The University's homepage tells you all about courses at Sydney, some careers they can lead to, and what university life is like. The interactive website, with video and sound clips, has links to the University's faculties and departments.

You can explore the University of Sydney on the web at http://www.usyd.edu.au/.

Communications should be addressed to:
The University of Sydney, NSW 2006.
Phone: (02) 9351 2222
Faculty of Engineering phone: (02) 9351 2534
Faculty of Engineering fax: (02) 9351 4654

Semester and vacation dates 1999
Academic year information (Academic Board policy and dates 1998-2002) is available at:
http://www.usyd.edu.au/su/planning/policy/acad/3_0aca.html

<table>
<thead>
<tr>
<th>Semester and vacation dates 1999</th>
<th>Day</th>
<th>Date (1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester lectures begin</td>
<td>Monday</td>
<td>1 March</td>
</tr>
<tr>
<td>Easter recess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day of lectures</td>
<td>Thursday</td>
<td>1 April</td>
</tr>
<tr>
<td>Lectures resume</td>
<td>Monday</td>
<td>12 April</td>
</tr>
<tr>
<td>Study vacation: 1 week beginning</td>
<td>Monday</td>
<td>14 June</td>
</tr>
<tr>
<td>Examinations commence</td>
<td>Monday</td>
<td>21 June</td>
</tr>
<tr>
<td>First Semester ends</td>
<td>Saturday</td>
<td>3 July</td>
</tr>
<tr>
<td>Second Semester lectures begin</td>
<td>Monday</td>
<td>26 July</td>
</tr>
<tr>
<td>Mid-semester recess</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day of lectures</td>
<td>Friday</td>
<td>24 September</td>
</tr>
<tr>
<td>Lectures resume</td>
<td>Tuesday</td>
<td>5 October</td>
</tr>
<tr>
<td>Study vacation: 1 week beginning</td>
<td>Monday</td>
<td>8 November</td>
</tr>
<tr>
<td>Examinations commence</td>
<td>Monday</td>
<td>15 November</td>
</tr>
<tr>
<td>Second Semester ends</td>
<td>Saturday</td>
<td>4 December</td>
</tr>
</tbody>
</table>

Last dates for withdrawal or discontinuation 1999

<table>
<thead>
<tr>
<th>Last dates for withdrawal or discontinuation 1999</th>
<th>Day</th>
<th>Date (1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1, 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day to Add a unit</td>
<td>Friday</td>
<td>12 March</td>
</tr>
<tr>
<td>Last day for Withdrawal</td>
<td>Tuesday</td>
<td>30 March</td>
</tr>
<tr>
<td>(no HECS liability, no academic penalty)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day to Discontinue with</td>
<td>Friday</td>
<td>17 April</td>
</tr>
<tr>
<td>Permission (HECS liability incurred; no academic penalty)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day to Discontinue</td>
<td>Friday</td>
<td>11 June</td>
</tr>
<tr>
<td>(HECS liability incurred; result of 'Discontinued' recorded)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester 2, 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day to Add a unit</td>
<td>Friday</td>
<td>6 August</td>
</tr>
<tr>
<td>Last day for Withdrawal</td>
<td>Monday</td>
<td>30 August</td>
</tr>
<tr>
<td>(no HECS liability, no academic penalty)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day to Discontinue with</td>
<td>Friday</td>
<td>10 September</td>
</tr>
<tr>
<td>Permission (HECS liability incurred; no academic penalty)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last day to Discontinue</td>
<td>Friday</td>
<td>5 November</td>
</tr>
<tr>
<td>(HECS liability incurred; result of 'Discontinued' recorded)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

Message from the Dean

1. Guide to the Faculty
 - The Branches of Engineering
2. Undergraduate units of study
 - Aeronautical Engineering
 - Chemical Engineering
 - Civil Engineering
 - Computer Science
 - Electrical Engineering
 - Mechanical Engineering
 - Interdisciplinary units of study
3. Tables of undergraduate units of study
 - Table 1: Aeronautical Engineering
 - Table 2: Chemical Engineering
 - Table 3: Civil Engineering
 - Table 4: Computer Engineering
 - Table 5: Electrical Engineering
 - Table 5A: Electrical Engineering (Information Systems)
 - Table 6: Mechanical Engineering
 - Table 7: Mechanical Engineering (Mechatronics)
 - Table 8: Project Engineering and Management (Civil)
 - Table 9: Telecommunications Engineering
 - Table 10: Software Engineering
 - Table 11: Mechanical Engineering (Biomedical)
 - Table 12: Faculty of Engineering (Advanced Engineering and Faculty-Wide Elective Units)
4. Regulations
 - Undergraduate Degree Requirements
 - Bachelor of Engineering
 - Resolutions of the Senate
 - Combined Degrees of Bachelor of Engineering with Bachelor of Science, Commerce or Arts
 - Resolutions of the Faculty
5. Postgraduate study
 - Doctor of Engineering
 - Doctor of Philosophy
 - Master of Engineering
 - Master of Engineering (Research)
 - Master of Engineering Studies
 - Diplomas and certificates
6. Other Faculty information
 - The Faculty
 - List of staff by departments
 - Aeronautical Engineering
 - Chemical Engineering
 - Civil Engineering
 - Electrical and Information Engineering
 - Mechanical and Mechatronic Engineering
 - Scholarships and prizes
 - Student facilities and societies
 - A short history of the Faculty
 - Foundations
 - General university information
 - Glossary
 - Index
 - Map of main campus
Welcome to the Faculty of Engineering of the University of Sydney, which is also known as the P.N. Russell Faculty of Engineering in commemoration of its industrialist benefactor, Sir Peter Russell. Over the past one hundred and ten years about ten thousand students have preceded you along the path you have chosen to follow towards professional engineering.

An aim of this faculty is to provide the best possible education for its students, both undergraduate and postgraduate. Undergraduate teaching is one of the highest expressions of education; for us, undergraduate teaching is a great social responsibility as well as an opportunity to produce engineers of the future who are both technically competent and socially aware. We produce engineers who will be Australia's future industrial leaders.

In whichever of the engineering branches you may choose to enrol, you will find that the engineer is concerned with applying scientific knowledge and exercising social skills. To do so with competence and assurance, we believe he or she should have a strong basis in science. Consequently, during the first two years of your course this scientific basis is laid down. This vital foundation, the soundness of which is the hallmark of the Peter Nicol Russell Faculty, provides you with the ability you will depend on during your future professional career to appreciate the significance of new and developing technologies, and to work with them. At the same time we teach you the responsibility you have as an engineer.

The engineer must operate in the real world of economic forces and social priorities. Engineering is a creative occupation: based on science applied with art and skill, and with the economic and social dimensions added. Our graduates develop the skills to thrive in the real world, with concern for and the knowledge required to deal with the important environmental issues of today.

You may have chosen to take engineering because you enjoy proficiency at mathematics and in the sciences, disciplines you probably find interesting and challenging. You perhaps have a liking for solving problems and making things. These are all characteristics of the engineer. Engineering is about meeting people too, and managing. Many engineers travel extensively; they tend to have high starting salaries and high career mobility; and they are greatly needed by the nation.

The course in engineering includes more classes and laboratory hours than most. It calls for steady and concentrated effort. Above all it is stimulating and exciting. Engineering students are a cohesive group who work and play hard, win more than their share of sporting trophies, and have a reputation for flair and initiative. This too, is the essence of engineering. I congratulate you for joining us and I wish you well in your university life and professional career.

Judy Raper, Dean.
CHAPTER 1

Guide to the Faculty

The Faculty of Engineering
Faculty Building J13
The University of Sydney
NSW 2006 Australia
Phone:+61 2 9351 2534
Fax:+61 2 9351 4654
Email: engineering@eng.usyd.edu.au
http://www.eng.usyd.edu.au/
Dean
Professor Judy A Raper, BE PhD CPEng, FIChemE FIEAust,
FAusIMM
Pro Dean
Professor Yiu-Wing Mai, BSc (Eng) PhD H.K., MASME
FIEAust
Associate Dean: (Postgraduate and Research)
Associate Professor John C Small, BSc(Eng) Lond. Phd,
MIEAust MASCE
Associate Dean (Undergraduate)
Associate Professor Geoff W Barton, BE PhD
Faculty Manager and Secretary to Faculty
Mr Michael Whitley, BA(Hons) EastAnglia MComm
U.N.S.W., ASA CIA FCIS
Student Administration Staff
Postgraduate Adviser - Ms Josephine Harry, BA Macq.
Undergraduate Adviser - Ms Anna Maria Branchato
Executive Assistant to the Dean
Ms Kylie Williams, BSc
Executive Officer, Engineering Advancement Office
Mr Jeremy M. Steele, BA Keele
Faculty Marketing Manager
Mr Eric van Wijk, BSc ANU GradDipEd GradDipAppEcon
UCan
Chancellor's Scholarships in Engineering Program
Executive Officer: Ms Lee Glasson, BA DipEd Flinders
Administrative Assistant: Ms Kay Fielding
Professional Officer
Didier Debuf, BE M.EngSc U.N.S.W.
Industry Liaison
Dr Maurice Barton, BSc Hons Brighton C.O.T. MSc Oxon
PhD Aston FAIM
Faculty Librarian
Irene Rossendell

The Branches of Engineering

Aeronautical Engineering
Phone:+61 2 9351 2338
Fax:+61 2 93514841
Email: office@aero.usyd.edu.au
http://www.aero.usyd.edu.au/
Head: Professor Grant P. Steven
Administrative Officer: Ms Yvonne Witting

Aeronautical Engineering is the study of the mathematics, physics, computer science, material science and design philosophy that go into the analysis, design, manufacture and operation of aerospace vehicles.

Aeronautical engineers find a use for their skills in research, airline maintenance and operations, aerospace design and manufacturing, in both civil and military environments. There is also good demand for graduates with aeronautical skills outside the aerospace sector.

The department offers a four-year undergraduate program leading to a Bachelor of Engineering (Aeronautical) degree. There is also the offer of a five-year combined degree with Science, Commerce or Arts.

The Department's teaching policy is to use a combination of lectures, tutorials, laboratory, projects and industrial work experience to provide a broad range of stimuli that will impart the knowledge and art of Aeronautical Engineering.

In the first year, students study basic mathematics and all of the basic sciences including computer and aerospace science.

The second year sees the strengthening of these concepts and also the introduction of aeronautical engineering courses such as flight mechanics and dynamics.

The third year is the most important year of the program, as the fundamentals of flight mechanics and dynamics, aircraft materials and structures, aerodynamics and aircraft design are presented.

In the fourth year, more advanced study is undertaken in flight dynamics and control, aerodynamics, aircraft structures, aircraft design and propulsion. A significant proportion of the year is devoted to a thesis project where each student undertakes in-depth research into a theoretical or practical project in aeronautics with the aid of a supervisor.

The four-year program is regularly reviewed and is accredited by the Institution of Engineers, Australia. Our honours graduates who are interested in research take positions at recognised international universities, such as MIT, Oxford, Stanford and Imperial College.

The relative small class sizes in the final two years make for an informal and friendly atmosphere. A student branch of the American Institute of Aeronautics and Astronautics (AIAA) operates in the Department, which together with the Royal Aeronautical Society, caters to the professional needs of the students: Our student society WINDSOC operates a varied social program.

Chemical Engineering
Phone:+61 2 9351 2470
Fax:+61 2 9351 2854
Email: hod@chem.eng.usyd.edu.au
Head: Professor Brian S. Haynes
Administrative Assistant: Ms Linda McGill

Chemical engineering is concerned with industrial processes in which material in bulk undergoes changes in its physical or chemical nature. Chemical engineers design, construct, operate and manage these processes and in this they are guided by economic and environmental considerations.

Industries employing chemical engineers are generally referred to as the process industries: examples of these are the large complexes at Botany in New South Wales and Altona in Victoria, and the petroleum refineries in all mainland States; other examples are the minerals processing industries that refine Australian ores such as bauxite, nickel sulphides and rutile to produce aluminium, nickel and titanium. In addition there are the traditional metallurgical industries, steel, copper, zinc, lead, etc., as well as general processing industries producing paper, cement, plastics, paints, glass, pharmaceuticals, alcohol and foodstuffs. Allied process operations are those involving waste disposal, pollution abatement, power production and nuclear technology.

Chemical engineering studies are based on chemistry, mathematics and physics and the first two are taken to some depth. The chemical engineer must learn something of the language and principles of mechanical, electrical, and civil engineering, and of administration, and industrial relations.

Each student completes a common core of units of study, fundamental to the study of chemical engineering, and also takes a number of elective courses, chosen according to his or her particular field of interest from course options listed later. Three of these introduce students to some important industries in the process field.

Minerals Engineering. For students who are interested in gaining some familiarity with the minerals processing industries.
Biochemical Engineering. For those interested in biochemical methods of pollution control or in any of the biochemical industries such as pharmaceuticals, fermentation or food and dairy processing.

Reservoir Engineering. These courses deal with the properties and behaviour of petroleum and natural gas reservoirs, and the strategies used in their development.

Regardless of the option chosen, the graduate will be a fully qualified chemical engineer, well prepared for a career in any of the process industries.

The Department has a number of active exchange programs with leading Departments overseas. The exchanges, with the Royal Institute of Technology, Stockholm, and the Ecole Nationale Superieure D'Ingenieurs de Genie Chimique in Toulouse, see five or six of our final year students completing their degrees at one of these Institutions each year, with similar numbers of their students finishing their courses in Sydney. There is also an exchange program with Iowa State University which allows one or two of our students to spend their third year there. Each of these exchange schemes includes Industrial Experience in the host country. Some financial assistance is available to approved students.

The majority of chemical engineering graduates enter industry, taking up positions in plant operation, supervision, and eventually management. Others will be engaged in plant design, construction, and commissioning work either for a large process company or one of the specialist construction firms.

There is also scope for research and development work with industry or government organisations.

Chemical engineers are also recruited by many of the larger companies for technical service and sales. Graduates may also be able to obtain positions overseas either directly or through Australian companies with overseas associations.

Civil Engineering and Project Engineering and Management

Phone: +61 2 9351 2136
Fax: +61 2 9351 3343
Email: office@ce.usyd.edu.au
Head: Professor John Philip Carter
Executive Assistant to Head of School: Ms Tmne Blair

The title Civil Engineer is given to one who invents, contrives, designs and constructs for the benefit of the community. Civil engineering covers a wide range including the conception, design, construction and maintenance of those more permanent structures and services such as roads, railways, bridges, buildings, tunnels, airfields, water supply and sewerage systems, dams, pipelines, river improvements, harbours and irrigation systems. In the broader sense civil engineers are charged with the task of producing structures and systems that give the greatest amenity for the funds expended. They have therefore to optimise their schemes in terms of technological performance, impact upon the environment and the financial resources available.

Civil engineers find employment: in government authorities whose concern is the design, construction and maintenance of public services; with consultants whose main interest is the design of civil engineering works; with contractors who carry out the construction work; and in civil engineering industries which manufacture and supply materials, plant and equipment.

Graduates in construction engineering and management will find themselves particularly well placed for project management and leadership roles in the following organisations; construction companies, project management organisations (major management, consulting and planning firms), government organisations, large corporations including mining and industrial companies, and part of multidiscipline teams of professionals in charge of large infrastructure projects - eg. the Olympics.

In the first and second years of the course, the student is given a grounding in mathematics and the sciences with an introduction to structural theory, design, construction, and the properties of materials.

In the third year, basic courses are given in structures, soil mechanics, surveying, hydraulics, structural design, construction, materials and practice of civil engineering.

In the fourth year, the basic courses of the third year are continued with an additional course which requires the preparation of a thesis. At honours level a more extensive thesis is required. A major segment of final year studies comprises options in structures, fluid mechanics, engineering management, soil mechanics and geomechanics.

As civil engineering is a practical profession, attention is given to this aspect throughout the course. Full use is made of the laboratories with students carrying out experiments to obtain a better understanding of behaviour under practical conditions. There is extensive use of computers in design and other exercises. During the vacation between the senior and senior advanced years, every student must obtain practical experience in a civil engineering field and must submit a satisfactory report on this experience. During the final year, students attend a two-week camp for practical surveying experience and to apply surveying methods to a project. Seminars are also held and visits to works in progress are made as opportunities arise. Students are encouraged to take a close interest in current research and investigations.

Quality Assurance: For most subjects originating in the Department of Civil Engineering, independent Quality Assurance Auditors have been appointed. These auditors have no direct teaching involvement with the subjects for which they act and are responsible for maintaining an overview of each of these subjects through to the monitoring of results. As the auditors are changed more frequently than subject content, the names of current auditors, together with those of staff responsible for coordinating and running the subjects, are available from the Department’s Office.

Electrical, Telecommunications, Software and Computer Engineering

Phone: +61 2 9351 3229
Fax: +61 2 9351 3847
Email: peter@ee.usyd.edu.au
http://www.ee.usyd.edu.au/

Head: Professor David J. Hill
Administrative Officer: Peter Finneran

The Department of Electrical Engineering offers students the opportunity to study engineering in an exciting, innovative and relevant environment. The field of Electrical, Telecommunications and Computer Engineering is one in which there has been a history of constant improvements, developments and innovations in existing technologies, coupled with the evolution of new technologies. The Department is closely linked to the engineering industry and the units of study are of a quality to ensure that our graduates are prepared for a changing profession as we approach and pass the year 2000.

The degree courses offered by the Department of Electrical Engineering - Electrical Engineering, Software, Telecommunications and Computer Engineering - are four year programs (for both Pass and Honours). They can, however, be taken as five year double degree programs with Arts, Science or Commerce. Students are also able to participate in exchange programs with universities in Sweden and the USA as part of their degree program.

The degree courses include emphasis on practical problem solving, the basic theory necessary to underpin the profession through the rapid changes being made, and professional practice. There are opportunities to make contacts in industry, including a three months practical training in industry at the end of third year.

The Electrical Engineering degree is designed to be general and allows a student to concentrate in the later years on a variety of fields such as biomedical engineering, energy engineering and automatic control as well as telecommunications and computers or take a broad selection in several areas.
Mechanical, Mechatronic and Biomedical Engineering

Mechanical Engineering is a very broad branch of professional engineering and mechanical engineers are found in almost every type of engineering activity. They are involved in power generation, transportation systems for land, sea and air, pollution control environmental protection and, biomedical engineering. They are found in a wide range of industries which manufacture machinery and consumer goods and offer research and technical services. Mechanical engineers design machinery, engines, vehicles, agricultural and mining equipment, ships and household appliances. They are managers who run production lines, power stations and steel mills. They design and maintain coal conveyer systems, building services, oil and gas pipelines and port loading facilities. The great diversity of applications for mechanical engineers means they are much sought after in both commercial and industrial fields.

Students have the opportunity to complete the Bachelor of Mechanical Engineering in one of three different degrees - Mechanical, Mechatronics or Biomedical.

Mechatronics combines mechanical engineering, electronics and computing. It is the enabling technology of computer-automated manufacturing through the use of robots and automated machine tools. Mechatronics may be concerned with individual machines such as robots, or manufacturing systems automated in their entirety.

Mechatronic engineers use computers and other digital systems to control industrial processes. They bring electronic, materials and mechanical sciences together to create a diverse range of products. These range from everyday products such as cameras, washing machines, photocopiers and anti-lock car brakes, to miniaturised substitutes for human organs and to powerful and precise computer-controlled machine tools used in manufacturing.

Biomedical engineers apply engineering principles to understand, modify or control biological systems, and develop technology to monitor physiological functions and to assist in diagnosis and treatment of patients. Biomedical engineering is an interdisciplinary branch of engineering, encompassing areas of electrical, mechanical and chemical engineering. Subjects in biomedical and orthopaedic engineering as well as research opportunities in Electrical, Mechanical and Mechatronic Engineering are available. This degree meets the tertiary study entry requirements for the Graduate Medical Program.

The first two years of undergraduate study in mechanical, mechatronic or biomedical engineering provide students with an introduction to engineering science, design and manufacturing methods, management, computing and electronics, so that by the end of the second year, a broad field has been covered.

In third year, mechanical engineering students study in more depth the hardware, materials and manufacturing processes which are at the heart of mechanical engineering. In addition to this, mechatronics students study topics such as control, digital systems and computer technology, electronics and electrical machines. Three months' practical training in industry follows third year for all students.

The final year of mechanical, mechatronic and biomedical engineering allows students to develop the professional skills that they will need after graduation. Emphasis is placed on using engineering science, up-to-date technologies and professional tools to solve practical problems. Specialisation in the final year is encouraged. Areas of specialisation include: management, thermofluids, environmental engineering, computational fluid dynamics, design, rheology, advanced materials, orthopaedic/biomedical engineering and mechatronics.
CHAPTER 2

Undergraduate units of study

Units of study are subject to alteration

Arrangements for units of study, and the units themselves, including staff allocated as stated in this or any other publication, announcement or advice of the University are an expression of intent only and are not to be taken as a firm offer or undertaking. The University reserves the right to discontinue or vary such units of study, arrangements or staff allocations at any time without notice.

On the following pages details of the units of study are provided in a form which is convenient for reference. Every care has been taken to ensure that the information given is complete and accurate. However, updates are constantly ongoing and therefore variations may be made from time to time. These will be announced by the lecturer or posted on the relevant noticeboards. It is the responsibility of students, by attendance at lectures and frequent inspection of the noticeboards, to ensure that they have the latest information on any unit of study.

Textbooks

Changes sometimes occur in the selection of prescribed textbooks, or reference books, owing to supply difficulties, or the publication of new and more suitable works. Such changes will be announced by lecturers and it is prudent to check with the relevant lecturer before buying the books you expect to need.

