 Mismatch negativity, bipolar disorder and alcohol  

Within the psychiatric literature, MMN impairments were largely believed to be 

specific to schizophrenia (Umbricht et al, 2003; Umbricht and Krljes, 2005), 

especially given that initial experiments in BD samples found no significant 

differences in MMN when compared to controls (Catts et al, 1995; Hall et al, 2007; 

Umbricht et al, 2003). However, recent evidence suggests that MMN impairments 

also exist in BD (Andersson et al, 2008; Jahshan et al, 2012; Kaur et al, 2012; 

Shimano et al, 2014), which was corroborated by our meta-analysis of the seven 

available studies suggesting that overall, frontal MMN amplitude is moderately 
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impaired in BD (Chitty et al, 2013b).  It is noteworthy however, that the calculated 

effect size was considerably smaller than that reported in a schizophrenia MMN meta-

analysis (Umbricht et al, 2005), which may suggest that the impairments in BD are 

not as pronounced, or may reflect the substantially lower number of available studies 

in BD. 

 

MMN has been used as a tool to study the effects of alcohol, in both rodents and 

humans (Ahveninen et al, 2000a; Strelnikov, 2007), with findings that have 

accurately reflected the known action of alcohol on the NMDA receptor. Acutely, 

alcohol has been shown to decrease MMN amplitude (He et al, 2013; Jaaskelainen et 

al, 1995a; Jaaskelainen et al, 1995b; Jaaskelainen et al, 1996; Kenemans et al, 2010), 

supporting the notion that alcohol elicits a blockade of the NMDA receptor (Lovinger 

et al, 1989). Additionally, increased MMN amplitudes have been found in alcohol 

dependent patients (Ahveninen et al, 2000b) supporting the upregulation of NMDA 

receptor functioning as a result of continued alcohol use (Krystal et al, 2003b). 

Further, increased MMN amplitudes have been reported in those at-risk for 

developing alcohol dependence (Zhang et al, 2001) or risky alcohol use (Chitty et al, 

2015b). These latter findings appear to support the role of the NMDA receptor in 

vulnerability toward heavy drinking, with a higher MMN representing a higher 

NMDA receptor output, suggesting a higher dose of alcohol would be necessary to 

achieve NMDA blockade and subsequent intoxication. However, not all MMN 

findings align with the NMDA-alcohol model, with some studies finding no 

differences in MMN between individuals with alcohol dependence and controls (Fein 

et al, 2004a; Fein et al, 2004b; Marco-Pallares et al, 2007).  
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There has been a paucity of research specifically linking the MMN impairments 

observed in the context of alcohol misuse and in psychiatric populations (in particular, 

those with a known propensity toward alcohol use disorders). This is an important 

line of enquiry for preventative research, and one that we sought to investigate in 

youth with BD.  

2.2.1.2 Using mismatch negativity to investigate NMDA receptor disturbances in 

the comorbidity 

In our cross-sectional study we found that both risky drinking status and diagnosis of 

BD were both significant predictors of impaired temporal MMN (Chitty et al, 2014a). 

Such findings suggest that risky drinking (as opposed to alcohol dependence) is 

associated with reduced at the NMDA receptor output (as reflected by a reduced 

MMN) and this is compounded in those with a diagnosis of BD. Given this was a 

cross-sectional study it is unclear whether these MMN effects were a result of alcohol 

use, for example the direct effects of alcohol on the NMDA receptor further perturb 

existing disturbances at this receptor in BD, or that instead of being a result of the 

high risk drinking impaired MMN may be a biomarker for increased propensity to 

risky alcohol use. If the former were the case, a valid hypothesis would be that if risky 

drinking patterns were continued in this BD sample, the continued antagonistic 

actions on the NMDA receptor system would be compensated for. More specifically, 

the NMDA receptor activity is increased to compensate for substantial and frequent 

blockade (as demonstrated in alcohol dependence) (Krystal et al, 2003a). Accordingly 

this was observed when we followed up the same BD participants approximately 18 

months later, with an increase in drinking over time associated with an increase in 

frontal MMN (Chitty et al, 2015b). However, the opposite effect was found in 
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temporal MMN, namely that an increase in drinking over time corresponded with a 

decrease in temporal MMN.  

There are different theories as to why these MMN components could be exhibiting 

differential effects. Spatially, of course, frontal and temporal MMN are distinct, 

which may suggest that impaired regulation of NMDA receptors in BD is specific to 

temporal regions. Given the poor spatial resolution associated with MMN, the exact 

brain regions corresponding to frontal and temporal generators are unclear. However, 

there is evidence to suggest that frontal MMN is derived from dorsolateral prefrontal 

cortex (Alho et al, 1994), while the hippocampus has been proposed as a potential 

source of the temporal MMN component (Ruusuvirta et al, 2013). Furthermore, in our 

studies we have found that temporal MMN amplitudes in controls are negatively 

associated with in vivo levels of GSH (Chitty et al, 2014c) and positively associated 

with in vivo glutamate (Chitty et al., 2015c) in the hippocampus.  

