The Editor gratefully acknowledges the substantial inputs to the preparation of the Handbook by Ms Christine Hermely and Ms Danielle Heilpern from the Faculty of Science Office. The Editor also thanks all Departmental and School Faculty Handbook Liaison Officers for their assistance.
Semester and vacation dates 1996

<table>
<thead>
<tr>
<th>Semester</th>
<th>Day</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester and lectures begin</td>
<td>Monday</td>
<td>26 February</td>
</tr>
<tr>
<td>Easter recess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day of lectures</td>
<td>Friday</td>
<td>5 April</td>
</tr>
<tr>
<td>Lectures resume</td>
<td>Monday</td>
<td>15 April</td>
</tr>
<tr>
<td>Study vacation—1 week beginning</td>
<td>Monday</td>
<td>10 June</td>
</tr>
<tr>
<td>Examinations commence</td>
<td>Monday</td>
<td>17 June</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Day</th>
<th>1996</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester and lectures begin</td>
<td>Monday</td>
<td>22 July</td>
</tr>
<tr>
<td>Mid-semester recess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day of lectures</td>
<td>Friday</td>
<td>27 September</td>
</tr>
<tr>
<td>Lectures resume</td>
<td>Monday</td>
<td>7 October</td>
</tr>
<tr>
<td>Study vacation—1 week beginning</td>
<td>Monday</td>
<td>4 November</td>
</tr>
<tr>
<td>Examinations commence</td>
<td>Monday</td>
<td>11 November</td>
</tr>
</tbody>
</table>
Contents

Introduction iv
Message from the Dean v

1. Staff 1

2. Courses in the Faculty of Science 13
 Departmental and Faculty advisers 17

3. Undergraduate degree requirements 20
 Restrictions (general) 20
 Time limits 20
 Suspension 20
 Examinations and assessment 20
 Discontinuation and re-enrolment 21
 BSc degree 23
 Summary of requirements 23
 Degree regulations 25
 BSc (Advanced) degree program 52
 BSc (Environmental) degree program 52
 BSc (Molecular Biology and Generics) degree program 61
 Combined degrees 65
 Combined Science/Law degrees 65
 Combined Arts/Science degrees 65
 Combined Science/Engineering degrees 66
 Combined Science/Medicine degrees 67
 BCST degree 68
 BMedSc degree 75
 BPharm degree 81
 BPsych degree 85

4. Talented Student Program 92

5. Courses of study 94
 Agricultural Chemistry and Soil Science 94
 Anatomy and Histology 97
 Biochemistry 98
 Biological Sciences 101
 Cell Pathology 108
 Civil Engineering Science 109
 Chemical Engineering Science 110
 Chemistry 111
 Computer Science 115
 Geography 116
 Geology and Geophysics 119
 History and Philosophy of Science 121
 Marine Sciences 123
 Mathematics and Statistics 125
 Mechanical and Aeronautical Engineering Science 130
 Microbiology 131
 Pharmacology 132
 Physics 134
 Physiology 136

 Psychology 138
 BSc (Advanced) degree program 140
 BSc (Environmental) degree program 140
 BSc (Molecular Biology and Genetics) degree program 141
 BSc/LLB 141
 Degree of Bachelor of Computer Science and Technology 142
 Degree of Bachelor of Medical Science 144
 Degree of Bachelor of Pharmacy 149
 Degree of Bachelor of Psychology 156

6. Other Faculty information 158
 Scholarships and prizes:
 undergraduate 158
 Student membership of the Faculty 159
 Map Library 159
 Marine Studies Centre 160
 Mathematics Learning Centre 160
 Faculty and departmental societies 160
 Employment for graduates in science 160
 Brief history of the Faculty 161

7. Postgraduate study 163
 PhD 163
 MSc and MPharm 163
 MPsychol/PhD 163
 MPyschol 164
 MNutrDiet and MNutrSc 164
 Graduate diplomas 165
 Masters Qualifying Procedure 167
 Scholarships and prizes: postgraduate 167

8. Timetable of lectures and practical classes 171

Appendix: Explanation of symbols for courses of study 185
Map of main campus 187
In particular, it will help you to find out who the people in your Faculty are; the requirements for degrees in the Faculty and the ways that these can be satisfied; what courses are offered and the books required to do these courses; where to turn for more information, advice and help.

When making up your mind about your course of study, look at Chapter 3, dealing with how to get a degree, and also read the Resolutions of the Senate that apply to the degree. If you would like help in deciding on the best course for you to take, talk to someone.

Once you have selected the departments you will be studying in, you will then enrol. The Faculty requires all enrolments to be approved by Faculty Advisers before the completion of the enrolment process. Any further particular requirements of departments you enrol in are given at the beginning of the department’s entry in Chapter 4 on courses of study.

Information and advice
Faculty office
The offices of the Dean and the Faculty Manager are in the Carslaw Building. The Dean is located on level 4 in Room 435 and the Faculty Manager is in the Faculty Office, level 2.

Departmental advisers or Head of Department or section
For questions about particular courses or subjects.

Any special advisers for departments are set out in Chapter 2.
On behalf of the Faculty of Science, I extend a warm welcome to all students, particularly those joining us this year. We hope that your stay at the University will be both enjoyable and productive.

The Faculty has now been in existence for over a hundred years. Its graduates have achieved considerable distinction in many fields and many of them currently occupy important positions in public life, both in Australia and abroad. Many of its departments are held in high regard internationally for their research activities.

Because of its size and its extensive links with other faculties in the University, the Faculty of Science is able to offer a great variety of courses catering for students with a wide range of interests and abilities. Many course combinations provide the preparation required for professional careers in one of the various science disciplines, including the medical sciences and pharmacy, or for further studies at postgraduate level. Other combinations give a broad general background in science and are excellent training for many careers in both the public and private sectors. Some courses are offered at two levels and many others contain advanced level options. The Talented Student Program in the Bachelor of Science degree offers considerable flexibility and challenges for the most able students.

This handbook gives general information about all of the courses available, the departments which provide them and the various regulations which govern progress towards your degree. You are encouraged to take full advantage of these sources of advice so that you are in a position to make informed decisions about the content of your degree.

I would also like to draw your attention to the University services which provide valuable assistance to students in more personal areas — the University Health Service, Student Services and the Careers and Appointments Service. If you encounter a problem of a personal nature, you are welcome to discuss it with me or with one of the Associate Deans; in either case it is advisable to make an appointment at the Faculty Office.

I wish you every success in your studies.

Helen Beh
Acting Dean
1 Staff

FACULTY

Acting Dean
Associate Professor Helen C. Beh

Associate Deans
Associate Professor Christopher B. Gillies
Associate Professor Gerald M. Holder
Dr Mary Peat
Associate Professor Damon D. Ridley
Associate Professor Cedric D. Shorey
Dr Ian Spence
Dr Michael A.W. Thomas
Dr James N. Ward

Executive Officer
Kim P. Schwieters, BA Well. MA

Resources Manager
Dorothea Sophia, BEd Deakin

Faculty Manager
Danielle Heilpern, BSc U.N.S.W.

Postgraduate Adviser
Maria A. Marshall

Undergraduate Adviser
Thea Papageorgiou

Administrative Assistants
Rane M. Boteju, BA Colombo
Christine A. Hermely, BSc
Lisa N. Jones, BA

Marketing Manager
Adrienne Jerram, BA Macq. GDipCommMan U.T.S.

Marketing Assistant
Alison Gall

DEPARTMENTS/SCHOOLS

Agricultural Chemistry and Soil Science

Professor in Soil Science (Pedometrics) (Personal Chair)
Alexander B. McBratney, BSc PhD Aberd.

Reader
Ivan R. Kennedy, BSc(Agric) PhD DSc(Agric) W.Aust., MRACI CChem

Associate Professors
Les Copeland, BSc PhD MRACI, CChem
Anthony J. Koppi, BSc PhD Aberd.

Senior Lecturers
Robert A. Caldwell, MSc PhD, MRACI CChem
Harold R. Geering, MS Chn
Edith M. Lees, BSc PhD Lond.

ARC Research Associates
Sunitha Katupitiya, MSc Perad’ya PhD Laenen
Shahid Chohan, MSc Faisalabad PhD UMIST

CRC for Sustainable Cotton Production

Postdoctoral Fellow
Inakwu O.A. Odeh, BSc Ibadan PhD Adel.

Professional Officers
John T. Corbett
Francisco Sanchez-Bayo, MSc PhD Madrid (Auton)
Derek B. Yates, BAppSc U.N.S.W. DipEnvStudies Macq.

Senior Technical Officers
Colin Bailey, BAppSc N.S.W.I.T.
Chris Conoley, BSc Macq.
Marcel Chaloupea

Technical Officers
Iona Gyorgy, BiolTechCert BSc(Biotech) U.T.S.
Kevin McLauchlan, BiolTechHCert S.T.C.

Administrative Assistant
Pamela Clifford

Honorary Appointments

Emeritus Professor
Neville Collis-George, MSc Man. PhD Camb., HonDScAgr FRScChem

Honorary Associates
Patrick H. Walker, PhD Iowa DScAgr
Barry V. McIverly, PhD DScAgr

Research Affiliate
Claudine Elmerich, DSc Paris

Anatomy and Histology

Challis Professor of Anatomy
Jonathan Stone, BSc(Med) PhD DSc, FAA
Appointed 1987

Bosch Professor of Histology and Developmental Biology

Readers
Bogdan Dreher, MS PhD Warsaw DSc
Johnston W. McAvoy, BSc Belf. PhD Flin.

Associate Professors
Richard J. Bandler, BAMiami (Ohio) PhD Carnegie-Mellon DSc
Cristobal G. dos Remedios, BSc PhD
Christopher R. Murphy, BSc Adel. PhD Flin.
Cedric D. Shorey, MSc PhD U.N.S.W., HonMCGI FCGI FIScT
William S. Webster, BSc PhD Lond.

Senior Lecturers
Vladimir J Balcar, BSc Sheff. PhD A.N. LT.
Maria Byrne, BSc Galway PhD Vic. B.C.
Gregory A. Doran, BSc Lond. MSc W.Aust. PhD N’cle(N.S.W.), MACE
Anne Glucina, BSc Otago
Lynette A. Moffat, BSc PhD
Jan M. Provis, BSc PhD LT.N.S. W.
Margaret A. Swan, BSc PhD

Lecturers
Robin Arnold, MSc
Denise A. Donlon, BA PhD N.E. BSc DipEd
John Mitrofanis, BSc LT.N.S. W. PhD

Senior Research Fellows
Julian A. Barden, PhD Macq.
Coral G. Chamberlain, MSc PhD

1 Staff as known at September 1995
Research Fellow
Tailoi Chan-Ling, MOpton, PhD U.N.S.W., FAAO

Associate Lecturers
Deborah Bryce, BSc N’cle(N.S.W.) MChiroprac Macq.
Fiona Stewart, BSc N.E. MB BS
Richard Ward, BMedSci MB BS Monash

Professional Officers
Peter R. Mills, DipMT A.I.M.L.S., AAIMLS
Vera Terry, BSc PhD

Technical Officers
Darryl R. Cameron
Jim Demcsak
Clive H. Jeffrey
Murat Kekic
Henry Marell
Roland A. Smith
Michael White

Administrative Officer
Lena Ting, DipPublAdmin H.K.

Honorary Appointments
Honorary Associates
Arthur V. Everitt, BSc PhD
Helen R. Harding, BSc PhD U.N.S.W. BA
Robert R. Munro, MD BS, FRACS
John K. Pollak, BSc PhD
Richard Wright, BA Camb. MA

Research Associates
Peter O. Bishop, MB BS DSc MD, FRS FAA
William Burke, BSc PhD Lond.

Visiting Scholar
Stephen Cui

Biochemistry
McCaughey Professor
Robert Gerard Wake, MSc PhD, FAA
Appointed 1977

Professor
Philip William Kuchel, BMedSc MB BS Adel. PhD A.N.U.
Appointed 1980

Associate Professors
Richard I. Christopherson, BSc PhD Melb.
Alan R. Jones, PhD Mane. MSc
Gregory B.Ralston, BSc U.N.S.W. PhD A.N.U.
Michael B. Slaytor, MSc PhD

Senior Lecturers
Charles A. Collyer, BSc Flin. PhD
Arthur D. Conigrave, BSc(Med) MB BS MSc PhD, FRACP
Ivan G. Darvey, BSc PhD U.N.S.W.
Simon B. Easterbrook-Smith, BSc WelI. PhD Adel.
Glenn F. King, BSc PhD
Michael A.W. Thomas, DPhil Oxf. BSc
Anthony S. Weiss, BSc PhD
Emma Whitelaw, BSc A.N.U. DPhil Oxf.

Lecturers
Merlin Crossley, BSc Melb. DPhil Oxf.
Gareth S. Denyer, BA DPhil Oxf.

Associate Lecturers
Douglas J. Chappell, BA BSc PhD DipEd

Jill Johnston, BSc Qld DipEd Catholic C.E.(Syd.)
Joan P. Loke, GradDipEdStudies Kuring-gai C.A.E. MSc

Senior Research Fellow
J. Mitchell Guss, BSc PhD

Research Fellow
William A. Bubb, DIC Lond. BSc PhD

Professional Officer Grade IV
Dennis R. Leonard, MSc

Administrative Officer
Michael C. Miller, BiolTechCert S.T.C. BAppSc N.S.W.I.T.
DipBusStud N.E.

Senior Technical Officers
Robert T. Czolij, BSc Macq. BiolTechCert S.T.C.
Joseph Dimauro, MSc
William G. Lowe, BiolTechCert S.T.C.
Peter L. McGuire, ElecEngCertS.r.C.ElectronicsEngCertG.T.C.
Ross I. Taylor, FittMachCert ToolmakingCert S.T.C.

Technical Officers
Cesar De La Paz
Juliana Ferenczi
Debra Phillips, QTACert N.Z.I.M.L.T.
Maria E. Villacis, BSc DipBiochem Lima, FACBS

Laboratory Assistants
Andrea Coppola
Donna Hayward

Librarian
Sarah L. Barrett, DiplIM(Lib) U.N.S.W. BA

Administrative Assistants
Anna Dracopoulos
Bronwyn Ferguson (part-time)
Anne Madden
Stephen Conaghan

Honorary Appointments
Emeritus Professors
Clifford H. Gallagher, PhD Lond. DVSce, FACVSc FRCPath
Noel S. Hush, DSc Mane. MSc, FRS FAA FRACI

Honorary Associates
Ronald HiU, MSc PhD
Michael A. Messer, MSc PhD Melb.

Honorary Research Associate
Stephen D. Lyons, BSc Melb. PhD

Human Nutrition Unit
Boden Professor of Human Nutrition

Professor
Arthur Stewart Traswell, MB ChB Cape T., FRCP FFPHM
FRACP (half-time)
Appointed 1978

Associate Professor
Janette C. Brand Miller, BSc PhD U.N.S.W., FAIFST

Senior Lecturer
Margaret A. Allman, BSc PhD Melb.

Kellogg Lecturer in the Human Nutrition Unit
Philippa Wall, BSc DipNutrDiet PhD

Lecturer
Samir Samman, BSc PhD

Senior Technical Officer
Ziaul I. Ahmad, MAppSc U.T.S.
Honorary Clinical Supervisors
Judith Aliakbari, BSc GradDipNutrDiet Q.U.T.
Andy Bravo, BSc DipTherDiet Cape T.
Lyn Brown, DipIM CertDiet Melb.
June Bullock, BSc CertDiet
Susan Burke, BSc DipFoodTech U.N.S.W. DipNutrDiet
Jo Burton, BSc DipNutrDiet
Jane Francis, BSc DipNutrDiet
Peter Guest, DipEd W.Syd. DipSportsSc MBA Macq. BSc DipNutrDiet
Jenny Hazelton, BSc A.N.U.
Cape T
Andy Bravo, BSc DipTherDiet
Jenny McDonnell, BSc DipNutrDiet
Kate Holliday, BSc DipNutrDiet
Wendy Hodge, BSc U.N.S.W. DipNutrDiet
June Bullock, BSc CertDiet
Margaret Holyday, BSc DipNutrDiet
Michelle Hughes, BSc DipNutrDiet
Keryn Kahl, BSc Adel. DipHNutDirt Flin.
Helen Knott, BSc CerDiet N’cle(N.S. W.)
Debbie Lillienthal, BScHEc (Canada) GradDipEdStud
Maria Loveday, BSc Deakin CerDiet Vic.
Jenny McDonnell, BSc DipNutrDiet
Marcelle Middleton, BSc A.N.U. BSc U.C. DipNutrDiet
Dianne Muniz, BSc U.N.S.W. DipNutrDiet Adel.
Margaret Nicholson, BSc DipNutrDiet
Rita Nicolau, BSc DipNutrDiet
Nola Paterson, BSc Qld DipNutrDiet
Sue Payne, BHSc RD Otago
Maria C. Plaza, BSc DipNutrDiet Chile DipEd N.E.
Joanne Prendergass, BSc Acad. Pdt Montr. MHPed U.N.S.W.
Julianne Quaine, BSc A.N.U. DipNutrDiet
Jennifer Ravens, BSc CerDiet
Beth Rohrlach, BSc DipNutrDiet
Janice Sangster, BSc DipNutrDiet
Fifi Spechler, BSc DipNutrDiet
Breth Thompson, BSc GradDipNutr Diet Curtin
Dian Tranter, BSc DipNutrDiet
Amanda Whitworth, BSc U.N.S.W. DipNutrDiet
Peter Williams, BSc A.N.U. MHP U.N.S.W. DipNutrDiet
Sue Wright, BSc DipNutrDiet

Laboratory Assistant
Zafar Khan (half-time)

Administrative Assistants
Marianne Alexander
Isa Hopwood (half-time)

Biological Sciences

Challis Professor of Biology
Ian Douglas Hume, BSc(Agric) PhD W.Aust. DSc N.E., FAIBiol
Appointed 1987

Professors of Biology
David Joseph Patterson, PhD Brst. DSc Ql.
Appointed 1992

Professor of Biology (Genetics)
Ronald Anthony Skurray, AUAPharm BSc PhD DSc Adel., MASM FAIBiol
Appointed 1991

Professor in Experimental Ecology (Personal Chair)
Antony J. Underwood, PhD DSc Brst., FAA FLS FIBiol
FAIBiol CBiol
Appointed 1992

Professor in Evolutionary Biology (Personal Chair)
Richard Shine, BSc A.N.U. PhD N.E. DSc
Appointed 1993

Professor in Plant Sciences (Personal Chair)
Anthony W.D. Larkum, BSc Lond. DPhil Ostf., ARCS

Reader
ManW.Meats,BScDurr. PhdDN’cle(U.K.),FRES(McCaughley
Lecturer in Entomology)

Associate Professors
Patricia J. Armati, MSc PhD, MAIBiol
Christopher B. Gillies, MAgrSc Qld PhD Alta
Rosalind T. Hinde, BSc PhD

Director of First Year Biology
Mary Peat, BSc Birm. PhD Brst.

Senior Lecturers

Christopher Dickman, BSc Leeds PhD AN. IT.
Ove Hoegh-Guldberg, PhD U.C.L.A BSc
Michael J. Kingsford, BSc Cant. MSc PhD Auck.
Stephen Morris, BSc Lond. PhD Glas.
Robyn L. Overall, BSc U.N.S.W. PhD A.N.U.
Michael B. Thompson, BSc PhD Adel.

Lecturers
Murray J. Henwood, BSc Well. PhD ANU.
Bruce Lyon, BSc PhD Monash
Peter McGee, BAgSc PhD Adel. DipHEd U.N.S. W.
Jan Marc, BSc PhD U.N.S.W.
Benjamin Oldroyd, BScAgr PhD

Lecturers (half-time)

Jennifer Donald, BA Macq. PhD Adel.
Kathryn Raphael, BA PhD Macq.

Associate Lecturers

Susan Franklin, BSc Wales MSc St’on PhD
Dieter Hochuli, BSc Monash
Kalloope Katsikaros, BSc
Osu Lilje, BSc
Robert Paterson, BSc James Cook
Deborah Shearman, MSc
Charlotte Taylor, BSc Dund. PhD Aberd.
Jennifer Wilkinson, BSc Qld PhD Macq.

Associate Lecturers (half-time)

Laura Danckernels, BSc PhD U.N.S. W.
Eric Dorfman, BA Calif. MSc San Jose’State
Elizabeth May, BSc DipEd U.N.S.W.

ARC Senior Research Fellow
Marianne Frommer, BSc PhD

Senior Research Associate
John Harper, BSc PhD Qu.

Research and Postdoctoral Fellows and Research Associates

Kristin Argall, BSc PhD
M. Gee Chapman, BSc Natal MSc PhD (Institute of Marine Ecology)
Julia Hush, BSc PhD
Michael Lee, BSc Qld PhD Camb.
Mats Olsson, BSc PhD Gotenborg
S. Adele Post, PhD Macq. BSc
Raymond J. Ritchie, BSc PhD
Gregory W. Rouse, MSc Qld PhD
Gregory A. Skilleter, BSc PhD (Institute of Marine Ecology)

Professional Officers Grade III
Mark Curran, BSc(GenerSc)
Janice L. Jacobs, BSc(GenerSc)
Michael Joseph, BSc

Administrative Officer
Maureen Claxton, BA R’dg DipEd N.E.
Finance Officer
Daniela Viola, RAG Scuola di Ragioneria (Milan)

Computer Systems Officer
Michael Kong, BSc

Senior Technical Officers
George Barrett, HNC (AppBiol) U.K.
Virginia Klomp, BioTechCert BioTechHigherCert S.T.C.
Robert Mackay-Wood, BSc Cant.
Andrew Oulianoff
Basil Panayotakos
Malcolm Ricketts, BSc Macq. PhotogCert S.T.C.
Salvatore Ruggeri
Heather Snowden, BiolTechCert S.T.C.
Klaus-Peter Suckau, DiplIng Tech.Univ. Munich

Technical Officers
Jacqueline Adcock, BSc
Christa Blaess, BAppSc R.M.I.T.
Brett Dicks, AssocDip(BiolTech) S.T.C.
Margaret Gilchrist, BiolCert S.T.C.
Anne-Laurie Enault, BSc
Graham Housefield, BioTechCert Arm.T.C. BAppSc Charles Sturt
Hamish MacKenzie, BiolCert S.T.C.
Ralph Maddox, BioTechCert Arm.T.C.
Claudio Muhlrad, BioTechCert S.T.C.
Christine Newman, BAppSc U.T.S.

Technical Officer (half-time)
Mark Dickson, BSc

Curator of Zoological Collections
Angela Low, BSc (part-time)

Laboratory Assistants
Stephen Burrowes, BSc
Hamlet Giragossyan (half-time)
Mihaly Ferenczi, BAgSc Goddalo
Kylie Robert (part-time)

Laboratory Assistant/Gardener
Daniel Palmer, HortCert Padstow Coll. of TAFE BSc(Hort)
U.T.S.

Field Store Attendant
Jason Errey, BSc U.N.S.W.

Animal House Attendant (part-time)
Cara Chambers

Attendants
Hamlet Giragossyan (half-time)
Julio Pena

Caretaker (Crommelin Biological Field Station, Pearl Beach)
Eric Pearce

Administrative Assistants
Sylvia Bennett
Brigid McKay, BSc Auck
Sandi Meirais-Colley
Jannine Cradick
Sabine Krause
Sylvia Warren
Pamela Wray

Honorary Appointments
Emeritus Professors
Donald Thomas Anderson, AO, PhD Lond. DSc Lond. and Syd., FRS FLS FAIIABiol
Charles Birch, BAgSc Melb. DSc Adel., FAA FAANAS
Michael G. Pitman, QBE, MA PhD ScD Camb., FAA

Spencer Smith-White, DScAgr, FAA
John Alexander Thomson, MSc MAgSc PhD Melb.

Visiting Professors
Frank Talbot, BSc Wire. PhD Cape T.
Neil Willetts, MA PhD Camb.

Honorary Associates
Valerie B. Morris, BSc PhD Edin.
John A. Sved, BSc PhD Adel.

Honorary Research Associates
Tony D. Auld, BSc PhD
Ross A. Bradstock, BSc PhD
Graham J. Faichney, BSc (AgrSc) MScAgr PhD DAgrSc Melb.
Timothy Hannery, BA LA T. MSc Monash PhD U.N.S.W.
Lesley Gibson, BSc U.N.S.W.
George Humphrey, LLB U.N.S.W. BA PhD
David A. Keith, BSc PhD
John D. Pollard, BSc MB BS PhD
James Stewart, PhD Tulsa

Honorary Teaching Associates
Walter E. Boles, BSc Emporia State
Helen Drury, BSc(Hons) Lond. DipEd Mane. CertTEFL MA
Allen E. Greer, BA Stan. PhD Harv.
Patricia A. Hutchings, BSc Lond. PhD DSc N'cle(U.K.)
Jeffrey M. Leis, BSc Arizona PhD Hawaii
John R Paxton, BA MSc PhD S.Calif.

Visiting Scholars
Patricia Bergquist, MSc(Hons) PhD DSc Auck.
Youyong Zhu, MSc Yunnan

Chemistry
Professor in Chemistry (Organic Chemistry) (Personal Chair)
Leslie D. Field, PhD DSc, FRACI CChem
Appointed 1994

Professor of Chemistry (Inorganic Chemistry)
Hans-Charles Freeman, MSc PhD, FAA FRACI FRSC CChem
Appointed 1971

Professor of Chemistry (Organic Chemistry)
Sever Sternhell, PhD DSc DIC Lond. MSc, FAA FRACI CChem
Appointed 1977

Professor of Chemistry (Physical Chemistry)
Donald Harold Napper, PhD Camb. MSc, FAA FRACI CChem
Appointed 1985

Professor of Chemistry (Theoretical Chemistry)
Anthony D.J. Haymet, BSc PhD Chic, FRACI CChem
Appointed 1991

Professor in Chemistry (Polymer Chemistry) (Personal Chair)
Robert G. Gilbert, PhD A.N.U. BSc, FAA FRACI CChem
Appointed 1992

Reader
Peter A. Lay, BScMelb. PhD A.N. U. 17, FRACI CChem (Inorganic Chemistry)
Computer Systems Officers
John Bignuocolo, MSc
Piers R. Dick-Lauder, BSc DipCompSc Brad.
Roy Giles, BSc Wales
Bruce Janson, BSc
Tim Nicholson, PhD
Greg Ryan, BSc

Senior Technical Officers
Allan Creighton
Remo Di Giovanni
Arthur Scott

Technical Officer
Matthew Geier

Administrative Officer
Helene Orr

Administrative Assistants
PeggyIu
Eileen Kemp

Honorary Appointments

Emeritus Professor
John Makepeace Bennett, AO, BE(Civ) BE(Mech&Elec) BSc Qld PhD Camb., FTS FACS FBCS FlEAust FIMA

Honorary Associate
Jack R. Phillips, BMEcE PhD Melb.

Honorary Research Associates
Sherman (Hsuen Ren) Hwa, BS NatnTaiwan MS NatnChiao Tung (Taiwan) PhD Ott.
Eric Tsui, PhD Deakin

Geography
McCaughhey Professor

Associate Professors
John Connell, BA PhD Lond.
Andrew D. Short, MA Hawaii PhD Louisiana State BA Robin F. Warner, BA Birm. PhD N.E.

Senior Lecturers
David E.M. Chapman, MEngSc U.N.S.W. BA PhD Deidre Dragovich, MA Adel. PhD
Philip Hirsch, BA OxT. MPhil Dundee PhD Lond.

Lecturers
Peter J. Cowell, BA PhD
Jamie Gough, BA PhD OxT.
Charles Greenberg, MA PhD Br.Col.
Martin C. Thorns, MSc N.Z. PhD Lough.

Associate Lecturers
Christopher Parker, BSc
William Pritchard, BA A.N.U.

Cartographer
John E. Roberts

Honorary Appointments

Emeritus Professor
Trevor Langford-Smith, BA Melb. MSc Adel. PhD A.N.U. BSc

Honorary Associates
Peter Roy, PhD DIC Lond. BSc
John Rutherford, BA PhD A.N.U.
Edward Wheelwright, DFC MA St.And.

Research Affiliate
Philip D. Tilley, BA CertEd Birm. DrPhil Bonn MSc

Geology and Geophysics

Edgeworth David Professor of Geology and William Hilton Hovell Lecturer
Peter John Davies, BSc Leic. PhD Sheff.
Appointed 1991

Professor of Geophysics
Ian M. Mason, BScEng Cape T. PhD Edin.
Appointed 1995

Senior Lecturers
Gavin F. Birch, MSc PhD GradDipIndAdmin Cape T.
Geoffrey L. Clarke, BSc PhD Melb.
John B. Keene, BAGeE ME PhD Calif. BSc
Eric A. K. Middlemost, MSc PhD Cape T.
Jan J. Stienstra, MSc Delft

Lecturers
Roger Buick, BSc PhD W. Aust.
Michael Glen Hughes, BSc PhD
Keith Klepis, BA Colgate PhD Texas
Dietmar Muller, BSc Kiel PhD Calif.

Associate Lecturers
Thomas C.T. Hubble, MSc U.N.S.W. MSc DipEd
Alexandra R. Isern, BSc Florida MSc Rhode Island PhD ETH Zurich
Colin Wilkins, BSc Hull PhD James Cook

Honorary Appointments

Honorary Research Associates
Mike Asten, PhD Macq.
David F. Branagan, PhD, FGS
David Clark, MSc
Richard Coleman, BSurvPhD U.N.S.W.
Alan A. Day, PhD Camb. BSc, FRAS
Donald W. Emerson, BE MSc U.N.S.W. PhD, FAIG FAIMM
Gabor Földvary, MSc U.N.S.W.
Roger Henderson, MSc
Michael Hughes, BSc PhD
Huw Jenkins, PhD Wales
Andrew McMinn, BSc PhD Macq.
Philip Mulhearn, PhD
Gordon Packham, BSc PhD
Charles Phipps, PhD Tor. BSc
Anne Reeckmann, BSc PhD Melb.
Erwin Schneiber, RNDR J.A. Comenius U.
Barry Webby, MSc N.Z. PhD BSc Bristol, FGS
Kenneth Williams, MSc ME. PhD A.N.U. BSc

Mathematics and Statistics

Professors
Edward Norman Dancer, BSc A.N.U. PhD Camb.
Appointed 1993
Eugene Seneta, MSc Adel. PhD A.N.U. FAA
Appointed 1979

Professor in Pure Mathematics (Personal Chair)
Gustav Isaac Lehrer, PhD Warw. BSc
Appointed 1990

Professor in Mathematical Statistics (Personal Chair)
John Robinson, BSc Qld PhD
Appointed 1991

Professor (half-time)
Peter Robert Wilson, BA MSc Melb. PhD, FRAS

Readers
John J. Cannon, MSc PhD
Donald I. Cartwright, PhD Ill. BSc
Jonathan Hillman, BSc W.Aust. AM Harv. PhD A.N.U.
Tzce-Char Kuo, BS Natnl Taiwan PhD Chic.
King-Fai Lai, BSc Lond. MPhil PhD Yale

Associate Professors

Christopher J. Durrant, MA PhD Camb.
Edward D. Fackrell, MSc PhD
Terence M. Gagen, BSc Qld PhD A.N.U.
Ronald W. James, BSc PhD
John M. Mack, MA Camb. BSc PhD
Donald E. Taylor, MSc PhD Lond. DPhil Oxf.
Robert F.C. Walters, BSc PhD A.N.U.

Senior Lecturers

Peter W. Buchen, PhD Camb. BSc
Koo-Guan Choo, BSc Nan. MSc Ott. PhD Br.Col.
Christopher M. Cosgrove, BSc PhD
David Easdown, BA A.N.U. PhD Monash
Roger W. Eyland, PhD Camb. MSc
Barrie Fraser, BSc PhD SM Camb.
David J. Galloway, BA PhD Camb.
William G. Gibson, MSc Cant. PhD U.N.S.W.
Robert B. Howlett, BA PhD Adel.

Lecturers

Howard J. D’Abrera, PhD Calif. BSc
David C. Edelman, MPhil PhD Col. SM M.I.T.
Humphrey M. Gastineau-Hills, MSc PhD
Jenny Henderson, DipEd Flin. MSc
T. Paul Hutchinson, MA Camb. PhD Lond.
David I. Ivers, BSc PhD
Hugh Luckock, BSc Auck. PhD N’cele(U.K.)
Mary R. Myerscough, DPhil Oxf. MSc
Adrian M. Nelson, PhD Lond. BSc
Adam Parusinski, MSc Gdansk PhD fegiellanion
Laurentiu Paunescu, MSc Bucharest PhD
M. Shelton Peiris, DipMath MSc Peradeniya PhD Monash
Mary C. Phipps, MSc
Fernando Viera, BEng MEngSc PhD U.N.S.W.
Vladislav Zhelegovsky, DipSci PhD Moscow

Associate Lecturers

Sandra C. Britton, BSc U.N.S.W. MA
Mark J. Craddock, BSc PhD U.N.S.W.
Stephen W. Goulter, BSc Cant. MSc DipOR Well.
Matthew Hardman, BSc
Xuezhong He, BSc Ningxia MSc Hebei PhD Flin.
Amitavo Islam, BSc A.N.U.
Jennifer Kearns, BSc U.N.S.W. BA Macq.
Oh Kang Kwon, BSc PhD M.I.T.
Jennifer L. Law, BSc
Vinsensia Suhana, BSc Auck. BSc U.N.S.W.
Shu Hao Sun, MSc Shannxi Normal PhD Sichuan
William R. Unger, MSc PhD
Remy Van de Ven, BAppSc D.D.I.A.E. MStats U.N.S.W.

Computer Systems Officers

Robert B. Pearson, BSc ADipA M.C.A.E.
James S. Richardson, PhD Warw. MSc
Paul Szabo, BSc Havana
Michael R. Wilson, BSc

Honorary Appointments

Emeritus Professors

Gordon Elliott Wall, BSc Adel. PhD Camb., FAA
Gregory Maxwell Kelly, BA PhD Camb. BSc, FAA

Honorary Associates

V. Teodor Buchwald, BSc Mane. PhD Lond.
David E. Rees, MSc PhD
Ross H. Street, BSc PhD

Honorary Research Associate

Michael S. Johnson, BSc PhD

Microbiology

Professor

Peter Richard Reeves, BSc PhD Lond., MASM
Appointed 1985

Reader

Thomas Ferenci, BSc Lond. PhD Leic.

Senior Lecturers

Trevor Duxbury, BSc PhD Liu., .MASM
Peter B. New, BAgrSc Tas. PhD Adel.

Lecturers

Deidre A. Carter, BSc Otago PhD Lond.
Ilze Dalins, MSc
Ian Humphery-Smith, BSc PhD Qld

Associate Lecturers

Helen M. Agus, MSc U.N.S.W., MASM-
Disa J. Pryor, BMedSc

Honorary Appointments

Honorary Associates

K. Yip Cho, BSc U.N.S. W. PhD A.N.U.
William G. Murrell, PhD Oxf. DScAgr, FAIFST MASM
Pathology

CELL PATHOLOGY

Professor
Nicholas H. Hunt, BSc PhD Aston
Appointed 1989

Reader
John R. Gibbins, MDS PhD

Senior Lecturers
Brett D. Hamby, BSc (Med) MB BS PhD
Nicholas J.C. King, MB ChB Cape T. PhD A.N.U.

Pharmacology

Professor of Clinical Pharmacology
J. Paul Scale, PhD Lond. MB BS, FRACP
Appointed 1992

Professor
Graham Allen Ross Johnston, MSc PhD Camb., FRACI FTS
Appointed 1980

Clinical Professor
Gillian M. Shenefield, MA BCh DM Oxf., FRCP FRACP

Associate Professors
Judith L. Black, MB BS PhD
Rosemarie Einstein, BSc PhD
Ewan J. Mylecharane, BPharm V.I.C. BSc PhD Melb.
Graham A. Starmer, MSc Mane. PhD

Clinical Associate Professor
Geoffrey G. Duggin, PhD MB BS FRACP

Senior Lecturers
Robin D. Allan, BSc Qld PhD James Cook
Macdonald J. Christie, BSc Flin. PhD
Richard Donnelly, MB ChB Birn. PhD Glas., MRCP FRACP
Christopher Lidde, MB BS BSc (Med) U.N.S. W. PhD, FRACP
Jill E. Maddison, BVetSci PhD, FACVSc
Ian Spence, PhD Monash BSc

Lecturer
Hilary G.E. Lloyd, BSc Brist. MSc PhD Lond.

Associate Lecturers
Izabela M. Brzuszczak, BSc
Ioakim Konnaris, BSc U.N.S.W. MSc

Research Fellows
Frances A. Edwards, MSc PhD A.N. U.
Peregrine B. Osborne, BSc PhD Melb.

Honorary Appointments

Honorary Research Associates
Sandra D. Anderson, PhD Lond. BSc
Peter R. Andrews, BSc PhD Melb., FRACI
James Bell, BA MB BS, FRACP
John Boutagy, BPharm MSc PhD
Gregory B. Chesser, MSc PhD
L. Bruce Cobbin, BSc Melb. PhD
Les P. Davies, BSc Flin. PhD A.N.U.
Peter R. Dodd, BSc PhD Lond.
George M. Eckert, MB BS MSc PhD, FPS
Annette S. Gross, BPharm PhD
George Holan, DipAppChem Melb. DSc R.M.I.T., FRACI
FAATS
Merlin E.H. Howden, BSc Cal.Tech. PhD
Rymantas Kazlauskas, BSc PhD
David L.B. Kerr, BSc PhD Adel.
Robert Miller, BSc PhD Melb.

Graham M. Nicholson, BSc PhD
Jennifer Ong, BSc PhD Adel.
Lesley J. Rogers, BSc Adel. PhD Sussex
Craig J. Saunn, BVsc DipVetClinStud DipLASurg
Diana M. Temple, BSc W.Aust. MSc PhD
Helen E. Ward, MB BS FRACP
Rob P. Weatherby, BPharm MSc PhD
Sandra N. Webb, BPharm Vic.E.C. PhD Strathclyde
Max Willow, MB BS U.N.S.W. PhD A.N.U. MSc

Pharmacy

Professor of Pharmaceutical Chemistry
Basil Don Roufogalis, MPharm PhD, MPS
Appointed 1989

Professor of Pharmaceutics
Kenneth Frederick Brown, MPharm PhD, MPS
Appointed 1992

Professor of Pharmacy Practice
Shalolm Isaac Benrimoj, BPharm PhD Bradford, MPS
Appointed 1991

Reader
H.T. Andrew Cheung, MSc H.K. DIC PhD DSc Lond., FRACI
FRSChem

Associate Professors
Gerald M. Holder, PhD Lond. MSc, MPS
Douglas E. Moore, MSc PhD

Senior Lecturers
Carol L. Armour, BPharm PhD, MPS
David J. Cutler, PhD Lond. BPharm MSc
Colin C. Duke, BSc Qld PhD James Cook, MRACI
Iqbal M. Ramzan, DipPharm C.T. NZ. MSc PhD
Eugene G. Salole, BSc C.N.A.A. MPH Glas. PhD Strath., MRPharms FRSH

Lecturers
Elizabeth M. Gipps, MPharm V.I.C. DrScNat E.T.H. Zurich
DipPharmpharm, MPS
Ross A. Kennedy, BPharm PhD Qld
Ines Krass, BPharm GradDipEd DipPharmPharm PhD, MPS

Associate Lecturers
Timothy F. Chen, BPharm DipPharm, MPS
Erica Sainsbury, BPharm MSc, MPS
Michael D. Smith, BSc James Cook
Susan J. Taylor, MSc Lond. BPharm, MRPharmS

Joint Appointments — Teacher Practitioners
Ben J. Baiger, BPharm MSc DipPharmPharm, MPS
Cara M. Murphy, BPharm DipPharmPharm
Lisa Pulver, BPharm DipPharmPharm

Research Officer
Margaret Hughes, BSc PhD

Professional Officers
Warren A. Olsen, BCom U.N.S.W. BPharm MSc, MPS
Bruce N. Tattam, MSTIA
Fred T. K. Wong, DipMedTech S.T.C. MSc, FACBS

Senior Research Assistants
Rosalind H. Carr, BPharm MPS
Claudine P. Casson, BA PGDipPsych Qld
Dieu D. Chau, PhD Macq.
Abilio A. DiNetto, BSc U.N.S.W.
Eleanor Kable, BSc Griffith MSc Qld
Sue Serafim, BPharm, MPS
Research Assistants
Qian Li, MSc PhD Zhongshan
David Mascord, BA N'cle(N.S.W.) MPhil
Senior Technical Officers
Helen Elimelakh, BE Mendeleev Inst.
Bill Rae
Technical Officers
James Tyndall
Jiamin You, BSc Shanghai
Laboratory Assistants
Neville Baker
Jenny Bell
Catherine H. Mortimer, ADAS S.I.T. BSc DipEd
Administrative Assistants
Rages Palanisamy
Lynette White
S. H. Gina Ybabao
Administrative Officer
Judy Banwell BA
Librarian
Gail Y. Higgins, BA DipEd GDipLibSc Ku-ring-gai C.A.E.
ALIA
Attendant
Jay O’Sullivan
Glassware Cleaners
Freda Kambosos
Win Kyi
Honorary Appointments
Professorial Fellow
Barry J. Allen, PhD Wgong DSc Melb., FAIP
Honorary Associate
Richard Thomas, PhD MSc, FPS
Honorary Clinical Senior Lecturer
Susan Tett, PhD BPharm
Honorary Clinical Lecturers
Margaret J. Duguid, BPharm DipAdmin
Gwen M. Higgins, BPharm, FSHP
Kingsley Ng, BPharm MSc DipFDA, FSHP FAIPM MPS
Terry Maunsell, BPharm, FSHP MPS
William Montgomery, BPharm
Elizabeth M. Perks, BPharm, FSHP
Lynn Weckes, BPharm, FSHP
Honorary Clinical Supervisors
Eugenia Fiakos, BPharm
Stephen Kerr, BPharm
Physics
Professor of Physics (Theoretical Physics)
Donald Blair Melrose, BSc Tas. DPhil Oxf., FAA
Appointed 1979
Professor of Applied Physics
Richard Edward Collins, PhD N.Y. BSc, FTS FIE
Appointed 1980
Professor of Physics (Plasma Physics)
Maxwell Howard Brennan, AO, HonDSc Flin. BSc PhD, FAA
Appointed 1981
Professor of Physics (Astrophysics)
Lawrence Edward Cram, BSc BE PhD
Appointed 1987
Professor of Physics (Astronomy)
John Davis, BSc PhD Mane.
Appointed 1987
Professor of Physics (Physical Optics)
Colin J.R. Sheppard, MA PhD Camb. DSc Oxf.
Appointed 1989
Professor in Physics (Electromagnetic Physics)
Ross C. McPhedran, BSc PhD Tas.
Readers
Richard W. Hunstead, BSc PhD
David R. McKenzie, BSc PhD U.N.S.W.
Telescope Project Manager
Michael I. Large, BA PhD Camb.
Associate Professors
Rodney C. Cross, BSc PhD DipEd
Robert G. Hewitt, BSc PhD
Bernard A. Pailthorpe, BSc U.N.S.W. PhD Indiana
Lawrence S. Peak, BSc PhD
Senior Lecturers
Ian M. Bassett, MSc PhD Melb.
G. Fergus Brand, MSc Otago PhD
Carol J. Cogswell, MA MArch Oregon
Neil F. Cramer, BSc PhD
David F. Crawford, BSc PhD
Martijn de Sterke, MEng Delft PhD Rochester
Ian S. Falconer, MSc N.Z. PhD A.N.U.
Brian W. James, BSc PhD
Ian D.S. Johnston, BSc Qld PhD
James B.T. McCaughan, BSc Adel. PhD
Peter A. Robinson, BSc PhD
WUiam J. Tango, BS Calif. PhD Colorado
Anthony J. Turtle, BA PhD Camb.
Juris Ulrichs, BSc PhD
ARC Australian Research Fellows
Elaine M. Sadler, BSc Qld PhD A.N.U.
Sergei Vladimirov, MSc PhD Moscow Inst. Phys. & Eng.
Lecturers
Timothy R. Bedding, BSc PhD
Andrew J. Booth, BA DPhil Oxf.
Anne Green, BSc Melb. PhD
Rosemary M. Millar, BSc Qld MED
Robert A. Minard, BSc PhD Cant.
John W. O’Byrne, BSc PhD
Paul J. Walker, BSc PhD DipEd U.N.S.W.
Ian J. Cooper, BSc MPhysics DipEd U.N.S.W.
Senior Research Fellow
David R. Mills, BSc PhD U.N.S.W.
Research Fellows
MinGu, BSc Shanghai Jiao-Tong MSc Shanghai Inst. Opt. PhD
Academia Sinica
Trudy van der Straaten, BSc PhD
Graham M. Turner, BSc PhD
Yongbai Yin, MSc PhD
Qi-Chu Zhang, MSc PhD U.N.S.W.
Associate Lecturers
George Braoudakis, BSc PhD
Joe Khachan, BSc PhD U.N.S.W.
Michael A. Oldfield, BA Macq. DRerNat Gott.
Manjula D. Sharma, MSc DAPh S.Pac.
Postdoctoral Fellows
Nicolae Nicorovici-Porambaru, MSc Bucharest PhD Inst. At. Phys. Bucharest
Whayne E. Padden, BSc U.N.S.W. PhD
Paul F. Soler, BSc Autonoma Madrid PhD
Professional Officers Grade II
Duncan Campbell-Wilson, BSc A.N.U.
S.R. Hashemi-Nezhad, MSc PhD Birm.
Philip B. Lukins, PhD

Honorary Appointments
Emeritus Professors
Robert Hanbury-Brown, AC, BScEng DIC Lond. DSc Mane, FRS FRAS FAA HonFNA HonFASc MIEE
Charles B.A. McCusker, DSc Mane, MRIA
Harry Messel, CBE, BSc Qu. PhD N.U.I.
Bernard Y. Mills, BSc ME DScEng, FAA FRS

Honorary Associates
Lindsay C. Botten, BSc Tas. PhD
Russell D. Cannon, BA MA PhD Camb.
Graham H. Derrick, BSc Qld PhD
Ian J. Donnelly, BSc PhD
David L. Jauncey, BSc PhD
Richard N. Manchester, BSc Cant. PhD N'cle(N.S.W.)
Philip J. Martin, BSc Astn PhD A.N. LT.
Brian A. McNlnnes, BSc PhD Qld
Lindsey F. Smith, BSc PhD A.N.U.
Murray W. Winn, PhD Birm. BSc

Visiting Professors
Parameswaran Hariharan, BSc Travancore PhD Kerala
Colin A. Norman, BE Melb. DPhil Oxf.

Research Affiliate
Geoffry B. Smith, BSc N.E. PhD Monash

Research Centre for Theoretical Astrophysics
Director
Donald B. Melrose, BSc Tas. DPhil Oxf., FAA

Research Fellows
Lewis T. Ball, BSc PhD
Simon Johnston, BSc Edin. PhD Mane.
Jennifer A. Nicholls, BSc Filn. PhD Durh.
Helen Pongracic, BSc Melb. PhD Monash
Michelle C. Storey, BSc PhD
Mark A. Walker, BA Oxf. PhD Penn.
Kinwah Wu, MS PhD Louisiana

Postdoctoral Fellows
Qinghuan Luo, MSc Heilongjiang PhD
Jeanette I. Weise, BSc PhD Melb.

Julius Sumner Miller Fellow
Karl Kruszelnicki, BSc MBioMedE U.N.S.W. MB BS

Physiology
Professors
John Atherton Young, AO BSc(Path) MD BS DSc Qld, FRACP FAAA
Appointed 1976
(Dean of the Faculty of Medicine)

Maxwell Richard Bennett, BE MSc PhD Melb. DSc, FAA
Appointed 1983
David Grant Allen, BSc MB BS PhD Lond.
Appointed 1989
Ann E. Sefton, BSc(Med) MB BS PhD DSc
Appointed 1992

Readers
Roger A.L. Dampney, BSc PhD

Joseph F.Y. Hoh, PhD A.N. LT. BSc(Med) MB BS DSc
Brian J. Morris, BSc Adel. PhD Monash DSc

Associate Professors
David I. Cook, BSc(Med) MB BS MSc
David F. Davey, BSc PhD MCQ

Clinical Associate Professor
Christopher O'Neil, BSc PhD N'cle(N.S.W.) Obstetrics and Gynaecology

Senior Lecturer
Rebecca S. Mason, MB BS PhD

Lecturers
Simon Carlile, BSc PhD
Lynne J. Cottee, BSc PhD
Miriam Frommer, PhD Lond. BSc
Paul R. Martin, BSc PhD
William D. Phillips, BSc PhD

Associate Lecturer
Francoise Janod-Groves, BSc N.S.W.I.T. MAplSc U.T.S.

Professional Officer Grade II
Alanjoffe, BSc U.N.S.W.

Computer Systems Officer Grade IV
John W.A. Dodson, HNC Lond., MIEEIEI Eng

Honorary Appointments
Emeritus Professor
William Burke, BSc PhD Lond.

Academic Affiliate
Christopher O'Neil, BSc PhD N'cle(N.S.W.) (Clinical Associate Professor of Physiology)

Research Affiliates
Annick Asselin, BA Macq. MSc PhD
William Burke, BSc PhD Lond. (Emeritus Professor)
Lyn R. Griffiths, BSc U.N.S.W. PhD Griffith
Thomas Fitzgibbon, BSc Victoria PhD (Clinical Ophthalmology)

Honorary Associate Professor
Barry Gow, MDS PhD FRACDS

Honorary Associates
Brian G. Cleland, BE U.N.S.W. MS PhD Northwestern DSc
Peter M. Wenderoth, MA PhD DSc

Psychology
Professor
Robert Alan Boakes, BA Cant. PhD Harv.
Appointed 1989

Readers
Dale M. Atrens, BA Windsor MA Hollins PhD Rutgers
Ian S. Curthoys, PhD Monash BA
Lazar Stankov, MA Belgrade PhD Denver

Associate Professor
Helen C. Beh, BA PhD N.E.

Senior Lecturers
Brian D. Crabbe, BA PhD
Alan E. Craddock, BA PhD
R.F. Soames Job, BA PhD
David J. Kavanagh, BA PhD DipPsychol
Cyril R. Latimer, BA PhD
Roslyn H. Markham, MA PhD

Senior Lecturers
Dale M. Atrens, BA Windsor MA Hollins PhD Rutgers
Ian S. Curthoys, PhD Monash BA
Lazar Stankov, MA Belgrade PhD Denver

Associate Professor
Helen C. Beh, BA PhD N.E.

Senior Lecturers
Brian D. Crabbe, BA PhD
Alan E. Craddock, BA PhD
R.F. Soames Job, BA PhD
David J. Kavanagh, BA PhD DipPsychol
Cyril R. Latimer, BA PhD
Roslyn H. Markham, MA PhD
Terence McMullen, BA PhD
Joel B. Michell, BA PhD
John M. Predebon, BA PhD
David E. Schotte, MS PhD Virginia
Robyn Tate, MA MPsychol U.N.S.W. PhD Newcastle(N.S.W.)
Alison M. Turtle, MA
Michael B. Walker, BSc W.Aust. BA Adel. DPhil Oxf.

Lecturers
Pauline M. Howie, BA PhD U.N.S.W.
Iain McGregor, MA Oxf. PhD
Rick van der Zwan, BSc PhD
Stephanie P. Whitmont, BA PhD MPsychol

Associate Lecturers
Kate Baggs, BA
Laurel Bornholt, BA Melb. PhD Macq.
Maitland M. Bowen, BSc BPsys W.Aust. MPsychol
Robert M. Buckingham, BA Cant. MA Auck.
Margaret Charles, BA PhD
Robert H. Kerr, BA
Agi O'Hara, BA
Janette Perz, BA
Agnes Petocz, BA PhD

Honorary Clinical Supervisors
Therese Alting, MA
Sally V. Arpadi, BA MPsychol U.N.S.W.
Gary Banks, BA MPsychol MQA
Jennifer Batchelor, BSc Lat. MSc Melb.
Tom Benjamin, BA MBA Mich. MPsychol
Grant Betts, BA MPsychol
Sharmila Betts, MA MPsychol
Philippa Bowden, MPsychol
Mary E. Burke, BA MPsychol U.N.S.W. MA Macq.
Diana Caine, BA N.E. MSc Melb.
Nick Cocoo, BSc MA
Jeroen Decates, BPs MClinChPs Nijmegen
Bob Duncan, BE BA MPsychol U.N.S.W.
Jill Faddy, BA DipPsychol
Sharon Flanagan, BA MPsychol
Jennifer Flatt, BA MPsychol U.N.S.W.
Eleanor Gait, BA DipPsychol
Roberto Garofali, MA DipPsychol
Craig Gonsalvez, MPhil NMH India MA Baroda
Leanne Humphreys, BA MPsychol
Tom W. Jones, BSc U.N.S.W. MPsychol
Brian Kearney, BA MPsychol
Christine Kipps, BA S.A. MPsychol
Roy Laube, BSc MA Loyola
Barbara Liddle, BA MPsychol BPharm
Helen McCathie, BA MPsychol
Renee McCaru, BAVment/NS. WjMAClinNeuropsychMeZb.
Nicholas Marlowe, BA PhD
Antonia McKinnon, MA DipPsychol
Michael McMahon, BA MPsychol
Roslyn Montague, DipTMT Med BA MPsychol
Michael Perdices, BA MA DipPsychol
Jean Pollock, BSc U.N.S.W. MPsychol
Gail Purkis, BSc DipPsychol
Kris Reveson, MPsychol Warsaw
Dieter Schlosser, BSc U.N.S.W. MPsychol
Joseph Scopelliti, BSc MPsychol PhD
Christine Senediak, BA Macq. MPsychol
Barbara Spode, BA MPsychol
Melissa Staples, BA MPsychol
Gill Stott, BA MclinPsych Flinders
Stephen W. Touyz, BSc PhD Cape T. BSc Witw.
Carolyn Tow, BSc Lond. MPsychol
Michael Young, BA Macq. MPsychol PhD U.N.S.W.

Computer Systems Officer Grade IV
John Holden
Administrative Officer
Sharyn Jenner, BA

Honorary Appointments
Emeritus Professors
Richard Annells Champion, MA, FASSA
John Philip Sutcliffe, MA PhD, FASSA

OTHER UNITS
Coastal Studies Unit
Director
Andrew D. Short, MA Hawaii PhD Louisiana State BA

History and Philosophy of Science
Associate Professor
Alan F. Chalmers, BSc Brist. MSc Mane. PhD Lond.

Senior Lecturer
Michael Shortland, BSc MA Lond. PhD Leeds

Lecturer
Nicolas Rasmussen, AM Chic. MPhil Camb. PhD Stan.

Administrative Assistant
Shari Lee, BA Sing.

Institute of Marine Ecology
Director
Antony J. Underwood, PhD DSc Brist., FAA FLS FIBiol
FAIBiol CBiol

Associate Director
Rosalind T. Hinde, BSc PhD

Senior Research Fellow
Malcolm Haddon, BSc Aberd. MSc Bangor PhD Otago

Research Fellows
Maura G. Chapman, BSc NataI MSc PhD
Ian Montgomery, BSc Dub. PhD
Gregory A. Skilleter, BSc PhD

Research Assistants
Grahame Housefield, BSc C.Sturt
Vanessa Mathews, BSc
Shannon McCune, BSc

Honorary Appointments
Honorary Associate
J. Howard Choat, MSc PhD Qld

Research Affiliates
Neil L. Andrew, MSc Auck. PhD
Alan J. Butler, BSc PhD Adel.
Peter G. Fairweather, BSc PhD
Steven J. Kennelly, BSc PhD
Keith A. McGuinness, BSc PhD
Nicholas M. Otway, BSc PhD

Marine Studies Centre
Director
Anthony J. Underwood, PhD DSc Brist., FAA FLS FIBiol
FAIBiol CBiol
Administrative Assistant
Jennifer Winzar

Ocean Sciences Institute

Director
Peter John Davies, BSc Leic. PhD Sheff.

Research Scientists
John B. Keene, BAgEc N.E. PhD Calif. BSc (part-time)
Gavin F. Birch, MSc PhD DTA Cape T.
Dietmar Miiller, BSc Kiel PhD Calif.
Thomas C.T. Hubble, MSc GradDipEd
Douglas D. Bergersen, MSc PhD Hawaii
Alexandra R. Isern, BSc Florida MSc Rhode Island PhD ETH Zurich

Senior Research Fellow
Christopher J. Jenkins, BSc PhD Camb.

Professional Officer
Elaine Baker, BSc LaT.

Research Assistant
Alison Cole, BSc U.N.S.W.

Technical Officer
David Mitchell (part-time)

Mathematics Learning Centre

Lecturer in Charge
Jacqueline M. Nicholas, MSc Hull

Lecturer
Susan E. Gordon, MSc Witv. DipEd DipDatametrics S.A.

Associate Lecturer
Christopher M. Thomas, BSc N.E. SM III. MS Chic.

Administrative Assistant (part-time)
Cathy Kennedy
This handbook is intended to give you a comprehensive view of the courses that the Faculty of Science offers, and to help you select those best suited to your capacity, present needs and intended career.

The Faculty of Science offers a wide range of training intended, on the one hand, to prepare you to become a professional scientist in one or other of the several branches of science (including Pharmacy) and, on the other, to prepare you for careers in non-specialised fields requiring a scientific background.

Courses available
The faculty offers courses in the following subjects:
- Agricultural Chemistry
- Anatomy
- Biochemistry
- Biology
- Cell Pathology
- Chemical Engineering Science
- Chemistry
- Civil Engineering Science
- Computer Science
- Geography
- Geology
- Geophysics
- Histology
- History and Philosophy of Science
- Marine Sciences
- Applied Mathematics
- Pure Mathematics
- Mathematical Statistics
- Mechanical and Aeronautical Engineering Science
- Microbiology
- Pharmacology
- Physics
- Physiology
- Psychology
- Soil Science

In addition to the above, courses are available for the degrees of Bachelor of Medical Science, Bachelor of Pharmacy, Bachelor of Psychology, Bachelor of Computer Science and Technology and the specially designated BSc program titled Environmental. Information about these courses is given in Chapter 5.

Science disciplines and subject areas available in the Faculty of Science

<table>
<thead>
<tr>
<th>Science disciplines</th>
<th>Subject areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analytical Chemistry</td>
<td>see Agricultural Chemistry and Soil Science</td>
</tr>
<tr>
<td>Applied Mathematics</td>
<td>see Chemistry</td>
</tr>
<tr>
<td>Artificial Intelligence</td>
<td>see Mathematics and Statistics</td>
</tr>
<tr>
<td>Astronomy</td>
<td>see Computer Science</td>
</tr>
<tr>
<td>Bacteriology</td>
<td>see Physics</td>
</tr>
<tr>
<td>Beach Dynamics</td>
<td>see Biochemistry</td>
</tr>
<tr>
<td>Biodegradation</td>
<td>see Biological Sciences</td>
</tr>
<tr>
<td>Bioremediation</td>
<td>see BMedSc</td>
</tr>
<tr>
<td>Biotechnology</td>
<td>see Microbiology</td>
</tr>
<tr>
<td>Biophysical Chemistry</td>
<td>see Agricultural Chemistry and Soil Science</td>
</tr>
<tr>
<td>Botany</td>
<td>see Biochemistry</td>
</tr>
<tr>
<td>Carbohydrate Chemistry</td>
<td>see Chemistry</td>
</tr>
<tr>
<td>Catalysis</td>
<td>see Microbiology</td>
</tr>
<tr>
<td>Category Theory</td>
<td>see Physiology</td>
</tr>
<tr>
<td>Cancer</td>
<td>see Behavioral Science</td>
</tr>
<tr>
<td>Cell Biology</td>
<td>see Biological Sciences</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>see BMedSc</td>
</tr>
</tbody>
</table>

see Cell Pathology
see Histology
see Physics
see Biochemistry
see Microbiology
see Physiology
see Biochemistry
see Chemistry
see Microbiology
see Pharmacology
Geographical Information Systems (GIS)	see Geography	Materials Science	see Chemistry
Geometry	see Mathematics and Statistics	Mathematical Modelling	see Mathematics and Statistics
Geomorphology	see Geography	Mathematical Statistics	see Mathematics and Statistics
Geostatistics	see Agricultural Chemistry and Soil Science	Medicinal Chemistry	see Chemistry
Geophysics	see Geology and Geophysics	Medical Biochemistry	see Biochemistry
Haematology	see Histology	Medical Microbiology	see Biochemistry
Histochemistry	see Histology	Medical Molecular Biology	see Microbiology
History of Science	see History and Philosophy of Science	Membrane Biology	see Biological Sciences
Human Life Sciences	see Anatomy	Metabolism	see Agricultural Chemistry and Soil Science
	see Biochemistry		see Biochemistry
	see BMedSc		see Biological Sciences
	see Cell Pathology		see BMedSc
	see Histology		see Microbiology
	see Physiology	Microscopy	see Agricultural Chemistry and Soil Science
Human Nutrition	see Biochemistry		see Biochemistry
Hydrology	see Agricultural Chemistry and Soil Science		see Biological Sciences
	see Geography		see BMedSc
Immunology	see Biochemistry	Microtechniques	see Histology
	see Biological Sciences		see BMedSc
	see BMedSc	Minerology	see Geology and Geophysics
Industrial Chemistry	see Chemistry		see Biochemistry
Infectious Diseases	see BMedSc	Mineral Physics	see Biochemistry
	see Cell Pathology		see BMedSc
	see Microbiology	Molecular Biology	see BMedSc
	see Computer Science		see Cell Pathology
Information Technology	see Chemistry		see Chemistry
Inorganic Chemistry	see Biological Sciences		see Microbiology
Intertidal Ecology	see Chemistry		see Physiology
Invertebrate Zoology	see BMedSc		see Chemistry
Land Resources	see Marine Sciences		see BMedSc
	see Biological Sciences		see Cell Pathology
	see Agricultural Chemistry and Soil Science		see Chemistry
	see Geography	Molecular Engineering	see Biochemistry
Macromolecular Structure	see Biochemistry	Molecular Genetics	see Biological Sciences
Magnetic Resonance Imaging	see Chemistry		see BMedSc
	see Biochemistry	Magnetic Resonance Imaging	see Pharmacology
	see BMedSc		see BMedSc
Mammalian Biology	see Biological Sciences	Morphology	see Pharmacology
Marine Biology	see Biological Sciences	Mycology	see Pharmacology
Marine Ecology	see Biological Sciences	Natural Hazards	see Pharmacology
Marine Ecology	see Marine Sciences		see BMedSc
Marine Biology	see Marine Studies		see Physiology
Marine Geology	see Geochemistry and Geophysics	Natural Products Chemistry	see Marine Geophysics
Marine Geology	see Marine Studies		see Chemistry
Marine Science	see Biological Sciences	Neural Networks	see Physiology
	see Chemistry	Neuroanatomy	see BMedSc
	see Geography	Neurochemistry	see BMedSc
	see Geology and Geophysics	Neurophysiology	see Biochemistry
Marine Science	see Marine Studies		see Physiology
Marine Science	see Marine Studies		see Anatomy
Neuroscience
Nitrogen Fixation
Nonlinear Analysis
Nuclear Magnetic Resonance (NMR)
Nuclear Physics
Nutrition
Oceanography
Optics
Organic Chemistry
Organometallic Chemistry
Palaeontology
Parasitology
Pathogenicity
Pedogeomorphology
Pedology
Pesticide Chemistry
Petrochemicals
Petroleum Geology
Petrology
Pharmaceutical Chemistry
Philosophy of Science
Physical Chemistry
Plant Management
Plant Metabolism
Plant Molecular Biology
Plant Physiology
Plant Science
Plasma Physics
Plate Tectonics
Polymer Science
Programming
Proteins
Protozoology
Public Health
Pure Mathematics
Quantum Mechanics
Recombinant DNA Technology
Resource Management
River Systems
Robotics
Scientific Revolution
Sedimentology
Social Relations of Science
Software Engineering
Soil Chemistry
Soil Physics
Soil Science
Solid State Science
Spectroscopy
Statistics
Structural Geology
Surface Science
Systems Analysis
Therapeutics
Theoretical Chemistry
Theoretical Physics
Thermal Physics
Toxicology
Vertebrate Zoology
Virology
Volcanology
X-Ray Crystallography
Zoology
see Anatomy
see BMedSc
see Physiology
see Physiology
see Agricultural Chemistry and Soil Science
see Microbiology
see Mathematics and Statistics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Postgraduate study in MNutrSc and MNutrDiet
see Geology and Geophysics
see Marine Studies
see Geography
see History and Philosophy of Science
see Chemistry
see Mathematics and Statistics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Postgraduate study in MNutrSc and MNutrDiet
see Geology and Geophysics
see Marine Studies
see Geography
see History and Philosophy of Science
see Computer Science
see Agricultural Chemistry and Soil Science
see Agricultural Chemistry and Soil Science
see Chemistry
see Physics
see Chemistry
see Mathematics and Statistics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Pharmacology
see Chemistry
see Pharmacology
see BMedSc
see Pharmacology
see Chemistry
see Physics
see Chemistry
see Mathematics and Statistics
see Geography
see Geology and Geophysics
see Geology and Geophysics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Postgraduate study in MNutrSc and MNutrDiet
see Geology and Geophysics
see Marine Studies
see Geography
see History and Philosophy of Science
see Computer Science
see Agricultural Chemistry and Soil Science
see Agricultural Chemistry and Soil Science
see Chemistry
see Physics
see Chemistry
see Mathematics and Statistics
see Geography
see Geology and Geophysics
see Geology and Geophysics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Pharmacology
see Chemistry
see Pharmacology
see BMedSc
see Pharmacology
see Chemistry
see Physics
see Chemistry
see Mathematics and Statistics
see Geography
see Geology and Geophysics
see Geology and Geophysics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Postgraduate study in MNutrSc and MNutrDiet
see Geology and Geophysics
see Marine Studies
see Geography
see History and Philosophy of Science
see Computer Science
see Agricultural Chemistry and Soil Science
see Agricultural Chemistry and Soil Science
see Chemistry
see Physics
see Chemistry
see Mathematics and Statistics
see Geography
see Geology and Geophysics
see Geology and Geophysics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Pharmacology
see Chemistry
see Pharmacology
see BMedSc
see Pharmacology
see Chemistry
see Physics
see Chemistry
see Mathematics and Statistics
see Geography
see Geology and Geophysics
see Geology and Geophysics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Postgraduate study in MNutrSc and MNutrDiet
see Geology and Geophysics
see Marine Studies
see Geography
see History and Philosophy of Science
see Computer Science
see Agricultural Chemistry and Soil Science
see Agricultural Chemistry and Soil Science
see Chemistry
see Physics
see Chemistry
see Mathematics and Statistics
see Geography
see Geology and Geophysics
see Geology and Geophysics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Pharmacology
see Chemistry
see Pharmacology
see BMedSc
see Pharmacology
see Chemistry
see Physics
see Chemistry
see Mathematics and Statistics
see Geography
see Geology and Geophysics
see Geology and Geophysics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Postgraduate study in MNutrSc and MNutrDiet
see Geology and Geophysics
see Marine Studies
see Geography
see History and Philosophy of Science
see Computer Science
see Agricultural Chemistry and Soil Science
see Agricultural Chemistry and Soil Science
see Chemistry
see Physics
see Chemistry
see Mathematics and Statistics
see Geography
see Geology and Geophysics
see Geology and Geophysics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc
see Pharmacology
see Chemistry
see Pharmacology
see BMedSc
see Pharmacology
see Chemistry
see Physics
see Chemistry
see Mathematics and Statistics
see Geography
see Geology and Geophysics
see Geology and Geophysics
see Chemistry
see Physics
see Biochemistry
see Physics
see Biochemistry
see BMedSc

Departmental and Faculty advisers
The selection of courses is particularly important in the Faculty of Science because of the interdependence of the subjects studied. You should therefore consult one of the advisers before the beginning of Semester 1 (see list below).

All first year students will have the opportunity of discussing particular courses of study and any general academic problems with one of the departmental advisers concerned. There will also be advisers available during the enrolment period.

You may seek advice from the advisers, the Associate Deans, Pro-Dean or Dean of the Faculty at any time in the academic year, should the need arise. Advisers should not, however, be regarded as coaches dealing with detailed instruction.

Agricultural Chemistry
Associate Professor Les Copeland, Dr Edith M. Lees

Anatomy
Ms Anne Glucina, Dr J. Provis

Biochemistry
2nd year: Associate Professor Alan R. Jones and Dr Gareth S. Denyer
3rd year: Dr Simon B. Easterbrook-Smith
4th year: Dr Ivan G. Darvey

Biological Sciences
1st year: Dr Mary Peat
2nd year: Dr Jennifer Donald, Dr Jan Marc, Dr Michael Thompson
3rd year: Dr Ove Hoegh-Guldberg
4th year: Associate Professor Patsy Armati

Cell Pathology
Professor Nicholas Hunt, Dr Nicholas King

Chemistry
1st year: Dr Ray Pierens
2nd and 3rd years: Professor Leslie D. Field, Professor Robert G. Gilbert, Dr Tony F. Masters, Dr Scott H. Kable

Computer Science
1st year: Dr Ian Parkin
2nd year: Dr Nitin Indurkhya
3rd year: Dr Michael Wise
4th year: Dr Wayne Wobke
International Students: Dr Antonios Symvonis
Research Committee (Research Students): Associate Professor Norman Foo

Geography
1st year: Associate Professor John Connell
2nd year: Dr Deidre Dragovich
3rd year: Dr Deidre Dragovich
4th year: Associate Professor Andrew Short

Geology and Geophysics
1st year: Dr John B. Keene
2nd year: Dr Eric A.K. Middlemost
2nd year Environmental Geology: Dr Gavin Birch
3rd year and Additional: Mr Jan Stienstra
4th year: Dr Geoffrey L. Clarke
Geophysics: Mr Jan Stienstra

Histology
Dr Christopher R. Murphy, Dr Lynette A. Moffat

History and Philosophy of Science
Associate Professor Alan F. Chalmers

Marine Sciences
Associate Professor Andrew D. Short

Mathematics and Statistics
1st year: First-year Office [Mathematics 1 (Life Sciences), Mathematics 1, Mathematics 1 (Advanced)]
2nd year: Dr David J. Ivers (Applied Mathematics 2, Applied Mathematics 2 (Advanced), Ms Sandra Britton and Dr David J. Ivers (Mathematical Methods 2), Dr Howard D’Abrera (Mathematical Statistics 2, Mathematical Statistics 2 (Advanced)), Ms Sandra Britton and Dr David J. Ivers (Mathematics 2 Combined, Mathematics 2 Combined (Advanced)), Ms Sandra Britton and Dr Adrian Nelson (Pure Mathematics 2, Pure Mathematics 2 (Advanced), Professor John Robinson (Statistical Methods 2 and Applied Statistics 2)
3rd year: Dr Charles Macaskill (Applied Mathematics 3, Applied Mathematics 3 (Advanced)), Dr Shelton Peiris (Mathematical Statistics 3, Mathematical Statistics 3 (Advanced)), Dr Robert Howlett and Ms Jenny Henderson (Pure Mathematics 3, Pure Mathematics 3 (Advanced)), 4th year: Dr Hugh Luckock (Applied Mathematics 4), Professor Eugene Seneta.(Mathematical Statistics 4), Associate Professor Robert Walters (Pure Mathematics 4)

Microbiology
2nd year: Mrs Ilze Dalins
3rd year: Dr Trevor Duxbury
4th year: Dr Tom Ferenci
BMedSc: Dr Ian Humphrey-Smith

Pharmacology
2nd Year: Dr Robin Allan
3rd Year: Dr Ian Spence
4th Year: Associate Professor Judith Black, Associate Professor Rosemarie Einstein

Pharmacy
Associate Professor Gerald M. Holder, Dr Ross A. Kennedy, Dr Ines Krass

Physics
1st year: Mrs Rosemary M. Millar
2nd year: Dr William J. Tango
3rd year: Dr G. Fergus Brand
4th year: Dr Neil Cramer

Physiology
2nd year: Dr Roger Dampney
3rd year: Dr Joe Hoh
4th year: Associate Professor Dave Davey

Psychology
1st year: Ms Agnes Petocz

Soil Science
2nd year: Associate Professor Anthony J. Koppi, Mr Harold G. Geering
3rd and Honours year: Professor Alexander B. McBratney

Recommended combinations of courses in first year of attendance

Courses to be taken during the first year of attendance must be selected with subsequent years of candidature in mind. The list below shows how to find a first year combination which will lead to a desired field of specialisation.