Elective units of study in other faculties

There is provision for students to apply to the Faculty of Engineering for special permission to take any other units of study which are available in other degree programs towards their BE degrees (e.g., Computer Science 3, Economics 2, etc.). Any unit of study which is not listed in the Tables of Units of Study or in the list of recommended elective units of study in this handbook is referred to as a ‘non-listed’ unit of study by the Faculty.

If you have a strong interest in taking a particular ‘non-listed’ unit of study, you should consult the relevant faculty handbook for details about it. You will also need to check whether or not there is a quota for this unit of study or any special assumed knowledge/prerequisite. You will also need to ensure that the unit of study creates no timetable clash with Engineering requirements.

If you decide that you wish to enrol in a ‘non-listed’ unit of study, you will need to apply for special permission to do so. Please ask to see the Chair of the Committee for Undergraduate Studies or the Faculty’s Undergraduate Coordinator at enrolment time for application procedure.

Unit of study numbering system

The units of study available for the degree are designated Junior (First Year), Intermediate (Second Year), Senior (Third Year), Senior Advanced or Honours (Fourth Year). These names indicate the year of attendance in which the unit of study becomes available to you if you are making normal progress.

Each unit of study has a unique code and number, comprising 4 letters followed by 4 numbers (eg, MECH 2200). Each unit of study also has a unique and much longer numerical code allocated to it by the University for administrative purposes, however for the majority of student requirements (e.g., enrolment) this will not be necessary.

The first 4 letters (eg, MECH, AERO) indicate the Department which teaches the unit of study. The first number of the set of 4 numbers following indicates the year of study.

Example: MECH 2200. This is a unit of study taught by the Department of Mechanical and Mechatronic Engineering and is normally offered to Second Year (Intermediate) students.

Aeronautical Engineering

AERO 1400 Introduction to Aircraft Construction and Design

6 credit points

Offered: July. Classes: 1 Lec/week per semester. 1 x 3hr practical/ workshop/presentation session per semester. Assessment: In-course involvement, practical assignments and quizzes.

First Year Elective unit of study for the degree in Aeronautical Engineering.

Syllabus Summary

Introduction to aircraft design and construction methods; fibre-glass molding of complex components; bonding and gluing; structural reinforcement; manufacture of metal components; wooden components; aircraft grade materials; welding; riveting; bolting and other fasteners.

Investigation of a typical aircraft configuration; component layout; alternate configurations; weight penalties or gains.

Requirements for ancillary equipment; aircraft instruments; accuracy of instruments; engine and propeller selection; fuel system; navigation and communication systems.

Aviation regulation; process of aircraft certification; aircraft categories; performance measurement and requirements; weight and balance; centre of gravity requirements.

Objectives/Outcomes

The objective of this unit of study is to introduce and foster practical engineering skills in students newly enrolled in the degree of Bachelor of Engineering (Aeronautical).

Students will actively participate in the construction and design of a light aircraft. The aircraft is to be constructed under current Civil Aviation Regulations so that students will gain an insight into all aspects of the process. By being a part of the construction team students will also experience the organisational requirements necessary to successfully complete a complex engineering project.

The final outcome will be that students gain an understanding of:

- Light aircraft design methods
- Innovative methods of construction
- Techniques for selecting, sizing and stressing components
- Regulatory requirements for certification
- Off-Design requirements
- Construction tolerances
- Team-work requirements in undertaking complex engineering projects.

AERO 1600 Workshop Technology

4 credit points

Prohibition/other: MECH 1600. Offered: March. Classes: (1 lec, one 3hr lab) wk. Assessment: Assignments, practical work.

First year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes

To develop an understanding of the fundamentals of vehicle manufacture, construction, servicing and repair. Students will develop skills working with machine tools and hand tools.

Syllabus Summary

Fitting - measurement, measuring tools, marking tools, holding tools, hammers, cutting tool materials, cutting tool shapes, the machine tools: lathe, mill, grinder, drill, shaper, deburring and finishing operations.

Heat treatment - Definition and importance of heat treatment, forging, normalising, hardening, case hardening, stress relief.

Fasteners - Types of fasteners for aircraft, riveted, bolted, bonded, locking of fasteners.
AERO 1900 Introductory Aeronautics
4 credit points

Prerequisite: 12 credit points of first year Maths. Prohibition/other: MECH 2200, MECH 2201, MECH 2500. Offered: July. Classes: (2 lec, one 2hr lab/wk). Assessment: Exam (50%), assignments (50%).

Second year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the fundamentals of flight and the application to aircraft and related components. Students will develop a competency in tackling aircraft problems and producing solutions for engineering applications.

AERO 2300 Mechanics of Solids 1
4 credit points

Prerequisite: 12 credit points of first year Maths (i.e Maths 1001,1002,1003,1005). Offered: March. Classes: (1 lec, one 3hr lab/wk). Assessment: 2hr exam and course assignments.

Second year core unit of study for the degree in Mechanical and Chemical Engineering.

Intermediate elective course for the degree in Mechatronic and Chemical Engineering.

Objectives/Outcomes
To develop an understanding of the fundamentals of structural analysis and its application to the general field of engineering. Students will develop the ability to tackle typical structural problems and produce solutions for applications in aeronautical, mechanical and mining engineering.

AERO 2200 Introductory Aerodynamics
4 credit points

Prerequisite: 12 credit points of first year Maths. Prohibition/other: MECH 2200, MECH 2201, MECH 2500. Offered: July. Classes: (2 lec, one 2hr lab/wk). Assessment: Exam (50%), assignments (50%).

Second year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the fundamentals of fluid dynamics and its application to aircraft and related components. Students will develop a competency in tackling fluid flow problems and producing solutions for engineering applications.

AERO 2500 Introductory Flight Mechanics and Performance
4 credit points

Prerequisite: MATH 1001, 1002, 1003, 1005. Offered: March. Classes: (3 lec, one 1 hr lab/wk). Assessment: 2hr exam, assignments.

Second year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the concepts of the mechanics of flight including fundamentals of aircraft performance, stability and control. Students will learn the basic concepts and be introduced to the mathematical tools used for prediction of aircraft flight mechanics.

AERO 2800 Aeronauteical Engineering Computing
4 credit points

Offered: March. Classes: (1 lec, one 3hr lab/wk). Assessment: 2hr exam (50%), assignments (50%).

Second year core unit of study for the degree in Aeronautical Engineering.
Chapter 2 - Undergraduate units of study

Objectives/Outcomes
To develop an understanding of the use of the computer as a tool for solution of problems in the field of aeronautical engineering. Students will develop skills in applying computer software algorithms to problems in this field. Students will learn the usefulness and applicability of many currently available software packages.

Syllabus Summary

The storage of data in efficient file or memory structures. Data retrieval; sorting; collation; statistical analysis. The generation and use of random numbers.

Use and evaluation of software packages. Wordprocessors; databases; spreadsheets; mathematical symbolic manipulation; CAD/CAM; graph plotting; engineering analysis. Definitions for user-friendly interfaces; GUI's; data format requirements. Use of the Internet as an aeronautical research tool; Email; WWW; network etiquette.

Reference books
The Student Edition of MATLAB (Prentice-Hall, 1992)

AERO 3200 Aerodynamics 1
4 credit points
Prerequisite: AERO 2200. Offered: March. Classes: (3 lec, one 1 hr tut/lab)/wk. Assessment: 2hr exam(75%), assignments/lab reports(25%).

Third year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the fundamental equations governing aerodynamics and their application to aeronautical problems. Students will gain skills in problem solving in area of fluid mechanics.

Syllabus Summary
Basic equations governing aerodynamics; continuity; conservation of mass and momentum; Bernoulli, Euler and Navier-Stokes equations. Application to fluid mechanics; force on objects in a moving fluid; pressure distribution; effects of Reynolds and Mach number. Vorticity, circulation and the production of lift; Kutta-Joukowski Law. Modelling of solid bodies in potential flow; solutions for two and three dimensional shapes; Biot-Savart Law.

Aerodynamic loading on aerofoil sections, wings, fuselages and other aircraft components. Effects on aircraft performance. Performance optimisation using energy methods; excess power and specific energy calculations.

Reference books
McCormick Aerodynamics, Aeronautics and Flight Mechanics (Wiley, 1979)
Bertin and Smith Aeronautics for Engineers (Prentice Hall 1979)
Dommasch Airplane Aerodynamics (Pitman)
Houghton and Brock Aerodynamics for Engineering Students (Edward Arnold)

AERO 3250 Aerodynamics 2
4 credit points
Prerequisite: AERO 2200. Offered: July. Classes: (3 lec, one 1 hr tut/lab)/wk. Assessment: 2hr exam (75%), assignments/lab reports (25%).

Third year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the fundamental equations governing aerodynamics and their application to aeronautical problems. Students will gain skills in problem solving in area of wing theory, boundary layers and gas dynamics.

Syllabus Summary
Basic gas dynamics; steady one-dimensional flow including friction and heat transfer; shock waves. Introduction to steady two-dimensional supersonic flow.

Viscous effects; introduction to boundary layer theory; heat transfer and skin friction. Prediction of aerodynamic drag.

Classical two-dimensional aerofoil theories; Joukowski mapping; thin aerofoil theory. Classical three-dimensional wing theory; lifting-line; lifting surface theory. Calculation and use of aerodynamic derivatives; aerodynamics of control surfaces.

Reference books
McCormick Aerodynamics, Aeronautics and Flight Mechanics (Wiley, 1979)
Bertin and Smith Aeronautics for Engineers (Prentice Hall 1979)

AERO 3300 Aircraft Structures 1
4 credit points
Prerequisite: AERO 2300. Offered: March. Classes: (3 lec, one 1 hr tut/lab)/wk. Assessment: 2hr exam, assignments/lab reports.

Third year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the fundamentals of structural strength estimation. Students will gain skills in problem solving in the area of aircraft structural analysis.

Syllabus Summary
Solid mechanics; stress and strain; linear elasticity; strain energy. Plane stress systems. Elastic vibration and buckling.

Reference books
Bruhn Analysis and Design of Flight Vehicle Structures (Tri-State Offset)

Megson Aircraft Structures for Engineering Students (Edward Arnold, 1972)

Library Classification: 620.11,628.13,629.13,630.1

AERO 3350 Aircraft Structures 2
4 credit points
Prerequisite: AERO 2300. Offered: July. Classes: (3 lec, one 1 hr tut/lab)/wk. Assessment: 2hr exam, assignments/lab reports.

Third year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the fundamentals of structural strength estimation. Students will gain skills in problem solving in the area of aircraft structural analysis.

Syllabus Summary
Solid mechanics; thermal stresses and plasticity; applications in plane stress systems.

Structural analysis; elementary analysis of plates and stiffened panels and shells. Analysis of complex frameworks; introduction to displacement methods of analysis.

Reference books
Drucker Introduction to the Mechanics of Deformable Bodies (McGraw-Hill)
Bruhn Analysis and Design of Flight Vehicle Structures (Tri-State Offset)

Library Classification: 620.11,629.13,630.1
AERO 3400 Aircraft Design 1
4 credit points
Prerequisite: MECH 2400. Offered: March. Classes: (1 lec, one 3 hr tut/wk). Assessment: Exam, tutorial assignments, major and minor design projects.

Third year core unit of study for the degree in Aeronautical Engineering
Objective/Outcomes
To develop an understanding of the procedures for design. Students will gain skills in designing aircraft components.
Syllabus Summary
Introduction to design; the process of aircraft design; safety and its implications; component design; structural analysis.
Reference books
Svennson Introduction to Engineering Design (UNSW Press, 1981)
Bruhn Analysis and Design of Flight Vehicle Structures (Tri-State Offset)

AERO 3450 Aircraft Design 2
4 credit points
Prerequisite: MECH 2400. Offered: July. Classes: (1 lec, one 3 hr tut/wk). Assessment: Exam, tut assignments, major and minor design projects.

Third year core unit of study for the degree in Aeronautical Engineering
Objective/Outcomes
To develop an understanding of the procedures for design. Students will gain skills in designing aircraft components.
Syllabus Summary
Optimisation; design for manufacture; joints and fasteners; vibration; fatigue; human factors, the art of design; social responsibilities.
Reference books
Svennson Introduction to Engineering Design (UNSW Press, 1981)

AERO 3500 Flight Mechanics 1
4 credit points
Prerequisite: AERO 2500. Classes: (3 lec, one 1 hr tut/lab/wk). Assessment: exam, assignments.

Third year core unit of study for the degree in Aeronautical Engineering
Objective/Outcomes
To develop an understanding of dynamic behaviour of aircraft in flight. Students will gain skills in problem solving in the area of flight vehicle motion.
Syllabus Summary
Axis systems for the description of aircraft motion. Axis transformations. The general equations of flight vehicle motion.
Laplace transforms and their application to aeronautical dynamic system analysis. Eigenvalues and eigenvectors and their relation to the stability and behaviour of aeronautical systems.
Static lateral-directional equilibrium and stability. Introduction to lateral-directional control.
Linear approximation of aerodynamic derivatives and the influence of aircraft components on stability derivatives.
Longitudinal and lateral-directional dynamic stability. Frequency domain dynamic stability analysis. Time domain analysis and solutions for the flight path of a rigid body aircraft; response to control inputs.
Reference books
Etkin Dynamics of Atmospheric Flight (Wiley, 1972)
Roskam Airplane Flight Dynamics and Automatic Flight Controls (Roskam A&E, 1979)

AERO 3501 Flying Operations
2 credit points
Prerequisite: AERO 2500, AERO 2200. Classes: Part-week course held mid-semester vacation.

Third year elective unit of study for the degree in Aeronautical Engineering.
Objective/Outcomes
To develop a hands on feel of the dynamic behaviour of aircraft in flight. Students will gain skills in flying, navigation and aircraft operating procedures.
Syllabus Summary
Flying instruction covering: level flight; turns; stall; take-off; landing; circuits; night flying; navigation, both visual and using instruments; emergency procedures and safety.

AERO 3600 Aviation Technology
4 credit points
Classes: (one 2 hr lec, one 2 hr tut/lab)/wk. Assessment: exam(50%), assignments(50%).

Third year elective unit of study for the degree in Aeronautical Engineering.
Objective/Outcomes
To develop an understanding of the background processes that are required for the design, manufacture and operation of aircraft. Students will gain skills in aerospace component manufacture, design, testing and operation.
Syllabus Summary
Survey of current practice in aviation measurement and instrumentation. Introduction to pressure, force, velocity and displacement transducers; accelerometers; anemometers; temperature sensors and strain gauges. Use of computer data acquisition systems; signal processing; filtering; A/D conversion. Digital data formats; storage requirements and accuracy limitations. Signal post processing; mean; standard deviation; analysis using FFT’s; random decrement. Calibration of sensors.

Manufacturing processes; automated machining; techniques for manufacture of non-metal components; manufacture using composite materials; properties of sealants and adhesives. Fasteners. Introduction to CAD and NC machining.

Aeronaotical material and hardware standards. Civil aviation regulations and airworthiness directives. Aircraft weight and balance control. In-service structural integrity checking. Systems standards.
Reference books
CASA Civil Aviation Orders, parts 100 to 103.
Cutler Understanding Aircraft Structures (PSP professional, 1988)

AERO 3601 Aviation Operation and Management
3 credit points
Offered: July. Classes: (one 3 hr lec/tut)/wk. This course is given by visiting lecturers who are currently associated with the aerospace industry. The availability of the course is not guaranteed each year.
Assessment: assignments.

Third year elective unit of study for the degree in Aeronautical Engineering
Objective/Outcomes
To develop an understanding of the current state of aerospace manufacturing for the Australian aviation industry. Students will gain skills in aerospace engineering management.
Syllabus Summary
Principles and practice of aviation and airline management. Discussion and analysis of airline operations. Flight safety and airworthiness standards.
Reference books
To be advised by the Lecturer.

AERO 4200 Aerodynamics 3
3 credit points
Prerequisite: AERO 3250. Offered: March. Classes: (2 lec, one 1 hr tut/lab)/wk. Assessment: 2 hr exam(50%), assignments/lab reports(50%).

Fourth year core unit of study for the degree in Aeronautical Engineering
Objectives/Outcomes
To develop an understanding of modern applications of aerodynamic theory. Students will gain skills in problem solving using state of the art methods for air and fluid flows.

Syllabus Summary
Panel method techniques for the solution of inviscid two and three dimensional flows. Vortex lattice; doublet/vortex panel methods. Linearised compressibility corrections. Modelling of complete aircraft configuration.

Aerodynamic section boundary layer theory; pressure gradient effects; transition from laminar to turbulent flow; laminar separation bubbles; stalled flow. Calculation of aerofoil drag using viscous/inviscid flow interaction.

Steady two-dimensional supersonic flow; shock waves; normal and oblique; method of characteristics. Two-dimensional supersonic aerfoils. Introduction to three-dimensional effects.

Reference books
McCormick Aerodynamics, Aeronautics and Flight Mechanics (Wiley, 1979)
Pankhurst and Holder Wind Tunnel Technique (Wiley)
Bertin and Smith Aerodynamics for Engineers (Prentice Hall 1979)
Abbott and Von Doenhoff Theory of Wing Sections. (Dover,1959)
Houghton and Brock Aerodynamics for Engineering Students (Edward Arnold)
Thompson Compressible Fluid Dynamics (McGraw-Hill)

AERO 4201 Propulsion
4 credit points
Prerequisite: MECH 3201. Offered: July. Classes: (3 lec, one 1 hr tut/lab/wk) Assessment: 2hr exam(50%), assignments/lab reports(50%).

Fourth year core unit of study for the degree in Aeronautical Engineering

Objectives/Outcomes
To develop an understanding of the modern techniques used for aircraft propulsion. Students will gain skills in problem solving for aircraft propulsion systems ranging from propellers, gas-turbine engines to rockets.

Syllabus Summary
Propulsion unit requirements subsonic and supersonic flight; thrust components, efficiencies, additive drag of intakes. Piston engine components and operation. Propeller theory. Operation, components and cycle analysis of gas turbine engines; turbojets; turboprops; ramjets. Components: compressor; fan; burner; turbine; nozzle. Efficiency of components; off-design considerations. Operation, components and thermodynamics of rocket motors. Dynamics of rocket flight; orbital velocity; staging. Future directions; minimisation of noise and pollution; sub-orbital propulsion systems; scram-jets; hybrid engines.

Reference books
McCormick Aerodynamics, Aeronautics and Flight Mechanics (Wiley, 1979)
Glauer The Elements of Aerofoil and Airscrew Theory (C.U.P.)
Kerrebrock Aircraft Engines and Gas Turbines (MIT Press, 1977)
Archer and Salasye Introduction to Propulsion (Prentice-Hall 1996)

AERO 4250 Aerodynamics 4
3 credit points
Prerequisite: AERO 3250. Offered: July. Classes: (2 lec, one 1 hr tut/lab/wk) Assessment: 2hr exam(25%), assignments/lab reports(75%).

Fourth year core unit of study for the degree in Aeronautical Engineering

Objectives/Outcomes
To develop an understanding of modern applications of aerodynamic theory. Students will gain skills in problem solving using state of the art methods for air and fluid flows.

Chapter 2 - Undergraduate units of study

Syllabus Summary
Unsteady supersonic one-dimensional flow. Hypersonic flow; real gas effects.
Introduction to the use of CFD for transonic flow.
Solution of internal and external problems in aerodynamics using finite element methods. Direct simulation method (DSMC); rarefied flow; near-continuum solutions.

Reference books
Bertin and Smith Aerodynamics for Engineers (Prentice Hall 1979)
Thompson Compressible Fluid Dynamics (McGraw-Hill)
John Gas Dynamics (Allyn and Bacon, 1984)
Bird Rarefied Gas Dynamics 2nd Ed (Oxford UP, 1995)

AERO 4290 Rotary Wing Aircraft
4 credit points
Prerequisite: AERO 3250. Offered: March. Classes: (2 lec, one 1 hr tut/lab/wk) Assessment: course assignments and a written examination.

Fourth year elective unit of study for the degree in Aeronautical Engineering

Objectives/Outcomes
To develop an understanding of the theory of flight, design and analysis of helicopters, autogyros and other rotary wing aircraft. Students will gain an appreciation of the extra difficulties involved when the vehicle flow is cyclic in nature.

Syllabus Summary
Introduction to rotary wing aircraft; vertical flight performance; forward flight performance; blade motion and control; dynamics of rotors; rotorcraft stability; rotor blade design.

Reference books
Bramwell Helicopter Dynamics (Arnold)
Gesow and Myers Aerodynamics of the Helicopter (Mcmillan)

AERO 4291 Advanced Computational Aerodynamics
3 credit points
Prerequisite: AERO 3250. Offered: July. Classes: (2 lec, one 1 hr tut/lab/wk) Assessment: course assignments.

Fourth year elective unit of study for the degree in Aeronautical Engineering

Objectives/Outcomes
To develop a specialist knowledge in the field of Computation Fluid Dynamics including an appreciation of the coding of Aerodynamics problems using these computer analysis systems.

Syllabus Summary
Explicit methods; implicit finite difference and finite volume methods. Extensions to the basic method to capture shock wave effects. Computation of one and two dimensional flows. Benchmarking of computational results against known flow solutions.

Reference books
CAJ Fletcher Computational Techniques for Fluid Dynamics Vol 1 and 2 (Springer-Verlag,1992)

AERO 4292 Aeroelasticity
3 credit points
Prerequisite: AERO 3250. Offered: July. Classes: (2 lec, one 1 hr tut/lab/wk) Assessment: course assignments.

Fourth year elective unit of study for the degree in Aeronautical Engineering

Objectives/Outcomes
To develop a specialist knowledge in the field of unsteady aerodynamics. The develop familiarity with the techniques for predicting airflow/structure interactions for high speed vehicles.