Another theory as to why we see contradictory effects in frontal and temporal MMN 

may be reflective of different effects of alcohol in different parts of the brain and the 

differential NMDA receptor densities and subunit compositions between regions 

(Woodward, 2000). For example, a recent study has shown a hippocampal specific 

increase in expression of GluN1, GluN2A, GluN2C and GluN2D receptor subunit 

mRNA in post mortem brains of people with alcohol dependence compared to healthy 

controls (Jin et al, 2014). Importantly these altered expressions were not observed in 

the orbitofrontal or prefrontal cortex, suggesting that the distinct domains may be 

differentially affected by chronic alcohol use. This theory may be especially relevant 

with regards to BD in light of the substantial hippocampal-specific NMDA subunit 

abnormalities that were noted earlier in this review (see section 2.1.1). 
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There is only one study to our knowledge that has investigated the relationship 

between different NMDA receptor subunits and MMN generation, with a reported 

association between frontal MMN and a gene that codes for the GluN3B subunit 

(GRIN3B) (Lin et al, 2014). The authors suggested that GluN1/GluN2 and 

GluN1/GluN3 NMDA receptors might interact in the generation of frontal MMN. The 

sensitivity of GluN3 subunits to alcohol are not extensively researched and early 

reports have contradicting findings for (Jin et al, 2008) and against (Smothers and 

Woodward, 2003). At this point there is not enough information available to 

disentangle the specific NMDA receptor subunits responsible for different MMN 

effects, but this information highlights the potential for different receptor 

stoichiometry’s to influence MMN. 

The differential effects of alcohol on MMN subcomponents can also be explained via 

cognitive differences between the subcomponents, as described previously by 

Jaaskelainen and colleagues (1996). Temporal MMN is hypothesized to reflect the 

detection of the deviant from the sensory-memory trace (Naatanen et al, 1978), the 

formation of which presumably reliant on memory processes such as LTP- which as 

mentioned early in this review (see section 2.1), is a neural phenomenon heavily 

reliant on NMDA functioning (Woodward, 2000). Hence alcohol-induced 

impairments in temporal MMN may be related to its inhibition of LTP and subsequent 

impact on memory (Ryabinin, 1998). Frontal MMN on the other hand is thought to 

reflect the involuntary attention-switch that occurs after detection of the deviant 

(Giard et al, 1990; Jaaskelainen et al, 1996; Naatanen et al, 2007). Accordingly, it has 

been suggested that the effect of alcohol on frontal MMN is primarily associated with 

attention difficulties (Jaaskelainen et al., 1996).  
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2.3 Pharmacological implications from proposition 1 

Given the evidence presented above, it is not surprising that agents which target the 

NMDA receptor have shown promise in treating both BD and alcohol use disorders. 

To our knowledge however, there have not been any randomized controlled trials 

evaluating these agents in the treatment of comorbid BD and alcohol use. However, 

there is preliminary evidence showing agents targeting the glutamatergic system such 

as acamprosate (Tolliver et al, 2012) and valproate (Salloum et al, 2005) are 

efficacious in treating the comorbidity. Here we will focus on NMDA receptor 

antagonists, memantine and ketamine, that have shown some promise in treating both 

BD and alcohol.  

2.3.1 Memantine 

Memantine is a well-tolerated, uncompetitive, moderate-affinity, NMDA receptor 

antagonist approved for the treatment of Alzheimer’s Disease (Rammes et al, 2008). 

Though limited to naturalistic, case and open label studies there is preliminary 

evidence for memantine as an effective add-on mood-stabilising treatment for 

treatment-resistant BD patients ((Koukopoulos et al, 2012; Lee et al, 2014; Serra et 

al, 2015), and pilot data has revealed it may be an effective monotherapy comparable 

to gold-standard BD treatments, lithium and valproate (Keck et al., 2009) 

Randomised clinical trialing of memantine for BD treatment are underway (Serra et 

al., 2014) and results are eagerly awaited.  Memantine has also shown promise in 

treating symptoms of alcohol withdrawal (Krupitsky et al, 2007b) and in reducing 

alcohol craving despite inducing mild subjective effects (Bisaga and Evans, 2004; 

Krupitsky et al, 2007a).  

 



 18 

Given our MMN findings of potential alcohol-induced effects at the NMDA receptor 

system being heightened in BD, memantine may be efficacious as an add-on therapy 

for BD patients with alcohol problems, or those identified as at risk of developing 

alcohol problems. Thus, memantine may help to reduce problematic drinking whilst 

also treating the symptoms of BD. This appears to be an important avenue for future 

investigation, considering it is a safer and more viable treatment option than non-

competitive, high-affinity NMDA receptor antagonist, ketamine. While ketamine has 

displayed rapid antidepressant effects in BD (Diazgranados et al, 2010; Zarate et al, 