Most students should have no reason to depart from these recommendations and no special consideration can be given to students in later years whose difficulties arise from such departures.

Students who are uncertain as to the field(s) of ultimate specialisation are strongly advised to take at least the three courses: Mathematics 1 or Mathematics 1 (Advanced), Physics 1 or Physics 1 (Advanced) and Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), thus leaving the widest possible scope for progression in later years.

Students should note that certain Intermediate biomedical courses are offered only as part of the BMedSc degree, although Auxiliary courses may still be available.

Schools or departments, and recommended first year combinations

- **Computer Science**
 Computer Science 1 or Computer Science 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) + two other first year courses

- **Geography**
 Geography 1 + Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (LS) + a course selected in consultation with an adviser

- **Geology**
 Geology 1 + Chemistry 1 or Chemistry 1 (Advanced) or Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (LS) + a course selected in consultation with an adviser

- **Chemical Engineering Science**
 Chemistry 1 or Chemistry 1 (Advanced) + Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) + a course selected in consultation with an adviser

- **Civil Engineering Science**
 Chemistry 1 or Chemistry 1 (Advanced) + Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) + a course selected in consultation with an adviser

- **Biology**
 Chemistry 1 or Chemistry 1 (Advanced) + Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) + Biology 1 or Biology 1 (Advanced)

- **Agricultural Chemistry**
 Chemistry 1 or Chemistry 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (LS) + two of Physics 1 or Physics 1 (Advanced), Biology 1 or Biology 1 (Advanced), Geology 1 or Geography 1

- **Biochemistry**
 Chemistry 1 or Chemistry 1 (Advanced) + Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (LS) + Biology 1 or Biology 1 (Advanced)

- **Marine Sciences**
 Biology 1 or Biology 1 (Advanced) + Geology 1 + Chemistry 1 or Chemistry 1 (Advanced) or Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced)

- **Geophysics**
 Geology 1 + Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) + a course selected in consultation with an adviser

- **Chemistry**
 Chemistry 1 or Chemistry 1 (Advanced) + Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) + Biology 1 or Biology 1 (Advanced)

- **Mathematical Statistics**
 Mathematics 1 or Mathematics 1 (Advanced) + three other first year courses

- **Mechanical and Aeronautical Engineering Science**
 Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) + a course selected in consultation with an adviser

*Major subject beginning as an Intermediate course.

Major subject beginning as a Senior course or an Intermediate introductory course.
Microbiology
Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (LS) + Chemistry 1 or Chemistry 1 (Advanced) + Biology 1 or Biology 1 (Advanced) + one other first year course

Pharmacology
Chemistry 1 or Chemistry 1 (Advanced) + Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (LS) + Biology 1 or Biology 1 (Advanced)

Physics
Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) + Chemistry 1 or Chemistry 1 (Advanced) + a course selected in consultation with an adviser

Preparation for Masters course in Nutrition and Dietetics
Chemistry 1 or Chemistry 1 (Advanced) + Physics 1 or Physics 1 (Advanced) + Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (LS) + Biology 1 or Biology 1 (Advanced)

Psychology
Psychology 1 + Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (LS) + Chemistry 1 or Chemistry 1 (Advanced) or Physics 1 or Physics 1 (Advanced) + Biology 1 or Biology 1 (Advanced) or Computer Science 1 or Computer Science 1 (Advanced) or a course selected in consultation with an adviser

Soil Science
Chemistry 1 or Chemistry 1 (Advanced) + Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (LS) or Computer Science 1 or Computer Science 1 (Advanced)

Selection of courses in second year of attendance
During Semester 2 of the first year of attendance you are advised to discuss your choice of courses for the following year with members of the academic staff in the departments in which you propose to study.

Students wishing to undertake 8-unit courses in Second Year should note the Faculty restrictions on choice of Intermediate Introductory and Intermediate Auxiliary courses (see footnotes in the Table of Courses) and are further advised that the allowed combination of a Classification A course with either a Classification SI or Classification S2 course may result in a heavy workload for one Semester and may also produce timetabling problems. Students are strongly advised to consult Faculty and/or Departmental advisers when undertaking these course combinations.
This chapter sets out the requirements for the degrees of Bachelor of Science, Bachelor of Pharmacy, Bachelor of Computer Science and Technology (BCST), Bachelor of Psychology (BPsych), the specially designated Bachelor of Science degree programs of Advanced, Environmental and Molecular Biology and Genetics, and the combined degrees of BSc/LLB, BA/BSc, BSc/BE and BSc/MB BS. The courses for the pass BSc (which includes the Advanced, Environmental and Molecular Biology and Genetics degree programs), BPharm, BMedSc and BCST degrees extend over a minimum of three years. For the Honours BSc, BPharm, BMedSc and BCST degrees a fourth year is taken and students must qualify to enter the Honours year. The courses for both the pass and the Honours BPsych degree extend over a minimum of four years. The combined degrees of BSc/LLB, BA/BSc and BSc/BE extend over 5 years, while the combined degrees of BSc/MB BS extend over 7 or 8 years depending on the major Science courses chosen.

Restrictions (general)
(1) A candidate for a degree must satisfy the minimum eligibility requirements before commencing the degree courses. Courses taken before satisfying these requirements cannot normally be counted for degree purposes.
(2) A candidate may not take a course in any subject without having previously completed the qualifying course or courses appropriate to that subject; or, in the case of a candidate who has not failed in the qualifying course, some other course or courses allowed by the Faculty to count as equivalent. Except with the permission of the head of department, he or she must also complete the prerequisites prescribed and enrol concurrently in any corequisites.
(3) The only combinations of courses available are those permitted by the timetable. A candidate may attend evening courses if they are available.

Time limits
The Faculty resolved at its meeting on 14 March 1995 that, except with the permission of the Faculty, students must complete the requirements for award of their degree within ten calendar years of admission to candidature. This rule applies to all students who first enrolled in their degree after 1995, and applies from 1998 to students who first enrolled in their degree before 1996.

Suspension
The Faculty resolved at its meeting on 14 March 1995 that all students must re-enrol each calendar year unless the Faculty has approved suspension of candidature. Candidature will lapse if a student has not obtained approval for suspension and does not re-enrol. A student whose candidature has lapsed must be selected for admission again (usually by submitting an application to UAC) before they can re-enrol.

The Faculty also resolved that, except with the prior permission of the Faculty, a student shall not be granted a suspension of candidature in order to enrol in another course of tertiary study. Candidature will lapse if a student enrols in another course of tertiary study after having been granted a suspension of candidature.

Credit
The Faculty resolved at its meeting on 14 March 1995 that students who have previously completed studies which are considered by the Faculty to be equivalent to any course listed in the tables may be given credit for that course providing that the course was completed not more than nine years before admission to candidature in the Faculty.

Examinations and assessment
The Faculty resolved at its meeting on 9 March 1993 that the various forms of assessment of a student's performance in an undergraduate course should include an examination or examinations conducted under University supervision and requiring written answers to unseen questions, provided that the general scope of a supervised examination paper may be made known to students in advance.

Results
For all Junior, Intermediate and Senior courses in the Bachelor of Science, Bachelor of Pharmacy, Bachelor of Medical Science, Bachelor of Computer Science and Technology and Bachelor of Psychology degrees, the following mark ranges apply within the Faculty of Science:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Mark Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
<td>High Distinction</td>
<td>85-100</td>
</tr>
<tr>
<td>D</td>
<td>Distinction</td>
<td>75-84</td>
</tr>
<tr>
<td>CR</td>
<td>Credit</td>
<td>65-74</td>
</tr>
<tr>
<td>P</td>
<td>Pass</td>
<td>50-64</td>
</tr>
<tr>
<td>T</td>
<td>Terminating Pass*</td>
<td>45-49#</td>
</tr>
<tr>
<td>XX</td>
<td>Fail</td>
<td>Below 45 or below 50</td>
</tr>
</tbody>
</table>

*A maximum of 28 units of Terminating Pass units can be credited towards the Bachelor of Science, Bachelor of Computer Science and Technology and the Bachelor of Psychology degrees. A maximum of 16 units of Terminating Pass units can be credited towards the Bachelor of Medical Science degree.

#A Terminating Pass does not apply for:
(a) Senior or Senior Advanced Courses
(b) All courses in the Bachelor of Pharmacy degree.
For Final Year Honours courses, the following Honours grades apply:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Honours Class I</td>
</tr>
<tr>
<td>H21</td>
<td>Honours Class II (Division 1)</td>
</tr>
<tr>
<td>H22</td>
<td>Honours Class II (Division 2)</td>
</tr>
<tr>
<td>H3</td>
<td>Honours Class III</td>
</tr>
<tr>
<td>XX</td>
<td>Fail*</td>
</tr>
<tr>
<td>AXX</td>
<td>Absent Fail*</td>
</tr>
</tbody>
</table>

*Note that in these cases the award of the Pass degree is recommended.

Boards of Examiners

Undergraduate results are formally determined by Boards of Examiners. The University's Statutes and Regulations 1994-95 contains the Resolutions of the Faculty relating to the composition of the Boards, and the Manual for Examiners (extracts from which may be obtained at the Faculty Office) details the guidelines under which the Boards operate.

Special consideration

The Faculty of Science recognises that the performance of students may be adversely affected by illness or other misadventure, and makes provision for special consideration of such disabilities when examination results are considered. Faculty intends only to compensate for sub-standard performance in assessments which do not reflect a student's true competence in a subject, and such provisions must not act to the disadvantage of other students. Combined Law students should familiarise themselves with the Faculty of Law’s provisions as they affect Law subjects.

Any student who believes that his/her performance has been or may be adversely affected by an occurrence of illness or misadventure may request faculty to give special consideration to the circumstances. Such a request must be made within one week of the occurrence and must be accompanied by an appropriate medical certificate or other relevant documentary evidence.

Such certificates should state not only the nature of the illness or misadventure but also (where relevant) the opinion of the issuer as to the extent of disability involved.

Where a number of requests for special consideration have been received from one student, faculty may wish to obtain from the medical practitioner or other issuer of corroborating certificates more detail as to the precise extent of the disability. In cases where the faculty believes that other students may be adversely affected by the giving of special consideration, it may require the applicant to obtain a professional opinion from another source.

Any student who is subject to a chronic or recurrent disability or who has been in need of, or undertaken counselling assistance should discuss the matter with a departmental or faculty adviser, as appropriate.

Discontinuation and re-enrolment

Regulations about discontinuation and about restrictions imposed on re-enrolment are published in the University's Statutes and Regulations 1994-95. Attention is drawn in particular to regulations 18 and 19 specifically concerned with the Faculty of Science, and to those headed 'Students in all Faculties and Boards of Studies'.

The resolutions of the Senate which relate to students enrolled in the Faculty of Science appear below.

Discontinuation of enrolment and re-enrolment after discontinuation — undergraduate

All Faculties¹ and Boards of Studies

1. A candidate for a degree of Bachelor who ceases attendance at classes must apply to the Faculty or Board of Studies concerned and will be presumed to have discontinued enrolment from the date of application, unless evidence is produced (i) that the discontinuation occurred at an earlier date and (ii) that there was good reason why the application could not be made at the earlier time.

2. A candidate for a degree of Bachelor who at any time during the first year of attendance discontinues enrolment in all courses shall not be entitled to re-enrol for that degree unless the Faculty or Board of Studies concerned has granted prior permission to re-enrol or the person is re-selected for admission to candidature for that degree.

3. Subject to paragraphs (i) and (ii) of section 1, no candidate for a degree of Bachelor may discontinue enrolment in a course or year after the end of lectures in that course or year.

4. The Dean, Pro-Dean or a Sub-Dean of a Faculty, or the Chairperson of a Board of Studies, may act on behalf of that Faculty or Board of Studies in the administration of these resolutions unless the Faculty or Board of Studies concerned decides otherwise.

Withdrawal from full-year and First Semester courses

5. A candidate for a degree of Bachelor who discontinues enrolment in a full-year or First Semester course on or before 30 March in that year shall be recorded as having withdrawn from that course.

Withdrawal from Second Semester courses

6. A candidate for a degree of Bachelor who discontinues enrolment in Second Semester course on or before 30 August in that year shall be recorded as having withdrawn from that course.

All Faculties¹ and Boards of Studies except the Faculty of Engineering

Discontinuation

7. (1) A discontinuation of enrolment in a

¹Note that ‘Faculty’ includes for these purposes a ‘College Board’.
course shall be recorded as 'Discontinued with Permission' when the discontinuation occurs after the relevant withdrawal period and:

(a) on or before the Friday of the first week of Second Semester for a full-year course; or
(b) up to the last day of the seventh week of teaching in a one semester course.

(2) A discontinuation of enrolment in a course shall be recorded as 'Discontinued' when the discontinuation occurs:

(a) after the Friday of the first week of Second Semester for a full-year course; or
(b) after the last day of the seventh week of teaching in a one semester course.

(3) Notwithstanding paragraph (2) the Dean, Pro-Dean or Sub-Dean of the Faculty or Chairperson of the Board of Studies concerned may determine that a discontinuation of enrolment should be recorded as 'Discontinued with Permission' on the grounds of serious ill-health or misadventure.

Restriction upon re-enrolment

The following are extracts from the resolutions of the Senate concerning 'Restriction upon Re-enrolment of Certain Students who fail in Annual Examinations':

1. The Senate authorises any Faculty or Board of Studies to require a student who comes within the provisions of sections 8 to 24 below to show good cause why he or she should be allowed to re-enrol or to repeat a year of candidature or a course in that Faculty or Board of Studies.

2. Subject to section 5, the Faculty or Board of Studies may exclude a student who fails to show good cause from (a) the degree course or year of candidature concerned and/or (b) the course or courses concerned both in the Faculty or Board of Studies and in any other Faculty or Board of Studies in which that course or courses may be taken.

3. Subject to section 5—
 (a) Any student who has been excluded from a year of candidature or from a course or courses by a Faculty or Board of Studies in accordance with section 2 and who wishes to re-enrol in that year of candidature or that course or those courses may apply for such re-enrolment after at least two academic years and that Faculty or Board of Studies may permit him or her to re-enrol in the year or the course or courses from which he or she was previously excluded.

 (b) Any student who has been excluded from a course or courses by one Faculty or Board of Studies in accordance with section 2 and who wishes to enrol in that course or courses in another Faculty or another Board of Studies may apply for such enrolment after at least two academic years and that other Faculty or Board of Studies may permit him or her to enrol in the course or courses from which he or she was previously excluded.

4. Except with the express approval of the Faculty concerned a student excluded from a year or course who is re-admitted shall not be given credit for any work completed in another Faculty or Board of Studies or another university during the period of exclusion.

5. Before exercising its powers under section 2 or 3 in relation to an individual course, a Faculty or Board of Studies shall consult the head of the department or school responsible for the course.

6. The Senate authorises the Faculty or Board of Studies as a whole or a Faculty Committee or Board
of Studies Committee representing the main teaching departments in each Faculty or Board of Studies, to carry out all duties arising out of sections 1, 2, 3, 4 and 5.

7. (1) Subject to section 7(2), a student who, having been excluded in accordance with these resolutions, has been refused enrolment or re-enrolment in any year or course by any Faculty or Board of Studies, or any Faculty Committee or Board of Studies Committee, may appeal to the Senate.

(2) A second or subsequent appeal to the Senate shall only be heard by leave of the Chancellor or the Deputy Chancellor.

A. Students in all Faculties and Boards of Studies

8. The Senate authorises any Faculty or Board of Studies to require a student to show good cause why he or she should be allowed to repeat in that Faculty or Board of Studies (a) a year of candidature in which he or she has failed or discontinued more than once or (b) any course in which he or she has failed or discontinued more than once whether that course was failed or discontinued when he or she was enrolled for a degree supervised by the Faculty or Board of Studies or by another Faculty or Board of Studies.

9. The Senate authorises the several Faculties or Boards of Studies to require a student who, because of failure or discontinuation has been excluded from a Faculty or course, either in the University of Sydney or in another tertiary institution, but who has subsequently been admitted or re-admitted to the University of Sydney to show good cause why he or she should be allowed to repeat either (a) the first year of attendance in which after such admission or readmission he or she fails or discontinues, or (b) any course in which in the first year after admission or readmission he or she fails or discontinues.

J. Faculty of Science

18. (1) The Senate authorises the Faculty of Science to require a student to show good cause why he or she should be allowed to re-enrol in the degree of Bachelor of Science, Bachelor of Medical Science, Bachelor of Computer Science and Technology or Bachelor of Psychology if in any two successive years of attendance he or she fails to gain credit for half the unit value of courses attempted, unless in one of these two years he or she successfully completes all courses attempted in that year.

(2) In cases where the Faculty permits the re-enrolment of a student whose progress has been deemed unsatisfactory, the Faculty may require the completion of specified courses in a specified time, and if the student does not comply with these conditions, the student may again be called upon to show good cause why he or she should be allowed to re-enrol in the degree of Bachelor of Science, Bachelor of Medical Science, Bachelor of Computer Science and Technology or Bachelor of Psychology.

19. (1) The Senate authorises the Faculty of Science to require a student to show good cause why he or she should be allowed to re-enrol in the degree of Bachelor of Pharmacy if in the opinion of the Faculty he or she has not made satisfactory progress towards fulfilling the requirements for the degree.

(2) Satisfactory progress cannot be defined in all cases in advance, but a student who has not gained credit for 116 or more units shall be asked to show good cause why he or she should be allowed to re-enrol as a candidate for the degree of Bachelor of Pharmacy, if in any two successive years of attendance he or she fails in the first of these years to gain credit for 28 units and then fails to gain a total of 44 units in the two years of attendance, unless in one of these two years he or she successfully completes all courses attempted in that year.

(3) In cases where the Faculty permits the re-enrolment of a student whose progress has been deemed unsatisfactory, the Faculty may require the completion of specified courses in a specified time, and if the student does not comply with these conditions the student may again be called upon to show good cause why he or she should be allowed to re-enrol in the degree of Bachelor of Pharmacy.

Degree of Bachelor of Science

Summary of requirements

The requirements for the degree are set out in the Senate resolutions which should be read by all intending candidates (see below). In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree contained in sections 4, 5, 6 and 9.
Progression towards the degree is by the accumulation of unit points, gained by completing a course.

To qualify for a degree you must gain credit for at least 140 units. Junior courses are worth 12 units. Intermediate courses are worth 24 (Combined), 20 (Long), 16 (Normal or Advanced) or 8 (Auxiliary/Auxiliary Advanced or Introductory) units depending on the course selected. Senior courses are worth 24 units. For students enrolled in the combined BSc/LLB course, Intermediate and Senior Law courses are worth 6 units each.

The total of 140 units required for the degree must include:
- 24 units from a Senior course, not including History and Philosophy of Science 3
- 32 units from Intermediate courses, and
- a total of 72 units from Senior and Intermediate courses.

The following courses must be completed:
- Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences), and
- two courses chosen from Biology 1 or Biology 1 (Advanced), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Computer Science 1 or Computer Science 1 (Advanced), Geography 1, Geology 1, Physics 1 or Physics 1 (Advanced) and Psychology 1, of which at least one shall be Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced).

Thus the basic sequence of courses must include Mathematics 1 (any option), Physics 1 (either option) or Chemistry 1 (any option), Intermediate courses worth 32 units and at least one Senior course.

There are the following constraints on enrolment in courses:
- Only those combinations of courses permitted by the timetable can be taken.
- Full-time students generally enrol in 4 Junior courses in the first year of attendance
- You may not enrol in courses worth more than 52 units total in any one year or the equivalent of 56 units in one semester without special permission of Faculty. You may not enrol in a Junior course unless you are enrolled in any corequisite course.
- You may not enrol in any Intermediate courses before you have completed 3 Junior courses.
- You may not enrol in a Senior course before you have completed 32 units of Intermediate courses.
- You may not enrol in Intermediate or Senior courses unless you have completed the prerequisite courses and are enrolled in any corequisite courses.

HSC Aggregate
The minimum Tertiary Entrance Rank for admission to the Faculty varies from year to year.
can in fact place greater demands on your time and effort than one Normal 16-unit course. (Also see under 'Selection of courses...' at the end of Chapter 2.)

Special permission
You should note that the Faculty can, in certain instances, permit exceptions to the normal requirements for a degree. Applications for special consideration should be made in writing to the Associate Dean (Undergraduate) after discussion with the staff in the Faculty office.

Part-time candidature
It is expected that the majority of candidates will proceed as full-time students. If, however, you are unable to proceed on a full-time basis you may enrol as a part-time candidate and will be required to indicate this when enrolling. Day-time attendance at lectures and laboratory classes is required for most science courses.

Part-time candidates during their first year of attendance enrol in one or two Junior courses. Candidates enrolling in one Junior course will be required to enrol in one of Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced). Candidates enrolling in two Junior courses will be required to enrol in at least one of the courses Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced), and if only one of these courses is taken then one further course will be required to be chosen from Group A. Part-time candidates who do not take a Junior course in Mathematics during their first year of attendance will be required to take such a course in the next year of attendance.

Discontinuation
For regulations relating to discontinuation, see the University's Statutes and Regulations 1994-95. Students should read these regulations carefully as a discontinuation can affect the Weighted Average Mark (WAM). For further information about the WAM, see under 'Honours courses' below.

Regulations

Resolutions of the Senate
The following resolutions governing candidature for the degree of Bachelor of Science have been prescribed by the Senate.

1. For the purpose of the resolutions:
 (1) (i) A course shall consist of lectures together with such tutorial instruction, essays, exercises, or practical work as may be prescribed.
 (ii) Each course shall be designated as a Junior course, a Junior Advanced course, a Junior Special Studies Program course, an Intermediate course, a Senior course, a Senior Advanced course, a Senior Additional course, a Senior Additional Advanced course or an Honours course. Each Intermediate course shall be designated as Normal, Normal Advanced, Auxiliary, Auxiliary Advanced, Introductory, Long, Combined or Combined Advanced.
 (iii) Except as provided in section 8(1), section 13 or section 14, candidates who have completed a course shall have units credited towards the completion of a degree in accordance with the following:

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junior course</td>
<td>12</td>
</tr>
<tr>
<td>Junior Advanced course</td>
<td>12</td>
</tr>
<tr>
<td>Junior Special Studies Program Course</td>
<td>12</td>
</tr>
<tr>
<td>Intermediate courses—</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>16</td>
</tr>
<tr>
<td>Normal Advanced</td>
<td>16</td>
</tr>
<tr>
<td>Normal Advanced</td>
<td>20</td>
</tr>
<tr>
<td>Auxiliary</td>
<td>8</td>
</tr>
<tr>
<td>Auxiliary Advanced</td>
<td>8</td>
</tr>
<tr>
<td>Introductory</td>
<td>8</td>
</tr>
<tr>
<td>Long</td>
<td>20</td>
</tr>
<tr>
<td>Combined</td>
<td>24</td>
</tr>
<tr>
<td>Combined Advanced</td>
<td>24</td>
</tr>
<tr>
<td>Senior course</td>
<td>24</td>
</tr>
<tr>
<td>Senior Additional course</td>
<td>24</td>
</tr>
<tr>
<td>Senior Advanced course</td>
<td>24</td>
</tr>
<tr>
<td>Senior Additional Advanced Course</td>
<td>24</td>
</tr>
</tbody>
</table>

 (iv) Junior, Intermediate, Senior or Honours courses are indicated by the Arabic numeral 1, 2, 3, or 4 respectively placed immediately after the name of a subject.

(2) To 'complete a course' and derivative expressions mean:
 (i) to attend the lectures and the meetings, if any, for tutorial instructions;

From 1994 the course General Pure Mathematics 1 has been renamed Mathematics 1 (Life Sciences). Any reference to Mathematics 1 (Life Sciences) in these Resolutions shall be deemed to apply equally to General Pure Mathematics 1.
(ii) to complete satisfactorily the essays, exercises and the practical work, if any; and
(iii) to pass the examinations of the course.

(3) A qualifying course means a course which must be completed with a result of Pass or better (not Terminating Pass) before the course for which it qualifies may be taken.

(4) A prerequisite course means a course other than a qualifying course in a subject which, except with the permission of the head of the department concerned, must have been completed prior to a candidate taking a course for which the Faculty has declared it to be a prerequisite.

(5) A corequisite course means a course which unless previously completed must, except with the permission of the head of department concerned, be taken concurrently with the course for which the Faculty has declared it to be a corequisite.

Grades of Award
2. The degree shall be awarded in two grades, namely the Pass degree and the Honours degree.

Courses for Pass degree
3. Courses for the degree shall, except as provided in section 7, section 13 and section 14:
 (1) be in such subjects,
 (2) have such unit values, and
 (3) have such qualifying, prerequisite and corequisite courses as are set out in the table associated with this section.

Qualification for Pass degree
4. Candidates for the pass degree shall:
 (1) complete—
 (i) either Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences); and
 (ii) two courses chosen from Biology 1 or Biology 1 (Advanced), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Computer Science 1 or Computer Science 1 (Advanced), Geography 1, Geology 1, Physics 1 or Physics 1 (Advanced) and Psychology 1, of which at least one shall be Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced).
 (2) gain credit totalling at least 140 units of which:
 (i) at least 72 shall be units for Senior and Intermediate Courses;
 (ii) at least 24 shall be units for Senior Courses not including History and Philosophy of Science 3;
 (iii) at least 32 shall be units for Intermediate (Normal, Normal Advanced, Long, Combined or Combined Advanced) courses, provided that the Faculty may permit—
 (a) a candidate who passes two Senior courses, a prerequisite for one of which is an Intermediate 8-unit course, to count that Intermediate 8-unit course along with another Intermediate 8-unit course as together constituting an equivalent Intermediate Normal course.
 (b) a candidate to count as equivalent to an Intermediate Normal course a combination of 8-unit courses approved for this purpose and designated accordingly in the table accompanying section 3.
 (iv) not more than 40 units in total shall be credited towards the degree from courses specified in the table accompanying section 3 in the subject areas of Anatomy and Histology, Cell Pathology, Pharmacology and Physiology;
 (v) with the exception of the specially designated BSc Environmental degree program, not more than 24 units shall be credited towards the degree from courses selected from Group B of section 5 and courses other than those specified in the table accompanying section 3;
 (vi) with the exception of the specially designated BSc Environmental degree program, not more than 12 units shall be credited towards the degree from courses in Group B of section 5 which are designated BIOlorABIOI;
 (vii) not more than 32 units shall be derived from Intermediate

*See Section 10(7)
courses in Biology or more than 48 units derived from Senior or Senior Additional courses in Biology; and
(viii) not more than 28 units, obtained from not more than two whole courses, shall be credited from courses in which terminating passes have been awarded.

(3) not have any course credited more than once for the degree.
(4) not have credited for the degree units derived from more than one of such courses as the Faculty may deem to be mutually exclusive\(^1\) except as provided in section 8 (1).
(5) when enrolled in a course, a non-optional part of which is similar in content to part of (i) a course previously completed or (ii) another course in which the candidate is currently enrolled, complete an equivalent amount of alternative work, as directed by the head(s) of department(s) concerned, in order to complete the course.
(6) not take an option within a course which is similar in content to part of a course concurrently being taken or previously completed.

Enrolment in Junior courses

5. (1) In their first year of attendance, unless granted credit in accordance with section 11, or unless undertaking study in the specially designated BSc Environmental degree program, candidates for the Pass degree shall:
if undertaking four Junior courses enrol in—
(i) Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences);
(ii) at least one of the courses Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced);
(iii) in the case of students enrolling in both Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and Physics 1 or Physics 1 (Advanced), one further course chosen from either Group A or Group B.

if undertaking three Junior courses enrol in—
(i) Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences);
(ii) at least one of the courses Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced);
(iii) in the case of students not enrolling in both Chemistry 1 [or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)] and Physics 1 [or Physics 1 (Advanced)], one further course chosen from either Group A or Group B.

if undertaking two Junior courses enrol in—
(i) at least one of the courses Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced);
(ii) in the case of students enrolling in only one of the courses Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced), one further course chosen from Group A.

if undertaking one Junior course enrol in one of—
Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced).

Group A

Biology 1 or Biology 1 (Advanced)
Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)
Computer Science 1 or Computer Science 1 (Advanced)
Geography 1
Geology 1
Physics 1 or Physics 1 (Advanced)
Psychology 1

\(^1\)See column (d) in the Table following these resolutions for information about courses deemed to be mutually exclusive.
Group B
Comprises all first year courses offered by the Faculties of Arts and Economics not listed by name in the table of courses associated with section 3 of these resolutions but excluding those courses which the Faculty has deemed to be mutually exclusive1 with courses offered for the Bachelor of Science degree.

(2) In any year of enrolment subsequent to the first year candidates who have not met the requirements specified in section 6(l)(i) for enrolment in an Intermediate course may not enrol in Group A courses other than Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced), or in Group B courses, unless they have passed, have been granted credit in accordance with section 11 for, or are currently enrolled in Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences) and at least one of the courses Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced).

(3) In selecting a course from Group B candidates shall be required to comply with section 6(6) of these resolutions as well as those of the Faculties of Arts and Economics in respect to the course.

Restrictions on enrolment
6. (1) Except with the permission of the Faculty, candidates may not take an Intermediate course:
 (i) until they have completed at least three Junior courses, of which one must be Physics 1 or Physics 1 (Advanced), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences).
 (ii) until they have completed the Junior courses, if any, prescribed by the Faculty as prerequisites for the Intermediate course as set out in section 3.

(2) Except with the permission of the Faculty, candidates may not take a Senior course:
 (i) until they have completed at least two of the courses Physics 1 or Physics 1 (Advanced), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences).
 (ii) until they have completed the Intermediate and Junior courses, if any, prescribed by the Faculty as prerequisites for the Senior course as set out in section 3.

(3) Candidates may not take the Senior Additional Course or the Senior Additional Advanced Course in a subject except with the permission of the head of department concerned, and then only concurrently with the coexisting Senior course in the same subject, unless that Senior course has been completed previously.

(4) Except with the permission of the Faculty, candidates may not take any higher course in any subject without having previously completed the lower course or courses in the same subject or some other course or courses allowed by the Faculty to count as equivalent. For the purposes of this subsection candidates who completed an Intermediate Auxiliary course do not thereby qualify to take the Senior course in that subject; candidates who complete the Intermediate Introductory course in a subject may, subject to the conditions of subsection (2), take the Senior course in that subject.

(5) Except with the permission of the Faculty, candidates may not take in any one academic year more than four courses, or courses with a total number of units in excess of 52 or in excess of the equivalent of 56 in one semester.

(6) The choice of courses made by candidates shall be limited by the exigencies of the timetable provided that candidates who have completed at least three Junior courses and who seek to enrol in two courses which are given wholly or partly at the same hour or hours may be granted, by the heads of the departments concerned, permission to attend equivalent courses or parts of courses given at another hour or other hours.

Enrolment in courses not in the table
7. (1) A candidate of merit may, under special circumstances and with the permission of the Faculty, enrol in a course other than those specified in the table accompanying section 3 provided that course is of a standard at least equivalent to an

1See column (d) in the Table following these resolutions for information about courses deemed to be mutually exclusive.
Intermediate Normal course. A student on completion of any such course will only have 12 units counted, as Junior units, towards the 140 units that are required by the Bachelor of Science degree, irrespective of the unit value assigned to that course by the Faculty in which it is given.

(2) A candidate of exceptional merit may, under special circumstances and with the permission of the Dean, undertake studies within the Faculty other than those courses specified in the table accompanying section 3, and upon completion of those studies have them counted towards the degree. The candidate may be given credit for these studies of up to 40 units, which will be designated by the Dean as Junior, Intermediate, Senior or Senior Additional. Such units shall count towards the number of units required for the degree in accordance with section 4(2).

Upgrade of courses
8. (1) Candidates who have completed the Intermediate Auxiliary, Auxiliary Advanced or Normal or Normal Advanced course in a subject and who subsequently complete the Normal, Normal Advanced, Long, Combined or Combined Advanced course in that subject will be credited with the appropriate additional unit value.

(2) Candidates who have been awarded a Terminating Pass in any course may take that course again. On completion of this course such candidates will not be credited with any further units unless the course is completed at least at Pass level and the units had not previously been credited in accordance with section 4(2)(viii) which limits the number of units which shall be credited from courses in which Terminating Passes have been awarded.

Time limits, Suspension, Part-time study
9. (1) Except with the prior permission of the Faculty a candidate shall not be granted a suspension of candidature in order to enrol in another course of tertiary study. Candidature shall lapse if a candidate enrolls in another course of tertiary study after having been granted a suspension of candidature.

(2) Candidates who in any year intend to proceed towards the degree of Bachelor of Science as part-time students shall indicate this intention when enrolling.

(3) Candidates proceeding as part-time students shall not take in any one academic year more than three courses, or courses with a total unit value of 36 or more.

Course assessment
10. (1) Candidates may be tested by written and oral class examinations, exercises, essays or practical work or any combination of these, and the results of such tests may be taken into account by the Faculty Board of Examiners in determining the final results for a course.

(2) In all courses passes may be graded into High Distinction, Distinction, Credit and Pass, and in Junior and Intermediate courses Terminating Pass. The grades High Distinction, Distinction or Credit indicate work of a standard higher than that required for a pass.

(3) Where a department offers a course at two levels the performance of students in the two levels in terms of comparability of quality of work will be matched by that department so that a grade obtained at one level indicates a quality of work comparable with that required for the same grade obtained at the other level.

(4) Candidates who have been prevented by duly certified illness or misadventure from sitting for the whole or part of a course assessment may be tested at such times and in such way as the Faculty Board of Examiners shall determine.

(5) Candidates who do not pass in a course shall, unless exempted by the Dean, again attend lectures and other classes and complete the prescribed written and other work in all such courses in which they are permitted to re-enrol.

(6) Candidates who repeat any course shall not be eligible for any prize or scholarship awarded in connection with the examination for such a course.

(7) In any Junior or Intermediate course the Faculty Board of Examiners may award a Terminating Pass which, subject to the provisions of section 4(2)(viii), entitles the
candidate to be credited with the full number of units for that course. Candidates who have been awarded a Terminating Pass in a course are not thereby qualified to take a higher course in that subject, but otherwise such candidates shall be held to have completed such course.

Credit for courses

11. (1) Candidates who have previously completed studies which are considered by the Faculty to be equivalent to any course listed in the tables associated with section 3, section 13 or section 14 may be given credit for that course providing that:

(i) the total unit-value of the courses so credited from studies which have resulted in the conferring of a degree or degrees may not exceed 52.

(ii) in the case of students who have completed courses in another tertiary program without the degree being conferred and who have abandoned credit in that program for the courses on the basis of which credit is sought, any number of courses may be credited.

(iii) the courses were completed not more than nine years before admission to candidature in the Faculty.

(2) Candidates who have been given credit for courses listed in the tables, in accordance with section 11(1), shall be regarded as having completed such courses for the purposes of these resolutions.

(3) Candidates for the degree who have completed studies at tertiary level which are considered by the Faculty to be appropriate, but for which there is no equivalent course listed in the table associated with section 3, may be given credit for such number of units, to be designated by the Faculty as Junior, Intermediate, Senior or Senior Additional, as the Faculty may determine. Such units shall count towards the number of units required for the degree in accordance with section 4(2).

Specially designated BSc degree programs

13. Notwithstanding sections 4, 5, 6 and 9 of these resolutions, candidates wishing to graduate in specially designated degree programs, which may also be taken in the Advanced degree program, shall, except with the permission of the Faculty, complete the courses as set out in the tables associated with this section as follows:

(1) Environmental: Table A

(2) Molecular Biology and Genetics: Table B

Science/Law

14. (1) Notwithstanding the resolutions of the Senate relating to degrees in more than one Faculty and subject to sections 4 and 5 of these resolutions, a person may proceed concurrently as a candidate for the degrees of Bachelor of Science and Bachelor of Laws and may receive credit for up to 42 units in respect of the courses set out in the table associated with this section for the Bachelor of Science degree, provided that:

(i) such a candidate may not, except with the express permission of the Deans of the Faculties of Science and Law, enrol in courses of a total unit value exceeding that specified in section 6(5);
(ii) no courses listed in Group B of section 5 of these resolutions or courses not listed in the Table accompanying section 3 of these resolutions may be credited towards the BSc degree;

(iii) such a candidate may not use any Law course to satisfy the requirement in section 4(2) of these resolutions that at least 72 of the total of 140 units required to qualify for the Pass degree shall be units for Senior and Intermediate courses.

(2) Except with the permission of the Faculty of Law, a candidate may not take any of the Intermediate or Senior courses in the Table of Law courses until they have completed the course Legal Institutions.

Science/Engineering
15. Notwithstanding the resolutions of the Senate relating to degrees in more than one Faculty or any other of these resolutions, students who have completed studies in the Faculty of Engineering may be admitted by the Faculty of Science to candidature for the degree. Such students shall comply with such requirements for the degree as may be prescribed by the resolutions of the Senate and by resolution of the Faculty.1

Science/Medicine, Arts/Science
16. Notwithstanding the resolutions of the Senate relating to degrees in more than one faculty or any other of these resolutions, a person may proceed concurrently as a candidate for the degrees of:

(i) Bachelor of Science, Bachelor of Medicine and Bachelor of Surgery; or
(ii) Bachelor of Arts and Bachelor of Science.

Such students shall comply with such requirements for each degree as may be prescribed by the resolutions of the Senate and by resolution of the Faculties.

Admission to Honours courses
17. (1) In order to qualify for admission to an Honours course candidates shall have qualified for the award of a Pass degree and be considered by the Faculty and the head of the department concerned to have the requisite knowledge and aptitude for an Honours course.

(2) With the permission of the appropriate head of department and provided the requirements in subsection (1) have been satisfied the following may also be admitted to Honours courses:

(i) Pass graduates in Science of the Faculty of Science.
(ii) Pass graduates holding Bachelor of Science degrees or equivalent from such other institutions as the Faculty may from time to time determine.

(3) Candidates may not take more than one Honours course in any one academic year.

(4) Candidates who have qualified for the Honours degree may take, in the next year or at such later times as the Faculty permits, an additional Honours course which they are qualified to enter.

Honours courses
18. (1) Candidates for the Honours degree shall complete an Honours course.

Classes of Honours and Medal
19. (1) There shall be three Classes of Honours, namely Class I, Class II and Class III, and within Class II there shall be two Divisions, namely Division 1 and Division 2.

(2) A candidate with an outstanding performance in the subject of an Honours course shall, if deemed to be of sufficient merit by the Faculty, receive a bronze medal.

(3) There shall be no re-examination for Honours.

Honours courses

The regulations governing Honours courses in the Faculty of Science are sections 17-19 (BSc), 10-12 (BPharm and BMedSc) of the Senate resolutions. You should note particularly section 17 (BSc) or 10 (BPharm or BMedSc) and that approval both from Faculty and the head of the department concerned is required. To obtain permission from the Faculty, applicants must (i) have gained a credit in the Senior course relating to the intended Honours subject or have a WAM of at least 58 (see below);
and (ii) be of not more than four years' standing, or in the case of part-time students, of not more than five years' standing as students in the Faculty at the time requirements for the Pass degree are completed. Exceptions are granted only on the grounds of documented illness or misadventure. Note also that heads of department may apply additional guidelines. (Applications for advice of WAM may be lodged at the Faculty Office.)

In the case of students applying under section 17(2)(ii) of the Senate resolutions for the degree of Bachelor of Science or section 10(2)(ii) of the Senate resolutions for the degree of Bachelor of Pharmacy, the Dean, on behalf of the Faculty, shall be responsible for determining whether students may be admitted to an Honours course by assessing whether the overall performance of each applicant is comparable to pass graduates of the Faculty of Science eligible for admission to an Honours course.

It is usual for students to take the same subject in Honours that they have taken at the Senior level. Permission can, however, be given by the Faculty for taking an Honours course without having taken the Senior course when previous training is suitable. For example, it is permissible to study Biophysics in Biology 4 without having taken Biology 2 and 3 if Physics or Physical Chemistry have been taken instead. Similarly Honours in Geophysics may be taken in certain circumstances without having taken Geology 3.

Where an Honours course differs from the previous specialisation, the head of the appropriate department and the Faculty of Science must be satisfied that previous training is adequate.

Award of Honours and ranking for postgraduate scholarships

The Faculty has adopted a system of Weighted Average Marks (WAM) in relation to the award of Honours and ranking for postgraduate scholarships. The WAM is an integer between 45 and 100 which is an overall measure of performance in the pre-honours years. It is calculated by summing the products of the marks achieved and the weighted unit values of the courses taken in the pre-honours years and then dividing by the sum of the weighted unit values. Note that all attempts at courses are included in the calculation except where courses are discontinued with permission.

The formula used is as follows:

\[
WAM = \frac{\sum Wc Mc}{\sum Wc}
\]

where \(Wc\) is the weighted unit value—i.e. unit value x year weighting of 1 (Junior), 2 (Intermediate) or 3 (Senior)—and \(Mc\) is the greater of 45 or the mark out of 100 for the course.

The Faculty is aware that, because the Honours year in some departments is wholly or predominantly formal course work and in others a research project, and because some subjects are not taught until well into the undergraduate program, the way in which departments take cognisance of performance in the pre-honours years in arriving at a recommendation for a grade of Honours must be left to their discretion. However, the Faculty has established a set of guidelines for departments to use in determining their recommendations.

The Faculty stipulates that a student with a WAM of less than 80 or an Honours year mark of less than 95 would not normally receive a medal. A student with a WAM of 77 to 79 inclusive may be considered for the award of a medal only if it can be demonstrated that the WAM was affected by sickness, misadventure, unusual workload or choice of courses. The Faculty recognises, however, that the Senate resolutions concerning medals relate the award of a medal to the Honours courses only.

The Faculty also stipulates that a student with a WAM of less than 68 or an Honours year mark of less than 80 would receive first class honours only in exceptional circumstances. Students who have a WAM within the range of 65 to 67 and who obtain a combined mark of 148 or greater (WAM plus fourth year mark) may be considered for the award of first class honours only if it can be demonstrated that their WAM was affected by sickness, misadventure, unusual workload or choice of courses, and/or they can demonstrate exceptional performance in their Honours year.

The award of second and third class Honours is made on the basis of the Honours year mark only. A student who fails the Honours year is recorded 'Fail' in that year and is awarded a pass degree.

Ranking for postgraduate scholarships is determined by the sum of the WAM and the Honours year mark.
<table>
<thead>
<tr>
<th>Courses</th>
<th>Unit values</th>
<th>Assumed standard of knowledge at Higher School Certificate examination or equivalent level (as approved by the Senate)</th>
<th>Corequisites (C)</th>
<th>Additional information about courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 1</td>
<td>12</td>
<td>The Biology section of the Science 3-unit course</td>
<td></td>
<td>See prerequisites for Intermediate and Senior courses in Biology. May not be counted with Biology 1 (Advanced)</td>
</tr>
<tr>
<td>Biology 1 (Advanced)</td>
<td>12</td>
<td>The Biology section of the Science 3-unit course</td>
<td></td>
<td>Students must first enrol in Biology 1. Subsequently, selected students may be invited to enrol in this course where they will participate in a more demanding alternative component of the Biology 1 course in Second Semester. See prerequisites for Intermediate and Senior courses in Biology. May not be counted with Biology 1</td>
</tr>
<tr>
<td>Chemistry 1</td>
<td>12</td>
<td>Mathematics 2-unit course and the Chemistry section of the Science 3-unit or 4-unit course or 2-unit Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry 1 (Advanced)</td>
<td>12</td>
<td>Mathematics 2-unit course and the Chemistry section of the Science 3-unit or 4-unit course or 2-unit Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry 1 (Special Studies Program)</td>
<td>12</td>
<td>Mathematics 2-unit course and the Chemistry section of the Science 3-unit or 4-unit course or 2-unit Chemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Science 1</td>
<td>12</td>
<td>Mathematics 3-unit course</td>
<td>C: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>See prerequisites for Intermediate and Senior courses in Computer Science. May not be counted with Computer Science 1 (Advanced)</td>
</tr>
<tr>
<td>Subject</td>
<td>Number</td>
<td>Requirement</td>
<td>Notes</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Computer Science 1 (Advanced)</td>
<td>12</td>
<td>Mathematics 3-unit course</td>
<td>May not be counted with Computer Science 1</td>
<td></td>
</tr>
<tr>
<td>Geography 1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology 1</td>
<td>12</td>
<td>No previous knowledge of Geology assumed</td>
<td>See prerequisites for Geology 2</td>
<td></td>
</tr>
<tr>
<td>Mathematics 1</td>
<td>12</td>
<td>Mathematics 3-unit course</td>
<td>May not be counted with Mathematics 1 (Life Sciences) or Mathematics 1 (Advanced)</td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 (Advanced)</td>
<td>12</td>
<td>Mathematics 3-unit course</td>
<td>May not be counted with Mathematics 1 (Life Sciences) or Mathematics 1</td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 (Life Sciences)</td>
<td>12</td>
<td>Mathematics 2-unit course</td>
<td>For candidates who undertake Mathematics 1 (Life Sciences) there are restrictions on entry to all Intermediate Mathematics and Statistics courses except Statistical Methods 2. See the Intermediate course entries in this table for details. Prior to 1994 this course was called General Pure Mathematics 1.</td>
<td></td>
</tr>
<tr>
<td>Physics 1</td>
<td>12</td>
<td>Regular Strand: Mathematics 2-unit course and the Physics section of the Science 3-unit or 4-unit course or 2-unit Physics. Fundamental Strand: (First Semester) Mathematics 2-unit course.</td>
<td>See prerequisites for Physics 2 and Physics 3. May not be counted with Physics 1 (Advanced)</td>
<td></td>
</tr>
<tr>
<td>Physics 1 (Advanced)</td>
<td>12</td>
<td>Mathematics 3-unit course and the Physics section of the Science 3-unit or 4-unit course or 2-unit Physics.</td>
<td>See prerequisites for Physics 2 and Physics 3. Students with TERs of less than 95 or 2-unit Physics scores of less than 90 should enrol in Physics 1 instead. May not be counted with Physics 1.</td>
<td></td>
</tr>
<tr>
<td>Psychology 1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Group B Courses
Comprises all First Year courses offered by the Faculties of Arts and Economics not listed by name in this table of courses which the Faculty has deemed to be mutually exclusive.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Values</th>
<th>Qualifying courses (Q)</th>
<th>Corequisites (C)</th>
<th>Faculty of Science resolutions governing courses</th>
<th>Additional information about courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Chemistry 2</td>
<td>16</td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td></td>
<td>Students obtaining a T pass in Chemistry 1 may apply under section 6(4) for admission. May not be counted with any Intermediate course in Biochemistry</td>
<td>Faculty is unlikely to consider requests made under section 6(4) unless satisfactory results have been gained in the other three Junior subjects.</td>
</tr>
<tr>
<td>Applied Mathematics 2</td>
<td>16</td>
<td>Q: Mathematics 1 or Mathematics 1 (Advanced)</td>
<td></td>
<td>A candidate who has passed Mathematics 1 (Life Sciences) at distinction standard may enrol in Applied Mathematics 2. A candidate who has passed Mathematics 1 (Life Sciences) at credit standard may apply for permission to enrol in Applied Mathematics 2. May not be counted with Applied Mathematics 2 (Advanced) or Mathematical Methods 2</td>
<td></td>
</tr>
</tbody>
</table>

Candidates who have not achieved this assumed standard will be required to undertake supplementary work, details of which can be obtained from the School.

Students should consult the Handbooks for the Faculties of Arts and Economics to determine any prerequisites, corequisites or other requirements relating to enrolment in courses offered by departments in these faculties. Students must enrol in a course, or combination of related courses, equivalent to one full-year Junior Science course. Related courses which together are equivalent to one full-year Junior Science course must all be passed before any credit can be granted. Students may not enrol in Econometrics 1 or General Statistical Methods 1 (deemed to be mutually exclusive with all Junior Mathematics courses).

Candidates who have not achieved this assumed standard will be required to undertake supplementary work, details of which can be obtained from the School.
<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Prerequisites</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mathematics 2 (Advanced)</td>
<td>16</td>
<td>Q: Mathematics 1 or Mathematics 1 (Advanced)</td>
<td>May not be counted with Applied Mathematics 2 or Mathematical Methods 2</td>
</tr>
<tr>
<td>Biochemistry 2</td>
<td>16</td>
<td>Q: Chemistry 1, Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td>May not be counted with Agricultural Chemistry 2 or Biochemistry 2 (Advanced)</td>
</tr>
<tr>
<td>Biochemistry 2 (Advanced)</td>
<td>16</td>
<td>Q: Chemistry 1, Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td>May not be counted with Biochemistry 2 or Agricultural Chemistry 2</td>
</tr>
<tr>
<td>Biology 2 (Animals)¹</td>
<td>16</td>
<td>Q: Biology 1 or Biology 1 (Advanced) P: Chemistry 1, Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and one of Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with either Biology 2 (Animals) (Advanced) or Biology 2 (Animals - Theory) Auxiliary See prerequisites for Senior courses in Biology¹</td>
</tr>
<tr>
<td>Biology 2 (Animals) (Advanced)¹</td>
<td>16</td>
<td>Q: Biology 1 or Biology 1 (Advanced) P: Chemistry 1, Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and one of Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with either Biology 2 (Animals) or Biology 2 (Animals - Theory) Auxiliary Students must first enrol in Biology 2 (Animals). Subsequently, selected students may be invited to enrol in this course where they will participate in alternative components of Biology 2 (Animals). See prerequisites for Senior courses in Biology¹</td>
</tr>
<tr>
<td>Chemical Engineering Science 2</td>
<td>16</td>
<td>P: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) or Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences) C: Chemistry 2 or Chemistry 2 Long</td>
<td>May not be counted with either Civil Engineering Science 2 or Mechanical and Aeronautical Engineering Science 2</td>
</tr>
<tr>
<td>Chemistry 2</td>
<td>16</td>
<td>Q: Chemistry 1, or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) P: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with either Chemistry 2 Long or Chemistry 2 Auxiliary or Chemistry 2 (Advanced)</td>
</tr>
</tbody>
</table>

¹Note that no more than 32 units of Intermediate courses in Biology may be counted.
<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 2 (Advanced)</td>
<td>20</td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) P: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences) May not be counted with either Chemistry 2, Chemistry 2 Long or Chemistry 2 Auxiliary. The number of places in this course is limited. Applications are invited from students with a high WAM and an excellent record in Chemistry 1, Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program). Students in the Faculty of Science Talented Student Program are automatically eligible.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civil Engineering Science 2</td>
<td>16</td>
<td>P: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) or Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) May not be counted with either Chemical Engineering Science 2 or Mechanical and Aeronautical Engineering Science 2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Science 2</td>
<td>16</td>
<td>Q: Computer Science 1 or Computer Science 1 (Advanced) P: Mathematics 1 or Mathematics 1 (Advanced) A candidate who has passed the course Mathematics 1 (Life Sciences) at credit standard may apply for permission to enrol in Computer Science 2. See prerequisites for Computer Solstice 3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography 2 (Human)</td>
<td>16</td>
<td>Q: Geography 1 [but see column (d)] A candidate who has completed a Junior course in Mathematics and at least one of Physics 1 or Physics 1 (Advanced) or Chemistry 1 or Chemistry 1 (Advanced) and who has not taken Geography 1 may apply under section 6(4) for permission to enrol in one of Geography 2 (Human), Geography 2 (Environmental) or Geography 2 (Geomorphology) The Department of Geography is not normally prepared to support applications under section 6(4) to enrol in Geography 2 (Human) from persons other than those who, in their first year of studies, have completed four Junior courses above the terminating pass grade and have not subsequently failed in any Intermediate courses. Students are permitted to count only one Intermediate Geography course towards the BSc degree.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section</td>
<td>Course Details</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>Geography 2 (Environmental)</td>
<td>16</td>
<td>Q: Geography 1 [but see column (d)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A candidate who has completed a Junior course in Mathematics and at least one of Physics 1 or Physics 1 (Advanced) or Chemistry 1 or Chemistry 1 (Advanced) and who has not taken Geography 1 may apply under section 6(4) for permission to enrol in one of Geography 2 (Human), Geography 2 (Environmental) or Geography 2 (Geomorphology). The Department of Geography is not normally prepared to support applications under section 6(4) to enrol in Geography 2 (Environmental) from persons other than those who, in their first year of studies, have completed four Junior courses above the terminating pass grade and have not subsequently failed in any Intermediate courses. Students are permitted to count only one Intermediate Geography course towards the BSc degree.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geography 2 (Geomorphology)</td>
<td>16</td>
<td>Q: Geography 1 [but see column (d)]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A candidate who has completed a Junior course in Mathematics and at least one of Physics 1 or Physics 1 (Advanced) or Chemistry 1 or Chemistry 1 (Advanced) and who has not taken Geography 1 may apply under section 6(4) for permission to enrol in one of Geography 2 (Human), Geography 2 (Environmental) or Geography 2 (Geomorphology). The Department of Geography is not normally prepared to support applications under section 6(4) to enrol in Geography 2 (Geomorphology) from persons other than those who, in their first year of studies, have completed four Junior courses above the terminating pass grade and have not subsequently failed in any Intermediate courses. Students are permitted to count only one Intermediate Geography course towards the BSc degree.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geology 2</td>
<td>16</td>
<td>Q: Geology 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A candidate who has completed Junior courses in Physics and Chemistry and who has not taken Geology 1, may apply under section 6(4) for permission to enrol in Geology 2.</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Mathematical Statistics 2</td>
<td>16</td>
<td>Q: Mathematics 1 or Mathematics 1 (Advanced) [but see column (d)]</td>
<td>A candidate who has passed Mathematics 1 (Life Sciences) at credit standard may enrol in Mathematical Statistics 2. A candidate who has passed Mathematics 1 (Life Sciences) but who has not gained a credit must, if wishing to enrol in Mathematical Statistics 2, consult the Head of School. May not be counted with Mathematical Statistics 2 (Advanced) or Statistical Methods 2</td>
<td>See prerequisites for Mathematical Statistics 3</td>
</tr>
<tr>
<td>Mathematical Statistics 2 (Advanced)</td>
<td>16</td>
<td>Q: Mathematics 1 or Mathematics 1 (Advanced)</td>
<td>May not be counted with Mathematical Statistics 2 or Statistical Methods 2</td>
<td>See prerequisites for Mathematical Statistics 3</td>
</tr>
<tr>
<td>Mechanical and Aeronautical Engineering Science 2</td>
<td>16</td>
<td>P: Physics 1 or Physics 1 (Advanced) and Mathematics 1 or Mathematics 1 (Advanced)</td>
<td>May not be counted together with either Chemical Engineering Science 2 or Civil Engineering Science 2</td>
<td></td>
</tr>
<tr>
<td>Microbiology 2</td>
<td>16</td>
<td>Q: Biology 1 or Biology 1 (Advanced) P: Chemistry 1 or Chemistry 1 (Advanced)</td>
<td>May not be counted with Microbiology 2 (Advanced)</td>
<td></td>
</tr>
<tr>
<td>Microbiology 2 (Advanced) •</td>
<td>16</td>
<td>Q: Biology 1 or Biology 1 (Advanced) P: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td>May not be counted with Microbiology 2</td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Credits</td>
<td>Q:</td>
<td>P:</td>
<td>(d)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------</td>
<td>----</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>Physics 2</td>
<td>16</td>
<td></td>
<td>Physics 1 or Physics 1 (Advanced)</td>
<td>A candidate who has passed the course Physics 1 (Life Sciences) at credit standard or better and who has passed the course Mathematics 1 or Mathematics 1 (Advanced) may enrol in the course Physics 2. A candidate who has passed the course Physics 1 (Life Sciences) at credit standard or better and who has passed the course Mathematics 1 (Life Sciences) at credit standard or better may apply for permission to enrol in the course Physics 2. May not be counted with Physics 2 (Environmental) Auxiliary. See prerequisites for Physics 3</td>
</tr>
<tr>
<td>Psychology 2</td>
<td>16</td>
<td>Q:</td>
<td>Psychology 1</td>
<td>A candidate who has passed Mathematics 1 (Life Sciences) at distinction standard may enrol in Pure Mathematics 2. A candidate who has passed Mathematics 1 (Life Sciences) at credit standard may apply for permission to enrol in Pure Mathematics 2. May not be counted with Pure Mathematics 2 (Advanced) or Mathematical Methods 2</td>
</tr>
<tr>
<td>Pure Mathematics 2</td>
<td>16</td>
<td>Q:</td>
<td>Mathematics 1 or Mathematics 1 (Advanced)</td>
<td>May not be counted with Pure Mathematics 2 or Mathematical Methods 2</td>
</tr>
<tr>
<td>Pure Mathematics 2 (Advanced)</td>
<td>16</td>
<td>Q:</td>
<td>Mathematics 1 or Mathematics 1 (Advanced)</td>
<td></td>
</tr>
<tr>
<td>Soil Science 2</td>
<td>16</td>
<td>P:</td>
<td>Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Physics 1 or Physics 1 (Advanced) or Physics 1 (Life Sciences) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences) or Computer Science 1 or Computer Science 1 (Advanced)</td>
<td>Students should note that if they enrol in Geography 3 subsequent to completing this course they will not be permitted to choose the Pedogeomorphology option</td>
</tr>
</tbody>
</table>

Students should note that if they enrol in Geography 3 subsequent to completing this course they will not be permitted to choose the Pedogeomorphology option.
<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 2 Long</td>
<td>20</td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) P: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with either Chemistry 2 or Chemistry 2 (Advanced) or Chemistry 2 (Auxiliary)</td>
<td></td>
</tr>
<tr>
<td>Mathematics 2 Combined</td>
<td>24</td>
<td>Q: Mathematics 1 or Mathematics 1 (Advanced)</td>
<td>This course comprises Mathematical Methods 2 and other options selected from those available for Pure Mathematics 2, Pure Mathematics 2 (Advanced) and Applied Mathematics 2 or Applied Mathematics 2 (Advanced). A candidate who has passed Mathematics 1 (Life Sciences) at distinction standard may enrol in Mathematics 2 Combined. A candidate who has passed Mathematics 1 (Life Sciences) at credit standard may apply for permission to enrol in Mathematics 2 Combined. May not be counted with Mathematics 2 Combined (Advanced) or Applied Mathematics 2 (Advanced) or Applied Mathematics or Mathematical Methods 2 or Pure Mathematics 2 (Advanced) or Pure Mathematics 2.</td>
<td></td>
</tr>
<tr>
<td>Mathematics 2 Combined (Advanced)</td>
<td>24</td>
<td>Q: Mathematics 1 or Mathematics 1 (Advanced)</td>
<td>This course comprises Mathematical Methods 2 and other options selected from those available for Pure Mathematics 2 or Pure Mathematics 2 (Advanced) and Applied Mathematics 2 or Applied Mathematics 2 (Advanced). May not be counted with Mathematics 2 Combined or Applied Mathematics 2 or Applied Mathematics 2 (Advanced) or Pure Mathematics 2 or Pure Mathematics 2 (Advanced) or Mathematical Methods 2.</td>
<td></td>
</tr>
</tbody>
</table>
Introductory

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Prerequisites</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy and Histology 2: Comparative</td>
<td>8</td>
<td>P: Biology 1 or Biology 1 Advanced, (or Psychology 1, subject to approval by the Head of Department)</td>
<td></td>
</tr>
<tr>
<td>Entomology 2 Introductory</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 Advanced</td>
<td>Class S2. This course will count as 8 of the maximum of 32 units of Intermediate Biology available to a candidate for the degree</td>
</tr>
<tr>
<td>History and Philosophy of Science 2 Introductory</td>
<td>8</td>
<td>P: Chemistry 1 or Chemistry 1 Advanced or Chemistry 1 (Special Studies Program) C: Biology 2 (Animals) or Biology 2 (Animals) Advanced</td>
<td>Class A. This is the qualifying course for History and Philosophy of Science 3</td>
</tr>
<tr>
<td>Marine Sciences 2 Introductory</td>
<td>8</td>
<td></td>
<td>Class A. This is the qualifying course for Marine Sciences 3. Some options in Marine Sciences 3 have additional prerequisites. Students should consider these when entering Marine Sciences 2 Introductory</td>
</tr>
<tr>
<td>Pharmacology 2 Introductory</td>
<td>8</td>
<td>P: Chemistry 1 or Chemistry 1 Advanced or Chemistry 1 (Special Studies Program)</td>
<td>Class A. This is the qualifying course for Pharmacology 3. Students are strongly advised to complete Biology 1 or Biology 1 (Advanced) before enrolling in Pharmacology 2 Introductory</td>
</tr>
<tr>
<td>Physiology 2 Introductory</td>
<td>8</td>
<td>P: Chemistry 1 or Chemistry 1 Advanced P: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences) P: Two of Biology 1 or Biology 1 (Advanced), Computer Science 1 or Computer Science 1 (Advanced), Physics 1 or Physics 1 (Advanced), Psychology 1. Assumed knowledge: HSC Biology and Physics</td>
<td>Class A. This is the qualifying course for Physiology 3</td>
</tr>
</tbody>
</table>
(4) **Auxiliary** See note at the end of this section for classification of 8-unit courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Requirement</th>
<th>May not be counted with</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry 2 Auxiliary</td>
<td>8</td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td>May not be counted with Agricultural Chemistry 2</td>
<td>Class A. Terminating course</td>
</tr>
<tr>
<td>Biology 2 (Plant Anatomy and Physiology) Auxiliary</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced)</td>
<td>Class S1. This course in combination with another S1 or S2 Biology 2 Auxiliary or Auxiliary (Advanced) course may be counted as equivalent to an Intermediate Normal course, but see Note below. If taken individually is a terminating course</td>
</tr>
<tr>
<td>Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced)</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced)</td>
<td>Students must first enrol in Biology 2 (Plant Anatomy and Physiology) Auxiliary. Subsequently, selected students may be invited to enrol in this course where they will participate in alternative components of Biology 2 (Plant Anatomy and Physiology) Auxiliary. Class S1. This course in combination with another S1 or S2 Biology 2 Auxiliary or Auxiliary (Advanced) course may be counted as equivalent to an Intermediate Normal course, but see Note below. If taken individually is a terminating course</td>
</tr>
<tr>
<td>Biology 2 (Plant Ecology and Diversity) Auxiliary</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with Biology 2 (Plant Ecology and Diversity) Auxiliary (Advanced)</td>
<td>Class S2. This course in combination with another S1 or S2 Biology Auxiliary or Auxiliary (Advanced) course may be counted as equivalent to an Intermediate Normal course, but see Note below. If taken individually is a terminating course</td>
</tr>
<tr>
<td>Biology 2 (Plant Ecology and Diversity) Auxiliary (Advanced)</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with Biology 2 (Plant Ecology and Diversity) Auxiliary</td>
<td>Students must first enrol in Biology 2 (Plant Ecology and Diversity) Auxiliary. Subsequently, selected students may be invited to enrol in this course where they will participate in alternative components of Biology 2 (Plant Ecology and Diversity) Auxiliary. Class S2. This course in combination with another S1 or S2 Biology 2 Auxiliary or Auxiliary (Advanced) course may be counted as equivalent to an Intermediate Normal course, but see Note below. If taken individually is a terminating course</td>
</tr>
<tr>
<td>Course</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>P: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and one of Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with either Biology 2 (Molecular and General Genetics) Auxiliary (Advanced) or Biology 2 (Genetics, Cellular and Developmental) Auxiliary</td>
<td>Class S1. This course in combination with another S1 or S2 Biology 2 Auxiliary or Auxiliary (Advanced) course may be counted as equivalent to an Intermediate Normal course, but see Note below. If taken individually is a terminating course</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Biology 2 (Molecular and General Genetics)</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>P: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and one of Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with either Biology 2 (Molecular and General Genetics) Auxiliary (Advanced) or Biology 2 (Genetics, Cellular and Developmental) Auxiliary</td>
<td>Class S1. This course in combination with another S1 or S2 Biology 2 Auxiliary or Auxiliary (Advanced) course may be counted as equivalent to an Intermediate Normal course, but see Note below. If taken individually is a terminating course</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----</td>
<td>---</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Biology 2 (Genetics, 8</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with</td>
<td>Class A. Terminating</td>
</tr>
<tr>
<td>Cellular and</td>
<td></td>
<td>P: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td>either Biology 2 (Molecular</td>
<td>course</td>
</tr>
<tr>
<td>Developmental)</td>
<td></td>
<td></td>
<td>and General Genetics) Auxiliary (Advanced) or Biology 2 (Cellular and "Developmental) Auxiliary (Advanced)</td>
<td></td>
</tr>
<tr>
<td>Auxiliary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 2 (Animals -</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with</td>
<td>Class A. May not be</td>
</tr>
<tr>
<td>Theory) Auxiliary</td>
<td></td>
<td></td>
<td>Biology 2 (Animals)</td>
<td>counted with any other</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intermediate Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>course</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>8</td>
<td>P: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced)</td>
<td>May not be counted with</td>
<td>Class A. Terminating</td>
</tr>
<tr>
<td>Science 2 Auxiliary</td>
<td></td>
<td></td>
<td>either Chemistry 2 Long or</td>
<td>course</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chemistry 2 or Chemistry 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Advanced)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry 2 Auxiliary</td>
<td>8</td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) P: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with</td>
<td>Class A. Terminating</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>either Chemistry 2 Long or</td>
<td>course</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chemistry 2 or Chemistry 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Advanced)</td>
<td></td>
</tr>
<tr>
<td>Environmental</td>
<td>8</td>
<td>P: History and Philosophy of Science 2 Introductory</td>
<td></td>
<td>Class A. Terminating</td>
</tr>
<tr>
<td>Geology 2 Auxiliary</td>
<td></td>
<td></td>
<td></td>
<td>course</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>History and</td>
<td>8</td>
<td></td>
<td></td>
<td>Students should consult</td>
</tr>
<tr>
<td>Philosophy of Science</td>
<td></td>
<td></td>
<td></td>
<td>the prerequisites for each</td>
</tr>
<tr>
<td>2 Auxiliary</td>
<td></td>
<td></td>
<td></td>
<td>of the options listed in the</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Faculty Handbook entry</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>for History and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Philosophy of Science 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Auxiliary</td>
</tr>
<tr>
<td>Mathematical</td>
<td>8</td>
<td>Q: Mathematics 1 or Mathematics 1</td>
<td>A candidate who has passed</td>
<td></td>
</tr>
<tr>
<td>Methods 2</td>
<td></td>
<td>(Advanced)</td>
<td>Mathematics 1 or Mathematics 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Advanced) or Mathematics 1 (Life Sciences) at Distinction standard may enrol in Mathematical Methods 2. A candidate who has passed Mathematics 1 (Life Sciences) at Credit standard may apply for permission to enrol in Mathematical Methods 2. May not be counted with Applied Mathe-matics 2, Applied Mathematics 2 (Advanced), Pure Mathematics 2 or Pure Mathematics 2 (Advanced) or Mathe-matics 2 Combined or Mathematics 2 Combined (Advanced)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiology 2</td>
<td>8</td>
<td>P: Biology 1 or Biology 1 (Advanced)</td>
<td></td>
<td>Class A. Terminating</td>
</tr>
<tr>
<td>(Theory) Auxiliary</td>
<td></td>
<td></td>
<td></td>
<td>course</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>--------------</td>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Microbiology 2 (Theoretical) Auxiliary</td>
<td>8</td>
<td>P: Biology 1 or Biology 1 (Advanced)</td>
<td>Class S1. Terminating course</td>
<td></td>
</tr>
<tr>
<td>Physics 2 (Environmental) Auxiliary</td>
<td>8</td>
<td>Q: Physics 1 or Physics 1 (Advanced)</td>
<td>May not be counted with Physics 2</td>
<td>Class A. Terminating course</td>
</tr>
<tr>
<td>Soil Science 2 Auxiliary</td>
<td>8</td>
<td>P: Chemistry 1 or Chemistry 1 (Advanced)</td>
<td>Class S1. Terminating course</td>
<td></td>
</tr>
<tr>
<td>Statistical Methods 2</td>
<td>8</td>
<td>Assumed knowledge: HSC Mathematics 2-unit</td>
<td>May not be counted with Mathematical Statistics 2</td>
<td></td>
</tr>
<tr>
<td>Applied Statistics 2</td>
<td>8</td>
<td>P: Mathematical Statistics 2 (Advanced); or both of P: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences); and C: Statistical Methods 2</td>
<td>May not be counted with Mathematical Statistics 3</td>
<td></td>
</tr>
</tbody>
</table>

Note: The Faculty has classified Intermediate Introductory and Auxiliary courses according to their method of timetabling for lectures and practical sessions, namely

Classification A:—lectures and practical sessions timetabled substantially for 4 hours per week throughout the year.

Classification S:—lectures and practical sessions timetabled for 8 hours per week for one semester:

Sub-classification (S1):—in Semester 1.

Sub-classification (S2):—in Semester 2.

Each course’s classification is shown in column (e).

The Faculty has resolved, pursuant to section 6(5), that candidates taking in any one academic year two Intermediate Introductory or Auxiliary courses may not, except with the permission of the Faculty, take both courses from Classification S1 or both from S2. They may, however, take two from Classification A, or one from Classification A and one from S, or one from Classification S1 and one from S2.