Syllabus Summary
Advanced two and three dimensional panel method techniques; calculation of oscillatory flow results; prediction of aerodynamic derivatives. Pressure distributions for complete aircraft configuration. Unsteady subsonic flow analysis of aircraft; calculation of structural modes. Structural response to gusts; aeroelasticity; flutter and divergence.

Reference books
Abbott and Von Doenhoff Theory of Wing Sections. (Dover,1959)
Bertin and Smith Aerodynamics for Engineers (Prentice Hall, 1979)
Fung An Introduction to Theory of Elasticity (Dover, 1969)

AERO 4300 Aircraft Structures 3
5 credit points
Prerequisite: AERO 3350. **Prohibition/other:** AERO 4301 Applied Numerical Stress Analysis. **Offered:** March. **Classes:** (3 lec, one 1 hr tut/lab)/wk. **Assessment:** 2hr exam, assignments/lab reports.

Fourth year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of modern techniques for the estimation of structural strength. Students will gain skills in problem solving using state of the art methods in aircraft structural analysis.

Syllabus Summary
Finite element method analysis of problems in structural behaviour; elastic, static; dynamic; thermal effects; transient, non-linear. Modelling structures using one, two and three dimensional elements.

Reference books
Brush and Almroth Buckling of Bars, Plates and Shells (McGraw-Hill)
Cook Concepts and Applications of Finite Element Analysis (Wiley, 1981)
Cox Design of Structures of Least Weight (Pergamon, 1965)
Heubner The Finite Element Method for Engineers (Wiley Interscience)
Madag Metal Fatigue: Theory and Design (Wiley)
Roark Formulæ for Stress and Strain (McGraw-Hill-Kogakusha)
Timoshenko and Woinowsky-Kreiger Theory of Plates and Shells (McGraw-Hill-Kohgakusha)
Washizu Variational Methods in Elasticity and Plasticity (Pergamon)
Zienkiewicz The Finite Element Method in Engineering (McGraw-Hill)

Library Classification: 620, 620.11, 624.17

AERO 4301 Applied Numerical Stress Analysis
6 credit points
Prerequisite: MECH 3310 Mechanics of Solids 2. **Prohibition/other:** MECH 4300 Aircraft Structures 3. **Classes:** 2 lec/wk plus prac classes. **Assessment:** one 2hr exam. Class work is assessed. **Fourth year elective unit of study.**

Reference book
Cook Concepts and Applications of Finite Element Analysis (Wiley, 1989)

AERO 4350 Aircraft Structures 4
3 credit points
Prerequisite: AERO 3350. **Prohibition/other:** AERO 4301 Applied Numerical Stress Analysis. **Offered:** July. **Classes:** (3 lec, one 1 hr tut/lab)/wk. **Assessment:** 2hr exam, assignments/lab reports.

Fourth year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of modern techniques for the estimation of structural strength. Students will gain skills in problem solving using state of the art methods in aircraft structural analysis.

Syllabus Summary
Plates and shells. Optimum structures. Buckling of Bars, plates and shells; imperfection sensitivity. Structural dynamics. Structural fatigue; principles and practice.

Reference books
Brush and Almroth Buckling of Bars, Plates and Shells (McGraw-Hill)
Cook Concepts and Applications of Finite Element Analysis (Wiley, 1981)
Cox Design of Structures of Least Weight (Pergamon, 1965)
Heubner The Finite Element Method for Engineers (Wiley Interscience)
Madag Metal Fatigue: Theory and Design (Wiley)
Roark Formulæ for Stress and Strain (McGraw-Hill-Kogakusha)
Timoshenko and Woinowsky-Kreiger Theory of Plates and Shells (McGraw-Hill-Kohgakusha)
Washizu Variational Methods in Elasticity and Plasticity (Pergamon)
Zienkiewicz The Finite Element Method in Engineering (McGraw-Hill)

Library Classification: 620, 620.11, 624.17

AERO 4400 Aircraft Design 3
6 credit points
Prerequisite: AERO 3450. **Offered:** March. **Classes:** (1 lec, one 3hr design class)/wk. **Assessment:** Design projects.

Fourth year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the application of design to the modern aerospace industry. Students will gain an overview of how to manage a design team and will also gain skills in carrying out detailed design problems.

Syllabus Summary

Reference books
Torenbeek Synthesis of Subsonic Airplane Design (Delft UP)
Roskam Airplane Design (Roskam A&EC)

AERO 4490 Advanced Aircraft Design
4 credit points
Prerequisite: AERO 3450. **Classes:** (one 3hr design class)/wk. **Assessment:** Design projects.

Fourth year elective unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the application of design to the modern aerospace industry. Students will gain an overview of how to manage a design team and will also gain skills in carrying out detailed design problems.

Syllabus Summary

Reference books
Torenbeek Synthesis of Subsonic Airplane Design (Delft UP)
Roskam Airplane Design (Roskam A&EC)

AERO 4500 Flight Mechanics 2
6 credit points
Prerequisite: AERO 3500. **Offered:** March. **Classes:** (4 lec, 1 tut)/wk.

Fourth year Core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the application of flight mechanics to modern aircraft systems. Students will gain skills in prob-
Sources of flight dynamic modelling data.

Academic sources include:
- D’Azzo and Houpis Linear Control System Analysis and Design: (McGraw-Hill, 1995)
- Roskam Airplane Flight Dynamics and Automatic Flight Controls (Roskam A&EC, 1979)
- Etkin Dynamics of Atmospheric Flight (Wiley, 1972)

Textbooks and reference books:
- Conventional and Modern (McGraw-Hill, 1995)
- A mini-conference held at the end of a week midway through the semester. Assessment: Oral presentation evaluated by peers and staff.
- Fourth year core unit of study for the degree in Aeronautical Engineering.

Objectives/Outcomes
To develop an understanding of the practice of aeronautical engineering. Students will gain skills in design, analysis and management by undertaking a significant research project.

Each student is required to conduct one piece of experimental, theoretical or design work in greater detail than is possible in ordinary classes and to write a thesis presenting the results of these investigations.

The student is expected to design and construct (where possible) any special piece of apparatus or model that may be necessary.

AERO 4920 Seminar
2 credit points
Prerequisite: 40 credit points of Senior Subjects. Offered: July.
Classes: A mini-conference held at the end of a week midway through the semester. Assessment: Oral presentation evaluated by peers and staff.
Fourth year core unit of study for the degree in Aeronautical Engineering.
Objectives/Outcomes
To develop skills in the presentation of engineering ideas. To gain skills in communication.

Each student is required to present a seminar on a selected topic. Students are also expected to take part in the discussion sessions following each presentation.

Chemical Engineering

CHNG 1001 Chemical Engineering Applications
4 credit points
Classes: One (2 hr) lecture/tutorial per week plus one (3 hr) laboratory or plant visit per week for one semester. Assessment: Laboratory reports (30%), industrial visits (10%), lecture reports (15%), final examination (45%).
First year core unit of study for the degree in Chemical Engineering.

What Is Chemical Engineering? Obtain some overview of Chemical Engineering; of the process industries in Australia; of what chemical engineers do and the challenges they face. Meet some Chemical Engineers.

Laboratory
Find out about the construction, methods of fabrication, selection of materials of construction, and the operation of common chemical process plant hardware; giving attention to the importance of costs, safety, operability and reliability. Learn about the key steps in engineering communication.

Industrial Practice
Understand how chemical engineering works in practice by seeing what real plants and their equipment look like, what these plants do, and why. Student will develop skills in equipment handling; in communication, written and oral; in individual and group working; in peer assessment.

Objective/Outcomes
(a) What is chemical engineering? A survey of the nature of chemical engineering, of the nature of the Australian process industries, and of the main professional activities of chemical engineers. Lectures are given by invited speakers from government, industry and academia. Visits to works in the Sydney region are undertaken with tutorial exercises based on these visits.

(b) Chemical engineering applications laboratory. An appreciation of (i) the methods and materials of construction of items of process equipment, (ii) the role of this equipment in building
Faculty of Engineering Handbook 1999

up an entire chemical processing plant, (iii) its operation and maintenance and (iv) safety requirements and procedures. Students will dismantle, reassemble and operate items of process equipment. They will present written answers to questions, supplemented by drawings of process flowsheets, diagrams of dismantled equipment, and discussions of heat and mass balances and of process parameter values.

Textbooks
Library Classification: 660

CHNG 1101 Chemical Engineering 1A
4 credit points
Classes: Two (1 hr) lectures; plus one (2 hr) tutorial per week for one semester. Assessment: One 3hr exam at end of Sem plus continuous assessment of assignments.

First year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
This is a first unit in chemical engineering calculations. It aims to teach students how they should formulate and solve mass balances on chemical process systems. It also introduces students to introductory flowsheet analysis.

Syllabus
The unit consists of a series of tutorial exercises by which students are exposed to a range of typical problems on process systems; and then some larger projects which allow students to apply the approaches and procedures that they have learned to more realistic and complex applications.

The lectures introduce and complement the tutorials. Topics covered in the lectures include: unit systems and unit conversion; properties of fluids; mass balance calculations on flow systems; combustion processes; calculation of equilibrium compositions of reacting systems; vapour pressure and humidity.

Textbooks
Library Classification: 660.28

CHNG 1102 Chemical Engineering 1B
4 credit points
Prerequisite: CHNG 1101 Chemical Engineering 1A. Classes: Assignments; final examination. Assessment: Assignments; final examination.

First year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
This is a first unit in chemical engineering calculations. It aims to teach students how they should formulate and solve energy balances on chemical process systems.

Syllabus
It completes the analysis of typical industrial flowsheets by including both mass and energy balances.

The unit consists of a series of tutorial exercises by which students are exposed to a range of typical problems on process systems; and then some larger projects which allow students to apply the approaches and procedures that they have learned to more realistic and complex applications.

The lectures introduce and complement the tutorials. In addition, the lectures cover the following topics: the First Law of Thermodynamics applied to flow systems; thermodynamic properties: enthalpy, internal energy, heat capacities; calculations for ideal gas and liquid systems; thermochromistry; adiabatic flame temperature; equilibrium in adiabatic reactors; heats of solution and mixing.

Textbooks
Library Classification: 660.28; 660.29

CHNG 1201 Chemical Process Case Studies
4 credit points
Classes: 4 hours of lectures / tutorials per week for one semester. Assessment: Tutorials, assignments, final examination.

First year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop an understanding of:
- The chemistry of industrial processes.
- The economic aspects of the industry.
- Modern environmental concerns.

Syllabus Summary
An introduction to the major processes of the modern chemical industry. An overview of the process chemistry involved, the process flowsheet, together with design, control and optimisation needs. The economic and environmental constraints that shape the industry. The case study format will be used to develop a number of professional skills in the student - team work, use of library and computer resources and presentation skills.

Textbooks
Library Classification: 660

CHNG 1301 Computing for Chemical Engineers
4 credit points
Classes: One (1 hr) lecture and one (2 hr) tutorial per week for one semester. Assessment: Tutorial assessment and a final examination.

First year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop a basic understanding of personal computers and their use in solving engineering problems.

Syllabus Summary
Introduction to personal computers. Use of spreadsheet packages for carrying out data manipulation, numerical calculations and graphing. Application to chemical engineering problems.

CHNG 2101 Chemical Engineering 2A
4 credit points
Classes: Two lectures and one tutorial per week; three laboratory sessions in total. Assessment: Laboratory reports; project reports; final examination.

Second year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
This unit seeks to introduce students to basic concepts of fluids handling relevant to the process industries. Students will meet simple equipment design problems in this area and will apply their understanding to measurements and analysis of laboratory plant. Satisfactory completion of the course will prepare students for more advanced courses in fluids and in the integration of fluid flow with heat and mass transfer.

Students will develop generic skills in:
- technical problem solving
- scaling and thinking non-dimensionally
- operating and analysing process plant.

Syllabus Summary
Fluid statics - applications to pressure measurement; forces on storage vessels. Inviscid flow theory - Bernoulli's equation; flow friction; flow measurement. Laminar flow - force balance; analytical solutions for velocity profile. Turbulent flow - dimensional analysis, friction factor. Pumping - ideal pumps; pump selection; net positive suction head. Pipe networks.

Textbooks
Library Classification: 620.1; 660.2

CHNG 2102 Chemical Engineering 2B
4 credit points
Classes: Two lectures and one tutorial per week; three laboratory sessions in total. Assessment: Laboratory reports; project reports; design competition; final written examination.

Second year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
This unit seeks to introduce students to basic concepts of how heat energy is transferred, especially to and from fluids; similarly the concept of mass transfer and its conceptual relationship to heat transfer is introduced. This unit introduces the concept of chemical engineering rate processes and their importance in selecting and designing process equipment; students will meet simple equipment design problems in this area and will develop their understanding through measurements and analysis of laboratory plant. Satisfactory completion of the course will prepare students for more advanced courses in fluids and in the integra-
tion of fluid flow with heat and mass transfer. A light-hearted design exercise brings the student body together, encouraging them to apply their understanding to unusual problems and to think laterally.

Students will develop generic skills in:
- technical problem solving
- scaling and thinking non-dimensionally
- operating and analysing process plant
- working in small groups on unusual problems.

Syllabus Summary

Heat transfer: Conduction; convection - the heat transfer coefficient, dimensional analysis, Correlations for pipe flow, external flows, natural convection. The overall heat transfer coefficient. Simple heat exchangers.

Mass Transfer: Diffusion; convection - the mass transfer coefficient, dimensional analysis, analogy with heat transfer. Correlations. The overall mass transfer coefficient. Mass transfer in dilute absorbers. Simultaneous heat and mass transfer.

Textbooks

Library Classification: 536.2; 621.402; 660.2

CHNG 2301 Chemical Engineering Computations

4 credit points

Prerequisite: Maths 1001,1002,1003,1005 CHNG 1301. **Classes:** 4hrs lec & tut/wk. **Assessment:** Tutorials, assignments and one final examination.

Second year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes

To develop an understanding of:
- Chemical engineering problem analysis.
- Computational techniques in problem solving.
- Software applications.

Students will develop skills in:
- Using computers.
- Solving engineering problems.
- Developing and using computer software.

Syllabus Summary

Textbooks

Library Classification: 660; 517.6.

CHNG 2501 Fundamentals of Environmental Chemical Engineering

4 credit points

Classes: 4 hours of lectures / tutorials per week for one semester. **Assessment:** Tutorials, assignments, final examination.

Second year core unit of study for the degree in Chemical Engineering.

To develop an understanding of:
- Environmental pollutants and their effects.
- Analysis of pollution problems and their control.
- Processes and technologies to reduce impact on environment.

Students will develop skills in:
- Engineering problem solving.
- Work in groups on supervised projects.
- Report writing and presentation.

Syllabus Summary

Textbooks

Library Classification: 574.5, 660, 628.

CHNG 2701 Fundamentals of Bioprocess Engineering 1

4 credit points

Prerequisite: CHEM 1101 CHEM 1201. **Classes:** one lecture per week and two tutorial/projectlabs per week for one semester. **Assessment:** Tutorials 35% projects 35% and final examination 30%.

Objectives

To understand the major metabolic pathways of the cell.
- To understand the role of biochemistry in Biochemical Engineering.
- To understand how chemical engineering fundamentals are relevant to the study of biochemistry.

Syllabus

Major macromolecules of the cell: carbohydrates, proteins, lipids, nucleic acids.
- Enzymes: structure and function, enzyme kinetics, enzyme recovery and purification.
- Major metabolic pathways: carbohydrate metabolism, citric acid cycle, lipid metabolism, oxidative phosphorylation, nitrogen metabolism.

Textbooks

Biochemistry, L. Stryer 4th edition, WH Freeman and Co. NY

CHNG 2702 Fundamentals of Bioprocessing Engineering 2

4 credit points

Prerequisite: CHEM 1101 CHEM 1201. **Classes:** one lecture and two tutorial/projectlabs per week for one semester. **Assessment:** Laboratory 35% projects 35% and final examination 30%.

Second year elective unit of study for the degree in Chemical Engineering.

Objectives

To study practical aspects of the application of biochemistry to industrial processes.

Syllabus

Molecular biology basic concepts; Introduction to Immunology; Biochemistry and medicine.

Laboratory projects

Enzyme reactions, Protein separation, Electrophoresis, Chromatography.

Textbooks

CHNG 3001 Chemical Engineering Laboratory

4 credit points

Prerequisite: CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B. **Classes:** Laboratory sessions as scheduled. **Assessment:** Written laboratory reports (including skills assessment in planning and executing experiments) and oral presentation of work.

Third year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes

To develop skills in the following:
- the planning and conducting of laboratory-scale experiments.
- report writing and oral presentations.

Syllabus Summary

This laboratory course complements the various "Unit Operations" courses in 3rd Year.

As part of the preparation for any experiment, a student will be expected to undertake the following:
- become familiar with the background theory
- understand the operation of the experimental apparatus
- define the experimental aim, the range of measurements to be made and how these measurements will be processed.

Considerable importance is attached to the analysis and interpretation of the experimental data and to the writing of a clear, logical and concise technical report.

Textbooks

Library Classification: 660
CHNG 3021 Exchange Program Iowa State University
48 credit points
Prerequisite: Completion of all First and Second Year core courses in Chemical Engineering, and at least 96 credit points towards the degree. Approval of the Heads of Department of Chemical Engineering at the University of Sydney and at Iowa State University. Assessment: Individual approved subjects at the host institution are assessed according to their standard procedures and a composite mark is derived from the weighted average of those assessments.

Students spend four academic quarters from January through December at the Iowa State University where they take a normal full year load. Their specific course choices are approved by the Heads of Department of the two institutions. Where possible, students spend some time in the US summer months gaining work experience in US industry.

The objective of this Exchange Program is to provide students with the opportunity to live and learn in a different culture while completing the academic and professional requirements of the University of Sydney degree program. This scheme thus contributes to the University Plan for increased international links.

Students will have completed work at least equivalent to Third Year in the Chemical Engineering degree, including in particular all Third Year core units of study.

CHNG 3022 Exchange Program Iowa State University (Combined Degrees)
32 credit points
Prerequisite: Enrollment for an approved combined degree (BE/BCom, BE/BA, or BE/BSc) degree and completion of all First and Second Year core courses in Chemical Engineering. Approval of the Heads of Department of Chemical Engineering at the University of Sydney and at Iowa State University. Assessment: Individual approved subjects at the host institution are assessed according to their standard procedures and a composite mark is derived from the weighted average of those assessments.

Students spend four academic quarters from January through December at the Iowa State University where they take a normal full year load. Their specific course choices in Chemical Engineering are approved by the Heads of Department of the two institutions. Where possible, students spend some time in the US summer months gaining work experience in US industry.

The objective of this Exchange Program is to provide students with the opportunity to live and learn in a different culture while completing the academic and professional requirements of the University of Sydney degree program. This scheme thus contributes to the University Plan for increased international links.

Students will have gained sufficient credits in the Third Year Chemical Engineering degree to enable them to complete the Engineering component of their combined degree in the minimum prescribed time of 10 semesters.

CHNG 3101 Unit Operations (HeatTransfer)
4 credit points
Prerequisite: CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B. Classes: One (1 hr) lecture and one (2 hr) tutorial per week for one semester. Assessment: Tutorial work, project report, and a final examination.

Third year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop an understanding of how basic heat-transfer theory is applied to the performance analysis and design of heat-transfer equipment.

Syllabus Summary

CHNG 3102 Unit Operations (Mass Transfer)
4 credit points
Prerequisite: CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B. Classes: Two (1 hr) lectures and one (1 hr) tutorial per week for one semester. Assessment: Tutorial assignments (both individually and in small groups) and a final examination.

Third year core unit of study for the degree in Chemical Engineering.

Objectives
To develop an appreciation of several industrially important mass transfer operations (such as drying, distillation, gas absorption and extraction).

To be able to analyse and design equipment used for such mass transfer operations.

Syllabus Summary
The industrial importance of mass transfer operations. Mass transfer as an equilibrium stage process. Vapour-liquid equilibrium (ideal and non-ideal), x-y and T-x-y diagrams. Flash distillation. Analysis and design of binary distillation columns as equilibrium stage processes. McCabe-Thiele diagrams. Analysis and design of other mass transfer operations (such as gas absorption) as equilibrium stage processes. Computer-based physical property packages and mass transfer calculations.

CHNG 3103 Unit Operations (Particle Mechanics)
4 credit points
Prerequisite: CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B. Classes: Three (1 hr) lectures/tutorials per week for one semester. Assessment: Assignments, and a final examination.

Third year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop an understanding of the following:
- The characteristics of particles.
- The processing of particulate systems.

Syllabus Summary
Introduction to particulate systems, particle size and shape parameters, size distributions and statistical properties, test sieve analysis. Screening, particle-screen mechanics, efficiency of screening. Size reduction, energy requirements, classical laws, product size distribution. Motion of a particle in a fluid, terminal velocity, hindered settling. Phase separations, classification, elutriation, thickening, cyclones, centrifuging. Motion of fluids in particle beds, filtration, filters.

Textbooks
Library Classification: 620.4, 660.28

CHNG 3104 Unit Operations (Fluid Mechanics)
4 credit points
Prerequisite: CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B. Classes: Four hours of lectures and tutorials per week for one semester. Assessment: Tutorial assignments and final examination.

Third year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop an understanding of:
- non-Newtonian flows
- compressible fluid flow
- other fluid flows.

Students will develop skills in:
- solving problems in non-Newtonian flow
- solving problems in compressible fluid flow
- understanding the unusual phenomena in some non-Newtonian and compressible flow situations
- designing power inputs to agitated vessels.
Syllabus Summary

Textbooks
Library Classification: 660.28

CHNG 3105 Thermodynamics 1
4 credit points
Prerequisite: CHNG 2102 Chemical Engineering 2B. Classes: Two (1 hr) lectures plus one (1 hr) tutorial per week for one semester. Assessment: Assignments; final examination.