2012) and has demonstrated effective adjunctive therapy, along with benzodiazepine, 

in treating alcohol withdrawal (Wong et al, 2014), a recent meta-analysis has revealed 

controversial results (McGirr et al, 2015).  When used as an augmentation agent for 

electroconvulsive therapy, effect sizes revealed that not only did ketamine show no 

clinical efficacy but was associated with enhanced adverse effects. Indeed it is the 

psychomimetic and cognitive effects of this agent which precludes it from being used 

as a chronic treatment (Sanacora et al, 2008). Though, an important finding in line 

with the NMDA receptor as a potential treatment target for the BD-alcohol 

comorbidity was that FHP patients with BD showed greater improvement in 

depressive symptoms after ketamine administration than FHN (Luckenbaugh et al, 

2012). Hence, it may be that pathophysiology related to impaired NMDA receptors 

represents a subtype of BD and these patients are more prone to alcohol use 

disturbances, and accordingly, those who respond better to NMDA receptor agents. 

Furthermore, it may be that, like the findings in ketamine (Luckenbaugh et al, 2012; 

Niciu et al, 2014), memantine is especially efficacious in people with BD with 

comorbid alcohol use and/or FHP. 
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3.0 Proposition 2: Alcohol aggravates BD neuroprogression predominantly 

through oxidative stress pathways either directly, or indirectly as a result of its 

allostatic load on other neural systems. 

 

Many of the deleterious outcomes associated with the BD-alcohol comorbidity are 

due to chronic aspects of the disorder that tend to arise as the illness progresses. Thus, 

BD has been proposed as a ‘neuroprogressive illness’ (Post, 2007), reflecting the 

sustained worsening of the course of the disorder in the absence of adequate 

treatment. This illness progression refers to symptom worsening, episode 

reoccurrence, cycle acceleration (i.e. shorter times between episodes) and the 

transition to spontaneous episodes (which may also have been precipitated by 

stressors in the early presentation) – all of which are also exacerbated by comorbid 

alcohol use (Carvalho et al, 2014; Cassidy et al, 2001; Finseth et al, 2014; Jaffee et 

al, 2009; Rakofsky et al, 2013; Uher et al, 2013). This collective evidence suggests 

that the misuse of alcohol may be “speeding up” the natural progress of the disorder, 

and as such, alcohol has been suggested as one of environmental factors that plays a 

key role in the aggravation of BD neuroprogression (Berk et al, 2011; Kapczinski et 

al, 2008).  

Kapczinski et al., (2008) proposed that environmental factors may aggravate 

neuroprogression by inducing ‘allostatic load’, which in neurobiology, is the chronic 

reliance of physiological systems to compensate for environmental challenges and 

thereby causing cumulative damage (Kapczinski et al, 2008). In the context of 

alcohol, this may be related to the ‘wear and tear’ of neural compensatory 

upregulation of the NMDA receptor that occurs as a result of chronic alcohol use (see 

section 2.1.2). Alternatively, the direct effects of alcohol and its substrates on the 
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brain could also be identified as a source of aggravation, as a xenobiotic substance 

known to promote oxidative stress (Tsai et al, 1998; Zhong et al, 2012). 

Recently, the BD model of neuroprogression has evolved to focus on the underlying 

neurobiology, more specifically, the notion that stage of BD illness is commonly 

associated with significant changes in neurobiological markers (Berk et al, 2011). 

Hence it has been suggested that investigating the potential neurobiological 

determinants of neuroprogression may provide opportunities to design treatments that 

modify or interrupt the course of the illness (Berk et al, 2011). Certainly this concept 

would extend to identifying the neurobiology of the BD-alcohol comorbidity, with the 

potential to dampen, cease or even reverse the effects of alcohol on the brain. An ideal 

neurobiological target for investigation is neural oxidative stress, as a system that is 

implicated in the effects of alcohol on the brain (Nordmann et al, 1990; Tsai et al, 

1998; Zhong et al, 2012) and is a key target for research into BD neuroprogression 

(Berk et al, 2011). 

3.1 Oxidative stress 

Oxidative stress is a damaging endogenous consequence resulting from the balance of 

antioxidants and oxidants in the favour of the latter, that is, the buildup of reactive 

oxygen species (ROS) that cannot be adequately cleared. ROS are continuously 

generated via normal physiological processes as well as exogenic insults. To avoid 

oxidative damage caused by their production antioxidative processes exist to prevent 

ROS generation or at least reduce them to inactive substrates (Dringen, 2000). 

Without the antioxidant capacity to detoxify ROS, the ensuing oxidative stress causes 

cellular dysfunction and cell death (Berk et al, 2008b). Neural tissue is especially 

vulnerable to such stress due to its: (i) high consumption of oxygen and resultant 

production of ROS; (ii) easily oxidized substrates such as lipids with unsaturated fatty 
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acids; and (iii) relatively low activity of antioxidant defense molecules (Dringen, 

2000; Halliwell, 1992; 2006). 