The Faculty has also resolved that candidates will not be considered to have completed an Advanced Intermediate course if only one Auxiliary (Advanced) course is taken. Candidates must take two Auxiliary (Advanced) courses in one calendar year in order to be considered to have completed an Advanced Intermediate course.
C. Senior courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Chemistry 3</td>
<td>24</td>
<td>Q: Agricultural Chemistry 2 [but see column (d)] May not be counted with Biochemistry 3. A candidate who has completed the courses Chemistry 2 and Biochemistry 2 or Biochemistry 2 (Advanced) or Biochemistry 2 Auxiliary; or Chemistry 2 Auxiliary and Biochemistry 2 or Biochemistry 2 (Advanced) and who has not taken the course Agricultural Chemistry 2 may apply for permission of the Faculty to enrol in the course Agricultural Chemistry 3. A student may not enrol in Agricultural Chemistry 3 without having completed Agricultural Chemistry 2, if a terminating pass has been awarded in any of the 4 courses specified in column (d).</td>
</tr>
<tr>
<td>Anatomy and Histology 3</td>
<td>24</td>
<td>Q: Anatomy and Histology 2: Comparative P: Two of Chemistry 1 or Chemistry 1 (Advanced), Physics 1 or Physics 1 (Advanced), Biology 1 or Biology 1 (Advanced), Mathematics 1 (Life Sciences) or Mathematics 1 or Mathematics 1 (Advanced) May not be counted with Applied Mathematics 3. This course will be offered from 1997.</td>
</tr>
<tr>
<td>Applied Mathematics 3</td>
<td>24</td>
<td>Q: Applied Mathematics 2 or Applied Mathematics 2 (Advanced) May not be counted with Applied Mathematics 3 (Advanced). Students who complete the course Mathematics 2 Combined or Mathematics 2 Combined (Advanced) may enrol under section 6(4) in Applied Mathematics 3.</td>
</tr>
<tr>
<td>Applied Mathematics 3 (Advanced)</td>
<td>24</td>
<td>Q: Applied Mathematics 2 or Applied Mathematics 2 (Advanced) May not be counted with Applied Mathematics 3. Students who complete the course Mathematics 2 Combined or Mathematics 2 Combined (Advanced) may enrol under section 6(4) in Applied Mathematics 3 (Advanced).</td>
</tr>
<tr>
<td>Biochemistry 3</td>
<td>24</td>
<td>Q: Biochemistry 2 or Biochemistry 2 (Advanced) May not be counted with Agricultural Chemistry 3. Students are advised to consult the School about option qualifying courses.</td>
</tr>
<tr>
<td>Biology 3</td>
<td>24</td>
<td>Q: Biology 2 [but see column (o)] Some options in Biology 3 require a particular Biology 2 course or course combination as the qualifying course for the option. May not be counted with Biology 3 (Advanced). Students are advised to consult the School about option qualifying courses.</td>
</tr>
<tr>
<td>Biology 3 (Advanced)</td>
<td>24</td>
<td>Q: Biology 2 [but see column (d)] May not be counted with Biology 3. Students are advised to consult the School about option qualifying courses.</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----</td>
<td>--</td>
</tr>
<tr>
<td>Cell Pathology 3</td>
<td>24</td>
<td>P: Biochemistry 2 or Biochemistry 2 (Advanced) or Physiology 2 or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biology 2 (Advanced) and Biology 2 (Molecular and General Genetics)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auxiliary/ (Advanced) and Biology 2 (Genetics, Cellular and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Developmental) Auxiliary/ (Advanced)</td>
</tr>
<tr>
<td>Chemistry 3</td>
<td>24</td>
<td>Q: Chemistry 2 or Chemistry 2 (Long) or Chemistry 2 (Advanced)</td>
</tr>
<tr>
<td>Chemistry 3 (Advanced)</td>
<td>24</td>
<td>Q: Chemistry 2 or Chemistry 2 (Advanced) or Chemistry 2 (Long)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Science 3</td>
<td>24</td>
<td>Q: Computer Science 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P: Pure Mathematics 2 or Pure Mathematics 2 (Advanced) or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applied Mathematics 2 or Applied Mathematics 2 (Advanced) or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applied Mathematics 2 (Advanced) or Mathematical Statistics 2 or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mathematical Statistics 2 (Advanced)</td>
</tr>
<tr>
<td>Environmental Plant and</td>
<td>24</td>
<td>P: Agricultural Chemistry 2 or Chemistry 2</td>
</tr>
<tr>
<td>Soil Chemistry 3</td>
<td></td>
<td>P: Biochemistry 2 or Biochemistry 2 (Advanced) or Biochemistry 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auxiliary or Biology 2 (Plant Anatomy and Physiology) Auxiliary</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auxiliary (Advanced)</td>
</tr>
<tr>
<td>Geography 3 (Environmental)</td>
<td>24</td>
<td>Q: Geography 2</td>
</tr>
<tr>
<td>Geography 3 (Human)</td>
<td>24</td>
<td>Q: Geography 2</td>
</tr>
<tr>
<td>Geography 3 (Geomorphology)</td>
<td>24</td>
<td>Q: Geography 2</td>
</tr>
<tr>
<td>Geology 3</td>
<td>24</td>
<td>Q: Geography 2</td>
</tr>
<tr>
<td>Geophysics 3</td>
<td>24</td>
<td>C: Geology 3 or Applied Mathematics 3 or Applied Mathematics 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Advanced) or Physics 3 or Pure Mathematics 3 or Pure Mathematics 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Advanced)</td>
</tr>
<tr>
<td>Subject</td>
<td>Units</td>
<td>q:</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>History and Philosophy of Science 3</td>
<td>24</td>
<td>Q: History and Philosophy of</td>
</tr>
<tr>
<td>Marine Sciences 3</td>
<td>24</td>
<td>Q: Marine Sciences 2 Introductory</td>
</tr>
<tr>
<td>Mathematical Statistics 3</td>
<td>24</td>
<td>Q: Mathematical Statistics 2 or Mathematical Statistics 2 (Advanced)</td>
</tr>
<tr>
<td>Mathematical Statistics 3 (Advanced)</td>
<td>24</td>
<td>Q: Mathematical Statistics 2 or Mathematical Statistics 2 (Advanced)</td>
</tr>
<tr>
<td>Microbiology 3</td>
<td>24</td>
<td>Q: Microbiology 2 or Microbiology 2 (Advanced)</td>
</tr>
<tr>
<td>Microbiology 3 (Advanced)</td>
<td>24</td>
<td>Q: Microbiology 2 or Microbiology 2 (Advanced)</td>
</tr>
<tr>
<td>Pharmacology 3</td>
<td>24</td>
<td>Q: Pharmacology 2 Introductory</td>
</tr>
</tbody>
</table>

Students should consult the prerequisites for each of the component course options listed in the Faculty Handbook entry for Marine Sciences 3.
<table>
<thead>
<tr>
<th>Module</th>
<th>Prerequisites</th>
</tr>
</thead>
</table>
| Physics 3 | Q: Physics 2
P: Pure Mathematics 2 or Pure Mathematics 2 (Advanced) or Mathematics 2 Combined or Mathematics 2 Combined (Advanced) or Applied Mathematics 2 or Applied Mathematics 2 (Advanced) |
| Physiology 3 | Q: Physiology 2 Introductory
P: Biochemistry or Biochemistry 2 Auxiliary
P: An Intermediate course in one of the following subjects: Anatomy and Histology, Biology, Chemistry, Computer Science, Mathematics, Mathematical Statistics, Microbiology, Pharmacology, Physics or Psychology [but see column (d)]
Q: Physiology 2 Introductory
P: Biochemistry or Biochemistry 2 Auxiliary
P: An Intermediate course in one of the following subjects: Anatomy and Histology, Biology, Chemistry, Computer Science, Mathematics, Mathematical Statistics, Microbiology, Pharmacology, Physics or Psychology [but see column (d)]
For 1996 only, a candidate who has completed Physiology 2Auxiliary at Credit standard or better and who has not completed the other prerequisites for Physiology 3 may be permitted to enrol in Physiology 3. |
| Psychology 3 | Q: Psychology 2
P: Pure Mathematics 2 or Pure Mathematics 2 (Advanced) or Mathematics 2 Combined or Mathematics 2 Combined (Advanced) |
| Pure Mathematics 3 | Q: Pure Mathematics 2 or Pure Mathematics 2 (Advanced) or Mathematics 2 Combined or Mathematics 2 Combined (Advanced)
May not be counted with Pure Mathematics 3 (Advanced) |
| Pure Mathematics 3 (Advanced)| Q: Pure Mathematics 2 or Pure Mathematics 2 (Advanced) or Mathematics 2 Combined or Mathematics 2 Combined (Advanced)
May not be counted with Pure Mathematics 3
Students who complete the course Mathematics 2 Combined or Mathematics 2 Combined (Advanced) may enrol under section 6(4) in Pure Mathematics 3 |
| Scientific Visualisation 3 | P: Computer Science 2 and one of Applied Mathematics 2 or Applied Mathematics 2 (Advanced)
Candidates must have completed either Physics 1 or Physics 1 (Advanced) or Chemistry 1 or Chemistry 1 (Advanced) in order to fulfil the requirements of module choice in Semester 2
This course will be offered from 1998 |
| Soil Science 3 | Q: Soil Science 2
P: Chemistry 2 or Agricultural Chemistry 2 or Biochemistry 2 or Biochemistry 2 (Advanced) |
D. Senior Additional courses
(May only be taken with approval of the Head of Department/School)

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 3 Additional</td>
<td>24</td>
<td>C: Biology 3 or Biology 3 (Advanced)</td>
<td>May not be counted with Biology 3 Additional (Advanced)</td>
<td></td>
</tr>
<tr>
<td>Biology 3 Additional (Advanced)</td>
<td>24</td>
<td>C: Biology 3 or Biology 3 (Advanced)</td>
<td>May not be counted with Biology 3 Additional</td>
<td></td>
</tr>
<tr>
<td>Chemistry 3 Additional</td>
<td>24</td>
<td>C: Chemistry 3 or Chemistry 3 (Advanced)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer Science 3 Additional</td>
<td>24</td>
<td>C: Computer Science 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geology 3 Additional</td>
<td>24</td>
<td>C: Geology 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology 3 Additional</td>
<td>24</td>
<td>C: Pharmacology 3</td>
<td></td>
<td>This course may only be taken concurrently with Pharmacology 3 and together with it constitutes the 48-unit course Pharmacology 3 Advanced</td>
</tr>
</tbody>
</table>

Table: Law courses [see section 14]
(Available to students enrolled concurrently for the degrees of Bachelor of Science and Bachelor of Laws)

<table>
<thead>
<tr>
<th>(a) Courses</th>
<th>(b) Unit values</th>
<th>(c) Prerequisites (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Legal Institutions</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>B. Intermediate and Senior courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constitutional Law</td>
<td>6</td>
<td>Legal Institutions</td>
</tr>
<tr>
<td>Torts</td>
<td>6</td>
<td>Legal Institutions</td>
</tr>
<tr>
<td>Administrative Law</td>
<td>6</td>
<td>Legal Institutions</td>
</tr>
<tr>
<td>Contracts</td>
<td>6</td>
<td>Legal Institutions</td>
</tr>
<tr>
<td>Criminal Law</td>
<td>6</td>
<td>Legal Institutions</td>
</tr>
</tbody>
</table>
Bachelor of Science (Advanced) degree program

Summary of requirements
The Bachelor of Science (Advanced) degree program requires three years of full-time study. An honours program is available and requires a further year of full-time study.

Progression towards the Bachelor of Science (Advanced) degree program is by accumulation of credit points gained by completing a course.

A total of 140 units are required for the degree. These must include:
- 48 units from Senior courses
- 48 units from Intermediate courses

Students will also be required to perform at a standard which will allow them to be admitted into an Honours course.

Courses taken must include Mathematics 1 (any option), and either Physics 1 (either option) or Chemistry 1 (any option).

All students in the Bachelor of Science (Advanced) must complete at least 24 units of Junior courses and at least 16 units of Intermediate courses which are designated as Advanced or taken under the Faculty's Talented Student Program.

A minimum requirement for progression in the BSc (Advanced) will be set annually and will be based on WAM.

The resolutions of the Senate governing candidature for the degree of Bachelor of Science listed in this chapter also govern the BSc (Advanced) degree program. Students should refer to the table of courses for the BSc.

HSC Aggregate
The minimum TER for admission into the degree of Bachelor of Science (Advanced) is 93.

Transferring into the BSc (Advanced) degree program
After 1996 students will be permitted to transfer from other degrees offered by the Faculty of Science into the BSc (Advanced). In order to transfer into the BSc (Advanced) students must achieve a WAM of at least 75. They must also meet departmental course entrance requirements.

Bachelor of Science (Environmental) degree program

Summary of requirements
The Bachelor of Science (Environmental) requires three years of full-time study. An honours program is available and requires a further year of full-time study.

Progression in the Bachelor of Science (Environmental) program is by accumulation of credit points gained by completing a course.

A total of 140 units is required for the degree.

All students must study:

First Year
- Biology 1 (any option)
- Chemistry 1 (any option)
- Mathematics 1 (any option)
- Environmental Earth Science 1

Two of Biology, Chemistry or Mathematics must be studied at the Advanced level.

Second Year
- Choice of at least 16 intermediate units*
- Environmental Science 2A
- Environmental Science 2B

Third Year
- Choice of 24 senior units*
- Environmental Science 3

*Choices must be in a relevant discipline, defined to be Biology, Chemistry, Geography, Geology.

The resolutions of the Senate governing candidature for the degree of Bachelor of Science listed in this chapter also govern the BSc (Environmental) degree program. The table of courses for the Bachelor of Science (Environmental) degree program is set out below.

HSC Aggregate
The minimum TER for admission into the degree of Bachelor of Science (Environmental) is 93.
Table A: [see section 13] [Environmental]

<table>
<thead>
<tr>
<th>(a) Courses</th>
<th>(b) Unit values</th>
<th>(c) Assumed standard of knowledge at Higher School Certificate examination or equivalent level (as approved by the Senate)</th>
<th>(d) Corequisites (C)</th>
<th>(e) Additional information about courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete the following courses from the table below:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) one Mathematics course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) one Chemistry course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii) one Biology course</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) the course Environmental Earth Science 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Two of Mathematics, Chemistry or Biology must be taken at Advanced level.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special arrangements may be made with the Dean of the Faculty of Science to undertake a Physics major in this degree program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 1</td>
<td>12</td>
<td>The Biology section of the Science 3-unit course</td>
<td></td>
<td>See prerequisites for Intermediate and Senior courses in Biology. May not be counted with Biology 1 (Advanced)</td>
</tr>
<tr>
<td>Biology 1 (Advanced)</td>
<td>12</td>
<td>The Biology section of the Science 3-unit course</td>
<td></td>
<td>Students must first enrol in Biology 1. Subsequently, selected students may be invited to enrol in this course where they will participate in a more demanding alternative component of the Biology 1 course in Second Semester. See prerequisites for Intermediate and Senior courses in Biology. May not be counted with Biology 1</td>
</tr>
<tr>
<td>Chemistry 1</td>
<td>12</td>
<td>Mathematics 2-unit course and the Chemistry section of the Science 3-unit or 4-unit course or 2-unit Chemistry t</td>
<td></td>
<td>See prerequisites for Chemistry 2. Recommended concurrent course: Mathematics 1 or Mathematics 1 (Advanced). May not be counted with Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
</tr>
<tr>
<td>Chemistry 1 (Advanced)</td>
<td>12</td>
<td>Mathematics 2-unit course and the Chemistry section of the Science 3-unit or 4-unit course or 2-unit Chemistry t</td>
<td></td>
<td>See prerequisites for Chemistry 2. Recommended concurrent course: Mathematics 1 or Mathematics 1 (Advanced). May not be counted with Chemistry 1 or Chemistry 1 (Special Studies Program)</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Chemistry 1 (Special Studies Program)</td>
<td>12</td>
<td>Mathematics 2-unit course and the Chemistry section of the Science 3-unit or 4-unit course or 2-unit Chemistryf</td>
<td>See prerequisites for Chemistry 2. Recommended concurrent course: Mathematics 1 or Mathematics 1 (Advanced). May not be counted with Chemistry 1 (Advanced)</td>
<td></td>
</tr>
<tr>
<td>Environmental Earth Science 1</td>
<td>12</td>
<td>C: Biology 1 or Biology 1 (Advanced) C: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) C: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics 1</td>
<td>12</td>
<td>Mathematics 3-unit course</td>
<td>May not be counted with Mathematics 1 (Life Sciences) or Mathematics 1 (Advanced)</td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 (Advanced)</td>
<td>12</td>
<td>Mathematics 3-unit course</td>
<td>May not be counted with Mathematics 1 (Life Sciences) or Mathematics 1</td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 (Life Sciences)</td>
<td>12</td>
<td>Mathematics 2-unit course f</td>
<td>Prior to 1994 this course was called General Pure Mathematics 1</td>
<td></td>
</tr>
</tbody>
</table>

†Candidates who have not achieved this assumed standard will be required to undertake supplementary work, details of which can be obtained from the School.
B. Intermediate courses
Candidates are required to enrol in and complete:
(i) Environmental Science 2A
(ii) Environmental Science 2B
(iii) at least 16 units of Intermediate courses from the table below other than Environmental Science 2A or 2B

<table>
<thead>
<tr>
<th>Courses</th>
<th>Unit values</th>
<th>Qualifying courses (Q)</th>
<th>Corequisites (C)</th>
<th>Faculty of Science resolutions governing courses</th>
<th>Additional information about courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 2 (Animals)</td>
<td>•16</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>P: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with Biology 2 (Animals) or Biology 2 (Animal - Theory) Auxiliary</td>
<td>See prerequisites for Senior courses in Biology</td>
</tr>
<tr>
<td>Biology 2 (Animals) (Advanced)</td>
<td>16</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>P: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and one of Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with either Biology 2 (Animals) or Biology 2 (Animals Theory) Auxiliary</td>
<td>Students must first enrol in Biology 2 (Animals). Subsequently, selected students may be invited to enrol in this course where they will participate in alternative components of Biology 2 (Animals). See prerequisites for Senior courses in Biology</td>
</tr>
<tr>
<td>Biology 2</td>
<td>16</td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>Certain combinations of 8 unit Introductory and Auxiliary courses may also be counted as equivalent to Intermediate Normal courses in accordance with section 4(2)(iii)(b). (See the Introductory and Auxiliary courses in this table for details)</td>
<td></td>
<td>See prerequisites for Senior courses in Biology</td>
</tr>
<tr>
<td>Chemistry 2</td>
<td>16</td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with either Chemistry 2 Auxiliary or Chemistry 2 (Advanced) or Chemistry 2 Long</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry 2 (Advanced)</td>
<td>20</td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with either Chemistry 2, Chemistry 2 Long or Chemistry 2 Auxiliary</td>
<td></td>
<td>The number of places in this course is limited. Applications are invited from students with a high WAM and an excellent record in Chemistry 1 (Special Studies Program), Chemistry 1 (Advanced) or Chemistry 1. Students in the Faculty of Science Talented Student Program are automatically eligible</td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Environmental Science 2A</td>
<td>16</td>
<td>Q: Environmental Earth Science 1</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>This course will be offered from 1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td>Q: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two of Mathematics, Chemistry or Biology must be taken at an Advanced level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: Environmental Science 2B and 16 units of Intermediate courses from this table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental Science 2B</td>
<td>16</td>
<td>Q: Environmental Earth Science 1</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>This course will be offered from 1997</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td>Q: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Two of Mathematics, Chemistry or Biology must be taken at an Advanced level</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C: Environmental Science 2A and 16 units of Intermediate courses from this table</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography 2 (Human)</td>
<td>16</td>
<td>Q: Environmental Earth Science 1</td>
<td></td>
<td>Students are permitted to count only one Intermediate Geography course towards the BSc (Environmental) degree program</td>
<td></td>
</tr>
<tr>
<td>Geography 2 (Environmental)</td>
<td>16</td>
<td>Q: Environmental Earth Science 1</td>
<td></td>
<td>Students are permitted to count only one Intermediate Geography course towards the BSc (Environmental) degree program</td>
<td></td>
</tr>
<tr>
<td>Geography 2 (Geomorphology)</td>
<td>16</td>
<td>Q: Environmental Earth Science 1</td>
<td></td>
<td>Students are permitted to count only one Intermediate Geography course towards the BSc (Environmental) degree program</td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Geology 2</td>
<td>16</td>
<td>Q: Environmental Earth Science 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Long</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry 2 Long</td>
<td>20</td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td>May not be counted with either Chemistry 2 or Chemistry 2 (Advanced) or Chemistry 2 Auxiliary</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>P: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Auxiliary</td>
<td>See Note at the foot of next page for classification of 8-unit courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 2 (Plant Anatomy and Physiology) Auxiliary</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced)</td>
<td>Class 1. This course in combination with another S1 or S2 Biology 2 Auxiliary or Auxiliary (Advanced) course may be counted as equivalent to an Intermediate Normal course, but see Note below. If taken individually is a terminating course</td>
<td></td>
</tr>
<tr>
<td>Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced)</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with Biology 2 (Plant Anatomy and Physiology) Auxiliary</td>
<td>Students must first enrol in Biology 2 (Plant Anatomy and Physiology) Auxiliary. Subsequently, selected students may be invited to enrol in this course where they will participate in alternative components of Biology 2 (Plant Anatomy and Physiology) Auxiliary. Class 1. This course in combination with another S1 or S2 Biology 2 Auxiliary or Auxiliary (Advanced) course may be counted as equivalent to an Intermediate Normal course, but see Note below. If taken individually is a terminating course</td>
<td></td>
</tr>
<tr>
<td>Biology 2 (Plant Ecology and Diversity) Auxiliary</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with Biology 2 (Plant Ecology and Diversity) Auxiliary (Advanced)</td>
<td>Class S2. This course in combination with another S1 or S2 Biology 2 Auxiliary or Auxiliary (Advanced) course may be counted as equivalent to an Intermediate Normal course, but see Note below. If taken individually is a terminating course</td>
<td></td>
</tr>
</tbody>
</table>
Note: The Faculty has classified Intermediate Introductory and Auxiliary courses according to their method of timetabling for lectures and practical sessions, namely

Classification A:—lectures and practical sessions timetabled substantially for 4 hours per week throughout the year.

Classification S:—lectures and practical sessions timetabled for 8 hours per week for one semester:

- Sub-classification (SI):—in Semester 1.
- Sub-classification (S2):—in Semester 2.

Each course's classification is shown in column (e).

The Faculty has resolved, pursuant to section 6(5), that candidates taking in any one academic year two Intermediate Introductory or Auxiliary courses may not, except with the permission of the Faculty, take both courses from Classification SI or both from S2. They may, however, take two from Classification A, or one from Classification A and one from S, or one from Classification SI and one from S2.

The Faculty has also resolved that candidates will not be considered to have completed an Advanced Intermediate course if only one Auxiliary (Advanced) course is taken. Candidates must take two Auxiliary (Advanced) courses in one calendar year in order to be considered to have completed an Advanced Intermediate course.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
<th>(e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 2 (Plant Ecology and Diversity) Auxiliary (Advanced)</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with Biology 2 (Plant Ecology and Diversity) Auxiliary</td>
<td>Students must first enrol in Biology 2 (Plant Ecology and Diversity) Auxiliary. Subsequently, selected students may be invited to enrol in this course where they will participate in alternative components of Biology 2 (Plant Ecology and Diversity) Auxiliary. Class S2. This course in combination with another S1 or S2 Biology 2 Auxiliary or Auxiliary (Advanced) course may be counted as equivalent to an Intermediate Normal course, but see Note below. If taken individually is a terminating course</td>
</tr>
<tr>
<td>Biology 2 (Animals-Theory) Auxiliary</td>
<td>8</td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
<td>May not be counted with Biology 2 (Animals) or Biology 2 (Animals) (Advanced)</td>
<td>Class A: Terminating course</td>
</tr>
<tr>
<td>Chemistry 2 Auxiliary</td>
<td>8</td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) P: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>May not be counted with either Chemistry 2 or Chemistry 2 (Advanced) or Chemistry 2 Long</td>
<td>Class A: Terminating course</td>
</tr>
<tr>
<td>Environmental Geology 2 Auxiliary</td>
<td>8</td>
<td></td>
<td></td>
<td>Class A: Terminating course</td>
</tr>
</tbody>
</table>
C. Senior courses

Candidates are required to enrol in Environmental Science 3 and one other Senior course from the table below.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Unit values</th>
<th>Qualifying courses (Q)</th>
<th>Prerequisites (P)</th>
<th>Corequisites (C)</th>
<th>Faculty of Science resolutions governing courses</th>
<th>Additional information about courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 3</td>
<td>24</td>
<td>Q: Biology 2</td>
<td></td>
<td></td>
<td>Some options in Biology 3 require a particular Biology 2 course or course combination as the qualifying course for the option. May not be counted with Biology 3 (Advanced)</td>
<td>Students are advised to consult the School about option qualifying courses. In the specially designed Environmental program students enrol in one or two of Ecophysiology (Options 110 & 111 or 112), Evolution and Diversity of Australian Biota (options 120 & 121 or 122 or 123 or 124 or 125) or Ecology (options 220 & 221 or 222 or 223)</td>
</tr>
<tr>
<td>Biology 3 (Advanced)</td>
<td>24</td>
<td>Q: Biology 2</td>
<td></td>
<td></td>
<td>May not be counted with Biology 3</td>
<td>Students are advised to consult the School about option qualifying courses</td>
</tr>
<tr>
<td>Chemistry 3</td>
<td>24</td>
<td>Q: Chemistry 2 or Chemistry 2 (Advanced)</td>
<td>May not be counted with Chemistry 3 (Advanced)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry 3 (Advanced)</td>
<td>24</td>
<td>Q: Chemistry 2 or Chemistry 2 (Advanced)</td>
<td>May not be counted with Chemistry 3</td>
<td></td>
<td>The number of places in this course is limited. Applications are invited from students with a high WAM and an excellent record in Chemistry 2 (Advanced) or Chemistry 2. Students in the Faculty of Science Talented Student Program are automatically eligible</td>
<td></td>
</tr>
<tr>
<td>Environmental Science 3</td>
<td>24</td>
<td>Q: Environmental Science 2A and Environmental Science 2B</td>
<td>C: One other Senior course from this table</td>
<td></td>
<td>This course will be offered from 1998</td>
<td></td>
</tr>
<tr>
<td>Geography 3 (Environmental)</td>
<td>24</td>
<td>Q: Geography 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography 3 (Human)</td>
<td>24</td>
<td>Q: Geography 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography 3 (Geomorphology)</td>
<td>24</td>
<td>Q: Geography 2</td>
<td></td>
<td></td>
<td>The Pedogeomorphology option must not be chosen by those students who completed or intend to complete Soil Science 2</td>
<td></td>
</tr>
<tr>
<td>Geology 3</td>
<td>24</td>
<td>Q: Geology 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D. Honours courses
Candidates for the Honours degree shall complete an Honours course in an area of Environmental Science chosen from the Honours programs offered by the Faculty.
BSc (Molecular Biology and Genetics) degree program

The course offers an integrated and comprehensive coverage of all aspects of modern molecular biology and genetics. This is an advanced program. Students will have the opportunity to develop a full understanding (at the chemical and physical levels) of the structure, information content and replication of the genetic material (DNA, RNA), the organisation and expression of the encoding genes, and the structure and reactivity of the gene products (proteins). This will provide a background for the introduction of advanced topics including genetic and protein engineering, macromolecular interactions and recognition, the molecular mechanisms of cellular differentiation and organism development, the molecular basis of inherited disease and pathogenesis, biotechnology, and medical diagnostic molecular biology. All students will also participate as a group in a three-year program of seminars and discussions to give a broad perspective of the field. Graduates with the Honours degree would be highly sought after in a wide variety of biological and medical research laboratories and in hospitals and industry. In addition, the course will prepare the graduate for PhD training in many of the cutting-edge biological and medical research areas.

Course of study

First Year

- Biology 1 (Advanced)
- Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)
- Mathematics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Life Sciences)
- One other Junior course from the BSc table of courses

It is recommended that the fourth course be Physics 1 or Computer Science 1.

Second Year

- Biochemistry 2 (Advanced)
- Biology 2 (Molecular and General Genetics)
- Auxiliary (Advanced) (Semester 1)
- Biology 2 (Cellular and Developmental) Auxiliary (Advanced) (Semester 2)
- One of Chemistry 2 or Microbiology 2 (Advanced)

Third Year

Core (SI):

- Biochemistry 3 (Molecular Biology and Macromolecular Structure)
- Biology 3 (Molecular Genetics and Recombinant DNA Technology)

Option (S2): Two of —

- Biology 3 (Eukaryotic Genetics and Development)
- Biochemistry 3 (Enzymology, Metabolism and Membranes)
- Microbiology 3 (Molecular Biology of Pathogens)

Fourth Year

Any appropriate Honours program in a Department or School in the Faculty of Science

The resolutions of the Senate governing candidature for the degree of Bachelor of Science listed in this chapter also govern the BSc (Molecular Biology and Genetics) degree program. The table of courses for the Bachelor of Science (Molecular Biology and Genetics) degree program is set out below.
Table B: [see section 13] [Molecular Biology and Genetics]

<table>
<thead>
<tr>
<th>Courses</th>
<th>Unit values</th>
<th>Assumed standard of knowledge at Higher School Certificate examination or equivalent level (as approved by the Senate)</th>
<th>Corequisites (C)</th>
<th>Additional information about courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Biology 1 (Advanced)</td>
<td></td>
<td>The Biology section of the Science 3-unit course</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td></td>
<td>Mathematics 2-unit course and the Chemistry section of the Science 3-unit or 4-unit course or 2-unit Chemistry†</td>
<td></td>
<td>See prerequisites for Chemistry 2. Recommended concurrent course: Mathematics 1 or Mathematics 1 (Advanced). May not be counted with Chemistry 1 or Chemistry 1 (Special Studies Program)</td>
</tr>
<tr>
<td>(iii) Mathematics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Life Sciences)</td>
<td></td>
<td>Mathematics 2-unit course and the Chemistry section of the Science 3-unit or 4-unit course or 2-unit Chemistry†</td>
<td></td>
<td>See prerequisites for Chemistry 2. Recommended concurrent course: Mathematics 1 or Mathematics 1 (Advanced). May not be counted with Chemistry 1 (Advanced)</td>
</tr>
<tr>
<td>(iv) one other Junior course from the BSc table of courses. It is recommended that this course be Physics 1 or Computer Science 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 1 (Advanced)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry 1 (Advanced)</td>
<td>12</td>
<td>Mathematics 3-unit course</td>
<td></td>
<td>May not be counted with Mathematics 1 (Life Sciences) or Mathematics 1 (Advanced)</td>
</tr>
<tr>
<td>Mathematics 1 (Advanced)</td>
<td>12</td>
<td>Mathematics 3-unit course</td>
<td></td>
<td>May not be counted with Mathematics 1 (Life Sciences) or Mathematics 1 (Advanced)</td>
</tr>
<tr>
<td>Mathematics 1 (Life Sciences)</td>
<td>12</td>
<td>Mathematics 2-unit course †</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Candidates who have not achieved this assumed standard will be required to undertake supplementary work, details of which can be obtained from the School.
<table>
<thead>
<tr>
<th>Courses</th>
<th>Unit values</th>
<th>Qualifying courses</th>
<th>Prerequisites</th>
<th>Corequisites</th>
<th>Faculty of Science resolutions</th>
<th>governing courses</th>
<th>Additional information about courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Intermediate courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates are required to enrol in and complete:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Biochemistry 2 (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) Biology 2 (Cellular and Developmental) Auxiliary (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) either Chemistry 2 or Microbiology 2 (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry 2 (Advanced)</td>
<td>16</td>
<td>Q: Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)</td>
<td>8</td>
<td>Q: Biology 1 (Advanced) P: Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and one of Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Offered in semester 1</td>
</tr>
<tr>
<td>Biology 2 (Cellular and Developmental) Auxiliary (Advanced)</td>
<td>8</td>
<td>Q: Biology 1 (Advanced) P: Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and one of Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Offered in semester 2</td>
</tr>
<tr>
<td>Chemistry 2</td>
<td>16</td>
<td>Q: Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) P: Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiology 2 (Advanced)</td>
<td>16</td>
<td>Q: Biology 1 (Advanced) P: Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
D. Honours courses
Candidates for the Honours degree shall complete an appropriate Honours program in a Department or School in the Faculty of Science.

<table>
<thead>
<tr>
<th>Courses</th>
<th>Unit values</th>
<th>Qualifying courses (Q)</th>
<th>Prerequisites (P)</th>
<th>Corequisites (C)</th>
<th>Faculty of Science resolutions governing courses</th>
<th>Additional information about courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry 3 (Molecular Biology and Macromolecular Structure)</td>
<td>12</td>
<td>Q: Biochemistry 2 (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 3 (Molecular Genetics and Recombinant DNA Technology)</td>
<td>12</td>
<td>Q: Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C. Senior courses

(i) S1 Core Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>Unit values</th>
<th>Qualifying courses (Q)</th>
<th>Prerequisites (P)</th>
<th>Corequisites (C)</th>
<th>Faculty of Science resolutions governing courses</th>
<th>Additional information about courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry 3 (Molecular Biology and Macromolecular Structure)</td>
<td>12</td>
<td>Q: Biochemistry 2 (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 3 (Molecular Genetics and Recombinant DNA Technology)</td>
<td>12</td>
<td>Q: Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ii) S2 Elective Option Courses

Select two options

<table>
<thead>
<tr>
<th>Courses</th>
<th>Unit values</th>
<th>Qualifying courses (Q)</th>
<th>Prerequisites (P)</th>
<th>Corequisites (C)</th>
<th>Faculty of Science resolutions governing courses</th>
<th>Additional information about courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 3 (Eukaryotic Genetics and Development)</td>
<td>12</td>
<td>Q: Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry 3 (Enzymology, Metabolism and Membranes)</td>
<td>12</td>
<td>Q: Biochemistry 2 (Advanced)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiology 3 (Molecular Biology of Pathogens)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Combined degrees

Combined Science/Law degrees
BSc/LLB

The University offers a combined Science/Law course similar to the combined courses of Arts/Law and Economics/Law. The purpose of the course is to meet a demand for science graduates with legal training.

A student who is selected for enrolment in the Science/Law course may proceed to the LLB degree at the same time as being a candidate for the BSc degree, and may count up to 42 units of Law subjects, comprising Legal Institutions (12 units) and five 6-unit courses as specified below towards the Science degree. No other courses offered by other faculties may be credited towards the BSc degree. On completion of the remaining requirements for the Science degree, as specified in section 14 of the resolutions of the Senate relating to the degree of Bachelor of Science, this degree is awarded and the student can then proceed to complete the requirements for the degree of Bachelor of Laws.

The order in which Law courses are taken is specified in the resolutions of the Senate governing the degree of Bachelor of Laws as follows:

(i) in the first year of attendance the student will take three Science Junior courses and the course Legal Institutions.
(ii) in the second year of attendance the student will take two Science Intermediate courses, and Constitutional Law (6 units), Torts (6 units) and Criminal Law (6 units); note that Criminal Law can be taken in either the second or third year.
(iii) in the third year of attendance the student will take Administrative Law (6 units) Contracts (6 units) and, if not taken in second year, Criminal Law (6 units).

A course in Legal Research and Writing must also be completed. In addition the student will take Science courses which will include at least one Senior course and any other courses required to give the student a minimum of 72 units of Science courses at Intermediate and Senior level, and at least the minimum of 140 units required for the BSc degree.

In the combined Science/Law course students will spend the first three years in the main University grounds during which time the Science degree is completed along with the equivalent of one year's study towards the Law degree. The remainder of the course will be completed at the Law School in the city during a period of two years. Full details of the courses to be completed during this time are included in the Faculty of Law Handbook.

General enquiries about the combined Science/Law course should be addressed to the Secretary to the Faculty of Science.

Honours courses

Students interested in graduating with Honours should bear the following in mind:
1. Students taking the combined Science/Law course who wish to take an Honours course in Science and whose examination results in their early years qualify them to do so, may elect to spend an additional year in Science after the third year. Note, however that the Faculty of Law generally permits only one year of suspension of candidature from the Bachelor of Laws degree (including the combined Science/Law degree). Alternatively, it may be possible for students to defer an Honours year in Science until after the completion of the entire combined course.
2. There is no separate Honours course for the degree of Bachelor of Laws. Graduation with Honours in Law requires a high standard of performance in all courses for the LLB degree. Some of these courses are taken during the first three years of the combined course while the student is completing the Science segment of the course.

Combined Arts/Science degrees
BA/BSc resolutions of the Faculty

These resolutions should be read in conjunction with the resolutions of Senate governing candidature for the degrees of Bachelor of Arts and Bachelor of Science.

1. Candidature for the combined program is full-time.
2. Candidates qualify for the combined degrees by completing 240 units including:
 (i) 12 Junior units of Mathematics; and
 (ii) either 12 Junior units of Chemistry or 12 Junior units of Physics; and
 (iii) (a) at least 72 Senior units from Part A of the Table of Courses for the BA including a major; and
 (b) at least 72 units from Senior and Intermediate courses in the BSc taken in accordance with the resolutions of the BSc.
3. Candidates may not enrol in any course which is substantially the same as one they have already passed.
4. Candidates will be under the general supervision of one of the Faculties until they complete at least 140 units (normally the first three years) and they will complete the combined program under the general supervision of the other Faculty. General supervision covers all areas of
policy and procedure affecting candidates such as degree rules, course nomenclature, enrolment procedures and the Dean to whom reference is to be made at any given time.

5. Candidates who are qualified for one or both of the degrees and otherwise qualified to do so may complete an Honours year. In cases where the Honours year may be completed in either Faculty, it shall be completed in the Faculty in which the candidate has completed the final qualifying course for the Honours year.

6. Candidates may abandon the combined program and elect to complete either a BSc or a BA in accordance with the resolutions of the Senate governing those degrees.

7. The Deans of Arts and Science shall jointly exercise authority in any matter concerning the combined degree program not otherwise dealt with in the Resolutions of the Senate or these resolutions.

Combined Science/Engineering degrees

BSc/BE resolutions of the Faculty

1. Pursuant to section 15 of the resolutions of the Senate governing the degree of Bachelor of Science, students who are of two or three years' standing in the Faculty of Engineering may be admitted to candidature for the degree.

2. To be eligible for admission, such students: (1) must have gained credit in the Faculty of Engineering for not less than 96 units if of two years standing in that Faculty, or not less than 108 units if of three years' standing in that Faculty; and (2) except with the permission of the Dean of the Faculty of Science, must have completed, at full Pass level or better, all courses attempted in the Faculty of Engineering at their first examination, including at least two Intermediate Normal or Intermediate Long courses offered by Departments of the Faculty of Science, one of which may be the Engineering-course Mathematics 2. In some circumstances students may be permitted to count as one of the Intermediate courses for this purpose, courses (undertaken in the Faculty of Engineering) which combined are the equivalent of one of the following courses in the Faculty of Science:

 Chemical Engineering Science 2
 Civil Engineering Science 2
 Mechanical and Aeronautical Engineering Science 2

3. To qualify for the award of the Pass degree, candidates (after admission under section 15 of the resolutions of the Senate governing the degree of Bachelor of Science) shall complete, in one year of full-time study or in two consecutive years of part-time study, courses totalling at least 48 units subject to the provisos:

 (1) that at least 24 of the required 48 units shall be for a Senior course and, if only one Senior course is completed, at least 16 of the remaining 24 units shall be for an Intermediate Normal or Long course; and
 (2) that, except with the permission of the Dean, the 48 units shall not include any units:

 (i) for courses listed under section 5(1) Group B of the Senate resolutions relating to the degree of Bachelor of Science.
 (ii) for any courses already attempted either completely or in part within the Faculty of Engineering.
 (iii) for all or part of the courses:
 Chemical Engineering Science 2
 Chemical Engineering Science 2 Auxiliary
 Civil Engineering Science 2
 Mechanical and Aeronautical Engineering Science 2.

 Such permission will be given only if the candidate has not counted one of these courses as an Intermediate course for the purpose of gaining admission under section 15; up to 16 units, taken in one year to complete one of the above courses, may then be included. Any one of the 16 unit courses above may then be counted as an Intermediate course for the purposes of part (1) of this resolution provided the whole course is completed in one year.

4. Candidates admitted under section 15 shall comply with section 6 of the resolutions of the
Senate governing the degree of Bachelor of Science.

5. To qualify for admission to Honours courses, such candidates shall comply with section 17 of the resolutions of the Senate.

There is no provision for students admitted under section 15 to continue in the Faculty of Science after one full-time or two part-time years of study except to complete an Honours course. Candidates who fail to complete the required 48 units may only be re-admitted to the Faculty of Science if a successful application is made at the appropriate time through the Universities Admissions Centre. Successful applicants will be given credit for courses completed in accordance with section 11 of the resolutions of the Senate governing the degree of Bachelor of Science.

Progression into the Faculty of Engineering

Graduands/graduates in the Faculty of Science at this University, who wish to transfer to the Bachelor of Engineering degree course, must make application through the Universities Admissions Centre by the appropriate closing date in the year prior to proposed entry into the Faculty of Engineering.

Applications will be considered on the basis of academic merit. Consideration will be given to HSC examination results and examination results in the Faculty of Science (and to results in any other tertiary courses completed). The offer of a place in the Faculty of Engineering is NOT automatic and the competition for entry is keen.

Graduands/graduates in the Faculty of Science who are offered a place in the Faculty of Engineering may be able to complete the BE degree requirements in two further years of full-time study. It would be necessary to have completed appropriate courses in the Faculty of Science so that credit for/exemption from all or most of the Junior and Intermediate core course prescribed for that branch of Engineering in which you wish to proceed could be given.

The Departments in the Faculty of Engineering have indicated that they would recommend that a Science graduand/graduate be given sufficient credit/exemption to enable him/her to complete the BE degree requirements in two years if he/she has completed the courses set out below.

The BSc degree requirements would need to have been completed in the minimum time and in some Engineering Departments minimum standards of performance in Science courses are required.

Aeronautical Engineering
- Chemistry 1
- Computer Science 1
- Mathematics 2 (Pure or Applied)
- Physics 2

Mechanical and Aeronautical Engineering Science 2

Chemical Engineering
- Mathematics 2 (Pure or Applied)
- Chemistry 2
- Chemical Engineering Science 2

Civil and Mining Engineering
- Chemistry 1
- Physics 1 or Computer Science 1 or Physics 1 (Life Sciences)
- Mathematics 2 (Pure or Applied)
- Civil Engineering Science 2

Electrical Engineering
- Mathematics 2 (Pure or Applied)*
- Computer Science 2*
- Physics 2*

These courses, and those courses completed in the third year of the BSc degree, would need to have been passed at Credit level or better.

Mechanical Engineering
- Chemistry 1
- Computer Science 1
- Mathematics 2 (Pure or Applied)
- Physics 2
- Mechanical and Aeronautical Engineering Science 2

Students need to achieve good grades in these courses.

Students will be required to enrol in Mechanical Design IA when entering Mechanical Engineering.

Combined Science/Medicine degrees

BSc/MB BS resolutions of the Faculty

1. Pursuant to section 16 of the resolutions of Senate governing candidature for the degree of Bachelor of Science, students may enrol concurrently in the BSc, MB and BS degrees. Such candidates may satisfy the requirements for the BSc degree by completing at least 92 units including at least 72 units at Intermediate or Senior level, at least 24 units of which shall be at Senior level, in courses as prescribed in sections 2 and 4. On completion of these 92 units, candidates will be credited with the equivalent of 48 units towards the BSc degree from courses completed in the first year of the MB and BS degrees.

2. Candidates admitted in accordance with section 1 may credit only Junior, Intermediate, Senior and Senior Advanced courses offered by the Departments/Schools of Chemistry, Computer Science, Applied Mathematics, Pure Mathematics, Mathematical Statistics and
Physics towards the additional 92 Units required for the BSc degree.

3. Except with the permission of the Faculty of Science, candidates may not enrol in a course unless they have completed those courses specified as prerequisites in section 3 of the resolutions of Senate governing the degree of Bachelor of Science. The course Chemistry, available to first year students in the Faculty of Medicine, is an alternative qualifying course for Chemistry 2.

4. (a) Except with the permission of the Faculties of Medicine and Science, a candidate who does not intend to proceed to Computer Science 3 shall:

(i) enrol in year 1 in the courses prescribed for the first year of the MB BS degrees, Mathematics 1 or Mathematics 1 (Advanced) and, if the candidate so chooses, in Physics 1 or Physics 1 (Advanced);
(ii) enrol in each of years 2 and 3 in the courses prescribed for the MB BS degrees and in an Intermediate Normal course; and
(iii) enrol in year 4 as a full-time student in the Faculty of Science either in two Senior courses or in one Senior course, one Intermediate Normal course and in one 8 or 12 unit course.

(b) Except with the permission of the Faculties of Medicine and Science, a candidate who intends to proceed to Computer Science 3 shall:

(i) enrol in year 1 in the courses prescribed for the first year of the MB BS degrees, Mathematics 1 or Mathematics 1 (Advanced) and, if the candidate so chooses, in Physics 1 or Physics 1 (Advanced);
(ii) enrol in each of years 2 and 3 in the courses prescribed for the MB BS degrees and in either Computer Science 1 or Computer Science 1 (Advanced) or an Intermediate Normal course; and
(iii) enrol in year 4 in courses prescribed for the fourth year of the MB BS degrees and in an Intermediate Normal course; and
(iv) enrol in year 5 as a full-time student in the Faculty of Science in Computer Science 3 and either in one other Senior course or in an Intermediate Normal course.

(c) Notwithstanding the provisions of section 4(b), with the permission of the Faculties of Medicine and Science and of the Head of the Department of Computer Science, a candidate who has completed the course Computer Science 2 may enrol in year 4 as a full-time student in the Faculty of Science in Computer Science 3, an Intermediate Normal course in Mathematics and in one other Intermediate Normal course.

5. Except with the permission of the Faculties of Medicine and Science, candidates may not enrol in courses other than those prescribed in sections 2 and 4.

6. To qualify for admission to Honours courses in the Faculty of Science, candidates shall comply with section 17 of the resolutions of the Senate governing the degree of Bachelor of Science.

7. There is no provision for students admitted in accordance with section 1 to continue in the Faculty of Science after completion of their full-time year in that Faculty (as prescribed in section 4) except to complete an Honours course.

8. Candidates who fail to complete the requirements for the award of the degree of Bachelor of Science at the end of their full-time year in the Faculty of Science may only be readmitted to that Faculty if a successful application is made at the appropriate time through the Universities Admissions Centre. Successful applicants will be given credit for courses completed in accordance with section 11 of the resolutions of Senate governing the degree of Bachelor of Science.

Degree of Bachelor of Computer Science and Technology

Summary of requirements

General requirements
The requirements for the degree are set out in the Senate resolutions which should be read by all intending candidates (see below). In particular it is important to ensure that any proposed course of study will comply with the basic requirements for the degree contained in sections 4, 5, 6, and 9.

Progression towards the degree is by the accumulation of unit points, gained by completing courses.

To qualify for a degree you must gain credit for at least 140 units in subjects approved under the degree regulations. Subjects have different unit values depending on their workload.

The following courses must be completed:
1. 12 units of Computer Science 1 or Computer Science 1 (Advanced),
2. 12 units of Mathematics 1 or Mathematics 1 (Advanced),
3. 16 units of Computer Science 2,
4. 16 units of Mathematics 2 (Computing) or Mathematics 2 (Computing) (Advanced),
5. 24 units of Computer Science 3,
6. 24 units from the table associated with section 3 of the degree resolutions, which lists approved courses at the third-year level with a substantial coverage of computing.

There are the following constraints on enrolment in courses:
• Only those combinations of courses permitted by the timetable can be taken.
• Full-time students generally enrol in four 12-unit courses in the first year of attendance.
• You may not enrol in courses worth more than 52 units total in any one year or the equivalent of 56 units in one semester without special permission of Faculty.
• You may not enrol in any course unless you have completed the qualifying and prerequisite courses and have completed or are enrolled in any corequisite courses.

HSC Tertiary Entrance Rank
A quota will apply for entry into the BCST degree.

Plans of courses
It is important when choosing courses at any stage of your university career that you should consider your overall degree program. The BCST is designed as a flexible degree program for students with a strong interest in computing. The flexibility of the program derives from the ability to combine a core of fundamental computer science topics with a wide range of subjects in the first two years, and the possibility of a double major, combining computer science with another computationally based discipline.

The following are some possible example programs, each leading to a distinct career path.

Programmer for Scientific Applications
First Year
Computer Science 1
Mathematics 1
Two of Physics 1, Chemistry 1 or Biochemistry 1

Second Year
Computer Science 2
Mathematics 2 (Computing)
Physics 2, Chemistry 2 or Biochemistry 2

Third Year
Computer Science 3
Scientific Visualisation 3

Programmer for Imbedded Systems/Integrated Systems
First Year
Computer Science 1
Mathematics 1
Physics 1
Digital and Electronics Technology 1

Second Year
Computer Science 2
Mathematics 2 (Computing)
Electrical Engineering 2

Third Year
Computer Science 3
Computer Science 3 Additional (including topics from Electrical Engineering among the options)

Programmer for Commercial Systems
First Year
Computer Science 1
Mathematics 1
Accounting 1
Economics 1

Second Year
Computer Science 2
Mathematics 2 (Computing)
Accounting 2

Third Year
Computer Science 3
Computer Science 3 Additional

Programmer for Operational Research
First Year
Computer Science 1
Mathematics 1
Accounting 1
Economics 1

Second Year
Computer Science 2
Mathematics 2 (Computing)
Econometrics 2

Third Year
Computer Science 3
Computer Science 3 Additional (including Operations Research among the options)

Programmer to Support Developer of Mathematical Software
First Year
Computer Science 1
Mathematics 1
Two elective subjects

Scientific Visualisation 3
Second Year
Computer Science 2
Mathematics 2 (Computing)
Pure Mathematics 2 or Mathematical Statistics 2

Third Year
Computer Science 3
Pure Mathematics 3 (Computing) or Applied Mathematics 3 (Computing)

Professional Programmer/Software Engineer

First Year
Computer Science 1
Mathematics 1
Digital and Electronics Technology 1
Elective subject

Second Year
Computer Science 2
Mathematics 2 (Computing)
Elective subject 2

Third Year
Computer Science 3
Computer Science 3 (Additional)

As 'elective subjects' students can select any subject offered by the Faculties of Arts, Science and Economics. The above example programs are not exhaustive and students are encouraged to look carefully at subjects offered by other faculties before finalising their course. Consultation with a Faculty/Department adviser is always recommended.

Special permission
You should note that the Faculty can, in certain instances, permit exceptions to the normal requirements for a degree. Applications for special permission should be made in writing to the Faculty after discussion with staff in the Faculty office.

Part-time candidature
It is expected that the majority of candidates will proceed as full-time students. If, however, you are unable to proceed on a full-time basis you may enrol as a part-time candidate and will be required to indicate this when enrolling. Day-time attendance at lectures and laboratory classes is required for most science courses. All candidates must enrol in either Mathematics 1 or Mathematics 1 (Advanced) in their first year.

Discontinuation
For regulations relating to discontinuation, see the University's Statutes and Regulations 1994-95. Students should read these regulations carefully as a discontinuation can affect the Weighted Average Mark (WAM). For further information about the WAM, see under Honours courses' below.

Regulations

Resolutions of the Senate
The following resolutions governing candidature for the degree of Bachelor of Computer Science and Technology have been prescribed by the Senate.

1. For the purpose of the resolutions:
 (1) A course shall consist of instruction through means such as lectures, tutorial instruction, essays, exercises, or practical work as may be prescribed.
 (2) To 'complete a course' and derivative expressions mean:
 (i) to attend the lectures and the meetings, if any, for tutorial instructions;
 (ii) to complete satisfactorily the essays, exercises and the practical work, if any; and
 (iii) to pass the examinations of the course.
 (3) Qualifying course means a course which must be completed with a result of Pass or better (not Terminating Pass) before the course for which it qualifies may be taken.
 (4) Prerequisite course means a course other than a qualifying course in a subject which, except with the permission of the Head of the Department concerned, must have been completed prior to a candidate taking a course for which it has been declared to be a prerequisite.
 (5) Corequisite course means a course which unless previously completed must, except with the permission of the Head of Department concerned, be taken concurrently with the course for which it has been declared to be a corequisite.

Grades of award
2. The degree shall be awarded in two grades, namely the Pass degree and the Honours degree.

Courses for Pass degree
3. Courses for the degree shall, except as provided in section 7:
 (1) be in such subjects,
 (2) have such unit values, and
 (3) have such qualifying, prerequisite and corequisite courses as are set out in the table associated with this section or in the tables associated with the regulations for the degrees of Bachelor of Science, Bachelor of Arts, Bachelor of Economics, Bachelor of Commerce, or Bachelor of Engineering, in the University of Sydney; and
 (4) be approved by the Faculty concerned for offer to students in this degree.
Qualification for Pass degree

4. Candidates for the pass degree shall:
 (1) except with the permission of the Faculty complete —
 (i) either Computer Science 1 or Computer Science 1 (Advanced),
 (ii) either Mathematics 1 or Mathematics 1 (Advanced),
 (iii) courses at the first year level other than those referred to in sections 4(1)(i) and 4(1)(ii) to the value of 24 units,
 (iv) Computer Science 2,
 (v) either Mathematics 2 (Computing) or Mathematics 2 (Computing, Advanced),
 (vi) Computer Science 3, and
 (vii) a third year course to the value of 24 units from the table associated with section 3 of these resolutions;
 (2) gain credit totalling at least 140 units of which not more than 28 units shall be credited from courses in which Terminating Passes have been awarded;
 (3) not have any course credited more than once for the degree;
 (4) not have credited for the degree units derived from more than one of such courses as the Faculty may deem to be mutually exclusive;
 (5) when enrolled in a course, a non-optional part of which is similar in content to part of (i) a course previously completed or (ii) another course in which the candidate is currently enrolled, complete an equivalent amount of alternative work, as directed by the Head(s) of Department(s) concerned, in order to complete the course;
 (6) not take an option within a course which is similar in content to part of a course concurrently being taken or previously completed.

Enrolment in the first year

5. In their first year of attendance candidates for the Pass degree shall enrol in Mathematics 1 or Mathematics 1 (Advanced), unless granted credit for one of these courses in accordance with section 11.

Restrictions on enrolment

6. (1) Candidates may not enrol in any course without having previously completed all courses listed as Qualifying courses, or some other course or courses allowed by the Faculty to count as equivalent.
 (2) Except with the permission of the Head of the Department concerned candidates may not enrol in any course without having previously completed all courses listed as Prerequisite courses, or some other course or courses allowed by the Faculty to count as equivalent.
 (3) Except with permission of the Head of the Department concerned, candidates may not enrol in any course unless they are currently enrolled in, or have previously completed, any courses listed as Corequisite courses, or some other course or courses allowed by the Faculty to count as equivalent.
 (4) Except with the permission of the Dean, candidates may not take in any one academic year courses with a total number of units in excess of 52 or in excess of the equivalent of 56 in one semester.
 (5) The choice of courses made by candidates shall be limited by the exigencies of the timetable provided that candidates who seek to enrol in two courses which are given wholly or partly at the same hour or hours may be granted, by the Heads of the Departments concerned, permission to attend equivalent courses or parts of courses given at another hour or other hours.

Talented students

7. A candidate of exceptional merit may, under special circumstances and with the permission of the Dean, undertake studies other than those courses specified in section 3, and upon completion of those studies have them counted towards the degree. The candidate may be given credit for these studies of up to 40 units. Such units shall count towards the number of units required for the degree in accordance with section 4(2).

Upgrade of courses

8. Candidates who have been awarded a Terminating Pass in any course may take that course again. On completion of this course such candidates will not be credited with any further units unless the course is completed at least at Pass level and the units had not previously been credited in accordance with section 4(2) which limits the number of units which shall be credited from courses in which Terminating Passes have been awarded.

Time limits, Suspension, Part-time study

9. (1) Except with the permission of the Faculty a candidate must complete the requirements for award of the degree within ten calendar years of admission to candidature. This section applies to all
candidates first enrolling in the degree after 1995, and applies from 1998 to candidates who first enrolled in the degree before 1996.

(2) A candidate must re-enrol each calendar year unless the Faculty has approved suspension of candidature. Candidature lapses if a candidate has not obtained approval for suspension and does not re-enrol. Candidates whose candidature has lapsed must be selected for admission again before they can re-enrol.

(3) Except with the prior permission of the Faculty a candidate shall not be granted a suspension of candidature in order to enrol in another course of tertiary study. Candidature shall lapse if a candidate enrolls in another course of tertiary study after having been granted a suspension of candidature.

(4) Candidates who in any year intend to proceed towards the degree of Bachelor of Computer Science and Technology as part-time students shall indicate this intention when enrolling.

(5) Candidates proceeding as part-time students shall not take in any one academic year courses with a total unit value of 36 or more.

Course assessment

10. (1) Candidates may be tested by written and oral class examinations, exercises, essays or practical work or any combination of these, and the results of such tests may be taken into account by the Faculty Board of Examiners in determining the final results for a course.

(2) In all courses passes may be graded into High Distinction, Distinction, Credit and Pass, and in certain courses as determined by the Board of Examiners, Terminating Pass. The grades High Distinction, Distinction or Credit indicate work of a standard higher than that required for a pass.

(3) Where a department offers a course at more than one level the performance of students in the different levels in terms of comparability of quality of work will be matched by that department so that a grade obtained at one level indicates a quality of work comparable with that required for the same grade obtained at another level.

(4) Candidates who have been prevented by duly certified illness or misadventure from sitting for the whole or part of a course assessment may be tested at such times and in such way as the Board of Examiners shall determine.

(5) Candidates who do not pass in a course shall, unless exempted by the Dean, again attend lectures and other classes and complete the prescribed written and other work in all such courses in which they are permitted to re-enrol.

(6) Candidates who repeat any course shall not be eligible for any prize or scholarship awarded in connection with the examination for such a course.

(7) In such courses as the Board of Examiners may determine, the Faculty Board of Examiners may award a Terminating Pass which, subject to the provisions of section 4(2), entitles the candidate to be credited with the full number of units for that course. Candidates who have been awarded a Terminating Pass in a course are not thereby qualified to take a course for which that course is listed as a Qualifying course, but otherwise such candidates shall be held to have completed such course.

Credit for courses

11. (1) Candidates who have previously completed studies which are considered by the Faculty to be equivalent to any course listed in section 3 may be given credit for that course providing that:

 (i) the total unit-value of the courses so credited from studies which have resulted in the conferring of a degree or degrees may not exceed 52, and

 (ii) in the case of students who have completed courses in another tertiary program without the degree being conferred and who have abandoned credit in that program for the courses on the basis of which credit is sought, any number of courses may be credited;

 (iii) the courses were completed not more than nine years before admission to candidature in the Faculty.

(2) Candidates who have been given credit for courses in accordance with section 11(1), shall be regarded as having completed such courses for the purposes of these resolutions.

(3) Candidates for the degree who have completed studies at tertiary level which are considered by the Faculty to be appropriate, but for which there is no equivalent course listed in section 3, may be given credit for such number of units as the Faculty may determine. Such units shall
count towards the number of units required for the degree in accordance with section . 4(2).

Admission to Honours courses
12. (1) In order to qualify for admission to an Honours course candidates shall have qualified for the award of a Pass degree and be considered by the Faculty and the Head of the Department concerned to have the requisite knowledge and aptitude for an Honours course.
(2) With the permission of the appropriate Head of Department and provided the requirements in subsection (1) have been satisfied the following may also be admitted to Honours courses:
 (i) Pass graduates in Computer Science and Technology of the Faculty of Science;
 (ii) Pass graduates of recognised institutions whose knowledge is considered by the Faculty to be equivalent to that of holders of the Bachelor of Computer Science and Technology of the University of Sydney.
(3) Candidates may not take more than one Honours course in any one academic year.
(4) Candidates who have qualified for the Honours degree may take, in the next year or at such later times as the Faculty permits, an additional Honours course which they are qualified to enter.

Honours courses
13. (1) Candidates for the Honours degree shall complete an Honours course.
(2) There shall be an Honours course in Computer Science, and in other subjects as the Faculty may determine in cases where a student will undertake work equivalent to that required for an Honours course in the Bachelor of Science degree, and where the work has significant coverage of computing.

Classes of Honours and Medal
14. (1) There shall be three Classes of Honours, namely Class I, Class II and Class III, and within Class II there shall be two Divisions, namely Division 1 and Division 2.
(2) A candidate with an outstanding performance in the subject of an Honours course shall, if deemed to be of sufficient merit by the Faculty, receive a bronze medal.
(3) There shall be no re-examination for Honours.
Table: [see sections 3 and 4(1)(vii)] [Bachelor of Computer Science and Technology]

<table>
<thead>
<tr>
<th>(a) Courses</th>
<th>(b) Unit Values</th>
<th>(c) Assumed standard of knowledge at Higher School Certificate examination or equivalent level (as approved by Senate)</th>
<th>(d) Corequisites (C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. First Year Courses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital and Electronics Technology 1</td>
<td>12</td>
<td>Mathematics 3-unit course and the Physics section of the Science 3-unit or 4-unit course or 2-unit Physics</td>
<td>Mathematics 1 or Mathematics 1 (Advanced) and either Computer Science 1 or Computer Science 1 (Advanced)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(a) Courses</th>
<th>(b) Unit Values</th>
<th>(c) Qualifying courses (Q)</th>
<th>Prerequisites (P)</th>
<th>Corequisites (C)</th>
<th>Faculty of Science resolutions governing courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Second Year Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics 2 (Computing)</td>
<td>16</td>
<td>Q: Mathematics 1 or Mathematics 1 (Advanced)</td>
<td></td>
<td></td>
<td>May not be counted with Mathematics 2 (Computing) (Advanced)</td>
</tr>
<tr>
<td>Mathematics 2 (Computing) (Advanced)</td>
<td>16</td>
<td>Q: Credit level or better in Mathematics 1 or Mathematics 1 (Advanced)</td>
<td></td>
<td></td>
<td>May not be counted with Mathematics 2 (Computing)</td>
</tr>
</tbody>
</table>

C. Third Year Courses					
Computer Science 3	24	C: Compute/ Science 3			
Pure Mathematics 3 (Computing)	24	Q: Mathematics 2 (Computing) or Mathematics 2 (Computing) (Advanced)			May not be counted with Pure Mathematics 3 (Computing) (Advanced)
Pure Mathematics 3 (Computing) (Advanced)	24	Q: Mathematics 2 (Computing) or Mathematics 2 (Computing) (Advanced)			May not be counted with Pure Mathematics 3 (Computing)
Applied Mathematics 3 (Computing)	24	Q: Mathematics 2 (Computing) or Mathematics 2 (Computing) (Advanced)			May not be counted with Applied Mathematics 3 (Computing) (Advanced)
Applied Mathematics 3 (Computing) (Advanced)	24	Q: Mathematics 2 (Computing) or Mathematics 2 (Computing) (Advanced)			May not be counted with Applied Mathematics 3 (Computing)

Note: Under section 4(1) of the degree regulations the Faculty may grant permission for courses other than those specified above to be undertaken.
Degree of Bachelor of Medical Science

Summary of requirements
Entry to the degree course occurs either at the beginning of the first, or Junior year, or at the beginning of the second, or Intermediate year. The first year of study requires enrolment in the courses Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences), Physics 1 or Physics 1 (Advanced), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program) and Biology 1 or Biology 1 (Advanced). These courses must be taken either within the Bachelor of Medical Science degree if entry is in first year, or within the Bachelor of Science degree (or equivalent) if entry will be in second year. Entry to the degree with other first year subjects such as Computer Science 1 or Computer Science 1 (Advanced) or Psychology 1 instead of Biology 1 or Biology 1 (Advanced) will be possible with the approval of the Faculty. The criterion for admission to the quota of places will be academic merit.

Students should apply for admission through the Universities Admissions Centre by 30 September in the year they undertake their first year of study for entry into the Intermediate year.

The total number of units to be completed for the award of the degree is 150, comprising 48 units from Junior courses (completed either in the Junior year of the BMedSc course or before admission to the Intermediate year of the BMedSc course), 52 units from Intermediate courses and 50 units from Senior courses. The curriculum for the second and third years comprises a core (44 units in second year and 14 units in third year) plus options (8 units in second year and 36 units in third year).

Students are required to pass all components of the core courses in order to progress in the degree. It is possible for students to 'carry' their 8-unit option from the Intermediate year into the Senior year, provided that it is not a prerequisite for an option they may wish to undertake in the Senior year. Furthermore, a student who takes Biochemistry 2 (Medical Sciences) [8-unit core of Biochemistry (Medical Sciences) Auxiliary plus the optional 8 units of Biochemistry 2 (Medical Sciences) Practical] and who fails that course, will be deemed to have failed that section of the Intermediate core course and may not proceed into the Senior core course.

Students who wish to discontinue enrolment in the BMedSc course may apply for admission to the BSc course through the Universities Admissions Centre. If entry to the BSc course occurs after the Intermediate year a student can resume a conventional BSc degree structure without penalty. However, the only 24-unit courses available to such a student for completion of the BSc degree are Pharmacology 3 and, provided the appropriate options have been completed in the Intermediate year, Biochemistry 3, Biology 3, History and Philosophy of Science 3, Physiology 3 or Anatomy and Histology 3 (Anatomy and Histology 3 will be offered from 1997).

Regulations

Resolutions of the Senate
The following resolutions governing candidature for the degree of Bachelor of Medical Science have been prescribed by the Senate.

Definitions
1. (1) (i) A course shall consist of lectures together with such tutorial instruction, essays, exercises, or practical work as may be prescribed.
(ii) Each course shall be designated as a Junior course, an Intermediate course, a Senior course or an Honours course.
(iii) Junior, Intermediate, Senior or Honours courses are indicated by the Arabic numeral 1, 2, 3 or 4 respectively placed immediately after the name of a subject.

(2) To 'complete a course' and derivative expressions mean:
(i) to attend the lectures and the meetings, if any, for tutorial instructions;
(ii) to complete satisfactorily the essays, exercises and the practical work, if any; and
(iii) to pass the examination of the course.

(3) Qualifying course means a course which must be completed with a result of Pass or better (not a Terminating Pass).

(4) Prerequisite course means a course other than a qualifying course in a subject which, except with the permission of the head of the department concerned, must have been completed prior to a candidate taking a course for which the Faculty has declared it to be a prerequisite.

(5) Corequisite course means a course which unless previously completed must, except with the permission of the head of department concerned, be taken concurrently with the course for which the Faculty has declared it to be a corequisite.

See sections 7 and 9(6).
Grades of award
2. The degree shall be awarded in two grades, namely the Pass degree and the Honours degree.

Courses for Pass degree
3. Courses for the degree shall—
 (1) be in such subjects,
 (2) have such unit values, and
 (3) have such qualifying, prerequisite and corequisite courses as are set out in the table associated with this resolution.

Qualification for Pass degree
4. To complete the requirements for the pass degree a candidate shall:
 (1) complete the Junior, Intermediate, and Senior core courses, one Intermediate elective course, and the Senior elective courses, as set out in the table in Section 3;
 (2) gain credit totalling at least 150 units, not more than 16 units of which (obtained from not more than two whole courses) shall be credited from courses in which terminating passes have been awarded; and
 (3) not have any courses credited more than once for the degree.

Enrolment in courses
5. (1) Entry to the degree program will be at the completion of the Junior courses set out in the tables in section 3, except where credit for these courses has been granted in accordance with section 10. These Junior courses will be completed according to the resolutions for the Bachelor of Science and are qualifying courses for entry to the degree.
 (2) In the first year of the degree (the Intermediate year), candidates shall enrol in the Intermediate courses listed in the table associated with section 3. Credit for component courses in the degree may be granted by the Faculty of Science in accordance with section 10.
 (3) Subject to section 6, except with the permission of the Faculty, candidates in subsequent years of attendance shall enrol in the prescribed Senior core courses and the required number of optional Senior courses as set down in the Table in section 3.

Restrictions on enrolment
6. (1) Except with the permission of the Faculty, candidates may not take the Intermediate core course until they have completed all the Junior courses prescribed by the Faculty as qualifying courses as set out in section 3.
 (2) Except with the permission of the Faculty, candidates may not take a Senior course—
 (i) until they have gained credit for the 44 core units in the Intermediate program, and
 (ii) until they have completed the Intermediate courses, if any, prescribed as prerequisites for the Senior course, as set out in section 3.
 (3) The enrolment by candidates in the degree will be subject to a quota. The enrolment by candidates in some Senior option courses may be limited by the exigencies of the timetable and some Senior option courses may also be subject to a quota.

Terminating Pass
7. Candidates who have been awarded a terminating pass in any course may take that course again. On completion of this course such candidates will not be credited with any further units unless the course is completed at least at pass level and the units had not previously been credited in accordance with section 4(2) which limits the number of units which shall be credited from the courses in which terminating passes have been awarded.

Time limits, Suspension
8. (1) Except with the permission of the Faculty a candidate must complete the requirements for award of the degree within ten calendar years of admission to candidature. This section applies to all candidates first enrolling in the degree after 1995, and applies from 1998 to candidates who first enrolled in the degree before 1996.
 (2) A candidate must re-enrol each calendar year unless the Faculty has approved suspension of candidature. Candidature lapses if a candidate has not obtained approval for suspension and does not re-enrol. Candidates whose candidature has lapsed must be selected for admission again before they can re-enrol.
 (3) Except with the prior permission of the Faculty a candidate shall not be granted a suspension of candidature in order to enrol in another course of tertiary study. Candidature shall lapse if a candidate enrols in another course of tertiary study after having been granted a suspension of - candidature.

Course assessment
9. (1) Candidates shall be tested by written or oral examinations, exercises, essays or practical work or any combination of these,
and the results of such tests may be taken into account by the Faculty Board of Examiners in determining the final results for a course.

(2) In all courses, passes may be graded into High Distinction, Distinction, Credit and Pass; and in Intermediate courses (except the course Human Life Sciences 2), Terminating Pass. The grades High Distinction, Distinction or Credit indicate work of a standard higher than that required for a pass.

(3) Candidates who have been prevented by duly certified illness or misadventure from sitting for the whole or part of a course assessment may be tested at such times and in such way as the Faculty Board of Examiners shall determine.

(4) Candidates who do not pass in a course shall, unless exempted by the Dean, again attend lectures and other classes and complete the prescribed written and other work in all such courses in which they are permitted to re-enrol.

(5) Candidates who repeat any course shall not be eligible for any prize or scholarship awarded in connection with such examination.

(6) In any Intermediate course, except the course Human Life Sciences 2, the Faculty Board of Examiners may award a terminating pass which, subject to the provisions of Section 4(2), entitles the candidate to be credited with the full number of units for that course. Candidates who have been awarded a terminating pass in a course are not thereby qualified to take a higher course in that subject, but otherwise such candidates shall be held to have completed such a course.

Credit for courses

10. (1) Candidates who have previously completed studies which are considered by the Faculty to be equivalent to any course listed in the table associated with section 3 may be given credit for that course providing that:

(i) in the case of graduates, the total unit value of the course so credited may not exceed 52;

(ii) in the case of students who have completed courses in another tertiary program without graduating and who have abandoned credit in that program for the courses on the basis of which credit is sought, any number of courses may be credited;

(iii) the courses were completed not more than nine years before admission to candidature in the Faculty.

(2) Candidates who have been given credit for courses listed in the table, in accordance with section 10(1), shall be regarded as having completed such courses for the purposes of these resolutions.

Admission to Honours courses

11. (1) In order to qualify for admission to an Honours course candidates shall have qualified for the award of a Pass degree and be considered by the Faculty and the head of the department concerned to have the requisite knowledge and aptitude for an Honours course.

(2) With the permission of the appropriate Head of Department and provided the requirements in subsection (1) have been satisfied Pass graduates in Medical Science of the Faculty of Science may also be admitted to Honours courses.

(3) Candidates may not take more than one Honours course in any one academic year.

(4) Candidates who have qualified for the Honours degree may take, in the next year or at such later times as the Faculty permits, an additional Honours course which they are qualified to enter.

Honours courses

12. (1) Candidates for the Honours degree shall complete an Honours course.

(2) There shall be an Honours course in the following subjects: Anatomy, Biochemistry (Molecular Biology), Biology (Genetics), Cell Pathology, Histology and Embryology, Immunology, Infectious Diseases, Microbiology, Pharmacology, Physiology.

Classes of Honours and Medal

13. (1) There shall be three classes of Honours, namely Class I, Class II, and Class III, and within Class II there shall be two divisions, namely Division 1 and Division 2.

(2) A candidate with an outstanding performance in the subject of an Honours course shall, if deemed to be of sufficient merit by the Faculty, receive a bronze medal.