Third year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
The major objectives are:
(i) To perform energy analyses of process flowsheets.
(ii) To estimate the thermodynamic properties of fluids.

Specifically, this involves solving the energy equation for equipment items such as: valves, pumps, compressors, turbines, heaters and coolers, reactors and burners; and for flowsheets and cycles made up of those equipment items.

Syllabus
First and second laws of Thermodynamics; thermodynamic properties: enthalpy, internal energy, entropy, energy. Applications in the analysis of typical energy intensive processes: heat engines; refrigeration cycles; liquefaction processes; compressible flow.

Estimation of thermodynamic properties of pure components, using (i) first-order fluid models, (ii) charts and tables, and (iii) equations of state. P-V-T relationships for real gases; methods based on the principle of corresponding states; 2- and 3-parameter equations of state; the fundamental property relationships; calculation of residual enthalpies and entropies using volume-explicit equations of state (e.g. the virial equation in volume-explicit form); application of pressure-explicit equations of state in computer methods for property prediction.

Textbooks
Library Classification: 660.29; 621.4; 536.7

CHNG 3106 Thermodynamics 2
4 credit points
Prerequisite: CHNG 3105 Thermodynamics 1. Classes: Two (1 hr) lectures plus one (1 hr) tutorial per week for one semester. Assessment: Assignments; final examination.

Third year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
The major objectives are:
(i) To understand the theoretical basis for equilibrium in multiphase systems and reacting systems.
(ii) To introduce the thermodynamic concepts: chemical potential, fugacity, activity, and excess properties.
(iii) To predict the behaviour and compositions of liquids and vapours in equilibrium.
(iv) To predict the composition of systems in chemical equilibrium.

Syllabus

Solution properties: Liquid models; partial molal properties; excess properties; activity coefficients. Stability of liquid solutions.

Chemical equilibrium: Calculation of chemical equilibrium constants from thermodynamic data (enthalpies and free energies of formation). Calculation of equilibrium compositions and conversion for homogeneous and heterogeneous systems.

Textbooks
Library Classification: 660.29; 536.7

CHNG 3107 Reaction Engineering 1
4 credit points
Classes: Three hours per week of scheduled group work; occasional lectures. Assessment: Two projects and interviews; final written examination.

Third year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
The technical objective in this course is to develop students' understanding in basic design considerations for chemical reactor design, and in carrying out the necessary design calculations.

Students will develop generic skills in:
• tackling open-ended problems requiring a synthesis of material learned previously with new learning;
• working cooperatively in self-managed groups;
• application of computational techniques to unfamiliar problems.

Syllabus Summary
Homogeneous and heterogeneous reaction kinetics; development of rate laws. Methods for analysis and interpretation of reaction rate data. Volume change effects. Steady-state behaviour of isothermal ideal reactors: batch; plug flow; continuous stirred tank; packed-bed reactors for catalysed reactions.

Textbooks
Library Classification: 660.28

CHNG 3301 Process Modelling
4 credit points
Prerequisite: CHNG 2301 Chemical Engineering Computations. Classes: Two (1 hr) lectures and one (1 hr) tutorial per week for one semester. Assessment: Tutorial assignments (individually and in small groups) and a final examination.

Third year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop an appreciation for the following:
• The different techniques used to develop and solve process models.
• The way process models are used in industry.
• The role of modern computer software in process modelling.

Syllabus Summary

CHNG 3302 Process Control 1
4 credit points
Classes: 4 hrs/week of lectures and tutorials for one semester. Assessment: Tutorial assignments and a final examination.

Third year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
It is expected that students will understand the principles of dynamic modelling and the basics of process control.

Syllabus Summary

Textbooks
Library Classification: 660

CHNG 3401 Project Economics
4 credit points
Classes: Two (1 hr) lectures and one (1 hr) tutorial per week for one semester. Assessment: Tutorial assignments plus a final examination.
Third year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop a basic understanding of the role that economic considerations have in industrial projects.
Syllabus Summary
The assessment of projects using economic criteria: taxation, capital and depreciation; manufacturing costs and capital cost determination. Comparison of alternatives, allowing for risk and uncertainty, project finance.

CHNG 3601 Materials and Corrosion
4 credit points
Classes: 2hr of lec & tut/wk. Assessment: One 2hr exam.
Third year core unit for the degree in Chemical Engineering.

Syllabus summary

Textbooks
Reference books
Uhlig and Revie Corrosion and Common Control 3rd edn (Wiley, 1985)
Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions (NACE, 1974)

CHNG 4001 Practical Experience
0 credit points
Prerequisite: 28 credit points of 3rd Year units. Classes: There are no formal classes. Students are required to obtain 10 weeks of practical work experience before entering their 4th Year.
Assessment: By submission of a report of approximately 2500 words on the industrial experience undertaken. The report will cover the nature of the industry, the company's organisational relationships both internally and externally and a technical section devoted to the work performed by the student. The report is to be submitted before the end of the first week of the 4th academic year. Fourth year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To obtain first-hand experience of the way chemical engineering skills are employed in an industrial context.
Syllabus Summary
Each student is required to work as an employee of an approved organisation and to submit a report on that work. The employment undertaken must be relevant to Chemical Engineering and should be discussed before acceptance with a member of the Department of Chemical Engineering. While the responsibility for obtaining satisfactory employment rests with the student, the Department, through the Chemical Engineering Foundation, and the Careers and Appointments Service will assist wherever possible.

CHNG 4002 Thesis
8 credit points
Prerequisite: Students should have completed (or be enrolled in) all other 4th Year core units. Classes: No formal classes. The thesis supervisor will be available for discussion at agreed times but the student is expected to work on his/her own initiative. Assessment: Written thesis and seminar.
Fourth year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To obtain an understanding of how to define, undertake and report on an open-ended piece of supervised research work.
Syllabus Summary
Students are asked to write a thesis based on a modest (but significant) research project, which is very often some aspect of a staff member's research interests. Some projects will be experimental in nature, others may involve computer-based simulation, feasibility studies, or the design, construction, and testing of equipment.
In undertaking the project, the student will learn how to examine published and experimental data, set objectives, organise a program of work, and analyse results and evaluate these in relation to existing knowledge. The thesis will be judged on the extent and quality of the student's original work and particularly on how critical, perceptive, and constructive he or she has been, in assessing his/her own work and that of others.
Students are required to give a seminar, explaining the aims and achievements of their thesis.

CHNG 4003 Advances in Chemical Engineering A
4 credit points
Classes: Two (1 hr) lectures plus one (1 hr) tutorial per week for one semester. Assessment: Assignments; final examination.
Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
The objective of this unit is to provide students with exposure to the latest developments in research and technology.
Syllabus
This unit will discuss the impact of current research and new technology on the profession of chemical engineering. It will address the changes that are taking place in industrial processes as a result of these new technologies. The syllabus details will change from time as time as specialist lecturers become available.

CHNG 4004 Advances in Chemical Engineering B
4 credit points
Classes: Two (1 hr) lectures plus one (1 hr) tutorial per week for one semester. Assessment: Assignments; final examination.
Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
The objective of this unit is to provide students with exposure to the latest developments in research and technology.
Syllabus
This unit will discuss the impact of current research and new technology on the profession of chemical engineering. It will address the changes that are taking place in industrial processes as a result of these new technologies. The syllabus details will change from time as time as specialist lecturers become available.

CHNG 4005 Laboratory Projects in Unit Operations
4 credit points
Prerequisite: CHNG 3001 Chemical Engineering Laboratory. Classes: Five hours per fortnight of laboratory classes for one semester. Assessment: Project reports, oral presentation and general skill shown in planning and executing laboratory experiments.
Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop skills in executing appropriate experimental testing procedures and the presentation of results in oral and written form, together with teamwork skills.
Syllabus Summary
This laboratory unit extends the range of experiments illustrating the principles and application of heat and mass transfer, particle mechanics and reaction engineering. Two laboratory experiments will be undertaken by students during the semester, and two written reports and two oral presentations will be required from each student. The same level of preparation is re-
quired for this course as for CHNG 3001 Chemical Engineering Laboratory. Specifically, students are required to: (1) familiarise themselves with the background theory; (2) understand the operation of the experimental apparatus and the correspondence between the apparatus and that described in the background theory; and (3) define the experimental aim, range of measurements to be made and how these measurements will be processed in the light of the background theory and the aim of the experiment.

CHNG 4006 Professional Option
2 credit points
Prerequisite: Passed at least 144 credit points. Classes: There are no formal classes for this course. Assessment: See Syllabus description.
Fourth year elective unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
The objective of this course is to provide students with experience in how to prepare and present a technical report.
Syllabus
This course requires a student to carry out an assignment related to the profession of chemical engineering - this will normally consist of a discussion of the design or operation of an industrial process. The discussion will be presented in the form of a written report, as a seminar, or both.

CHNG 4021 Exchange Program Royal Stockholm Institute of Technology Sweden
48 credit points
Prerequisite: Completion of all First, Second, and Third Year core courses in Chemical Engineering, and at least 144 credit points towards the degree. Approval of the Heads of Department of Chemical Engineering at the University of Sydney and at the Royal Stockholm Institute of Technology in Sweden. Assessment: Individual approved subjects at the host institution are assessed according to their standard procedures and a composite mark is derived from the weighted average of those assessments. Students spend one academic year at Royal Stockholm Institute of Technology where they take a normal full year load. Their specific course choices are approved by the Heads of Department of the two institutions. Where possible, students spend some time in the months preceding their studies in Stockholm gaining work experience in Swedish industry.

The objective of this Exchange Program is to provide students with the opportunity to live and learn in a foreign culture while completing the academic and professional requirements of the University of Sydney degree program. This scheme thus contributes to the University Plan for increased international links.

Students will have completed work at least equivalent to Fourth Year in the Chemical Engineering degree, including in particular the Fourth Year core units of study, and will have fulfilled all the requirements of their degree from the University of Sydney.

CHNG 4022 Exchange Program ENSIGC Toulouse France
48 credit points
Prerequisite: Completion of all First, Second, and Third Year core courses in Chemical Engineering, and at least 144 credit points towards the degree. Approval of the Head of Department of Chemical Engineering at the University of Sydney and of Director of the Ecole Nationale Supérieure d'ingénieurs de Genie Chimique at the Institut National Polytechnique in Toulouse, France. Assessment: Individual approved subjects at the host institution are assessed according to their standard procedures and a composite mark is derived from the weighted average of those assessments. Students spend one academic year at ENSIGC where they take a normal full year load. Their specific course choices are approved by the Heads of Department of the two institutions. Where possible, students spend some time in the months preceding their studies in Toulouse gaining work experience in French industry.

The objective of this Exchange Program is to provide students with the opportunity to live and learn in a foreign culture while completing the academic and professional requirements of the University of Sydney degree program. This scheme thus contributes to the University Plan for increased international links.

Students will have completed work at least equivalent to Fourth Year in the Chemical Engineering degree, including in particular the Fourth Year core units of study, and will have fulfilled all the requirements of their degree from the University of Sydney.

CHNG 4101 Separation Processes
4 credit points
Prerequisite: Unit Operations (all four components). Classes: Four hours of lectures and tutorials per week for one semester.
Assessment: Tutorial assignments and final written examination.
Fourth year elective unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
To develop an understanding of:
- multicomponent distillation;
- separation in non-ideal liquid systems;
- membranes and treatment of waste water.

Students will develop skills in:
- solving multicomponent distillation problems;
- investigating azeotropes;
- developing process flowsheets for difficult separation systems;
- solving wastewater cleanup problems.

Syllabus Summary

Textbooks
Library Classification: 660.2842

CHNG 4102 Transport Phenomena
4 credit points
Classes: 4 hrs/week consisting of a mixture of lectures and practical sessions. Assessment: In-class assessments, assignments and project work.
Fourth year elective unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
To develop an understanding of the equations which govern momentum, heat and mass transfer and ways of solving them.
Students will develop skills in:
- model formulation
- solving ordinary and partial differential equations
- unifying heat, mass and momentum transfer concepts

Syllabus Summary
Constitutive equations for momentum, heat and mass transfer. Analogies between momentum, heat and mass transfer. Diffusion, forced convection and natural convection laminar and turbulent flow. Solution of flow problems using a computational package.

Textbooks
Library Classification: 530.136

CHNG 4103 Advances in Polymer Engineering
4 credit points
Classes: 3 hrs of lectures/tutorials per week for one semester.
Assessment: Tutorials, assignments, final examination.
Fourth year elective unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
To develop an understanding of:
- How polymeric resins are manufactured.
• Polymer properties in engineering application.
• Polymer processing in manufacturing.
• How polymers are recycled.
Students will develop skills in:
• Laboratory and conceptual work.
• Verbal and written communication (project work).
• Solving engineering problems involving polymers.

Syllabus Summary
Basic structure and properties of polymers. Application of chemical engineering fundamentals including reaction engineering and kinetics to produce polymer resins from monomers. Engineering principles of polymer processing and shaping by extrusion, injection moulding, blow moulding, calendaring and film blowing to obtain value-added products such as sheets, tubes, carpet parts, bottles, fibres for clothes, etc. Case studies with nylon, polyester, polyethylene will be treated in detail. Selecting poly­mers for engineering applications based on chemical, mechan­i­cal, thermal and flow behaviour. Recycle and reuse of polymers.

Textbooks
Library Classification: 536.7; 660.29

CHNG 4104 Reaction Engineering 2
4 credit points
Prerequisite: CHNG 3107 Reaction Engineering 1.
Classes: Two (1 hr) lectures and one (2 hr) tutorial per week.
Assessment: Tutorials (20%), assignment (20%) and a final examination (60%).

Fourth year unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
Extend knowledge of homogeneous, isothermal, ideal reactors undertaking single reactions to non-isothermal reactions, multiple reactions, heterogeneous reactions and non-ideal reactors.
Further develop problem solving skills by a tutorial based course where the problem solving requires the student to:
(a) Refine the problem statement.
(b) Set up the equations which define the system.
(c) Select the appropriate numerical method / computer package to solve the equations.
(d) Present and discuss the results obtained and their implications with respect to the problem statement.

Syllabus Summary
Temperature effects; multiple reaction(s); non-ideal reactor(s); heterogeneous reactions; non-catalytic, catalytic, multiphase reactions.

Textbooks
Library Classification: 660

CHNG 4105 Advanced Topics in Thermodynamics
4 credit points
Prerequisite: CHNG 3105 Thermodynamics 1; CHNG 3106 Thermodynamics 2.
Classes: Two (1 hr) lectures plus one (1 hr) tutorial per week for one semester.
Assessment: Assignments; final examination.

Fourth year elective unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
To develop an understanding of:
• concepts in process flowsheeting
• use of computer packages
• optimisation of the process; heat exchanger networks.
Students will develop skills in:
• development of the process flowsheet
• solving flowsheet problems using computer packages
• designing heat exchanger networks
• awareness of cost optimisation.

Syllabus Summary

Textbooks
Library Classification: 660.281

CHNG 4201 Chemical Engineering Design 1
4 credit points
Prerequisite: CHNG 3101, 3102, 3103, 3104; CHNG 3105 Thermodynamics 1; CHNG 3106 Thermodynamics 2; CHNG 3401 Project Economics.
Classes: Approximately 8 hours of informal classes, design and library work per week for one semester.
Assessment: Design report and contribution to design group.

Fourth year core unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
To develop an understanding of:
• full chemical engineering design study;
• preparation of a full design report.
Students will develop skills in:
• designing a complete chemical plant;
• working in a design group;
• interacting with a consultant;
• writing a design report.

Syllabus Summary
The preparation of a detailed design project: flowsheet selection, heat and mass balances, detailed equipment design and costing, hazard assessment and hazard operability studies, environmental impact and project financial analysis.

Textbooks
Library Classification: 660.284

CHNG 4202 Chemical Engineering Design 2
8 credit points
Prerequisite: CHNG 3101, 3102, 3103, 3104; CHNG 3105 Thermodynamics 1; CHNG 3106 Thermodynamics 2; CHNG 3401 Project Economics.

Classes: Approximately 8 hours of informal classes, design and library work per week for one semester.
Assessment: Design report and contribution to design group.

Fourth year elective unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
To develop an understanding of:
• full chemical engineering design study;
• preparation of a full design report.

Students will develop skills in:
• full chemical engineering design study;
• preparation of a full design report.

Textbooks
Library Classification: 660.284

CHNG 4203 Major Industrial Project
24 credit points
Prerequisite: Passed at least 144 credit points. Students wishing to do this unit of study are required to discuss the matter with the Head of Department prior to enrolment.

Fourth year elective unit of study for the degree in Chemical Engineering.

The objective of this unit of study is to provide students with experience in carrying out a major project within an industrial environment, and in preparing and presenting detailed technical reports (both oral and written) on their work.

Syllabus
The major component of this unit of study is the conduct of a project in industry under joint University/industry supervision.
The project will encompass many of the features of CHNG 4002 Thesis, but will be larger in scope. The student will be required to submit an oral report to both the University and any company involved.
In addition, students will be required to incorporate in their work industry case studies in core curriculum areas of their degree program, as determined by the Head of Department. Stu-
students are expected to show a proficiency in each of these case studies comparable with that which would be achieved in the units of study corresponding to the selected case study areas. Case studies which may not then be counted with the units of study corresponding to the units of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop an understanding of current computational models of fluid flow and its associated physics.

Students will develop skills in:
• using a CFD package;
• breaking a complex problem into simpler pieces;
• solving real problems.

Syllabus Summary
This course will familiarise students with modern developments in computational fluid dynamics (CFD) modelling. It will contain a review of the basic equations and introductions to mesh generation, solution methods, graphical analysis of results, turbulence modelling, multiphase flows, combustion, non-Newtonian flow and chemical reactions. The course will comprise a mixture of theory and practical use of a CFD package.

Textbooks
Library Classification: 532.050151

CHNG 4302 Reservoir Engineering
4 credit points
Prerequisite: CHNG 3103 Unit Operations (Particle Mechanics); CHNG 3104 Unit Operations (Fluid Mechanics).

Classes: Two (1 hr) lectures plus one (1 hr) tutorial per week for one semester.

Assessment: Assignments; final examination.

Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
Introducing chemical engineering students to methods used in predicting and managing the behaviour of oil and gas reservoirs.

Reservoir engineering analysis applies also to other important areas such as: the migration and treatment of pollutants in soils and sediments; the recovery of methane from coal seams and landfill; heap leaching of low-grade ores; and in-situ leach mining.

Syllabus

Introduction to enhanced oil recovery.

Textbooks
Library Classification: 553.28; 622.18-3

CHNG 4303 Optimisation Techniques
4 credit points
Prohibition/other: CHNG 4305 Process Systems Engineering.

Classes: Two (1 hr) lectures and one (1 hr) tutorial per week for one semester. Assessment: Tutorial work, project reports and a final examination.

Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop skills in formulating and solving optimisation problems relevant to chemical engineering.

Syllabus Summary

CHNG 4304 Process Control 2
4 credit points
Prerequisite: CHNG 3302 Process Control 1.

Classes: Four hours of lectures, tutorial and laboratory work per week for one semester.

Assessment: Tutorial assignments, laboratory reports and a whole semester project.

Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
It is expected that students will become familiar with a variety of advanced control strategies, their experimental application, as well as receiving training in Distributed Control System configuration and use.

Syllabus Summary

Textbooks
Library Classification: 660

CHNG 4305 Process Systems Engineering
4 credit points
Prohibition/other: CHNG 4305 Process Systems Engineering.

Classes: Two (1 hr) lectures and one (1 hr) tutorial per week for one semester.

Assessment: Tutorial work, project reports and a final examination.

Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop skills in integrating process modelling, simulation, design, optimisation and control concepts.

Syllabus Summary
Introduction to process systems engineering. Cost-benefit analysis. Process modelling (steady-state and dynamic) and simulation. An introduction to the techniques of systematic process design. Process optimisation (theory and applications) and advanced control concepts. Available computer packages for these various applications.

CHNG 4401 Project Engineering
4 credit points

Classes: Four hours of lectures, seminars and discussions per week for one semester. Assessment: Tutorial assignments, seminar presentations and a final examination.

Fourth year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To obtain an appreciation of the techniques employed in the successful management of an industrial project.

Syllabus Summary
Principles of project management. Management of large projects or a portfolio of small projects - including planning techniques, organisation and control. Management of commissioning and start-up of process plant, and of plant maintenance. Preparation and delivery of oral presentations on technical subjects. Intro-
duction to occupational safety, safety management systems, management of environmental performance, safety during shutdowns, quality assurance and principles of Total Quality Management. The concept of "completed staff work". Introduction to process plant production management. Individual and team approaches to solving standard and open-ended problems.

Textbooks
Library Classification: 660

CHNG 4402 Process Plant Risk Management
4 credit points
Classes: Two (1 hr) lectures and one (1 hr) tutorial per week for one semester. Assessment: Tutorial work, project reports and a final examination.

Fourth year core unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
To develop an understanding of the central concepts underlying risk management, and the quantification and reduction of such risks in the engineering field.

Syllabus Summary

CHNG 4403 Engineering Business Skills
4 credit points
Classes: Three hours per week of group work with a (nominated) company for one semester. Assessment: Group report and a final examination.

Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
This course is built around the Young Achievement Australia course "Business Skills for Tertiary Students" which aims to give students an insight into modern management concerns and resolution skills.