Production of ROS and the resultant oxidative stress is believed to play a role in the 

pathophysiology of BD (Andreazza et al, 2008; Steckert et al, 2010). The most recent 

meta-analysis in the field identified a number of oxidative stress markers that were 

impaired in BD, suggesting an underlying abnormality in in oxidative energy 

generation (Brown et al, 2014). Evidence suggests that levels of oxidative stress are 

linked to mood episodes (Andreazza et al, 2007) and stage of illness (McGorry et al, 

2014), supporting the potential role of oxidative stress in BD neuroprogression (Berk 

et al, 2011). 

Ethanol has a demonstrated propensity to stimulate the formation of ROS and 

resultant oxidative stress in the brains of rats (Agar et al, 2003; Montoliu et al, 1994; 

Nordmann et al, 1990) and humans (Tsai et al, 1998). The mechanisms by which 

alcohol promotes oxidative stress in the brain are largely unknown, although it has 

been posited that they may be attributable to the production of ROS and lipid 

peroxidation associated with its metabolism (Tsai et al, 1998; Zhong et al, 2012). 

Oxidative stress and associated by-products are believed to play a key role in brain 

damage associated with alcohol dependence (Crews and Vetreno, 2014; Matsuda-

Matsumoto et al, 2007).  

3.1.1. Measuring oxidative stress via in vivo levels of glutathione 

Glutathione (GSH) is the brain’s primary antioxidant. It is a tripeptide (ϒ-L-glutamyl-

L-cysteinylglycine) present in the brain in concentrations between 1 – 3mM, 

predominantly located within astrocytes (Dringen, 2000). GSH is synthesized 

intracellularly and is formed via the dipeptide combination of glutamate and cysteine, 
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which is then combined with glycine, with availability of cysteine being the rate-

limiting step (Dringen, 2000). During acute states of oxidative stress, GSH reduces 

ROS and in the processes GSH is consumed and converted to its oxidized form: 

glutathione disulfide (GSSG) (Janaky et al, 1993). GSH also plays many other roles 

within the brain in order to maintain antioxidant defense, therefore a higher 

intracellular concentration of this metabolite is associated with increased cell 

protection against ROS-induced damage (Dringen, 2000).  

Recent advances in proton magnetic resonance spectroscopy (1H-MRS) have enabled 

the quantification of absolute GSH concentration in the brain (Chitty et al, 2013a; 

2014b; Duffy et al, 2014; Godlewska et al, 2014; Lagopoulos et al, 2013). This 

provides a new avenue of research that allows in vivo probing of the oxidative stress 

system in regions throughout the brain, though there is conjecture about whether GSH 

levels are revealing state or trait characteristics of oxidative stress. If in vivo GSH is 

trait-related this would suggest GSH levels reflect anti-oxidant capacity, whereas if it 

is state-related this would suggest GSH levels reveal acute oxidative stress, or it could 

reflect both state and trait aspects. Either way, there is general consensus that reduced 

GSH is indicative of heightened oxidative stress either directly (as GSH has been 

utilized to reduce ROS and hence has been converted to its oxidized form, GSSG) or 

indirectly (as a pre-existing reduction in antioxidant capacity and subsequent buildup 

of ROS would result in increased vulnerability to oxidative injury (Janaky et al, 

1993)). 

As a general limitation of all 1H-MRS research, it is impossible to determine the 

location within the synapse of the measured GSH. Though notably GSH is 1000 times 

more concentrated within the intra- compared to extra- cellular compartment 

(Dringen, 2000), so we can assume the spectroscopy signal reflects intracellular GSH 
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levels. That said, the amount of GSH released into the extracellular space (by 

astrocytes in response to oxidative stress) is suggested to be proportional to 

intracellular levels (Sagara et al, 1996). This is of relevance as extracellular GSH 

plays significant neuromodulatory roles (Oja et al, 2000). 

3.2 Investigations leading to proposition 2 

3.2.1 Glutathione, bipolar disorder and alcohol  

We have attempted to investigate oxidative stress associated with alcohol use in BD 

by measuring in vivo GSH via 1H-MRS in the anterior cingulate cortex (ACC) and 

hippocampus. We found that higher levels of drinking were associated with reduced 

GSH in both regions and this was specific to BD and not controls (Chitty et al, 2013a; 

2014b). We concluded that this highlights that people with BD are be more 

susceptible to the oxidative effects of alcohol. Our longitudinal data demonstrates that 

patients who decreased their drinking after 18 months had an associated increase in 

GSH, which was supported by the regression model, showing that decrease in alcohol 

consumption was a significant predictor of increased GSH at follow-up (Chitty et al, 

2015a). Importantly these findings suggest that the oxidative effects of alcohol in 

youth with BD are potentially reversible with a reduction in drinking. 

It is noteworthy to mention that both cross-sectionally and longitudinally, our findings 

appeared to be compounded by tobacco use, which were not controlled for. Tobacco 

use has previously been found to exacerbate deficits noted in other neurometabolites 

investigated in alcohol 1H-MRS studies (Meyerhoff et al, 2013). Due to the high 

comorbidity between drinking and smoking, the individual effects of alcohol and 

tobacco are unlikely to be reconciled using available technologies, but given they are 

both associated with worse illness outcomes in BD (Berk et al, 2008c; Goldstein et al, 
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2008) and production of ROS (Li and Wang, 2004; Zhang et al, 2007), a reasonable 

interpretation is that comorbid alcohol and tobacco use exhibit a greater, combined 

oxidative effect. It is unclear whether the compounded neurobiological effect of the 

alcohol-tobacco comorbidity is associated with a greater impact on neuroprogression 

of BD nonetheless it would be logical to speculate that it does. 