(3) There shall be no re-examination for Honours.
Table of courses for Bachelor of Medical Science [See section 3]

<table>
<thead>
<tr>
<th>Course</th>
<th>Unit value</th>
<th>Prerequisites (P)</th>
<th>Corequisites (C)</th>
<th>Assumed knowledge (Ak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)</td>
<td>12</td>
<td></td>
<td></td>
<td>(Substitution of a Junior Biology course by a Junior Computer Science course or Psychology 1 must be approved by the Faculty at the time of enrolment)</td>
</tr>
<tr>
<td>Chemistry 1 or Chemistry 1 (Advanced)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics 1 or Physics 1 (Advanced)</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Biology 1 or Biology 1 (Advanced) or Computer Science 1 or Computer Science 1 (Advanced) or Psychology 1</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Intermediate courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Core Courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human Life Sciences 2</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology 2 Introductory</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry 2 (Medical Science) Auxiliary*</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ii) Elective options (Select one)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry 2 (Medical Science) Practical*</td>
<td>8</td>
<td></td>
<td></td>
<td>Q: Chemistry 1 or Chemistry 1 (Advanced)</td>
</tr>
<tr>
<td>Biology 2 (Molecular and General Genetics) Auxiliary or Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)</td>
<td>8</td>
<td></td>
<td></td>
<td>Q: Biology 1 or Biology 1 (Advanced)</td>
</tr>
<tr>
<td>History and Philosophy of Science 2 Introductory</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Senior courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) S1 Core courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microbiology and Immunology 3</td>
<td>10</td>
<td></td>
<td></td>
<td>Q: Human Life Sciences 2</td>
</tr>
<tr>
<td>Human Life Sciences 3 (Cellular and Molecular)</td>
<td>4</td>
<td></td>
<td></td>
<td>P: Pharmacology 2 Introductory</td>
</tr>
<tr>
<td>(ii) Whole year elective option</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cell Pathology 3</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(iii) S1 Elective options

(Select one option.**

Departments may offer more than one option, and may offer options jointly with other departments.)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry 3 (Molecular Biology and Macromolecular Structure)</td>
<td>12</td>
</tr>
<tr>
<td>Biology 3 (Molecular Genetics and Recombinant DNA Technology)</td>
<td>12</td>
</tr>
<tr>
<td>Histology 3 (Techniques)</td>
<td>12</td>
</tr>
<tr>
<td>History of the Life Sciences 3</td>
<td>12</td>
</tr>
<tr>
<td>Neuroscience 3</td>
<td>12</td>
</tr>
<tr>
<td>Pharmacology 3 (Molecular Pharmacology and Toxicology)</td>
<td>12</td>
</tr>
</tbody>
</table>

(iv) S2 Elective options

(Select two options #

Departments may offer more than one option, and may offer options jointly with other departments.)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomy 3 (Topographical)</td>
<td>12</td>
</tr>
<tr>
<td>Biochemistry 3 (Enzymology, Metabolism and Membranes)</td>
<td>12</td>
</tr>
<tr>
<td>Biology 3 (Eukaryotic Genetics and Development)</td>
<td>12</td>
</tr>
<tr>
<td>Histology 3 (Developmental Biology)</td>
<td>12</td>
</tr>
<tr>
<td>Immunology 3</td>
<td>12</td>
</tr>
<tr>
<td>Infectious Diseases 3 (Infection and Diagnosis)</td>
<td>12</td>
</tr>
<tr>
<td>Microbiology 3 (Molecular Biology of Pathogens)</td>
<td>12</td>
</tr>
<tr>
<td>Neuroscience 3 (Cellular and Integrative)</td>
<td>12</td>
</tr>
</tbody>
</table>

*Students are advised not to attempt this course if they have not performed well in Microbiology and Immunology 3.

*C: Microbiology 3 (Molecular Biology of Pathogens), except with special permission of Department of Infectious Diseases. Students are advised not to attempt this course if they have not performed well in Microbiology and Immunology 3.
Pharmacology 3 (Neuro- and Cardiovascular) 12
Physiology 3 (Heart and Circulation) 12

'From 1994, General Pure Mathematics 1 has been renamed Mathematics 1 (Life Sciences). Any reference to Mathematics 1 (Life Sciences) in these resolutions shall be deemed to apply equally to General Pure Mathematics 1.

*Biochemistry 2 (Medical Science) Auxiliary plus Biochemistry 2 (Medical Science) Practical must be taken together as Biochemistry 2 (Medical Science).

**These elective options are not available for students enrolled in Cell Pathology 3.

Students enrolled in Cell Pathology 3 select only one of these options.

Note: Entry to Senior options may be subject to quotas, and the selection of combinations of Senior options will be subject to timetable constraints.
Degree of Bachelor of Pharmacy

Summary of requirements
Progression towards the degree of Bachelor of Pharmacy is by the accumulation of unit points. The requirements for the degree are set out in the Senate resolutions, which should be read by all intending candidates (see below). All candidates must attend as full-time students.

To satisfy the requirement for the Pass degree candidates must gain a total of 146 units by completing the courses prescribed for the degree (see section 3).

The basic requirements are contained in sections 4, 5 and 6.

During the first year of attendance candidates enrol in seven Junior (first year) courses as follows: Mathematics 1 for Pharmacy, Biology 1 for Pharmacy, Physiology 1 for Pharmacy, Chemistry 1 for Pharmacy, Introductory Pharmacy 1, Microbiology 1 for Pharmacy and Biostatistics 1 for Pharmacy.

Assumed knowledge: It should be noted that most of the above Junior (first year) courses will be taught on the assumption that students have reached the standard specified in Part A of the 'Table of Courses' below at the Higher School Certificate examination or equivalent level.

Prerequisites and corequisites: To be eligible to enrol in most Intermediate and Senior courses, students must have completed the qualifying course, if any, and the prerequisite course(s), if any. Any corequisite course(s) not previously completed must be taken concurrently. (See section 1.)

Registration requirements for pharmacists
A student who intends to qualify to be registered as a pharmacist under the Pharmacy Act 1964 is first required to qualify for the degree of Bachelor of Pharmacy. In addition he or she is required to serve not less than 2300 hours as an assistant to a registered pharmacist in a pharmacy inside the Commonwealth of Australia. This period must be served after the BPharm course has been completed, except that not more than 300 of these hours may be served earlier, providing that the first academic year of the course has been successfully completed.

Further details concerning the requirements for registration can be obtained from the Pharmacy Board of New South Wales, 3rd Floor, 28 Foveaux Street, Surry Hills, N.S.W. 2010, tel. (02) 281 7736, fax (02) 281 2924. Postal Address: Locked Bag 2, Haymarket, N.S.W. 2000.

Resolutions of Senate
The following resolutions governing candidature for the degree of Bachelor of Pharmacy have been prescribed by the Senate.

Definitions
1. For the purposes of these resolutions:
 (1) (i) A course shall consist of lectures together with such tutorial instruction, essays, exercises, or practical work as may be prescribed.
 (ii) Each course shall be designated as a Junior course, an Intermediate course, a Senior course or an Honours course.
 (iii) Junior, Intermediate, Senior or Honours courses are indicated by the Arabic numeral, 1, 2, 3 or 4 respectively placed immediately after the name of a subject.

 (2) To 'complete a course' and derivative expressions mean:
 (i) to attend the lectures and the meetings, if any, for tutorial instructions;
 (ii) to complete satisfactorily the essays, exercises and the practical work, if any; and
 (iii) to pass the examinations of the course.

 (3) A prerequisite course means a course which, except with the permission of the head of the department concerned, must have been completed prior to a candidate taking a course for which the Faculty has declared it to be a prerequisite.

 (4) A corequisite course means a course which unless previously completed must, except with the permission of the Head of Department concerned, be taken concurrently with the course for which the Faculty has declared it to be a corequisite.

Grades of award
2. The degree shall be awarded in two grades, namely the Pass degree and the Honours degree.

Courses for Pass degree
3. Courses for the degree shall—
 (1) be in such subjects,
 (2) have such unit values, and
 (3) have such prerequisite and corequisite courses as are set out in the table associated with this resolution.

Qualification for Pass degree
4. To complete the requirements for the Pass degree a candidate shall gain 146 units by completing the Junior, Intermediate and Senior
core courses, and one of the Senior elective courses set out in the tables in section 3.

Enrolment in courses
5. (1) In the first year of attendance candidates, unless granted credit in accordance with section 8, shall enrol in all the Junior courses listed in the table associated with section 3.
(2) Except with the permission of the Faculty and subject to the exigencies of the timetable, candidates in subsequent years of attendance shall enrol in the maximum number of prescribed courses for which they are qualified, provided that they may not take courses totalling in excess of 52 units.

Restrictions on enrolment
6. (1) Except with the permission of the Faculty, candidates may not take an Intermediate course—
 (i) until they have gained credit for at least 32 units in Junior courses, and
 (ii) until they have completed the Junior courses, if any, prescribed by the Faculty as prerequisites for the Intermediate course, as set out in section 3.
(2) Except with the permission of the Faculty candidates may not take a Senior course—
 (i) until they have gained credit for at least 32 units derived from Intermediate courses, and
 (ii) until they have completed all the Junior and Intermediate courses, if any, prescribed as prerequisites for the Senior course as set out in section 3.
(3) Candidates may not take a higher course in any subject without having previously completed the lower course, if any, in the same subject.
(4) The enrolment by candidates in courses shall be limited by the exigencies of the timetable.

Time limits, Suspension
7. (1) Except with the permission of the Faculty a candidate must complete the requirements for award of the degree within ten calendar years of admission to candidature. This section applies to all candidates first enrolling in the degree after 1995, and applies from 1998 to candidates who first enrolled in the degree before 1996.
(2) A candidate must re-enrol each calendar year unless the Faculty has approved suspension of candidature. Candidature lapses if a candidate has not obtained approval for suspension and does not re-enrol. Candidates whose candidature has lapsed must be selected for admission again before they can re-enrol.
(3) Except with the prior permission of the Faculty a candidate shall not be granted a suspension of candidature in order to enrol in another course of tertiary study. Candidature shall lapse if a candidate enrolls in another course of tertiary study after having been granted a suspension of candidature.

Course assessment
8. (1) Candidates may be tested by written and oral class examinations, exercises, essays or practical work or any combination of these, and the results of such tests may be taken into account by the Faculty Board of Examiners in determining the final results for a course.
(2) In all courses work of a standard higher than that required for an ordinary pass may be recognised by the award of High Distinction, Distinction or Credit.
(3) Candidates who have been prevented by duly certified illness or misadventure from sitting for the whole or part of a course assessment may be tested at such times and in such way as the Faculty Board of Examiners shall determine.
(4) Candidates who do not pass in a course shall, unless exempted by the Dean, again attend lectures and other classes and complete the prescribed written and other work in all such courses in which they are permitted to re-enrol.
(5) Candidates who present themselves for re-examination in any course shall not be eligible for any prize or scholarship awarded in connection with such examination.

Credit for courses
9. (1) Candidates who have previously completed studies which are considered by the Faculty to be equivalent to any course listed in the tables associated with section 3 may be given credit for that course providing that:
 (i) in the case of graduates, the total unit value of the courses so credited may not exceed 52;
 (ii) in the case of students who have completed courses in another tertiary program without graduating and who have abandoned credit in that program for the courses on the basis of which credit is sought,
any number of courses may be credited;
(iii) the courses were completed not more than nine years before admission to candidature in the Faculty.

(2) Candidates who have been given credit for courses listed in the tables, in accordance with section 9(1), shall be regarded as having completed such courses for the purposes of these resolutions.

Admission to Honours courses
10. (1) In order to qualify for admission to an Honours course candidates shall have qualified for the award of a Pass degree and be considered by the Faculty and the Head of the Department concerned to have the requisite knowledge and aptitude for an Honours course.
(2) With the permission of the appropriate Head of Department and provided the requirements in subsection (1) have been satisfied the following may also be admitted to Honours courses:
(i) Pass graduates in Pharmacy of the Faculty of Science.
(ii) Pass graduates holding Bachelor of Pharmacy degrees from such other institutions as the Faculty may from time to time determine.

(3) Candidates may not take more than one Honours course in any one academic year.
(4) Candidates who have qualified for the Honours degree may take, in the next year or at such later times as the Faculty permits, an additional Honours course which they are qualified to enter.

Honours courses
11. (1) Candidates for the Honours degree shall complete an Honours course.
(2) There shall be an Honours course in the following subjects: Pharmacy Practice, Pharmaceutics, Pharmaceutical Chemistry, Pharmacology.

Classes of Honours and Medal
12. (1) There shall be three Classes of Honours, namely Class I, Class II and Class III, and within Class II there shall be two Divisions, namely Division 1 and Division 2.
(2) A candidate with an outstanding performance in the subject of an Honours course shall, if deemed to be of sufficient merit by the Faculty, receive a bronze medal.

There shall be no re-examination for Honours.

Candidates enrolled before 1990
13. (1) A person who has enrolled as a candidate for the degree of Bachelor of Pharmacy before 1 January 1990 may complete the requirements for the degree in accordance with the resolutions in force at the time the candidate commenced that degree provided that the candidate completes the requirements for the degree by 31 December 1994 or such later date as the Faculty may approve in special cases; and that if a course specified in those resolutions is discontinued the Faculty may permit the candidate to substitute a course or courses deemed by the Faculty to be equivalent to the discontinued course.
(2) Where a candidate proceeding pursuant to subsection (1) fails to complete the requirements for the degree before 31 December 1994 the candidate shall complete the requirements for the degree under such conditions as may be determined from time to time by the Dean.
Table of courses for Pharmacy — 1990 resolutions [see section 3]

<table>
<thead>
<tr>
<th>Course</th>
<th>Unit value</th>
<th>Prerequisites (P)</th>
<th>Corequisites (C)</th>
<th>Assumed knowledge (Ak)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Junior courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 for Pharmacy</td>
<td>4</td>
<td></td>
<td></td>
<td>Ak: Mathematics 2 unit course</td>
</tr>
<tr>
<td>Biology 1 for Pharmacy</td>
<td>8</td>
<td></td>
<td></td>
<td>Ak: See footnote</td>
</tr>
<tr>
<td>Physiology 1 for Pharmacy</td>
<td>6</td>
<td></td>
<td></td>
<td>Ak: See footnote</td>
</tr>
<tr>
<td>Chemistry 1 for Pharmacy</td>
<td>16</td>
<td></td>
<td></td>
<td>Ak: See footnote</td>
</tr>
<tr>
<td>Introductory Pharmacy 1</td>
<td>8</td>
<td></td>
<td></td>
<td>Ak: See footnote</td>
</tr>
<tr>
<td>Microbiology 1 for Pharmacy</td>
<td>3</td>
<td></td>
<td></td>
<td>Ak: See footnote</td>
</tr>
<tr>
<td>Biostatistics 1 for Pharmacy</td>
<td>3</td>
<td></td>
<td></td>
<td>Ak: See footnote</td>
</tr>
<tr>
<td>B. Intermediate courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical Pharmacy 2</td>
<td>10</td>
<td>P: Introductory Pharmacy 1</td>
<td>P: Introductory Pharmacy 1</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Analysis 2</td>
<td>8</td>
<td>P: Chemistry 1 for Pharmacy</td>
<td>P: Chemistry 1 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Medicinal Chemistry 2</td>
<td>4</td>
<td>P: Chemistry 1 for Pharmacy</td>
<td>P: Chemistry 1 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Dispensing Practice 2</td>
<td>4</td>
<td>P: Introductory Pharmacy 1</td>
<td>P: Microbiology 1 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Pharmaceutical Microbiology 2</td>
<td>4</td>
<td>P: Introductory Pharmacy 1</td>
<td>P: Physiology 1 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Pharmacy Practice 2</td>
<td>8</td>
<td>P: Introductory Pharmacy 1</td>
<td>P: Microbiology 1 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Biochemistry 2 for Pharmacy</td>
<td>6</td>
<td>P: Chemistry 1 for Pharmacy</td>
<td>P: Physiology 1 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Pharmacology 2 for Pharmacy</td>
<td>4</td>
<td>P: Chemistry 1 for Pharmacy</td>
<td>P: Chemistry 1 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>C. Senior courses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacokinetics 3</td>
<td>4</td>
<td>P: Physical Pharmacy 2</td>
<td>P: Physical Pharmacy 2</td>
<td></td>
</tr>
<tr>
<td>Formulation 3</td>
<td>4</td>
<td>P: Biochemistry 2 for Pharmacy</td>
<td>P: Biochemistry 2 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Medicinal Chemistry 3</td>
<td>4</td>
<td>C: Pharmacology 3 for Pharmacy</td>
<td>C: Pharmacology 3 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Dispensing Practice 3</td>
<td>4</td>
<td>C: Formulation 3</td>
<td>C: Formulation 3</td>
<td></td>
</tr>
<tr>
<td>Pharmacy Practice 3</td>
<td>18</td>
<td>C: Pharmacology 3 for Pharmacy</td>
<td>C: Pharmacology 3 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Pharmacology 3 for Pharmacy</td>
<td>8</td>
<td>C: Biochemistry 2 for Pharmacy</td>
<td>C: Biochemistry 2 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>(ii) Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biopharmaceutics 3</td>
<td>8</td>
<td>C: Pharmacokinetics 3</td>
<td>C: Pharmacokinetics 3</td>
<td></td>
</tr>
<tr>
<td>Toxicology 3</td>
<td>8</td>
<td>C: Formulation 3</td>
<td>C: Formulation 3</td>
<td></td>
</tr>
<tr>
<td>Industrial Pharmacy 3</td>
<td>8</td>
<td>C: Pharmacology 3 for Pharmacy</td>
<td>C: Pharmacology 3 for Pharmacy</td>
<td></td>
</tr>
<tr>
<td>Experimental Pharmacology 3</td>
<td>8</td>
<td>C: Pharmacology 3 for Pharmacy</td>
<td>C: Pharmacology 3 for Pharmacy</td>
<td></td>
</tr>
</tbody>
</table>

Note: HSC Chemistry (2-unit) and Mathematics (2-unit), or their equivalents, are considered essential preparation for Pharmacy. In addition it is highly desirable that students have completed either Biology or Physics as a second 2-unit HSC Science course. The 3- and 4-unit combined Science courses including the Biology component are acceptable alternatives.
Degree of Bachelor of Psychology

Summary of requirements
The courses for the Bachelor of Psychology degree extend over a minimum of four years. All students complete a full-time three year program followed by the Senior Advanced Program consisting of either a fourth year pass or a four year honours course. For the Bachelor of Psychology with Honours students must qualify to enter the honours course (i.e. a minimum of Credit in Psychology 2 and 3), which is also subject to quota restrictions.

Progression towards the degree of Bachelor of Psychology is by the accumulation of unit points. The requirements for the degree are set out in the Senate resolutions, which should be read by all intending candidates (see below).

There are the following constraints on enrolment in courses.

Only those combinations of courses permitted by the timetable can be taken. Students generally shall enrol in four Junior courses in the first year of attendance.

You may not enrol in courses worth more than 52 units total in any one year or the equivalent of 56 units in one semester without special permission of Faculty. You may not enrol in a Junior course unless you are enrolled in a corequisite course. You may not enrol in any Intermediate courses before you have completed three Junior courses.

You may not enrol in a Senior course before you have completed 96 units of Junior and Intermediate courses.

You may not enrol in Intermediate or Senior courses unless you have completed the prerequisite courses and are enrolled in any corequisite courses.

You may not enrol in the Senior Advanced Year until all other requirements for the degree have been completed.

HSC Aggregate
A quota will apply for entry into the BPsych.

Regulations

Resolutions of the Senate
The following resolutions governing candidature for the degree of Bachelor of Psychology have been prescribed by the Senate.

1. For the purpose of the resolutions:
 (i) A course shall consist of lectures together with such tutorial instruction, essays, exercises, or practical work as may be prescribed.
 (ii) Each course shall be designated as a 'Junior' course, a 'Junior Advanced' course, a 'Junior Special Studies Program' course, an 'Intermediate' course, a 'Senior' course, a 'Senior Advanced' course, a 'Senior Additional' course, a 'Senior Additional Advanced' course or an 'Honours' course. Each Intermediate course shall be designated as 'Normal', 'Normal Advanced', 'Auxiliary', 'Auxiliary Advanced', 'Introductory', 'Long', 'Combined' or 'Combined Advanced'.
 (iii) Except as provided in section 8(1) candidates who have completed a course shall have units credited towards the completion of a degree in accordance with the following:
 Junior Course 12 units
 Junior Advanced Course 12 units
 Junior Special Studies Program 12 units
 Intermediate Courses - Normal 16 units
 Intermediate Courses - Normal Advanced 16 units
 Intermediate Courses - Auxiliary 8 units
 Intermediate Courses - Auxiliary Advanced 8 units
 Intermediate Courses - Introductory 8 units
 Intermediate Courses - Long 20 units
 Intermediate Courses - Combined 24 units
 Intermediate Courses - Combined Advanced 24 units
 Senior Course 24 units
 Senior Advanced Course 24 units
 Senior Additional Course 24 units
 Senior Auxiliary Course 12 units
 Senior Additional Advanced Course 24 units
 (iv) Junior, Intermediate, Senior or Senior Advanced courses are indicated by the Arabic numeral 1, 2, 3, or 4 respectively placed immediately after the name of a subject.

2. To 'complete a course' and derivative expressions mean:
 (i) to attend the lectures and the meetings, if any, for tutorial instructions
 (ii) to complete satisfactorily the essays, exercises and the practical work, if any
 (iii) to pass the examinations of the course.

3. Qualifying course means a course which must be completed with a result of Pass or better (not Terminating Pass) before the course for which it qualifies may be taken.

4. Prerequisite course means a course other than a qualifying course in a subject which, except with the permission of the head of the department concerned, must have been completed prior to a candidate taking a
course for which the Faculty has declared it to be a prerequisite.

(5) Corequisite course means a course which unless previously completed must, except with the permission of the Head of Department concerned, be taken concurrently with the course for which the Faculty has declared it to be a corequisite.

Grades of award
2. The degree shall be awarded in two grades, namely the Pass degree and the Honours degree.

Courses for Pass degree
3. Courses for the degree shall except as provided in section 7:
 (1) be in such subjects,
 (2) have such unit values, and
 (3) have such qualifying, prerequisite and corequisite courses as are set out in the tables associated with this section.

Qualification for degree
4. Candidates for the degree shall:
 (1) complete Junior, Intermediate and Senior courses which include:
 (i) Psychology 1, Psychology 2, Psychology 3 and either Psychology 3 Additional or Psychology 3 Auxiliary;
 (ii) either Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences); and
 (iii) one course chosen from Biology 1 or Biology 1 (Advanced), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Computer Science 1 or Computer Science 1 (Advanced), Geography 1, Geology 1, Physics 1 or Physics 1 (Advanced);
 (2) gain credit for Junior, Intermediate and Senior courses totalling at least 140 units of which:
 (i) at least 72 shall be units for Senior and Intermediate courses;
 (ii) at least 36 shall be units for Senior courses in Psychology;
 (iii) at least 32 shall be units for Intermediate (Normal, Normal Advanced, Long, Combined or Combined Advanced) courses, provided that the Faculty may permit —
 (a) a candidate who passes two Senior courses, a prerequisite for one of which is an Intermediate 8-unit course, to count that Intermediate 8-unit course along with another Intermediate 8-unit course as together constituting an equivalent Intermediate Normal course, and
 (b) a candidate to count as equivalent to an Intermediate Normal course a combination of 8 unit courses approved for this purpose and designated accordingly in the table accompanying section 3;
 (iv) not more than 24 units shall be credited towards the degree from courses selected from Group B of section 5 of the BSc regulations and courses other than those specified in the table accompanying section 3 of the BSc regulations;
 (v) not more than 12 units shall be credited towards the degree from courses in Group B of section 5 which are designated B 101 or AB 101;
 (vi) not more than 28 units, obtained from not more than two whole courses, shall be credited from courses in which terminating passes have been awarded;
 (3) complete the Senior Advanced program of study in Psychology;
 (4) not have any course credited more than once for the degree;
 (5) not have credited for the degree units derived from more than one of such courses as the Faculty may deem to be mutually exclusive except as provided in section 8(1);
 (6) when enrolled in a course, a non-option part of which is similar in content to part of (i) a course previously completed or (ii) another course in which the candidate is currently enrolled, complete an equivalent amount of alternative work, as directed by the Head(s) of Department(s) concerned, in order to complete the course;
 (7) not take an option within a course which is similar in content to part of a course concurrently being taken or previously completed.

Enrolment in Junior courses
5. (1) In their first year of attendance, unless granted credit in accordance with section 11, candidates for the degree shall enrol in:

1 See column (d) in the Table following these resolutions for information about courses deemed to be mutually exclusive.
(i) Psychology 1;
(ii) Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences);
(iii) two courses, one of which must be chosen from Group A and the other from Group A or Group B.

Group A
Biology 1 or Biology 1 (Advanced)
Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)
Computer Science 1 or Computer Science 1 (Advanced)
Geography 1
Geology 1
Physics 1 or Physics 1 (Advanced)
Psychology 1

Group B
Comprises all First Year courses offered by the Faculties of Arts and Economics not listed by name in the table of courses associated with Section 3 of these resolutions but excluding those courses which the Faculty has deemed to be mutually exclusive with courses offered for the Bachelor of Science degree.

(2) In selecting a course from Group B candidates shall be required to comply with section 6(6) of these resolutions as well as those of the Faculties of Arts and Economics in respect to the course.

Restrictions on enrolment

6. (1) Except with the permission of the Faculty candidates may not take an Intermediate course:
 (i) until they have completed at least three Junior courses, of which one must be Psychology 1;
 (ii) until they have completed the Junior courses, if any, prescribed by the Faculty as prerequisites for the Intermediate course as set out in section 3.

(2) Except with the permission of the Faculty candidates may not take a Senior course until they have completed 96 units of Junior and Intermediate courses.

(3) Except with the permission of the Faculty candidates may not enrol in the Senior Advanced Program until they have completed the requirements of section 4(1) - (2).

(4) Except with the permission of the Faculty candidates shall enrol as full-time students.

(5) Except with the permission of the Faculty candidates may not take any higher course in any subject without having previously completed the lower course or courses in the same subject or some other course or courses allowed by the Faculty to count as equivalent. For the purposes of this subsection candidates who completed an Intermediate Auxiliary course do not thereby qualify to take the Senior course in that subject; candidates who complete the Intermediate Introductory course in a subject may, subject to the conditions of subsection (2), take the Senior course in that subject.

(6) Except with the permission of the Faculty, candidates may not take in any one academic year more than four courses, or courses with a total number of units in excess of 52 or in excess of the equivalent of 56 in one semester.

(7) The choice of courses made by candidates shall be limited by the exigencies of the timetable provided that candidates who have completed at least three Junior courses and who seek to enrol in two courses which are given wholly or partly at the same hour or hours may be granted, by the Heads of the Departments concerned, permission to attend equivalent courses or parts of courses given at another hour or other hours.

Enrolment in courses not in the table

7. (1) A candidate of merit may, under special circumstances and with the permission of the Faculty, enrol in a course other than those specified in the table accompanying section 3 provided that course is of a standard at least equivalent to an Intermediate Normal course. A student on completion of any such course will only have 12 units counted, as Junior units, towards the 140 units that are required by the Bachelor of Psychology degree, irrespective of the unit value assigned to that course by the Faculty in which it is given.

(2) A candidate of exceptional merit may, under special circumstances and with the permission of the Dean, undertake studies within the Faculty other than those courses specified in the table accompanying section 3, and upon completion of those studies have them counted towards the degree. The candidate may be given credit
for these studies of up to 40 units, which will be designated by the Dean as Junior, Intermediate, Senior or Senior Advanced. Such units shall count towards the number of units required for the degree in accordance with section 4(2).

Upgrade of courses
8. (1) Candidates who have completed the Intermediate Auxiliary, Auxiliary Advanced, Normal or Normal Advanced course in a subject and who subsequently complete the Normal, Normal Advanced, Long, Combined or Combined Advanced course in that subject will be credited with the appropriate additional unit value.
(2) Candidates who have been awarded a Terminating Pass in any course may take that course again. On completion of this course such candidates will not be credited with any further units unless the course is completed at least at Pass level and the units had not previously been credited in accordance with section 4(2)(vi) which limits the number of units which shall be credited from courses in which Terminating Passes have been awarded.

Time limits, Suspension
9. (1) Except with the permission of the Faculty a candidate must complete the requirements for award of the degree within ten calendar years of admission to candidature. This section applies to all candidates first enrolling in the degree after 1995, and applies from 1998 to candidates who first enrolled in the degree before 1996.
(2) A candidate must re-enrol each calendar year unless the Faculty has approved suspension of candidature. Candidature lapses if a candidate has not obtained approval for suspension and does not re-enrol. Candidates whose candidature has lapsed must be selected for admission again before they can re-enrol.
(3) Except with the prior permission of the Faculty a candidate shall not be granted a suspension of candidature in order to enrol in another course of tertiary study. Candidature shall lapse if a candidate enrolls in another course of tertiary study after having been granted a suspension of candidature.

Credit for courses
11. (1) Candidates who have previously completed studies which are considered by the Faculty to be equivalent to any course listed in the tables associated with section 3 may be given credit for that course providing that:
 (i) the total unit-value of the courses so credited from studies which have resulted in the conferring of a degree or degrees may not exceed 52, and
 (ii) in the case of students who have completed courses in another tertiary program...
with-out the degree being conferred and who have abandoned credit in that program for the courses on the basis of which credit is sought, any number of courses may be credited;

(iii) the courses were completed not more than nine years before admission to candidature in the Faculty.

(2) Candidates who have been given credit for courses listed in the tables, in accordance with section 11(1), shall be regarded as having completed such courses for the purposes of these resolutions.

(3) Candidates for the degree who have completed studies at tertiary level which are considered by the Faculty to be appropriate, but for which there is no equivalent course listed in the table associated with section 3, may be given credit for such number of units, to be designated by the Faculty as Junior, Intermediate, Senior or Senior Additional, as the Faculty may determine. Such units shall count towards the number of units required for the degree in accordance with section 4(2).

Admission to Honours courses

12. (1) To qualify for the award of an Honours degree a candidate shall:

(i) complete the requirements of section 4 (1) - (2) at the level of performance required for entry to the Honours course;

(ii) except with the permission of the Faculty complete the requirements of section 4 (1) - (2) in no more than three years;

(iii) complete the Honours course in the Senior Advanced Program.

(2) A candidate who completes the Honours course who has failed to be placed in any Honours classification may be awarded a Pass degree.

(3) A candidate who fails to complete the Honours course in the year of enrolment will not, except with the permission of the Faculty, be permitted to re-enrol in the Honours course but will be required to complete instead the coursework component of the Senior Advanced Program.

Classes of Honours and Medal

13. (1) There shall be three Classes of Honours, namely Class I, Class II and Class III, and within Class II there shall be two Divisions, namely Division 1 and Division 2.

(2) A candidate with an outstanding performance in the Honours course shall, if deemed to be of sufficient merit by the Faculty, receive a bronze medal.

(3) There shall be no re-examination for Honours.

Honours courses

Approval both from Faculty and the Head of the Department concerned is required for entry to honours.

To obtain permission from the Faculty, applicants must (i) have gained a Credit in the Senior course relating to the intended Honours subject or have a WAM of at least 58 (see below); and (ii) be of not more than four years' standing, or in the case of part-time students, of not more than five years' standing as students in the Faculty at the time requirements for the Pass degree are completed. Exceptions are granted only on the grounds of documented illness or misadventure.'

To obtain permission from the Head of the Department of Psychology applicants must have gained at least a Credit in second and third year Psychology. Note that there is a quota on Psychology Honours and admission is on a competitive basis.

Award of Honours and ranking for postgraduate scholarships

The Faculty has adopted a system of Weighted Average Marks (WAM) in relation to the award of Honours and ranking for postgraduate scholarships. The WAM is an integer between 45 and 100 which is an overall measure of performance in the pre-honours years. It is calculated by summing the products of the marks achieved and the weighted unit values of the courses taken in the pre-honours years and then dividing by the sum of the weighted unit values. Note that all attempts at courses are included in the calculation except where courses are discontinued with permission.

The formula used is as follows:

\[
\text{WAM} = \frac{\text{BVxMc} \times \text{Wc}}{\text{IWc}}
\]

where Wc is the weighted unit value—i.e. unit value x year weighting of 1 (Junior), 2 (Intermediate) or 3 (Senior)—and Mc is the greater of 45 or the mark out of 100 for the course.

The Faculty is aware that, because the Honours year in some Departments is wholly or predominantly formal course work and in others a research project, and because some subjects are not taught until well into the undergraduate program, the way in which Departments take cognisance of
performance in the pre-honours years in arriving at a recommendation for a grade of Honours must be left to their discretion. However, the Faculty has established a set of guidelines for Departments to use in determining their recommendations.

The Faculty stipulates that a student with a WAM of less than 80 or an Honours year mark of less than 95 would not normally receive a medal. A student with a WAM of 77 to 79 inclusive may be considered for the award of a medal only if it can be demonstrated that the WAM was affected by sickness, misadventure, unusual workload or choice of courses. The Faculty recognises, however, that the Senate resolutions concerning medals relate the award of a medal to the Honours courses only.

The Faculty also stipulates that a student with a WAM of less than 68 or an Honours year mark of less than 80 would receive first class honours only in exceptional circumstances. Students who have a WAM within the range of 65 to 67 and who obtain a combined mark of 148 or greater (WAM plus fourth year mark) may be considered for the award of first class honours only if it can be demonstrated that their WAM was affected by sickness, misadventure, unusual workload or choice of courses, and/or they can demonstrate exceptional performance in their Honours year.

The award of second and third class Honours is made on the basis of the Honours year mark only. A student who fails the Honours year is recorded 'Fail' in that year and is awarded a pass degree.

Ranking for postgraduate scholarships is determined by the sum of the WAM and the Honours year mark.
Table: [see section 3] [Bachelor of Psychology]

<table>
<thead>
<tr>
<th>(a) Courses</th>
<th>(b) Unit Values</th>
<th>(c) Qualifying Courses (Q)</th>
<th>Prerequisite (P)</th>
<th>Corequisites (C)</th>
<th>(d) Faculty of Science resolutions governing courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Psychology 3</td>
<td>24</td>
<td>Q: Psychology 2</td>
<td></td>
<td></td>
<td>May not be counted with Psychology 3 (Auxiliary)</td>
</tr>
<tr>
<td>(Additional)</td>
<td></td>
<td>C: Psychology 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyschology 3</td>
<td>12</td>
<td>Q: Psychology 2</td>
<td></td>
<td></td>
<td>May not be counted with Psychology 3 (Additional)</td>
</tr>
<tr>
<td>(Auxiliary)</td>
<td></td>
<td>C: Psychology 3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: These courses are available only to students enrolled for the Bachelor of Psychology degree. Bachelor of Psychology students should also refer to the table of courses for the Bachelor of Science and Bachelor of Psychology degrees.
4 Talented Student Program

The Faculty offers a special program of study for exceptionally gifted students in the Talented Student Program (TSP) which operates mainly for those students in the BSc degree. The program is not available for the BMedSc or BPharm degrees, although if permission is granted by other faculties, TSP options may be taken for science courses which are part of other degree programs.

The aim of the program is to offer students of exceptional merit additional challenging material to enable them to maximise their intellectual growth and potential. The following guidelines apply generally, although Departments may have additional (and more stringent) requirements for entry to the courses they offer in the program:

• to be considered for the program in their first year, students should normally have a TER (or equivalent) over 98 with marks of over 90 in relevant subjects areas;
• to be considered for the program in their second and third years, students should normally have SCIWAMs over 80 and a high distinction grade in the relevant subject area.

A major benefit of participation in the Talented Student Program is that students receive special supervision by academic staff and often engage in studies with small numbers of fellow students, all of whom have particular interest in the subject.

Senate Resolution 7(2) for the BSc degree authorises the Dean to give approval for students of exceptional merit to enrol in courses or in combinations of courses not normally available within the degree. For example, a student who takes Psychology 3 and who wishes to take additional options in psychology plus options in subjects related to biochemical aspects of behaviour may, following consultation with the departments concerned (e.g. Departments of Biochemistry and Psychology), take a special 24-unit course consisting of combinations of parts of existing courses.

In very exceptional cases, particularly for students who have excelled in Olympiad Programs, application of Resolution 7(2) may permit accelerated progress toward the completion of the BSc degree.

Studies undertaken in the Talented Student Program are included separately on the student’s academic transcript so that all potential employers are aware that the student has completed challenging courses of study.

All applications for entry to the Talented Student Program must be made on the appropriate form which is available from the Faculty Office or the Departmental Talented Student Program Coordinator. Enrolment in the Program is subject to approval by the Dean.

Further information on the operation of the Talented Student Program may be obtained from the departmental coordinator or from the Undergraduate Clerk, Faculty of Science.

Examples of programs available for 1996

Agricultural Chemistry 3
Coordinator: Associate Professor Les Copeland
Students may undertake, in addition to normal coursework, a special research project directly supervised by a member of the academic staff.

Biochemistry
Coordinator: Dr Anthony Weiss
A special program of study will be developed for individual students enrolled in Biochemistry 2 and 3.

Biology 1
Coordinator: Associate Professor Bill Allaway
Students may undertake additional seminars and/or special project work. Some students meeting the criteria for admission to this program may be offered exemption from Biology 1 and be permitted to enrol in Biology 2 courses.

Biology 2
Coordinator: Associate Professor Bill Allaway
Students may undertake additional seminars and/or special project work.

Chemistry 1
Coordinator: Dr Raymond Pierens
The program comprises part of the Chemistry 1 (Advanced) lecture course supplemented by more advanced lectures and special project-based laboratory exercises.

Chemistry 2
Coordinator: Dr Scott H. Kable
Chemistry 2TSP offers lectures and laboratory material which complement the Chemistry 2 (Normal) course. The course comprises 54 lectures on topics which are complementary to the Chemistry 2 lecture course, plus special project-based exercises. Students in this course will be taught with, and as part of, the Chemistry 2 (Advanced) course.

Chemistry 3
Coordinator: Professor Hans Freeman
Chemistry 3TSP offers four 7-lecture modules (one per half-semester). Each module deals with the solution of a substantial problem in Chemistry. In addition, the normal Chemistry 3 laboratory program is modified to include special TSP experiments. Students in this course will be taught with, and as part of, the Chemistry 3 (Advanced) course.
Computer Science
Coordinator: Dr Alan Fekete

The Department will make special arrangements for individual students throughout their studies. Interested students should contact the TSP coordinator as soon as possible.

Geography 2
Coordinator: Dr David Chapman

In lieu of some of the normal coursework students may undertake special project work on an environmental problem. Particular emphasis will be given to the enhancement of student capabilities in the areas of problem identification, problem formulation, data gathering, and analysis and reporting.

Geology and Geophysics
Coordinator: Professor Peter Davies

Students will be offered extra seminars and/or special project work.

Mathematics and Statistics
Coordinator: Associate Professor T. M. Gagen

Students admitted to the program have the following options available to them:
- additional options from courses in Mathematics and Statistics either in lieu of, or in addition to, other courses of study
- a combination of additional options from courses in Mathematics and Statistics combined with special studies in another discipline
- a special research project in lieu of, or in addition to, normal course components
- various combinations of the above options.

Microbiology
Coordinator: Dr T. Ferenci

A special program of study will be developed for individual students enrolled in Microbiology.

Pharmacology
Coordinator: Dr Ian Spence

The Department will make special arrangements for individual student throughout their studies.

Physics 1
Coordinator: Dr David McKenzie

Students may take extra seminars and special laboratory project work in addition to or in lieu of parts of Physics 1 (Advanced).

Physics 2
Coordinator: Dr David McKenzie

Students may take extra seminars and special laboratory project work in addition to or in lieu of parts of Physics 2.

Physics 3
Coordinator: Dr David McKenzie

Students may take extra seminars and special research project work in addition to or in lieu of parts of Physics 3.

Psychology
Coordinator: Associate Professor Helen Beh

The program is available in Psychology 2 and Psychology 3. Students admitted to the program have the following options available to them:
- additional options in Psychology either in lieu of, or addition to, other courses of study in Science (e.g. students may take an additional 4 options in Psychology and receive 12 units credit in Psychology for these units in lieu of 12 units from another course or in addition to units in another course)
- a combination of additional Psychology options combined with special studies in another science discipline (e.g. Biochemistry, Computer Science, Mathematics and Statistics)
- a special research project in lieu of, or in addition to, normal practical or classwork components
- various combinations of the above options.

Soil Science 3
Coordinator: Associate Professor Alex McBratney

Students may undertake, in addition to normal coursework, a special research project.
5 Courses of study

Note: Courses and arrangements for courses, including staff allocated, as stated in this or any other publication, announcement or advice of the University are an expression of intent only and are not to be taken as a firm offer or undertaking. The University reserves the right to discontinue or vary such courses, arrangements or staff allocations at any time without notice.

Books
In this section of the handbook, books listed under the sub-heading Textbooks are those which students are expected to purchase, while all other books recommended for a course are listed under the sub-heading Reference books.

Changes sometimes occur in the selection of prescribed textbooks or reference books, owing to supply difficulties or the publication of new and more suitable works. Such changes will be announced by lecturers and it is prudent to check with the relevant lecturer before buying the books you expect to need.

Bachelor of Science degree

Department of Agricultural Chemistry and Soil Science

AGRICULTURAL CHEMISTRY
Courses in agricultural chemistry for science students consist of aspects of chemistry and biochemistry which are relevant in studies of basic and applied biological sciences including agriculture and the environment. Emphasis is placed on the chemistry of molecules of biological, agricultural and environmental significance both naturally occurring (e.g. cellular constituents, foods, natural fibres), and chemically synthesised (e.g. insecticides and herbicides). The biochemistry is planned around the relationship between living organisms and their environment and includes sections on the metabolism of inorganic and synthetic materials by animals, plants and micro-organisms.

The courses available are Agricultural Chemistry 2 (16-unit Intermediate), Agricultural Chemistry 3 (24-unit Senior) and Agricultural Chemistry Honours.

Location
The Department is in the Ross St Building.

Noticeboards
Noticeboards are located on the first floor and access is either from Agriculture Lane or Science Road.

Registration
All students should register at the Department’s office before the commencement of lectures.

Advice on courses
The office will direct you to an appropriate member of staff.

Agricultural Chemistry 2
Dr Lees, Dr Caldwell, Assoc. Prof. Copeland
Qualifying course Chemistry 1 or Chemistry 1 (Advanced)
Classes Yr: (3 lec & 5 prac)/wk
Assessment two 3hr exam, prac, assignment

This course aims to introduce students to aspects of chemistry and biochemistry relevant in studies of basic and applied biological sciences, including agriculture and the environment. In first semester, the course provides an introduction to molecular processes in ecosystems, and in second semester lectures and practicals deal with the chemistry and biochemistry of agricultural and food products. Topics covered in lectures and practicals include: energy in the biosphere; the interaction of radiation and matter; solutions of neutral solutes and electrolytes; emulsions, foams and gels; the biological chemistry of carbohydrates, lipids, amino acids and proteins (including enzymes), nucleic acids; the metabolism of simple sugars, fatty acids and amino acids; the mechanism of energy release and transduction, the basic pathway of carbon fixation in photosynthesis; control of metabolism; biosynthetic processes for carbohydrates, amino acids and proteins, fatty acids and lipids; biochemistry of cereal and legume seeds, including storage and mobilisation of reserves, nutritional and anti-nutritional constituents, characteristics of constituents in relation to quality of products; post-harvest biochemistry of animal and plant products; properties and methods of study of natural fibrous and gel-forming macromolecules and their uses in foods and other commercial products.

Laboratory classes include instruction in the safe handling of chemicals and safe practices in chemical laboratories.

Text/reference books
To be advised at the commencement of the course.

Agricultural Chemistry 3
Dr Kennedy, Dr Lees, Assoc. Prof. Copeland, Dr Caldwell
Qualifying course Agricultural Chemistry 2
Classes Sem 1: (4 lec & 8 prac)/wk; Sem 2: (3 lec & 9 prac)/wk
Assessment two 3hr exam, assignment, prac

The course aims to provide students with an understanding of chemical and biochemical processes in ecosystems, in particular the various elemental
cycles, inclusive of environmental impacts arising from disturbances in natural processes and contamination from human activity. The course includes sections on the chemistry and biochemistry of cellular constituents (particularly in plants), metabolism of plant and soil nutrients, enzymology, energy metabolism and the control of metabolic processes, and herbicides and pesticides.

Analytical methods used for the quality control of food and agricultural products and in environmental chemistry form an important part of the laboratory classes.

Textbooks and reference books
To be advised

Agricultural Chemistry Honours
The fourth year course in Agricultural Chemistry aims to: provide students with problem-solving and communication skills required by professional chemists in enterprises concerned with agricultural production and processing, foods and beverages and environmental science; enable students to learn to work independently in a laboratory environment; familiarise students with the research literature and methodology of biological chemistry; and provide a basis for students who wish to proceed to postgraduate research.

Candidates should consult the Department as soon as possible after Third Year results are obtained. The course consists of a research project (with submission of a report in the form of a thesis), the preparation of two essays and an oral presentation, and attendance at specialist lectures and seminars in agricultural, biological and environmental chemistry. Research interests in the Department include carbohydrate and nitrogen metabolism in plants, biological nitrogen fixation in legumes and associated with wheat, insect metabolism, the biochemistry and environmental chemistry of pesticides and herbicides, acidification of ecosystems including the mechanism of aluminium toxicity, residue analysis in foods and other aspects of food science.

ENVIRONMENTAL
The Department of Agricultural Chemistry and Soil Science has much expertise in environmental science. The following Senior course aims to allow interested students to develop their professional skills in this area related to the chemistry of plants, soils and ecosystems.

Environmental Plant and Soil Chemistry 3
24 units
Dr Kennedy (coordinator), Prof. McBratney, Assoc. Prof. Beattie (School of Chemistry), Dr Caldwell, Assoc. Prof. Copeland, Mr. Geering, Assoc. Prof. Koppi, Dr Lees
Prereq Agricultural Chemistry 2 or Chemistry 2 with Biochemistry 2 Auxiliary or Biology 2 (Plant Anatomy and Physiology) Auxiliary
Classes Yr (4 lec & 1 tut & 5 hr prac)/week; Field trips (56 hr)
Assessment two 3 hr exams, prac, assignments, reports

The lecture course will include material on environmental aspects of the chemistry and biochemistry of ecosystems, analytical chemistry, soil and water chemistry and land degradation. It will analyse the impact of human activities on natural resources (e.g. acidification, the effect of climate change, soil and water contamination) and indicate means of achieving sustainable plant-soil ecosystems.

Laboratory classes will illustrate the lecture topics and provide skills in analytical chemistry relevant to environmental science. The assignments, to be organised within the tutorial series, will include case studies of environmental impacts. Field work will include supervised studies of natural resources, monitoring procedures and measures designed to protect and sustain plant-soil resources.

Reference books
S.E. Manahan Environmental Chemistry 5th edn (Lewis Publisher, 1991)
G. Sposito The Chemistry of Soils (Oxford, 1989)
K.H. Tan Environmental Soil Science (Marcel Dekker, 1994)
R.E. White Introduction to the Principles and Practice of Soil Science (Blackwell Scientific, 1987)

SOIL SCIENCE
The Soil Science courses offered by the Department of Agricultural Chemistry and Soil Science aim primarily at giving students an introduction to the three major branches of soil science, namely soil physics, soil chemistry, and pedology, and at providing the basis for a professional career in each of these divisions for students wishing to specialise.

The introductory course is particularly relevant for students interested in the environmental and geological sciences and in land-use management.

Location
The Departmental office is on the ground floor of the Ross St Building (A03). The Soil Science teaching laboratories are on the ground floor of the eastern wing of the Ross St Building, and are approached by a ramp and footbridge lying between the Watt and Ross St Buildings.

Noticeboards
Noticeboards are at the foot of the stairs at the entrance to the teaching laboratories in the Ross St Building.

Registration
All students are required to register with the Department before the first day of Semester 1 to discuss their programs and timetables with the Soil Science staff.

Advice on courses
Enquiries should initially be addressed to the Departmental office.

Tutorials
All students will be allocated to tutorial groups, which will normally be held during times allocated to practical classes.
Structure of courses

Soil Science 2 Auxiliary provides basic information and training in soil science topics. Soil Science 2 includes the Auxiliary Soil Science course and also provides expertise in laboratory methods, field survey methods, land evaluation and classification. This course is the qualifying course for entry into the Senior course Soil Science 3.

Soil Science 3 consists of four major components:
- Advanced Soil Physics
- Advanced Soil Chemistry
- Advanced Methodology
- Advanced Pedology

Soil Science 2 Auxiliary 8 units
Assoc. Prof. Koppi, Prof. McBratney, Mr Geering

Prereq Chemistry 1 or Chemistry 1 (Advanced) and Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences) or Computer Science 1 or Computer Science 1 (Advanced)

Classes
Sem 1: (3 lec, 4hr of prac & 1 tut)/wk & 1 excursion Thursday pm of wk 3 or 4
Assessment one 3hr exam, coursework, prac, prac report

This class is identical with Soil Science 2 (Second Year) in the Faculty of Agriculture.

Pedological, physical, chemical and biological aspects of the soil environment and their relationship to plant growth. The methodology of the determination of commonly measured morpho-logical, physical, chemical and mineralogical soil properties and biological techniques. The commoner methods of classification of soil and its usefulness for land evaluation. Experience in the determination and interpretation of soil properties in the field and the use of maps.

Reference books

Soil Science 2 16 units
Assoc. Prof. Koppi, Prof. McBratney, Mr Geering

Prereq Chemistry 1 or Chemistry 1 (Advanced) and Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences) or Computer Science 1 or Computer Science 1 (Advanced)

Classes
Sem 1: (3 lec, 4hr of prac & 1 tut)/wk; Sem 2: (4 lec & 3hr of prac)/wk, 5 days fieldwork mid-year
Assessment two 3hr exams, lab, fieldwork

The lectures, practicals and field excursions in First Semester run concurrently with Soil Science 2 Auxiliary and with Soil Science 2 in the Faculty of Agriculture.

For details of first semester course see Soil Science 2 Auxiliary above. The second semester course outline is:

Lectures
Land-use requirements, pedological processes, classification of soils, soil survey, soil geomorphology and aerial photography and their application to land evaluation for rural purposes, together with an introduction to geostatistics. Processes affecting the movement of water and heat in soils and the effect of the soil physical environment on biological systems. The chemistry of plant nutrients and their availability and movement towards organisms under biologically induced gradients.

Practicals
The laboratory practical classes will concentrate on soil characterisation for resource assessment and involve the study of physical and chemical processes of soil degradation and amelioration.

Fieldwork
The fieldwork will take place at a country location during the mid-year break and involves the study of soil profiles, profile descriptions, aerial photo interpretation and elementary surveying. Field measurements will involve measurements of hydraulic conductivity and related soil properties.

Aim of the course
The aim of the course is to train students to be professionally competent in making agricultural land use decisions and for assessing soil for growth of crops and pastures.

Reference books
- S.A. Barber *Soil Nutrient Bioavailability: A Mechanistic Approach* (Wiley Inter-Science, 1984)
- E.A. FitzPatrick *Soils* (Longman, 1980)

Soil Science 3 24 units
Prof. McBratney, Assoc. Prof. Koppi, Mr Geering

Qualifying course Soil Science 2

Prereq Chemistry 2 or Agricultural Chemistry 2 or Biochemistry 2

Classes
Yr: (4 lec & 8hr of prac)/wk, 5 days fieldwork prior to Sem 1, 5 days fieldwork in Sem 1 break
Assessment four 2hr exam, coursework, prac

This course follows Soil Science 2. It has four major components that develop the concepts introduced in Soil Science 2: Advanced Soil Physics, Advanced Pedology, Advanced Methodology, Advanced Soil Chemistry. The four parts, which are taught in half-semester modules, include lectures, seminars, problem sets and both laboratory and field programs.

Reference books
- S.A. Barber *Soil Nutrient Bioavailability* (Wiley, 1984)
- E.A. FitzPatrick *Soils* (Longman, 1980)
- E.A. FitzPatrick *Micromorphology of Soils* (Chapman & Hall, 1984)
- D.T. Greenland and M.H.B. Hayes *The Chemistry of Soil Constituents* (Wiley 1978)
- D. Kirkman and W.L. Powers *Advanced Soil Physics* (Wiley 1972)
Soil Science Honours
This course consists of several parts:
(i) Supplementary lectures and seminars.
(ii) Courses selected from Agricultural Chemistry, Biometry, Botany, Geology, Physical Chemistry, Mathematics, Soil Mechanics, Soil Microbiology, etc.
(iii) A small amount of field work performed under direction.
(iv) A project in one branch of soil science.

Department of Anatomy and Histology
The Department teaches anatomy and histology to students in the Faculties of Science, Medicine and Dentistry and human embryology to students of Medicine and Dentistry.

Location
The Department is in the Anderson Stuart Building. The Department Office is on the ground floor, Room 219.

Noticeboards
The noticeboards are situated next to the Department Office, Room 219, and near Rooms 223 and 331. Students are advised to consult the noticeboards regularly. Timetables for lectures and practical classes will be posted, where possible, in the week before the beginning of each Semester.

Advice on courses and enrolment
Students wishing to enrol in courses in Anatomy and Histology must consult the Departmental advisers in the Enrolment Centre during enrolment week prior to enrolling in the courses. Information will be available at this time on the courses offered by the Department and on the advisability of various combinations of subjects.

Registration
All students should register with the Department. Please consult the Departmental noticeboards for details.

Intermediate Course
Anatomy and Histology 2: Comparative 8 units
Dr J. Provis
Prereq Biology 1 or Psychology 1
Classes Yr: 4 hr/wk, usually 2 lec & 2 prac/tut

Assessment one 1hr exam/sem, one 1hr pracexam/sem, one 2000w essay/sem

This new course has been developed in response to student demand. It begins with the cytology of cells and the histology of tissues in human beings and other vertebrates, followed by an introduction to the main events in embryogenesis that establish body form. In Semester 2 the course covers the musculo-skeletal anatomy of the body with particular emphasis on human evolution and comparisons with apes and fossil hominids. Topics covered include the versatility of the hand, bipedalism and the changes in pelvic anatomy associated with it and their obstetric consequences.

Textbooks
Practical book (consult departmental noticeboards)
Both these books are to be purchased before the first practical class.
Other texts and reference books will be advised early in the course.

Senior Courses
In 1997 there will be a number of Anatomy and Histology 3 options offered by the Department of Anatomy and Histology to develop and extend various aspects of Anatomy and Histology 2: Comparative. Some options will be one-semester 12-unit courses; others will be 6-unit courses. Details of these Senior courses will be in the 1997 Science Handbook. It is expected that they will be in the following areas: microscopy and histochemistry, forensic osteology, developmental biology, transmission and scanning electron microscopy.

Anatomy 3 24 units
See 1994 Faculty of Science Handbook, p. 61 or consult Department for details of this course.

Histology 3 24 units
See 1994 Faculty of Science Handbook, p. 61 or consult Department for details of this course.

Anatomy and Histology 3: (Semester 1 - Microscopy and Histochemistry)
A Kn Intermediate Science Qualifying course Anatomy and Histology 2: Comparative Prereq any two of: Chemistry 1, Physics 1, Biology 1, a first year Mathematics course Classes (4hr lec, 8hr lab)/wk Assessment exam, practical reports, essays

The aims of the course are to provide understanding of why biological tissues need to be specially prepared for microscopic examination, how differing processing methods can yield different types of morphological information; to allow students to understand different types and modalities of microscopes, how they function and the differing information they can provide; to develop an understanding of why biological material needs to be stained for microscopic...
examination; to allow students to understand how biological material becomes stained; to develop understanding of the chemical information provided by biological staining methods and allow students to develop skills in diverse histochemical staining procedures—dyes, enzymes and antibodies.

Textbook
J. A. Kiernan Histological and Histochemical Methods 2nd edn (Pergamon, 1990)

Anatomy and Histology 3: (Semester 2 - Cells and Development)

AKn (i) an understanding of the basic structure of the vertebrae;
(ii) an understanding of elementary biochemistry and genetics
Qualifying course Anatomy and Histology 2: Comparative
Prereq two of Chemistry 1, Physics 1, Biology 1, a first year Mathematics course
Classes 12hr/wk
Assessment theory exam and practical assignments

The course deals with mechanisms that control animal development.

Textbook
Scott F. Gilbert Developmental Biology (Sinauer Associates Inc, Sunderland, Mass.)

Anatomy Honours and Graduate Diploma

This course provides the opportunity for the student to do research on a project supervised by a member of staff. Assessment is based on a thesis summarising the results of the year's research. To qualify for this course the student must obtain an appropriate standard in Anatomy 3 or Neuroscience 3.

Histology Honours and Graduate Diploma

Histology Honours may be taken by students who have completed to the required standard at least one of the semester options in Histology offered by the Department of Anatomy and Histology in the Third Year of the BMedSc degree. Students who have taken only one of the semester options may be restricted to particular Honours projects that are related to that option.

Students who have completed Histology 3 in the BSc degree will have completed both semester components of the course and will therefore be eligible to undertake Histology Honours subject to the usual Faculty regulations.

Higher Degrees

The degrees of Master of Science, Master of Medicine and Doctor of Philosophy by research are offered by the Department of Anatomy and Histology. There are no higher degrees by coursework.

Department of Biochemistry

The Department teaches biochemistry to Science students, as well as to students in Medicine, Veterinary Science, Dentistry and Pharmacy and Chemical Engineering.

Biochemistry 2 (16 units) provides a basic course for (a) students who wish to do only one year's study in the subject and (b) for students who wish to continue on to the Senior course, Biochemistry 3 (24 units). An honours course designed for those wishing to enter research or to undertake work leading to a higher degree is conducted in the fourth year.

An alternative Intermediate course in Biochemistry is an 8-unit Auxiliary course.

Location
The Biochemistry Building (G08) is across City Road in the Darlington area behind the Wentworth Building. General enquiries should be directed to the Department Office on level 6 (Room 632).

Noticeboards
Noticeboards are in the foyer, level 3, and the practical laboratories relevant to each year of the course, viz:
- Biochemistry 2 — laboratory 380
- Biochemistry 2 (Advanced) - laboratory 302
- Biochemistry 3 — laboratory 400

Registration
All Third Year students (including those repeating a course, and irregular students) are required to register with the Department, during the orientation period. Students will then be allocated the two days of the week on which to attend practical classes.

Students who attempt to register offer the orientation period may find that they cannot be allocated to a particular practical class.

Advice on courses
Members of staff are normally present among faculty advisers during the enrolment period. Departmental advisers listed in the handbook are available in the Department during the period prior to enrolment and during orientation.

Biochemistry 2 16 units
Dr Denyer, Mrs Loke and Biochemistry staff
Qualifying course Chemistry 1 or Chemistry 1 (Advanced)
Classes Yr: (3 lec & 5 prac)/wk
Assessment one 3hr exam/sem, one 2hr prac exam/sem, practical reports

The lecture course introduces the principles of the structure, metabolic function and replication of living systems. In the beginning the course concentrates on the amino acids, proteins and enzymes. The function and mechanism of action of enzymes is examined in the light of their structures—the chemistry of the amino acids, the peptide bond and peptide analysis, the sequence of amino acids (primary structure), the overall...
three-dimensional (tertiary) structure and the manner that some protein molecules may associate to make large complexes (quaternary structure). The functions of the oxygen-binding proteins myoglobin and haemoglobin, and of the fibrous protein collagen, are examined in detail and their functions related to their structures. The rest of the semester is an introduction to membrane structure and function, the components of membranes, their structures, participation in intermediary metabolism and cellular compartmentation. This leads to ATP as the universal carrier of metabolic energy, NAD+, NADP+ and FAD as the carriers of electrons, mitochondrial structure and its function in electron transport, oxidative phosphorylation and the generation of ATP. Carbohydrate chemistry and structure precedes the metabolism of glucose to pyruvate. The fates of pyruvate are examined as are the synthesis and storage of glucose, the control of glucose metabolism by hormones and the tricarboxylic acid cycle in the oxidation of acetyl CoA.

Also covered is lipid metabolism which involves a description of the classes of lipids, their digestion and synthesis, the production of energy from fatty acids, the structure and function of cholesterol, the bile salts, the sex and other steroid hormones. The metabolism of nitrogen compounds is concerned with the ingestion and digestion of proteins and nucleic acids, the reactions that allow interconversion of some amino acids with the excretion of nitrogen and the recycling of the carbon skeletons. The assimilation and metabolism of ammonia and the synthesis of amino acids. The synthesis and degradation of the components of nucleic acid are detailed and the relevance of these types of reaction is discussed in relation to the control of cancer. The rest of the semester deals with molecular genetics and describes the flow of information from DNA to RNA to protein. The structure and function of DNA, copying of DNA, transcription of DNA to make RNA, the genetic code and polypeptide production by translation are described in detail. The overall process is elegantly controlled and involves control regions and precise effectors and an understanding of these events leads to a description of the key aspects of recombinant DNA technology—restriction enzymes, sequencing of DNA, DNA fingerprinting, plasmid cloning, the construction of recombinant DNA molecules and an overview of methods used in isolating genes and genetic engineering. Throughout the whole course emphasis is placed on the overall integration of carbohydrate, lipid and nitrogen metabolism and the metabolic profiles of muscle, liver, brain, adipose tissue and the red blood cell and metabolic control in the fed state, during starvation, under stress, in exercise, during fright and with diabetes mellitus.

Biochemistry 2 Auxiliary 8 units
Dr Denyer and Biochemistry staff
Qualifying course Chemistry 1 or Chemistry 1 (Advanced)
Classes Yr: 3 lec/wk
Assessment one 3hr exam/sem

This is a terminating course suitable for students who are majoring in other aspects of biology and who wish to acquire a background knowledge of biochemistry. Students attend the same lectures as those enrolled in Biochemistry 2 (16 units). There is no practical work component.

Textbooks
To be advised

Biochemistry 2 (Advanced) 16 units
Assoc. Prof. Jones, Mrs Loke and Biochemistry staff
Qualifying course Chemistry 1 or Chemistry 1 (Advanced)
Classes Yr: (3 lec & 5 prac)/wk
Assessment one 3hr exam/sem, one 2hr prac exam/sem, practical reports

The lecture course is similar to that given in Biochemistry 2 but subject material is dealt with in more depth. The lecture course is supplemented by tutorials, video and tape sessions.

The practical course is similar to that given in Biochemistry 2 with the presentation of additional material.

Textbooks
L. Stryer Biochemistry (Freeman, 1988)
C.K. Mathews and K.E. van Holde Biochemistry (Benjamin/Cummings, 1990) and

Biochemistry 3 24 units
Dr Easterbrook-Smith, Mrs Johnston, Biochemistry staff
Qualifying course Biochemistry 2
Classes Yr: (4 lec & 8 prac)/wk
Assessment one 3hr & one 2hr theory exam/sem, one 1.5hr prac exam/sem, practical work

The lecture course consists of core and option components. The practical course is designed to complement the lecture course and to provide students with experience in a wide range of techniques currently used in biochemical and molecular biology laboratories.

First semester core lectures
The first semester core lectures are in three broad areas: molecular biology, immunology and physical biochemistry. The molecular biology section is the most extensive and covers molecular cloning and analysis of nucleic acids (including DNA structure and sequencing, the enzymes used in molecular cloning and nucleic acid analysis, analysis of RNA and the basis of molecular cloning) and chromosome structure and replication in eukaryotes. The
immunology covers the general nature of the immune system, and the protein chemistry and molecular biology of immunoglobulins. The physical biochemistry component is concerned with the physical nature of macromolecules and methods for studying them.

First semester option lectures
The first semester lecture course contains two 6-lecture option series. The options available in first semester will include some of the topics listed below. Those topics in this list which are not available in the first semester will be offered in the second semester option lecture series.

Second semester core lectures
The second semester core lectures cover three broad areas: enzymology, membranes and membrane-related phenomena and metabolism. The enzymology section includes steady-state enzyme kinetics, allostery, mechanisms of enzyme-catalysed reactions, and examples of the use of modern biophysical and molecular biology techniques in studying enzymes. The lectures on biological membranes include discussions of the biochemical basis of vision, photosynthesis and the role of membranes in energy transduction. The metabolism lectures are concerned with the integration of metabolic pathways.

Second semester option lectures
The second semester lecture course includes four 6-lecture option series. The topics offered will be those listed below which were not available in the first semester option lecture series.

Option lecture topics
The Vitamins
The Macronutrients: Protein, Fats and Carbohydrates
The Biochemistry of Receptors
Implications of Second Messenger Metabolism for Disease
The Biochemistry of Insulin: Insulin Secretion and Type I Diabetes
The Biochemistry of Insulin: Insulin Action, Type II Diabetes and Obesity
The Biochemistry of Exercise
Xenobiotics
The Role of Inorganic Elements in Nutrition
Lipoproteins: Biochemistry and Nutrition
Insect Biochemistry: Metabolic Implications of Insect Specialisation
The Biochemistry of Cancer
Methods in Immunology
Cellular Immunology
Molecular Biology of Development
Molecular Biology of the Bacterial Cell Cycle
Medical Molecular Biology
Applied Medical Molecular Biology
Transcription Factors in Mammalian Development
Enzyme Kinetics
Macromolecular Structures: Application of Diffraction Methods
NMR Spectroscopy: An Insight into Biomolecular Structure and Function

Looking inside Cells with NMR: Basics
Looking inside Cells with NMR: Clinical Aspects
Dynamic Changes in Cell Architecture
The Cytoskeleton: its Role in Disease, Signal Transduction and Metabolism
Macromolecular Interactions: Self-association of Proteins
Macromolecular Interactions: Interactions of Proteins with Other Molecules
The Cytoskeleton: Dynamic Engineering in Eukaryotic Cells
The Extra-Cellular Matrix: the Dynamic Structure of the Vertebrate Body

Textbooks
To be advised

Biochemistry Honours
The course runs from about mid-February until mid-November. It provides the opportunity for research on a project supervised by a particular staff member, as well as the study of advanced and developing aspects of Biochemistry. During the year each student is required to write one essay, for which there is a choice of topics. Assessment of the year’s work is based largely on the student's performance on the research project, and a written report on the project. During the second semester of the Biochemistry 3 course students are invited to apply for permission to enrol in the Honours course and are provided with a list of possible research projects. Potential research topics currently offered to students include:

- Anticancer drugs: synthesis and mechanism of action
- Biochemistry of cellular signal transduction
- Kinetics of enzymic reactions
- The cause of diabetes and/or obesity; fuel metabolism during exercise
- Structure and function of clustatin, a molecule implicated in programmed cell death
- X-ray crystallography of proteins which solve problems in molecular biology or are of potential clinical value
- Metabolic pathways in boar spermatozoa
- NMR studies of the solution structure of vasoactive peptides and DNA binding proteins
- NMR studies of membrane transport and metabolism in cells
- Protein interactions of the red cell cytoskeleton
- Eukaryotic transcription factors
- Thermodynamics of protein association reactions and analytical ultracentrifugation
- Bioavailability of trace elements and biochemical indicators of their nutritional status
- Cellulose digestion and nitrogen metabolism in termites
- Studies on the collagens of marsupials
- The effect of fibre on blood and urinary estrogens
- Chromosome replication and cell division in bacteria
- Molecular biology of humans and yeasts
- Gene expression in transgenic mice
- Nutrition and cardiovascular risk factors
- Effects of dietary fatty acids on platelet function
- Glycaemic index of foods; oligosaccharides in human milk
Students must arrange to speak with potential supervisors. An application form is attached to the list of possible research projects provided to students and they are asked to provide the names of at least four supervisors in order of preference. A decision on the Honours intake is made before Christmas. An attempt is made to assign students to the supervisor of their choice but this will not always be possible. In difficult cases there is further discussion with the student.

The minimum requirement for acceptance into the course is a pass at the Credit level in Biochemistry 3. However, it should be kept in mind that in determining the grade of Honours to be awarded at the end of the Honours year, the level of attainment in the first three years of the undergraduate course is taken into account. The Department is therefore reluctant to accept students into the Honours course where there is little evidence of merit in subjects other than Biochemistry. It should be noted that the number of students accepted into the Honours course may be limited because of resource restrictions (e.g. availability of a supervisor and/or laboratory space) and that, in the event of there being more applicants than resources will allow, offers will be made on the basis of academic merit.

School of Biological Sciences

First Year
Location
Carslaw Building, near the bridge over City Road. The Biology Office is Room 512 on the 5th floor; the laboratories are on the 3rd floor.

Noticeboards
The noticeboards are located outside Laboratory 4 on the 3rd floor.

The noticeboards in the laboratories are in frequent use. Students should make a habit of looking at these each time they enter a laboratory.

Registration
All students are required to register with the Department during the first or second practical class of first semester.

Advice on courses
Members of staff are normally present among Faculty Advisers during enrolment week. Any student needing advice before enrolling should make an appointment to see a Departmental adviser.

Assistance during semester
The offices of the Biology staff are on the 5th floor of Carslaw. Students can make appointments by signing the form on the door of the offices of members of the teaching staff. Students are strongly advised to get acquainted with the teaching staff and to use this service.

Second and Third Years, Honours
Location
Buildings A08 and A12.

Biology 1
12 units
At biology section of the science 3-unit course
Classes Yr: (3 lec & 3 prac)/wk
Assessment one 2hr exam & one prac exam/sem, classwork

The course gives an introduction to six main areas of biological investigation: cell biology, structure and function of organisms, organisms and environment, genetics, developmental biology and evolution.

Textbook

Biology 1 (Advanced)
12 units
Dr R. Overall, Professor I.D. Hume

Selected students may be invited to participate in a more demanding alternative component of the Biology 1 course in second semester. The content and nature of this component will be determined each year. Details and selection criteria are announced in the first semester.

Biology 2
Students who wish to take Biology 2 should obtain Information for Students Considering Biology 2 Courses from Carslaw Lecture Room 3A during the Faculty of Science enrolment period or from the School Office (Room 234, Macleay Building, A12) after the enrolment period. They should discuss their preference of courses, together with the other subjects they propose to study, with a Biology staff member when enrolling.

The following Second Year courses are offered:

Group 1
Biology 2 (Animals)
Biology 2 (Animals) (Advanced)
Biology 2 (Animals — Theory) Auxiliary

Group 2
Biology 2 (Plant Anatomy and Physiology) Auxiliary
Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced)

Group 3
Biology 2 (Plant Ecology and Diversity) Auxiliary
Biology 2 (Plant Ecology and Diversity) Auxiliary (Advanced)

Group 4
Biology 2 (Molecular and General Genetics) Auxiliary
Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)
Biology 2 (Genetics Cellular and Developmental) Auxiliary

Group 5
Biology 2 (Cellular and Developmental) Auxiliary
Biology 2 (Cellular and Developmental) Auxiliary (Advanced)
Biology 2 (Genetics Cellular and Developmental) Auxiliary

Group 6
Entomology 2 Introductory
A maximum of 32 units may be taken in Biology 2, and one course may be taken from each group. In satisfying the Faculty requirement for credit in 32 units of Intermediate Normal or Long courses, a candidate may include combinations of an 8-unit first semester Biology 2 Auxiliary course and an 8-unit second semester Biology 2 Auxiliary course as equivalent to Intermediate Normal (16 unit) courses. Qualifying courses for certain Biology 3 options will be defined as combinations of 8-unit Biology 2 Auxiliary courses (see Information for Students Considering Biology 2 Courses).

Entomology 2 Introductory

This is an 8-unit second year course offered jointly by the School of Biological Sciences and the Faculty of Agriculture. Biology 2 (Animals), Biology 2 (Animals) (Advanced) or Biology 2 (Animals—Theory) Auxiliary is a corequisite of this course.