Syllabus Summary
Participants in this program will be exposed to a range of business issues including the following:

• the factors affecting business outcomes;
• the importance of cash flow management;
• the core requirements of any enterprise team (whatever its size);
• leadership and management skills;
• how specialist areas of expertise can combine to reach a common goal;
• the advantages and disadvantages of risk-taking, and ways of coping with both;
• strategies for achieving (and communicating) clear expectations, objectives and requirements in business and the community.

CHNG 4501 Biochemical Engineering
8 credit points
Prerequisite: CHNG 2701 & CHNG 2702 Fundamentals of Bioprocess Engineering 1 & 2; MICR 2007 Microbiology for Engineers A; MICR 2008 Microbiology for Engineers B. Classes: 2 x 2 hr / week Lectures, 4 x 12 hr / semester Laboratories, 6 x 1 hr Tutorials. Assessment: Assignments (15%), laboratory work (15%), design study (15%) and final examination (55%).

Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
1. Understand the history and scope of the biotechnology industry.
2. Identify the role of biochemical engineering in the industrial application of biotechnology and its development.
3. Provide an understanding of the major fundamental aspects of biochemical engineering.

4. Use this fundamental understanding to study some selected industrial applications.

Syllabus Summary
Fundamentals: History of biochemical engineering; review of metabolism; quantification of cell growth and metabolism; modelling of microbial growth; fermenter design, sterilisation, aeration; bioseparations.

Applications: Industrial yeast production and brewing; amino acid production; cheese manufacture; computer applications; animal/plant cell technology; genetic engineering; wastewater treatment; biotechnology regulation.

Textbooks
Library Classification: 660

CHNG 4502 Advanced Topics in Environmental Engineering A
4 credit points
Prerequisite: All four components of Unit Operations; CHNG 3106 Thermodynamics 2. Classes: Two (1 hr) lectures plus one (1 hr) tutorial per week for one semester. Assessment: Assignments; final examination.

Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
The application of chemical engineering methods and principles to the problems of pollution prevention and control.

Syllabus
Both courses (A and B) are aimed at developing quantitative descriptions of environmental rate and transport processes. These processes include chemical partitioning, reactions, and convective/dispersive transport in air, water and soil. The specific syllabus for each course will be redefined from time to time. Course topics will be drawn from:

Air pollution: Sources and types of air pollution; atmospheric chemistry and ozone depletion; control and removal of sulphur and nitrogen oxides; transport, dispersion and reaction in the atmosphere; vapour emissions from landfills and surface impoundments.

Water pollution: Sources and types of water pollution; equilibria in aqueous phases; interactions between aqueous phase and sediments in lakes and estuaries; dispersion of contaminants in rivers and lakes; physio-chemical and biological treatment processes; pollution from leaching processes in tailings dumps and landfills.

Soils and Sediments: Sources and types of pollution in soils and sediments; physics of movement of groundwater and contaminants in porous media; oily phase migration in soils; in-situ remediation of contaminated soils and sediments.

Textbooks
Library Classification: 336.7; 551.5; 574.5-9; 614.7

CHNG 4503 Advanced Topics in Environmental Engineering B
4 credit points
Prerequisite: All four components of Unit Operations; CHNG 3106 Thermodynamics 2. Classes: Two (1 hr) lectures plus one (1 hr) tutorial per week for one semester. Assessment: Assignments; final examination.

Fourth year elective unit of study for the degree in Chemical Engineering.

Objectives/Outcomes
An appreciation of the application of chemical engineering methods and principles to the problems of pollution prevention and control.

Syllabus
Both courses (Advanced Topics in Environmental Engineering A and B) are aimed at developing quantitative descriptions of environmental rate and transport processes. These processes include chemical partitioning, reactions, and convective and/or dispersive transport in air, water and soil. The specific syllabus for each course will be adjusted from time to time with topics drawn from the areas described under CHNG 4502 Advanced Topics in Environmental Engineering A.

Textbooks
Library Classification: 336.7; 551.5; 574.5-9; 614.7
CHNG 4504 Environmental Decision Making
4 credit points
Classes: One 2 hour lecture and one (1 hr) tutorial per week for one semester. Assessment: Tutorial assignments, projects and a final examination.
Fourth year elective unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
To acquaint students with the issues to be considered in environmental decision making, the wide range of stakeholders involved, and uncertainties in the information available to support the decision.
To bring all this together in a structured manner, ensuring the clear identification of decision objectives, and the criteria by which the value of possible decision outcomes will be assessed.
To explore decision making in Impact Assessment.
Syllabus Summary
This unit will consider, from a "Systems" perspective, the practice of environmental decision making, the tools and approaches used in problem structuring and decision analysis, and the evaluation of decision outcomes. A specific focus will be where there are multiple objectives to be satisfied, including the exploration of trade-offs between environmental, economic, and social objectives. The course will explore the use of "Life Cycle Thinking" to guide the scope of decision analysis, providing the spatial and temporal boundaries which define the decision space. Students will be exposed to the theory and practice of Environmental Impact Assessment, as well as product and process Life Cycle Assessment decision making in the context of project life cycle considerations will also be explored, focusing on identification and management of risk and uncertainty.
Textbooks
Library classification: 333.714

CHNG 4505 Bioremediation
4 credit points
Classes: Two (2 hr) lectures / tutorials per week for one semester. Assessment: Assignments (20%), project work (40%) and a final examination (40%).
Fourth year elective unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
1. Understand the role of microorganisms in the treatment of solid, liquid and gaseous wastes.
2. Understand the range of bioremediation techniques available and the practical benefits and limitations of bioremediation.
3. Apply the above knowledge to address a series of environmental problems by supervised project work.
Syllabus Summary
Bioremediation techniques (economics, legislation, computer-based design); Waste characteristics; Bioavailability / bioactivity; Metabolism (major metabolic pathways); Metabolism (degradation of aliphatic, aromatic, halogenated compounds, genetic manipulation); Reactor systems; Anaerobic digestion; Aerobic treatment processes; Biological nutrient removal; Bioremediation technologies (composting, landfill, sludge disposal). Monitoring efficacy of bioremediation; Biofiltration; Artificial wetlands; Bioleaching/sulfate-reducing bacteria.
Textbooks
Library Classification: 660

CHNG 4601 Advanced Particle Mechanics
4 credit points
Prerequisite: All four components of "Unit Operations". Classes: 3hrs lec & tut/wk for one semester. Assessment: Assignments and final examination.
Fourth Year elective unit for the degree in Chemical Engineering.
Syllabus summary
Bulk solids flow: properties of bulk granular material; stress analysis of solids; testing of granular material; flow properties; design of bunker; flow rate predictions; calculation of flow parameters of hoppers.

Fluidisation: Applications; types of fluidisation; incipient fluidisation; theory of bubble rise; bubble formation; fluid-bed reactors.
Conveying: Pneumatic and hydraulic conveying of solids: regimes, models and equipment (including blowers and pumps).

Textbooks
Library classification: 621.86; 660.2

CHNG 4602 Mineral Processing (Extractive Metallurgy)
4 credit points
Prerequisite: Unit Operations (all four components). Classes: Three hours of lectures/tutorials per week for one semester; field trips as arranged. Assessment: Class assignments, tutorials and a final examination.
Fourth year elective unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
To develop an understanding of the fundamental principles of metal extraction from naturally occurring compounds (minerals) and/or recycled materials, and the technology to yield a commercial end-product, with due regard for the environment.
Students will develop skills in:
- devising strategies to achieve extraction process objectives, within the constraints imposed by social, economic and physical environments;
- working in groups;
- verbal and written communication.
Syllabus Summary

Textbooks
Library Classification: 669

CHNG 4603 Mineral Processing (Mineral Dressing)
4 credit points
Prerequisite: Unit Operations (all four components). Classes: Three hours of lectures, tutorial and laboratory classes per week for one semester. Field trips as arranged. Assessment: Tutorial work, laboratory reports and a final examination.
Fourth year elective unit of study for the degree in Chemical Engineering.
Objectives/Outcomes
To develop an understanding of the various techniques used in mineral dressing.
Syllabus Summary

Civil Engineering
CIVL1001 Civil Engineering 1
4 credit points
Prerequisite: Assumed standard of knowledge. Mathematics 3 unit course and a satisfactory knowledge of 2 unit Chemistry or the Chemistry component of the 3 or 4 unit Science HSC course and of the 2 unit Physics course or the Physics component of the 3 or 4 unit Science HSC course. Offered: March. Classes: lec: (lec: 13hrs, lec/ tut:13hrs and lab/ drawing office: 26hrs) for one sem. Assessment: Specified assignments and one 3hr exam at end of unit.
First year core unit of study for the degree in Civil Engineering. Elective unit of study for the other branches.

Objectives: To provide a basic introduction to Civil Engineering.

Outcomes: A basic understanding of some aspects of Civil Engineering including Structural Engineering, Engineering Construction, Geomechanics, Hydraulics and Engineering Communications.

Syllabus summary

(a) Engineering Projects - Introduction to the planning, design, construction and operation of engineering projects. Economic and non-economic evaluation of projects.

(b) Elements of Engineering Science - Structures, geomechanics, materials, hydraulics and water resources, environment, systems, management.

(c) Communications - Freehand and scale drawing, engineering plans, shop drawings, techniques for producing drawings. Preparation of reports, verbal and written.

References

Knick An Introduction to Engineering - Concept, Methods and Issues (John Wiley and Sons).

Hogan and Firkins Economical Structural Steelwork (Australian Institute of Steel Construction).

Brown Getting Across (Edward Arnold).

Strunk and White The Elements of Style (Macmillan).

Hahn Fortran 90 for Scientists and Engineers (Edward Arnold).

Ellis, Philips and Lahey FORTRAN 90 Programming (Addison Wesley 1994).

Nyhoff, Sanford and Leestma FORTRAN 90 for Engineers and Scientists (Prentice Hall 1997).

Library classification: U001, U005 (Fisher Library)

CIVL 1003 Computer Graphics

3 credit points

Corequisite: Either CIVL 1002 Computational Engineering or COMP 1001, COMP 1002 Computer Science. Prohibition/other: MECH 1800 Computational Engineering IA and MECH 1801 Computational Engineering 1C. Offered: July. Classes: (1 lecture & one 2 hr computer lab session)/wk. Assessment: One 2 hr exam at end of semester plus assessment of computer exercises during semester.

First year core unit of study for the degree in Civil Engineering. MECH 1800 Computational Engineering 1A and MECH 1801 Computational Engineering 1C are acceptable alternatives.

Objectives: To introduce computer graphics and to highlight the application of graphics to the solution of engineering problems.

Outcomes: Students should have knowledge of how to present visual images and graphics and the applications of computer graphics to engineering problems.

Syllabus summary: Introduction to the matrix and graphics functions of MATLAB: Matrix manipulation, flow control, functions and script files, object hierarchies including high and low level graphics functions, object properties, plotting functions and colour maps.

Fundamentals of computer graphics: Viewing objects in two and three dimensions, theory of transformations, data structures, perspective and parallel projections, hidden surfaces and colour theory.

Textbooks

Fundamentals of computer graphics: Viewing objects in two and three dimensions, theory of transformations, data structures, perspective and parallel projections, hidden surfaces and colour theory.

Textbooks

Library classification: U006 (Fisher Library)

CIVL 1051 Dynamics

5 credit points

Corequisite: MATH 1001, 1002, 1003, 1005. Assumed knowledge: Assumed standard of knowledge: Mathematics 3 unit course and Science 4 unit course (or the Physics core of 3-4 unit Science) at the HSC. Prohibition/other: May not be counted with: MECH 1510. Offered: July. Classes: 2 hours lectures and 2 hours tutorials per week.

First year core unit of study for the degree in Civil Engineering. Syllabus summary: Newton's Laws, Kinematics including rectilinear motion, angular motion and curvilinear motion, motion of rigid bodies, Absolute and Relative Motion, Force, Mass and Acceleration including particle motion and rigid body motion. Work and Energy. Impulse and Momentum. Periodic Motion.

Objectives: To introduce basic concepts of motion and the calculation of both paths of motion and the forces associated with the motion.

Outcomes: It is expected that students will be able to compute the dynamics of both particles and rigid bodies, mainly in two dimensions.

Textbooks

CIVL 1052 Statics

5 credit points

Corequisite: MATH 1001, 1002, 1003, 1005. Assumed knowledge: Mathematics 3 unit course at the HSC. Prohibition/other: Mutually exclusive with: MECH 1500 Mechanical Engineering IA and MECH 1501 Enginee
Chapter 2 - Undergraduate units of study

CIVL 1406 Engineering Geology 1
5 credit points

Offered: March. Classes: 39 hrs lec, 26 hrs lab. Field excursions in the Sydney region, as appropriate. Assessment: Practical laboratory work, assignment, and a combined theory and practical exam.

First year core unit of study for the degree in Civil Engineering, unless the unit of study GEOL 1002 has been completed.

Course objectives: To introduce basic geology to civil engineering students.

Expected outcomes: Students should develop an appreciation of geologic processes as they influence civil engineering works and acquire knowledge of the most important rocks and minerals and be able to identify them.

Syllabus summary: Geological concepts relevant to civil engineering and the building environment. Introduction to minerals; igneous, sedimentary and metamorphic rocks, their occurrence, formation and significance. General introduction to physical geology and geomorphology, structural geology, plate tectonics, and hydrogeology. Associated laboratory work on minerals, rocks and mapping.

Textbooks

CIVL 2004 Engineering Communications 1
2 credit points

Offered: March. Classes: 12hrs lec, 14hrs discussion/oral presentation. Assessment: Based on three written reports and three oral presentations. Extra credit for some or all oral presentations may be given for verifiable public speaking activities with the students’ section of the Institution of Engineers, Australia, the University of Sydney Debating Society or equivalent organisation. Students are encouraged to engage in these activities. Second year core unit of study for the degree in Civil Engineering.

Objectives: To develop effective written and oral communication skills.

Outcomes: Ability to make written and oral presentations on topics of general, technical and/or social significance to small peer groups.

Syllabus summary: 12 hours of lectures on effective report writing and oral presentation. Written reports and oral presentation on three topics of general, technical and/or social significance of 5, 10 or 15 minutes duration. Oral presentation in groups of eight students in a lecture or round-table discussion format.

Textbooks
Library classification: 808, 658.45

CIVL 2101 Properties of Materials
4 credit points

Prerequisite: CHEM 1401 Chemistry 1E. Offered: March. Classes: lec: 40hrs and lab approx. 12hrs. Assessment: One 3hr exam covering the whole syllabus. Satisfactory lab work is a prerequisite for passing the exam.

Second year core unit of study for the degree in Civil Engineering.

Objectives: To develop an understanding of the relationship between microstructure and mechanical properties of metals and cement based materials.

Outcomes: Ability to select the materials best suited for a particular application.

Hardened cement paste, mortar, concrete, timber, masonry. Cements and their hydration, minerals and other admixtures in concrete, mix design.

Textbooks
Materials Science and Engineering an Introduction
William D. Callister Jr. 4th Edition ‘Wiley’ publishers
Campbell-Allen and Roper Concrete Structures: Materials
Maintenance and Repair (Longman Scientific and Technical) - preferred text.

Soroka Portland Cement Paste and Concrete (Macmillan Australia, 1979)
Akroyd Concrete - Its Properties and Manufacture (Pergamon) and/or
Troxell Composition and Properties of Concrete 2nd edn (McGraw Hill).
U.S. Bureau of Reclamation Concrete Manual
Czemin Cement Chemistry and Physics for Civil Engineers (Lockwood).

Relevant SAA Specifications.
Library classification: U620.11-19 (Fisher Library)

CIVL 2202 Structural Mechanics
5 credit points

Prerequisite: CIVL 1051 Dynamics and CIVL 1052 Statics.
Offered: March. Classes: lec: 36hrs, tut: 26hrs. Assessment: Class assignments and one 3hr closed-book exam covering the whole syllabus at the end of semester.

Second year core unit of study for the degree in Civil Engineering.

Objectives: To provide a basic understanding of the principles of elementary stress and stiffness analyses of simple structural elements under static loading and to be able to use these principles to analyse simple structural elements using hand computation methods.

Outcomes: Proficiency in basic methods of simple structural analysis and interpretation of results.

Syllabus summary: Review of basic statics; elementary elasticity, geometric properties of plane areas, axial loading, flexure in beams, shear stresses in beams, uniform torsion, bending deflections, elementary instability, influence lines, triangulated frames and trusses, combined stresses, continuum mechanics - stresses and strains in 2D, failure theories for materials.

Textbooks
Megson Strength of Materials for Civil Engineering 2nd edn (Arnold).
Reference books
Library classification: U624.17 (Fisher Library)

CIVL 2203 Structural Design
4 credit points

Prerequisite: CIVL 1051 Dynamics and CIVL 1052 Statics.
Corequisite: CIVL 2202 Structural Mechanics. Offered: July.
Classes: 26hrs lec, 26hrs design classes. Assessment: Design class assignments and one 3hr closed book exam covering the whole syllabus on steel and concrete design at the end of semester.

Second year core unit of study for the degree in Civil Engineering.

Objectives: To provide a basic understanding of design concepts and the design of steel and concrete elements to current code criteria.

Outcomes: Proficiency in the design of simple structural elements in steel and concrete.
Textbooks
SAA HB2.2 - Australian Standards for Civil Engineering
Students: Part 2: Structural Engineering.
SAA AS4100 - Steel Structures Code
SAA AS3600 - Concrete Structures Code and
SAA AS 1170 - Loading Code, Parts I and II
Buckle The Elements of Structures 2nd edn (Pitman International)
Scholik: Structures (Prentice-Hall)

Reference books
Cowan The Design of Reinforced Concrete student edn (Sydney U.P.,)
Ferguson Reinforced Concrete Fundamentals student edn (Wiley).
Gordon Structures - or Why Things Don't Fall Down (Pelican).
Park and Paulay Reinforced Concrete Structures (Wiley).
Trahair and Bradford Behaviour and Design of Steel Structures to
Warner, Rangan and Hall Reinforced Concrete (Pitman).

Library classification: U624.182: U624.183 (Fisher Library)

CIVL 2407 Engineering Geology 2
5 credit points
Prerequisite: Either GEOL 1002 or CIVL 1406 Engineering
Geology. Offered: July. Classes: 39hrs lec, 26hrs lab. Field
Excursions in the Sydney area, as appropriate. Assessment:
Practical lab work, assignment, plus one 3hr exam at the end of the semester.

Second year core unit of study for the degree in Civil Engineering,
unless the two Geology 2 units of study Plate Tectonics and Materials
GEOL 2001 and Resource Exploration 2 GEOL 2002 have both been completed.

Course objectives: To introduce and emphasise the role of
geology in civil engineering projects.

Expected outcomes: Students should gain an appreciation of
the importance of geology in the planning and execution of civil
engineering projects, and be able to apply their knowledge of
geology to the solution of soil and rock engineering problems.

Syllabus summary: Application of geological principles and
practices to solving problems in civil engineering. Surface
and sub-surface geological, geophysical and remote sensing tech-
niques for evaluation of ground conditions. Introductory rock
mechanics, clay mineralogy and behaviour. Natural materials
for construction purposes.

Textbooks
T. West Geology Applied to Engineering.
Reference books
P.J.N. Pells (ed.) Engineering Geology of the Sydney Region
(Balkema).

Library classifications: 552, 624.15

CIVL 2601 Fluids 1
5 credit points
Prerequisite: MATH 1001, MATH 1002, MATH 1003, MATH 1005.
Offered: March. Classes: 26hrs lec, 39hrs lab/tut. Assessment:
One 3hr exam covering the whole syllabus at the end of the semester.
Satisfactory laboratory and tutorial performance is also a
requirement. Credit will be given for laboratory and tutorial
submissions, as indicated at the commencement of the course.
Second year core unit of study for the degree in Civil Engineering.

Objectives: To develop an understanding of:
patterns of movement of fluid particles and associated force and energy relationships;
applications of basic concepts to cases of fluids in containers and conduits.

Outcomes: Students should gain the ability to:
determine fluid movements and forces in pipes and open channels and
boundaries in fluid streams.
Syllabus summary: Fluid statics. Equations of motion. Velocity
patterns. One dimensional flow principles. Flow measuresments.
Viscous and turbulent flow. Resistance to flow of fluids.
Flow in closed conduits. Open channel flow.

Textbooks
Douglas, Gasiorek and Swaffield Fluid Mechanics (Pitman).
Hydraulics Data Sheets (Department of Civil Engineering,
University of Sydney).
Robertson and Crowe Engineering Fluid Mechanics (Wiley).
Rouse Elementary Mechanics of Fluids (Dover).

CIVL 2801 Engineering Construction 1
4 credit points
Offered: July. Classes: 26hrs lec & 26hrs tut. Assessment: One
3hr written examination at the end of the semester; a major
assignment per group of students, and any other assessment as
advised at the commencement of the course.

Second year core unit of study for the degree in Civil Engineering.
Elective unit of study for other branches.

Objectives: To gain an understanding of the fundamentals of
engineering construction including systems and methods in construction
of excavation, embankments and other earthworks, hauling
and associated operations.

Outcomes: Students should develop basic competency in
earthwork engineering and economic optimisation of related
construction, including proposing and analysing systems and methods,
estimation of probable output, unit cost and productivity
evaluation.

Syllabus summary: Introduction to the framework under
which construction projects are formulated and analysed;
construction engineering fundamentals; construction systems relat-
ed to excavation, hauling and embankment construction, includ-
ing selection and evaluation of plant and methods as well as the
expected output and cost; introduction to construction opera-
tions management.

Textbooks
Lecture Notes for Engineering Construction 1 (Department of
Civil Engineering, The University of Sydney).

Reference Books
Peunioy and Ledbetter Construction Planning Equipment and
CAT Caterpillar Performance Handbook (CAT Publication).
Church Handbook of Excavation.