We interpreted the GSH findings in this set of 1H-MRS studies as reflecting the direct 

effects of both alcohol and tobacco on neural oxidative stress in BD, and more 

specifically, that these substances (via production of ROS) contribute to a heightened 

consumption of GSH (indexed by significantly lower levels in risky drinkers). 

Longitudinally we found that changes in GSH were associated with changing alcohol 

patterns and we proposed that a reduction in the use of these substances results in 

improved antioxidant capacity (indexed by increased GSH, which is then available to 

combat oxidative stress).  

Together these findings support Proposition 2 - that alcohol (and tobacco) contributes 

to oxidative stress implicated in BD neuroprogression. 

3.2.2 Indirect effects of oxidative stress – the allostatic load of alcohol  

While alcohol can, and likely does, directly impact in vivo GSH levels and NMDA 

receptor functioning, there is substantial evidence that these two systems are involved 

in the regulation of the other (despite the effects of substances such as alcohol). Hence 

it is possible that a breakdown in one system would have a flow on effect due to its 

role in the compensatory regulation of the other system. Here we will discuss the 

evidence of links between these two systems, and then a new proposal related to the 

effect of alcohol. Of course there are a host of other systems that would also be 
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impacted as a result of impairments in either the NMDA receptor or GSH system, a 

discussion of which is beyond the scope of this review.  

NMDA receptors are highly redox sensitive (Steullet et al, 2006), and fluctuate 

between a fully oxidized and a fully reduced state. Reducing agents (i.e. GSH) 

prevent the oxidization of these sites, thereby enhancing the frequency of channel 

opening (Woodward, 2000) whereas oxidization of these sites diminishes receptor 

function (Sucher and Lipton, 1991). Of note, both GSH and GSSG have been found to 

interact with the extracellular redox-sensitive sites of the NMDA receptor to mediate 

this oxidative balance (Woodward, 2000). GSH can also facilitate NMDA receptor 

functioning by preventing oxidation of thiol groups and breaking disulphide bonds, 

which exist within the ionophore, allowing an increased influx of calcium (Janaky et 

al, 1993). 

In addition, GSH can affect NMDA receptor function via non-redox mechanisms (Oja 

et al, 2000; Steullet et al, 2006). The neuromodulatory role of GSH in NMDA 

receptor activity is proposed to have a biphasic effect, depending on its concentration 

(Oja et al, 2000; Varga et al, 1997). For example, GSH can enhance the NMDA 

receptor response to glutamate binding (Kohr et al, 1994) but it has also been found to 

act as an antagonist of glutamate-induced calcium influx by displacing glutamate 

from its binding site (Janaky et al, 1993).  

Conversely, action at the NMDA receptors can also have an effect on oxidative stress. 

Excess glutamate activation of the NMDA receptor leads to sustained influx of 

calcium, which results in excitotoxicity. Oxidative products are formed during this 

process, including ROS and nitric oxide, which if inadequately compensated for result 

in oxidative stress and cell death (Gunasekar et al, 1995). GSH also protects neurons 
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against glutamate-induced hyper-excitability and neurotoxicity (Levy et al, 1991). Oja 

and colleagues (2000) argue that the overall cumulative evidence for the GSH and 

NMDA receptor interaction is supported by evidence that GSH primarily acts as an 

NMDA receptor antagonist, corresponding to its neuroprotective role in NMDA-

mediated neurotoxicity (Levy et al, 1991; Oja et al, 2000). 

It has been hypothesised that deficits in brain GSH could be a causal factor for the 

impaired NMDA receptor observed in schizophrenia (Steullet et al, 2006). 

Investigation into field excitatory postsynaptic potentials in rat hippocampal slices 

found that a 40% induced GSH deficit was associated with a reduction in NMDA 

receptor activity, the authors concluded this was likely due to excessive oxidization of 

the extracellular redox sensitive sites on the receptor (Steullet et al, 2006). It is 

difficult to compare findings in humans, without pharmacologically inducing 

pronounced GSH deficits and using an indirect measure of NMDA receptor 

functioning such as MMN. However, when attempting to look at the relationship 

between 1H-MRS GSH levels and MMN we found a negative association in controls 

(Chitty et al, 2014c), which can be interpreted in line with the hypothesis that GSH 

has a neuromodulatory role in NMDA receptor functioning (Oja et al, 2000). While 

we did not find the same relationship in patients with BD, there were no differences in 

GSH concentrations between patients and controls. This suggests that in our clinical 

sample (at early stages of illness) oxidative stress is not immediately apparent but that 

regulation of an oxidative stress marker may be impaired, which may lead to future 

oxidative stress.  