Biology 2 (Animals) 16 units

<table>
<thead>
<tr>
<th>Qualifying course</th>
<th>Biology 1 or Biology 1 (Advanced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prereq</td>
<td>Chemistry 1 or Chemistry 1 (Advanced)</td>
</tr>
<tr>
<td>Classes Yr:</td>
<td>(3 lec, 1 discussion group & 3 prac)/wk or (4 lec & 3 prac)/wk and one field rip/yr</td>
</tr>
<tr>
<td>Assessment</td>
<td>one 3hr exam and 1 prac exam/sem, field report, 2 essays, quizzes</td>
</tr>
</tbody>
</table>

This course provides a thorough grounding in the diversity of animals by lectures, examining the functional anatomy of animals by dissection and illustration in laboratory classes and in the field with an intensive 3.5 day field trip. Lectures and discussion groups further explore concepts of evolution, phylogeny and animal function. This is a qualifying course for most animal modules in Biology 3.

Biology 2 (Animals) (Advanced) 16 units

<table>
<thead>
<tr>
<th>Qualifying course</th>
<th>Biology 1 or Biology 1 (Advanced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes Yr:</td>
<td>(3 lec & 1 prac/audiovisual & 1 tut)/wk</td>
</tr>
<tr>
<td>Assessment</td>
<td>one 2.5hr exam, one prac exam, project, classwork</td>
</tr>
</tbody>
</table>

Selected students may be invited to participate in alternative components of the Biology 2 (Animals) course. The content and nature of these components may vary from year to year. Selection criteria and details are announced at or prior to enrolment by the Course Executive Officer.

Biology 2 (Animals — Theory) Auxiliary 8 units

<table>
<thead>
<tr>
<th>Qualifying course</th>
<th>Biology 1 or Biology 1 (Advanced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes Yr:</td>
<td>(3 lec & 1 prac)/wk</td>
</tr>
<tr>
<td>Assessment</td>
<td>one 3hr exam/sem, quizzes</td>
</tr>
</tbody>
</table>

This is a terminating course that offers students exposure to the diversity of animals, but is suitable for students who are majoring in other areas of biology or other subjects but who wish to acquire a broad background in animal biology. The diversity, morphology and evolution of invertebrate and vertebrate animals are presented over two semesters. The course provides a broad background in the diversity of animals and an introduction to phylogeny through lectures and demonstration material in laboratory classes.

Biology 2 (Plant Anatomy and Physiology) Auxiliary (S1) 8 units

Assoc. Prof. Alia way, Dr Overall and others

<table>
<thead>
<tr>
<th>Qualifying course</th>
<th>Biology 1 or Biology 1 (Advanced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes Sem 1:</td>
<td>(2 lec, 1 prac/audiovisual & 1 tut)/wk</td>
</tr>
<tr>
<td>Assessment</td>
<td>one 2.5hr exam, one prac exam, project, classwork</td>
</tr>
</tbody>
</table>

The course explores basic concepts in structure-function relationships in plants and their component organs, tissues and cells. It covers fundamental processes in plant growth and development including photosynthesis, translocation, water transport, nutrition, responses to light and gravity, and the role of plant hormones. Special attention is given to the anatomy and physiology of the Australian flora. Lectures and self-instructional audiovisual study are augmented by group discussions and laboratory experiments. This course complements Biology 2 (Plant Ecology and Diversity) and leads up to advanced Plant options in Biology 3.

Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced) 8 units

<table>
<thead>
<tr>
<th>Qualifying course</th>
<th>Biology 1 or Biology 1 (Advanced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes Yr:</td>
<td>(2 lec, 1 prac/audiovisual & 1 tut)/wk</td>
</tr>
<tr>
<td>Assessment</td>
<td>one 3hr exam, one prac exam, one 1000w essay, classwork</td>
</tr>
</tbody>
</table>

Selected students may be invited to participate in alternative components of the Biology 2 (Plant Anatomy and Physiology) course. The content and nature of these components may vary from year to year. Selection criteria and details are announced at or prior to enrolment by the Course Executive Officer.

Biology 2 (Plant Ecology and Diversity) Auxiliary (S2) 8 units

Dr Henwood, Prof. Larkum, Dr McGee, Dr Marc

<table>
<thead>
<tr>
<th>Qualifying course</th>
<th>Biology 1 or Biology 1 (Advanced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes Sem 2:</td>
<td>(2 lec, 1 prac/audiovisual & 1 tut)/wk</td>
</tr>
<tr>
<td>Assessment</td>
<td>one 3hr exam, one prac exam, one 1000w essay, classwork</td>
</tr>
</tbody>
</table>

The course provides an integrated overview of plant ecology and plant diversity. It examines how plants live in their natural environment, how their functions are affected by environmental changes and by other plants, and how the environment affects plant distribution. The rich diversity of plants living in the sea, freshwater, and on the land is explored in relation to major evolutionary advances in their form and function. Practical aspects are covered in laboratory classes, audiovisual sessions, and a field trip. Each student is required to make a plant collection. This course complements Biology 2 (Plant Anatomy and Physiology) and leads up to advanced Plant options in Biology 3.

Biology 2 (Plant Ecology and Diversity) Auxiliary (Advanced) 8 units

<table>
<thead>
<tr>
<th>Qualifying course</th>
<th>Plant Ecology and Diversity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classes</td>
<td>(2 lec, 1 prac/audiovisual & 1 tut)/wk</td>
</tr>
<tr>
<td>Assessment</td>
<td>one 3hr exam, one prac exam, one 1000w essay, classwork</td>
</tr>
</tbody>
</table>

This course complements Biology 2 (Plant Anatomy and Physiology) and leads up to advanced Plant options in Biology 3.
Selected students may be invited to participate in alternative components of the Biology 2 (Plant Ecology and Diversity) course. The content and nature of these components may vary from year to year. Selection criteria and details are announced at or prior to enrolment by the Course Executive Officer.

Biology 2 (Molecular and General Genetics) Auxiliary (S1) 8 units
Course coordinator: Biological Sciences staff
Qualifying course: Biology 1 or Biology 1 (Advanced)
Prereq: Chemistry 1 or Chemistry 1 (Advanced)
Classes: 1 sem: 3 lec, 1 tut & 3 prac hrs/wk
Assessment: one 3hr exam, one 2hr theory of practical exam, assignments, prac

An introduction to genetics in lower and higher organisms and to recombinant DNA analysis. Topics including DNA and RNA, chromosome structure and function, gene transmission and regulation, genetic engineering, and population and evolutionary genetics are covered in lectures, tutorial and laboratory classes. The combination of this course with the 8-unit auxiliary S2 course Biology 2 (Cellular and Developmental) is recommended. This course is the qualifying course for Genetics options in Biology 3. It may not be counted with Biology 2 (Genetics, Cellular and Developmental) Auxiliary. The lecture and tutorial component of this course forms the first semester of Biology 2 (Genetics, Cellular and Developmental) Auxiliary.

Biology 2 (Molecular and General Genetics) Auxiliary (Advanced) 8 units
Course coordinator: Biological Sciences staff
Qualifying course: Biology 1 or Biology 1 (Advanced)
Prereq: Chemistry 1 or Chemistry 1 (Advanced)
Classes: Yr: 3 lec & 1 tut/wk
Assessment: two 3hr theory exams, assignments

This course provides a solid theoretical foundation in genetics, cellular and developmental biology. Topics include DNA, RNA, chromosome structure and function, the nature of genetic change, gene transmission and regulation, recombinant DNA technology, cell and organelle structure and function, cellular development and differentiation, and embryonic development. The course is presented in the form of lectures and tutorials only; there are no practical classes. The course is not suitable for students continuing with genetics, cell biology or development options in third year, for which Biology 2 (Molecular and General Genetics) Auxiliary, Biology 2 (Molecular and General Genetics) Auxiliary (Advanced), Biology 2 (Cellular and Developmental) Auxiliary or Biology 2 (Cellular and Developmental) Auxiliary (Advanced) are appropriate. The course may not be counted with Biology 2 (Molecular and General Genetics) Auxiliary, Biology 2 (Molecular and General Genetics) Auxiliary (Advanced) or with Biology 2 (Cellular and Developmental) Auxiliary or Biology 2 (Cellular and Developmental) Auxiliary (Advanced).

Biology 2 (Cellular and Developmental) Auxiliary (Advanced) 8 units
Course coordinator: Biological Sciences staff
Qualifying course: Biology 1 or Biology 1 (Advanced)
Prereq: Chemistry 1 or Chemistry 1 (Advanced)
Classes: 3 lec, 1 tut & 3-4 prac hrs/wk
Assessment: one 3hr exam, one 2hr theory of prac exam, prac & assignments

A course on cell biology and development in plants and animals, emphasizing the functioning of the cell and favouring the molecular perspective. Topics include cell and organelle structure and function, cellular development and differentiation, and embryonic development. The course is given by means of lectures, tutorials, discussion groups and laboratory classes. The course leads into Cell Biology options in Biology 3. The course is designed to complement Biology 2 (Molecular and General Genetics) (Auxiliary). Students intending to major in areas of Genetics Cell Biology or Development are advised to take this combination. It may not be counted with Biology 2 (Genetics, Cellular and Developmental) Auxiliary, which is a two-semester 8-unit theoretical version of this course and Biology 2 (Molecular & General Genetics) Auxiliary (for students not intending to major in these areas).

Entomology 2 Introductory 8 units
Assoc. Prof. McDonald, Dr Rose, Dr Meats
Qualifying course: Biology 1 or Biology 1 (Advanced)
Prereq: Chemistry 1 or Chemistry 1 (Advanced)
Coreq: Biology 2 (Animals), Biology 2 (Animals) (Advanced) or Biology 2 (Animals — Theory) Auxiliary
Classes: 2 sem: 3 lec & 1 prac/hr/wk
Assessment: one 3hr exam, one 2000w essay, one insect collection

Morphology and classification, physiology, ecology, principles of control, toxicology of insecticides and
biology of the major economic pests in New South Wales. The practical classes supplement the lectures and give students a working knowledge of the major orders of insects and economic species in New South Wales. Students will be required to make a small collection of insects to complement the practical work in this course.

Biology 3

Students who intend to proceed from Biology 2 to Biology 3 must:

(a) obtain *Information for Students Biology 3* from the School Office (Room 234, Macleay Building, A12). This booklet gives detailed synopses of all options in the course.

(b) discuss their choice of subjects with a Biology staff member when enrolling.

(c) register in Room 227 (Building A08) during the first week of first semester.

Four courses are available:

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 3</td>
<td>24</td>
</tr>
<tr>
<td>Biology 3 Additional</td>
<td>24</td>
</tr>
<tr>
<td>Biology 3 (Advanced)</td>
<td>24</td>
</tr>
<tr>
<td>Biology 3 Additional (Advanced)</td>
<td>24</td>
</tr>
</tbody>
</table>

Qualifying courses A minimum 16 units of non-terminating Biology 2 courses. Individual third year Biology modules may have specific qualifying courses (check under each module description below).

Classes Yr: (4 lec/tut and 8 prac)/wk; for Advanced, (4 lec/tut, 6 prac, 2 project)/wk

Assessment exam, assignments, for Advanced, project paper and seminar, prac/sem

Options — general rules

Biology 3 or Biology 3 (Advanced) and Biology 3 Additional, or Biology 3 Additional (Advanced) may each be made up by combinations of options, depending upon the qualifications and interests of the student. A single 24-unit course shall be called Biology 3 or Biology 3 (Advanced). A second 24-unit course shall be called Biology 3 Additional or Biology 3 Additional (Advanced). The courses offered in third year Biology are arranged as a series of seven options, four of which consist of an obligatory core and a number of elective modules.

The options are:

Semester 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 Ecophysiology</td>
<td>1</td>
</tr>
<tr>
<td>120 Evolution and Diversity of the Australian Biota</td>
<td>2</td>
</tr>
<tr>
<td>125 Entomology</td>
<td>2</td>
</tr>
<tr>
<td>130 Molecular Genetics and Recombinant DNA Technology</td>
<td>3</td>
</tr>
</tbody>
</table>

Semester 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>210 Cellular and Molecular Physiology</td>
<td>1</td>
</tr>
<tr>
<td>220 Ecology</td>
<td>2</td>
</tr>
<tr>
<td>230 Eukaryotic Genetics and Development</td>
<td>3</td>
</tr>
</tbody>
</table>

Students doing Biology 3 or Biology 3 (Advanced) must select one option per semester. Students doing Biology 3 Additional or Biology 3 Additional (Advanced) must select a second option per semester. An option may involve an obligatory core and one associated module. Any combination of options may be chosen subject to timetable and qualifying course constraints. Modules in any option are only available if the core part of the course has been taken first. Cores cannot be taken without being followed by an associated module. An exception to this rule applies to Marine Science students who have chosen to do only six units of third year Biology in first semester. In this case, students may take either the Evolution and Diversity of the Australian Biota core or the Marine Biology option (first semester) in isolation from the other.

When part-time students take 48 units over two years, the first set of 24 units taken shall be called Biology 3 or Biology 3 (Advanced) and the second set shall be called Biology 3 Additional or Biology 3 Additional (Advanced). The unit values of each option = 12 (core = 6, module = 6).

Options and places in options are offered subject to availability of staff, student numbers and resources. Quotas may therefore be imposed on any third year Biology option (core or module) from time to time and, in that event, entry would normally be based on academic performance.

Marine Science students must do 24 units of Marine Science but are allowed to take from 6 to 18 units of Biology options (marked MS below) as part of the Marine Science course. If these options are taken as part of Marine Science they may not be counted towards Biology 3 or Biology 3 (Advanced) or Biology 3 Additional, or Biology 3 Additional (Advanced).

Timetable 1

<table>
<thead>
<tr>
<th>Course</th>
<th>Timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>110 Ecophysiology</td>
<td>1</td>
</tr>
<tr>
<td>111 Animal Ecophysiology module</td>
<td>1</td>
</tr>
<tr>
<td>112 Plant and Fungal Ecophysiology module</td>
<td>1</td>
</tr>
<tr>
<td>210 Cellular and Molecular Physiology</td>
<td>2</td>
</tr>
<tr>
<td>211 Animal Physiology module</td>
<td>2</td>
</tr>
<tr>
<td>212 Plant Cells and Molecules module</td>
<td>2</td>
</tr>
</tbody>
</table>

Timetable 2

<table>
<thead>
<tr>
<th>Course</th>
<th>Timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>120 Evolution and Diversity of the Australian Biota</td>
<td>2</td>
</tr>
<tr>
<td>121 Plant Diversity and Biogeography module</td>
<td>2</td>
</tr>
<tr>
<td>122 Protistology module</td>
<td>2</td>
</tr>
<tr>
<td>123 Biology of Terrestrial Vertebrates module</td>
<td>2</td>
</tr>
<tr>
<td>124 Marine Biology module</td>
<td>2</td>
</tr>
<tr>
<td>125 Entomology</td>
<td>2</td>
</tr>
<tr>
<td>220 Ecology</td>
<td>2</td>
</tr>
<tr>
<td>221 Marine Ecology module</td>
<td>2</td>
</tr>
<tr>
<td>222 Terrestrial Ecology module</td>
<td>2</td>
</tr>
<tr>
<td>223 Plant Ecology module</td>
<td>2</td>
</tr>
</tbody>
</table>

Timetable 3

<table>
<thead>
<tr>
<th>Course</th>
<th>Timetable</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 Molecular Genetics and Recombinant DNA Technology</td>
<td>3</td>
</tr>
<tr>
<td>230 Eukaryotic Genetics and Development</td>
<td>3</td>
</tr>
</tbody>
</table>

Locations of lectures and practical classes are given in the booklet *Information for Students Biology 3*.
Selecting course options
Select your core and associated modules after (a) checking that you have passed the qualifying courses stated for each of the modules listed below, and (b) checking your timetable. You are strongly advised to check the most up-to-date information on options in the booklet Information for Students Biology 3, available from the School Office in Room 234, Building A12.

Textbooks and reference books
A list of textbooks and reference books is provided in the booklet Information for Students Biology 3 obtainable from the School Office in Building A12.

110 Ecophysiology 12 units
Assoc. Prof. Allaway, Assoc. Prof. Armati, Prof. Hume, Dr McGee, Dr Thompson and others
Qualifying courses apply to modules
Classes Sem 1: (4 lec and 8 prac)/wk, one 3-day field course in Easter break. Timetable 1
Assessment one 1.5hr exam, assignments

Core
The core covers general physiological interactions between organisms and their environments. The range of environments inhabited by organisms is outlined and the influence of important environmental parameters, including temperature, water, salt, pH, and respiratory gases, is investigated. Physiological interactions between animals, plants and fungi are discussed. The six-week core is followed by one of two modules, Animal Ecophysiology or Plant Fungal Ecophysiology.

111 Animal Ecophysiology module
Assoc. Prof. Armati, Prof. Hume, Dr Thompson and others
Qualifying course Biology 2 (Animals) or Biology 2 (Animals) (Advanced)
Classes Sem 1: (4 lec and 8 prac)/wk. Timetable 1
Assessment one 1.5hr exam, field trip exam, lab. assignments

Animal Physiology builds on the core to explore aspects of ecophysiology of animals in detail. Topics covered include endocrinology, reproductive physiology, thermal biology, water and salt balance, scaling, metabolism and energetics of locomotion. The focus is on vertebrates, but invertebrate examples are used also. Laboratory classes form an important part of the course.

112 Plant and Fungal Ecophysiology module
Assoc. Prof. Allaway, Assoc. Prof. Larkum, Dr McGee and others
Qualifying courses either Biology 2 (Plant Anatomy and Physiology) Auxiliary, Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced), Biology 2 (Cellular and Developmental) Auxiliary or Biology 2 (Cellular and Developmental) Auxiliary (Advanced)
Classes Sem 1: (4 lec and 8 prac)/wk. Timetable 1
Assessment one 1.5hr exam, project

Plant and Fungal Ecophysiology is concerned with understanding mechanisms that determine the function of plants and/or fungi in their environment. In this option, we examine plants from different environments and, in particular, their interaction with fungi. We are concerned with the reaction of plants/fungi and plant/fungal associations to environmental stress and how we assess the importance of these factors on plant growth and development.

120 Evolution and Diversity of the Australian Biota 12 units (MS)
Dr Henwood, Dr Hinde, Dr Hoegh-Guldberg, Dr Kingsford, Assoc. Prof. Larkum, Prof. Patterson, Prof. Shine, Dr Taylor and others
Qualifying courses apply to modules
Classes Sem 1: (4 lec and 8 prac)/wk. Timetable 2
Assessment one 1.5hr exam, assignments, projects

Core
The core takes as its theme the 'uniqueness' of the Australian aquatic and terrestrial biota. Students will be exposed to current concepts (and the theories upon which they are based) concerning the origin, evolution and recognition of various components of the Australian biota including protists, plants and animals. Evolution and diversity will be major themes of the course. The lecture series will be complemented by a laboratory component in which students will be given the opportunity to gain experience of Australian organisms and the analytical techniques employed to study them. The core will prepare students for one of a number of modules that will permit the study of various aspects of the Australian biota at a deeper level.

121 Plant Diversity and Biogeography module
Dr Henwood, Dr Taylor and others
Qualifying courses Biology 2 (Plant Ecology and Diversity) Auxiliary or Biology 2 (Plant Ecology and Diversity) Auxiliary (Advanced)
Classes Sem 1: (4 lec and 8 prac)/wk, field courses. Timetable 2
Assessment core assessment plus one 1.5hr exam, assignments, projects

This module will deal with the reproductive biology, biogeography and evolution of flowering plants. Students will be introduced to the latest methodologies and data sources employed in identifying evolutionary units (both past and present) and reconstructing their phylogenetic relationships. The general application of systematics — for example in ecology and conservation — will be considered.

122 Protistology module
Dr Hinde, Assoc. Prof. Larkum, Prof. Patterson and others
Qualifying courses either Biology 2 (Animals), Biology 2 (Animals) (Advanced) or Biology 2 (Plant Anatomy and Physiology) Auxiliary or Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced) with Biology 2 (Plant Ecology and Diversity) Auxiliary or Biology 2 (Plant Ecology and Diversity) Auxiliary (Advanced)
Classes Sem 1: (4 lec and 8 prac)/wk, field courses. Timetable 2
Assessment core assessment plus one 1.5hr exam, assignments, projects

A broad-based coverage of systematic protistology (algae and protozoa) and selected facets of the ecology and general biology of these organisms.
123 Biology of Terrestrial Vertebrates module
Prof. Shine, Dr Dickman
Qualifying course Biology 2 (Animals) or Biology 2 (Animals) (Advanced)
Classes Sem 1: (4 lec and 8 prac)/wk, two 2-day field courses. Timetable 2
Assessment core assessment plus one 1.5hr exam, assignments, projects
An evolutionary perspective on the radiation of terrestrial vertebrates, with special emphasis on the biogeography, phylogeny, morphology and ecology of representative taxa in the Australian fauna. The course will include at least one field trip to familiarise students with vertebrates of the Sydney region, and the techniques used to observe, capture, handle, identify and study them.

124 Marine Biology module 6 units (MS)
Dr Hinde, Dr Hoegh-Guldberg, Dr Kingsford, Assoc. Prof. Larkum
Qualifying courses either Biology 2 (Animals), Biology 2 (Animals) (Advanced) or Biology 2 (Plant Anatomy and Physiology) Auxiliary or Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced) with Biology 2 (Plant Ecology and Diversity) Auxiliary or Biology 2 (Plant Ecology and Diversity) Auxiliary (Advanced)
Classes Sem 1: (4 lec and 8 prac)/wk, field courses. Timetable 2
Assessment core assessment plus one 1.5hr exam, assignments, projects
Marine biological diversity is discussed with particular attention to the major types of marine habitats represented along the Australian coastline. Emphasis will be placed on exposing students to the key ideas, researchers and methodologies within selected fields of marine biology. Students will develop skills in areas such as the identification of marine algae and angiosperms, and the techniques used to study marine animals and plants. Discussion sessions will review major marine biological themes, laboratory sessions will develop hands-on experiences with marine organisms, and several field trips will be made to Jervis Bay and local marine sites.

125 Entomology 12 units
Staffing to be notified
Qualifying course Biology 2 (Animals) or Biology 2 (Animals) (Advanced)
Classes Sem 1: (4 lec & 8 prac)/wk. Timetable 2
Assessment one 3hr theory exam, 2 prac exams
This course will deal with the external and internal morphology of the major orders of insects. Lectures will also cover the basic characteristics of each order of insects, their general life cycle and important pests or beneficial species. The biogeography and evolution of the insects will be considered. Some basic aspects of taxonomic theory will also be dealt with. Practical classes will deal with the classification of the class Insecta and students will be expected to key out insects to family level in the major orders only.

130 Molecular Genetics and Recombinant DNA Technology 12 units
Dr Lyon, Dr Raphael, Prof. Skurray, Prof. Willetts
Qualifying course Biology 2 (Molecular and General Genetics) Auxiliary or Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)
Classes Sem 1: (4 lec & 8 prac)/wk, one 2-day excursion. Timetable 3
Assessment one 3hr exam, one 1.5hr practical exam, practical reports, seminars
A course of lectures, seminars, practicals and tutorials on molecular genetics and its application to the genetic manipulation of both prokaryotic and eukaryotic organisms. Lectures will cover the molecular genetics of bacterial and animal viruses including HIV, prokaryotic and eukaryotic gene regulation and expression, whole genome analysis, plasmids, transposons and mobile DNA, yeast genetics, and the use of molecular techniques in systems and ecology. The application of molecular genetics in biotechnology is covered in lectures on the cloning and expression of foreign genes in bacteria, yeast, animal and plant cells, novel human and animal therapeutics including human gene therapy, new diagnostic techniques for human and veterinary disease, the genetic engineering of animals and plants, and the release of genetically modified organisms into the environment. Practical work includes the use of molecular techniques for DNA isolation, digestion, electrophoresis, cloning and PCR amplification, labelling of DNA probes and DNA hybridisation, DNA sequencing and computer analysis of gene sequences, and immuno-detection of proteins.

210 Cellular, Molecular and Systems Physiology 12 units
Assoc. Prof. Allaway, Assoc. Prof Armati, Dr Hoegh-Guldberg, Assoc. Prof. Larkum, Dr Marc, Dr Meats, Dr Morris, Dr Overall
Qualifying courses apply to modules
Classes Sem 2: (4 lec)/wk, (core 4 prac)/wk. Timetable 1
Core
The core occupies the lectures and laboratories for weeks 1-6 before students may elect one of the modules below. The core covers aspects of physiology at the cellular level common to most organisms. The nature of cell membranes, permeability, active transport and the importance of these processes in producing electrical gradients are discussed and examples provided, relating these to both plant and animal models. The interactions between cells are an important theme in the cell physiology core which provides important background on cell signalling and the concepts of immunity. Recent ideas on the cytoskeleton and the control of the cell cycle will be discussed. The final week of core studies comprises an introduction to molecular techniques as used in contemporary physiology.

211 Animal Physiology module
Dr Hoegh-Guldberg, Dr Meats, Dr Morris
Qualifying course Biology 2 (Animals) or Biology 2 (Animals) (Advanced)
Classes (4 lec & 8 prac)/wk, one 4-day field trip. Timetable 1
Assessment one 3hr exam, assignments, practical, quiz
The course examines the basis of physiological responses by animals. Mechanisms in animal
adaptation are covered at the level of cells, tissues, organs and whole organisms. They are related to the physiological ecology of the species. Both vertebrate and invertebrate examples are used. There is a large emphasis on the practical aspects of physiological experimentation and associated methodologies. The lecture series discusses a variety of homeostatic mechanisms, including maintenance of water and salt balance, acid-base state, regulation of respiration and blood function as well as muscle function and vision systems. Each topic is explored from the aspect of process and mechanism before relating these to the requirements of the animal. In this way the response to environmental changes, and the role of each system in the adaptation of animal to environment, can be outlined. The theory and practical exercises are complemented by a four-day field exercise in environmental physiology, adaptive biology and field monitoring.

212 Plant Cells and Molecules module
Assoc. Prof. Allaway, Dr Marc, Dr Overall

Qualifying course either Biology 2 (Plant Anatomy and Physiology) Auxiliary, or Biology 2 (Plant Anatomy and Physiology) Auxiliary (Advanced) or Biology 2 (Cellular & Developmental) Auxiliary, or Biology 2 (Cellular & Developmental) Auxiliary (Advanced)

Classes (4 lec & 8 prac)/wk, 1 workshop. Timetable 1
Assessment one 3hr exam, assignments, practical

Current topics at the interface of plant molecular biology, plant cell biology and developmental physiology are explored. Subjects covered include the cytoskeleton, cell cycle control, recent ideas on gravitropism and phytochrome, hormones, signal transduction apical meristems and flowering. Advances in the molecular understanding of plant physiology and development are discussed. Practical work which uses a variety of plant material including protoplasts, suspension cultures and Arabidopsis seedlings includes a range of molecular techniques, immunocytochemistry, protein purification and characterisation. The workshop, held at research institutions in Canberra, will involve laboratory work and discussion groups.

220 Ecology 12 units (MS)
Dr Dickman, Dr Meats, Prof. Underwood and others

Qualifying courses apply to modules

Classes Sem 2: (4 lec & 8 prac)/wk, one 8-day field course in vacation before Sem 2. Timetable 2

The core covers topics on theory, quantification and experimentation in ecology and analysis of patterns of distribution, abundance, dynamics, demography and life-histories of natural populations. Multi-species interactions in animal communities are considered. An integrated part of the core module is the application of ecological theory and methods to testing hypotheses and solving practical problems. The core is followed, after the first five weeks, by one of three modules: Marine Ecology, Terrestrial Ecology or Plant Ecology.

221 Marine Ecology module
Prof. Underwood, Dr Kingsford

Qualifying course Biology 2 (Animals) or Biology 2 (Advanced)

Classes (4 lec & 8 prac)/wk. Timetable 2
Assessment one 3hr exam (includes core assessment), 1 project, field course

Marine Ecology provides practical experience with quantitative sampling and experimental analysis of populations. The emphasis is on the logical structure of ecological investigations and on the design and analysis of sampling and experimental studies. The course also explores the relationships between theories, practical evidence and the solution to problems of pollution, environmental disturbance, conservation and management of exploited resources.

222 Terrestrial Ecology module
Dr Dickman and others

Qualifying courses Biology 2 (Animals) or Biology 2 (Plant Ecology and Diversity) Auxiliary with Biology 2 (Animals — Theory) Auxiliary

Classes (4 lec & 8 prac)/wk. Timetable 2
Assessment one 3hr exam (includes core assessment), project, field course

This course considers primary production and mineral nutrition in plants and the analysis of plant population dynamics. Inter- and intra-specific competition herbivory and predation. Behavioural strategies of insect and vertebrate herbivores and their predators. Relationships between ecology and methods for management of populations and communities with emphasis on conservation and managed exploitation of animal and plant resources and the control of pests (including biological control). Practicals will introduce analysis of soils and vegetation, growth and analysis of natural and experimental populations and the behaviour of food chains.

223 Plant Ecology module
Biological Sciences staff

Qualifying course Biology 2 (Plant Ecology and Diversity) Auxiliary or Biology 2 (Plant Ecology and Diversity) Auxiliary (Advanced)

Classes (4 lec & 8 prac)/wk. Timetable 2
Assessment one 3hr exam (includes core assessment), major project, field course report

This course considers processes affecting the distribution and abundance of plants as primary producers. Attention will be paid to experimental analysis of modular ecologies and interactions with the physical environment. A particular focus will be the nature of plants as resources, their conservation and management.

230 Eukaryotic Genetics and Development 12 units
Assoc. Prof. Armati, Dr Donald, Assoc. Prof. Gillies, Dr Raphael and others

Qualifying course Biology 2 (Molecular and General Genetics) Auxiliary or Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)

Classes Sem 2: (4 lec & 8 prac)/wk, one 2-day excursion. Timetable 3
Assessment one 3hr exam, one 1.5hr prac exam, prac reports, seminars
A course of lectures, seminars and practicals on molecular genetics and its application to the understanding of mammalian and human genetics, animal development and differentiation, and evolutionary biology. Lectures will cover molecular and ultrastructural arrangement of DNA sequences and genes in eukaryotic genomes and chromosomes, mammalian gene organisation and expression, biochemical and molecular genetics of human disease, linkage and mapping, genetics of early animal development, nerve cell differentiation and growth, MHC function and recognition of self, sequence evolution, population and evolutionary genetics. Practical work will provide experience with a range of molecular, cytological and genetical skills while illustrating theoretical principles.

Biology Honours

A single honours program in Biology accommodates students who have completed Biology 3 or equivalent. Information about qualifications for entry into honours is available from the School Office (Building A12).

During the honours year the principles established in the first three years of the undergraduate course are further developed, and students are introduced to a wider field of biology and biological techniques. Students may elect to specialise in any of the aspects of biology that are studied in the school.

Students who have signified their intention of entering the honours course will be notified of acceptance shortly after the publication of the Third Year examination results. Honours students are expected to start their academic year at the beginning of February.

With the permission of the Head of School and the Faculty of Science, students who have qualified to take an honours course and passed Biology 1 or Biology 1 (Advanced) may take Biology honours without having taken Biology 2 and 3. The concession is intended for students who have majored in physics, chemistry or biochemistry and wish to study biophysics or plant physiology; they should first discuss their qualifications with Dr R. L. Overall.

The honours course comprises:

(a) a project or two half-year projects in which the student investigates a problem and presents oral and written accounts of his or her research.

(b) coursework units chosen from a program offered by the School.

(c) a course in experimental design, and other technical instruction.

The degree will be awarded on the basis of:

(a) written assignments and essays from coursework units.

(b) marks awarded for a thesis on the subject of the project.

Postgraduate study

MSc and PhD degrees by research are available in the School.

On completion of an honours degree (at first or second class level), MSc Preliminary course or Graduate Diploma in Science (see below), students may pursue candidature for MSc degrees by research. The range of research fields offered and the fields of each member of academic staff are listed in the School's Postgraduate Studies Handbook, which is available from the School Office (Building A12).

Graduate Diploma in Science

The Graduate Diploma program in Biology is available as a one-year full-time or two-year part-time course. Information about qualifications for entry into the Graduate Diploma is available from the School Office (Building A12).

The course is intended for students wishing to progress beyond a pass degree but not via the honours degree, or who are ineligible for admission to honours. Students enrolled in the one-year course will follow the same program as Biology honours students and be assessed using similar criteria. Students may therefore elect to specialise in any area within the research interests of the School. Projects jointly supervised by staff in other schools or departments within the University may also be considered. Students undertaking the two-year course (part-time) will follow the same curriculum but will satisfactorily complete the instructed elements of the course before progressing to the project element at the end of first year.

Students who have signified their intention to enter the Graduate Diploma course will be notified of acceptance shortly after the publication of the Third Year examination results. Graduate Diploma students are expected to start their academic year at the beginning of February.

The composition of the Graduate Diploma course is identical to that for the honours course (see Biology Honours).

Cell Pathology

Cell Pathology 3

Prof. Hunt, Dr Gibbins, Dr Hambly, Dr King

Prereq Biochemistry 2 or Physiology 2 or Biology 2 (Molecular and General Genetics) Auxiliary or Biology 2 (Molecular and General Genetics) Auxiliary (Advanced) and Biology 2 (Genetics, Cellular and Developmental) Auxiliary or Biology 2 (Genetics, Cellular and Developmental) Auxiliary (Advanced)

Classes Yr: (1 tut & 11 prac)/wk

Assessment one 3hr exam, 12 practical reports, 1 project report

This course is particularly suited to those interested in subsequently doing research in a challenging area of biology. It will provide students with insight into alterations in cellular processes in disease and injury and equip them to apply the concepts and methods of cell biology to the study of pathology. Subjects studied include inflammation, immunopathology, cellular immunology, molecular pathophysiology and cancer metastasis. The course would not be useful for those wishing to pursue a career in diagnostic pathology.
Course structure
Tutorials and directed reading will cover the general principles of pathology, emphasising the physiological, biochemical and genetic aspects and correlation of disturbed cell function with structural and ultrastructural changes.

Laboratory work is designed to illustrate particular aspects of pathology. A range of methods that will help in later development of the subject will be used. These include flow cytometry, tissue culture, molecular biology and microscopy.

In second semester each student will undertake a project designed to try to answer a question (preferably of his or her own asking) that has evolved in the earlier study of the subject. Performance in this project will be part of the assessment of the suitability of a student to proceed to Honours.

Enrolment requirements
Prerequisites for the course are set out in Chapter 3. Students interested in the course should discuss it with Professor Hunt or Dr King. The Department can cater only for a small number of students in this course and superior performance in Junior and Intermediate courses will be essential to ensure success in Cell Pathology 3. The Department of Pathology is located on Level 5 of the Blackburn Building (tel. 351 2414).

Civil Engineering Science
The School of Civil and Mining Engineering is part of the Faculty of Engineering. In addition to providing professional training in this branch of engineering, it provides an 8-unit course, Civil Engineering Science 2, in the Faculty of Science.

The course is available as an Intermediate course in a science degree for students majoring in Mathematics, Physics, Chemistry, Geology, Computer Science or Soil Science, and who are thinking of an applied science career in building or civil engineering or in related fields.

The course is intended first to demonstrate the application of scientific principles in an engineering context so that the science student will gain an understanding of the engineering behaviour of materials and engineering structures. The second intention is to introduce the application of this understanding to the analysis and design of engineering structures.

Double degree
Some Science graduates, who have passed the course Civil Engineering Science 2, may obtain a "Bachelor of Engineering degree in Civil Engineering after an additional two years' study, following award of the BSc. Students wishing to undertake this option must apply through UAC and compete on the basis of academic merit.

Further details regarding admission to the BE in Civil Engineering may be obtained from the Engineering Faculty Office in the Engineering Faculty Building.

Location
The School is in the south-east of the Engineering precinct and can be entered from Shepherd Street. However, most classes in this course are normally held in the theatres and tutorial rooms of the Link Building.

Noticeboards
Notices concerning this course and the component courses of which it is comprised will be displayed in the Junior Courses and Intermediate Courses noticeboards of the PNR Building, outside the lecture theatres on level 3, and in the Link Building (next to the Engineering Faculty Office).

Registration
All students are required to register with Mr N. L. Ings in Room 410 in the School of Civil and Mining Engineering on either the last day of Orientation or on the first day of lectures.

Timetable information on alternative lecture/tutorial/laboratory/practical classes is available in the Engineering Student Enquiry Office in the Link Building.

Advice on courses
Members of staff are available during enrolment and orientation periods to give advice about these courses. If you wish to see an adviser please apply to the school office.

Tutorials and laboratories
All students are required to undertake the tutorial and laboratory work associated with these courses, details of which are set out in the timetables. The experimental and tutorial work is designed as an integral part of the course to complement the lecture material. It should be noted that the difficulties of timetabling are such that the majority of classes are in second semester.

Civil Engineering Science 2 16 units
Prereq Mathematics 1 or Mathematics 1 (Advanced), Physics 1 or Physics 1 (Advanced) and Chemistry 1 or Chemistry 1 (Advanced)

Materials
Classes Sem 2:3 lec/wk & four 3hr prac/sem
Assessment one 3hr exam, coursework

Textbooks

Statics
Classes Sem 2: (1 lec & 2 tut)/wk
Assessment one 2hr exam
Basic concepts; scalars and vectors; units; the SI system. Statics of the rigid body: forces and moments; systems isolation; free body diagrams, and equilibrium criteria. Elementary principles of virtual work. Elementary kinematics and dynamics of the rigid body: angular and linear velocity; plane curvilinear motion of a particle; absolute and relative motion. Distributed force systems: beams with distributed loads; statically determinate, pinjioned structures.

Textbook

Structural Mechanics
Classes Sem 1: (3 lec & one 2hr tut)/wk
Assessment one 3hr exam, class

Textbook
Megson Strength of Materials for Civil Engineers (Arnold, 1987)

Design
Classes Sem 2: (two 1hr lec & one 2hr prac)/wk
Assessment one 3hr exam, class

Textbooks
Buckle Elements of Structure 2nd edn (Pitman)
AS4100—SAA Steel Structures
AS600—Concrete Structures Code
AS1770—SAA Loading Code Parts 1 & 11
AS1511—SAA High Strength Structural Bolting Code

Chemical Engineering Science

The Department of Chemical Engineering is part of the Faculty of Engineering. In addition to providing professional training of this branch of engineering, it provides two courses in the Faculty of Science, namely Chemical Engineering Science 2 Auxiliary, a 4-unit course and Chemical Engineering Science 2, an 8-unit course.

These courses are available as Intermediate courses in a science degree for students majoring particularly in chemistry, but also in biochemistry, physics or mathematics, and who are thinking of a career in the chemical and process industries, or in applied industrial research.

The courses are intended to give a science student some insight into the principles which control the design and performance of large scale industrial processing plants.

Conversion course
The Department of Chemical Engineering also offers a two-year course by which the holder of a Bachelor of Science degree may obtain a degree in Chemical Engineering provided that courses equivalent to Chemistry 2, Mathematics 2 and Chemical Engineering Science 2 have been completed. Students wishing to undertake this option must apply through UAC and compete on the basis of academic merit. Further details regarding admission to the BE degree course may be obtained from the Engineering Faculty Office in the Engineering Faculty Building.

Structure of courses
Chemical Engineering Science 2 Auxiliary provides an introduction to the nature and analysis of large-scale chemical operations.

Chemical Engineering Science 2 incorporates the auxiliary course and, in addition, considers the basic principles of heat, momentum and mass transfer in large-scale operations.

Location
The Departments in the Engineering precinct, adjacent to the pedestrian way near the Shepherd Street entrance. Lectures are normally held in the Engineering precinct.

Noticeboards
All noticeboards are located in the foyer areas outside the lecture theatres on Levels 2 and 3. Notices relevant to these subjects will be displayed on the Level 3 noticeboard just inside the front entrance of the Department.

Registration
All students are required to register with the Secretary to the Head of the Department of Chemical Engineering in Room 402 on Level 4 in the Chemical Engineering Building on either the last day of Orientation or on the first day of lectures.

Timetable information on alternative lecture/tutorial/laboratory/practical classes is available in the Engineering Student Enquiry Office in the Link Building.

Advice on courses
Members of staff are available during enrolment periods and Orientation Week to give advice concerning these courses. If you wish to see a Departmental adviser please apply to the Department office.

Tutorials and laboratories
All students are required to undertake the tutorial and laboratory work associated with these courses, details of which are set out in the timetables. The experimental and tutorial work is designed as an integral part of the course to complement the lecture material.

Chemical Engineering Science 2 Auxiliary
8 units
Prereq Chemistry 1 or Chemistry 1 (Advanced) and Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced)
Classes Yr: (2 lec & one 2hr tut)/wk
Assessment Sem 1: one 3hr exam; Sem 2: one 3hr exam, project assessment

Introduction to large-scale chemical processing; discussion of typical flowsheets for the manufacture of basic chemicals. The application of physicochemical principles to material and energy balance calculations.

A major assignment involving the computation of material and energy balances for a complete flowsheet, and a project on some aspect of the chemical industry.

Textbook

Chemical Engineering Science 2 16 units

Prereq Chemistry 1 or Chemistry 1 (Advanced) and Physics 1 or Physics 1 (Advanced) or Mathematics 1 or Mathematics 1 (Advanced)
Coreq Chemistry 2

Classes Sem 1: (4 lec & one 1hr tut & one 2hr tut)/wk; Sem 2: (4 lec & one 1hr tut & one 2hr tut & one 3hr prac)/wk

Assessment Sem 1: one 3hr exam; Sem 2: one 3hr exam; Yr: project and lab assessment

As for Chemical Engineering Science Auxiliary with in addition the following:
An integrated introductory treatment of the transport of momentum, heat and mass.

Textbooks
Others as advised during classes

School of Chemistry

Fully-detailed information about all courses, prescribed textbooks and reference books is available from the School of Chemistry.
Exercises are issued and tutorials are held at regular intervals for all courses.

Chemistry 1 12 units

AKn chemistry component of the Science 4-unit or 3-unit HSC course or 2-unit Chemistry

Classes Yr: (3 lec & 3hr prac)/wk

Chemistry 1 provides a sound foundation for a further study of chemistry, or any chemically-based course in subsequent years of study in the faculty. The course is built on a satisfactory prior knowledge of the chemistry component of the Science 4-unit of 3-unit HSC course or 2-unit Chemistry. Revision of fundamental concepts of the school course is given in the first semester.

Chemistry 1 covers chemical theory, inorganic, physical and organic chemistry. Further details of the course are available from the School of Chemistry and are contained in a booklet *Information for Students* distributed at the time of enrolment. Chemistry 1 is an acceptable prerequisite for entry into Intermediate Chemistry courses.

Lectures
A course of about 84 lectures, three per week throughout the year.

Practical work
A course of 28 three-hour sessions, one per week.

Textbooks
A book list is contained in the booklet *Information for Students* distributed at enrolment. Further information can be obtained from the School.

Examinations
Theory examinations are held at the end of each semester. Students are advised at the beginning of the academic year about other factors contributing to assessment for the course.

Chemistry 1 (Advanced) 12 units

AKn chemistry component of the Science 4-unit or 3-unit HSC course or 2-unit Chemistry

Classes Yr: (3 lec & 3hr prac)/wk

Chemistry 1 (Advanced) is available to students with a very good HSC performance (typically 88+) as well as a very good school record in chemistry or science. Students in these categories are expected to do Chemistry 1 (Advanced) rather than Chemistry 1.
The theory and practical work syllabuses for Chemistry 1 (Advanced) are very similar. The level of treatment in the Chemistry 1 (Advanced) course is more advanced and, hence, presupposes a very good grounding in the subject at secondary level. Chemistry 1 (Advanced) is an acceptable prerequisite for entry into Intermediate Chemistry courses.

Course details
As for Chemistry 1
Chemistry 1 (Special Studies Program)

A kn chemistry component of the Science 4-unit or 3-unit HSC course or 2-unit Chemistry
Classes Yr: (3 lec & 3hr prac)/wk

Entry to Chemistry 1 (Special Studies Program) is restricted to students with a TER of 98+ and an excellent school record in chemistry or science. The program comprises part of the Chemistry 1 (Advanced) lecture course supplemented by more advanced lectures and tutorials. The practical work syllabus for Chemistry 1 (Special Studies Program) is very different from that for Chemistry 1 and Chemistry 1 (Advanced) and consists of special project-based laboratory exercises. All other course details are the same as those for Chemistry 1 (Advanced). Chemistry 1 (Special Studies Program) is an acceptable prerequisite for entry into Intermediate Chemistry courses.

Chemistry Intermediate courses

1. The following courses will be offered:
 Chemistry 2 16 units
 Chemistry 2 (Advanced) 20 units
 Chemistry 2 Long 20 units
 Chemistry Auxiliary 8 units

2. A fully-detailed booklet on the courses and textbooks is available from the Chemistry School. All students who intend to take Intermediate Chemistry must register with the School of Chemistry in addition to completing normal university enrolment procedures. This registration takes place in the first practical session of first semester.

Chemistry 2

Qualifying course Chemistry 1, Chemistry 1 (Advanced), or Chemistry 1 (Special Studies Program)
Prereq Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)

Lectures
A course of 34 lectures in inorganic chemistry, 35 lectures in organic chemistry and 36 lectures in physical/theoretical chemistry given at the rate of three-four lectures per week throughout the year.

Practical work
A course of six hours per week for 26 weeks, consisting of eight weeks in inorganic chemistry and nine weeks in each of the inorganic, organic and physical/theoretical chemistry laboratories. Students must ensure that two afternoons per week, free from other practical work commitments, are available for practical work. Students are automatically assigned to practical groups in their personal timetables issued by Faculty. Practical laboratories commence during the first week of semester.

Chemistry 2 Auxiliary

Qualifying course Chemistry 1, Chemistry 1 (Advanced), or Chemistry 1 (Special Studies Program)
Prereq Mathematics 1, Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)

Lectures and tutorials
A course of 71 lectures (35 lectures in organic chemistry and 36 in physical/theoretical chemistry) given at the rate of two-three contact hours per week in first semester and two contact hours per week in second semester.

Practical work
A course of three hours per week for eleven weeks (five weeks in the Physical Chemistry Laboratory during weeks 1-5 inclusive of first semester, and six weeks in the Organic Chemistry Laboratory during weeks 5-10 inclusive in second semester). Students must ensure that one afternoon a week, free from other practical work commitments, is available for practical work.
automatically assigned to practical groups in their personal timetables issued by Faculty. Practical laboratories commence during the first week of semester.

Textbooks
Inorganic (all courses):

Organic (all courses):

Physical (Long and Normal courses): Either
P.W. Atkins *Physical Chemistry* (Oxford U.P., 1994) (Recommended for students intending to proceed to Senior Chemistry)

Reference books
L.K. Nash *Elements of Statistical Thermodynamics* (Addison-Wesley, 1965)

Chemistry Senior courses

The following courses are offered:
- **Chemistry 3** 24 units
- **Chemistry 3 (Advanced)** 24 units
- **Chemistry 3 Additional** 24 units

Advice on courses

A fully-detailed information booklet on the courses and textbooks is available from the Chemistry School. All students who intend to take a Chemistry Senior course, in addition to consulting one of the Chemistry School advisers on duty in Carslaw Lecture Room 3A during the enrolment period, must register in the Chemistry School during either the Wednesday or Thursday of the orientation period. Registration includes selection of third year modules from the lists below, completion of a registration card and the taking of an ID photograph.

Chemistry 3 24 units

Qualifying course Chemistry 2, Chemistry 2 Long or Chemistry 2 (Advanced)

Classes Yr: (4 lec & 8 prac)/wk
Assessment: 45 min exam per module and lab assessment

A course of four lectures per week throughout the year. The lectures will be presented in modules (each module runs for a half-semester and comprises seven lectures). A full listing of the module titles is given below. Each student must take seventeen modules, of which one must be in each of the inorganic, organic and physical/theoretical chemistry areas. Five modules (the first five listed under the Common heading in the list below) are compulsory for all Chemistry 3 students. The remaining twelve modules are to be chosen from the list below, except that students may not take more than nine modules from the same subject area.

Common Modules
- Spectrometric Identification of Organic Compounds
- Symmetry
- Kinetics
- Chemical Bonding
- Chemistry Laboratory Practices

Inorganic Chemistry Modules
- Vibrational Spectroscopy of Inorganic Compounds
- Diffraction Methods in Inorganic Chemistry
- Instrumental Methods in Analytical Chemistry
- Structural Methods in Inorganic Chemistry
- Electrochemical Methods in Inorganic Chemistry
- Electronic Spectroscopy
- Surface Analysis
- Main Group Chemistry and Materials
- Transition Metal Chemistry
- Inorganic Reaction Mechanisms
- Organometallic Chemistry
- Catalysis
- Biological and Medical Inorganic Chemistry 1: Metals in Biomolecules
- Biological and Medical Inorganic Chemistry 2: Chemotherapy and Toxicology
- Mineral Chemistry
- Aquatic Chemistry
- Marine Chemistry

Organic Chemistry Modules
- Stereochemistry in Organic Chemistry
- Natural Products
- Aromaticity
- Organic Reaction Mechanisms
- Free Radical Chemistry
- Bioorganic Chemistry 1: Amino Acids and Polypeptides
- Heterocyclic Chemistry 1
- NMR Spectroscopy in Organic Chemistry
- Radicals and Photochemistry in Organic Synthesis
- Pericyclic Reactions
- Modern Methods of Organic Synthesis
- Heterocyclic Chemistry 2
- Advanced NMR Spectroscopy
- Organometallic Reagents in Organic Synthesis
- Bioorganic Chemistry 2: The Chemistry of DNA and Carbohydrates
- Supramolecular Chemistry

Physical/Theoretical Chemistry
- Quantum Chemistry — Fundamentals
- Material Properties and Processes
- Molecular Visualisation & Simulation
- Surface Chemistry
- Applications of Symmetry
- Molecular Electronic Structure Theory
- Intermolecular Forces
- Colloid Chemistry
Physical/Theoretical Chemistry: Advanced Inorganic Chemistry

Organic Chemistry:
J. McMurry Organic Chemistry (Brooks/Cole, 1992)

Reference books
Inorganic Chemistry:
N. N. Greenwood and A. Earnshaw Chemistry of the Elements (Pergamon, 1984)
A. Vincent Molecular Symmetry and Group Theory (Wiley 1977)
Organic Chemistry:
I.A. Joule and G.F. Smith Heterocyclic Chemistry (Van Nostrand, 1972)

Chemistry Honours
Students of sufficient merit may be admitted to honours courses and may then graduate with honours in one of the following subject areas:
- Inorganic Chemistry
- Organic Chemistry
- Physical Chemistry
- Theoretical Chemistry

They are required to:
(a) carry out research work under the direction of a supervisor;
(b) submit a report in the form of a thesis on this work;
(c) attend such lectures, colloquia, etc., as directed; and
(d) answer, satisfactorily, written examinations.

Further details are available from the Head of the School of Chemistry who will direct enquiries to the Professors and other senior members of staff (in the above subject areas) from whom information about higher degree requirements (see below) can also be obtained.

Postgraduate study
MSc and PhD degrees by research are available in the School.

On completion of an honours degree (at first class or second class division 1 level), MSc Preliminary course or Graduate Diploma in Science, students may pursue candidacy for MSc or PhD degrees by research. The range of research fields offered and the fields of research for each member of academic staff are listed in the School's Postgraduate Studies Handbook, which is available from the School Office (Level 2, Chemistry Building, F11).

Basser Department of Computer Science

Computer Science is the scientific discipline which has grown out of the use of digital computers to manage and transform information. Computer Science is concerned with the design of computers, their applications in science, government and business, and the formal and theoretical properties which can be shown to characterise these applications.

The diversity of the discipline is demonstrated by current research interests in the Department which include the design of computer hardware and networks, formal specification and complexity, programming languages and software engineering, graphics, and intelligent systems. The Department has a range of computers and specialised laboratories for its teaching and research.

Students who intend to major in Computer Science should pay particular attention to mathematical prerequisites for the courses. They must enrol in Mathematics 1 or Mathematics 1 (Advanced) concurrently with Computer Science 1 or Computer Science 1 (Advanced) and should take a second-year Mathematics subject concurrently with Computer Science 2, as a second-year Mathematics course is a prerequisite for Computer Science 3. Students who complete Computer Science 3 are eligible to become Associate Members of the Australian Computer Society.

Intending honours students are strongly urged to complete a Senior Mathematics course (preferably Pure Mathematics 3) prior to entry into the honours year.

The courses offered by the Department are described briefly below, and more fully in the Department’s Handbook which is available from the Department Office (Room G71) in the Madsen Building. Students should confirm details of courses, registration procedures, textbooks, etc., on the Departmental noticeboards. Those in doubt should seek advice from members of the Department’s academic staff.

Computer Science 1 12 units
AKn HSC 3-unit Mathematics
Coreq Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)
Classes Yr: (3 lec & 2hr prac & 1hr tut)/wk
Assessment (assignments, one 3hr exam & one prac exam)/sem

An introductory course in algorithms, programming, computing machines and systems, and computer usage. It is intended primarily as the first course of the Department’s professional stream.

Students who wish to undertake the professional stream of courses in Computer Science will need to complete a parallel stream of courses in Mathematics (or Econometrics) to satisfy the prerequisites for subsequent Computer Science courses.

The three hours of lectures per week will be given in parallel streams.

For further details consult the Departmental Handbook.

Computer Science 1 (Advanced) 12 units
AKn HSC 3-unit Mathematics
Coreq Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (LS)
Classes consult Department
Assessment assignments, examinations

Computer Science 1 (Advanced) is a special program for students with superior abilities or background. It involves substituting alternative, challenging, work for some of the required work in Computer Science 1. For example, students may do independent reading and meet with a staff member in small groups in place of attending lectures; as another example, students may do alternative assignments that are more open-ended than those in the usual course. To ensure consistent
The topics covered include design and data structures, based on common tasks with Computer Science 1.

Computer Science 2 16 units
Qualifying course: Computer Science 1 or Computer Science 1 (Advanced)
Prereq: Mathematics 1 or Mathematics 1 (Advanced)
Classes: Yr: (4 lec & 4hr prac/tut)/wk
Assessment: assignments, two 3hr exams & one prac exam)

The topics covered include design and data structures, computer systems, logic and languages, programming practice with Unix, and two large programming projects.

For further details consult the Departmental Handbook.

Computer Science 3 24 units
Qualifying course: Computer Science 2
Prereq: Pure Mathematics 1 or Pure Mathematics 2 (Advanced) or Applied Mathematics 2 or Applied Mathematics 2 (Advanced) or Mathematical Statistics 2 or Mathematical Statistics 2 (Advanced) or Mathematics 2 (Long) or Electrical Engineering Mathematics 2 (under section 13 of the Senate resolutions) or Econometrics 2
Classes: Yr: (6 lec & 6hr prac/tut)/wk
Assessment: assignments, five 2hr exams & one major project)/yr

Computer Science 3 is organised into lecture and project modules. The modules are arranged into several overlapping streams, each of which develops an important area of Computer Science. Students are required to complete one stream. Streams to be offered are algorithmic systems, computer systems, intelligent systems, large-scale software and product development.

For further details consult the Departmental Handbook.

Computer Science 3 Additional 24 units
Qualifying course: Computer Science 2
Coreq: Computer Science 3
Classes: Yr: (6 lec & 6hr prac/tut)/wk
Assessment: assignments, five 2hr exams & one major project)/yr

Entry into Computer Science 3 Additional is subject to permission of the Head of Department. Interested students should consult the Director of Computer Science 3.

Computer Science 3 Additional allows students to obtain a broader and deeper understanding of Computer Science (including at least two streams) than is possible within the limits of Computer Science 3. Third year modules not already taken within Computer Science 3 form the basis of the course but, with the permission of the heads of Departments concerned, students may take up to three modules from other Senior courses (such as Pure Mathematics 3), possibly including one module from Computer Science Honours.

Computer Science Honours
Qualifying course: Computer Science 3 at credit level or better and preferably a third year Mathematics course

Computer Science Honours comprises coursework and a project. The project involves a substantial development task, generally in support of Departmental research activities. It provides a foretaste of, and a means of assessing a student's potential for, postgraduate research work.

Coursework currently offered covers: advanced operating systems, amortised complexity, computer networks, distributed algorithms, discrete event simulation systems, expert systems, graph algorithms and related topics; history of computing; linear geometry and signal processing; performance evaluation of computer systems; robotics; queuing systems; semantics; symbolic and algebraic computation.

Students are required to participate in Departmental seminars as part of their coursework, and are encouraged to participate along with staff and research students in all activities of the Department. They are provided with office accommodation and laboratory facilities, and may be employed for a few hours per week in undergraduate teaching.

For further details consult the Departmental Handbook and the Computer Science Honours Guide Book.

Postgraduate study
Details about fields of postgraduate study within the Department may be obtained from the Department. The Department publishes an annual Research Handbook.

Department of Geography
Geography is a varied and versatile subject covering a broad spectrum of knowledge. It was once concerned principally with the description of the earth, but modern geography now embraces society's relationship with the earth within a scientific and highly-structured framework. Currently there are three main elements of Geography actively pursued by the Department. Aspects of Physical geography deal with phenomena such as landforms, plants and soil as elements of physical landscapes. Human geography consists mainly of social and economic geography and is concerned with such features as rural and urban settlements, cultural influences and way of life. Economic geography includes the study of agriculture, industry, transport, marketing and resources. Environmental geography is concerned with the human/land relationships. This was a traditional theme used as early as in Griffith Taylor's time in the 1920s. It has come to the forefront with contemporary concerns for the environment. However, these three divisions are arbitrary, and some courses involve integration of various aspects of them all.

As theoretical understanding and quantitative precision have advanced, geography has developed as a useful discipline for analysing and proposing solutions to practical problems. Geographers have
proved their value in such fields as local government, town and regional planning, decentralisation and environmental management.

Location
The Department enquiry office is on the third level of the Institute Building (Room N421) on the eastern side of City Road.

Noticeboards
First year noticeboards are on the second level of the Dixon wing in the Institute Building outside Room N332. Second and third year noticeboards are between the respective teaching laboratories on the second and third levels in the Institute Building. A general noticeboard is in the corridor of the Institute Building on the ground floor. Students should consult their respective noticeboards regularly for details of excursions, course outlines and so on.

Registration
In addition to complying with enrolment procedures required by the University, all students must register with the Department in the Geography Conference Room, Institute Building, during the orientation period.

Advice on courses
Students may consult with members of staff, especially year supervisors, at any time concerning their courses. During the latter part of the summer vacation, inquiries as to staff availability should be made at the departmental office.

Tutorials and practical work
First year students must attend one three-hour practical session each week (see timetable). All students in second and third years are required to attend tutorials and/or designated practical sessions each week.

Assigned work and examinations
In first, second and third years, semester assignments contribute significantly to final marks for the year.

Conducted field excursions
In first year, students are required to attend two one-day excursions to localities within about 150km of Sydney. In each of second and third years, students are required to take part in long excursions, of about a week’s duration, based on a centre remote from Sydney. It is expected that basic costs per student this year will be around $450. However, in physical and environmental geography, there may be the chance of substituting for this remote excursion by having a number of days each semester in the field (up to five days each semester). Those who wish to apply for an interest-free loan to enable them to meet the costs of excursions should consult the SRC and the financial assistance section of the central administration.

Excursion work will be assessed by written assignment and/or examination. Exemption from excursions will only be granted under exceptional circumstances. Requests for exemption must be submitted in writing to the Head of Department.

Departmental handbook
Further details of Departmental activities, courses, excursions, and other relevant material are contained in the Geography Handbook available from the enquiry office in the Institute Building.

Note: Some courses may be rescheduled to allow for expected staff changes.

Geography 1
12 units
Assoc. Prof. Short, Assoc. Prof. Connell, Assoc. Prof. Warner
Classes Yr. (3 lec & 3 hr prac)/wk
Assessment (one 3hr exam, 1500w report or another 3hr prac exam)/sem
Morning or afternoon course
The course extends over two semesters with three lectures and three hours of laboratory work a week. Morning lectures are repeated in the afternoon. All students do the same course.

First semester: A systematic approach to the understanding of physical environmental processes
A systematic approach to modern physical geography with emphasis on processes in geomorphology and interactions of climate with weathering, soils and vegetation.

Second semester: Introduction to Human Geography
An introduction to the principles of human geography illustrated by an analysis of development problems in the south-west Pacific and a study of the location and distribution of economic activities including resource use.

Geography 2
16 units
The course extends over two semesters with three lectures and the equivalent of five hours’ assignment work (which may comprise tutorials and/or individual course work including fieldwork) weekly. The following courses are offered:

- Principles of Geomorphology
- Environment and Resources
- Human Geography

In addition there is an integrated field methods course which will examine skills associated with the acquisition, manipulation and presentation of data used in geographical analysis of a region. The region will be studied in the field during a compulsory one week excursion. Skills developed within courses studied in the first semester will be applied to the collection and analysis of data obtained during the excursion.

Special Geography Sequence (Science students)
A student who has not taken the course Geography 1, but is a candidate for the degree of Bachelor of Science and has completed a Junior Mathematics course and one of Chemistry 1 or Physics 1 or Physics 1 (Advanced), may apply through the Faculty to enrol in the Intermediate Geography course, Geography 2.

The Department is not prepared to support applications from persons other than those who in their first year of studies have completed four Junior courses above the terminating pass grade and have
not subsequently failed in any Intermediate courses, except in cases where special merit has been displayed in one or more subjects.

Principles of Geomorphology
Assoc Prof Short, Dr Thorns, Dr Cowell
Classes Yr: (3 lec & 1 tut)/wk
Assessment (one 3hr exam, two 1000w essays, tut papers, 5 days fieldwork)/sem

A two-semester course designed to introduce students to the principles of geomorphology. It involves an examination of the major earth surface landforms and the theories which have been developed to explain landform genesis. Earth surface processes are examined; there is an emphasis on systems theory to provide an understanding of the processes over a wide range of spatial, and temporal scales.

First semester: Global and Regional Landforms
An examination of the major earth surface landforms and the theories which have been developed to explain landform genesis.

Second semester: Fluvial and Coastal Geomorphology
This course provides:
1. an introduction to catchment systems and the processes and morphologies associated with rivers; and
2. an introduction to the principles of Coastal geomorphology assessing the role of endogenic (lithosphere) and exogenic (atmosphere and ocean) forces in shaping coasts.

Environmental Geography and Resource Management
Dr Dragovich, Dr Chapman, Dr Davey
Classes Yr: (3 lec & 1 tut)/wk
Assessment (one 3hr exam, two 2000w essays, tut papers, 5 days fieldwork)/sem

A two-semester course designed to evaluate the interaction of the physical environment and human use of the earth's surface. The first part of the course examines the role of the physical environment in influencing human activities. The second studies resources from social, political and economic perspectives.

Particular attention is given to two aspects of physical systems: soil erosion and natural hazards. Resource management problems are investigated at a range of scales with some emphasis being given to the changing relationship between people and environment in tropical areas.

Principles of Human Geography
Dr Gough, Dr Greenberg
Classes Yr: (3 lec & 1 tut)/wk
Assessment (one 3hr exam, two 2000w essays, tut papers)/sem

The course introduces concepts concerned with explaining the peopling of the earth by examining processes at various scales and the dynamics of systems over time.

Levels of human activity, from the global through to the urban, are considered through an examination of basic economic and social processes.

Geography 3
24 units
This course extends over two semesters with three lectures and the equivalent of nine hours’ assignment work (which may be comprised of tutorials and/or individual coursework including fieldwork) weekly. All students are required to attend a five-day field excursion. The traditional excursion may be replaced with fieldwork (up five days in each semester) conducted locally in association with courses being offered in 3P and 3M.

Three 12-unit courses are offered: Geography 3P (Physical), Geography 3M (Environmental) and Geography 3E (Human). Students may elect to do one or two of these three courses. It would be assumed that those doing Geography 3P would have undertaken Principles of Geomorphology in second year; those doing Geography 3M would have undertaken Environment and Resources in second year; and those doing Geography 3E would have undertaken the Human Geography course in second year.

To complete Geography 3 a student must select four options, two per semester. Each option is equivalent to 3 units. A student’s choice of options within the 3P, 3M or 3E courses is to be from themes or sequences which are related to the systematic development of research skills in the Department. These sequences are only a guide for the selection of courses. Any variation of these sequences must have the approval of the Head of Department. Students should consult with the course coordinator before selecting options. Not all options are offered in any given year.

Geography 3P: Advanced Geomorphology
The course examines the evolution of the landscape involving the history of landforms and vegetation in association with tectonic forces, climatic change and biological factors. Physical, chemical and biological weathering processes are studied and there is an emphasis on pedogeomorphology.

Coastal Systems
The course deals with the relationships between coastal morphologies and the processes responsible for them. The focus is on the general principles of morphodynamic adjustment, particularly as applied to the coastal boundary layer operating on the inner shelf, shoreface and in estuaries. Form and process relationships that generate the world’s major coastal depositional environments are studied.

Fluvial Systems
The focus is on the character and behaviour of river systems; channel stability and instability, adjustments or channel metamorphosis, and the role of fluvial thresholds are considered.
Geography 3M: Advanced Environmental Geography
The course focuses on: coastal zone environmental management and environmental geomorphology. Critical physical systems and natural hazards in the coastal zone are examined and the ways in which decisions are made about resource management are studied. The practical uses of geomorphological concepts to solve problems are discussed.

Environmental Geomorphology and Information Systems - Geomorphological concepts are applied to solve problems where landforms are transferred and where there is some use of or change to superficial processes. The techniques of geographic information systems analysis are illustrated and applied.

Geography 3E: Advanced Social and Economic Geography
The course examines the contemporary economic geography of the richer capitalist countries. It examines the social and economic dynamics of industrial change in a regional context.

Dynamics of the Asia-Pacific Region
The general structure and growth patterns of the region are considered. Special topics include agricultural processes, population, migration and urbanisation.

Urban and Regional Geographic Systems
Development theories and their relationship to rural development and natural resources development, the role of aid and the structure and role of international capital flows are examined. Social structures and their relationship to resolving conflicts over development aims and environmental management are studied.

Geography Senior Course Combinations
48 units
Students may elect to do two Senior courses (24 units each) in the one year, giving a total of 48 units. Such students will be required to enrol in two of Geography 3P, Geography 3M or Geography 3E. Those who have passed at least one of the courses in Geography 3 at honours level may proceed to an appropriate course in Geography honours. Those choosing physical topics must have majored in Geography 3P; they may elect to do either Geography or Geomorphology honours.

Geography Honours
Students contemplating Geography honours are required to consult the Head of Department as soon as possible after the publication of third year results concerning choice of topic and the appointment of a staff supervisor. Preliminary work should begin shortly after the publication of these results.

Honours students are required to undertake formal coursework during first semester and to participate in seminars throughout the year as arranged. They will be required to study original problems, working as appropriate in the field, the laboratory, libraries, and insome instances in conjunction with other university or government Departments. A dissertation of not more than 20 000 words must be submitted during second semester, followed by an examination that may include both written and oral work.

Geomorphology Honours
Students who enter fourth year through Geography 3P, and who choose to work on landform studies, may elect to proceed to an honours degree in Geomorphology in lieu of Geography. General course requirements are identical with those listed for Geography honours.

Department of Geology and Geophysics
The Department offers courses in geology and geophysics that provide the necessary qualifications for professional employment in these fields of earth science. Courses are also offered for students seeking a geoscience component in a broadly based science degree. Postgraduate research is conducted in many fields of earth science.

Location
The Department is housed in the Edgeworth David Building, immediately south of the Fisher Library on Eastern Avenue. First year lectures and laboratories are held in the Carslaw Building.

Noticeboards
Information for first year students is posted on noticeboards both inside and outside Carslaw Laboratory 1. Noticeboards for students in Intermediate and later years are in the foyer and corridors of the Edgeworth David Building. Students should consult the noticeboards regularly.

Registration
All first year students are required to register with the Department during the orientation period, on a day and at a place specified in the orientation program. Students in Intermediate and Senior years register with the Department before the first week of lectures.

Structure of courses
Geology 1 is a general course that provides an introduction to the earth sciences. Entry into Geology 1 requires no prior knowledge of the subject. The Intermediate and Senior Geology courses build on the preceding coursework to present a balanced and wide ranging coverage of the subject. A degree of specialisation is built into the Senior Additional course which is designed especially for students majoring in geology and proposing to pursue a career in that field.

Geophysics, a component of geology courses at all levels, is offered as a comprehensive Senior course.

Honours courses in geology and geophysics are offered to suitably qualified students.
Textbooks
For details of prescribed textbooks, students should consult the pamphlets relating to various Departmental courses available from the enquiry office in the Edgeworth David Building.

Examinations
These are held in June and November.

Geology 1 12 units
Dr Keene (coordinator)
Classes Yr: (3 lec & 1 prac/tut)/wk
Assessment Sem 1: one 3hr exam; Sem 2: two 3hr exams, class and fieldwork

A course of three lectures per week presenting a balanced coverage of the sciences focused on planet Earth. It serves both those students wishing to broaden their understanding of such contemporary problems as the conservation and utilisation of earth resources and those aiming to undertake later courses leading to professional training in the earth sciences. No prior knowledge of geology is assumed of students entering Geology 1.

A weekly three-hour laboratory and tutorial session given is to study of materials and concepts introduced in the lectures: minerals, rocks, fossils, maps, earth structures, etc.

Several field excursions during the year are an integral part of the course.

Students considering enrolling in Geology 1 should study the pamphlet Geology 1 — 1995, obtainable from the enquiry office in the Edgeworth David Building; it gives details of course content, text and reference books, staffing and other relevant matters.

Geology 2 16 units
Dr Middlemost (coordinator)
Qualifying course Geology 1
Classes Yr: (4 lec & 2 prac)/wk
Assessment one 3hr & one 1.5hr exam/sem, prac & fieldwork

This course is designed to develop the concepts introduced in the Junior course. The main topics covered include: optical mineralogy, geochemistry, petrography, petrogenesis, palaeoecology, palaeoclimatology, petrophysics, exploration geophysics, solid earth geophysics, structural geology, tectonic processes, fuels, ores and resources. Students are required to attend a compulsory field excursion during the mid-year vacation.

Environmental Geology 2 Auxiliary 8 units
Dr Birch (coordinator)
Classes Yr: 3 lec/wk, 4 days fieldwork
Assessment one 3hr exam/sem, field reports

This is a broadly based course on the application of geological principles and knowledge to the problems created by human occupancy and exploitation of the Earth. It examines the fundamentals of hydrogeology, safe disposal of solid and liquid wastes, pollution in the marine environment, responsible extraction of mineral and fuel resources, evaluation of geological hazards, and an examination of the nature of environmental changes on a dynamic planet. Four one-day field workshops will provide students with practical experience in evaluating and monitoring actual and potential environmental problems in the Newcastle-Sydney-Wollongong conurbation.

Geology 3 24 units
Mr Stienstra (coordinator)
Qualifying course Geology 2
Classes Yr: (3 lec & 3 prac)/wk
Assessment three 2hr exams/sem, assignments

This is the core course in geology at the Senior level and may be taken with Geology 3 Additional, Geophysics 3, with a Senior course offered by another science Department or serve as the sole Senior course required for the BSc degree. The course Geology 3 treats in some depth a conspectus of modern earth science. Study in the first semester emphasises materials: mineralogy; igneous, sedimentary and metamorphic petrology; sedimentary resources; micropalaeontology; and ore deposits. The second semester program leads from solid earth geophysics, through basin studies to geotectonics and concludes with a critical review of the evolution of the Australian continent.

Two field excursions, each of about one week's duration, are required components of the Geology 3 course; class-teaching time is adjusted accordingly. Provision may be made for an optional third excursion during the year.

Geology 3 Additional 24 units
Mr Stienstra (coordinator)
Coreq Geology 3
Classes Yr: (12hr of lec & prac)/wk
Assessment two 3hr exams/sem, assignments

Students intending to proceed to an honours year in Geology are strongly advised to take two Senior courses in the Department of Geology and Geophysics.