Library classification: 624.0202, 624.6/A

CIVL 3005 Engineering Communications 2
2 credit points
Prerequisite: CIVL 2004 Engineering Communications 1. Offered:
July. Classes: 26hrs discussion/oral presentation. Assessment:
Based on written reports and oral presentations. Extra credit for oral
presentation may be given for verifiable public speaking activities
with the students’ section of the Institution of Engineers, Australia, or
the University of Sydney Debating Society, or equivalent
organisation. Students are encouraged to engage in these activities.
Third year core unit of study for the degree in Civil Engineering.

Objectives: To develop effective written and oral communi-
cation, interpersonal skills, and advocacy of civil engineering.

Outcomes: Ability to argue in writing and orally for (or against)
topics of general, technical and/or social significance.

Syllabus summary: Information searches including use of
electronic data bases. Dealing with the media. Written reports
and oral presentation on topics of general, technical and/or so-
cial significance. Effective group communication and teamwork.

Textbooks

Library classification: 808, 658.45

CIVL 3102 Materials Aspects in Design
4 credit points
Prerequisite: CIVL 2101 Properties of Materials. Offered: July.
Classes: lec 40hrs, lab: 12hrs. Assessment: One 3hr exam
covering the whole syllabus.

Third year core unit of study for the degree in Civil Engineering.

Objectives: To relate the mechanical properties of metals and
cement-based materials to the design of structures made from
these materials.

Outcomes: Ability to predict the influence of material proper-
ties upon the response of the structure under service conditions.
Syllabus summary: Fracture aspects in the design and use of concrete and reinforced concrete structures. Fracture, fatigue, fire and corrosion aspects in the design and use of metal structures. Durability and serviceability aspects in the design and use of concrete and reinforced concrete structures. Two laboratory sessions on failure modes of RC beams, one laboratory session on electron microscopy, one field trip.

Textbooks
Materials Science and Engineering an Introduction
William D. Callister Jr. 4th Edition 'Wiley' publishers

Maintenance and Repair (Longman Scientific and Technical) - preferred text.
Soroka Portland Cement Paste and Concrete (Macmillan Australia, 1979)
Akroyd Concrete - Its Properties and Manufacture (Pergamon) and/or
Troxell Composition and Properties of Concrete 2nd edn
(McGraw Hill)
U.S. Bureau of Reclamation Concrete Manual

Czernin Cement Chemistry and Physics for Civil Engineers (Lockwood).

Relevant SAA Specifications.
Library Classification: 620.11 - 620.19

CIVL3204 Structural Analysis
6 credit points
Prerequisite: CIVL 2202 Structural Mechanics and MATH 2002
Assessment: One 3hr exam at end of semester plus assessment of assignments.
Third year core unit of study for the degree in Civil Engineering.

Objectives: To provide an understanding of the principles of (a) the force and displacement methods for analysing redundant trusses and beams, and (b) the lower and upper bound methods for the plastic analysis of beams and frames. To be able to apply computer methods to structural analysis and to check the validity of such solutions.

Outcomes: To be able to apply the manual methods of analysis taught in the unit of study to simple structures. To be able to apply and check computer analyses of structures.

Textbooks
KJR Rasmussen, Structural Analysis 1, (Univ of Sydney)
KJR Rasmussen, GJ Hancock, MJ Clarke Structural Analysis 2, (Univ of Sydney)

Reference Books
Popovitch to the Mechanics of Solids (Prentice Hall)
Parkes, Braced Frameworks (Pergamon)
Timoshenko and Young, Theory of Structures (McGraw Hill)

Library classification: 624.17

CIVL 3206 Steel Structures 1
6 credit points
Offered: July. Classes: 39hrs lec, 39hrs tut/lab/drawing office.
Assessment: One 3hr exam at the end of the semester plus assessment of design and problem based assignments.
Third year core unit of study for the degree in Civil Engineering.

Objectives: To provide a basic understanding of the behaviour and design of steel members, connections and structures.

Outcomes: The development of some of the skills required for the design of practical steel structures.

Syllabus summary: The behaviour and design of steel members, connections and structures - design concepts, loads and load combinations, strength, stability and serviceability criteria, safety and reliability, practical steel structures, properties of cross-sections, local buckling, elastic beams, plastic beams, tension members, compression members, effective lengths and elastic in-plane frame buckling, lateral buckling of beams, in-plane bending of beam-columns, lateral buckling of beam-columns, bolted and welded connections.

Textbooks
(AISC) Economical Structural Steelwork.
GJ. Hancock & M.J. Clarke CIVL 3206 Steel Structures 1 printed lecture notes.
BHP Hot Rolled and Structural Products Handbook.
Standards Australia Specifications - current editions
AS 1170 Parts 1 and 2 Loading Code, and
AS4100 Steel Structures Code; or
ASHB2.2 Structural Engineering Standards.

Reference books
AISC Design Capacity Tables for Structural Steel.
Traham and Bradford Behaviour and Design of Steel Structures to

Library classification: 624.17, 624.182

CIVL 3207 Risk and Reliability Analysis
2 credit points
Prerequisite: MATH 1001, MATH 1002, MATH 1003, MATH 1005,
CIVL 2202 Structural Mechanics, CIVL 2203 Structural Design.
Offered: March. Classes: 16hrs lec; 12hrs tut. Assessment: One 3hr exam plus assignments.
Third year core unit of study for the degrees in Civil Engineering.

Objectives: To provide a basic understanding of the principles of statistical decision theory, probabilistic risk assessment and structural reliability analysis; to develop an understanding in basic methods of risk and reliability analysis, including event trees, fault trees and decision trees and First Order Second Moment methods of structural reliability analysis; to develop an understanding of the principles of reliability-based design.

Outcomes: Understanding of basic methods of risk and reliability analysis and interpretation of results.

Syllabus summary: Review of basic statistical methods of analysis (including significance testing, and linear regression); probability concepts, Bayes' Theorem, statistical decision theory, preposterior analysis; probability measures, types of uncertainty, principles of probabilistic risk assessment, event trees, risk acceptance criteria; structural safety and reliability; First Order Second Moment methods of reliability analysis, the Safety Index, the demand point, reliability based design, simulation methods, system effects.

Reference books

Library classification: 624.171

CIVL 3223 Concrete Structures-Behaviour
3 credit points
Prerequisite: CIVL 2202 Structural Mechanics and CIVL 2203 Structural Design. Prohibition/other: CIVL 3205 Concrete Structures 1.
Third year unit of study for the degree in Civil Engineering.

Syllabus Summary: The behaviour of reinforced concrete members and structures, including: introduction, materia properties, 'elastic 'analysis (stresses/deformations/time-depend- ance), ultimate strength of beams (flexure), ultimate strength of columns (short and slender).

Objectives: To provide a basic understanding of the behaviour of reinforced concrete members and structures; to provide a basic understanding of standard methods of analysis of reinforced concrete behaviour (including an understanding of capabilities and limitations).

Expected Outcomes: Proficiency in basic methods of reinforced concrete analysis and interpretation of results.

Textbooks
Warner et al, Concrete Structures (Longman 1998)
Standards Australia Specifications - current editions:
AS3600 Concrete Structures Code
ASHB2.2 Structural Engineering Standards

Reference Books:
Park and Paulay, Reinforced Concrete Structures
Library Classification: 624.183

CIVL 3224 Concrete Structures - Design
3 credit points
Third year unit of study for the degree in Civil Engineering.

Syllabus Summary: The reinforced concrete truss analogy (shear/torsion/diagonal effects). Introduction to behaviour or reinforced concrete slabs. Design of typical elements of a reinforced concrete building, structural modelling, analysis of load-effects (incl. earthquakes), design criteria (for durability, fire-resistance, serviceability and strength), design calculation procedures, reinforcement detailing, structural drawings.

Objectives: To provide a basic understanding of standard methods of analysis and design of reinforced concrete structures (including an understanding of capabilities and limitations); to provide basic design training in a simulated professional engineering environment.

Expected Outcomes: Proficiency in basic methods of reinforced concrete analysis and design.

Textbooks:
Wamer et al, Concrete Structures (Longman 1998)
Standards Australia Specifications - current editions:
AS 1170 Loading Code - Parts 1-1 & 4
AS3600 Concrete Structures Code
ASHB2.2 Structural Engineering Standards

Reference Books:
Concrete Design Handbook, Cement and Concrete Association of Australia
Reinforcement Detailing Handbook, Concrete Institute of Australia

Library Classification: 624.183

CIVL 3401 Soil Mechanics A
4 credit points
Prerequisite: CIVL 2202 Structural Mechanics. Offered: March. Classes: 26hrs lec, 26hrs lab/tut. Assessment: One 3hr exam covering the whole syllabus at the end of the semester. Satisfactory laboratory performance is also a requirement. Credit will be given for laboratory and tutorial submissions, as indicated at the commencement of the course.
Third year core unit of study for the degree in Civil Engineering.

Objectives: To develop an understanding of: the nature of soils as engineering materials; the common soil classification systems; the importance of water in the soil and the engineering effects of water movement; the factors controlling soil settlements.

Outcomes: Students should gain the ability to: undertake basic angle and distance measurement; undertake appropriate calculations and checks involving observed data; understand errors associated with measurement; select the correct measurement alternatives for simple measurement problems.

Syllabus summary: Introduction to engineering surveying, distance measurement, angle measurement, levelling, measurement errors, traversing, topographic surveys, optical distance measurement, error analysis, electronic surveying equipment, future surveying technologies.

Textbooks:

CIVL 3402 Soil Mechanics B
4 credit points
Prerequisite: CIVL 2202 Structural Mechanics. Corequisite: CIVL 3401 Soil Mechanics A. Offered: July. Classes: 26hrs lec, 26hrs lab/tut. Assessment: One 3hr exam covering the whole syllabus at the end of semester. Satisfactory laboratory performance is also a requirement. Credit will be given for laboratory and tutorial submissions, as indicated at the commencement of the course.
Third year core unit of study for the degree in Civil Engineering.

Objectives: To develop an understanding of the concept of soil strength, and how this can be used in estimating the stability of soil constructions.

Outcomes: Students should gain an understanding of: the strength of soil masses and the factors that control the strength; the basic theories of bearing capacity and slope stability. In particular, students should gain the ability to: interpret soil strength tests; predict the strength and stability of soil.

Reference Books:
R.F. Craig Soil Mechanics.

Library classification: 624.151

CIVL 3501 Surveying 1
4 credit points
Prerequisite: MATH 1001, MATH 1002, MATH 1003, MATH 1005. Offered: March. Classes: lec: 28hrs, fieldwork/pract.: 24hrs. Assessment: fieldwork, reports, tutorials, and one 3hr exam at the end of the course.
Third year core unit of study for the degree in Civil Engineering.

Objectives: To introduce students to basic distance, angle, and height measurement; to give students sufficient knowledge to achieve basic computational, analytical, and interpretational skills based on the measurements; to introduce students to basic electronic field equipment; to give students an insight into future trends in measurement technologies.

Outcomes: Students should gain ability to: undertake basic angle and distance measurement; undertake appropriate calculations and checks involving observed data; understand errors associated with measurement; select the correct measurement alternatives for simple measurement problems.

Syllabus summary: Point measurement, error analysis, electronic field equipment, to give students an insight into future trends in measurement technologies.

Textbooks:

CIVL 3602 Fluids 2
4 credit points
Prerequisite: CIVL 2601 Fluids 1. Offered: July. Classes: 26hrs lec, 26hrs pract/tut. Assessment: One 3hr exam covering the whole syllabus at the end of the semester. Credit will be given for practical work and tutorial submissions, as indicated at the commencement of the course.
Third year core unit of study for the degree in Civil Engineering.

Objectives: To develop an understanding of: theory and practical aspects of analysis of fluid behaviour in pipes and open channels, and of fluid machines.

Outcomes: Students should gain the ability to: calculate heads and flows through pipe and open channel systems for steady and for unsteady conditions; and to determine machine requirements for various systems.
Syllabus summary: Dimensional analysis and similitude, open channel flow, pipe networks, hydro and aerofoils, pumps and turbines, compressible flow and unsteady flows.

Textbooks
- Douglas, Gasirek and Swatfield Fluid Mechanics (Pitman).
- Hydraulics Data Sheets (Department of Civil Engineering, University of Sydney).
- Robertson and Crowe Engineering Fluid Mechanics (Wiley).
- Russell Elementary Mechanics of Fluids (Dover).
- Young Munson and Okiishi A Brief Introduction to Fluid Mechanics (Wiley).
- Venard and Street Elementary Fluid Mechanics (Wiley).
- Library classification: 532.

CIVL 3701 Transportation Engineering and Planning
2 credit points
Offered: July. Classes: 26hrs lec. Assessment: one 2hr exam and assignment.

Third year core unit of study for the degree in Civil Engineering. Third year elective unit of study for the degree in Mechanical Engineering.

Objectives: To introduce students to the civil engineering aspects of the main modes of transport and their effects on the environment.

Outcomes: To gain an understanding of the basic requirements of the main transport modes in the design of facilities, along with environmental effects and the acquisition of transport planning information.

Reference books
- Hay Introduction to Transportation Engineering (Wiley).
- ICAO Airport Planning Manual.
- Rural Road Design (Austroads 1989).
- Library classification: 385, 625, 627, 711.

CIVL 3802 Engineering Construction 2
4 credit points
Prerequisite: CIVL 2801 Engineering Construction 1. Offered: March. Classes: 26hrs lec & 26hrs tut. Assessment: A number of assignments, including both oral and written presentations, will make up 50 marks, a site visit report will be assessed formally and will make the balance 10 marks (total 100 marks).

Third year core unit of study for the degree in Civil Engineering, elective for other branches of engineering.

Objectives: To gain a working knowledge of building structures and heavy construction engineering, including planning, cost estimating and optimisation of construction operations related to building structures, underground structures, quarry operations, temporary structures and associated aspects. The objectives are to be achieved by active participation in a number of projects and preparation of plans for the same.

Outcomes: Students should develop basic competency in planning, engineering, optimisation and cost estimation of operations in civil engineering and building construction, including design of construction systems and temporary works.

Syllabus summary: Fundamentals of tunnelling in soft and hard rock, ground improvement, piling and excavation support design, construction systems for multi-storey structures, vertically-formed concrete structures, construction water supply and dewatering, production of natural and crushed rock aggregates, pavement design fundamentals and construction, safety in construction, quality management of construction works. This course will be run through a problem-based learning approach.

Textbooks
- Hand-outs will be given during the currency of the course.

Reference Books

Numerous other reference books which will address specific segments of the course, such as design and engineering of temporary structures or tunnelling.

Library classification: 624.0202, 624.6/A

CIVL 4008 Practical Experience
0 credit points
Prerequisite: Prereq 28 cp of Senior courses. Offered: March.
Classes: 12wks practical work experience (375hrs minimum).
Assessment: A written report.

Fourth year core unit of study for the degree in Civil Engineering.

Objectives: To expose students to Engineering Practice and provide working experience in the field of engineering.

Outcomes: Students will gain first hand experience of working in an Engineering environment, will see how engineering companies are organised and will be exposed to problem solving in a commercial environment.

Syllabus summary: Each student is required to work as an employee of an approved engineering organisation and to submit a satisfactory written report of his or her work. Normally 12 weeks of practical work experience (375 hours minimum) is required and this is mainly undertaken after the completion of some or all of the prescribed Senior core courses and before enrolment in the final year of study. The University Careers and Appointments Service is available to assist students to obtain suitable employment.

Reference book
- Eagleson Writing in Plain English (Aust. Govt Publishing Service)

CIVL 4010 Civil Engineering Camp
4 credit points
Prerequisite: CIVL 3501 Surveying 1. Offered: March. Classes:
The civil engineering camp is carried out as a live-in camp over a 10-day period at a nominated location off-campus. Assessment: No formal exam; assessment is based on field work activities, oral presentations and reports which are submitted during the camp period.

Fourth year core unit of study for the degree in Civil Engineering.

Objectives: To give students experience at gathering dimensional information and using that information in design considerations; to give students experience in project design in a practical situation; to give students the opportunity to experience project management in a practical situation; to develop student skills in working as a group member on an engineering project team; to develop oral and written presentation skills.

Outcomes: Students should develop an understanding of: dimensional control in a project situation; total project management considerations; real world design problems; project presentation skills; group relationships; time management skills.

Syllabus summary: The activities involve work directed towards an integrated civil engineering project. A number of survey tasks are carried out to provide the necessary design information. At the camp, each group will be given responsibility for one component of an overall project. Oral presentation and design submissions form an integral part of the camp activities.

CIVL 4011 Professional Practice
4 credit points
Offered: July. Classes: 26hrs lec, 26hrs tut. Assessment: Project and assignment work including an oral presentation.

Fourth year core unit of study for the degree in Civil Engineering.
Objectives: To provide final year students with an appreciation of professional matters which will influence the way they will work as professional engineers.

Outcomes: Knowledge of occupational health and safety act; knowledge of procedures for quality assurance both in design and construction; understanding of industrial relations issues; understanding of basic civil engineering contracts; awareness of ethical issues related to the engineering profession, and the social responsibility of engineers.

Syllabus summary: The lectures will be delivered by practising engineers and other experts in the following subject areas: (a) Social responsibility in engineering, social and environmental issues and ethics of engineering practice; (b) Industrial relations, legal contracts and law; (c) Occupational health and safety, (d) quality assurance; (e) engineering contracts and documentation, (f) ecologically sustainable development.

Textbooks
Reference material
As advised during course and
Tagg et al. Civil Engineering Procedure (Thomas Telford).
Weame Civil Engineering Contracts (Thomas Telford).
Library classification: 658, 624.0685, 344, 624.343, 346

CIVL 4014 Major Thesis/Design/Project
10 credit points
Prerequisite: 40 credit points of senior subjects, WAM of credit average above in Senior year subjects. Prohibition/other: CIVL 4014. Offered: Full year. Classes: Literature survey, design, expt and/or analysis work over whole year. Assessment: A bound document is to be submitted for assessment.
Fourth year core Unit of Study for the degree in Civil Engineering.

Objectives/Outcomes: To develop an understanding of the practice of civil engineering. Students will gain skills in design, analysis and management by undertaking a significant project.

Each student is required to conduct one piece of experimental, theoretical or design work in greater detail than is possible in ordinary classes and to write a thesis presenting the results of these investigations.

The level of originality for a major thesis is greater than that required for the ordinary thesis course. This course should be completed successfully for the award of Honours in the civil stream of Batchelor of Engineering.

CIVL 4014 Thesis/Design/Project
5 credit points
Prerequisite: 40 credit points of Senior Subjects. Prohibition/other: CIVL 4014 Major Thesis/Design/Project. Offered: Full Major. Classes: Literature survey, design, expt and/or analysis work over whole year. Assessment: A bound document is to be submitted for assessment.
Fourth year core Unit of Study for the degree in Civil Engineering.

Objectives/Outcomes: To develop an understanding of the practice of civil engineering. Students will gain skills in design, analysis and management by undertaking a research project.

Each student is required to conduct one piece of experimental, theoretical or design work in greater detail than is possible in ordinary classes and to write a thesis presenting the results of these investigations.

CIVL 4105 Advanced Materials
5 credit points
Prerequisite: CIVL 3102 Materials Aspects in Design. Offered: July. Classes: 40 hrs lec & 12 hrs lab/ut. Assessment: One 3 hr exam plus assignments.
Fourth year elective unit of study for the degree in Civil Engineering.

Advanced cementitious materials, fibre-reinforced concrete. Modern ceramics and mechanisms for mein toughening. High strength steels, stainless steels, multiaxial fatigue, impact strength of materials, stress corrosion cracking in metals. Thermal properties of mass concrete, dynamic effects on concrete properties, statistical analysis and interpretation of concrete data. Durability problems of prestressed and post-tensioned members. The laboratory sessions are held in the Microscope Unit to facilitate students with transmission and scanning microscopy, microanalysis and image analysis.

Objectives: to develop an understanding of advanced cement-based and metallic materials for new and challenging applications.

Outcomes: Ability to select advanced cement-based and metallic materials for use under demanding service conditions for which their traditional counterparts may be less suitable.

Textbooks
Library Classification: 620.11 - 620.19.

CIVL 4218 Concrete Structures 2
5 credit points
Prerequisite: CIVL 3223 Concrete Structures - Behaviour, CIVL 3224 Concrete Structures - Design. Offered: July. Classes: 28hrs lec, 20hrs tut. Assessment: One 3 hr exam plus assessment of selected assignment.
Fourth year elective unit of study for the degree in Civil Engineering.

Syllabus summary: Practical aspects of reinforced concrete, precast concrete and composite steel-concrete members and structures - non-linear behaviour, load-moment-curvature relationships, strength of beams, columns and beam columns, moment redistribution, ultimate strength of concrete slabs, yield line analysis of slabs, strip equilibrium analysis of slabs, the analysis of time-dependent effects in concrete structures models of concrete creep and shrinkage, design of composite t-beams, design of composite slabs incorporating profiled steel sheeting, design of composite columns.

Objectives: To develop a depth in understanding of the fundamental behaviour and design of concrete and composite members and structures.

Outcomes: The development of design skills that will lead to reliable and economical designs of both practical and more complex structures.

Textbooks
Warner et al. Reinforced Concrete (Pitman).
Warner and Faulkes Prestressed Concrete (Longman Cheshire).
Standards Australia Specification - current editions
AS3227 Part 1 Composite Structures Code
AS 1170 Parts 1 and 2 Loading Code, and
AS600 Concrete Structures Code, or
AS HB2.2 Structural Engineering Standards.
Reference books
Lin and Burns Design of Prestressed Concrete Structures (Wiley).
Park and Gamble Reinforced Concrete Slabs (Wiley).
Other books as indicated in classes.
Library classification: 624.17, 624.183

CIVL 4219 Structural Dynamics
5 credit points
Prerequisite: CIVL 3204 Structural Analysis. Offered: March. Classes: 26hrs lec. 26hrs tut. Assessment: One 3hr exam and assignments.
Fourth year elective unit of study for the degree in Civil Engineering.