Similarly, correlations between MMN and plasma levels of GSH have been found in 

controls, but not in schizophrenia (Ballesteros et al, 2013). In an editorial based on the 

results of the latter study, Harms et al (2013) proposed these findings suggest that the 
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MMN impairments seen in schizophrenia are removed from those associated with 

oxidative stress (Harms and Michie, 2013). We propose an alternative explanation in 

line with our proposition, which is that in clinical samples the deregulated relationship 

between GSH and NMDA suggests that impairments in either system are not being 

adequately compensated for by the other, hence no correlation between the two. The 

reader should be warned however, that there are many limitations to this type of 

analysis (correlating an electrophysiological measure with an unknown source 

location to a precise voxel GSH concentration or serum levels). For example, it is 

possible no relationship was found in our study due to the effects of psychotropic 

medications in the sample of patients with BD (Chitty et al, 2014c). 

While we did not investigate these relationships with respect to alcohol, it provides a 

potential pathway by which alcohol induces more chronic effects on either system in 

BD compared to controls. For example, the lack of association between MMN and in 

vivo GSH (even if deregulated due to the influence of psychotropic medications), 

suggests the effects of alcohol on either system may not be adequately compensated 

for leading to a compounded effect on each system compared to controls - as reflected 

in all our studies (Chitty et al, 2014a; Chitty et al, 2013a; 2014b).  

The noted relationships between the NMDA receptor and GSH support the notion that 

alcohol may be contributing to neuroprogression not only through its direct oxidative 

effects but also via the allostatic load placed on the NMDA receptor system, which 

then may contribute further to oxidative stress. This idea aligns with a proposal by 

Post (2007), that more severe illness in BD may be due to gradual dissipation of 

endogenous compensatory mechanisms that would normally reduce the impact of 

CNS insult (Berk et al, 2011; Post, 2007). Indeed the stage-dependent changes in 
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oxidative stress markers in BD are hypothesized to form part of the progressive 

failure of compensatory mechanisms over time (McGorry et al, 2014).  

3.3 Pharmacological implications from proposition 2: Neuroprotection  

Given the evidence supporting a role of oxidative stress in psychiatric disorders it is 

not surprising that GSH augmentation has been suggested as a novel treatment target 

(Berk et al, 2008b). It is important to re-state here, that in our follow-up study an 

increase of GSH was found with a decrease in drinking and smoking in BD (Chitty et 

al, 2015a), suggesting that in the context of the BD-alcohol comorbidity the first line 

treatment in reducing oxidative stress should be to reduce alcohol consumption and 

tobacco use. 

Pharmacologically, GSH augmentation can be achieved through administration of N-

acetyl cysteine (NAC) (Arakawa and Ito, 2007). NAC is a membrane-permeable 

cysteine precursor, which is rapidly absorbed via oral administration and is then 

hydrolyzed to release cysteine, the limiting precursor in GSH synthesis (Arakawa et 

al, 2007). GSH augmentation provides a defense against ROS and has also been found 

to affect the NMDA receptor, through a release of the oxidative state of the NMDA 

receptor (as described in section 3.2.2) (Berk et al, 2013). Accordingly, NAC 

administration has been associated with an improved MMN in schizophrenia (Lavoie 

et al, 2008). 

NAC as an add-on therapy has shown therapeutic effects on depression in BD, as 

evidenced by a randomized controlled trial (Berk et al, 2008a), with preliminary 

evidence that it can also improve manic symptoms and functional outcomes 

(Magalhaes et al, 2011a; b) and suicidal ideation (Waterdrinker et al, 2015). There 

have also been studies investigating NAC as a novel treatment for several addictive 
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disorders (Berk et al, 2013). To our knowledge however, only one study has 

investigated its affects in alcohol, showing that NAC reduces ethanol-induced 

oxidative damage in the rat brain (Varma et al, 2004). While NAC may not be able to 

decrease the use of alcohol, it has promise in reducing the oxidative stress associated 

with alcohol – which may interrupt neuroprogression. Theoretically however, there is 

potential for GSH augmentation to reduce alcohol use by acting as an antagonist at 

the NMDA receptor (Oja et al, 2000), which may then reduce alcohol tolerance 

(Krystal et al, 2003c).  

There have been other agents, already approved for the treatment of BD, that have 

also been shown to be neuroprotective against oxidative stress (Berk et al, 2008b; Cui 

et al, 2007). Lithium, valproate, lamotrigine and carbamazepine have been shown to 

increase GSH levels in cultured rat cerebral cells, leading authors to suggest that 

augmentation of GSH may contribute to the therapeutics of mood stabilizing drugs 

(Cui et al, 2007). Again these agents have not been shown to reduce the amount of 

alcohol consumed. Nevertheless these may be good treatment options for risky 

drinking patients with BD, to reduce the effects of alcohol (along with alcohol-

reducing interventions) whilst also providing mood stabilising properties to treat the 

symptoms of BD. 