Geology 3 Additional involves advanced study in the fields of structural analysis, petrology, biostratigraphy and geochemistry, as well as coverage of such topics as engineering geology, mining and sedimentary basin geophysics> and petroleum geology. For further information, students are encouraged to consult the course and general information handbook produced by the Department.

Field studies are an important component of Senior Geology courses, and two excursions, each of about one week's duration, are a compulsory part of Geology 3 Additional; class teaching time is reduced accordingly.

Geophysics 3 24 units
Mr Stienstra (coordinator)
Coreq Geology 3 or Applied Mathematics 3 or Applied Mathematics 3 (Advanced), Physics 3, or Pure Mathematics 3 or Pure Mathematics 3 (Advanced)
Classes Yr: (12hr of lec & prac)/wk
This third year course is designed to prepare students for a professional career in geophysical exploration for mineral resources, or in the on-site investigation industry.

The lectures, practicals and tutorials cover the physics of rocks, potential field analysis (gravity and magnetic data interpretation), electrical methods, regional geophysics, engineering geophysics, mining geophysics, seismic techniques, borehole geophysics, and the geophysics of sedimentary basins.

Details of course contents, lecturing staff, recommended texts and references are available from the Department.

Excursions in mining geophysics and seismic methods may be run, depending on the availability of projects.

Honours
Dr Clarke (coordinator)

Suitably qualified students may take Honours in Geology or Geophysics. They are required to undertake a research project under the direction of a supervisor, submit a thesis embodying the results of the investigation and undertake such coursework as may be prescribed.

Students not eligible to take honours may be given permission to enrol in the Graduate Diploma in Science.

Further details are available from the Head of Department.

Postgraduate study
Details concerning fields of postgraduate study in the Department of Geology and Geophysics may be obtained from Dr J. Keene or the Head of Department.

History and Philosophy of Science

The History and Philosophy of Science courses are intended to provide a broad, socially relevant appreciation of the scientific enterprise. The educational objective of the courses is to enable students to stand back from the specialised concerns of their other subjects and gain some perspectives on what science is, how it came to acquire its modern form, and how it fits into contemporary society.

It is envisaged that the course will prove relevant to students pursuing any of a large number of possible scientific careers, especially those involving science administration or education.

Location
Carslaw Building, Level 4.

Advice on courses
A member of staff will be available to advise on courses during the enrolment and orientation periods, either in the enrolment centre or in the History and Philosophy of Science Office.

Handbook
Detailed information on courses is available from the History and Philosophy of Science Office.

Registration
Students will need to register in tutorials. Arrangement for this will be made in lectures at the beginning of the year.

History and Philosophy of Science 2

Introductory
Assoc. Prof. Chalmers, Dr Shortland, Dr Rasmussen
Classes Yr: (2 lec & 2 tut)/wk
Assessment one take-home exam/sem, tutorial assignments

Lectures in the first semester give an introduction to the philosophy of science and those in the second semester deal with the scientific revolution of the sixteenth and seventeenth centuries.

Auxiliary
Assoc. Prof. Chalmers, Dr Shortland, Dr Rasmussen

Students must select one of the courses listed below plus a 2-hr per week single semester option.

History of the Physical Sciences
Assoc. Prof. Chalmers
Prereq Chemistry 1 or Chemistry 1 (Advanced) or Physics 1 or Physics 1 (Advanced)
Classes Sem 1: (two 1hr lec & one 2hr tut)/wk
Assessment one take-home exam, tutorial work

or

History of the Biological Sciences
Dr Shortland
Prereq Biology 1 or Biology 1 (Advanced)
Classes Sem 1: (two 1hr lec & one 2hr tut)/wk
Assessment one take-home exam, tutorial work

or

Social Relations of Science
Dr Rasmussen
Classes Yr: (1 lec & 1 tut)/wk
Assessment one take-home exam, tutorial work

For a list of options, from which one must be selected, see History and Philosophy of Science 3.

History and Philosophy of Science 3

24 units
Assoc. Prof. Chalmers, Dr Shortland, Dr Rasmussen

Students taking this course are reminded that they must complete an additional Senior course in order to qualify for the degree of BSc.

The course is divided into four segments: (i) a core course either on the history of the physical sciences or on the history of the biological sciences in the first
semester, (ii) a core course on the social relations of science which runs through the year, (iii) two two-hour per week options or the equivalent, normally in the second semester; and (iv) a segment on contemporary issues, which runs throughout the year.

History of the Physical Sciences
Assoc. Prof. Chalmers
Prereq Chemistry 1 or Chemistry 1 (Advanced) or Physics 1 or Physics 1 (Advanced)
Classes Sem 1: (two 1hr lec & one 2hr tut)/wk
Assessment one take-home exam, tutorial work

or

History of the Biological Sciences
Dr Shortland
Prereq Biology 1 or Biology 1 (Advanced)
Classes Sem 1: (two 1hr lec & one 2hr tut)/wk
Assessment one take-home exam, tutorial work

Social Relations of Science
Dr Rasmussen
Classes Yr: (1 lec & 1 tut)/wk
Assessment one take-home exam, tutorial work

Options
Two 2hr per week one semester options or the equivalent to be taken.

Note: Options are offered subject to the availability of staff and on condition that they are chosen by an adequate number of students in each case. Students should consult the History and Philosophy of Science 3 Course Information leaflet at the beginning of the year for up-to-date information.

Philosophy of Science: Kinds of Objectivity
Dr Price
Classes Sem 1: 2 lec/wk
Assessment one 2000w essay, one 2hr exam

Memory
Dr Spence
Classes Sem 2: 2hr seminar/wk
Assessment assignments, classwork

Philosophy of Physics: From Mechanism to Relativity
Dr Gaukroger
Classes Sem 1: 2 lec/wk
Assessment take-home exam and essay

Philosophy of Physics: Modern Physics
Dr Price
Classes Sem 2: 2 lec/wk
Assessment one 2000w essay, one 2hr exam

History and Philosophy of Medicine: Bodies in History
Dr Hardy
Classes Sem 1: (1 lec & 1 tut)/wk
Assessment class work, essay

Scientific Controversies
Dr Hardy
Classes Sem 2: (1 lec & 1 tut)/wk
Assessment classwork, one 2500w essay

Hume and Causation
Dr Heathcote
Classes Sem 1: 2 lec/wk
Assessment one take-home exam, one essay (2000w for 2nd yr and 3000w for 3rd yr)

Australia in the Nuclear Age
Prof. MacLeod
Classes Sem 1: 2 lec/wk
Assessment classwork, one 3000w essay, one 3hr exam

Locke and Empiricism
Prof. Campbell
Classes Sem 2: 2 lec/wk
Assessment one 2000w essay, one 2hr exam

Descartes and Rationalism
Dr Gaukroger
Classes Sem 1: 2 lec/wk
Assessment one 2000w word essay, one 2hr exam

The Presocratics
Dr Benitez
Classes Sem 1: 2 lec/wk
Assessment one 2000w essay, one 2hr exam

History and Philosophy of Psychology
Dr McMullin, Ms Turtle
Prereq Psychology 2A
Classes Yr: (1 lec & 1 tut)/wk
Assessment one 1hr exam, one 2500w essay

(The full year option is the equivalent of two 2hr per week single semester options.)

The Nature-Nurture Controversy
Ms Turtle
Prereq Psychology 1
Classes Sem 2: 2 lec/wk
Assessment exam and 1000w essay

Note: Most of the above options are courses offered in other Departments. When this is so, students will not be able to count those courses both for History and Philosophy of Science and for courses in the Departments offering them.

Science and Ethics
Dr Shortland
Classes Sem 2: 2hr/wk
Assessment classwork (50%) and a take-home exam (50%)

The Nature of Experiment
Dr Rasmussen (with Professor Keith Campbell)
Classes Sem 2: 2hr/wk
Assessment classwork (50%) and a take-home exam (50%)

Visualisation Techniques in Contemporary Society
Dr Rasmussen
Classes Sem 2: (1 lec & 1 tut)/wk
Assessment one take-home exam, tutorial work

Close Encounters? Science Fact and Science Fiction
Dr Shortland
Classes Sem 2: 2 lec/wk
Assessment tutorial work, project work
Contemporary Issues
Dr Rasmussen, Dr Shortland
Classes Yr: 2 lec/wk'. Assessment classwork (50%) and a take-home exam (50%)

Two from a list of four options of contemporary importance to be selected, one in each semester

Note: There is a possibility that adjustments can be made to the timetable for the lectures in the core courses if there are significant clashes. Any such clashes should be reported to a History and Philosophy of Science staff member as soon as possible.

History and Philosophy of Science Honours
Students of sufficient merit may be admitted to the Honours course. They are required to:
(a) carry out research work under the direction of a supervisor;
(b) submit a thesis of about 15 000 words on this work;
(c) complete four two-hour per week single semester courses including the assessment required;
(d) attend a fortnightly seminar.

Marine Sciences
The Marine Studies Centre offers Intermediate, Senior and Honours courses of an interdisciplinary nature in the marine sciences. Staff from the School of Biological Sciences, the Department of Geography and the Department of Geology and Geophysics teach in the undergraduate program.

Marine Sciences 2 Introductory 8 units
Intermediate Introductory course
Classes Yr: (3 lec & 1 tut)/wk, 1 day excursion, 1/2 day excursions
Assessment one 3hr exam/sem, classwork

Introduction to oceanography and its history; the morphology, geology and history of the continental shelves, continental slopes and ocean basins; ocean properties and circulation, ocean-atmosphere and ocean-sea floor relationships; physical processes affecting the coastal zone; chemical cycles within the oceans; major biological systems of the oceans; biological adaptation.

Marine Sciences 3 24 units
Qualifying course Introductory Marine Sciences
Prereq There are prerequisites for some options, see below

General. This course is for Senior students of biology, geology or mathematics who are interested in the marine sciences. It can, however, be taken with a Senior course in any other subject. No special requirement of first year courses is laid down.

Internal structure. Within the course, options are available in each Semester. Students are encouraged to select those in which they have a particular interest, subject to the unavoidable requirement in some cases that they have completed some prior study in that subject area.

No student enrolled in Marine Sciences 3 can undertake a full year (two semesters; 24 units) in options offered by a single subject area (i.e. Marine Biology or Coastal Geography).

The options, with the prerequisite study additional to Introductory Marine Sciences indicated in parentheses, are listed below. The course marked * is a 12-unit option, all others are 6-unit (half-semester) options.

POI Chemical Processes in the Oceans
CS1 Coastal Depositional Environments
CS2 Coastal Morphodynamics
CS3 Coastal Zone Management
MB1 Evolution and Diversity of the Australian Biota (Biological Sciences, course 120)
CS4 Geographic Information Systems
MB2 Marine Biology [Biological Sciences, course 124; Biology 2 (Animals) or Biology 2 (Plants)]
MB3 *Marine Ecology [Biological Sciences, courses 220 and 221; Biology 2 (Animals)]
MG1 Marine Geology
P02 Palaeoceanography and Climate Change

The options are usually provided in the form of three or four lectures together with eight or nine hours' practical or project work and, in some cases, a one-hour tutorial each week. Some include an excursion of several days' duration. Not every option is available each year.

Notes:
(a) The course options in coastal geography topics may not be counted in both Marine Sciences 3 and Geography 3P, and are held at the times scheduled for Geography 3P.
(b) The options in marine biological topics may not be counted in both Marine Sciences 3 and Biology 3, and are held at times scheduled for Biology 3.
(c) Owing to the limited facilities available for the marine biological courses it may be necessary to restrict the number taking any particular option. If this need arises selection will be based on academic merit.
(d) Evolution and Diversity of Australian Biota and Marine Biology options are half-semester courses (6 units) and will be offered in first semester. Marine Ecology is a whole semester course (12 units) which must be taken in its entirety and is offered in second semester. This course consists of a core course and the Marine Ecology elective of the Biology 3 option 'Ecology'.
(e) All students intending to enrol in any of the marine biological options must consult the booklet Information for Students in Biology 3 available from the School of Biological Sciences office during the last few weeks of the academic year prior to this enrolment. Each student should also complete a preliminary enrolment form in the School of Biological Sciences before first semester commences.
(f) Students intending to enrol in coastal geography options should complete a preliminary enrolment form in the Department of Geography before first semester commences.

Enrolment and registration
In addition to complying with enrolment procedures required by the University, all students in Marine Science 3 must register with the Marine Studies Centre during the first week of lectures. Enquiries should be made to the course coordinator (Dr A. Short of Geography). All enrolments must be approved by the Director of the Marine Studies Centre.

Noticeboards
Please consult the Marine Sciences noticeboard on level 2 of the Department of Geology and Geophysics, Edgeworth David Building.

Summaries of course options
Students should consult handbook entries for details on course options as listed in the three contributing Departments/Schools (Biology, Geology and Geophysics, Geography).

Marine Geology (MG1)
Dr Keene
Classes Sem 1 (weeks 8-14): (3 lec, 1 tut, 6 prac)/wk, 1 day excursion
Assessment one 1.5hr exam, classwork

This option will examine in detail sedimentation processes and sedimentation history on the continental shelves, slope and deepsea basins including the origin and evolution of organic, biogenic and chemical sediments. The emphasis will be on the seafloor around Australia using data from the Ocean Drilling program and other direct sampling from research cruises. An understanding of the geologic evolution of continental margins and sea floor through time will include the study of stratigraphy and geochemical changes. Practical studies will involve the application and interpretation of remote sensing techniques including seismic reflection and side scan sonar and a one day field trip on Sydney Harbour. Current controversies in marine geology will be discussed in seminars.

Chemical Processes in the Oceans
Dr Isern
Classes Sem 2 (weeks 1-6): (4 lec, 1 tut, 2 prac)/wk
Assessment one 1.5hr exam, classwork

This course provides an overview of organic and inorganic chemical processes in the oceans, particularly in relation to circulation, sedimentation and biological processes. Topics include properties of seawater, biological cycling of nutrients, carbon and carbonate cycles in the ocean, reactions within the sediments and exchanges with seawater, uses of stable isotopes, glacial-interglacial changes in the ocean chemistry and anthropogenic influences.

Coastal Depositional Environments
Dr Isern
Classes Sem 1 (weeks 1-7): (2 lec & 1 tut)/wk, excursion (over 2 weekends, 1x1 day)

Assessment assignments, exams

The aim of this course is to examine the form and process relationships that generate the world’s major coastal deposition environments and to determine their long term evolution through examination of their surface morphology and three dimensional stratigraphy. More specifically, the course will examine sediment transport and deposition, nature and influence of sediment characteristics, and the energy regime and morphology of the receiving basin that combine to produce a coastal depositional environment. The long term evolution of particular coastal deposition environments will be examined in the context of variation in the above parameters along with the variation in the Quaternary climate and sea level.

Coastal Morphodynamics
Dr Cowell
Classes Sem 1 (weeks 8-14): (3 lec, 1 prac, 1 tut)/wk, excursion (over 1 weekend)

Assessment assignments, exams

Coastal Morphodynamics is a course in the modelling of complex environmental systems. Specifically, the course concerns the interactions between fluid dynamics and changes in coastal geomorphology over a wide range of scale in space and time. More generally, the coast is used for exploring development and application of computer models for simulating the behaviour of complex environmental processes. Such processes involve nonlinear dynamical problems that go beyond the realm of classical mathematics and physics. Computer simulation of these problems provides practical insights into the application of chaos theory to the evolutionary behaviour of coasts. The course aims to provide: 1) skills in managing complex problems in general, 2) an analytical understanding of coastal processes in particular, and 3) experience in application of computer-simulation programs and vocationally-relevant, commercial software packages. Practical work involves extensive use of computers.

Coastal Zone Management
Dr Chapman
Classes Sem 2 (weeks 1-7): (3 lec, 1 prac, 1 tut)/wk, excursion (over 1 weekend)

Assessment assignments, exams

The coastal zone provides an ideal area for the study of resources management since virtually all the central concerns of resources management are exemplified in that zone. Hence, the structure of the course will be determined by these concerns, with the application to the coastal zone providing the central unifying theme. Critical physical systems and natural hazards in the coastal zone are given due emphasis, and in addition the course addresses ways in which decisions are made about resources management and some of the models which can usefully be employed in this regard.

Geographical Information Systems
Dr Cowell
Classes Sem 2 (weeks 8-14): (3 lec, prac, 1 tut)/wk, excursion (over 1 weekend)
Assessment assignments, exams

Principles involved in computer-based geographic information systems are applied to environmental assessment and management of coastal drainage catchments. The course focuses on the development and application of GIS models for strategic planning. It is structured around an exercise in location-analysis within a coastal catchment. The exercise is undertaken in three-hour computer sessions during each week of the course. Lectures provide background to the techniques employed, such as satellite-image processing, transformation and analysis of spatial data and decision support simulation. An overview is also given of the information technology upon which the GIS industry is based. The course aims to provide: 1) an applied understanding of concepts in strategic planning in environmental problems, 2) problem-solving techniques of GIS in environmental assessment and strategic planning, and 3) vocational skills in computing and reporting. Practical work involves extensive use of computers.

Palaeoceanography and Climate Change
Dr Isern
Classes: Sem 2 (weeks 8-14): (4 lec, 1 tut, 2 prac)/wk
Assessment: 1.5hr exam, classwork

Climatic changes over time have greatly influenced oceanic biology, chemistry and environments on earth. This course will examine evidence for climatic change found in the marine geological and chemical records. Climatic change on long (million and billion year) and short (thousand year) time-scales will be discussed. This option will review the natural changes in climate which have occurred over time and also those which are anthropogenically induced.

Marine Sciences Honours
The structure of the course will be about one-third formal coursework, seminars and reading, and about two-thirds devoted to preparation of a thesis on a topic with a clear marine or estuarine orientation. The formal coursework may comprise courses mainly chosen from existing honours course options offered in the Department of the student's principal interest. Background study in a subsidiary field of interest may be required, depending on circumstances. Thesis work will commence in February and continue to November.

In general, a credit or better in Marine Sciences 3 and at least a pass in another Senior course are required for entry.

Students interested in undertaking the course should discuss this with the course coordinator for Marine Sciences, preferably during second semester of year 3 and otherwise as soon as possible after publication of the third year examination results. Arrangements for their supervision and Department of primary location will be made in the light of their proposed thesis topic. Joint supervision involving staff of more than one Department may be arranged if a thesis topic is deemed to be interdisciplinary. Upon acceptance, students should register formally with the Director of the Marine Studies Centre.

Postgraduate study
Details concerning fields of postgraduate study in Marine Science courses offered to postgraduate students, and admission requirements may be obtained from Professor A.J. Underwood (Director of the Marine Studies Centre), Dr R. Hinde, Dr J. Keene or Dr A. Short.

School of Mathematics and Statistics

The School of Mathematics and Statistics offers courses in Applied Mathematics, Mathematical Statistics and Pure Mathematics.

The Junior courses available are Mathematics 1 or Mathematics 1 (Advanced) and Mathematics 1 (Life Sciences).

Intermediate, Senior and Honours courses are mostly taught in a single subject area.

Applied Mathematics is concerned with the development of mathematical and computing methods and their application in particular contexts which may arise in the natural sciences, engineering, economics or the social sciences. Courses are designed to give training to students who will specialise in other subjects, and also for training applied mathematicians. While mathematical rigour is not neglected, particular emphasis is given to questions such as the treatment of observational models which are relevant to particular contexts.

Mathematical Statistics is concerned with the theory of probability and the mathematical methods of statistics applied to such problems as statistical inference, the design of experiments and sample surveys and all problems of data analysis. The major courses are designed to train those who wish to become professional statisticians, tertiary teachers and research workers, but there are courses which provide a knowledge of statistical methods and techniques for students specialising in other fields.

Pure Mathematics courses have two main aims. One of these is to equip students with the background of mathematical knowledge, understanding and skill necessary for courses in many branches of science. The other is the provision of training in pure mathematics necessary for those who wish to make a career in mathematics, either in teaching or research or in one of the many avenues where highly developed mathematical ability and a thorough knowledge of modern mathematical techniques are required, such as computing, operations research, management, finance and economics.

Location
The School is located in the Carslaw Building.

Noticeboards and registration
Details of locations of noticeboards and of registration for specific courses are available in the course handbooks available at the time of enrolment or during the first week of lectures.
Advice on courses
School advisers are normally available during the enrolment period. There are lists of advisers for specific courses at the front of this handbook and in the course handbooks.

Junior courses

Mathematics 1 (Life Sciences) 12 units
AKn HSC 2-unit Mathematics
Classes Yr: (4 lec & tut)/wk
Assessment (two 2hr exams & 4 assignments)/sem, computer project, 3 class quizzes

Content
This is a one-year course in mathematics intended to give a rounded view of mathematics and particularly designed for students intending to major in the life and social sciences. Topics covered include differential and integral calculus, linear algebra and statistics.

There are comprehensive details of the Mathematics 1 (Life Sciences) course in the First Year Mathematics Course Handbook, available from the School at the time of enrolment.

Assumed knowledge
Knowledge equivalent to the 2-unit HSC course is assumed. Students who do not have this knowledge are strongly advised to attend a bridging course conducted by the School in February.

Relation to other courses
Mathematics 1 (Life Sciences) counts as a 12-unit Junior course and may not be counted together with Mathematics 1 or Mathematics 1 (Advanced). It does not normally qualify students for second year mathematics courses. However students gaining a high credit may, with the permission of the Head of School, proceed to Mathematical Statistics 2, Pure Mathematics 2 or Applied Mathematics 2.

Mathematics 1 12 units
AKn HSC 3-unit Mathematics
Classes Yr: (5 lec & 2 tut)/wk
Assessment (two 2hr exams & 4 assignments)/sem

Mathematics 1 is designed to provide a thorough preparation for further study in mathematics and statistics as well as to satisfy the requirements of first year courses in the mathematical sciences in the Faculties of Science and Engineering. It is one of the two qualifying courses for all Intermediate mathematics courses.

There are comprehensive details of the Mathematics 1 course in the First Year Mathematics Course Handbook, available from the School at the time of enrolment.

Assumed knowledge
Knowledge equivalent to the 2-unit HSC course is assumed. Students who do not have this knowledge are strongly advised to attend a mathematics bridging course conducted by the School in February.

Intermediate courses

Applied Mathematics 2 16 units
Qualifying course Mathematics 1 or Mathematics 1 (Advanced) (or, with permission of the School, a credit or better in Mathematics 1 (Life Sciences))
Classes Yr: (8hr of lec, tut & computer lab)/wk
Assessment generally one 2hr exam/option, assignments

This course consists of options which are taught at either the O or A level. Most students take the O level options, but A level options may be substituted. Each student must take two course options per semester. An option consists of four contact hours per week (usually three lectures plus one tutorial). Full details of course structure, content and examination procedures are provided in the Second Year Mathematics Course Handbook available from the School at the time of enrolment.

O options: Vector calculus and complex variables; matrix applications; mathematical computing; dynamical systems; Fourier series, ordinary and partial differential equations; optimisation; mechanics of deformable media.

A options: Multivariate analysis; Lagrangian dynamics; mathematical computing; mechanics of deformable media and waves; mathematical methods.

Applied Mathematics 2 (Advanced) 16 units
Qualifying course Mathematics 1 or Mathematics 1 (Advanced)
Classes Yr: (8hr of lec, tut & computer lab)/wk
Assessment generally one 2hr exam/option, assignments

Entry to the Advanced course usually requires a credit or better in either of the qualifying courses. The options are listed under Applied Mathematics 2 above. Students in the Advanced course must take at least three options at the A level. All further information can be found under Applied Mathematics 2.

Mathematical Methods 2 8 units
Qualifying course Mathematics 1 or Mathematics 1 (Advanced)
Classes Yr: (3 lec & 1 tut)/wk
Assessment two 2hr exams/sem, assignments

This course is intended for students who wish to develop their knowledge of mathematical techniques beyond the level of Mathematics 1 without taking the full Applied Mathematics 2 or Pure Mathematics 2 courses.

The course does not qualify students for any Senior Mathematics course. It is not possible to take Mathematical Methods 2 and Applied Mathematics 2 as separate subjects since the former is a compulsory part of the latter. Full details of course structure, content and examination procedures are provided in the *Second Year Mathematics Course Handbook* available from the School at the time of enrolment.

Course content
Vector calculus and complex variables; Fourier series, ordinary and partial differential equations.

Mathematical Statistics 2 16 units
Qualifying course Mathematics 1 or Mathematics 1 (Advanced) [or Mathematics 1 (Life Sciences) at credit standard]
Classes Sem 1: (51 lec & 1 tut & one 2hr prac) / wk. Sem 2: (4 lec, 1 tut & one 2hr prac) / wk
Assessment two 1.5hr exams/sem, assignments, prac

This course is both a self-contained one-year course and the basis for a degree specialising in statistics.

The course is presented in four modules. Full details are provided in the *Second Year Mathematics Course Handbook* available from the School at the time of enrolment.

Modules: Probability and distribution theory; exploratory data analysis; hypothesis testing; estimation and dependence.

Mathematical Statistics 2 (Advanced) 16 units
Qualifying course Mathematics 1 or Mathematics 1 (Advanced)
Classes Yr: (5 lec & 1 tut & one 2hr prac) / wk
Assessment two 1.5hr exams/sem, extra 2hr exam (Sem 2), assignments, prac

Entry to the Advanced course usually requires a credit or better in either of the qualifying courses. It covers all of the material of Mathematical Statistics 2 together with extra lectures in second semester on the mathematical theory of probability. Full details are provided in the *Second Year Mathematics Course Handbook* available from the School at the time of enrolment.

Mathematics 2 Combined 24 units
Qualifying course Mathematics 1 or Mathematics 1 (Advanced) [or, with permission of the School, a creditor better in Mathematics 1 (Life Sciences)]
Classes Yr: (12hr of lec, tut & computer lab)/wk
Assessment generally one 2hr exam/option, assignments

This course consists of six options from Pure Mathematics 2 and Applied Mathematics 2 courses, which are taught at either the O or A level. It qualifies students for entry to both Pure Mathematics 3 and Applied Mathematics 3.

Most students take the O level options, but A level options may be substituted. Full details of course structure, content and examination procedures are provided in the *Second Year Mathematics Course Handbook* available from the School at the time of enrolment.

Mathematics 2 Combined (Advanced) 24 units
Qualifying course Mathematics 1 or Mathematics 1 (Advanced)
Classes Yr: (12hr of lec, tut & computer lab)/wk
Assessment generally one 2hr exam/option, assignments

Entry to the Advanced course usually requires a credit or better in either of the qualifying courses. It qualifies students for entry to both Pure Mathematics 3 (Advanced) and Applied Mathematics 3 (Advanced).

Students in the Advanced course must take at least four options at the A level. Full details of course structure, content and examination procedures are provided in the *Second Year Mathematics Course Handbook* available from the School at the time of enrolment.

Pure Mathematics 2 16 units
Qualifying course Mathematics 1 or Mathematics 1 (Advanced) [or, with permission of the School, a creditor better in Mathematics 1 (Life Sciences)]
Classes Yr: (8hr of lec, tut & computer lab)/wk
Assessment generally one 2hr exam/option, assignments

This course consists of options which are taught at either O or A level; the A options are generally somewhat more abstract and go deeper into the subject. Most students take the O levels, but A level options may be substituted.

In first semester, all students take two options, each involving four contact hours per week (lectures, tutorials and/or computer lab classes). In second semester, students take either two options at four contact hours or one option at four hours and two options at two hours per week. Full details of course structure, content and examination procedures are provided in the *Second Year Mathematics Course Handbook* available from School at the time of enrolment.
O options: Discrete mathematics; vector calculus and complex variables; matrix applications; analysis; Fourier series, ordinary and partial differential equations; inner product spaces and group theory.

A options: Multivariable analysis; linear algebra; analysis; differential equations, group theory.

Pure Mathematics 2 (Advanced) 16 units
Qualifying course Mathematics 1 or Mathematics 1 (Advanced)
Classes Yr: (8hr of lec, tut & computer lab)/wk
Assessment generally one 2hr exam/option, assignments

Entry to the Advanced course usually requires a credit or better in either of the qualifying courses. The options are listed under Pure Mathematics 2 above. Students in the Advanced course must take at least three options at the A level. All further information can be found under Pure Mathematics 2.

Statistical Methods 2 (S1) 8 units
AKn HSC Mathematics (2 unit)
Classes Sem 1: (4 lec, 2 tut, 1 computer prac)/wk
Assessment 3hr exam, assignments, prac

The emphasis in this course is on applications and the material is presented in two streams at the rate of two lectures per week each. Full details are provided in the *Second Year Mathematics Course Handbook* available from the School at the time of enrolment.

Course content
Data analysis and nonparametrics; statistical distributions and inference.

Applied Statistics 2 (S2) 8 units
Either
Prereq Mathematics 1 or Mathematics 1 (Life Sciences) or Mathematics 1 (Advanced)
Coreq Statistical Methods 2 or Mathematical Statistics 2 (Advanced)

Classes Sem 2: (4 lec, 2 tut, two 1hr computer prac)/wk
Assessment 3hr exam, assignments, prac

This course is based on computer packages and aims to introduce advanced statistical techniques without developing the mathematical theories underlying these methods. The material is presented in two streams at the rate of two lectures per week each. Full details are provided in the *Second Year Mathematics Course Handbook* available from the School at the time of enrolment.

Course content
Applied linear models; design and sampling.

Senior courses

Applied Mathematics 3 24 units
Qualifying course Applied Mathematics 2 or Applied Mathematics 2 (Advanced) or Mathematics 2 Combined or Mathematics 2 Combined (Advanced)

Classes Yr: (6 lec & 3 tut)/wk
Assessment generally one 2hr exam/option, assignments

This course consists of options which are taught at either the O or A level; some taught separately, others in common (A/O level). Most students take the O level options, but A level options may be substituted.

Each student must take at least six options (three contact hours per week each). Full details of course structure, content and examination procedures are provided in the *Third Year Applied Mathematics Course Handbook* available from the School at the time of enrolment.

O options: Lagrangian dynamics; applications of PDEs and waves; signal processing; financial mathematics.

A options: Mathematical methods; fluid dynamics; advanced mathematical computing; Hamiltonian dynamics and Hamilton-Jacobi theory.

A/O options: Mathematical computing; nonlinear systems and biomathematics.

Applied Mathematics 3 (Advanced) 24 units
Qualifying course Applied Mathematics or Applied Mathematics 2 (Advanced) or Mathematics 2 Combined or Mathematics 2 Combined (Advanced)
Classes Yr: (6 lec & 3 tut)/wk
Assessment generally one 2hr exam/option, assignments

Entry to the Advanced course usually requires a credit or better in any of the qualifying courses. The options are listed under Applied Mathematics 3 above. Students in the Advanced course must take at least four options at the A level. All further information can be found under Applied Mathematics 3.

Mathematical Statistics 3 24 units
Qualifying course Mathematical Statistics 2 or Mathematical Statistics 2 (Advanced)
Prereq Pure Mathematics 2 or Pure Mathematics 2 (Advanced) or Applied Mathematics 2 or Applied Mathematics 2 (Advanced) or Mathematics 2 Combined or Mathematics 2 Combined (Advanced)
Classes Yr: (6 lec & 3 tut & one 2hr prac)/wk
Assessment three 2hr exams/sem, assignments, prac

The course is presented in six modules. Full details are provided in the *Third Year Mathematical Statistics Course Handbook* available from the School at the time of enrolment.

Modules: Distribution theory; linear models; time series analysis; inference; multivariate analysis; design of experiments.

Mathematical Statistics 3 (Advanced)
Qualifying course Mathematical Statistics 2 or Mathematical Statistics 2 (Advanced)
Prereq Pure Mathematics 2 or Pure Mathematics 2 (Advanced) or Applied Mathematics 2 or Applied Mathematics 2 (Advanced) or Mathematics 2 Combined or Mathematics 2 Combined (Advanced)
Entry to the Advanced course usually requires a credit or better in either of the qualifying courses. It covers all of the material of Mathematical Statistics 3 together with extra lectures in second semester on Markov processes. Full details are provided in the Third Year Mathematical Statistics Course Handbook available from the School at the time of enrolment.

Pure Mathematics 3
24 units
Qualifying course Pure Mathematics 2 or Pure Mathematics 2 Combined or Mathematics 2 Combined (Advanced)
Classes Yr: (6 lec & 3 tut)/wk
Assessment generally one 1.5hr exam/option, assignments

This course consists of options which are taught at either O or A level, some taught separately, others in common (A/O level). Each consists of two lectures per week, plus tutorials and assignments. The A options are more demanding. Full details are provided in the Third Year Pure Mathematics Course Handbook available from the School at the time of enrolment.

Students taking the course choose at least six options. There is considerable flexibility in the choice of options, and mixtures of O and A are encouraged. Some options are offered in the evening.

If resources permit, options are expected to include the following:

- **O options**: Rings and fields; topology; logic; coding theory; real variable; statistics; number theory; ordinary differential equations; geometry.

- **A options**: metric spaces; algebra; non-linear analysis; combinatorial theory; Lebesgue integration and Fourier analysis; complex variable; topological groups; computational algebra; categories and computer science; differential geometry; differentiable analysis.

- **A/O option**: History of mathematical ideas.

Pure Mathematics 3 (Advanced)
24 units
Qualifying course Pure Mathematics 2 or Pure Mathematics 2 Combined or Mathematics 2 Combined (Advanced)
Classes Yr: (6 lec & 3 tut)/wk
Assessment generally one 1.5hr exam/option, assignments

Entry to the Advanced course usually requires a credit or better in any of the qualifying courses. The options are listed under Pure Mathematics 3 above. Students in the Advanced course must take at least four options at the A level. All further information can be found under Pure Mathematics 3.

Honours courses

Applied Mathematics 4

Applied Mathematics 4 consists of both formal coursework and an essay project.

Mathematical Statistics 4

Courses of lectures will be given in a selection of advanced topics in the theory of probability and statistics. There is also an essay project which contributes 20 per cent of the total assessment. A talk is required to be given on the project topic. There is also provision for students to attend approved courses from other Departments.

Those wishing to take Mathematical Statistics 4 are asked to consult the fourth year course coordinator during third year. The usual prerequisite for entry is a good credit or better in Mathematical Statistics 3. The final decision for entry rests with the Head of School.

Pure Mathematics 4

Those wishing to take Pure Mathematics 4 are asked to speak to the fourth year course coordinator during third year. The usual prerequisite for entry is a good credit or better in Pure Mathematics 3. The final decision for entry rests with the Head of School.

The Pure Mathematics 4 course has two components: lecture courses (which attract approximately 70 per cent of total credit) and an essay project. As part of the essay project, students are required to prepare a talk about their project. Further details are available from the course coordinator and in the course handbook.

Postgraduate studies

The School of Mathematics and Statistics offers a number of postgraduate courses, including both full-time and part-time options.

- **MA**: part-time, with usual entry requirement a pass degree with a major in Mathematics or Statistics.

- **MSc (Qualifying)**: full- or part-time for students who do not satisfy the usual entry requirements but seek to enter an MSc degree by coursework or research.

- **MSc (by coursework and essay)**: full- or part-time with usual entry requirement an honours degree in Mathematics or Statistics.

- **MSc (by research)**: full- or part-time with usual entry requirement an honours degree in Mathematics or Statistics.

- **PhD**: full- or part-time by research.

Further details can be obtained from the Director of Postgraduate Studies in the School.
Mechanical and Aeronautical Engineering Science

The Departments of Mechanical and Aeronautical Engineering are part of the Faculty of Engineering. In addition to providing professional training in mechanical and aeronautical engineering, they offer an 8-unit course, Mechanical and Aeronautical Engineering Science 2, in the Faculty of Science.

The course is available as an Intermediate course in a science degree for students majoring in mathematics, physics, chemistry, geology, computer science or soil science, and who are thinking of an applied science career in mechanical or aeronautical engineering. Candidates for the BSc degree are not permitted to count more than one of Chemical Engineering Science 2, Civil Engineering Science 2 and Mechanical and Aeronautical Engineering Science 2.

The course is intended to demonstrate the application of scientific principles in an engineering context so that the science student will gain an understanding of some engineering systems.

Double degree
Some Science graduates, who have passed the course Mechanical and Aeronautical Engineering Science 2, may obtain a Bachelor of Engineering degree in Mechanical or Aeronautical Engineering after an additional two years’ study. Students wishing to undertake this option must apply through UAC and compete on the basis of academic merit. Information about application procedures is available from the Engineering Faculty Office in the Engineering Link Building.

Location
Further details about admission to the BE degree course in Engineering may be obtained from the Departments of Mechanical and Aeronautical Engineering. They are in the northeast of the Engineering precinct, and can be entered from Shepherd Street. Lectures are normally held in the Peter Nicol Russell theatres.

Noticeboards
All noticeboards are in the foyer areas outside the lecture theatres on Levels 2 and 3. Notices relevant to these subjects will be displayed on the Level 3 noticeboards in the Department of Mechanical and Mechatronic Engineering.

Registration
All students are required to register with Ms K. Thompson on Level 4 in the Mechanical Engineering Building on either the last day of Orientation or on the first day of lectures.

Timetable information on alternative lecture/tutorial/laboratory/practical classes is available in the Engineering Student Enquiry Office in the PNR Building.

Advice on courses
Members of staff are available during enrolment and orientation periods to give advice about these courses.

Students wishing to see a departmental adviser should apply to the relevant department office.

Tutorials and laboratories
All students are required to undertake the tutorial and laboratory work associated with these courses, details of which are provided in the timetables. The experimental and tutorial work, an integral part of the course, complements the lecture material.

Mechanical and Aeronautical Engineering Science 2

Prereq
Mathematics 1 or Mathematics 1 (Advanced) and Physics 1 or Physics 1 (Advanced)

Mechanical Engineering 2

Prereq
Mathematics 1 or Mathematics 1 (Advanced)
Mutually exclusive with Mechanical Engineering 2A

Classes
Sem 1: (3 lec & one 3hr lab/tut)/wk.
Sem 2: (2 lec & one 3hr lab/tut)/wk

Assessment
one 3hr exam (Sem 1), one 2hr exam (Sem 2), coursework

Syllabus summary
Semester 1
(a) Thermodynamics — concepts, work and heat, property of substances, 1st law of thermodynamics, control mass and control volume analysis of power and refrigeration cycles; thermal efficiency, entropy and 2nd law of thermodynamics, reversible and irreversible processes, isentropic efficiency.

(b) Fluids — fluid properties, pressure, shear, hydrostatics, forces, moments, buoyancy, stability, continuity equations, streamlines, Euler, Bernoulli equations, linear momentum, propulsion, angular momentum, turbomachinery, dimensional analysis, boundary layers, pipe flow and friction.

Semester 2
(c) Kinematics of bodies; frames of reference, velocity and acceleration; angular velocity and acceleration; rotating frame of reference; relative velocity and acceleration; gyroscopic acceleration. Kinetics of rigid bodies; linear momentum and Euler's first law; angular momentum and Euler's second law; centre of mass; moments of inertia; parallel-axis and parallel-plane theorems; principal axes and principal moments of inertia; rotation about an axis; impulse and momentum; work and energy; kinetic and potential energies. Applications to orbital and gyroscopic motion. Planar mechanisms; linkages; mobility; instant centres of rotation; Kennedy's theorem, velocity and acceleration polygons. Introduction to Lagrangian methods.

Reference books
Cengel and Boles Thermodynamics (McGraw-Hill)
Smith and Smith Mechanics (Wiley, 1990)
Mabie and Reinholtz Mechanisms and Dynamics of Machinery 4th edn (Wiley, 1987)

Mechanical Design 1A
Mutually exclusive with Mechanical Design 1
Classes Sem 2: (2 lec & two 3hr drawing office sessions)/wk
Assessment assignments carried out during the design office classes and elsewhere

Syllabus summary

(b) Machine Design — Engineering innovation, creativity. Teamwork. Design process, problem specification. Conceptual techniques and design evaluation. Ergonomic manufacturing and assembly considerations. Detail design of components including: design loads, failure and facture of safety; calculation approach and presentation conventions; stress effects in shape definition and material selection; introduction to engineering hardware including fasteners, bearings and mechanical power transmission. Introduction to involute gears and gear trains (including epicyclic).

Textbook
Boudny *Engineering Drawing* (McGraw-Hill)

Reference book
Shigley *Mechanical Engineering Design* (McGraw-Hill)

Department of Microbiology

The Department of Microbiology offers courses that equip students for a career in microbiology in fields of health, industry and basic research.

In addition, it provides introductory courses to students of agriculture, pharmacy and science. These courses will help students who wish to specialise in related fields where micro-organisms are often used in studying life processes, e.g. biochemistry, genetics, botany and physiology.

Location
The Department is on Level 5 of the Biochemistry Microbiology Building.

Noticeboards
Noticeboards are in the foyer to Level 5, and inside the student laboratories on Levels 3 and 5. Material displayed includes timetables, job vacancies, lists of seminars and lectures of student interest, as well as general announcements.

Registration
All BSc students (except Pharmacy students) must register with the Department prior to the start of semester. Students will then be allocated to practical classes. Failure to attend may preclude allocation to practical classes.

Microbiology 2 16 units
Mrs I. Dalins (coordinator)
Qualifying course Biology 1 or Biology 1 (Advanced)
Prereq Chemistry 1 or Chemistry 1 (Advanced)
Classes Yr (3 lec, 1 tut & 4 prac)/wk
Assessment (one 3hr exam, prac, 2 assignments)/sem

This is a general introduction to the subject and is the qualifying course for Microbiology 3. It is also suitable for those who wish to acquire a broad and working knowledge of microbiology while specialising in other subjects.

The topics covered include history and scope of microbiology, methodology, comparison of major groups of micro-organisms, detailed study of bacteria including structure, growth, metabolism and genetics; aspects of applied microbiology such as food and industrial microbiology, microbial ecology (soil, aquatic, agricultural) and microbial pathogenicity, including virology and immunology. The practical course supplements and complements the lecture material.

Semester 1: Introduction to microbiological techniques and the application of these to bacterial taxonomy, an examination of basic activities of the cell, as well as a look at some of the impacts of microbes in the environment and in agriculture.

Semester 2: The study of the impact of micro-organisms on human beings and the environment, with examples taken from medical, food and industrial microbiology.

Textbook
L.M. Prescott *et al. Microbiology* 2nd edn (WC Brown, 1993)

Microbiology 2 (Advanced) 16 units
Mrs I. Dalins (coordinator)
Qualifying course Biology 1 or Biology 1 (Advanced)
Prereq Chemistry 1 or Chemistry 1 (Advanced)
Classes Yr (3 or 4 lec, 1 tut, 3 or 4 prac)/wk
Assessment as for Microbiology 2 plus Sem 1: one 1hr exam; Sem 2: one 2hr exam

This course will be available to students who have performed well in Biology 1 and Chemistry 1. It will consist of 100 lectures, 96 hours of practical work and 20 tutorials. The course is based on Microbiology 2 with alternative components. The content and nature of these components may vary from year to year. Selection criteria for entry into the course will be available from the course coordinator at the time of enrolment.

Textbook
As for Microbiology 2.
Microbiology 2 (Theory) Auxiliary (A) 8 units

Prereq Biology 1 or Biology 1 (Advanced)
Classes Yr: (3 lec)/wk
Assessment one 3hr exam/sem

This is a terminating course that offers students exposure to limited practical experience, but is suitable for students who are majoring in other aspects of biology and who wish to acquire a broad background knowledge of microbiology.

The topics covered include history and scope of microbiology, methodology, comparison of major groups of micro-organisms, a detailed study of bacteria, including structure and function; aspects of applied microbiology, such as food and industrial microbiology, microbial ecology (soil, aquatic, agricultural) and microbial pathogenicity including virology and immunology.

Textbook
As for Microbiology 2

Microbiology 2 (Theory and Techniques) Auxiliary (S1) 8 units
Prereq Biology 1 or Biology 1 (Advanced)
Classes Sem 1: (3 lec, 1 tut, 4 prac)/wk
Assessment one 3hr exam, prac, 2 assignments

This terminating course is suitable for students who are majoring in other aspects of biology and who wish to acquire an introduction to microbiology and, particularly, microbiological techniques. This course is the first half of Microbiology 2.

The topics covered include history, basic methodology, comparison of main groups of microorganisms, a detailed study of bacteria, including structure and function, and some environmental and agricultural microbiology.

The practical course is designed to complement lecture material and to give practice in basic microbiological techniques.

Textbook
As for Microbiology 2

Microbiology 3 24 units
Dr T. Duxbury (coordinator)
Qualifying course Microbiology 2 or Microbiology 2 (Advanced)
Prereq Biochemistry 2 or Biochemistry 2 Auxiliary or Agricultural Chemistry 2 or Biology 2 (Molecular and General Genetics) Auxiliary or Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)
Classes Yr: (4 lec & 6-7 prac & 1-2 other)/wk
Assessment Sem 1: three 2hr exams, prac, essay; Sem 2: two 2hr & one 1.5hr exam, prac

This course will be available to students who have performed well in Microbiology 2. It will consist of 108 lectures, 189 hours of practical work and 32 hours of other course-related activities. The course is based on Microbiology 3 and the content and nature of certain components may vary from year to year. Selection criteria for entry into the course will be available from the course coordinator at the time of enrolment.

Reference books
To be announced

Microbiology Honours
Prereq credit level pass in Microbiology 3

Candidates for the honours course should consult the Head of Department as soon as examination results are published.

During the honours year, students undertake a research program to produce a thesis and simultaneously broaden their knowledge of general microbiology through reading and Departmental seminars. Towards the end of the year they are required to prepare and deliver a seminar on their research project.

Department of Pharmacology

This Department offers a general training in pharmacology to students in the Faculty of Science studying for the BSc, BMedSc and BPharm degrees. It provides an introductory 8-unit course and a Senior 24-unit course for BSc students.
Location
The Department is located within the Medical School on Floor 2 (the ground floor) of the Blackburn Building, and Levels 1 and 2 of the adjoining Bosch Building.

Noticeboards
Information for students may be found on the noticeboard inside the main door of the laboratory wing of the Department on Level 2 of the Bosch Building.

Registration
All intending students should register with the secretary in Room 221 in the Bosch Building Level 2 before enrolment.

Advice on courses
Science students may consult Dr Spence or other members of the teaching staff for advice before enrolment. A member of the Department may also be present among faculty advisers during the enrolment period.

Pharmacology 2 Introductory 8 units
Dr Robin Allan (coordinator)
Prereq Chemistry 1 or Chemistry 1 (Advanced)
Classes Yr: 2 lec/wk & (8 prac/tut sessions)/yr
Assessment one 2hr exam/sem, classwork

Textbook

Study aids
R.Emst, Pharmacology, Self-assessment Questions for Students (Butterworths, 1989)

Reference books
B.G. Katzung (ed.) Basic and Clinical Pharmacology (Appleton & Lange, 1989)

Pharmacology 3 24 units
Dr Ian Spence (coordinator)
Qualifying course Pharmacology 2 (Introductory)
Classes Yr: (4 lec & 2 tut & 6 prac)/wk
Assessment two 3hr exams/sem, classwork

Semester 1: Molecular pharmacology and toxicology
Work in this semester covers two major areas of pharmacology: (1) toxicology, and (2) drug design and development.

The toxicology area covers metabolism of toxic substances, toxicity to major organs, epidemiology and carcinogenesis. It aims to provide an overview of the topic with detailed examination of selected issues in toxicology. Drug design and development looks at the principles guiding the development of new therapeutic agents, for example new histamine antagonists and the use of new methods to study drug distribution and action such as positron emission tomography (PET) and single photon emission computerised tomography (SPECT) scanning. As part of the course all students prepare a drug profile — a document similar to that required by regulatory authorities when a new drug is introduced. This provides students with the opportunity to become familiar with, firstly, regulatory procedures and secondly with the detailed pharmacology of one particular compound.

Semester 2: Neuropharmacology, cardiovascular pharmacology and respiratory pharmacology
The lecture course in this semester provides a comprehensive, systematic study of three major areas of pharmacology: (1) neuropharmacology, (2) cardiovascular pharmacology, and (3) respiratory pharmacology. The neuropharmacology component examines the actions of psychoactive drugs at all levels from single cells through to behaviour. The cardiovascular and respiratory components examine therapeutic intervention in disease states such as hypertension and asthma and the mechanisms of drug action.

In addition to the core course students choose an elective selected from a number offered by the Department. These cover specific topics in depth and some are laboratory based. Details of these are available from the Department before the commencement of second semester.

Textbook

Study aids

Reference books
C.D. Klaasen Casarett & Doull’s Toxicology, The Basic Science of Poisons (Macmillan)

Pharmacology 3 Advanced 48 units
Subject to the approval of the Head of the Department of Pharmacology, exceptional students may take pharmacology at an advanced level, instead of the normal level. This comprises Pharmacology 3 together with Pharmacology 3 Additional. The combination involves extended practical work and seminar periods occupying approximately 24 total hours a week, and
may include attendance at certain lectures in a related subject.

Textbooks and reference books
As for Pharmacology 3

Pharmacology Honours
Dr R. Einstein, Dr J.L. Black (coordinators)

Subject to a satisfactory standard being attained in Pharmacology, a student may arrange to read for the honours degree in this subject. Much of the work will be arranged to suit the interest of the individual. The student will participate in a research project in progress in the Department. A literature review and a written report on the research project must be prepared. Seminars on the literature review, the project and another chosen topic will be given by the student.

School of Physics

The School of Physics provides undergraduate courses in physics in a four-year sequence, Physics 1-4, for students wishing to take the BSc honours degree in Physics. The three-year sequence, Physics 1-3, is taken by candidates for BSc pass, or for BSc honours in another subject, who wish to take physics as one of their major subjects. Several other faculties and other departments within the Faculty of Science require that Physics 1 or Physics 1 (Advanced) be taken as part of the students’ preparation for later studies in their more specialised fields. Similarly Physics 2 courses are taken by many Faculty of Engineering students, as well as by many Faculty of Science students who intend to major in other subjects.

The School of Physics provides Environmental Physics strands in Physics 1 and Physics 2. Students wishing to major in Physics with an environmental emphasis, and students majoring in Physics within the BSc (Environmental) will have opportunities to select environmental physics topics in Physics 3 and Physics 4.

Location
Physics 1: Lectures in Physics Building, laboratories in Carslaw Building
Physics 2-4: Physics Building

Noticeboards
In the Physics Building as appropriate for each course.

Registration
Physics 1: At normal laboratory periods during the first week of lectures in first semester. Carslaw First Year Laboratories.
Physics 2: At first lecture, in Physics Building. See noticeboard for allocation of lecture theatres.
Physics 3: At first lecture, in Physics Building. Consult noticeboard early in the orientation period.

Advice on courses
A member of the physics staff is normally present among faculty advisers during enrolment week to advise intending first year students. Subsequent to this, if you want to see an adviser, the first year secretary will arrange if. Student advisers for later year courses (see chapter 2) may be consulted in the Physics Building.

Secretary
First year secretary, Room 202, Physics Building.

Information booklet
Further information about first year physics courses is contained in a booklet for intending first year students available at enrolment or during Orientation or from the first year secretary.

First Year Physics courses
These are offered at two levels; Physics 1 (Advanced) and Physics 1. Both provide a sound foundation for a further study of physics. Physics 1 (Advanced) is available to students with a very good record in physics (TERs at least 95.0 and 2-unit Physics scores at least 90) and proceeds faster than the Regular strand of Physics 1, covering further and more difficult material.

Physics 1 12 units
Mrs Millar
AKn Regular: Physics 2-unit or the Physics core of the 3/4-unit Science course. Fundamental: no assumed knowledge Coreq any Junior Mathematics course
Classes Yr: (3 lec & 3 prac)/wk, optional tutorial
Assessment (one 3hr exam)/sem, classwork, assignments.

In each semester students choose between two options. In the first semester the available options are labelled Fundamental and Regular. The Fundamental option is for those who have not studied physics before or who have had major difficulties with the subject at the HSC level. Students who have scored 65 marks or better in 2-unit Physics or the equivalent should not enrol in this option.

In the second semester the available options are Environmental and Life Sciences, and Physical and Technological Sciences.

Students can move from either option in first semester to either option in second semester.

Students may apply to the Head of First Year Studies for permission to move from Physics 1 to Physics 1 (Advanced) at the start of second semester.

In each semester there are three 4-week modules.

Content of modules
Semester 1
Fundamental: Language of Physics, Mechanics, Waves
Regular: Mechanics, Fields and Flow, Waves

Semester 2
Environmental and Life Sciences: Electromagnetism, Properties of Matter, Atoms and Nuclei
Physical and Technological Sciences: Electromagnetism, Thermal Physics, Quantum and Materials Physics
Laboratory work
Each option has an associated course of thirteen 3-hour sessions covering various components which vary slightly between the options but which include some or all of mechanics, electrical circuits, optics, measurement, computational physics and a number of problems and experiments.

Textbooks
R. L. Kirkup Experimental Methods 1st edn (John Wiley, 1994)

Physics 1 (Advanced) 12 units
Mrs Millar
AKn Physics 2-unit or the Physics core of the 3/4-unit Science course
Coreq Mathematics I or Mathematics I (Advanced)
Classes Yr: (3 lec & 3 prac)/wk
Assessment (one 3hr exam)/sem, classwork, assignments.

Students can change their enrolment from Physics 1 (Advanced) to Physics 1 at any time.
In each semester there are three 4-week modules.

Contents of modules
Semester 1: Mechanics, Fields and Flow, Waves and Chaos
Semester 2: Electromagnetism, Thermal Physics, Quantum and Materials Physics
Laboratory work
There is a course of thirteen 3-hour sessions each semester covering various components which include electrical circuits, optics, measurement, computational physics and a number of problems and experiments.

Textbooks
R. L. Kirkup Experimental Methods 1st edn (John Wiley, 1994)

Physics 2 16 units
Dr Tango
Qualifying course Physics 1
Prereq Mathematics I
Classes Yr: (3 lec, 3 prac & 2 microlab)/wk
Assessment two 2.5hr exam/sem, 4 assignments/sem, 2 prac reports, microlab (report & test)/sem

The lecture course in Physics 2 is offered in the three strands: advanced, technological and environmental physics. Some of the lecture material is common to two or more strands, and all three strands will qualify a student for Physics 3.

Students who have achieved a Credit or better in Physics 1 or IA (or equivalent) are eligible for the advanced physics strand, which includes electrodynamics, optics, quantum physics (including an introduction to solid state physics and particle physics), astronomy and circuit theory.

The technological strand is designed for students majoring in the physical and engineering sciences. The lectures cover the following topics: electronic properties of matter, optics for communications and sensing, quantum physics (with applications to solid state and particle physics), astronomy and circuit theory.

The environmental physics strand includes lecture courses on energy transport in the environment, optics for communications and sensing, astronomy, measurement and remote sensing of the environment, and quantum physics (with an introduction to spectroscopy).
Computational physics is taught in two-hour sessions in a PC-based computing laboratory throughout the year. An introductory session is held in the first week of first semester for students who are not familiar with programming with a personal computer. The material for this course is drawn from one of the concurrent lecture courses (currently optics and quantum physics). Students work in teams of three. Each team does a short project in the last two sessions and submits a short report. There is also a one-hour test which is administered individually.

Experimental Physics is taught as a laboratory course of three-hour sessions and includes experiments in the areas of instrumentation, quantum physics and properties of matter and environmental sensing. The course is based on mastery of the material, with marks awarded on completion of each experiment. Assessment is also based on reviews of the students’ logbooks and written reports on selected experiments.

Full details of course structure, content and assessment are provided in the handbook Information for Students available at the time of enrolment.

Textbooks
R. Eisberg and R. Resnick Quantum Physics (Wiley, 1985)
D. J. Griffiths Introduction to Electrodynamics (Prentice Hall, 1989)
J. O’Byrne (ed.) Experimental Physics Notes (School of Physics)

Reference book
E. Hecht Optics (Addison-Wesley, 1987)

Physics 2 (Environmental Physics) Auxiliary 8 units
Dr Tango
Qualifying course Physics 1
Prereq Mathematics I
Classes Sem 1: 3 lec/wk; Sem 2: (2 lec & 3 prac)/wk
Assessment one 2.5 hr exam/sem, 4 assignments/sem, 2 prac reports.

This course is an introduction to the application of physics to problems in environmental science, including techniques for measurement and remote sensing. Topics covered include energy transport in the environment, quantum physics with application to nuclear processes and ionising radiation, and the physical principles of measurement and sensing. Because much of our understanding of processes in the Earth’s atmosphere has come from the study of the atmospheres of other planets in the Solar System a course on astronomy is also included.
A one-semester course in experimental physics gives students the opportunity to become familiar with a range of laboratory techniques.

Textbooks
R. Eisberg and R. Resnick Quantum Physics (Wiley, 1985)
J. O’Byrne, (ed.) Experimental Physics Notes (School of Physics)
Reference book
E. Hecht Optics (Addison-Wesley, 1987)

Physics 3 24 units
Dr Brand
Qualifying course Physics 2
Prereq Mathematics 2 (Pure, Applied or Combined)
Classes Yr: (4lec,6prac&2microlab)/wk for year; (5lec & 7 prac)/wk for part year
Assessment (one 2hr & one 3hr exam)/sem, prac, one 4000w essay, assignments

The lecture course is divided into core topics, some of which may be taken with a theoretical or an applied emphasis and several options.

Full details of course structure, content and assessment are provided in the handbook Information for Students available at time of enrolment.

Core topics: Quantum Mechanics, Thermal Physics, Computational Physics, Special Relativity.

Options: include Energy Physics, Astrophysics, Plasma Physics, Modern Optics, Solid State Physics, Acoustics and Ultrasonics, Nuclear and Particle Physics. Not all options will be offered every year.

Textbooks
R. Eisberg and R. Resnick Quantum Physics (Wiley, 1985)
D.J. Griffiths Introduction to Electrodynamics (Prentice-Hall, 1989)

Scientific Visualisation 3
[This course will be available from 1998]
Prereq Computer Science 2, and either Mathematics 2 (Computing) or Applied Mathematics 2 or Applied Mathematics 2 (Advanced). Students need to have taken either Physics 1 or Chemistry 1 in order to fulfill the requirements of module choice in Semester 2.
Qualifying course a Credit or better in Mathematics 2 (Computing) or Ma thematics2(Computing) (Advanced).
Students should have taken options 2A1 and 2M2 in second year maths courses.
Coreq Computer Science 3 (within the BCST)
Classes (6 lec & 6 lab)/week
Assessment 6 modules of equal weight, assessed by written examinations and written assignments and/or lab work

This course covers topics in which computation is used to model aspects of the physical world in order to study them. In semester 1, the course will present the main issues in numerical accuracy and the ways of presenting complicated data so that scientists can understand the underlying patterns; in semester 2 students will study several options applying these principles to specific scientific disciplines, or furthering their knowledge of the techniques. The course modules will be offered by several departments (Physics, Chemistry, Mathematics and Computer Science in the Faculty of Science, as well as by Aeronautical Engineering) but the School of Physics will act as coordinator. Students who wish to take this course in their Junior year are advised to take Physics 1 and/or Chemistry 1.

Textbook
See Departmental Handbook

Physics Honours, Physics 4
Dr Cramer
Qualifying course Physics 3
Prereq Mathematics 3 (Pure or Applied)
Classes Yr: 160 lec & research project
Assessment three 3hr and five 2hr exams, one 9000w report

Students of sufficient merit may be admitted to an honours course in fourth year. They must devote their whole time to work in connection with Physics. Physics honours comprises coursework (weight 50%) and a research project (weight 50%).

The courses of lectures and prescribed reading cover quantum mechanics, statistical mechanics and kinetic theory, electromagnetic theory, solid state physics, plasma physics, modern optics, sub-atomic physics, as tropysics, relativistic quantum mechanics and mathematical methods. Additional optional courses, which may not be offered every year, include general relativity, materials physics, laser physics, cosmology, millimetre wave physics, signal and image processing, solar energy, fundamentals of physics, and plasma astrophysics.

Honours students are associated with one of the research groups in the School of Physics, including the education research group, their research project is a part of the research activity of that group. Students are required to submit a formal report on their research work. Only students with a strong mathematical background are permitted to undertake a wholly theoretical research project. A mathematical methods course is provided for such students.

Honours students are encouraged to participate along with staff and research students in all activities within the School. They are provided with office accommodation, and are expected to attend colloquia, seminars and meetings of the Physics Board. They may be employed for a few hours per week in first year teaching.

Postgraduate study
Details concerning fields of postgraduate study in the School of Physics may be obtained on application to the Convenor of the Physics Postgraduate Committee, School of Physics.

Department of Physiology

The Department of Physiology provides main courses for those wishing to major in physiology and an auxiliary course for others. Students reaching an acceptable standard may enrol for the honours year, MSc or PhD degrees.
Location
The Department is in the Anderson Stuart Building opposite Fisher Library bookstack; the office is on the ground floor.

Noticeboards
Information on courses and examination results are placed on a noticeboard near the Manning Road entrance (north side).

Registration
All students (including repeat students and non-degree students) must complete a registration card (available in the office) during the orientation period or earlier. Consult the noticeboard to determine the procedure for arranging your laboratory class time.

Advice on courses
The office will direct you to an appropriate member of staff.

Information booklet
An information booklet and synopses of courses are available in the office.

Physiology 2 16 units
This course is not available to students who first enrolled in the BSc degree after 1991.

See 1994 Faculty of Science Handbook, p. 102 or consult Department for details of this course.

Physiology 2 Introductory 8 units
Dr Frommer (course supervisor), and other Department of Physiology staff.

AKn Biology and Physics at HSC level
Prereq Chemistry 1 or Chemistry 1 (Advanced) and Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences) plus two of the following: Biology 1, Biology 1 (Advanced), Computer Science 1, Computer Science 1 (Advanced), Physics 1, Physics 1 (Advanced), Psychology 1.

Classes (3 lec & 1 tut or 1 prac)/wk
Assessment one 3hr exam/sem, prac reports, essays

A general course dealing with the functions of the major human body systems: nerves and muscles, circulatory, respiratory, gastrointestinal, hormonal and immunological systems, blood, basic cell physiology, basic neuroanatomy and principles of data analysis.

Textbook
R. Rhoades and R. R. Pflanzer Human Physiology (Saunders, 1992)

Physiology 3 24 units
Qualifying course Physiology 2 (Introductory)
Prereq Biochemistry 2 or Biochemistry 2 (Auxiliary), plus an intermediate course in one of the following subjects: Anatomy and Histology, Biology, Chemistry, Computer Science. Mathematics, Mathematical Statistics, Microbiology, Pharmacology, Physics and Psychology. Students in the Faculty of Engineering who have completed Physiology 2 (Introductory) plus at least one other Second Year course similar to one of the above prerequisites may also be permitted to enrol.

Classes Sem 1: (4 lec & 8 prac)/wk; Sem 2 (option 1): (3 lec & 3 tut & 6 prac)/wk or (option 2): (4 lec & 2 tut & 6 prac)/wk
Assessment 3hr exam/sem, spot tests, essays, prac reports, seminar presentations

The course, which is taught jointly by the Departments of Physiology and Anatomy and Histology, consists of a core course in semester 1 and one of two elective options in semester 2. The semester 1 core course is concerned with the structure and function of the nervous system, at the molecular, cellular and integrative level. Some examples of neurological disorders will be discussed. The following topics will be covered: the regional anatomy of the central nervous system; somatomotor and autonomic control systems; visual system; auditory system; somatosensory system; hypothalamus; development and regeneration of the nervous system. The practical component in semester 1 consists of experiments in physiological methods, small group tutorials on neuroanatomy and small group sessions in which students discuss current research papers in a wide variety of subdisciplines of neuroscience.

In semester 2, students choose an elective option in either (1) integrative and cellular neuroscience, or (2) the cardiovascular system. The neuroscience option will allow students to study in depth a range of topics in neuroscience, at the molecular, cellular and integrative level. The topics covered are: the relationships between glia and neurones; the molecular basis of brain function; the integrated central neural control of autonomic and somatomotor functions; vision and higher cortical functions. Practical work will take the form of either an experimental project carried out in a research laboratory or an extensive library research project.

The second option in semester 2 offers an up-to-date and in-depth treatment of the structure and function of the cardiovascular system at the organ system, cellular and molecular levels. There is a particular focus on exercise physiology and the way in which the heart, circulation and muscle contribute to the limits of sporting achievement. The excitability, contractility and energetics of the heart and blood vessels are studied, and the regulation of these organs by local (physical and chemical) factors, hormones and the nervous system are discussed, with emphasis on cellular and molecular mechanisms. At the systemic level, the course deals with short-term (neural) mechanisms controlling the blood pressure, and how the system behaves during exercise and other stresses. Long-term (hormonal) mechanisms regulating blood pressure via the renal control of extracellular fluid volume, and the pathophysiology of atherosclerosis and hypertension are also discussed. Lectures are combined with practical laboratory experiments on mechanical models, animals and human subjects.

Textbook
E. Kandel, J. Schwartz and T. Jessup Principles of Neural Science
Physiology Honours
Assoc. Prof. Davey (course supervisor)

During fourth year, no formal course of lectures is provided but students are given a relevant problem to investigate. This problem usually represents a small facet of one of the major current research projects within the Department, and the students work in collaboration with members of the staff. Students write a thesis embodying the results of their work.

Department of Psychology

Psychology is the study of behaviour. As a study it is approached on a scientific basis, with provision for professional training at the postgraduate level. The research activities of the Department cover almost all of the main branches of the subject.

Registration and noticeboards
Students in all years must register during the orientation period. Psychology 1 students register by going to the Carslaw Building during orientation and collecting a personalised computer-generated timetable, which will indicate the lecture times and the tutorial group to which they have been allocated. Further information will be posted at the Enrolment Centre and on the Psychology 1 noticeboard on the 4th Floor of the Griffith-Taylor Building. Information about registration meetings for Psychology 2 and Psychology 3 students will also be posted at the Enrolment Centre, and on the departmental noticeboards on the 5th floor of the Griffith-Taylor Building.

Enquiries
The main enquiry office of the Department is Room 416, Griffith-Taylor Building (tel. 351 2872) where details may be obtained of the staff members available throughout the year to discuss particular courses.

Honours
In order to be eligible to graduate with honours in Psychology, it is necessary (except as provided in the by-laws or resolutions) to gain a pass with at least credit in Psychology 2 and Psychology 3. Students wishing to graduate with honours in Psychology are urged to discuss their choice of other subjects with a Faculty adviser as soon as practicable. There is currently a quota on entry to Psychology 4.

Examinations
Undergraduate courses are examined at the end of each semester and include classwork by way of essays, reports or practical/laboratory work. At the beginning of each course or section of a course, students are advised of its relative weight and the contributions of exam and classwork for assessment purposes.

Textbooks
Check departmental noticeboards before buying prescribed texts.

Psychology 1
12 units
Classes Yr: (3 lec & one 1hr tut, one 1hr demonstration)/wk
Assessment Sem 1: one 3hr exam, one 1000w essay, tut test;
Sem 2: one 3hr exam, one 1500w prac report, tut test Yr: 6hr of experimental participation

Registration with the Department should take place in the orientation period. Psychology 101 students register by going to the Carslaw Building during orientation and collecting a personalised computer-generated timetable, which will indicate the lecture times and the tutorial group to which they have been allocated. Details will be posted on departmental noticeboards.

The course is a general introduction to the main topics and methods of psychology, and is the basis for advanced work as well as being of use to those not proceeding with the subject. The course covers the following areas: subject matter and methods of psychology; basic statistics and measurement; behavioural neuroscience; sensory processes; social psychology; personality theory; human development; human mental abilities; learning, motivation and abnormal psychology; visual perception; cognitive processes.

Textbooks
To be announced
Handbook for Psychology 1 (1996)

Psychology 2
16 units
Qualifying course Psychology 1
Classes Yr: (4 lec & up to 4hr tut/prac)/wk
Assessment two 2hr exam, essays, prac, reports/sem

Psychology 2 deals with material on both basic and complex psychological processes and covers the following topics:

Psychological statistics
Classes Yr: (1 lec & 1 tut)/wk
Assessment one 1hr exam, quiz/sem

Personality
Classes Sem 1: (1 lec & 1 tut)/wk
Assessment one 1hr exam, one 1500w essay

Individual Differences
Classes Sem 1: (1 lec & 1 tut)/wk
Assessment one 1hr exam

Behavioural Neuroscience
Classes Sem 1: (1 lec & 1 prac)/wk for 8 wks
Assessment one 40min exam

Perception
Classes Sem 1: (1 lec & 1 prac)/wk for 5 wks; Sem 2: (1 lec & 1 prac)/wk for 4 wks
Assessment one 20min exam/sem

Learning
Classes Sem 2: (1 lec & 1 prac)/wk for 9 wks
Assessment one 40min exam, prac report

Social Psychology
Classes Sem 2: (1 lec & 1 tut)/wk
Assessment one 1hr exam, one class quiz
Semester 1

Abnormal Psychology
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, one 1500w essay, tut paper

Cognitive Processes: Recognition, Search and Memory
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, prac reports

History and Philosophy of Psychology
(required of students wishing to proceed to Psychology Honours)
Classes Yr: (1 lec & 1 tut)/wk
Assessment one 45 min exam, tut paper

Intelligence
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, one prac report, tut paper

Learning and Motivation
Classes (1 lec & up to 2hr of tut or prac)/wk
Assessment one 45 min exam, prac report

Measurement and Psychometrics
(required of students wishing to proceed to Psychology Honours)
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, prac report

Social Psychology
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, prac report

Theoretical Bases of Development
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, one 1500w essay

Semester 2

Behavioural Neuroscience
Classes (1 lec & up to 2hr of prac or tut)/wk
Assessment one 45 min exam, prac report

Child Abnormal Psychology
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, one 1000w essay, tut paper

Developmental Issues
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, assignment

Environmental and Organisational Psychology
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, one prac report

History and Philosophy of Psychology
(required of students wishing to proceed to Psychology Honours)
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, one 2500w essay, tut paper

Human Performance
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, prac report

Language and Communication
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, assignment

Perceptual Systems
Classes (1 lec & up to 2hr of tut or prac)/wk
Assessment one 45 min exam, prac report

Personality
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, assignment

Statistics and Research Design
(required of students wishing to proceed to Psychology Honours)
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, prac report

The Nature/Nurture Controversy in Psychology
Classes (1 lec & 1 tut)/wk
Assessment one 45 min exam, one 1500w essay, tut paper

Students wishing to proceed to Psychology Honours must complete History and Philosophy of Psychology and the options in Measurement and Psychometrics, and Statistics and Research Design, plus two options in each semester.

Students not wishing to proceed to Psychology Honours must complete four options each semester.

Psychology 4 Honours
Prereq credit or better in Psychology 2 and 3; specified options in Psychology 3
Assessment one 2hr & one 3hr exam or equivalent

Due to restricted resources for research supervision, the intake to Psychology honours will be limited to approximately 50 students and will be determined by academic merit.

Students are required to (a) devise, conduct and report upon an empirical research project, (b) write a theoretical thesis, and (c) attend one lecture course, two seminar courses and two method courses. The areas of psychology in which these activities may occur depend on the interests and specialities of staff members.

Reference lists will be supplied by staff handling the numerous special fields that are available.
Postgraduate study

MSc and PhD in Psychology

See the University’s Statutes and Regulations 1994-95. for by-laws and resolutions. Direct enquiries to the Head of Department.

Master of Psychology

Postgraduate training in clinical psychology is controlled by the Faculty of Science. Details of the Master of Psychology degree awarded on successful completion of this training are available in the Statutes and Regulations 1994-95 and Chapter 7 of this handbook.

Soil Science

See under Department of Agricultural Chemistry and Soil Science.

Bachelor of Science (Advanced) degree program

Please refer to Chapter 3 of this book for resolutions and table of courses, and to Chapter 5 for the Bachelor of Science course descriptions.