Syllabus summary: Introductory structural dynamics, natural frequency, free and forced vibration, structural damping. Single and multi-degree of freedom systems, finite element dynamic analysis, consistent mass matrix, damping matrix, free vibration, forced vibration, wind loading on structures.

Objectives: To provide an understanding of the dynamic behaviour of structural systems and wind loads on structures.

Outcomes: To be able to determine the natural frequency of simple structural systems manually and complex systems using computer analyses; to be able to perform analyses for the effects of forced vibration and structural damping; to be able to perform wind analyses on low and high rise structures.

Textbooks
‘Vibrations in Civil Engineering’, Postgraduate Course, Department of Civil Engineering, The University of Sydney, May, 1981.
CIVL 4220 Steel Structures 2
5 credit points
Prerequisite: CIVL 3206 Steel Structures 1. Offered: July. Classes: 28hrs lec. 28hrs tut. Assessment: One 3hr exam at end of the semester plus assignment work.
Fourth year elective unit of study for the degree in Civil Engineering.

Syllabus summary: Local buckling behaviour and design; stability analysis and design of steel structures including flexural-torsional buckling analysis. Advanced connections - behaviour, analysis and design. Shell structures -behaviour and membrane analysis.

Objectives: To develop a working knowledge of the behaviour and design of steel structures beyond a basic competency.

Outcomes: Proficiency in the design of steel structures.

Textbooks
Trahair and Bradford Behaviour and Design of Steel Structures (Chapman & Hall, 1991).

Reference books
Bulson Stability of Flat Plates (Chatto & Windus, 1970).

CIVL 4221 Bridge Engineering
5 credit points
Prerequisite: CIVL 3223 Concrete Structures - Behaviour, CIVL 3224 Concrete Structures - Design and CIVL 3206 Steel Structures 1. Offered: March. Classes: 26hrs lec & 26hrs tut. Assessment: Based on submitted work, seminar presentations and one 3hr exam.
Fourth year elective unit of study for the degree in Civil Engineering.

Syllabus summary: Highway and railway bridge loading; influence lines; analysis of transverse load distribution; computer modelling of bridges; effects of temperature and concrete creep and shrinkage; bridge bearings; selection of structural forms; standardised bridge systems, skew and curved bridges, bridge foundations; construction methods; case studies of significant bridges.

Objectives: To develop an understanding of the key issues in the design, construction and maintenance of bridges.

Outcomes: An appreciation of the relevance of all other courses of study to the practice of all aspects of Bridge Engineering.

Reference books
NAASRA Bridge Design Specification.

CIVL 4222 Finite Element Methods
5 credit points
Prerequisite: CIVL 3204 Structural Analysis. Offered: March. Classes: Sem: 26hrs lec & 26hrs tut. Assessment: Classwork, assignments and one 3hr exam.
Fourth year elective unit of study for the degree in Civil Engineering.

Syllabus summary: Introduction to finite elements, analysis of bars, beams and assemblages. Analysis of elastic continua, in-plane stresses in plates, plate strain problems, plate bending, use and testing of finite element packages.

Objectives: To provide an understanding of the basics of finite element analysis and how to apply this to the solution of engineering problems.

Outcomes: A knowledge of methods of formulating finite element equations, basic element types, the use of finite element methods for solving problems in structural and continuum analysis and the use of finite element packages.

Reference books

CIVL 4406 Environmental Geotechnics
5 credit points
Prerequisite: CIVL 3401 Soil Mechanics A, CIVL 3402 Soil Mechanics B. Offered: July. Classes: Lectures and tutorials - 52 hours. Assessment: Tutorial and assignment submissions, as indicated at the commencement of the course.
Fourth year elective unit of study for the degree in Civil Engineering.

Syllabus summary: Landfill design, including clay mineralogy, effects of chemicals on soil permeability, flow rates through membranes, effect of punctures, composite liners, mechanisms of mass transport, diffusion, dispersion, advective transport, sorption, predicting transport time, solutions to advection-dispersion equation, design of liners, stability of clay liners on slopes, design of covers, infiltration rates. Tailings disposal, including types of tailings dams, design of dams, water balances, rehabilitation, use of slope stability and seepage software.

Objectives: To develop an understanding of the geotechnical aspects of the design and management of industrial and domestic waste disposal systems.

Outcomes: Students should gain an understanding of: the role of geotechnics in the design of waste management systems; current design methods and technologies. In particular, they should be able to predict: likely interactions between waste and soil; of pollutant movement in the ground, and be able to evaluate strategies for the containment of industrial and domestic wastes and mine tailings.

Reference Books
S. G. Vick Planning, Design and Analysis of Tailings Dams (Wiley).

CIVL 4407 Geotechnical Engineering
5 credit points
Prerequisite: CIVL 3401 Soil Mechanics A, CIVL 3402 Soil Mechanics B. Offered: March. Classes: Lectures and tutorials - 52 hours. Assessment: One 3 hour examination covering the whole syllabus at the end of semester. Credit will be given for tutorial and assignment submissions, as indicated at the commencement of the course.
Fourth year elective unit of study for the degree in Civil Engineering.

Objectives: To develop an understanding of: current methods used in the investigation and design of foundations on soils and rocks; the limitations of these methods.

Outcomes: Students should gain an understanding of: the design process in foundation engineering; the role of site investigation and field testing; the need to deal with uncertainty. In particular, they should develop the ability to: interpret the results of a site investigation; to use soils data to design simple
foundations, and develop an appreciation of the interaction be­
tween soils, the foundation system and the supported structure.

Reference Books
Tomlinson Foundation Design and Construction (Pitman).
Poulos and Davis Pile Foundation Analysis and Design (Wiley).
Fleming et al. Piling Engineering (Halstead Press).
Das Principles of Foundation Engineering (PWS - Kent).
Library classification: 624.151.

CIVL4504 Surveying 2
5 credit points
Prerequisite: CIVL3501 Surveying 1. Offered: March.
Classes: 26 hrs lec & 26 hrs fieldwork and tut. Assessment: Fieldwork, reports, tutorials, and one 3hr exam at the end of the course.
Fourth year elective unit of study for the degree in Civil Engi­neering.

Syllabus summary: CAD and database applications, electronic distance measurement, precise angle measurement, high precision engineering surveys, geodetic surveying, global positioning systems, geographic information systems, photogrammetry and remote sensing.

Objectives: To introduce students to precise measurement technologies, processes, computational procedures, and interpretive skills; to give students a high level of understanding of automated electronic measuring systems; to introduce students to data handling, manipulation, and presentation at a project level.

Outcomes: Students should gain the ability to: undertake precise measurement procedures for determining position, extent and stability of points and structures; use advanced electronic measurement equipment; handle and manipulate data in electronic form; analyse data and determine the magnitude of errors.

Textbooks
J. Fryer, M. Eltlick, R. Brinker, P. Wolf Elementary Surveying (Harper Collins Publishers); or J. Uren and W.F. Price Surveying for Engineers (MacMillan); or J. Muskett Site Surveying (Blackwell)

CIVL 4607 Environmental Fluids 1
5 credit points
Offered: March. Classes: 26 hrs lec, 26 hrs tut. Assessment: One 3hr exam covering the whole syllabus at the end of the semester. Satisfactory performance in tutorials is also a requirement. Credit will be given for tutorial submissions, as indicated at the beginning of the course.
Fourth year elective unit of study for the degree in Civil En­gineering.

Syllabus summary: Elements of meteorology; precipitation measurement and analysis; design rainfall intensities; hydrographs; peak discharge calculations, evaporation and transpiration, infiltration and groundwater; surface runoff, flood routing.

Objectives: To develop an understanding of: basic meteorological principles; the principles of hydrology; the importance of flood routing; the principles of flood mitigation; irrigation requirements; evaporation and reservoir design.

Outcomes: Students will be able to: list the key factors which affect the climate of Australia; describe intensity-frequency-duration curves and explain their use; calculate design rainfall intensities; calculate peak flows from catchments; determine runoff hydrographs for various storm durations and intensities; state the principles of flood routing and perform flood routing calculations; assess surface runoff and infiltration in catchment; list and utilise design procedures for storage and service reservoirs; calculate reservoir safe yield; determine evaporation from reservoirs and evapo-transpiration from catchments.

Textbooks
Australian Rainfall and Runoff (J.E. Aust., 1987)
Computer Applications in Hydraulic Engineering (Haestad Press)

Reference books
Raudkivi Hydrology (Pergamon)
Raudkivi and Callander Analysis of Groundwater Flow (Edward Arnold).
Library classification: 551.48

CIVL 4608 Environmental Fluids 2
5 credit points
Assumed knowledge: Material covered in Environmental Fluids 1.
Offered: July. Classes: 26 hrs lec, 26 hrs tut. Assessment: One 3hr exam covering the whole syllabus at the end of the semester. Satisfactory performance in class assignments is also a requirement. Credit will be given for assignment submissions, as indicated at the beginning of the course.
Fourth year elective unit of study for the degree in Civil En­gineering.

Objectives: To develop an understanding of: ocean wave generation, transmission and coastal effects; the principles of sediment transport; break-water design, fluid-structure interaction; flood detention basins and advanced flood routing techniques.

Outcomes: Students will be able to: list and describe the major parameters affecting ocean wave generation; describe the processes of ocean wave transmission; calculate energy transfer by waves; describe the behaviour of waves in shallow water; explain the fundamental principles of sediment transport; describe sediment transport processes in rivers; describe coastal sediment transport processes; explain basic performance requirements for breakwaters, and factors considered in their design; describe several fluid structures, together with associated fluid-structure interaction, including, but not limited to, spillways, stilling basins, bridge piers, water supply intakes; describe design considerations for flood detention basins; explain the principles of:

Textbooks
Computer Applications in Hydraulic Engineering (Haestad Press)

CIVL 4609 Water Resources Engineering
5 credit points
Offered: July. Classes: Sem: 26 hrs lec, 26 hrs tut. Assessment: One 3hr exam covering the whole syllabus at the end of the semester. Satisfactory performance in class assignments is also a requirement. Credit will be given for assignment submissions, as indicated at the beginning of the course.
Fourth year elective unit of study for the degree in Civil En­gineering.

Water quality; water purification methods; water reticulation; water resource management; irrigation and hydro-power.

Objectives: To develop an understanding of: the assessment methods for water quality; physical biological and chemical treatment methods; water storage and distribution systems; management principles for water resources, including water re-use; irrigation technologies and demands; hydro-power systems.

Outcomes: Students will be able to: state the requirements of water quality for various purposes; detail the physical methods of water treatment; detail the biological methods used in water treatment; detail the chemical methods used in water treatment; design multi-node water distribution networks; explain the design principles of water supply for high-rise buildings; describe water conservation methods and management principles for water use, including storm water detention and treatment; explain ‘grey water’ re-use techniques and their applications; describe various irrigation methods and associated hydraulic design; design small scale hydro-power installations.

Textbooks

Faculty of Engineering Handbook 1999

Computer Applications in Hydraulic Engineering (Haestad Press)

Offered: March. Classes: 26 hrs lec, 26 hrs tut. Assessment: One 3hr written examination at the end of the semester, covering the whole syllabus; a major project assignment covering the project planning and documentation segment; class test during the semester and credit which may be given for any coursework as advised at the commencement of the course.
Fourth year core unit of study for the degree in Civil Engineer­ing, elective for other branches of engineering.

Objectives: To develop an understanding of conceptualisation and management of engineering and construction projects in­cluding: economic modelling, appraisal and optimisation; eco­nomic analysis of public sector projects; project sensitivity and
risk analysis and risk management techniques; value engineering; work study and related techniques; planning, scheduling and cost engineering of project; project documentation design and presentation.

Outcomes: Students should develop an understanding of the fundamentals of project conceptualisation, appraisal, planning and optimisation plus ability to: model and analyse basic economic problems in engineering and construction projects including skills to formulate objective criteria; analyse, interpret and present the results; quantitatively evaluate field productivity and method study, aspects of team management and design and presentation of professional documentation.

Syllabus summary: Introduction to project conceptualisation and development; stages in project life cycle; techniques of project appraisal including comparison of alternatives, valuation, depreciation and capitalisation method; sensitivity and risk analysis and management of risks; value engineering; work study and related concepts and techniques; pre- and post-tender planning, cost engineering, critical path method of scheduling; resource levelling and associated project management techniques.

Textbooks
No single textbook covers the entire syllabus of this course.

Material handed out during the sessions will be relevant.

Recommended References
Grant, Ireson and Leavenworth Principles of Engineering Economy (J. Wiley & Sons).
Turner Handbook of Project-based Management (McGraw-Hill). Library classification: 624.068, 625.01518, 692.5-8

CIVL 4806 Project Procedures
5 credit points
Offered: July. Classes: lec: 26hrs, tut: 26hrs in Semester 2. Assessment: One 2hr written examination at the end of the semester, covering the whole syllabus; a project assignment covering the costing and estimating segment and credit which may be given for any coursework or assignment as advised at the commencement of the course.

Fourth year elective unit of study for the degree in Civil Engineering, elective for other branches.

Fundamentals of costing and estimating; elemental estimating for cost planning and value engineering; work measurement and bills of quantities; computer aided estimating; cost monitoring of construction projects; tender preparation and documentation. Contract law and documentation; contract conditions and administration; dispute resolution. Liability outside contract. The course teaching is primarily carried out by expert lecturers from industry.

Objectives: To develop an understanding of the processes and techniques for costing and estimating in construction; to gain knowledge of the law of contracts, including model contracts, conditions and documentation, and appreciation of liability outside contracts.

Outcomes: Students should develop basic competency in construction costing and estimating plus an understanding of the fundamentals of the law of contracts, contract models and conditions, documentation, administration and claims resolution and professional liability.

Textbooks
Software: On Target, Cordell's Estimator, Project. Library classification: 624, 343, 346

CIVL 4807 Project Formulation
5 credit points
Offered: July. Classes: Tutorials/workshops 52 hours. Assessment: No formal exam; assessment will be based on submitted documents and adequacy of oral presentation to a board of review.

Fourth year elective unit of study for the degree in Civil Engineering, elective for other branches.

The unit will integrate the technical, commercial and managerial aspects of the formulation of a project or product. Technical design and specification will be carried out to the point where it can be shown that the concept is technically sound; technical innovation in the design concept for commercial edge will be encouraged. Students will be cast in the role of competing entrepreneurs faced with the exploitation of a business opportunity related to specific building and civil engineering projects and products. Groups will develop competitive proposals embodying business plans and demonstrating the technical and financial feasibility of the project and appropriate legal and managerial arrangements and corporate structure for the proposed enterprise. The unit will be conducted through workshops and with the participation of leading professionals from building, engineering, legal and financing industries.

Objectives: To develop an understanding of conceptualisation, formulation, analysis and documentation of building and civil engineering projects and products; to gain skills in the preparation of a business plan/proposal for a project or product, including technical, commercial and legal aspects and statutory approvals.

Outcomes: Students should develop an understanding of the fundamentals of project conceptualisation, appraisal, planning and optimisation plus ability to: model and analyse basic financing and cash flow requirements, risk management plan, marketing and sales plan, and design of professional documentation and presentation to a board of review.

Textbooks
Library classification: 624.068, 625.01518, 692.5-8

CIVL 4901 Civil Engineering Design
4 credit points
Prerequisite: CIVL 3223 Concrete Structures - Behaviour, CIVL 3224 Concrete Structures - Design, CIVL 3206 Steel Structures 1. Offered: March. Classes: 13hrs lec & 39hrs of drawing office work. Assessment: No formal exam; assessment will be based on submissions.

Fourth year core unit of study for the degree in Civil Engineering.

Objectives: To give students an appreciation of the role of the designer in the development of Civil Engineering projects.

Outcomes: Students will have developed an understanding of the design philosophy. They will gain this through their involvement in a number of exercises which cover the design sequence from concept to documentation.

Syllabus summary: The design sequence including definition, value and criteria selection; generation of proposals; analysis of proposals; selection of design; development of detailed parts of a particular design selected. Feasibility studies and examination of existing works. Study of design projects by stages, including details of some aspects.

The unit is under the direction of an engineer in professional practice in cooperation with members of the academic staff. Lectures on specific aspects of design are supplemented by visits to construction, testing and manufacturing sites. Lectures and exercises on architectural design and practice and their relationship to civil engineering are included in the unit.

Reference books
The unit is of a wide-ranging nature, and all text and reference books previous and current courses have relevance. In addition, reference will be made to many codes and guides to practice, of which the following list covers only the structural field:
Current SAA Codes, Manuals and Specifications, particularly
AS4100 - Steel Structures Code
AS3600 - Concrete Structures Code
AS1554 - Manual Welding, Part I
AS 1170 - Loading Code, Parts I and II
AS1511 - High Strength Structural Bolting Code
MAI Steel Structures
N.A.A.S.R.A. Bridge Design Specification
AS 1720 - Timber Engineering Code
(Purchase of separate codes is recommended)
Faculty of Engineering Handbook 1999

Computer Science

COMP 4300 Information Systems (Advanced Topic) 4 credit points
Prerequisite: Credit in COMP 3000 Management of Information Systems. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester. Assessment: Written and practical assignments (individually and/or in small groups) and a final examination.

Fourth year elective unit of study for the degree in Software Engineering. Elective unit of study for the other degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Information Systems. This would build on the broad survey provided by COMP 3000. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: management of change in organisations, soft systems analysis, workflow management.

Syllabus Summary: Varies depending on specific topic.

COMP 4301 Algorithms (Advanced Topic) 4 credit points
Prerequisite: Credit in COMP 3001 Algorithms. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester.
Assessment: Written and practical assignments (individually and/or in small groups) and a final examination.

Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Algorithms. This would build on the broad survey provided by COMP 3001. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: parallel algorithms, randomised algorithms, approximation algorithms for intractable problems.

Syllabus Summary: Varies depending on specific topic.

COMP 4302 Artificial Intelligence (Advanced Topic) 4 credit points
Prerequisite: Credit in COMP 3002 Artificial Intelligence. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester.
Assessment: Written and practical assignments (individually and/or in small groups) and a final examination.

Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Artificial Intelligence. This would build on the broad survey provided by COMP 3002. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: Machine Learning, Natural Language Processing, Non-monotonic reasoning.

Syllabus Summary: Varies depending on specific topic.

COMP 4304 Graphics (Advanced Topic)
Prerequisite: Credit in COMP 3004 Graphics. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester.
Assessment: Written and practical assignments (individually and/or in small groups) and a final examination.

Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Graphics. This would build on the broad survey provided by COMP 3004. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: three-dimensional rendering, constraint-maintainance image systems.

Syllabus Summary: Varies depending on specific topic.

COMP 4305 Networked Systems (Advanced Topic) 4 credit points
Prerequisite: Credit in COMP 3007 Networked Systems. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester.
Assessment: Written and practical assignments (individually and/or in small groups) and a final examination.

Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Networked Systems. This would build on the broad survey provided by COMP 3007. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: network management and performance tuning, internetworking, implementation of network protocols.

Syllabus Summary: Varies depending on specific topic.

COMP 4306 Database Systems (Advanced Topic)
Prerequisite: Credit in COMP 3005 Database Systems. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester.
Assessment: Written and practical assignments (individually and/or in small groups) and a final examination.

Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Database Systems. This would build on the broad survey provided by COMP 3005. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: transaction processing monitors, advanced conceptual modelling, object-oriented databases.

Syllabus Summary: Varies depending on specific topic.

COMP 4307 Distributed Systems (Advanced Topic) 4 credit points
Prerequisite: Credit in (COMP 3007 Networked Systems or COMP 3009 Operating Systems). Classes: Two hrs lectures and one hr tutorial/lab per week for one semester.
Assessment: Written and practical assignments (individually and/or in small groups) and a final examination.

Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Distributed Systems. This would build on ideas of network or operating systems provided in the prerequisites. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered
would vary from one offering to another, depending on staff interest and expertise. Example topics include: electronic commerce, distributed operating systems, security in distributed systems.

Syllabus Summary: Varies depending on specific topic.

COMP 4309 Object-Oriented Systems (Advanced Topic)
4 credit points
Prerequisite: Credit in COMP 3008 Object-Oriented Systems. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester. Assessment: Written and practical assignments (individually and/or in small groups) and a final examination. Fourth year recommended elective unit of study for the degree in Software Engineering. Elective unit of study for the other degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Object-Oriented Systems. This would build on the broad survey provided by COMP 3008. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: distributed object systems, implementation of object-oriented languages, type theory for object languages.

Syllabus Summary: Varies depending on specific topic.

COMP 4400 Operating Systems (Advanced Topic)
4 credit points
Prerequisite: Credit in COMP 3009 Operating Systems. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester. Assessment: Written and practical assignments (individually and/or in small groups) and a final examination. Fourth year recommended elective unit of study for the degree in Software Engineering. Elective unit of study for the other degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Operating Systems. This would build on the broad survey provided by COMP 3009. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: system administration, process group infrastructure, modern kernal internals.

Syllabus Summary: Varies depending on specific topic.

COMP 4401 Software engineering (Advanced Topic)
4 credit points
Prerequisite: Credit in COMP 3100 Software Engineering. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester. Assessment: Written and practical assignments (individually and/or in small groups) and a final examination. Fourth year recommended elective unit of study for the degree in Software Engineering. Elective unit of study for the other degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Software Engineering. This would build on the broad survey provided by COMP 3100. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: software metrics, tools for CASE, software architecture description.