4.0 A neurobiological model of alcohol use in BD 

We propose an empirically supported working model of the neurobiology of 

susceptibility and impact of alcohol use in BD (Figure 2). The model ties in 

propositions 1 and 2, and the wider literature discussed in this review. Briefly the 

model shows potential pathways that the NMDA receptor system confers 

susceptibility to developing alcohol use disorders and that alcohol mediates its effects 



 30 

on BD neuroprogression predominantly through triggering oxidative stress pathways. 

Additionally there is the potential that these two pathways can compound the effects 

in the other (see Section 3.2.2).  

Within this model there may be opportunity to select treatments that will modify or 

interrupt the high risk drinking, but also to reduce the neurobiological impact of 

drinking. Given the evidence provided we have proposed memantine as a potential 

compound for the former and NAC for the latter. Both may be extremely useful add-

on therapies to consider in treating people with BD at risk of, or already exhibiting, 

alcohol use problems. These are both safe and efficacious treatments yet to be 

investigated in this context and if successful could dramatically reduce drinking and 

its neurobiological consequences in BD. 

5.0 Limitations 

There are a number of limitations to our model, and to the studies presented 

throughout this review. We have chosen to present these two pathways in the most 

simplistic form in order to represent how they could be attributed to the BD-alcohol 

comorbidity and its neural consequences. This is a working model and we do not wish 

to make claims of specificity. Clearly a number of other pathways would be affected 

and are also likely to contribute to the susceptibility and neural sequela of the 

comorbidity.  

 

Our studies have several limitations, which we refer the reader to the individual 

papers (Chitty et al, 2014a; Chitty et al, 2013a; 2014b; c; 2015a; b). Briefly, as with 

most clinical psychiatry, our studies assess indirect measures of our neurobiological 
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lines of enquiry. Firstly, we utilize an ERP and then make assumptions about its 

ability to index the functioning of the NMDA receptor. While there is a wealth of 

evidence that implicates the NMDA receptor as the primary pharmacological 

correlate of MMN, there is also other compounds that have also been implicated in its 

generation (Garrido et al, 2009) of particular relevance to alcohol is the influence of 

gamma-amino butyric acid (GABA). Secondly, in terms of our oxidative stress 

measure, there is conjecture about what levels of GSH are actually revealing. For 

discussion of this we refer the reader to section 3.1.1.  

There are also limitations to the model presented herein. Our studies are conducted in 

young people with BD aged between 16 and 30, and hence represent risky drinkers 

rather than people with alcohol dependence. While there are numerous strengths to 

looking at this age group, including the potential to recognize early risk factors and 

early intervention strategies, our results may not be generalizable in terms of the 

wider literature. This is because the large majority of previous research has been 

conducted in people with established diagnosis and/or established problems with 

drinking. It will be necessary to test the hypotheses surrounding oxidative stress and 

NMDA receptors in older age groups with more pronounced problems with alcohol. 

For the time being the model should be viewed as neurobiology associated with risky 

drinking patterns (such as abuse but not dependence).  

6.0 Conclusion 

Overall there is limited available evidence regarding the neurobiology underlying the 

susceptibility and consequences of alcohol use in BD. The current review along with  

our investigations (Chitty et al, 2013a; 2014a; b; 2015a; b) have aimed to address this 

gap, focusing on two well-documented neurobiological systems separately implicated 
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in the pathophysiology of BD and the neural effects of alcohol on the brain. 

Interpretation of our findings in light of review of the wider literature has introduced 

some important areas for consideration and future research. 

Firstly, an extremely important link may be that increased oxidative stress is a 

consequence of the BD-alcohol comorbidity and implicated in the progressive 

worsening of the disorder (Berk et al, 2011). This may indicate that the negative 

effects associated with drinking in BD including the most devastating consequences 

such as suicide are associated with heightened neural oxidative stress – as has been 

previously proposed (Vargas et al, 2013). Hence this review supports the recent 

suggestions that antioxidative therapies are agents for serious consideration in 

psychiatry (Berk, 2012; Berk et al, 2010; Berk et al, 2008a; Berk et al, 2008b; 

Scapagnini et al, 2012).  

Without supporting evidence from randomized controlled trials, the pharmacological 

recommendations presented here have limited relevance for current clinical practice, 

however, we hope that this review highlights to clinicians the importance of 

monitoring and reducing alcohol use in BD. The studies presented revealed an 

impaired neurobiology specifically associated with the comorbidity and the potential 

for this to be reversed with a reduction in drinking. Hence, educating young patients 

of the risks and implementing psychological strategies for tackling this potentially 

devastating comorbidity should be considered as a primary treatment focus.  

Other take-home messages from this review include the considerations that MMN 

may be used as a tool to help predict those who are more susceptible to developing an 

alcohol use problems, and hence who may benefit more from NMDA receptor 

antagonists, such as memantine. If this avenue does prove fruitful, this will allow us 
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to better predict who will go on the develop problems with alcohol use, and therefore 

enable us to intervene early. Furthermore it will guide better treatment selection, as to 

which individual will respond better to certain treatments.  