Bachelor of Science (Environmental) degree program

The Bachelor of Science (Environmental) requires three years of full-time study. An honours program is available and requires a further year of full-time study. Progression in the Bachelor of Science (Environmental) degree program is by accumulation of credit points gained by completing a course. A total of 140 units is required for the degree. For information on other relevant courses for this degree program, please refer to the Bachelor of Science course descriptions in this chapter.

HSC Aggregate

The minimum TER for admission into the degree of Bachelor of Science (Environmental) is 93.

Transferring into the BSc (Environmental)

After 1996 students will be permitted to transfer from other degrees offered by the Faculty of Science into the BSc (Environmental).

Environmental Earth Science 1

12 units

Coreq Biology 1 or Biology 1 (Advanced), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)

Classes 78hr of lec & prac, 26hr fieldwork

Assessment by examination and lab/field exercises

This course introduces concepts of earth science as a foundation for studies in environmental science. Students will explore processes operating as and within the earth to analyse earth systems. Recent developments in a number of disciplines will form the focus of the course.

Environmental Science 2A

16 units

Qualifying courses Biology 1 or Biology 1 (Advanced), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Environmental Earth Science 1, Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences). Two of Biology 1, Chemistry 1 or Mathematics 1 must be taken at an Advanced level.

Coreq Environmental Science 2B

Classes Yr: (3 lec, 1 tut, 2 prac)/wk, field excursions in prac time and in vacations

Assessment one 3hr exam, 3 prac assignments per semester

Environmental Science 2A provides the integrated framework for understanding natural environments in terms of their chemical, physical, biological, ecological and earth-scientific components. This is used to identify and understand the impacts of humans on our environments at scales from local rivers to global patterns of climate. Emphasis is on practical measurement and interpretation to provide professional training in use of numerous relevant disciplines.

Environmental Science 2B

16 units

Qualifying courses Environmental Earth Science 1, Biology 1 or Biology 1 (Advanced), Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program), Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences). Two of Biology 1, Chemistry 1 or Mathematics 1 must be taken at Advanced level.

Coreq Environmental Science 2A and 16 units from a relevant discipline

Module 1: (Introduction to Environmental Physics)

Classes Yr: (3 lec/tut, 3 prac)/wk

Assessment (one 3hr and one 1.5hr exam)/sem, classwork,

(Sem 2: one optional 2hr exam for Distinction grades)

Students will take the Regular Strand of Physics in Semester 1 and the Environmental Life Sciences module in Semester 2. A complete description is available in the Physics entry of the Faculty Handbook.

Module 2: (Design and Analysis of Environmental Sampling)

Classes Sem 2 (weeks 1-6): (2 lec, prac)/wk

Assessment one 1.5hr exam in Sem 2

This course is a modification of a successful module in the Biology 3 (Ecology) course and will run in conjunction with it. The course introduces the logical structure of environmental sampling, including the nature of variables, univariate and multivariate measures, correlation of environmental variables and interpretation of data.

This course introduces the theory of sampling design for measurements at different scales of biological systems, statistical analysis of data and the interpretation of magnitude and scale of
environmental disturbances. Practical classes are computer-interactive exercises on these topics, plus an introduction to modelling environmental impacts in biological populations.

Environmental Science 3 24 units
Qualifying course Environmental Science 2A, Environmental Science 2B
Coreq one other Senior course in a relevant discipline (Biology, Chemistry, Geography, Geology, Physics)

Course structure
The course consists of a 6-unit Core and 3 x 6-unit modules to be taken from those offered in the relevant contributory Schools and Departments. The Core course (6 units) is taken in its entirety throughout both semesters, including field-courses. Three options are to be taken (subject to the approval of the Chair of the Interdepartmental Board for Environmental Studies). No student may take more than 12 units in any one relevant discipline. No option may be counted towards Environmental Science 3 and any other Senior or other enrolment. Consult the relevant Department/School or Course Executive Officer well in advance of enrolment. All enrolments in options other than the core must also be approved by the host Department/School or Course Executive Officer.

Environmental Science Core Course (6 unit):
Classes Yr: (1 lec or tut)/wk; 52hr of practical and field-courses.
Assessment one 1.5hr exam; 2 practical assignments each semester; one major environmental report in Sem 2

The Core course in Environmental Science 3 builds on foundations from intermediate Environmental Science courses to provide the integration of scientific and other aspects of environmental problem-solving and professional responsibilities. Topics include introductions to environmental ethics law, economics, and issues of planning, regulation and management for the built and natural environments.

Emphasis will be on practical work in field-courses to learn how to interpret and synthesise environmental data, to make decisions and recommendations about possible environmental management and how to use diverse sources of specialist information for large-scale problem-solving.

Bachelor of Science (Molecular Biology and Genetics) degree program

Please refer to the Bachelor of Science section of this chapter for course descriptions for the Bachelor of Science (Molecular Biology and Genetics).

Ilsisi

For an introductory statement on the Science/Law course, see Chapter 3.

Legal Institutions
Classes Yr: (3 lec & 2 tut)/wk

An introduction to law which explores the origin and development of law in Australia, and the institutions through which it is promulgated and administered today. Attention is given in this regard to the processes of government, parliamentary, executive and administrative, and the constitutional framework in which these operate. The court structure is also studied, along with the role of the judiciary in shaping the law. Major theories about the nature and purpose of law will be discussed, and students will be encouraged to evaluate critically the way in which legal institutions work.

The tutorial program is used for detailed consideration of the reading materials. The lecturer will post notices relating to the course on the Fisher Stack noticeboard.

Legal Research and Writing
This course is designed to develop students’ capacity in legal research and writing. The course has two components: legal research (including instruction in computer assisted legal research) and legal writing. Each component must be completed for a pass grade to be obtained. The course is conducted on a pass/fail basis. Both components are integrated in law subjects taught in the first three years of the Combined degree.

Constitutional Law
Classes Yr: (2 lec & 1 tut)/wk

The aim of the course is to give students an understanding of State, and especially Federal, constitutional law. In the latter area, the aim is to give an overall appreciation, complemented by more detailed examination of selected topics.

The State content includes the Constitution Act 1902 (N.S.W.) generally, particular provisions (e.g. peace, welfare and good government, manner and form, territoriality, separation of powers), the Australia Acts 1986, the State Constitution as affected by, and as compared with, the Commonwealth Constitution.

The Federal content includes introductory material (e.g. Federation, characterisation, severance, outline of judicial review and interpretation), selected federal legislative powers, the judicial power and jurisdiction, prohibitions on power, inconsistency of laws, Commonwealth-State relations.

Torts
Classes one 1hr tut/fn & twolhr lec/wk

The law of torts is concerned with common law and statutory liability for non-contractual civil wrongs. This course is directed at providing students with a
comprehensive understanding of the principles on which liability is based through detailed study of a number of tort actions including trespass, negligence and nuisance. In the tort actions selected for study, the course will examine the various forms of conduct and states of mind which may give rise to liability for damage, ranging from physical injury to person or property, to purely economic loss. Limitations on liability will be examined critically.

The course includes a study of the historical evolution of tort liability and a detailed analysis of causation and remoteness of damage, the assessment of damages, fatal accidents and other injuries to relational interests, concurrent and vicarious liability, the action for breach of statutory duty and liability for animals.

Criminal Law

Classes Yr: (2 lec & 1 tut)/fn

This course seeks to provide a knowledge and critical understanding of the criminal law, in the context of the Australian criminal justice system.

The subject-matter covered in the course is essentially as follows:
(a) Crime and the criminal justice system
(b) Offences against the person
(c) Offences against property
(d) General principles of criminal liability
(e) Criminal procedure
(f) Sentencing

The lecturers will post information relating to the course on the noticeboard in Fisher Stack.

Administrative Law

Classes Yr: (2 lec & 1 tut)/wk

This course is concerned with the powers and procedures of administrative agencies, and the avenues for review of their decisions. Non-judicial avenues which are considered include the Commonwealth Ombudsman, the Federal Administrative Appeals Tribunal, freedom of information legislation and public consultation under rule-making procedures. The statutory and common law procedures for seeking judicial review are studied, together with the grounds of judicial review and remedies. Policy issues which arise throughout the course are considered by reference to political and legal theory, and are pursued in greater depth in the context of the tutorial component of the course and the research assignment.

Contracts

Classes Yr: (2 lec & 1 tut)/wk

Contract law provides the legal background for transactions involving the supply of goods and services and one means, arguably the most significant means, by which the ownership of property is transferred from one person to another. It vitally affects all members of the community and a thorough knowledge of contract law is essential to all practising lawyers. In the context of the law curriculum as a whole, Contracts provides background which is assumed knowledge in many other courses.

It necessarily follows from the above that the aims of the course are composite in nature. Perhaps the central aim is to provide an understanding of the basic principles of the common law and statutes applicable to contracts and to provide a grounding in one of the most important areas of law in practice. A second aim is for students to be given the means to evaluate, to make normative judgements, about the operation of the law. This leads to a further aim, admittedly fairly modest in scope, to make some examination of contract law in other countries. As Contracts is basically a case law subject, the final aim of the course is to provide experience in problem solving by application of the principles provided by the decided cases.

Successful completion of this course is a prerequisite to the option Advanced Contracts.

The lecturers will post information relating to the course on the Law noticeboard in the Carslaw Building.

Degree of Bachelor of Computer Science and Technology

Digital and Electronics Technology 1

12 units

AKn Mathematics 3-unit course and the Physics section of the Science 3-unit or 4-unit course or 2-unit Physics Coreq Mathematics 1 or Mathematics 1 (Advanced) and either Computer Science 1 or Computer Science 1 (Advanced)

Classes Yr: (6hr lec, lab, tut & computing)/wk

Assessment two 2hr exams/sem, assignments, laboratory reports

Introductory Electronic Systems (6 units): an integrated course which combines computer-based problem solving and simulation with an introductory study of electronic components, circuits and systems. Linear DC circuits, DC switching and transients; AC circuits and frequency response. Electrical safety. Operational amplifier functions. The laboratory work includes instrumentation and computer-based instrument emulation.

Introductory Digital Systems (6 units): an integrated course which combines construction and manufacture techniques for digital systems, schematic capture, simulation and printed circuit board design software with number representation, combinational logic design, sequential logic design, registers, counters, ROM and RAM elements and synchronous sequential circuits. Associated laboratories include a team-based digital design construct and test project.

Textbook

To be determined

Mathematics 2 (Computing) 16 units

[This course will be available from 1997]
Qualifying course Mathematics 1 or Mathematics 1 (Advanced)

Classes (8hr of lec, tut & computer lab)/wk

Assessment generally one 2hr exam/option plus assignments

This course consists of options from Pure Mathematics 2 and Applied Mathematics 2, suitable for students in the BCST degree. Students must take options that include either 2J1 or 2M1 in semester 1 and 2J2 in semester 2. Students who intend to proceed to Pure Maths 3 (Computing) should take the options 2D1 or 2E1 and also 2D2+2G2 or 2F2+2N2. Students who intend to proceed to Applied Maths 3 (Computing) should take the options 2A1 or 2C1 and also 2M2 or 2C2. See the departmental handbook for details.

Textbook
See Departmental Handbook

Mathematics 2 (Computing) (Advanced) 16 units

[This course will be available from 1997]

Qualifying courses Credit level or better in Mathematics 1 or Mathematics 1 (Advanced)

Classes (8hr of lec, tut & computer lab)/wk

Assessment generally one 2hr exam/option plus assignments

This course consists of options from Pure Mathematics 2 and Applied Mathematics 2 suitable for students in the BCST degree. Students must take options that include either 2J1 or 2M1 in semester 1 and 2J2 in semester 2. At least 3 modules must be at A level. Students who wish to proceed to Pure Maths 3 (Computing) or Pure Maths 3 (Computing) (Advanced) should take the modules 2D1 and 2D2+2G2. Students who wish to proceed to Applied Maths 3 (Computing) or Applied Maths 3 (Computing) (Advanced) should take the modules 2A1 and 2M2. See the departmental handbook for details.

Textbook
See Departmental Handbook

Pure Mathematics 3 (Computing) 24 units

[This course will be available from 1998]

Qualifying course Mathematics 2 (Computing) or Mathematics 2 (Computing) (Advanced). Students should have taken the options 2A1 or 2C1, and also 2M2 or 2C2 in second year Maths course.

Classes (6 lec & 3 tut)/wk

Assessment generally one 1.5hr exam per option, assignments

The course consists of 6 options from those available in Pure Mathematics 3, of which 4 must be chosen from the following: Categories and Computer Science, Logic, Statistics, Coding Theory, Combinatorics, Computational Algebra. At least 3 modules must be at A level.

Textbook
See Departmental Handbook

Pure Mathematics 3 (Computing) (Advanced) 24 units

[This course will be available from 1998]

Qualifying course a Credit or better in Mathematics 2 (Computing) or Mathematics 2 (Computing) (Advanced). Students should have taken options 2D1 and 2D2+2G2 in second year Maths courses.

Classes (6 lec & 3 tut)/wk

Assessment generally one 2hr exam/option, assignments

The course consists of 6 options from Applied Mathematics 3, which must include Signal Processing, Mathematical Computing, Advanced Mathematical Computing, Financial Mathematics. At least 4 options must be taken at A level.

Textbook
See Departmental Handbook

Applied Mathematics 3 (Computing) 24 units

[This course will be available from 1998]

Qualifying course Mathematics 2 (Computing) or Mathematics 2 (Computing) (Advanced). Students should have taken the options 2A1 and 2M2 in second year Maths courses.

Classes (6 lec & 3 tut)/wk

Assessment generally one 2hr exam/option, assignments

This course consists of 6 options from Applied Mathematics 3, which must include Signal Processing, Mathematical Computing, Advanced Mathematical Computing, Financial Mathematics. At least 4 options must be taken at A level.

Textbook
See Departmental Handbook

Scientific Visualisation 3

[This course will be available from 1998]

Qualifying course a Credit or better in Mathematics 2 (Computing) or Mathematics 2 (Computing) (Advanced). Students should have taken options 2A1 and 2M2 in second year maths courses.

Classes (6 lec & 3 tut)/wk

Assessment generally one 2hr exam/option, assignments

This course consists of 6 options from Applied Mathematics 3, which must include Signal Processing,

Textbook
See Departmental Handbook

Degree of Bachelor of Medical Science

The following courses are as prescribed by the Senate resolutions in force from 1992.

First Year

Mathematics 1 or Mathematics 1 (Advanced) or Mathematics 1 (Life Sciences)
Chemistry 1 or Chemistry 1 (Advanced) or Chemistry 1 (Special Studies Program)
Physics 1 or Physics 1 (Advanced)
Biology 1 or Biology 1 (Advanced)

These courses are all current first year courses in the BSc degree. Students must complete these with a full pass or better to be eligible for entry into the BMedSc degree, which commences at the beginning of second year. Students who have completed Computer Science 1 or Computer Science 1 (Advanced) or Psychology 1, and not Biology 1 or Biology 1 (Advanced), may be granted permission to enrol in the degree. Applications for admission to the degree course should be submitted to the Universities Admission Centre no later than 30 September of the year prior to entry into the degree.

Second Year

Human Life Sciences 2 28 units
Dr Dampney (course coordinator) and staff from the Departments of Anatomy & Histology, Physiology and Pathology

Classes (5 lec & 2 tut & 7 prac/wk)
Assessment written & prac exams, essays, prac reports

This course is a broadly based integrated course on the structure and function of the human body, taught by the Departments of Anatomy and Histology, Pathology and Physiology. Examples will be given, at an elementary level, of the pathology of particular tissues and organ systems. The response of the body to environmental stress will also be discussed. The following topics will be taught, under three broad headings:

Being Alive Introduction to basic cell types and tissues, and to the organisation of the nervous system. Structure and functions of bones and joints. Musculoskeletal structure of the trunk, with reference to breathing and movement Motor systems. Structure and function of the autonomic nervous system, and of the sensory systems. Central nervous system processing of information. Basic cellular mechanisms of signal transduction, nerve impulse conduction and muscle contraction.

Creating Life Structure and function of reproductive organs. Elementary physiology of the embryo and foetus.

Pharmacology 2 (Introductory) 8 units
Dr Allan
Classes 2 lec/wk & eight 6hr prac/tut sessions/yr
Assessment one 2hr exam/sem, classwork

Textbook

Study aids

Reference book

Biochemistry 2 (Medical Science) Auxiliary 8 units
Assoc. Professor Christopherson and Dr Chappell
Qualifying course Chemistry 1 or Chemistry 1 (Advanced)
Classes 3 lec/wk
Assessment one 3hr exam/sem

This lecture course in Biochemistry and Molecular Biology is designed to provide a solid basis in the chemistry of life. Questions to be addressed include: What are the chemical structures of the components of living matter? How do their interactions lead to the assembly of organised macromolecules, cells and multicellular tissues and organisms? How does living matter extract energy from its environment? How are chemical reactions controlled inside living cells? How does an organism store and decipher the information it needs to grow and reproduce?
Specifically, the course will cover the following topics: structures of biological macromolecules (proteins, nucleic acids, lipids and sugars); molecular morphology of cells; the structure and function of genetic information (DNA and RNA); the replication of DNA; protein synthesis and the genetic code; the regulation of gene expression in prokaryotes and eukaryotes; recombinant DNA technology and genetic engineering; digestion, storage and utilisation of dietary carbohydrate, lipid and protein; biological catalysts (enzymes); generation of metabolic energy; metabolic adaptation during starvation, exercise and diabetes; clinical intervention in metabolic disorders.

Textbooks
To be advised

Biochemistry 2 (Medical Science) Practical
- 8 units

Mrs Loke
Classes one 5hr prac/wk
Assessment one 2hr prac exam/sem, practical reports

This augments the Biochemistry 2 (Medical Science) Auxiliary course by providing practical laboratory experience to students interested in developing medically applied biochemical skills. Practical classes include training in biochemical procedures similar to those used in medical laboratories and the biotechnology and pharmaceutical industries.

Biology 2 (Molecular and General Genetics) Auxiliary
- 8 units

Biological Sciences staff
Classes Sem 1: (3 lec & 1 tut & 4 prac)/wk
Assessment one 3hr exam, one 2hr theory of practical exam, assignments, practicals

An introduction to the many facets of prokaryotic and eukaryotic genetics and the crucial role that molecular biology plays in our current understanding of the biological world. Topics will include the structure and function of DNA and RNA, the structure, replication and transmission of chromosomes, mechanisms of gene transmission and regulation and transfer in prokaryotes, eukaryotic gene regulation, human molecular genetics, recombinant DNA and genetic engineering, and population and evolutionary genetics. Laboratory classes will provide training in techniques employed in the study of genetics and molecular biology.

History and Philosophy of Science 2 Introductory
- 8 units

Assoc. Prof. Chalmers Dr Shortland Dr Rasmussen
Classes (2 lec & 2 tut)/wk
Assessment (3 tut assignments & one take-home exam)/sem

This course is the same course as currently offered for the Bachelor of Science degree.

Third year

Microbiology and Immunology 3
- 10 units

Prof. Reeves, Dr Britton

Classes Sem 1: (4 lec & 6 prac)/wk
Assessment one 3hr exam, practical

This core course is taught by the Department of Microbiology with a contribution from the Centenary Institute of Cancer Medicine and Cell Biology. It is designed to provide a basic understanding of (i) microorganisms and their role in human biology, and (ii) introductory immunology.

Topics
Introduction to techniques. Comparative structure and function of microorganisms. Principles and practice of taxonomy and identification of bacteria. Survey of major groups of medically important bacteria. Strategies of pathogenic organisms; host defence mechanisms; common modes of transmission; epidemiology. Immunology: functioning of the immune system, basic immunological techniques. Virology: structure of viruses, mechanisms of replication, viruses interactions.

Human Life Sciences 3 (Cellular and Molecular)
- 4 units

Assoc. Prof. Cook (course supervisor)
Classes Sem 1: (1-2 lec & 2 tut)/wk
Assessment tut assessment & 5 topic reports & 1 assignment

In this course students will investigate five topics drawn from the most active areas of research in cellular physiology and biology. The intention of the course is to teach students some of the basic principles of cellular function while giving them experience in extracting information from the scientific literature, summarising it and drawing conclusions from it. Emphasis is placed on the oral and written presentation by students of the results of their work. The course makes extensive use of small-group teaching methods and problem-based learning with the lectures providing background information on the concepts and techniques dealt with in the small-group sessions. Assessment is based on (i) performance in the small-group sessions, (ii) 5 reports, one in each of the topics studied in the small-group sessions, and (iii) an assignment on a subject related to the broad area of the course.

The topics covered are as follows.

- **Membrane transport processes** The description of transport processes. The structural and functional properties of membrane transport proteins.
- **Cellular homeostatic mechanisms** The mechanisms by which cells control their composition and volume.
- **Signal-response coupling** The mechanisms by which cellular activity is controlled by events external to the cell. This includes receptor mechanisms, second messenger systems and the major types of cellular responses.
- **The cytoskeleton** The structure of the cytoskeleton and its role in cellular processes such as motility.
- **Cell-cell and cell-matrix interactions** The mechanisms by which cells adhere to each other and to their substrate and the influence of this on cellular behaviour.
Cell Pathology 3
24 units

Prof. Hunt

Qualifying course Intermediate core courses

Classes Yr: (1 tut & 11 prac)/wk

Assessment one 3hr exam, 12 prac reports, one project report

This course is the same course as currently offered for the Bachelor of Science degree. Entry is restricted to a very limited number of students. Further information regarding the course content is in the Cell Pathology section of the handbook.

Biochemistry 3 (Molecular Biology and Macromolecular Structure) 12 units

Dr Easterbrook-Smith, Mrs Johnston, Biochemistry staff

Qualifying course Biochemistry 2 (Medical Science)

Classes Sem 1: (4 lec & 8 prac)/wk

Assessment one 3hr & one 2hr theory exam, prac work, one 1.5hr practical exam

The lecture course consists of core and option components. The practical course is designed to complement the lecture course and to provide students with experience in a wide range of techniques currently used in biochemical and molecular biology laboratories.

Core lectures

The core lectures are in three broad areas: molecular biology, immunology and physical biochemistry. The molecular biology section is the most extensive and covers molecular cloning and analysis of nucleic acids (including DNA structure and sequencing, the enzymes used in molecular cloning and nucleic acid analysis, analysis of RNA and the basis of molecular cloning) and chromosome structure and replication in eukaryotes. The immunology covers the general nature of the immune system, and the protein chemistry and molecular biology of immunoglobulins. The physical biochemistry component is concerned with the physical nature of macromolecules and methods for studying them.

Option lectures

The lecture course contains two 6-lecture option series. The options available will include some of the topics listed below. Those topics in this list which are not available in Biochemistry 3 (Molecular Biology and Macromolecular Structure) will be offered in the Biochemistry 3 (Enzymology, Metabolism and Membranes) option lecture series in second semester.

Option lecture topics

The Vitamins
The Macronutrients: Protein, Fats and Carbohydrates
The Biochemistry of Receptors
Implications of Second Messenger Metabolism for Disease
The Biochemistry of Insulin: Insulin Secretion and Type I Diabetes
The Biochemistry of Insulin: Insulin Action, Type II Diabetes and Obesity
The Biochemistry of Exercise
Xenobiotica

The Role of Inorganic Elements in Nutrition
Lipoproteins: Biochemistry and Nutrition
Insect Biochemistry: Metabolic Implications of Insect Specialisation
The Biochemistry of Cancer
Methods in Immunology
Cellular Immunology
Molecular Biology of Development
Molecular Biology of the Bacterial Cell Cycle
Medical Molecular Biology
Applied Medical Molecular Biology
Transcription Factors in Mammalian Development
Enzyme Kinetics
Macromolecular Structures: Application of Diffraction Methods

NMR Spectroscopy: an Insight into Biomolecular Structure and Function
Looking inside Cells with NMR: Basics
Looking inside Cells with NMR: Clinical Aspects
Dynamic Changes in Cell Architecture
The Cytoskeleton: its Role in Disease, Signal Transduction and Metabolism
Macromolecular Interactions: Self-association of Proteins
Macromolecular Interactions: Interactions of Proteins with Other Molecules
The Cytoskeleton: Dynamic Engineering in Eukaryotic Cells
The Extra-Cellular Matrix: The Dynamic Structure of the Vertebrate Body

Textbooks
To be advised

Biology 3 (Molecular Genetics and Recombinant DNA Technology) 12 units

Dr Lyon, Prof. Skurray, Prof. Willetts, Dr Raphael

Qualifying Course Biology 2 (Molecular and General Genetics)

Auxiliary or Biology 2 (Molecular and General Genetics)

Classes Sem 1: (4 lec & 8 prac)/wk, one 2-day excursion

Assessment one 3hr exam, one 1.5hr exam, prac reports, seminars

A course of lectures, seminars and practicals on molecular genetics and its application to the genetic manipulation of prokaryotic and eukaryotic organisms. Lecture topics will include the molecular genetics of bacteria, bacteriophages and animals viruses including HrV, prokaryotic and eukaryotic gene regulation and expression, mechanisms of gene recombination and mutation, plasmids, transposons and mobile DNA, cloning and expression of foreign genes in bacterial, yeast, plant and mammalian cells, and applications of molecular genetics in animal and plant biotechnology. Practical work will include the use of molecular techniques such as DNA preparation, restriction mapping, gene hybridisation, cloning and sequencing, gene library screening, PCR amplification and the generic transformation of plants.

Histology 3 (Techniques) 12 units

Dr Murphy

Classes Sem 1: (4 lec & 8 prac)/wk

Assessment one 3hr and one 2hr exam, practical
This course aims to provide students with a sound and useful comprehensive command of histological and histochemical techniques. A quota will apply for entry into the course. The course covers all the major methods presently in use and foreshadows new developments now underway. It will provide an adequate theoretical background to appreciate why histological methods are used and why they work, and will develop practical skills used in hospital, public service, private pathology and research laboratories. The techniques described will include the following: tissue handling (dissection, fixation, embedding and sectioning); routine staining for light microscopy; techniques of light microscopy (brightfield, darkfield, phase contrast); tissue handling for electron microscopy and staining; techniques of electron microscopy and operation of electron microscope; and theory and practice of histochemistry (staining with dyes, enzymes, lectins and immunohistochemistry for both light and electron microscopy).

History of the Life Sciences 3 12 units
Assoc. Prof. Chalmers, Dr Shortland
Qualifying course History and Philosophy of Science 2
Introductory
Classes Sem 1: (4 lec & 4 tut & 4 prac)/wk
Assessment tut assignment, one 3000w essay, project report, take-home exam

This course offers a rounded but focused account of the development of some of the central themes of biological science, or more accurately (since physiology and embryology are also treated) of the sciences of life. Starting with surveys of Greek and medieval work in the fields of classification, physiology, and reproduction, the course then examines the importance of the 16th and 17th century Scientific Revolution for the life sciences through a study of William Harvey's work on the circulation of the blood, Rene Descartes' writings on the mind-body problem, and continental European microscopical studies of plant and animal cells.

At the heart of the course is the examination of the development of evolutionary theory in the 19th and 20th centuries, and the earlier lectures provide a historical context for this examination. Eighteenth century work in classification (Linnaeus and Buffon), comparative anatomy (Cuvier) and natural history are also ingredients in the development of evolutionary ideas and will therefore be treated. Following several sessions devoted to the origins, development, launch and reception of evolutionary ideas, the course will consider later developments in life sciences, particularly in genetics. The discovery of the structure of DNA brings the course to an end.

Throughout the course, emphasis will be placed on reading and discussing primary sources and on considering the social and intellectual contexts of scientific development. It is hoped that medical science students will gain a richer appreciation of many topics in their degree course and of the human dimension to science by taking this broad option.

Neuroscience 3 12 units
Dr Martin, Dr Balar
Classes Sem 1: (4 lec & 8 prac)/wk
Assessment exam, spot tests, essays, practical work

This course, which will be taught jointly by the Departments of Anatomy and Histology and Physiology, is concerned with the structure and function of the nervous system at the molecular, cellular and integrative level. Some examples of neurological disorders will be discussed. The following topics will be covered: the regional anatomy of the central nervous system; somatomotor and autonomic control systems; the visual, auditory and somatosensory systems; hypothalamus; development and regeneration of the nervous system. The practical component of the course consists of experiments in physiological methods, small group tutorials on neuroanatomy and small group sessions in which students discuss current research papers in a wide variety of subdisciplines of neuroscience.

Pharmacology 3 (Molecular Pharmacology and Toxicology) 12 units
Dr Spence
Classes Sem 1: (4 lec & 2 tut & 6 prac)/wk
Assessment two 3hr exams, classwork

This course covers two major areas of pharmacology: (1) toxicology and (2) drug design and development. Toxicology covers metabolism of toxic substances, toxicity to major organs, epidemiology and carcinogenesis. It aims to provide an overview of the topic with detailed examination of selected issues in toxicology. Drug design and development looks at the principles guiding the development of new therapeutic agents with emphasis on molecular modelling. New methods to study drug distribution and action such as positron emission tomography (PET) and single photon emission computerised tomography (SPECT) scanning are also covered. As part of the course all students prepare a drug profile — a document similar to that required by regulatory authorities when a new drug is introduced. This provides students with the opportunity to become familiar firstly with regulatory procedures and secondly with the detailed pharmacology of one particular compound.

Anatomy 3 (Topographical) 12 units
Dr Provis
Classes Sem 2: (3 lec & 9 tut or prac)/wk
Assessment one 3hr exam, one prac exam, one 2500w essay

This course comprises two strands of topographical anatomy — head and neck anatomy and musculoskeletal anatomy. The anatomy of the head and neck region will be studied in one lecture, one tutorial and one dissection class per week. The course includes study of the human skull and upper vertebral column and the associated musculatures; the anatomy and functional anatomy of the eye, ear, nose and sinuses; larynx and pharynx are also covered. Emphasis is given to the composition and distribution of the twelve cranial nerves. Musculoskeletal anatomy is covered in two lectures and two tutorials/practical sessions per week. The musculoskeletal system of the trunk and lower limb is studied with particular reference to posture and locomotion. This is contrasted with the structural specialisation of the upper limb for its manipulative and tactile functions.
Biochemistry 3 (Enzymology, Metabolism and Membranes) 12 units
Dr Easterbrook-Smith, Mrs Johnston, Biochemistry staff
Qualifying course Biochemistry 2 (Medical Science)
Classes Sem 2: (4 lec & 8 prac)/wk
Assessment one 3hr & one 2hr theory exam, prac work, one 1.5hr prac exam

The lecture course consists of core and option components. The practical course is designed to complement the lecture course and to provide students with experience in a wide range of techniques currently used in biochemical and molecular biology laboratories.

Core lectures
The core lectures cover three broad areas: enzymology, membranes and membrane-related phenomena and metabolism. The enzymology section includes steady-state enzyme kinetics, allosterism, mechanisms of enzyme-catalysed reactions, and examples of the use of modern biophysical and molecular biology techniques in studying enzymes. The lectures on biological membranes include discussions of the biochemical basis of vision, photosynthesis and the role of membranes in energy transduction. The metabolism lectures are concerned with the integration of metabolic pathways.

Option lectures
The course includes four 6-lecture option series. The topics offered will be those which were not available in the Biochemistry 3 (Molecular Biology and Macromolecular Structure) option series in first semester. (See description of Biochemistry 3 (Molecular Biology and Macromolecular Structure) course).

Textbooks
To be advised

Biology 3 (Eukaryotic Genetics and Development) 12 units
Assoc. Prof. Armati, Dr Donald, Assoc. Prof. Gillies, Dr Raphael and others
Qualifying course Biology 2 (Molecular and General Genetics) Auxiliary or Biology 2 (Molecular and General Genetics) Auxiliary (Advanced)
Classes Sem 2: (4 lec & 8 prac)/wk, one 2-day excursion.
Timetable 3
Assessment one 3hr exam, one 1.5hr exam, prac reports, seminars

A course of lectures, seminars and practicals on molecular genetics and its application to the understanding of mammalian and human genetics, animal development and evolutionary biology. Lectures will cover molecular and ultrastructural arrangement of DNA sequences and genes in eukaryotic genomes and chromosomes, mammalian gene organisation and expression, biochemical and molecular genetics of human disease, linkage and mapping, genetics of early animal development, nerve cell differentiation and growth, MHC function and recognition of self, sequence evolution, population and evolutionary genetics. Practical work will provide experience with a range of molecular, cytological and genetical skills while illustrating theoretical principles.

Histology 3 (Developmental Biology) 12 units
Dr McAvoy
Classes Sem 2: (4 lec & 8 prac)/wk
Assessment two 3hr exams, assignments, prac reports

The theme of this course will be the investigation of mechanisms that control animal development. A quota will apply for entry into the course. The processes of fertilisation, cleavage, gastrulation and formation of the primary germ layers will be studied in relation to their roles in the developmental process. Mechanisms of cell differentiation, roles of inductive cell and tissue interactions in morphogenesis and differentiation, and pattern formation will be studied at the molecular and cellular levels. The practical sessions will have an emphasis on the design of experimental procedures to answer developmental questions. The selection and use of appropriate molecular and cellular techniques will also be dealt with.

Immunology 3 12 units
Dr Britton
Classes Sem 2: (3 lec & 1 tut & 8 prac)/wk
Assessment exam, essays, prac

This course, which will be taught by the Immunology Unit of the Department of Medicine, is designed to provide a comprehensive understanding of (i) the components and function of the immune system; (ii) the mechanisms of pathological immune processes; (iii) immunological techniques in diagnostic and research laboratories. A quota will apply for entry into the course. The following topics will be covered: the normal immune system; immunopathology; and immunological techniques.

Infectious Diseases 3 (Infection and Diagnosis) 12 units
Dr Harbour, Prof. Reeves
Coreq Microbiology 3 (Molecular Biology of Pathogens)
Classes Sem 2: (4 lec & 8 prac)/wk
Assessment one 3hr exam, one 1hr prac, three lab reports

This course is coordinated by the Department of Infectious Diseases with assistance from the Department of Microbiology. The intake is restricted to a very limited number of students, and intending students should consult the Department of Infectious Diseases.

The course is designed to provide an understanding of the infection process involving host-parasite interactions as well as the scientific basis of diagnosis and control. A small number of infections will be examined to show how traditional and advanced technology can be combined for diagnosis and epidemiological study of infectious disease. In addition, students will be expected to participate in a short vacation assignment of work experience in an approved diagnostic or public health laboratory.
Microbiology 3 (Molecular Biology of Pathogens)
12 units
Prof Reeves, Dr Harbour
Classes Sem 2: (4 lec & 8 prac)/wk
Assessment two 2hr exams, practical

This course is designed to provide an understanding of microbial disease at the molecular level. The following topics will be covered: introductory bacterial genetics; pathogenic processes and the molecular basis of pathogenicity in bacteria; structure and function of microorganisms and action of antibiotics and chemotherapeutic agents; and pathogenic processes in fungi and viruses.

Neuroscience 3 (Cellular and Integrative)
12 units
Assoc. Prof. Bandler, Prof. Bennett
Classes Sem 2: (4 lec & 8 prac)/wk
Assessment exams, research report or essay

This course, which will be taught jointly by the Departments of Anatomy and Histology and Physiology, will allow students to study in depth a range of topics in neuroscience, at the molecular, cellular and integrative level. The topics covered are: the relationships between glia and neurones; the molecular basis of brain function; the integrated central neural control of autonomic and somatomotor functions; vision and higher cortical functions. Practical work will take the form of either an experimental project carried out in a research laboratory or an extensive library research project.

Pharmacology 3 (Neuro- and Cardiovascular)
12 units
Dr Spence
Classes Sem 2: (4 lec & 2 tut & 6 prac)/wk
Assessment two 3hr exams, classwork

This course provides a comprehensive, systematic study of three major areas of pharmacology: neuropharmacology, cardiovascular pharmacology, and respiratory pharmacology. The neuropharmacology component examines the actions of psychoactive drugs at all levels from single cells through to behaviour. The cardiovascular and respiratory components examine therapeutic intervention in disease states such as hypertension and asthma and the mechanisms of drug action.

In addition to the core course students who have completed Pharmacology 3 (Molecular Pharmacology and Toxicology) choose an elective from a number offered by the Department. These cover specific topics in depth and some are laboratory based. Details of these are available from the Department before the commencement of second semester. Students who have not completed Pharmacology 3 (Molecular Pharmacology and Toxicology) prepare a drug profile.

Physiology 3 (Heart and Circulation)
12 units
Dr Hoh (course supervisor) and Department of Physiology staff
Classes Sem 2: (4 lec & 2 tut & 6 prac)/wk
Assessment one 3hr exam, essays, prac reports, seminar presentations

This course offers an up-to-date and in-depth treatment of the structure and function of the cardiovascular system at the organ system, cellular and molecular levels. There is a particular focus on exercise physiology and the way in which the heart, circulation and muscle contribute to the limits of sporting achievement. The course is designed to build on material presented in both Human Life Sciences 2 and Human Life Sciences 3 (Cellular and Molecular). The excitability, contractility and energetics of the heart and blood vessels are studied, and the regulation of these organs by local (physical and chemical) factors, hormones and the nervous system are discussed, with emphasis on cellular and molecular mechanisms. At the systemic level, the course deals with short-term (neural) mechanisms controlling the blood pressure, and how the system behaves during exercise and other stresses. Long-term (hormonal) mechanisms regulating blood pressure via the renal control of extracellular fluid volume, and the pathophysiology of atherosclerosis and hypertension are also discussed. Lectures are combined with practical laboratory experiments on mechanical models, animals and human subjects.

Honours Degree

The Bachelor of Medical Science Honours degree is governed by regulations of the Senate and of the Faculty of Science that are parallel with those of the Bachelor of Science Honours degree as set out in this handbook.

An honours degree may be taken by students of sufficient merit in any of the departments offering core or option courses in third year. Entry to honours courses is regulated by individual departments and the exact detail of honours programs also varies from department to department. Students interested in undertaking honours should consult the relevant department for further details.

Degree of Bachelor of Pharmacy

First Year

The following courses are as prescribed by the Senate resolutions in force from 1990.

Biology 1 for Pharmacy
8 units
Biological Sciences staff
At HSC Chemistry (2-unit); HSC Biology (2-unit) or equivalent is also desirable
Classes Yr: (1 lec & 3 prac)/wk
Assessment (one 1.5hr exam & one prac exam) / sem, classwork

This section is designed to integrate with Physiology 1 for Pharmacy. It comprises lectures and practical classes on cell structure and function, mammalian structure and function, development and genetics. Many of the topics in the course are then studied in more detail in the Physiology course.
Textbook
E.N. Marieb Human Anatomy and Physiology 2nd edn (Benjamin/Cummings, 1992)

For further details obtain a copy of Information for Students in First Year Biology from the Pharmacy office.

Physiology 1 for Pharmacy 6 units
Dr Cottee (course coordinator) and Department of Physiology staff
Classes Yr: 3 lec/wk
Assessment Sem 1: one 1.5hr exam. Sem 2: one 2hr exam

This course is designed to provide a broad basic knowledge in areas such as nerve and muscle physiology, circulation, respiration, blood, endocrinology, reproduction, kidney, body fluid regulation and the function of the central nervous system.

Students who have not studied Biology for the HSC are advised to read a basic physiology book or the physiology section of a school biology text before the beginning of first semester.

Textbook
E.N. Marieb Human Anatomy and Physiology 2nd edn (Benjamin/Cummings, 1992)

Chemistry 1 for Pharmacy 16 units
The names of the lecturers giving the course will be available from the School of Chemistry during the orientation period
AKn HSC Chemistry 2-unit or the chemistry component of the 3/4-unit Science course and the Mathematics 2-unit course
Classes Yr: (4 lec & 1 tut & 3 prac)/wk
Assessment Sem 1: one 3hf exam; Sem 2: one 2.5hr exam & one 2hr exam

Introduction, states and properties of matter, stoichiometry, chemical energetics, equilibrium theory, solution equilibrium, atomic structure, chemical bonding, general acid-base theory, electrochemistry, comparative chemistry of elements, introduction to organic chemistry, nomenclature, aliphatic chemistry, aromatic chemistry, isomerism, reaction mechanism.

Special preparative studies. Students wishing to enrol in Chemistry 1 for Pharmacy who have not taken the HSC Chemistry 2-unit or the chemistry component of the 3/4-unit Science course are advised to consult the School of Chemistry.

Textbooks
Students should obtain a booklist from the School of Chemistry during the orientation period

Mathematics 1 for Pharmacy 4 units
Dr Monro
AKn HSC 2-unit Mathematics (Students without this assumed knowledge are advised to attend a bridge course in February)
Classes Sem 1: (3 lec & 1 tut)/wk
Assessment one 3hr exam

Measurement of physical quantities, differentiation and integration (with emphasis on linear, exponential and logarithmic, polynomial and periodic functions), functions of more than one variable, differential equations.

Reference books
J.C. Arya and R.W. Lardner Mathematics for the Biological Sciences (Prentice-Hall, 1979)
L.J. Goldstein et al. Calculus and its Applications (Prentice Hall, 1980)
R.D. Gentry Introduction to Calculus for the Biological and Health Sciences (Addison-Wesley, 1978)

Introductory Pharmacy 1 8 units
Miss Sainsbury (coordinator)

This course is made up of two sections:

Pharmaceutical Science
Miss Sainsbury, Dr Gipps, Prof. Brown
AKn HSC physics section of the 3/4-unit Science course or 2-unit Physics (but see footnote to Table of Courses for Pharmacy in Chapter 3 above)
Classes Sem 2: (3 lec & 1 tut)/wk & 3hr of prac for 8 wks
Assessment details from Department

Dose forms and their uses including an introduction to biopharmacy and pharmacokinetics. Physicochemical principles and their application to properties of solutions and to the processes of diffusion and partition. Polymorphism and phase equilibria. Rheology. Drugs from plants and galenicals.

Practical. The course, of 24 hours’ duration, will demonstrate principles involved in formulating, preparing and evaluating pharmaceutical dosage forms.

Textbook
A.N. Martin Physical Pharmacy (Lea & Febiger, 1993)

Reference books
H.C. Ansel Introduction to Pharmaceutical Dose Forms (Lea & Febiger, 1985)

Professional Pharmacy
Prof. Benrimoj (coordinator)
Classes 1hr/wk for 12 wks, three 4hr externship, two 1hr tut
Assessment assignment, one 1hr exam

This section introduces students to the Australian health care system and role of the pharmacist within the health care system. Pharmacists’ relationships with other health care professionals are examined through lectures and externships in clinical settings. The role of the pharmacists in society including ethical responsibilities are outlined by representatives of pharmacy organisations, patients and pharmacists.

Reference book
A.I. Wertheimer and M.C. Smith Pharmacy Practice—Social and Behavioural Aspects (Williams & Wilkins, 1989)

Biostatistics 1 for Pharmacy 3 units
Mr Van de Ven
Classes Sem 1: (2 lec & 1 tut)/wk
Assessment one 2hr exam, assignments

The statistics course is given in the School of Mathematics and Statistics.

Data analysis, descriptive statistics, elementary probability theory, sampling methods, statistical inference, hypothesis testing, correlation and regression, analysis of variance.

Textbook
M. Pagano and K. Gauvreau Principles of Biostatistics
(Duxbury Press, California, 1993).

Microbiology 1 for Pharmacy 3 units
Mrs Dalins
Classes Sem 2: (2 lec & one 2.5hr prac)/wk for 10 wks
Assessment one 2hr exam, prac

This course provides information on the biology of micro-organisms with particular reference to the importance of microorganisms in pharmaceutical sciences. Topics covered include: history and scope of microbiology, methodology, comparison of major groups of microorganisms in terms of structure, function and importance as well as selected aspects of applied microbiology (microbial pathogenicity and epidemiology, growth, death and control of microorganisms including disinfection, preservation and spoilage).

Textbook
G.J. Tortora et al. Microbiology. An Introduction (Benjamin Cummings, 1995)

Second year

Physical Pharmacy 2 10 units
Dr Ramzan (coordinator)
Prereq Introductory Pharmacy 1, Chemistry 1 for Pharmacy
Classes Sem 1 and 2; 2.3 lec/wk for 7 wks and 2 lec/wk for 7 wks; Sem 2; Prac 5hr/wk
Assessment Sem 1: one 3hr exam (45%); Sem 2: one 3hr exam (45%) and prac (10%)

Lecture topics. Macromolecular dispersions; surface and interfacial tension, surface active materials, solubilisation; complexation, chemical kinetics, drug stability; diffusion theory, dissolution models; drug-plastics interaction, controlled release; solid pharmaceuticals and particle science; liquid formulations, water, cosolvents, oils and fats; suspensions, emulsions and semi-solids; origin and properties of pharmaceutical materials.

Practical work. Topics include: diffusional models for drug transport; stability of drugs; dissolution and release from dose forms; physical properties of solid, semi-solid and liquid dose forms.

Textbook
A.N. Martin Physical Pharmacy (Lea & Febiger, 1993)

Reference books

G.S. Banker and C.T. Rhodes (eds) Modern Pharmaceutics (Marcel Dekker, 1990)
A.R. Gennaro (ed.) Remington's Pharmaceutical Sciences (Mack, 1985)
L. Lachman et al. The Theory and Practice of Industrial Pharmacy (Lea & Febiger, 1986)

Pharmaceutical Analysis 2 8 units
Dr Duke (coordinator)
Prereq Chemistry 1 for Pharmacy
Classes Sem 1: 2 lec/wk/one 1hr tut/wk, prac 5hr/wk
Assessment Sem 1: one 2hr exam, classwork

Lecture topics. Quantitative analysis; absorption spectrophotometry, UV, visible, fluorescence; gas and liquid chromatography; electrophoresis; electrochemical methods. Qualitative analysis, the determination of chemical structure using instrumental methods; nuclear magnetic resonance and mass spectrometry.

Practical work. The practical component of this course includes quantitative analysis using titrimetric, chromatographic and spectrophotometric methods as well as clinical analysis experiments.

Reference books
A. N. Martin Physical Pharmacy (Lea & Febiger, 1993)
J.W. Munson Pharmaceutical Analysis - Modern Methods (Marcel Dekker, 1981)
T.W.G. Solomons Organic Chemistry (Wiley, 1992)
A. I. Vogel Quantitative Inorganic Analysis (Longmans, 1978)

Medicinal Chemistry 2 4 units
Assoc. Prof. Holder (coordinator)
Prereq Chemistry 1 for Pharmacy, Introductory Pharmacy 1
Coreq Biochemistry 2 for Pharmacy, Pharmacology 2 for Pharmacy
Classes 2 lec/wk
Assessment one 3hr exam/sem, classwork

Lecture topics. Physicochemical properties and biological activity; partition coefficients and non-specifically acting drugs; surface activity and drug action. Drug metabolism; bioactivation and inactivation. Structural features and pharmacological activity; stereoechemical aspects; chirality of drugs; conformation. Macromolecular targets for drug action; bonding and biological activity; drug-receptor interactions and receptor-effector theories. Enzymes as targets of drug action; enzyme catalysis and receptor kinetics. Receptors as targets of drug action.

Textbook

Reference books
A. Albert Selective Toxicity (Methuen, 1985)
W. Pratt et al. (eds) *Principles of Drug Action — the Basis of Pharmacology* (Churchill/Livingstone, 1990)

Dispensing Practice 2 4 units
Miss Sainsbury (coordinator)

Prereq Introductory Pharmacy 1

Coreq Physical Pharmacy 2

Classes Sem 1: 1.5hr prac/wk for 6 wks; Sem 2: 2.5hr prac for 4 wks

Assessment one prac exam/sem, classwork

This course is a practical/tutorial course which deals with the extemporaneous preparation of dosage forms.

Textbooks

Australian Pharmaceutical Formulary 15 (Pharmaceutical Society of Australia, 1992)

(This is the 30th edition; the 27th, 28th or 29th editions are also acceptable)

Reference books

British Pharmacopoeia (Pharmaceutical Press, 1993)

Pharmaceutical Microbiology 2 4 units
Dr Gipps (coordinator)

Prereq Introductory Pharmacy 1, Microbiology 1 for Pharmacy

Classes Sem 1: 1 lec/wk, 1 tut/fn, 5hr of prac/wk for 6 wks

Assessment Sem 1: one 1.5hr exam, classwork

Lecture topics. Production of sterile and preserved pharmaceutical products; contamination control; sterilisation methods; dynamics; disinfection, antisepsis and preservation; official use of antiseptics and disinfectants; hygienic administration of pharmaceutical products.

The practical course consists of a series of exercises conducted over six sessions to illustrate the principles covered in lectures.

Reference books

W.B. Hugo and A.D. Russell *Pharmaceutical Microbiology* (Blackwell, 1992)

Pharmacy Practice 2 8 units
Dr Krass (coordinator)

Prereq Introductory Pharmacy 1, Physiology 1 for Pharmacy

Coreq Pharmacology 2 for Pharmacy, Pharmaceutical Microbiology 2, Medicinal Chemistry 2

Assessment Sem 1: one 1hr exam, 0.5hr tutorial assessment; Sem 2: one 1.5hr exam, tutorial group role play (5 minutes) and continuous assessment of case studies.

Psychology
Ms Perz (coordinator)

Classes Sem 1: 10 lec

This section introduces students to aspects of psychology necessary for a profession concerned with people. The theory of communication will be covered including issues such as verbal and non-verbal cues. Topics include the role of health and illness in a person and factors affecting compliance to medical regimens.

Pharmacy Communication

Classes Sem 1: 6 lec, six 2hr tut

The theory of communication will be applied to specific pharmacy situations such as pharmacist/patient and pharmacist/doctor interactions. Issues relating to the provision of disease and medication information to consumers, patients and other health professionals will be covered. Aspects of communication relevant to the practice environment including hospital, nursing homes and community pharmacy will be studied. The tutorials will enable students to practise various communication skills in a group setting.

Textbook

Therapeutics

Classes Sem 2: (2 lec & one 1hr tut & 3hr of externship)/wk

Lecture topics. drug information, adverse drug reactions, drug interactions, epidemiology, pathophysiology, symptoms, signs, management — drug and non drug treatment of diseases of the endocrine system, central nervous system, cardiovascular system, renal system and psychiatry. Actual applications of drug knowledge gained in other parts of the course will be emphasised with priority given to the delivery of drug and disease state information to patients and other health professionals. The lectures will emphasise the role of the pharmacists in the community and hospital settings. The externship will attempt to integrate lecture material with practice. Clinical case studies will be discussed in tutorials.

Textbooks

E.T. Herfindal et al. *Clinical Pharmacy and Therapeutics* (Williams & Wilkins, Baltimore, 1980)

USP DI Drug Information for the Health Care Professional 1992 12th edn (United States Pharmacopoeial Convention Inc.)

Reference books

Prescription Products Guide 1994 vols 1 & 2 (Australian Pharmacy Publications Co.)

The Merck Manual of Diagnosis and Therapy 15th edn (Merck Sharp & Dohme Research Industries, 1987)

Mims Annual (Multimedia Australia Pty Ltd, 1994)

Biochemistry 2 for Pharmacy 6 units
Dr Darvey

Prereq Chemistry 1 for Pharmacy

Classes Yr: 3 lec/wk

Assessment one 3hr exam/sem

This course in Biochemistry and Molecular Biology is
designed to provide a firm basis in the chemistry of life. Questions to be addressed include: What are the chemical structures of the components of living matter? How do their interactions lead to the assembly of chemical structures of the components of living matter?

To be advised

Textbooks

Pharmacology 2 for Pharmacy 4 units
Assoc. Prof. Starmer, Assoc. Prof. Mylecharane (coordinators)
Prereq Chemistry 1 for Pharmacy, Physiology 1 for Pharmacy, Biochemistry 2 for Pharmacy, Pharmacy Practice 2
Classes Yr 2: 2 lec/wk, five 1 hr tut/yr
Assessment one 1.5 hr exam/sem

Textbook

Study aids

Reference books
A.G. Gilman et al. (eds) Goodman and Gilman's The Pharmacological Basis of Therapeutics (Pergamon, 1990)
B.G. Katzung (ed.) Basic and Clinical Pharmacology (Appleton & Lange, 1992)

Third year

Students are required to complete a total of 50 units, of which 42 are from required or core courses. The remaining eight units are made up by the selection of one of the four elective courses offered.
Medicinal Chemistry 3
Dr Cheung (coordinator)
Prereq: Biochemistry 2 for Pharmacy
Coreq: Pharmacology 3 for Pharmacy
Classes: Sem 1: 3 lec/wk, 6 hr of prac/wk for 4 wks, tutorials
Assessment: Sem 1: two 2 hr exam, classwork

Lecture topics: Quantitative structure-activity relationships, molecular modelling and drug design; cholesterol; steroid hormones and drugs; metabolic antagonism; antibiotics; parasite chemotherapy; antifungals; antivirals; cancer chemotherapy; therapeutic products from biotechnology.

Practical work: Development of a drug profile based on the requirements of the Therapeutic Goods Administration.

Textbooks
- As recommended for Medicinal Chemistry 2

Reference books
- A. Burger *Medicinal Chemistry* (Interscience, 1980)
- C. Hansch (ed.) *Comprehensive Medicinal Chemistry* (Pergamon, 1990)
- J. Smith and H. Williams *Introduction to the Principles of Drug Design* (Wright, 1988)

Pharmacy Practice 3
Dr Salole (coordinator)
Coreq: Medicinal Chemistry 3, Pharmacokinetics 3
Pharmacology 3 for Pharmacy
Classes: Sem 1: 2 lec/wk & nine 6 hr prac; Sem 2: one 3 hr prac/wk for 8 wks
Assessment: Sem 1: one 1.5 hr exam (clinical), viva 3/4 hr, externship (case studies); Sem 2: 2 hr exam (clinical), viva 3/4 hr, 1 hr exam (admin.), 1 hr exam (business), 1 hr externship (case studies)

Textbooks
- As for Pharmacy Practice 2 (Therapeutics section)

Therapeutics
Dr Armour (Sem 1), Prof. Benrimoj (Sem 2) (coordinators)
Classes: Sem 1: (2 lec, one 2 hr tut & one 3 hr externship) (community)/wk, 1 wk of externship (hospital); Sem 2: 2 hr tut & one 3 hr externship) (community)/wk
Assessment: Sem 1: one 1.5 hr exam (clinical), viva 3/4 hr, externship (case studies); Sem 2: 2 hr exam (clinical), viva 3/4 hr, 1 hr exam (admin.), 1 hr exam (business), 1 hr externship (case studies)

This section is a continuation of the therapeutics section of Pharmacy Practice 2. Topics covered in first semester include epidemiology, pathophysiology, symptoms, signs, management—drug and non-drug treatment of diseases associated with the respiratory tract, cardiology and rheumatology. In second semester the topics will include endocrinology, obstetrics and gynaecology, dermatology, oncology, genito-urinary tract, ear/eye, hepatic, pain, paediatrics, geriatrics and renal.

Immunology and Biotechnological Products
Prof. Benrimoj (coordinator)

Classes Sem 2: 1 lec/wk

This section will cover immunological aspects of drug therapy. The basic reactions of the immune system to foreign materials will be addressed. In addition, new therapeutic agents arising from the biotechnological revolution will be covered.

Externship
Mr Chen

The externship will integrate lecture material with practice. Students will complete case studies and report back to tutorials. Problem solving skills will be enhanced.

Tutorial
The tutorials will employ problem-based learning techniques. Computer patient medication review systems will be analysed. A number of computerised drug information data bases will be used. Role plays will be used to develop students' communication skills in pharmacist/patient and pharmacist/doctor interactions. Familiarisation with computer software written specifically for pharmacists will take place. A joint practical with Pharmacology will be provided.

Pharmacy Administration
Prof. Benrimoj (coordinator)
Classes: Sem 2: 1 lec/wk

This section includes ethics and principles of management, with topics on business structures, accounting and law being discussed. Pharmacy administration relating to hospitals and to government agencies will be presented also.

Dispensing Practice 3
Prof Brown (coordinator)
Coreq: Formulation 3
Classes: Sem 1: 1 lec/wk for 6 wks, one 3 hr prac/wk for 7 wks; Sem 2: one 3 hr prac/wk for 8 wks
Assessment: Sem 1: one 1.5 hr exam (forensic pharmacy), classwork; Sem 2: prac exam, classwork

The six lectures will deal with forensic pharmacy. The two series of 3-hour practical sessions will be devoted to the formulation aspects and the pharmacy practice aspects of dispensing respectively.

Textbooks and reference books
As recommended for Dispensing Practice 2

Pharmacology 3 for Pharmacy
Assoc. Prof. Starmer, Assoc. Prof. Mylecharane (coordinators)
Prereq: Biochemistry 2 for Pharmacy
Coreq: Pharmacy Practice 3
Classes: Sem 1: 2 lec/wk & nine 6 hr prac; Sem 2: 2 lec/wk
Assessment: Sem 1: one 1.5 hr exam, prac exam, classwork; Sem 2: one 1.5 hr exam

Chemotherapy: antibacterial, antiviral, antifungal, antiprotozoal, anthelmintic and anticancer drugs.

Textbooks, study aids and reference books
As recommended for Pharmacology 2 for Pharmacy

Elective courses

Experimental Pharmacology 3 8 units
Assoc. Prof. Mylecharane, Assoc. Prof. Starmer (coordinators)
Coreq Pharmacology 3 for Pharmacy, Medicinal Chemistry 3
Classes Sem 2: 2 seminar/wk, 6hr prac/wk for 9 wks, 6hr research assignment/wk for 5 wks
Assessment Sem 2: one 2hr exam (seminar), one 1hr exam (prac), classwork and reports

The seminar sessions will comprise discussions and presentations by students, under the guidance of staff, on the contribution of experimental pharmacological evaluation to the development of a series of selected drug classes, and the role of particular experimental methodologies in screening and evaluation of drug activity. The practical laboratory classes will provide training in general experimental pharmacological techniques, to evaluate the actions of drugs whose activity is well established. The research assignment will involve observation and discussion of the various research techniques currently in use in the Department, plus allocation to a particular research group for more detailed observation and participation, together with completion of written reports.

Textbooks and reference books
As recommended for Pharmacology 3 for Pharmacy. Students will be required to refer to an extensive range of journals and monographs available in the University's libraries

Toxicology 3 8 units
Assoc. Prof. Holder (coordinator)
Coreq Medicinal Chemistry 3
Classes Sem 2: 3 lec/wk, 1 tut/wk & 5hr of prac/wk for 8 wks or an essay
Assessment Sem 2: 3hr exam, classwork (including an essay if this is the option chosen)

Theory. The course consists of three sections:

General toxicity testing (12 lectures)
Design and interpretation of toxicity tests; toxicity in the community and the regulation of toxic substances. Measurement of acute, subacute and chronic toxicity. Carcinogenicity, teratogenicity and mutagenicity; short-term tests for the prediction of carcinogenicity. Inhalation toxicity; eye irritancy; dermal toxicity; ototoxicity.

Biochemical mechanisms of toxicity (12 lectures)
Factors affecting toxicity and the mode of action of toxic chemicals. Metabolic and pharmacokinetic factors in the balance between intoxification and detoxification processes; genetic factors; induction and inhibition of metabolism. Mutagens, teratogens and carcinogens; furosemide and paracetamol; oxygen.

Toxicological applications in analytical chemistry (12 lectures)
Chemical analysis in relation to governmental regulations. Sensitivity, selectivity, accuracy and precision of basic analytical techniques. Separation and identification of metabolites; selective detection in liquid chromatography. Forensic applications; newer techniques in gas chromatography and mass spectrometry. Environmental analysis; pesticides and herbicides by electron capture; atomic absorption and x-ray fluorescence; immunological techniques.

Practical work. Eight 5-hour sessions designed to illustrate some of the areas listed above.

Reference books
A.W. Hayes (ed.) *Principles and Methods of Toxicology* (Raven Press, 1989)

Industrial Pharmacy 3 8 units
Prof. Brown (coordinator)
Coreq Pharmacokinetics 3, Formulation 3
Classes 41lec/wk, 1tut/fh, 2 wk fieldwork
Assessment one 3hr exam (Sem 2), essay report on prac

Theory. The course consists of the following sections:

Registration of therapeutic substances in Australia (9 lectures)
Introduction to the registration of new drugs and formulations with the Commonwealth Department of Health; NDF5 applications for general marketing and clinical investigational use of drugs; evaluation of NDF5 submissions; data bases on chemistry, pharmacology and clinical use of drugs.

Clinical research trials (4 lectures)

Pharmacoeconomics (4 lectures)
Economic aspects of pharmaceuticals: international and Australian perspectives. Principles of health economics, cost benefit analysis, design and analysis of trials to demonstrate benefit versus cost. Case histories and worked examples.

Industrial Management (eleven 1 hr lec/workshop sessions)
Company and industry structure. Communication

Students are also required to take both a 12-lecture series entitled 'Toxicological applications in analytical chemistry' as described under the course 'Toxicology 3' and the lecture and seminar component of the section entitled 'Formulation and dosage form design', as described under the course Biopharmaceutics 3.

Practical experience. Students spend a ten-day period working in a pharmaceutical company, and will be required to take this segment of the course during either the June/July or September/October vacation. The first week is devoted to obtaining a perception of the general structure and operation of the company and of the various departments within it. The second week is devoted to specific work selected by consultation between the student, the Department and members of the company.

Biopharmaceutics 3 8 units
Dr Ramzan (coordinator)
Coreq Formulation 3, Pharmacokinetics 3, Dispensing Practice 3

The course consists of the following sections of which students are required to take any two of the following three segments:

Applied Biopharmaceutics and Pharmacokinetics
Dr Ramzan
Classes Sem 2: 20 lec, 34hrs of prac/seminars
Assessment Sem 2: 2hr exam

Theory. Eighteen lectures on topics related to the acquisition of biopharmaceutical data. Dissolution testing and evaluation of methodology; blood concentration monitoring; computer-based analysis of pharmacokinetic data; bioavailability; assessment and design of trials.

Practical (34 hours). A series of experiments and laboratory exercises to illustrate the concepts discussed in the theory course.

Dosage-form design
Dr Gipps, Dr Kennedy
Classes Sem 2: 12 lec, 6 seminars, 5hr prac/wk for 6 wks
Assessment classwork and presentation of project

Specific examples and problems of dosage-form design. Students are assigned a practical project illustrating one of the aspects dealt with in lectures and seminars.

Computer programming
Dr Cutler
Classes Sem 2: 6hr of prac for 9 wks
Assessment classwork and 1hr exam

This course is given in a tutorial/practical format and occupies nine 6-hour sessions. It deals with programming in FORTRAN language and emphasises the use of computers in scientific calculations.

Honours degree
The Bachelor of Pharmacy Honours degree is governed by regulations of the Senate and of the Faculty of Science that are parallel with those of the Bachelor of Science Honours degree as set out and explained in this handbook. Sections 10-12 of the Senate resolutions for BPharm are analogous to 17-19 of those for the BSc.

Within the Department of Pharmacy the honours degree may be taken in one of the three subjects Pharmaceutical Chemistry, Pharmaceutics or Pharmacy Practice. In each case the fourth year program comprises:

(i) one or two projects in which the student investigates a problem and presents oral and written accounts of his/her work.
(ii) a variety of coursework some parts of which are compulsory and others are chosen from a number offered within the Department and by other departments.
(iii) participation in a number of seminar discussions within the Department.

The degree is awarded on the basis of a mixture of continuous assessment — including an evaluation of essays and reports of projects — and the results of examinations, as well as on academic performance in the earlier years of the undergraduate course.

Students who are considering the honours course are encouraged to consult widely with members of the academic staff during their Senior year. Further information, in the form of course outlines, is available from the Department.

Suitably qualified graduates in Pharmacy for the University of Sydney may apply to be accepted into the honours program.

In the Department of Pharmacology honours students are given a project designed to provide training in the fundamentals of pharmacological research. A literature review and a written report on the research project must be prepared. Seminars on the literature review, the project and another chosen topic will be given by the student. An honours degree is awarded considering the following:

(i) marks awarded for the literature review and the seminars
(ii) marks awarded for the project thesis
(iii) level of passes gained in the second and third year examinations

Bachelor of Psychology

Psychology 1 12 units
See entry under Bachelor of Science

Psychology 2 16 units
See entry under Bachelor of Science

Psychology 3 24 units
See entry under Bachelor of Science
Psychology 3 Additional

24 units

Prereq Psychology 2
Coreq Psychology 3

Classes Yr: (4 lec & up to 6hr of tut/prac)/wk
Assessment (two 3hr exams, essays, prac reports)/sem

This course will consist of a further four options per semester in addition to those chosen by the student in Psychology 3. For a full list of options, see the entry for Psychology 3 under Bachelor of Science.

Psychology 3 Auxiliary

12 units

Prereq Psychology 2
Coreq Psychology 3

Classes Yr: (4 lec & up to 6hr of tut/prac)/wk
Assessment (two 3hr exams, essays, prac reports)/sem

This course will consist of a further two options per semester over one year or 4 options within one semester, in addition to those chosen by the student in Psychology 3. For a full list of options, see the entry for Psychology 3 under Bachelor of Science.

For information on other courses offered in the Bachelor of Psychology degree, please refer to the course descriptions listed under the Bachelor of Science degree section in this chapter.
General University information
This chapter of the handbook is concerned specifically with the Faculty of Science. For further details about the University — its organisation, examinations, child care facilities, assistance for disabled students, housing, health, counselling, financial assistance, careers advice and a range of other matters — see the separate publication *University of Sydney Diary*, available free from the Student Centre or from University of Sydney Union outlets.

Scholarships and prizes: undergraduate
This handbook contains simplified details of some of the prizes and scholarships offered by the University. For full details you are advised to consult the Scholarships Office.

The scholarships and prizes may be scheduled as follows:
Prizes awarded automatically on results. Successful students are notified of these by the Records Services section.

Prizes awarded on application. Closing dates for these may be obtained from the Scholarships Office.

<table>
<thead>
<tr>
<th>Prize or scholarship</th>
<th>Value $</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alumni Scholarship</td>
<td>3000 p.a. up to 4 yrs, 5 yrs for BSc/LLB</td>
<td>TER of 95 or above. Awarded on the basis of academic merit and personal attributes.</td>
</tr>
<tr>
<td>Australian Coal Association</td>
<td>600-1200 (closes mid January)</td>
<td>In Mining, Mechanical or Electrical Engineering or Geology. Applications to: Secretary, Australian Coal Association, GPO Box 2668, Sydney 2001.</td>
</tr>
<tr>
<td>Robert Campbell</td>
<td>200 p.a.</td>
<td>Students in financial need and of sufficient merit. Application from Year 1 students at any time.</td>
</tr>
<tr>
<td>Canon</td>
<td>10 000 p.a.</td>
<td>Honours students enrolled in Computer Science.</td>
</tr>
<tr>
<td>Council of Education</td>
<td>400 p.a.</td>
<td>Children of teachers or officers in the Department of Education of at least three years' standing. Certificate of eligibility required.</td>
</tr>
<tr>
<td>Earth Resources Foundation Scholarship</td>
<td>1000</td>
<td>Proficiency in Geology.</td>
</tr>
<tr>
<td>A.P. Elkin Fund</td>
<td>varies</td>
<td>Students of Aboriginal descent.</td>
</tr>
<tr>
<td>Farrand Scholarship</td>
<td>2500</td>
<td>Full-time first year BSc student who in the immediately preceding year completed the HSC, or an equivalent examination. Awarded on the basis of academic merit.</td>
</tr>
<tr>
<td>Freemasons' (2)</td>
<td>300 p.a.</td>
<td>Sons of freemasons of five years' standing. Certificate of eligibility required.</td>
</tr>
<tr>
<td>Joint Coal Board</td>
<td>700-1200 (closes mid-January)</td>
<td>In Mining Engineering or Geology. Application to: The Secretary, Joint Coal Board, GPO Box 3842, Sydney 2001. Graduates to work in coal mining or related fields</td>
</tr>
</tbody>
</table>
Prize compositions. Details of these may be obtained from the Scholarships Officer with whom applications generally close in the third week of second semester.

Bursaries. Bursaries are awarded on the combined grounds of financial need and academic merit and application may be made at any time to the Financial Assistance Office (open Monday to Thursday from 9.30 am to 2.30 pm).

Applications are invited for the following:

Student membership of the Faculty
The Constitution of the Faculty of Science provides that, in addition to the *ex officio* and academic staff members of the Faculty, there shall be the following categories of membership:

1. not more than three persons distinguished in the field of Science and its teaching, appointed by the Faculty on the nomination of the Dean;
2. not more than eight students, undergraduate or postgraduate, enrolled as candidates for a degree or diploma in the Faculty of Science elected in the manner prescribed by resolution of the Senate; and
3. not more than five persons, who have teaching, research or offer appropriate associations with the work of the Faculty, appointed by the Faculty on the nomination of the Dean.

Three of the eight students are elected annually by the undergraduate students in the faculty, two are elected by the postgraduate students and one each is nominated by each of the Sydney University Science Association, the Sydney University Pharmacy Association and the Sydney University Postgraduate Representative Association.

<table>
<thead>
<tr>
<th>Prize or scholarship</th>
<th>Value $</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewy Miall Pattinson</td>
<td>300-1000</td>
<td>Proceeding to honours, higher degree or diploma in Pharmacy or Science graduates for research in Pharmaceutical Science.</td>
</tr>
<tr>
<td>Mining and Metallurgical</td>
<td>200 p.a.</td>
<td>In Geology, Chemical or Mechanical Engineering. Year 1 students not eligible.</td>
</tr>
<tr>
<td>James Robinson Orange Memorial Prize</td>
<td>700</td>
<td>Children or grandchildren of members of the Loyal Orange Institution. Certificate of eligibility required.</td>
</tr>
<tr>
<td>Procter and Gamble</td>
<td>2500</td>
<td>Awarded on academic merit and leadership qualities.</td>
</tr>
<tr>
<td>Roland H. Thorpe Prize</td>
<td>200</td>
<td>Most proficient student in Pharmacology 3 in Faculty of Science (provided that student’s work is of sufficient merit).</td>
</tr>
<tr>
<td>Universities Credit Union Scholarship</td>
<td>500</td>
<td>Undergraduates who are members (of at least one year's standing) of Universities Credit Union.</td>
</tr>
<tr>
<td>Universities Science Scholarships</td>
<td>500</td>
<td>Full-time first year BSc students who in the immediately preceding year completed the HSC, or an equivalent examination. Awarded on the basis of academic merit.</td>
</tr>
</tbody>
</table>

The Senate resolutions for the student membership of the Faculty of Science are set out in full in the *Statutes and Regulations 1994-95*.

Students may request permission to attend Faculty meetings as observers. Details are available from the Faculty office.

Map Library
The Map Library within the Department of Geography in the Institute Building is open to all faculties and departments in the University. The collection offers world coverage with 45 complete topographic series produced by agencies within the various countries, together with geological, regional, thematic and specialist maps. There are also a number of maps of historic interest. Atlases are held in the Geography Library close by.

Among the local holdings of the library are the Australian topographic series of 1:100 000, 1:250 000, as well as maps produced by the Departments of Lands and Mineral Resources, the Forestry Commission, conservation and planning establishments, census departments, and most other map producing agencies throughout Australia.

The Map Library, which contains over 80 000 maps, is open from 8.30 am to 4.30 pm on weekdays. Its comprehensive collection of wall maps is available for lecture use throughout the University. In other respects the library is for reference only, map identity being obtained from a visual index or catalogue. The map custodian is the chief cartographer of the Department of Geography.
Marine Studies Centre
The Marine Studies Centre integrates and coordinates teaching, supervision of postgraduate students and research in all aspects of marine sciences. Membership of the Centre is open to academic staff and research students working in marine studies. The Centre is run by the Director and the Board which oversees coursework and research initiatives. Operation of the One Tree Island Research Station on the Great Barrier Reef is a responsibility of the Centre. The Centre also facilitates contact from the public about, and advises the University on, all matters of research and teaching in marine sciences and related environmental and resource issues.

Further information is available from the Director, Marine Studies Centre, tel. (02) 351 2699.

Mathematics Learning Centre
Lecturer-in-charge Jacqueline M. Nicholas

The Mathematics Learning Centre offers help to students who enter the University with insufficient preparation in mathematics to enable them to cope either with the normal first year mathematics courses or with the mathematical requirements of other subjects.

Many university courses assume that students have a certain level of knowledge of mathematics. These include junior courses in chemistry, computer science, economics and physics and many intermediate senior courses, among them biology, physiology, psychology and some options in marine sciences. You should check your faculty handbook carefully to see what is assumed in the courses you have chosen. If you know that you lack the assumed knowledge, or if you are doubtful whether you are well enough prepared for a course, you should contact the Mathematics Learning Centre.

At the centre we can advise you about your choice of courses, and help you decide which topics you need to do extra work on. We provide resources for individual study, with guidance from tutors, and we also arrange small supplementary tutorials for students who are having difficulties. Introductory and bridging courses are organised during the summer.

Location The centre is on the 4th floor of the Carslaw Building (go to the 4th floor from the stairway opposite the Stephen Roberts Theatre). Any student seeking assistance should call at the centre, or phone 3514061.

Faculty and departmental societies
Sydney University Science Association
As a student in the Faculty of Science you are a member of the Sydney University Science Association (SUScA), the faculty society. Part of the fee you pay to the SRC is allocated to your faculty society; the Science Association uses this money to promote activities of both an educational and a social nature.

The Association holds a number of activities throughout the year, including barbecues and the Annual Science Ball. The Science Association appoints sports directors who help organise interfaculty sport.

The association runs a stall during orientation week, where T-shirts are sold and you can find out more about what the association does. The Science Bulletin (official publication of SUScA) which heralds information concerning the activities of SUScA and Science departmental societies, is produced weekly and can be found on official departmental noticeboards. The postal address is Box 270, Wentworth Building, University of Sydney, 2006.

The affairs of the association are governed by a council consisting of office bearers, delegate members from member societies, student members of faculty and nine members elected at the annual general meeting, at least three of whom are first year students. You are encouraged to attend the AGM (held in First Semester) and to take an active part in the association and on council. Council meets regularly during term and all members are invited to attend the meetings. These are advertised in the Daily Bull. Your attendance will ensure that SUScA effectively meets the needs of science students on campus.

Member societies
A number of the departments within the Faculty of Science have departmental societies, for example the Alchemist's Society, Biochemical Society, Biological Society, Geographical Society, Geological Students' Society, Mathematical Society, Microbiology Society, Physics Society, and Psychological Society. The societies receive grants from the Science Association.

They organise talks, films, field trips and other activities relating to their particular discipline, as well as parties, wine and cheese evenings and other social activities. Most departmental societies have a stall during the orientation period.

Employment for graduates in science
The field of employment for science graduates is extraordinarily wide, ranging from the dedicated research scientist in a university or research laboratory to the managing director of a large corporation, the school teacher, the technical representative, the laboratory bench worker, the production superintendent, the consultant geologist, the bird banding biologist, the actuary, the computer sales representative, the beachcomber... the list is endless.

Many science graduates choose to undertake further study to prepare themselves for employment. There is a wide range of graduate diplomas and coursework master's degrees available. Some of these are: biotechnology, food technology, computers and control, electronics, nutrition and dietetics, and the better known ones such as education and librarianship.

Some science graduates complete a Bachelor of Engineering degree after an additional two years' study. This qualifies them as professional engineers, with a wide range of additional job opportunities in aeronautical, chemical, civil, electrical, mechanical and mining engineering. If you wish to consider this option, it is important to make sure that you choose the appropriate prerequisite subjects in your science degree.

It is prudent to plan your course with a career in mind, or a couple of careers if possible. For example,
even though you might be sure you want to teach mathematics, you might include some computer science in your course so that if you did not like teaching you would have another choice of career. Alternatively, you might have your heart set on being a biologist, but as an insurance policy in case you could not get a job as a biologist, you might consider majoring in biochemistry, microbiology or chemistry to widen the scope. This is not to say you should give up too easily if you want to be a biologist. In areas where jobs are not too plentiful (and biology usually falls into this category), you have to start right at the beginning of your course to prepare to secure that job on graduation. Some suggestions are to learn scuba-diving, join the bush-walking or speleological clubs, work in the vacation for one of the national parks—nothing if necessary—and make as many personal contacts as you can. Such evidence of keenness and initiative impresses an employer. As you will have understood, it is not only your academic ability an employer looks at but also your personality, evidence of a sense of responsibility and activities beyond the set curriculum.

Similarly, if you want a job related to chemistry, physics, geology, computer science, biochemistry, etc, do your best to obtain a vacation job that will enable you to claim relevant experience when applying for your first job. These vacation jobs are hard to get, admittedly, but the extra leg-work and initiative involved in finding one will pay off in the long run.

Careers and Appointments Service
The Careers and Appointments Service (CAS) can help you throughout your course. Visit it as often as you like. Some of the areas in which CAS might be of assistance to you are: to help you plan a science course that fits in with your personal aptitudes and interests and that keeps as many career options open for you as possible; to answer any queries you may have about careers (CAS has a careers library that you can browse through); to let you know about job prospects for any subject you wish to major in; to help you find employment on graduation; and last but not least, CAS's Student Employment Section is able to offer you vacation employment and part-time jobs throughout the year.

You will need to make an appointment to talk with one of the advisers about careers, but you do not need one to use the careers library or the Student Employment Section.

CAS is in the Mackie Building, Arundel Street, Forest Lodge, cross the Parramatta Road footbridge at the Holme Building, turn left, and it is the first building you come to.

A brief history of the Faculty
On 17 April 1882 there was a special meeting of the University Senate to receive a report from the By-laws and Curriculum Committee. The adoption of this report was moved by Mr RoUeston; it recommended:
1. There shall be four Faculties in the University—viz. Arts, Science, Medicine and Law.
2. All undergraduates shall attend first year Arts and after satisfactory examination at the end of first year 'may elect which of the following Faculties, whether Arts, Science or Medicine, they will graduate in, and after the Second Year examination' they may elect to graduate in Law.

After deciding upon the regulations for the Faculty of Arts the meeting was adjourned to the following day. It was then (18 April 1882) that regulations for the Faculty of Science were formulated. Two degrees, BSc and DSc, were established. The course of study in the bachelor's degree was as follows:
First Year Arts: Latin; one of Greek, French or German; mathematics; elementary chemistry; elements of natural philosophy.
Second Year: chemistry; physics; natural history; mathematics; French or German.
Third Year: At least three of: chemistry; physics; mathematics; mineralogy; geology and palaeontology; zoology and botany.

This, then, was the formal beginning of the Faculty. It was not the beginning of the teaching of science in the University. The first professors, all based in the Faculty of Arts, arrived in 1852; they were the Rev. Dr John Woolley (Classics), M. B. Pell (Mathematics and Natural Philosophy) and John Smith (Chemistry and Experimental Philosophy (i.e. Physics)). In 1853 there were suggestions that chairs in geology and natural history be established; however, no appointments were made. There was evidently some pressure for academic studies in geology and mineralogy and in 1866 A. M. Thomson was appointed reader in geology and mineralogy and demonstrator in practical chemistry. In 1870 he became professor of geology.

In 1880 two events occurred that were to have a profound influence upon the development of the University: the Public Instruction Act, framed by Sir Henry Parkes, was passed by the N.S.W. Parliament; and John Henry Challis died. The Public Instruction Act meant that a much wider group of children received a secondary education and formed a reservoir for increased university enrolments. And upon the death of Challis, a prosperous businessman who had earlier endowed the remarkable Royal Window in the Great Hall, it was revealed that he had left his fortune to the University. This money, a colossal sum for the then financially struggling institution, was to accrue for five years after the death of Mrs Challis, and when finally received in 1889-90 amounted to more than £250,000. At that time the annual governmental funding was around £5-10 000, and by 1902 had risen to only £14 000. The knowledge of these riches-to-come gave the Senate a sense of financial security for the first time; hitherto, apart from fees charged, the University had been completely dependent upon the Government of New South Wales. There was an air of optimism; the University could expand instead of merely survive.

On 26 July 1882 the draft of a Bill went to Parliament entitled 'A Bill for attending the Faculties and Schools in the University of Sydney and for other purposes in relation thereto'. The Senate was empowered to establish the Faculty of Science, the government
providing the money required until the Challis bequest should be received. In 1882 the chair of geology was replaced by a chair in natural history, and J. S. Stephens was appointed to it. He also doubled as professor of classics from 1884, when the Rev. Dr Charles Badham died, until a new appointment was made. The chair of chemistry and experimental philosophy was divided, Smith retaining chemistry, the new chair of physics being filled by R. Threlfall. He insisted upon the introduction of practical work and designed and supervised the construction of a physical laboratory. The names of the first graduates in science appeared in the Calendar for 1885. They were Frank Leverrier and Clarence E. Wood. By 1890 there were nine graduates, including the first woman, Fanny E. Hunt (1888).

In 1890 the obligatory year of Arts for entry to the Faculty of Science was dropped. Entry became by means of an Arts degree, a pass in Arts I or a pass in the Senior Public Examination (equivalent to today's HSC) or equivalent examination in the following subjects: Latin; one of Greek, French or German; and three of arithmetic, algebra, geometry, trigonometry, elementary surveying and astronomy, mechanics, and applied mechanics. There was now a three-year course in science (the fourth year for honours came in 1922) and all first year students took biology, chemistry, mathematics, physics and physiography.

In 1932, when the Faculty was 50-years-old, there were six chairs: physics, chemistry, zoology, geology and physical geography, botany, and chemistry (pure and applied). There were 353 undergraduates. In 1982 (the centenary year) there were 31 chairs; many of these were in new disciplines, and some disciplines had several professors. The number of students had grown to 2500.

At the end of the Second World War, the Commonwealth Reconstruction Training Scheme provided entry to the University for many ex-servicemen and ex-servicewomen. The increased numbers of students required additional facilities; the staff was enlarged and several temporary buildings (some of which are still in use) were put up. The next period of expansion came in 1951 when the then Prime Minister, R.G. Menzies, announced the entry of the Commonwealth Government into University financing. This led to the expansion of the University into the Darlington area and the erection of many new buildings: Carslaw, Chemistry, Geology and Geophysics, and Biochemistry, to name a few.

In 1954 a donation from Adolph Basser enabled the University to buy its first computer; in 1956 an electron microscope was purchased. These items of major equipment opened up many new fields of research and teaching.

Undergraduates have come to play an increasing part in the activities and operation of the Faculty. In 1904 the Science Society was established, which eventually became the Sydney University Science Association, and in 1971 the first students were elected to the Faculty of Science.

In 1985 the Faculty celebrated the centenary of its first graduates. A series of lectures, exhibitions, films and social events was held. A history book Ever Reaping Something New was published. A film about the Faculty entitled A Century of Science was also produced and broadcast nationally by the ABC.
Higher degrees

The higher degrees in the Faculty of Science are:

- MSc Master of Science
- MPharm Master of Pharmacy
- MPsychol Master of Psychology
- MNutrDiet Master of Nutrition and Dietetics
- MNutrSc Master of Nutritional Science
- PhD Doctor of Philosophy
- DSc Doctor of Science

Diplomas

The diplomas in the Faculty of Science are:

- DipHPharm Diploma in Hospital Pharmacy
- GradDipSc Graduate Diploma in Science
- GradDipSc (ComputSc) Graduate Diploma in Science (Computational Science)
- GradDipSc (EnvironSc) Graduate Diploma in Science (Environmental Science)
- GradDipSc (OptFibreTech) Graduate Diploma in Science (Optical Fibre Technology)

The regulations governing the award of these degrees and diplomas are printed in the University's Statutes and Regulations 1994-95. Prospective candidates should consult with the head of the department most closely concerned as early as possible.

Doctor of Philosophy

The degree of Doctor of Philosophy is a research degree awarded for a thesis considered to be a substantially original contribution to the subject concerned. Some coursework may be required (mainly in the form of seminars) but in no case is it a major component.

Applicants should normally hold a master's degree or a bachelor's degree with first or second class honours of the University of Sydney, or an equivalent qualification from another university or institution.

The degree may be taken on either a full-time or part-time basis.

In the case of full-time candidates, the minimum period of candidature is two years for candidates holding a master's degree or equivalent, or three years in the case of candidates holding a bachelor's degree with first class or second class honours; the maximum period of candidature is normally five years.

Part-time candidature may be Approved for applicants who can demonstrate that they are engaged in an occupation or other activity which leaves them substantially free to pursue their candidature for the degree. Normally the minimum period of candidature will be determined on the recommendation of the Faculty but in any case will be not less than three years; the maximum period of candidature is normally seven years.

Full-time candidates
Minimum period of candidature: 1 year
Maximum period of candidature: 2 years

Part-time candidates
Minimum period of candidature: 1 year
Maximum period of candidature: 4 years

MPsychol/PhD

The combined Master of Psychology and Doctor of Philosophy program allows students who have an exceptionally strong undergraduate record in Psychology to undertake both degrees in a minimum of four years full-time. Applicants will normally hold a bachelor's degree in Science, Arts or Psychology, with first or second class honours (first division) in Psychology from the University of Sydney, or an equivalent qualification from another institution.

Admission to the degree will normally be as a full-time student. The minimum period of candidature is four years and the maximum is normally six years full-time. Students may be allowed to transfer to part-time status where they can demonstrate that they are engaged in an occupation or other activity that leaves them substantially free to pursue their candidature: in such cases, the minimum candidature would be four years and the maximum would be seven years.

In the first two full-time years (or first four part-time years), students complete all coursework and practicum placements for the MPsychol. As part of
the coursework in the first year, they complete a literature review and prospectus for their doctoral research. All of the course arrangements and requirements for the MPsychol are applied, except for the satisfactory PhD thesis held to satisfy the research requirements for the MPsychol.

Enrolment in the second year is normally part-time in the MPsychol and part-time in the PhD. In the third and subsequent years of candidature, candidates complete their PhD research. Standard regulations relating to the nature and examination of the PhD thesis apply.

MPsychol

The degree of Master of Psychology provides professional training in clinical psychology and involves supervised field experience for two days a week during semester up to three days a week during vacations. Formal classes are held in assessment of problem behaviour, behaviour change, clinical research techniques, neuropsychology, and related topics. A research thesis is also required.

Candidates for the degree must normally hold the degree of Bachelor of Arts or Science with honours in Psychology and have completed work in abnormal psychology acceptable to the Faculty.

The course for the MPsychol degree can be completed in two years of full-time study or four years of part-time study.

Some details of the course arrangements and requirements are as follows:

1. **Candidates for the degree are required to complete satisfactorily**—
 (a) a coursework component according to the syllabus approved by the Faculty of Science;
 (b) a practicum component involving both training in therapeutic and assessment techniques and field placements;
 (c) a research project and submit a dissertation on that project.

2. **The requirements for the degree shall be completed in two parts; and Part I must be satisfactorily completed before Part II.**
 (a) Full-time candidates are required, except with the permission of the Faculty, to complete the requirements of Part I of the course within one year of first enrolment and to complete Part II of the course within two years of first enrolment.
 (c) Part-time candidates are required, except with the permission of the Faculty, to complete the requirements of Part I of the course within two years of first enrolment and to complete Part II of the course within four years of first enrolment.

The following syllabus has been approved by the Faculty of Science:

1. **Course component**
 The following topics are covered: abnormal behaviour; assessment; behaviour change; behavioural medicine; child abnormal psychology; intellectual, physical and sensory handicap; neuropsychology; professional issues; psychometrics; psychopharmacology; psychophysiology; research methods.

 Assessment: four written papers to be taken by the end of Part I together with essay and seminar papers over both parts of the course.

2. **Practicum component**
 Students are required to undertake training in both therapeutic and assessment techniques and to undertake field placements.

 Assessment: by mastery tests, supervisors' reports, written or oral case presentations.

MNutrDiet and MNutrSc

The MNutrDiet is a course designed to survey all aspects of human nutrition, with special emphasis on the needs of dietitians who will be working in Australia. It provides the basic training for hospital and community dietitians and nutritionists and is one of the recognised professional courses for dietitians in Australia.

The MNutrSc provides the same survey of all aspects of human nutrition in the first year but is designed for those persons who wish to undertake research in this area. The second year is devoted to a research project, with regular seminars.

Admission

An applicant for admission to candidature of either degree course must be a graduate and have completed full second year University courses in Biochemistry and Human Physiology\(^1\) or equivalent courses. Applications for admission should be lodged with the Registrar by 15 November of the year prior to the one in which candidature is sought.

Timing

Both courses occupy two years. The first year is common to both and involves academic study in prescribed courses. In the second year the courses proceed as follows:

MNutrDiet. One semester is devoted to a short research project, which is presented for examination in the form of a long essay. The other semester is for clinical training in dietetics in recognised teaching hospitals and in community dietetics.

MNutrSc. A candidate carries out an original investigation on a topic which will result in the writing of a short thesis.

Lecturers

The courses are taught and coordinated by the Boden Professor of Human Nutrition and the staff of the Human Nutrition Unit with the cooperation of the Nutrition and Dietetics Department of the Royal Prince Alfred Hospital and the Dietetic Department of the

For instance in a Sydney BSc degree Biochemistry 2 and Physiology 2 Auxiliary or in the Sydney BMedSc degree Biochemistry 2 (Medical Science) and Human Life Sciences 2.
Children's Hospital Camperdown. There are specialist lecturers from several departments at the University of Sydney (Medicine, Public Health, Geography, etc.), from the School of Food Technology at the University of New South Wales, and other specialist institutions. The courses are supervised by a Board of Studies in Nutrition and Dietetics, whose chairperson is the Dean of the Faculty of Science.

Courses of Study
First Year
1. Nutritional Science
2. Nutritional Biochemistry
3. Food Science and Technology
4. Food Intake Measurements
5. Community Nutrition
6. Public Health Nutrition
7. Medicine
8. Clinical Nutrition and Therapeutic Dietetics
9. Food Service Management and Production
10. Principles of Communication and Education
11. Sociology and Anthropology of Food Habits
12. Principles of Professional Dietetic Practice (MNutrDiet only)

Second Year
(a) Dietetic Practical Placement in approved hospital and community health centres (one 20-week semester).
(b) Research Project. One semester on a supervised research project approved by the Head of the Human Nutrition Unit.

Students attend the University on a regular basis to undertake the following senior courses:
1. Management
2. Theory of Counselling
3. Dietetic Counselling
4. Advanced Clinical Nutrition
5. Advanced Community Nutrition

Assessment
First Year of MNutrDiet & MNutrSc: four 3-hour exams (Nutritional Science I and II, Clinical Nutrition and Public Health Nutrition) and assignments on food intake measurement, food habits and community nutrition.

Second Year of MNutrDiet: continuous assessment throughout the Dietetics training semester and one final 3-hour exam. Research semester is assessed by presentation of a long essay and formal oral presentation.

Second Year of MNutrSc: Assessment is by progress in the two semester research projects and by the short thesis based on the candidate’s research.

Graduate diplomas
Graduate Diploma in Science
The Graduate Diploma in Science serves as an entry qualification for the degrees of Master of Science, Master of Pharmacy or Doctor of Philosophy. It consists of equivalent work to that carried out by candidates enrolled in the fourth year honours courses, and is available to candidates who are not eligible to enrol in those courses. Entry to the Graduate Diploma is subject to approval by the relevant head of department and confirmation that requirements for the award of the degree of Bachelor of Science, Bachelor of Pharmacy, Bachelor of Medical Science, or an equivalent degree have been met.

Graduate Diploma in Science (Computational Science)
Graduate Diploma in Science (Environmental Science)
Graduate Diploma in Science (Optical Fibre Technology)

Resolutions of the Senate governing the Graduate Diploma in Science and the other graduate diplomas above may be found in the Statutes and Regulations 1994-95.

Graduate Diploma in Science (Optical Fibre Technology)
Dr Ian Bassett (coordinator)
Classes and assessment Details from the Optical Fibre Technology Centre
Admission Consult the Manager, Education and Training at the Optical Fibre Technology Centre

The Graduate Diploma provides an interdisciplinary qualification in this fast changing, leading-edge technology, which is of particular relevance for those entering the telecommunications, cable TV and Broadband services industries of the future. Successful completion of all the courses in the Graduate Diploma at a satisfactory level may allow the candidate to proceed to the Master's by coursework program with further courses, additional laboratory work and a long essay. For further information, please consult the Manager, Education and Training at the Optical Fibre Technology Centre.

Introductory Optical Fibre Technology*
Basic course for students with little or no optical fibre background. This introductory course gives an overview of optical fibre technology and its applications.

Basic Optics and Mathematical Preliminaries*
This covers the mathematics and optics which is required for Course 3 and later courses. This includes ordinary differential equations, partial differential equations, complex analysis, theory of reflection, refraction, interference and diffraction, Maxwell's equations, waveguide modes, wave packets and group velocity.

Optical Fibres: Principles, Systems and Devices
Basic optical fibre theory and practice: Fibre waveguide theory, fibre fabrication and characterisation, sources

* These courses shall be completed prior to the remaining courses in the program. Any exemptions must be applied for at the time of application for admission and be granted only with the Interdepartmental Committee’s approval.
and detectors, telecommunication systems and fibre sensors.

Systems and Networks
Basic theory and methods of communication systems and networks with emphasis on optical fibre aspects. This course reviews the network architectures’ and the technological alternatives for communications are then presented. There is particular emphasis placed on optical fibre technology in the implementation of broadband networks.

Sources and Lasers
Basic theory and practice of lasers with particular reference to sources for optical fibre. This course introduces the concepts of absorption and stimulated and spontaneous emission of light. It explains how stimulated emission process can lead to amplification of light. The design of the resonator is also introduced. This course studies the properties of laser light—monochromacity, coherence, intensity, pulse duration and others — and emphasises lasers of particular importance to optical fibre systems. Laser safety issues will also be addressed.

Photonics
Basic course in the principles and techniques of information processing by optical methods. This module begins with a review of solid state physics which is then applied to a discussion of semiconductor lasers and guided wave structures. Then will follow non-linear optics, highlighting second harmonic generation and the Kerr effect. Finally attention turns to light itself with a quantum mechanical description in terms of coherence, optical squeezing and solitons.

Optical Fibre Sensors — Basics
Basic principles and representative examples of detection and measurement by means of optical fibres. The course examines fibre sensing systems and includes hands-on experiments with laser sources and detectors, fibre cleaving and splicing, optical power measurement, attenuation and optical time domain reflectometry (OTDR) measurements.

Devices and Components for Optoelectronics
Use and characteristics of linear and non-linear devices and components in optoelectronics. Optoelectronic devices employ a suitable material (often semiconductor and /or crystalline) which allows an interaction between light and electricity. This module introduces such optoelectronic devices as detectors and modulators of light and electro-optic switches. Techniques for the characterisation of such devices will be covered and examples of applications of optoelectronic devices to optical fibres will be given.

Resolutions of the Faculty

Graduate Diploma (Computational Science)

1. A course shall consist of lectures together with such tutorial instructions, essays, exercises or practical work as may be prescribed. In these resolutions, to 'complete a course' and derivative expressions mean —

 (i) to attend the lectures and the meetings, if any, for tutorial instruction;
 (ii) to complete satisfactorily the essays, exercises and the practical work, if any; and
 (iii) to pass the examination on the course.

2. A candidate shall complete coursework to the value of 20 units comprising three core courses and two optional courses selected from the following table:

 Core Courses (4 units each)
 - Computational Mathematics
 - Supercomputing Techniques
 - Symbolic Algebra

 Optional Courses (4 units each)
 - Advanced Molecular Dynamics
 - Computational Plasma Physics
 - Image Processing Techniques in Optics and Astrophysics
 - Nonlinear System and Biomathematics
 - Neural Networks
 - Signal Processing

Graduate Diploma in Science (Environmental Science)

1. A course shall consist of lectures together with such tutorial instructions, essays, exercises or practical work as may be prescribed. In these resolutions, to 'complete a course' and derivative expressions mean —

 (i) to attend the lectures and the meetings, if any, for tutorial instruction;
 (ii) to complete satisfactorily the essays, exercises and the practical work, if any; and
 (iii) to pass the examination on the course.

2. A candidate shall complete the courses listed below, in addition to satisfactorily completing a project.

 Courses —
 Full-year
 - Environmental Biology
 - Environmental Geology

 First Semester
 - Environmental Geomorphology and Hydro-geomorphology
 - Sampling and Techniques for Environmental Monitoring/Assessment
 - Resource Modelling
 - Environmental Law
 - Natural Resource Economics
 - The Built Environment and Planning Aspects of the Environment

 Second Semester
 - Total Catchment Management
 - Environmental Physics
Graduate Diploma in Science (Optical Fibre Technology)

1. A course shall consist of lectures together with such tutorial instruction, essays, exercises or practical work in the laboratory as may be prescribed. In these resolutions, to 'complete a course' and derivative expressions shall mean —
 (i) to attend the lectures, laboratories, tutorials and meetings as recommended;
 (ii) to complete satisfactorily any practical and theoretical assignments; and
 (iii) to pass the examination on the course.

2. A candidate shall complete the courses shown in the following table:

Course 1	Introductory Optical Fibre Technology
Course 2	Basic Optics and Mathematical Preliminaries
Course 3	Optical Fibres: Principles, Systems and Devices
Course 4	Systems and Networks
Course 5	Sources and Lasers
Course 6	Photonics
Course 7	Optical Fibre Sensors - Basics
Course 8	Devices and Components for Optoelectronics

3. Part-time candidates generally shall complete the course work for four courses in the first year followed by four in the second year.

4. Candidates shall be required to complete courses 1 and 2 before proceeding to the remaining courses of the Diploma.

5. Satisfactory progress shall be determined by the Interdepartmental Committee.

Diploma in Hospital Pharmacy

Dr Armour (coordinator)

Classes and Assessment details from Department

Admission consult the coordinator

Hospital experience

Students spend approximately two-thirds of the course time in hospitals where comprehensive programs of clinical and other hospital pharmacy activities are conducted. Students work in four different hospitals throughout the year.

Courses of study

Therapeutics* This course consists of approximately 100 hours of lectures and 50 hours of tutorials. Lectures cover pathophysiology, clinical manifestations and treatments of diseases with emphasis on current drug therapy. Tutorials are broadly based with emphasis placed on current hospital pharmacy practice.

Clinical Epidemiology This is a course of lectures and tutorial/discussion sessions (approximately one hour per week) in which clinical study designs are examined. Current clinical scientific and medical literature is critically evaluated.

Therapeutic Drug Monitoring* This course, in approximately 15 hours distributed over the year, presents the clinical pharmacokinetics of relevant drugs.

Clinical Biochemistry This course consists of nine lectures covering the procedures used for determination of biochemical and microbiological values in patients and the interpretation of these tests with respect to the clinical evaluation of the patient and the assessment of drug therapy.

Case History Presentation This course involves development of skills required to access current information on new technology and/or drugs and presentation of this information in a formal style for assessment.

Scientific Presentation This is a course of ten hours which deals with how to present orally as well as developing written skills.

Computing. An introduction to the Macintosh and IBM word processing and statistics packages is provided.

Research project

Each student carries out a hospital pharmacy-based research project selected by the director of pharmaceutical services of the participating hospital in consultation with the staff of the Department of Pharmacy. The project extends over most of the year and includes a literature survey, development of a protocol, collection and treatment of data and presentation of results in the form of written and verbal reports.

Masters Qualifying Procedure

The Masters Qualifying Procedure serves as an entry qualification/probation period for the degrees of Master of Science, Master of Pharmacy, Master of Nutrition and Dietetics, Master of Nutritional Science and Doctor of Philosophy. It is designed to cater for candidates who have satisfied the general requirements for entry to the degree program but who are required to undertake further work to satisfy the department concerned that entrance to the degree program is appropriate.

Scholarships and prizes: postgraduate

This handbook contains simplified details of some of the prizes and scholarships offered by the University. For full details you are advised to consult the Scholarships Office. The scholarships and prizes may be scheduled as follows:

* These courses are extensions of undergraduate courses and presume adequate knowledge of the undergraduate course.
Grants-in-aid These are offered by application (closing date: 31 May each year) to postgraduate students seeking assistance with travel or maintenance.

Postgraduate scholarships tenable at the University of Sydney Prospective postgraduate students should consult the Scholarships Office in August/September each year about Australian Postgraduate Research Awards (closing date: 31 October) and Australian Postgraduate Course Awards (closing date: 31 October).

Postgraduate travelling scholarships Each year the University offers five or six travelling scholarships with a closing date in November. Generally, applicants need to have a first class honours degree approaching medal standard to be successful.

Applications for the major travelling scholarships offered by external bodies generally close in August or September.

All postgraduate scholarships are advertised in the Bulletin Board which is available in departments or from the Scholarships Office in the Holme Building.

<table>
<thead>
<tr>
<th>Scholarship</th>
<th>Value $</th>
<th>Closing date for applications</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tenable at the University of Sydney</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Australian and University Postgraduate Research Awards</td>
<td>14 961 (1995)</td>
<td>31 October</td>
<td>Graduates with Hons I. For research in any field</td>
</tr>
<tr>
<td>Australian Postgraduate Course awards</td>
<td>11 687</td>
<td>31 October</td>
<td>Graduates with honours degrees or very good pass de ees. For master's degrees undertaken by coursework</td>
</tr>
<tr>
<td>R. and M. Bentwich Scholarship</td>
<td></td>
<td></td>
<td>Graduate who holds a postgraduate research scholarship and who requires a supplementary grant</td>
</tr>
<tr>
<td>Earth Resources Foundation Scholarship</td>
<td>10 500</td>
<td></td>
<td>Research in geology and geophysics</td>
</tr>
<tr>
<td>Farrand Postdoctoral Research Fellowship</td>
<td>27 139-30 133</td>
<td></td>
<td>Research in area of science</td>
</tr>
<tr>
<td>Henry Bertie and Florence Mabel Postgraduate Research Scholarships — Senior</td>
<td>27 139-30 133</td>
<td>as advertised</td>
<td>For research in chemistry in Gritton relation to industry and agriculture</td>
</tr>
<tr>
<td></td>
<td>15 087-16 598</td>
<td>as advertised</td>
<td></td>
</tr>
<tr>
<td>George Harris Scholarships (2)</td>
<td>1200 each</td>
<td></td>
<td>One for a research student in chemistry and one for a research student in geology and geophysics</td>
</tr>
<tr>
<td>Linnean Macleay Fellowships</td>
<td>800-3200</td>
<td></td>
<td>Graduates in science or agriculture who are members of the Linnean Society of N.S.W.</td>
</tr>
<tr>
<td>Richard Claude Mankin Scholarship Postdoctoral</td>
<td>27 139-30 133</td>
<td>as advertised</td>
<td>For research into water conservation</td>
</tr>
<tr>
<td></td>
<td>10 500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Professor Harry Messel Research Fellowship in Physics Postdoctoral</td>
<td>27 139-30 133</td>
<td>as advertised</td>
<td>Research in physics</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scholarship</td>
<td>Value $</td>
<td>Closing date for applications</td>
<td>Qualifications</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Postgraduate</td>
<td>8882</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.E. & F.A.Q. Stephens Research Scholarship</td>
<td>10 500</td>
<td>as advertised</td>
<td>Graduates with research experience. For research in any field</td>
</tr>
<tr>
<td>Elizabeth Wunsch Research Scholarship in Pharmacy</td>
<td>14 474</td>
<td></td>
<td>Research in pharmacy</td>
</tr>
</tbody>
</table>

2. Travelling Scholarships
Awarded by the University of Sydney

<table>
<thead>
<tr>
<th>Scholarship</th>
<th>Value $</th>
<th>Closing date for applications</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barker Graduate Scholarship</td>
<td>9000*</td>
<td>as advertised</td>
<td>For postgraduate research in mathematics</td>
</tr>
<tr>
<td>Harriett Beard Scholarship</td>
<td>9000*</td>
<td>as advertised</td>
<td>For postgraduate research in the physical sciences, engineering, veterinary science and dentistry</td>
</tr>
<tr>
<td>Edgeworth David Travelling Scholarship</td>
<td></td>
<td>as advertised</td>
<td>For postgraduate research in geology</td>
</tr>
<tr>
<td>Charles Gilbert Heydon Travelling Fellowship</td>
<td>10 500</td>
<td>as advertised</td>
<td>For postgraduate research in biological sciences</td>
</tr>
<tr>
<td>Herbert Johnson Travel Grants</td>
<td>under</td>
<td>31 May review</td>
<td>Travel grant for graduates holding travelling scholarships</td>
</tr>
<tr>
<td>James King of Irrawang Travelling Scholarship</td>
<td>1000</td>
<td>31 May</td>
<td>Travel grants for graduates in any faculty</td>
</tr>
<tr>
<td>G.H.S. & I.R. Lightoller Scholarship</td>
<td>1000</td>
<td>as advertised</td>
<td>Travel grants for graduates in Arts, Medicine, Science, Veterinary Science, Agriculture and Engineering</td>
</tr>
<tr>
<td>University of Sydney Postgraduate Research Travelling Scholarships (2)</td>
<td>9000*</td>
<td>31 October</td>
<td>Graduates from any faculty</td>
</tr>
<tr>
<td>J.B. Watt Travelling Scholarship</td>
<td>9000*</td>
<td>as advertised</td>
<td>Graduate with Hons I in any faculty</td>
</tr>
<tr>
<td>Eleanor Sophia Wood Travelling Fellowships</td>
<td>varies</td>
<td>31 March</td>
<td>For overseas study or research to persons who have been engaged full-time for at least three years in teaching or postgraduate research in the University of Sydney</td>
</tr>
</tbody>
</table>

Awarded by external bodies

<table>
<thead>
<tr>
<th>Scholarship</th>
<th>Value $</th>
<th>Closing date for applications</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caltex</td>
<td>24 000</td>
<td>30 September</td>
<td>Female graduates completing degree or diploma in year of application</td>
</tr>
<tr>
<td>Commonwealth Scholarship and Fellowship Plan Awards</td>
<td>living allowance*</td>
<td>September</td>
<td>Tenable in British Commonwealth countries. For research in any field</td>
</tr>
<tr>
<td>Gowrie Postgraduate Research Scholarship (2)</td>
<td>4000*</td>
<td>31 October</td>
<td>Descendants of ex-servicemen. For research in any field</td>
</tr>
</tbody>
</table>

*Additional benefits include cost of travel and payment of fees.
<table>
<thead>
<tr>
<th>Scholarship</th>
<th>Value £</th>
<th>Closing date for applications</th>
<th>Qualifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuffield Foundation Dominion</td>
<td>£3500+</td>
<td>February</td>
<td>For research in any field</td>
</tr>
<tr>
<td>Travelling Fellowship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhodes Scholarship</td>
<td>£3850</td>
<td>1 October return air-fare</td>
<td>Age limit 25. For tenure at the University of Oxford</td>
</tr>
<tr>
<td>Rotary Foundation Fellowships</td>
<td></td>
<td></td>
<td>For research in any field</td>
</tr>
<tr>
<td>Rutherford Scholarship</td>
<td>£3600*</td>
<td>14 December (under review)</td>
<td>For experimental research in any branch of the natural sciences</td>
</tr>
<tr>
<td>Shell Postgraduate Scholarship</td>
<td></td>
<td>25 September</td>
<td>Graduate in arts, science and engineering</td>
</tr>
<tr>
<td>H. Tasman Lovell Memorial Medallion</td>
<td></td>
<td></td>
<td>For best thesis for PhD degree in Department of Psychology</td>
</tr>
<tr>
<td>Ormsby Hamilton Radio Prize</td>
<td>600</td>
<td>awarded every two years</td>
<td>For an essay in any aspect of radio science</td>
</tr>
</tbody>
</table>

* Additional benefits include cost of travel and payment of fees
Students in other faculties should consult the relevant faculty concerning locations and times.

Any student enrolled in an Engineering Science course should check details of the timetable for that course with the Faculty of Engineering office.

Table 1 contains the general timetable of Junior Courses for students proceeding towards the degree of Bachelor of Science in the Faculty of Science. Science/Law students should also see **Table 4**. The timetable of first year Science course lectures and practical classes for students enrolled in other faculties are contained in the handbooks of those faculties.

Tables 2 and 3 are for Science students enrolling for Intermediate and Senior courses.

Table 4 is for Science/Law students.

Tables 5 and 6 are for students enrolled in the Bachelor of Medical Science course.

Pharmacy students will receive their timetable at the enrolment centre.
Table 1

General timetable — Junior courses

An individual timetable for each student will be issued during the orientation period in Carslaw Lecture Room 250. (Please refer to the information above.) Science/Law students should also consult table 4.

<table>
<thead>
<tr>
<th>Course</th>
<th>Classes</th>
<th>Series</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biology 1</td>
<td>Lectures</td>
<td>1</td>
<td>9</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>9</td>
<td>One lecture series to be allocated. One 3-hour session per week will be allocated.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>3</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td></td>
</tr>
<tr>
<td>Chemistry 1</td>
<td>Lectures</td>
<td>Advanced & TSP</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>One lecture series to be allocated. One 3-hour session per week will be allocated.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>3</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td></td>
</tr>
<tr>
<td>Computer Science 1</td>
<td>Lectures</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>(2-5)</td>
<td>Consult the department handbook and noticeboards. Lectures, tutorials and workshops will be allocated. Consult department for Advanced course.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>2</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td></td>
</tr>
<tr>
<td>Enviromental Earth Science 1</td>
<td>Lectures</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>(2-5)</td>
<td>This course is only available for students in the Enviromental Science Degree program.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>2</td>
<td>(1-3)</td>
<td>(1-3)</td>
<td>(1-3)</td>
<td>(1-3)</td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 (Life Sciences)</td>
<td>Lectures</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Lectures will be allocated. Two 1-hour tutorials per week will be allocated.</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td>2</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Geography 1</td>
<td>Lectures</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>(2-5)</td>
<td>One lecture series to be allocated. One 2-hour session per week will be allocated.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>(11-1)</td>
<td>(11-1)</td>
<td>(11-1)</td>
<td>(11-1)</td>
<td>(11-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1-3)</td>
<td>(1-3)</td>
<td>(1-3)</td>
<td>(1-3)</td>
<td>(1-3)</td>
<td></td>
</tr>
<tr>
<td>Geology 1</td>
<td>Lectures</td>
<td>1</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>(2-5)</td>
<td>One 3-hour session per week will be allocated.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td></td>
</tr>
<tr>
<td>Mathematics 1 & Mathematics 1 (Advanced)</td>
<td>Lectures</td>
<td>1</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Lectures will be allocated.</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td>2</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Physics 1 Advanced &TSP</td>
<td>-Lectures</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>One 3-hour session per week will be allocated.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>\</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td></td>
</tr>
<tr>
<td>Physics 1</td>
<td>Lectures</td>
<td>1</td>
<td>9</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>One series to be allocated. One 3-hour session per week to be allocated.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td>2</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td>(10-1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td></td>
</tr>
<tr>
<td>Psychology 1</td>
<td>Lectures</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>One lecture on each of the days and a 2-hour tutorial to be allocated.</td>
</tr>
</tbody>
</table>
Table 2
Timetable for Intermediate courses

An individual timetable for students enrolled in most of the courses listed in this table will be issued during the orientation period in Carslaw Lecture Room 250.

Unless otherwise indicated timetables for advanced courses are the same as those for the equivalent ordinary courses.

Students enrolled in Engineering Science courses must check details of the timetable and their class allocation with the Faculty of Engineering office.

Science/Law students should also consult table 4.

The codes SI and S2 in the course column for 8 unit courses indicate the Semester during which the particular class will be held—SI = Semester 1 and S2 = Semester 2. The code (A) indicates that the classes will be conducted at times shown throughout the year.

Unless otherwise indicated in the notes all classes for courses other than 8 unit courses are held throughout the year.

Alternative times are indicated by an entry in the 'Alt.' column. An asterisk (*) in this column indicates that there is some degree of choice among the times that follow. Rules for selecting from the times are given in the 'Notes' column. In most cases the actual selection will be advised when students receive a timetable in the week prior to the start of lectures.

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Classes</th>
<th>Option or Series</th>
<th>Alt</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Chemistry 2</td>
<td>16</td>
<td>Lectures</td>
<td></td>
<td>*</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td>Five hours practical required on one day.</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td></td>
<td>Series</td>
<td></td>
<td></td>
<td>(12-6)</td>
<td>(11-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anatomy & Histology 2 Comparative (A)</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td>*</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>Two hours practical required on one day.</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td></td>
<td>Series</td>
<td></td>
<td></td>
<td>(11-1)</td>
<td>(11-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biochemistry 2</td>
<td>16</td>
<td>Lectures</td>
<td></td>
<td>*</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td>Five hours practical required on one day.</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td></td>
<td>Series</td>
<td></td>
<td></td>
<td>(11-5)</td>
<td>(11-5)</td>
<td>(1-6)</td>
<td>(1-6)</td>
<td></td>
</tr>
<tr>
<td>Biochemistry 2 Auxiliary (A)</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 2 (Animals)</td>
<td>16</td>
<td>Lectures</td>
<td></td>
<td>*</td>
<td>3</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td></td>
<td>Choose one 3-hour period. One additional hour of tutorial work by arrangement.</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td></td>
<td>Series</td>
<td></td>
<td></td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td></td>
</tr>
<tr>
<td>Biology 2 (Animals) Theory Auxiliary (A)</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>3</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td></td>
<td>One additional hour of tutorial work by arrangement.</td>
</tr>
<tr>
<td>Biology 2 (Genetics, Cellular & Developmental) Auxiliary (A)</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>11</td>
<td>12</td>
<td>11</td>
<td></td>
<td></td>
<td>One hour per week to be arranged.</td>
</tr>
<tr>
<td>Tutorial</td>
<td></td>
<td></td>
<td>Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 2 (Molecular & General Genetics) Auxiliary (SI)</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td>*</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td></td>
<td></td>
<td>Choose one 4-hour session. One hour per week to be arranged.</td>
</tr>
<tr>
<td>Practical</td>
<td></td>
<td></td>
<td>Series</td>
<td></td>
<td></td>
<td>(2-6)</td>
<td>(1-5)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 2 (Plant Anatomy & Physiology) Auxiliary (SI)</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>Four hours audiovisual plus a two hour tutorial by arrangement in certain weeks.</td>
</tr>
<tr>
<td>Audiovisual</td>
<td></td>
<td></td>
<td>Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>At other times five hours of practical plus a one hour tutorial required.</td>
</tr>
<tr>
<td>Course</td>
<td>Units</td>
<td>Classes</td>
<td>Option or Series</td>
<td>Alt</td>
<td>Mon</td>
<td>Tue</td>
<td>Wed</td>
<td>Thu</td>
<td>Fri</td>
<td>Notes</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>---------</td>
<td>-----------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>Biology 2 (Plant Ecology & Diversity) Auxiliary (S2)</td>
<td>8</td>
<td>Lectures</td>
<td>Audiovisual</td>
<td>*</td>
<td>(1-6)</td>
<td>(1-6)</td>
<td></td>
<td></td>
<td></td>
<td>Four hours audiovisual plus a two hour tutorial by arrangement in certain weeks. At other times five hours of practical plus a one hour tutorial required.</td>
</tr>
<tr>
<td>Biology 2 (Cellular & Developmental) Auxiliary (S2)</td>
<td>8</td>
<td>Lectures</td>
<td>Practical Tutorial</td>
<td>*</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td></td>
<td></td>
<td>One 4-hour session. One hour per week to be arranged.</td>
</tr>
<tr>
<td>Chemical Engineering Science</td>
<td>16</td>
<td>Lectures Chemical Eng 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This course is equivalent to U1.610 Chemical Engineering 1 and U2.610 Chemical Engineering 2.</td>
</tr>
<tr>
<td>Chemical Engineering Science Auxiliary(A)</td>
<td>8</td>
<td>Lectures Chemical Eng 1</td>
<td>Tutorials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One 2-hour tutorial will be allocated each week. One 1-hour tutorial will be allocated each week.</td>
</tr>
<tr>
<td>Chemistry 2</td>
<td>16</td>
<td>Lectures</td>
<td>Practical</td>
<td>*</td>
<td>8 or 12</td>
<td>8 or 12</td>
<td>8 or 12</td>
<td>8 or 12</td>
<td></td>
<td>Two sessions per week one 2-hour, one 3-hour to be allocated. The laboratories (Inorganic, Organic, Physical) will not normally be open every day.</td>
</tr>
<tr>
<td>Chemistry 2 Long</td>
<td>20</td>
<td>Lectures Practical</td>
<td></td>
<td>*</td>
<td>8 & 12</td>
<td>8 or 12</td>
<td>8 or 12</td>
<td>8 or 12</td>
<td>12</td>
<td>Monday 8am lecture for weeks 5-10 Sem 1 only. Two 3-hour sessions per week to be allocated. The laboratories (Inorganic, Organic, Physical) will not normally be open every day.</td>
</tr>
</tbody>
</table>
| Chemistry 2 Auxiliary (A) | 8 | Lectures | Practical, Physical | * | 8 or 12 | 8 or 12 | | 8 or 12 | | Three hours per week during weeks 1-6 of Semester 1 for Physical, to be allocated. A 3-hour session per week during weeks 5-10 of Semester 2 for Organic. Choose one afternoon.
Three hours per week during weeks 5-10 of Semester 2 for Organic. Choose one afternoon. Nine 1-hour compulsory tutorials in Physical, four in Semester 1 and five in Semester 2. |
Table 2 (continued)

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Classes</th>
<th>Option or Series</th>
<th>Alt</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil Engineering Science</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lectures</td>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Statics</td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>9</td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Design</td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Statics</td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorials</td>
<td>Design</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Each student is required to attend four 3-hour practical classes during Semester 2. Students will be rostered to these four classes on the same day of the week each time.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Statics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Structures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td>Computer Science 2</td>
<td>16</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>10,12</td>
<td>10,12</td>
<td>10,12</td>
<td>10,12</td>
<td></td>
<td>One lecture to be taken on each of the four days. Consult department.</td>
</tr>
<tr>
<td>Entomology 2 Introductory (S2)</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>9*</td>
<td>9*</td>
<td>9*</td>
<td>2</td>
<td></td>
<td>*First 6 weeks only. Consult Biology advisers. Additional practical assignments by arrangement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td>Environmental Geology 2 Auxiliary (A)</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>2</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>Consult department.</td>
</tr>
<tr>
<td>Geography 2</td>
<td>16</td>
<td>Lectures</td>
<td>Environ.</td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td>Practical assignment and weekly tutorial at times to be arranged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Geomorph.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Attendance at one tutorial is compulsory. See department.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Human *</td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>Semester 1 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 only.</td>
</tr>
<tr>
<td>Geology 2</td>
<td>16</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
<td>Consult department.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Two afternoons by arrangement.</td>
</tr>
<tr>
<td>History & Philosophy of Science 2</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>5.15</td>
<td>5.15</td>
<td>Each student attends one series of lectures and a 2-hour tutorial by arrangement. Consult department.</td>
</tr>
<tr>
<td>Introductory (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 only.</td>
</tr>
<tr>
<td>History & Philosophy of Science 2</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>5.15</td>
<td>5.15</td>
<td>Each student attends one series of lectures and a 2-hour tutorial by arrangement. Consult department.</td>
</tr>
<tr>
<td>Auxiliary (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 only.</td>
</tr>
<tr>
<td>Marine Sciences 2</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td>One hour tutorial by arrangement.</td>
</tr>
<tr>
<td>Introductory (A)</td>
<td></td>
<td>Tutorials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 only.</td>
</tr>
<tr>
<td>Applied Mathematics 2 & 2 (Advanced)</td>
<td>16</td>
<td>Lectures</td>
<td>Ser1 Ser2 Ser3</td>
<td></td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>Each student attends two series. Consult School for details.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ser4</td>
<td></td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>4</td>
<td>By arrangement.</td>
</tr>
</tbody>
</table>

This course is equivalent to the Engineering faculty courses: U2.210 (Introduction to Materials), U1.220 (Statics), U2.290 (Structural Design), U2.221 (Structural Mechanics).
<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Classes</th>
<th>Option or Series</th>
<th>Alt</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical Methods 2 (A)</td>
<td>8</td>
<td>Lectures</td>
<td>Series 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One series to be allocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Series 2</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By arrangement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One tutorial per week by arrangement.</td>
</tr>
<tr>
<td>Mathematics 2 Combined</td>
<td>24</td>
<td>Lectures</td>
<td>Ser1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One of these series to be allocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methods</td>
<td>Ser2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consult department about choice of series.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Algebra</td>
<td>Ser1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Three hours by arrangement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Applied</td>
<td>Ser2</td>
<td>10</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorials</td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure Mathematics 2</td>
<td>16</td>
<td>Lectures</td>
<td>Ser1</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Choose one of series 1, 2 and 3. Consult department.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Methods</td>
<td>Ser2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>By arrangement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Analysis</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Algebra</td>
<td></td>
<td>2</td>
<td></td>
<td>9</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical and Aeronautical Engineering</td>
<td>16</td>
<td>Lectures</td>
<td>MEng2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>This course is equivalent to U2.410 (Mechanical Engineering 2), and</td>
</tr>
<tr>
<td>Science 2</td>
<td></td>
<td></td>
<td>SI</td>
<td>11</td>
<td></td>
<td>11</td>
<td></td>
<td>11</td>
<td>10</td>
<td>either U2.441 (Mechanical Design 1A) or both U2.440 (Mechanical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S2</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>(2-5)</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td>M Eng2</td>
<td></td>
<td></td>
<td></td>
<td>(2-5)</td>
<td></td>
<td></td>
<td>One 3-hour practical each week will be allocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SI</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td>S2</td>
<td></td>
<td></td>
<td></td>
<td>(2-5)</td>
<td></td>
<td></td>
<td>Semester 2 only. One 3-hour practical each week will be allocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lecture M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(3-6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>DeslA</td>
<td></td>
<td></td>
<td></td>
<td>(2-5)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td>DeslA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eng2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Microbiology 2</td>
<td>16</td>
<td>Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students attend either Monday and Wednesday or Tuesday and Monday.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Classes will be allocated.</td>
</tr>
<tr>
<td>Microbiology 2 (Advanced)</td>
<td>16</td>
<td>Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students attend either Monday and Wednesday or Tuesday and Monday.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Classes will be allocated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Microbiology 2 (Theory & Techniques)</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students attend either Monday and Wednesday or Tuesday and Monday.</td>
</tr>
<tr>
<td>Auxiliary (SI)</td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Classes will be allocated.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Microbiology 2 (Theory)</td>
<td>8</td>
<td>Lectures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Students attend either Monday and Wednesday or Tuesday and Monday.</td>
</tr>
<tr>
<td>Auxiliary (A)</td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Classes will be allocated.</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Notes:

- One series to be allocated.
- By arrangement.
- One 2—hour session per week by arrangement.
- One tutorial per week by arrangement.
- Choose one of series 1, 2 and 3. Consult department.
- By arrangement.
<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Classes</th>
<th>Option or Series</th>
<th>Alt</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacology 2 Introductory (A)</td>
<td>8</td>
<td>Lectures Practical</td>
<td>*</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>Nine 6-hour periods during the year to be arranged.</td>
</tr>
<tr>
<td>Pharmacology 2 Introductory (A)</td>
<td></td>
</tr>
<tr>
<td>Physics 2</td>
<td>16</td>
<td>Lectures Practical Microlab</td>
<td>* (2-4) (3-5)</td>
<td>10,3</td>
<td>12</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>Tuesday 3 for part of the year only. One 4-hour period to be assigned. One 2-hour period to be assigned.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Physiology 2 Introductory (A)</td>
<td>8</td>
<td>Lectures Tutorial</td>
<td>*</td>
<td>8</td>
<td>8,</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td>One hour to be assigned</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Psychology 2</td>
<td>16</td>
<td>Lectures Tutorials Ser1 Ser2</td>
<td>1 5.15</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td></td>
<td></td>
<td>One series to be chosen To be arranged.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Soil Science 2</td>
<td>16</td>
<td>Lectures Practical SI S2 Tut/dem Ser2</td>
<td>* (2-4) (3-5)</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9,</td>
<td>9</td>
<td>Semester 1 only.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Soil Science 2 Auxiliary (Si)</td>
<td>8</td>
<td>Lectures Tut/dem Practical</td>
<td>* (2-5)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10,</td>
<td>10,</td>
<td>Two one-hour tutorials per week. One hour per week.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Statistical Methods 2 (SI)</td>
<td>8</td>
<td>Lectures Tutorial Computer practical</td>
<td></td>
<td>11</td>
<td>11,1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>Two one-hour tutorials per week. Two one-hour practicals per week.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Statistics 2 Applied (S2)</td>
<td>8</td>
<td>Lectures Tutorial Computer practical</td>
<td></td>
<td>11</td>
<td>11,1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>Two one-hour tutorials per week. Two one-hour practicals per week.</td>
</tr>
</tbody>
</table>
Table 3

Timetable for Senior courses

Unless otherwise indicated the timetables for advanced courses are the same as those for the ordinary courses. Science/Law students should also consult table 4.

Unless otherwise indicated in the notes classes for all courses are held throughout the year.

Alternative times are indicated by an entry in the ‘Alt.’ column. An asterisk (*) in this column indicates that there is some degree of choice among the times that follow. Rules for selecting from the times are given in the ‘Notes’ column.

<table>
<thead>
<tr>
<th>Course</th>
<th>Classes</th>
<th>Option or Series</th>
<th>Alt</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural Chemistry 3</td>
<td>Lectures Practical</td>
<td>*</td>
<td>9 (10-5)</td>
<td>9* (2-5)</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td>*Semester 1 only. Eight hours practical per week in Sem 1. Nine hours practical per week in Sem 2.</td>
</tr>
<tr>
<td>Biochemistry 3</td>
<td>Lectures Practical</td>
<td>1 2</td>
<td>9 (10-5)</td>
<td>9 (10-5)</td>
<td>9 (10-5)</td>
<td>9 (10-5)</td>
<td></td>
<td></td>
<td>Eight hours practical work on average. Classes start at 10am Monday (Option 1) or Wednesday (Option 2) and carry on into the following day.</td>
</tr>
<tr>
<td>Biology 3 (Timetable 1) (Cell Biology & Physiology Options)</td>
<td>Lectures Practical</td>
<td>110,111 112,210 211,212</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>Semester 1 only. Semester 2 only</td>
</tr>
<tr>
<td>Biology 3 (Timetable 2) (Diversity, Ecology, Entomology & Evolution Options)</td>
<td>Lectures Practical</td>
<td>120,121, 122,123, 124,125, 220, 221, 222, 223</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology 3 (Timetable 3) (Genetics & Molecular Options)</td>
<td>Lectures Practical</td>
<td>130 230</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>9,12</td>
<td>1</td>
<td>12</td>
<td>Semester 1 only. Semester 2 only</td>
</tr>
<tr>
<td>Cell Pathology 3</td>
<td>Lectures Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Intending students should consult the Department of Pathology.</td>
</tr>
<tr>
<td>Chemistry 3</td>
<td>Lectures Practical</td>
<td>Compulsory Various options</td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td>Semester 1 only Semester 2 only Refer to the School of Chemistry for information on options. Eight hours per week. Choose any eight. Eight two-hour tutorials in weeks 7-14 of Semester 1.</td>
</tr>
<tr>
<td>Chemistry 3 Additional</td>
<td>Lectures Practical</td>
<td>Compulsory Various options</td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
<td>Semester 1 only Semester 2 only Refer to the School of Chemistry for information on options. Eight hours per week. Choose any eight. Eight two-hour tutorials in weeks 7-14 of Semester 1.</td>
</tr>
<tr>
<td>Computer Science 3</td>
<td>Lectures Practical</td>
<td>a b c d e f g h</td>
<td>12</td>
<td>9</td>
<td>3</td>
<td>10,2</td>
<td>4</td>
<td>10</td>
<td>2</td>
</tr>
</tbody>
</table>

Consult department.
Table 3 (continued)

<table>
<thead>
<tr>
<th>Course</th>
<th>Classes</th>
<th>Option or Series</th>
<th>Alt</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Science 3 Additional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Consult department for details.</td>
</tr>
<tr>
<td>Geography 3 Geo. Geography 3 Human</td>
<td>Lectures</td>
<td></td>
<td></td>
<td></td>
<td>9,</td>
<td>9,</td>
<td>10,</td>
<td></td>
<td>Timetable depends on option selected. Consult the department.</td>
</tr>
<tr>
<td>Geography 3 Environ.</td>
<td>Practical / tutorials</td>
<td></td>
<td></td>
<td>9,</td>
<td>10,</td>
<td>12,</td>
<td>12,</td>
<td></td>
<td>Practical assignment and tutorial to be arranged. Attendance at one tutorial compulsory.</td>
</tr>
<tr>
<td>Geology 3</td>
<td>Lectures</td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
<td>A total of 12 hours contact teaching per week. Consult department.</td>
</tr>
<tr>
<td>Geology 3 (Additional)</td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td>(2-5)</td>
<td>(2-5)</td>
<td>(2-5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophysics 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A total of 12 hours contact teaching per week. Consult department.</td>
</tr>
<tr>
<td>History and Philosophy of Science 3</td>
<td>Lecture</td>
<td>Physical</td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biological</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semesters 1 and 2.</td>
</tr>
<tr>
<td></td>
<td>Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Semesters 1 and 2. Two 1-hour tutorials in Semester 1. Two 2-hour options or equivalent in Semester 2, by arrangement. Consult department.</td>
</tr>
<tr>
<td>Marine Sciences 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Timetable depends on options chosen. Refer to pamphlet available from Dept of Geology and Geophysics.</td>
</tr>
<tr>
<td>Applied Mathematics 3 & Applied Mathematics 3</td>
<td>Lectures</td>
<td>a</td>
<td></td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>Students attend 3 options per semester. Consult the School for details.</td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td>b</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>By arrangement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Statistics 3 & Mathematical Statistics 3</td>
<td>Lectures</td>
<td>9, 11</td>
<td></td>
<td>10</td>
<td>10</td>
<td>10,11</td>
<td></td>
<td>Advanced students will have an extra two probability theory lectures per week in Semester 2. Two 1-hour tutorials per week to be arranged.</td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure Mathematics 3 & Pure Mathematics 3</td>
<td>Lectures</td>
<td>a</td>
<td></td>
<td>3</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>Students will take three or four options per semester. Consult the School for details. Each option has a 1-hour tutorial in addition.</td>
</tr>
<tr>
<td>Advanced</td>
<td></td>
<td>b</td>
<td></td>
<td>-2</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
<td></td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>d</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evening</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Microbiology 3</td>
<td>Lectures</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
<td>Consult department before enrolling.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td>(11-1), (2-5)</td>
<td></td>
<td></td>
<td></td>
<td>By arrangement.</td>
</tr>
<tr>
<td>Pharmacology 3</td>
<td>Lectures</td>
<td>Sem 1</td>
<td></td>
<td></td>
<td>12</td>
<td>8</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sem 2</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Consult department before enrolling.
- Timetable depends on options chosen. Refer to pamphlet available from Dept of Geology and Geophysics.
<table>
<thead>
<tr>
<th>Course</th>
<th>Classes</th>
<th>Option or Series</th>
<th>Alt</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physics 3</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>9,11</td>
<td>11</td>
<td></td>
<td>11</td>
<td></td>
<td>9 Semester 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5 lectures per week in Sem 2</td>
</tr>
<tr>
<td></td>
<td>Experimental</td>
<td></td>
<td></td>
<td>(9)</td>
<td>(10)</td>
<td>(9)</td>
<td>(10)</td>
<td>(9X11)</td>
<td>Attend 6 hours per week in Semester 1 & 7 hours per week in Semester 2 on Tuesday and Wednesday or Thursday and Friday.</td>
</tr>
<tr>
<td></td>
<td>Computational</td>
<td></td>
<td></td>
<td>10,4</td>
<td>3,4</td>
<td>3,4</td>
<td>10,2,3,4</td>
<td></td>
<td>Semester 1 only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Four lectures per week in accordance with the chosen options.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Some options will not be available at the times listed here.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,15</td>
<td>5,15</td>
<td>Also four to six tutorial hours per week. Consult the department.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Eight hours per week by arrangement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>11</td>
<td></td>
<td></td>
<td>One tutorial per week by arrangement.</td>
</tr>
<tr>
<td>Psychology 3</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>10,4</td>
<td>3,4</td>
<td>3,4</td>
<td>10,2,3,4</td>
<td></td>
<td>Four lectures per week in accordance with the chosen options.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Some options will not be available at the times listed here.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Also four to six tutorial hours per week. Consult the department.</td>
</tr>
<tr>
<td>Soil Science 3</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>12</td>
<td>12</td>
<td>11</td>
<td></td>
<td></td>
<td>Eight hours per week by arrangement.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One tutorial per week by arrangement.</td>
</tr>
</tbody>
</table>
Table 4
Timetable for Law courses
The courses in this table are available only to students enrolled concurrently for the degrees of Bachelor of Science and Bachelor of Laws.

Junior year candidates take Legal Institutions.
Intermediate year candidates normally enrol in Constitutional Law, Torts and Criminal Law.
Senior year candidates normally enrol in Administrative Law, Contracts and, if not completed, Criminal Law.

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
<th>Classes</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legal Institutions</td>
<td>12</td>
<td>Lectures</td>
<td>9</td>
<td></td>
<td>9</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Constitutional Law</td>
<td>6</td>
<td>Lectures</td>
<td>12</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Criminal Law</td>
<td>6</td>
<td>Lectures</td>
<td>9 or 10</td>
<td></td>
<td>9 or 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Torts</td>
<td>6</td>
<td>Lectures</td>
<td>11</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Administrative Law</td>
<td>6</td>
<td>Lectures</td>
<td>12</td>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Contracts</td>
<td>6</td>
<td>Lectures</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>
Table 5

Timetable for Bachelor of Medical Science courses

The courses in this table are available only to students enrolled for the first year in the degree of Bachelor of Medical Science.

An individual timetable for students enrolled in these courses will be issued during the orientation period in Carslaw Lecture Room 3A at the times listed at the beginning of the timetable section.

<table>
<thead>
<tr>
<th>Course</th>
<th>Classes</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Human Life Sciences 2 | Lectures | 9,12| 9 | 9 | 9 | 9 | *Students will be allocated to either the Tuesday or Wednesday group.
| | Practical | | | (12-6)* | | (2-5)** | Tutorials on lectures and/or practical work will be held during the first hour of the period and at other times to be arranged. | |
| | | | | (12-6)* | | | **In some weeks a lecture or tutorial related to the practical class will be presented in the first hour of this period. |
| Pharmacology 2 Introductory | Lectures | 10 | 10 | 10 | | | Students will be allocated to either the Tuesday or Thursday group, and will do nine 6-hour practicals during the year. |
| | Practical | | | | (11-5) | (11-5) | | |
| Biochemistry 2 (Medical Science) Practical| Lectures | 10 | 10 | 10 | | | To be allocated. |
| | Practical | | | | (11-5) | (11-5) | | |
| | | | | | (1-6) | | | |
| Biology 2 (Molecular and General Genetics) | Lectures | 11 | 12 | 11 | | | To be allocated. |
| Auxiliary | Practical | | | | (2-6) | (1-5) | | One hour per week to be arranged. |
| | Tutorial | 5.15| 5.15| | | | One hour per week to be arranged. |
Table 6
Timetable for Bachelor of Medical Science courses
The courses in this table are available only to students enrolled for the second year of the degree of Bachelor of Medical Science.

<table>
<thead>
<tr>
<th>Course</th>
<th>Classes</th>
<th>Mon</th>
<th>Tue</th>
<th>Wed</th>
<th>Thu</th>
<th>Fri</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Life Sciences; Sciences 3 (Cellular and Molecular)</td>
<td>Lecture, Problem groups, Tutorial</td>
<td>11</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>Semester 1 core course.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group 1.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Group 2.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One tutorial per week by arrangement.</td>
</tr>
<tr>
<td>Microbiology and Immunology 3</td>
<td>Lectures, Practical</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>Semester 1 core course.</td>
</tr>
<tr>
<td>Anatomy 3 (Topographical)</td>
<td>Lectures, Dissection, Practical</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td></td>
<td>(2-5) (9-11)</td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11-1)</td>
<td></td>
<td></td>
<td>(10-1)</td>
<td>The Monday session is repeated on Thursday: students attend one or the other.</td>
</tr>
<tr>
<td>Biochemistry 3 (Molecular Biology and Metabolism)</td>
<td>Lectures, Practical</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>Semester 1 only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(11-5)</td>
<td></td>
<td>9</td>
<td>(10-5)</td>
<td>Eight hours practical work on average.</td>
</tr>
<tr>
<td>Biochemistry 3 (Physical and Macromolecular)</td>
<td>Lectures, Practical</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>Semester 2 only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10-5)</td>
<td></td>
<td>9</td>
<td>(10-5)</td>
<td>Eight hours practical work on average.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(10-5)</td>
<td></td>
<td>(10-5)</td>
<td></td>
<td>Classes start 10am Monday (Option 1) or 10am Wednesday (Option 2) and carry on into the following day.</td>
</tr>
<tr>
<td>Biology 3 (Molecular Genetics and Recombinant DNA Technology)</td>
<td>Lectures, Practical</td>
<td>12</td>
<td></td>
<td></td>
<td>9,12</td>
<td>2</td>
<td>Semester 1 only</td>
</tr>
<tr>
<td>Cell Pathology 3</td>
<td>Lectures, Practical</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Whole year course. Intending students should consult the Department of Pathology.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2-5)</td>
<td></td>
<td>9</td>
<td>(9-5)</td>
<td>Semester 1 only</td>
</tr>
<tr>
<td>Histology 3 (Techniques)</td>
<td>Lectures, Practical</td>
<td>11,12</td>
<td>9,10</td>
<td></td>
<td></td>
<td></td>
<td>Semester 1 only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2-5)</td>
<td></td>
<td>(11-5)</td>
<td></td>
<td>Semester 1 only</td>
</tr>
<tr>
<td>Histology 3 (Developmental Biology)</td>
<td>Lectures, Practical</td>
<td>11,12</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td>Semester 2 only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2-5)</td>
<td></td>
<td>(11-5)</td>
<td></td>
<td>Semester 2 only</td>
</tr>
<tr>
<td>History of the Life Sciences</td>
<td>Lectures</td>
<td></td>
<td></td>
<td>5,15</td>
<td>6,15</td>
<td></td>
<td>Semester 1 only. Timetable for seminars and other lectures by arrangement.</td>
</tr>
<tr>
<td>Immunology 3</td>
<td>Lectures, Practical</td>
<td>12</td>
<td></td>
<td>8</td>
<td>9</td>
<td></td>
<td>Semester 2 only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2-6)</td>
<td>(9-1)</td>
<td></td>
<td></td>
<td>One tutorial per week by arrangement.</td>
</tr>
<tr>
<td>Infectious Diseases 3 (Infection and Diagnosis)</td>
<td>Lectures, Practical</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td></td>
<td>Semester 2 only. Intending students should consult the Department of Infectious Diseases.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2.6)</td>
<td>(2.6)</td>
<td></td>
<td></td>
<td>Semester 2 only</td>
</tr>
<tr>
<td>Microbiology 3 (Molecular Biology of Pathogens)</td>
<td>Lectures, Practical</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>Semester 2 only</td>
</tr>
<tr>
<td>Neuroscience 3</td>
<td>Lectures, Seminars, Practical</td>
<td>12</td>
<td>8,9</td>
<td>9</td>
<td></td>
<td>2</td>
<td>Semester 1 only</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2-5</td>
<td></td>
<td>3-5</td>
<td></td>
<td>Semester 1 only</td>
</tr>
<tr>
<td>Course</td>
<td>Classes</td>
<td>Mon</td>
<td>Tue</td>
<td>Wed</td>
<td>Thu</td>
<td>Fri</td>
<td>Notes</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Neuroscience 3 (Advanced)</td>
<td>Lectures</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td></td>
<td>Semester 2 only. Timetable for practical work will be by arrangement.</td>
</tr>
<tr>
<td></td>
<td>Seminars</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology 3 (Molecular Pharmacology and Toxicology)</td>
<td>Lectures</td>
<td>12</td>
<td>8</td>
<td>11</td>
<td>9</td>
<td>10-5</td>
<td>Semester 1 only.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One tutorial per week by arrangement.</td>
</tr>
<tr>
<td></td>
<td>Tutorial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pharmacology 3 (Neuro- and Cardiovascular)</td>
<td>Lectures</td>
<td>11</td>
<td>11</td>
<td>9</td>
<td>11</td>
<td>10-5</td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>One tutorial per week by arrangement.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Practical work may be at other times — students should consult the department.</td>
</tr>
<tr>
<td>Physiology 3 (Heart and Circulation)</td>
<td>Lectures</td>
<td>11</td>
<td></td>
<td>10</td>
<td></td>
<td>12,2</td>
<td>Semester 2 only.</td>
</tr>
<tr>
<td></td>
<td>Seminars</td>
<td>(12-6)</td>
<td></td>
<td>(12-6)</td>
<td></td>
<td>3-5</td>
<td>Students will be allocated to either the Monday or Wednesday practical group.</td>
</tr>
<tr>
<td></td>
<td>Practical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Symbols may have been used in the courses of study chapter in the handbook as a succinct way of presenting teaching and assessment information. Because of the varied nature of the work described and occasional difficulties in interpretation and typesetting, such details are not construed as a firm undertaking. Students are advised to check details with the departments concerned. The significance of symbols used is as follows:

Hypothetical examples of symbols used

<table>
<thead>
<tr>
<th>Title of course</th>
<th>Actual lecturers</th>
<th>Allied studies</th>
<th>Class contact & course duration</th>
<th>Exams, essays, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Dutch 1</td>
<td>Assoc. Prof. Holland Dr Nederlands</td>
<td>AKn HSC German</td>
<td>Classes Yr: (3 lee & 1 tut)/wk</td>
<td>Assessment one 3hr exam, two 2000w essays/sem, 4 tut papers/sem</td>
</tr>
<tr>
<td>8766 Star Wars 5</td>
<td>Dr Lazer Ms Gunn</td>
<td>Prereq 7653 Coreq Intro. Media Manipulation</td>
<td>Classes Sem 1: (2 lee & 3 tut/ prac)/wk; Sem 2: (2 lee & 2 tut/prac)/wk</td>
<td>Assessment one 3hr exam/sem, classwork</td>
</tr>
</tbody>
</table>

Allied studies

- **AKn**: assumed knowledge
- **Prereq**: prerequisite (you must have passed the indicated prerequisite before you start the course)
- **Coreq**: corequisite (you must enrol in this course at the same time unless you have already passed it)

Type of class contact/assessment

- **class**: class contact of any form
- **lab**: laboratory
- **lee**: lecture
- **prac**: practical
- **tut**: tutorial
- **exam**: examination
- **tut paper**: tutorial paper

Durations

- **hr**: hour
- **Sem 1**: Semester 1
- **Sem 2**: Semester 2
- **Yr**: throughout the year

Frequency

- **/wk**: per week
- **/fn**: per fortnight
- **/sem**: per semester
- **/yr**: per year

Examples

Classes

- **Sem 1**: class/wk
- **Yr**: (2 lee & 3 tut/prac)/wk
- **Sem 2**: 3 lee/wk & 1 tut/fn

Assessment

- one 3-hour exam
- two 3-hour exams/sem
- one 2000-word essay
- one 3000-word essay for the course, two 2000-word essays per semester and four tutorial papers for one 3000- and two 2000-word essays per semester