In conclusion, treatment, early intervention and prevention of alcohol use problems in 

BD are all areas that need to be improved. We propose a neurobiological model for 

the BD-alcohol comorbidity, though in its infancy, provides a basis for further 

investigation and testing pharmacological intervention.  
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Figure captions: 

Fig 1: A schematic of the NMDA receptor within phospholipid postsynaptic 

membrane. 

NMDA receptors are ligand-gated ion channels composed of a tetrameric combination 

of a possible 7 subunits: GluN1, GluN2A, GluN2B, GluN2C, GluN2D, GluN3A and 

GluN3B, all receptor combinations contain an obligatory glycine-binding GluN1 

subunit. Glycine or D-serine binding at GluN1 is required for NMDA receptor 

activation by glutamate, whose binding site is on GluN2 subunits. Under baseline 

conditions, the NMDA receptor channel is blocked by magnesium and when the 

membrane depolarizes as a result of glutamate binding the magnesium is displaced 

allowing calcium to influx the neuron. There does not appear to be a specific site on the 

receptor where ethanol exerts this action but rather a number of various residues arising 

from a combination of transmembrane domains predominantly located within GluN1 

and GluN2 subunits. There does not appear to be a specific site on the receptor where 

ethanol exerts this action but rather a number of various residues arising from a 

combination of transmembrane domains predominantly located within GluN1 and 

GluN2 subunits. 

Black ovals, GluN1; grey ovals, GluN2A; A, Potential ethanol binding site. 

Ca2+, calcium;  COOH, carboxyl group; NH2, amine group. 
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Figure 2: A neurobiological model for the bipolar disorder and alcohol 

comorbidity, focusing on the NMDA receptor and oxidative stress systems 

A: The NMDA receptor is implicated in the pathophysiology of BD (Ghasemi et al., 

2014). B: Oxidative stress is implicated in the pathophysiology of BD (Andreazza et 

al., 2008) C: BD is a neuroprogressive illness and oxidative stress is believed to 

contribute to the gradual worsening of the disorder over time (Post, 2007; Berk et al., 

2011). D: The symptoms associated with BD neuroprogression and alcohol use in BD 

overlap, supporting the theory that alcohol acts an aggravator of neuroprogression 

(Kapczinski et al., 2008). E: Alcohol promotes production of ROS through a number 

of mechanisms (Tsai, 1998). F: The NMDA receptor is a high affinity target for both 

the acute and chronic actions of alcohol in the brain (Krystal et al., 2003c). Risky 

drinkers with BD have more impaired MMN than non-drinking peers and controls 

suggesting a compounded impairment at the NMDA receptor (Chitty et al., 2014). G: 

GSH is the major antioxidant in the brain. GSH reduces ROS and in the process is 

consumed (converted to its oxidized form) (Janaky et al., 1993). H: Oxidative stress 

arises when the balance of oxidants and antioxidants are in favour of the oxidants (e.g. 

when presence of ROS cannot be compensated for). Augmenting GSH may help to 

combat ROS formed from alcohol use and BD, and reduce associated oxidative stress. 

I: GSH can modulate the function of the NMDA receptor through both redox and non-

redox mechanisms (Oja et al., 2000). J: Excessive activation of the NMDA receptor by 

glutamate results in an sustained influx of calcium causing excitotoxicity. ROS are one 

of the oxidative species formed during this process, and largely contribute to 

excitotoxicity-mediated cell death (Gunasekar et al., 1995). K: Impaired NMDA 

receptor functioning is believed to contribute the increased tolerance to alcohol, and 

hence increase susceptibility to drink heavily and develop problems with alcohol 
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(Krystal et al., 2003c). Agents which target the NMDA receptor system have shown to 

reduce alcohol use (Krupitsky et al., 2007). L: Proposition 1: It is the 

pathophysiological impairments in NMDA receptor functioning in BD are driving their 

increased susceptibility to risky drinking. M: Proposition 2: Alcohol aggravates BD 

neuroprogression predominantly through oxidative stress pathways. Note this could 

either be due to the promotion of ROS production due to alcohol use and resultant 

oxidative stress (E – G – H) or via allostatic load on the NMDA receptor which 

promotes production of ROS (F – J – G – H) or directly effects GSH levels (F – I – G 

– H). BD, bipolar disorder; GSH, glutathione; NMDA, N-methyl-D-aspartate; ROS, 

reactive oxygen species 

Solid black lines, established neurobiological pathways; solid grey lines, 

pathophysiological associations; grey dotted lines, associated symptoms/traits; black 

dotted lines, theoretical pathways (propositions 1 and 2); lightening bolts, potential 

pathways that can be pharmacologically modulated; grey boxes outlined in black 

dotted lines, neurobiological pathways associated with the BD-alcohol comorbidity. 

 

 

 

  



 50 

Figure 1 

 

 

  



 51 

Figure 2  

 

 


	Chitty, NBBR, 2015 cover
	Chitty, NBBR, 2015