Syllabus Summary: Varies depending on specific topic.

COMP 4402 User Interfaces (Advanced Topic)
4 credit points
Prerequisite: Credit in COMP 3102 User Interfaces. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester. Assessment: Written and practical assignments (individually and/or in small groups) and a final examination. Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of User Interfaces. This would build on the broad survey provided by COMP 3102. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: user-adaptive systems, information filtering, usability testing.

Syllabus Summary: Varies depending on specific topic.

COMP 4403 Computation Theory (Advanced Topic)
4 credit points
Prerequisite: Credit in COMP 3003 Languages and Logic, and 8 cp of 2000-level MATH. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester. Assessment: Written and practical assignments (individually and/or in small groups) and a final examination. Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop understanding of the theoretical limits of computation, and the proof techniques used to show these limits in specific problems.

Syllabus Summary: Computability; models of computation and their relationships; recursive sets and recursively enumerable sets; Godel incompleteness theorem; halting problem; complexity theory; speed-up theorems; reductions; NP-completeness.

COMP 4404 Scientific Visualisation (Advanced Topic)
4 credit points
Prerequisite: Credit in one of: COMP 3001 Algorithms or COMP 3304 Graphics or PHYS 3303 Scientific Visualisation. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester. Assessment: Written and practical assignments (individually and/or in small groups) and a final examination. Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Scientific Visualisation. The coverage would be at the level of an professional monograph, or papers from the research literature. The specific topic covered would vary from one offering to another, depending on staff interest and expertise. Example topics include: medical imaging and simulation.

Syllabus Summary: Varies depending on specific topic.

COMP 4601 Advances in Computer Science 1
4 credit points
Prerequisite: Permission of Head of Department. Classes: Two hrs lectures and one hr tutorial/lab per week for one semester. Assessment: Written and practical assignments (individually and/or in small groups) and a final examination. Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Computing. This unit is used when a student wants to take a further topic within a field which has already been studied at 4000-level. Head will not grant permission unless the topic
being taught is substantially different from those studied previously.

COMP4602 Advances in Computer Science 2

4 credit points

Prerequisite: Permission of Head of Department. **Classes:** Two hrs lectures and one hr tutorial/lab per week for one semester.

Assessment: Written and practical assignments (individually and/or in small groups) and a final examination.

Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Computing. This unit is used when a student wants to take a further topic within a field which has already been studied at 4000-level. Head will not grant permission unless the topic being taught is substantially different from those studied previously.

Syllabus Summary: Varies depending on specific topic.

COMP 4603 Advances in Computer Science 3

4 credit points

Prerequisite: Permission of Head of Department. **Classes:** Two hrs lectures and one hr tutorial/lab per week for one semester.

Assessment: Written and practical assignments (individually and/or in small groups) and a final examination.

Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Computing. This unit is used when a student wants to take a further topic within a field which has already been studied at 4000-level. Head will not grant permission unless the topic being taught is substantially different from those studied previously.

Syllabus Summary: Varies depending on specific topic.

COMP 4604 Advances in Computer Science 4

4 credit points

Prerequisite: Permission of Head of Department. **Classes:** Two hrs lectures and one hr tutorial/lab per week for one semester.

Assessment: Written and practical assignments (individually and/or in small groups) and a final examination.

Fourth year elective unit of study for the degrees offered by the School of Electrical and Information Engineering.

Note: this unit may be available in February or July semester; it may not always be offered.

Objectives/Outcomes: To develop knowledge of the concepts, and mastery of the techniques, in one specialist topic within the field of Computing. This unit is used when a student wants to take a further topic within a field which has already been studied at 4000-level. Head will not grant permission unless the topic being taught is substantially different from those studied previously.

Syllabus Summary: Varies depending on specific topic.

Electrical Engineering

ELEC 1001 Introductory Electrical Engineering

4 credit points

Corequisite: MATH 1001 Differential Calculus. **Prohibition/other:** ELEC 1102 Foundations of Electronic Circuits, and ELEC 2002 Electrical Technology. **Offered:** July. **Classes:** Two lec/wk and nine 3hr lab/wk. **Assessment:** Written and practical assignments and a 2hr exam at end of semester.

Core unit of study for Civil Engineering, Project Engineering and Management (Civil) and Mechanical and Mechatronic Engineering.

ELEC 1101 Foundations of Computer Systems

6 credit points

Prerequisite: Advisory prerequisites HSC Maths 3 unit. **Offered:** March. **Classes:** Six contact hours per week combining lectures, laboratory work, computing, tutorials and presentations.

Assessment: Presentations, reports and assignments plus two 2hr exams at the end the semester.

Core unit of study for Electrical, Electrical (Information Systems), Computer, Software and Telecommunications Engineering.

Number systems and codes, Parity: Logic gates and Boolean Algebra, Universal logic gates (Nand gates); Combinational logic circuits; Design and construct project; Flip-flops and related devices; Digital Arithmetic: operations and circuits, Two’s complement addition and subtraction, Overflow; Counters and registers; Shift register applications; Design of synchronous, sequential circuits, Designs of synchronous, cascadable counters (BCD and binary); Integrated circuit logic families; Tri-state signals and data-buses; MSI logic circuits, Applications of multiplexers, demultiplexers, decoders, priority encoders, magnitude comparators; Applications of programmable logic devices, Major project utilising programmable logic devices; Interfacing with the analog world; Memory devices; Introduction to microprocessors, stored-program computer architecture, instruction codes and addressing modes, instruction execution cycle; Digital design of an arithmetic-logic-unit for a computer. Human communication; technical skills in written, numeric and graphical communication, word processors.

ELEC 1102 Foundations of Electronic Circuits

6 credit points

Prerequisite: HSC Physics 2 unit and MATH 1001 Differential Calculus. **Prohibition/other:** ELEC 1001 Introductory Electrical Engineering, and ELEC 2002 Electrical Technology. **Offered:** July. **Classes:** Six contact hours per week combining lectures, laboratory work, computing, tutorials and projects. **Assessment:** Presentations, reports and assignments plus two 2hr exams at the end of the semester.

Core unit of study for Electrical, Electrical (Information Systems), Computer, Software and Telecommunications Engineering.

Linear DC circuit elements and laws, and series and parallel circuits; concepts of equivalent circuits; operational amplifiers and circuits; network analysis. Capacitors and inductors; first order circuits and transient responses; step responses; complex numbers, phasors, impedance and admittance; steady state analysis; frequency analysis; frequency response of RLC circuits; filters; AC power, reactive power and power factor.
Electrical measurement tools. Safety issues. Computer based simulation of circuits. Computer communication tools such as spread sheets, charting and drawing packages. Management of people, documents and projects.

ELEC 2001 Electrical and Electronic Engineering 4 credit points
Prerequisite: ELEC 1001 Introductory Electrical Engineering. Prohibition/other: ELEC 2101 Circuit Analysis, and ELEC 2401 Electronic Devices and Circuits, and ELEC 2601 Microcomputer Systems. Prerequisite ELEC 1001 Introductory Electrical Engineering. Offered: March. Classes: (Three lec and 3hrs lab/tut) per wk. Assessment: Lab reports and assignments and a 3hr exam at end of semester.

Core unit of study for Mechanical and Mechatronic Engineer.

Thyristor devices, applications to motor control.

Operational amplifiers: Characteristics, ideal and real. Feed­back. Design with op amps: inverting, non-inverting and differ­ential amplifiers; integrator and differentiator; simple filters, comparator and Schmitt trigger.

Digital electronics: Numbering systems. Gates and combina­tional logic. Latches, synchronous and asynchronous counters. Flip-flops and memory. TTL and CMOS logic families. Practical design examples.

Microprocessor fundamentals: architecture of a standard 8-bit microprocessor. Instruction set and addressing modules. As­semble language programming.

Clock and reset circuits. Memory and 170 interfacing.

ELEC 2002 Electrical Technology 4 credit points
Prerequisite: MATHS 1701 Differential Calculus and Linear Algebra. Prohibition/other: ELEC 1102 Foundations of Electronic Circuits, and ELEC 1001 Introductory Electrical Engineering. Offered: July. Classes: (Two lec and one 2hr tut)/wk. Assessment: Lab, assignments and a 2hr exam at end of semester.

Core unit of study for Chemical Engineering.

ELEC 2101 Circuit Analysis 4 credit points

Core unit of study for Electrical, Electrical (Information Sys­tems), Computer and Telecommunications Engineering.

Transient and steady state responses of electric circuits. Com­plex frequency analysis, phasors. Laplace transform, transfer functions and frequency response.

Transformers. Two port networks. Introduction to energy con­version; balanced three phase circuits. Modelling and simula­tion using Matlab.

ELEC 2401 Electronic Devices and Circuits 4 credit points
Prerequisite: Advisory prerequisite ELEC 1102 Foundations of Electronic Circuits. Prohibition/other: ELEC 2001 Electrical and Electronic Engineering, and ELEC 2002 Electrical Technology. Offered: July. Classes: (Two lec and an average of 2 hrs lab/tut) per week. Assessment: Lab work and a 2hr exam at end of semester.

Core unit of study for Electrical, Electrical (Information Sys­tems), Computer, Software and Telecommunications Engineer­ing.

Basics of semiconductors, diodes, transistors; small-signal and large-signal models, rectification, biasing, gain; FET and BJT circuits, introduction to operational amplifiers.

ELEC 2501 Signals and Communications 4 credit points
Prerequisite: Advisory prerequisites MATH 1701 Differential Calculus and Linear Algebra, and MATH 1703 Integral Calculus and Discrete Mathematics, and ELEC 1102 Foundations of Electronic Circuits. Offered: July. Classes: (Two lec and an average of 2 hrs lab/tut) per week. Assessment: Lab, assignments and a 2hr exam at end of semester.

Core unit of study for Electrical, Electrical (Information Sys­tems), Computer, Software and Telecommunications Engineer­ing.

ELEC 2601 Microcomputer Systems 4 credit points
Prerequisite: Advisory prerequisite ELEC 1101 Foundations of Computer Systems. Prohibition/other: ELEC 2001 Electrical and Electronic Engineering. Offered: March. Classes: (Two lec and an average of 2 hrs lab/tut) per week. Assessment: Lab, assignments and a 2hr exam at end of semester.

Core unit of study for Electrical, Electrical (Information Sys­tems), Computer, Software and Telecommunications Engineer­ing.

Computer architecture and assembly language programming. Microprocessor and microcontroller systems, memory and I/O interfacing, interrupts and interrupt handling. Serial and parallel communications. Elements of real time control; CPU and mem­ory security and protection. System design, implementation and debugging.

ELEC 3101 Circuit Theory and Design 4 credit points
Prerequisite: Advisory prerequisites ELEC 2101 Circuit Analysis, MATH 2005 Fourier Series and Differential Equations. Offered: July. Classes: (2 lec and one 2hr tut)/wk. Assessment: Assignments, labs and an exam at the end of semester.

Recommended unit of study for Electrical and Telecommunica­tions Engineering.

The main aim of the course is to teach the theory and design of active and passive analog filters. Topics covered include: Re­view of network functions; approximation techniques such as Butterworth, Chebyshev characteristics; filter sensitivity to pa­rameters; passive network synthesis; active RC filters; switched capacitor filters.

ELEC 3102 Engineering Electromagnetics 4 credit points
Prerequisite: Advisory prerequisites PHYS 2203 Physics2EEE or PHYS 2002 Physics (Technological) B and ELEC 2101 Circuit Analysis. Offered: March. Classes: (Two lec and a 2hr tut) per week. Assessment: Questions in lec/tut and a 2hr exam at end of semester.

Core unit of study for Electrical, Electrical (Information Sys­tems) and Telecommunications Engineering.

Transmission lines (circuit theory is used to derive wave phe­nomena) - revision of circuit elements and static fields; Max­well’s Equations in integral form; distributed circuits, character­istic impedance, waves in transmission lines, steady state and
transient behaviour, reflections, Voltage Standing Wave Ratio, impedance transformation, and matching. Fields and waves (Maxwell's equations are used to derive wave phenomena) - review of boundary problems; Maxwell's equations in different forms; plane wave and the analogy with transmission lines, reflection of waves at boundaries, atmospheric wave propagation, propagation in waveguides, waveguide components, radiation patterns of antennas and arrays; numerical methods.

ELEC 3103 Electrical Engineering Design

4 credit points
Prerequisite: Advisory prerequisites ELEC 2101 Circuit Analysis, and ELEC 2401 Electronic Devices and Circuits, and ELEC 2501 Signals and Communications, and ELEC 2601 Microcomputer Systems. Offered: March. Classes: (One lec and a 2 hr/lab) per week. Assessment: Lab, assignments and a 1 hr exam at end of semester.

Recommended elective unit of study for Electrical and Software Engineering

This is a laboratory based unit where the topics involve a number of areas such as instrumentation, communications, sensing, lighting, thermal design and protection. The aim is to develop an integrated approach using basic concepts drawn from the major disciplines of Electrical and Electronic Engineering.

ELEC 3201 Fundamentals of Electrical Energy Systems

4 credit points
Prerequisite: Advisory prerequisites ELEC 2101 Circuit Analysis. Offered: March. Classes: (Two lec and a 2 hr/lab) per week. Assessment: Assignments, a quiz and a 2hr exam at end of semester.

Core unit of study for Electrical Engineering.

Systems consisting of electromechanical converters (electric machines), electrochemical converters (batteries, fuel cells) and electronic converters as well as basic circuit elements. An introduction to conventional and alternative renewable/non-renewable energy sources, energy transmission, markets and distribution.

Basic techniques of systems modelling and analysis including per unit systems, transformers, lines, interference, power flows, transients, balanced faults, control of real and reactive power. Applications to household, transport, industrial and high voltage systems. Use of MATLAB as a modelling and simulation tool.

ELEC 3202 Power Electronics and Drives

4 credit points
Prerequisite: Advisory prerequisites ELEC 2101 Circuit Analysis, and ELEC 2401 Electronic Devices and Circuits. Offered: July. Classes: (Two lec and a 2hr lab/tut) per week. Assessment: Lab reports, assignments and a 2hr exam at end of semester.

Recommended elective unit of study for Electrical Engineering.

Applications and historical context, principles of electronic control of power flow, power semiconductor devices, phase controlled rectifiers and derivatives, AC-AC phase control, DC-DC converters, DC-AC converters.

Electromagnetic transducers, rotating magnetic field principles, synchronous machines, induction machines, electronically controlled machine operation.

ELEC 3301 Signals and Systems

4 credit points
Prerequisite: Advisory prerequisites MATH 2005 Fourier Series and Differential Equations, and ELEC 2501 Signals and Communications. Offered: March. Classes: (2 lec & 2hr lab/tut)wk. Assessment: Lab reports, assignments and one 2hr exam at end of Sem.

Core unit of study for Electrical, Electrical (Information Systems), Telecommunications and Computer Engineering.

Sampling: impulse train sampling, the sampling theorem, reconstruction of signals, effects of undersampling.

Laplace and z-transforms: definitions of bilateral and unilateral transforms, properties, pole-zero maps, analysis of LTI systems, transfer functions.

ELEC 3302 Fundamentals of Feedback Control

4 credit points
Prerequisite: Advisory prerequisite ELEC 3301 Signals and Systems, Prohibition/other: MECH 3800 Systems Control and CHNG 3302 Process Control. Offered: July. Classes: (Two lec and a 2hr lab/tut) per week. Assessment: Performance in lab/tut and a 2hr exam at the end of semester.

Core unit of study for Electrical, Electrical (Information Systems), Computer and Telecommunications Engineering. Recommended elective unit of study for Software Engineering.

History and review of control. Modelling of physical processes; state variables and differential equations. Dynamic response; review of Laplace transform, transfer functions and block diagrams, poles and zeros. Design specifications in the time domain. Basic feedback principles; effect of feedback on sensitivity and disturbance rejection, steady state accuracy and stability; the Routh criterion; proportional, integral and derivative control. Design using the root locus; rules for sketching root locus; lead and lag compensators; analogue and digital implementation of controllers. Frequency response design methods; the Nyquist stability criterion; design specifications in the frequency domain, gain and phase margins; compensator design. An introduction to state space for single input single-output systems; eigenvalues, zeros and transfer functions; introduction to state variable feedback and design of estimators.

ELEC 3401 Electronic Devices and Circuits

4 credit points
Prerequisite: Advisory prerequisite ELEC 2401 Electronic Devices and Circuits and ELEC 2101 Circuit Analysis. Offered: March. Classes: (2 lec and a 2hr lab) per week. Assessment: Lab and a 2hr exam at end of semester.

Core unit of study for Electrical, Electrical (Information Systems), Computer and Telecommunications Engineering. Recommended elective unit of study for Software Engineering.

Basics and models of semiconductor devices (diode, JFET, MOSFET and BJT), IC fabrication (bipolar and MOS), amplifiers, frequency response, current sources and mirrors, power amplifiers, operational amplifiers and applications, power supplies, oscillators and phase locked loops.

ELEC 3402 Communications Electronics

4 credit points
Prerequisite: Advisory prerequisite ELEC 3401 Electronic Devices and Circuits. Offered: July. Classes: (2 lec and an average of 2 hr lab/tut) per week. Assessment: Practical work and a 2hr exam at end of semester.

Core unit of study for Electrical (Information Systems) and Telecommunications Engineering. Recommended elective unit of study for Electrical Engineering.

Photonic devices and models (semiconductor optical properties, lasers and photodiodes), optical transmitters and modulation, optical amplifiers, optical receivers, basic opto-electronic link, tuned amplifiers, oscillators, modulation/demodulation circuits, mixers, feedback amplifiers, high frequency amplifiers.

ELEC 3403 Switching Devices and High Speed Electronics

4 credit points
Prerequisite: Advisory prerequisite ELEC 3401 Electronic Devices and Circuits. Offered: July. Classes: (2 lec and an average of 2 hr lab/tut) per week. Assessment: Practical work and a 2hr exam at end of semester.
Chapter 2 - Undergraduate units of study

Core unit of study for Electrical (Information Systems) and Computer Engineering. Recommended elective unit of study for Electrical and Telecommunications Engineering.

Solid state physics, PN and metal-semi junctions, semiconductor devices, digital devices (TTL, Schottky TTL, nMOS and CMOS), inverter and basic gates, output stage (open drain and tri-state), metastability and latchup in CMOS, logic family characteristics (voltage levels, noise margins, power and switching speed), interfacing logic families, protection and opto-isolators, digital circuits (switch debouncing, driving relays, reset circuits, oscillators), high speed analogue interfacing (transmission line effects and termination, inductive loads, line drivers, RFI, crosstalk and shielding).

ELEC 3501 Communications
4 credit points
Prerequisite: Advisory prerequisite ELEC 2501 Signals and Communications, and ELEC 3301 Signals and Systems. Offered: July. Classes: (2 lec and 2 hr lab/tut) per week. Assessment: Lab reports, assignments and an exam at end of semester.
Core unit of study for Electrical, Electrical (Information Systems), Computer and Telecommunications Engineering. Recommended elective unit of study for Software Engineering.

ELEC 3601 Digital Systems Design
4 credit points
Prerequisite: Advisory prerequisite ELEC 2601 Microcomputer Systems. Offered: July. Classes: Two lec per week and nine 3-hr lab sessions. Assessment: Laboratory performance and 2 hr exam at end of semester.
Core unit of study for Electrical, Electrical (Information Systems), Computer, Software and Telecommunications Engineering.

Structure of digital systems, programmable logic, erasable programmable logic devices (EPLD), field programmable gate arrays (FPGA), state machine design, datapath functions, computer arithmetic, serial and parallel arithmetic-logic-units, computer design, computer upgrade design exercise, design for testability, boundary scan testing, IEEE Test Access Port, floating-point arithmetic, IEEE Standard Floating-point Arithmetic, arithmetic pipe-lines, digital systems design project, specification languages, simulation.

ELEC 3701 Management for Engineers
4 credit points
Offered: March. Classes: (2 lec and 1 hr tut) per week.
Assessment: Tutorials, assignments and a 2hr exam at end of semester.
Core unit of study for Electrical, Electrical (Information Systems), Computer, Software and Telecommunications Engineering.

Engineers and management; Microeconomics; Macroeconomics; Managerial decision making; Behaviour of people in organisations; Human resource management for engineers; Strategic management; Accounting and management; Operation management; Marketing for engineers; The legal environment of business; Industrial relations; Engineering project management.

ELEC 3801 Fundamentals of Biomedical Engineering
4 credit points
Prerequisite: Advisory prerequisite ELEC 2401 Electronic Devices and Circuits or ELEC 2001 Electrical and Electronic Engineering. Offered: March. Classes: Two lec and an average of 2 hours lab/tut) per week. Assessment: Lab reports and a 2hr exam at end of semester.
Recommended elective unit of study for Electrical Engineering.

ELEC 4201 Electrical Systems Modelling and Analysis
4 credit points
Prerequisite: Advisory prerequisite ELEC 3201 Fundamentals of Electrical Energy Systems. Offered: March. Classes: (Two lec and a 2hr lab/tut) per week. Assessment: Assignments and a 2hr exam at end of semester.
Recommended elective unit of study for Electrical Engineering.

A broad range of topics will be presented related to electrical systems analysis, with a particular focus on electric power systems. Modelling of power system components. Analysis of power systems under normal operating conditions. Faults and protection. Transmission line transients. An introduction to various aspects of transient stability, voltage and long-term stability, dynamic stability. The electric power systems of the 21st century. Introduction to software packages such as EUROSTAG, EMPT.

ELEC 4301 Computer Control System Design
4 credit points
Prerequisite: Advisory prerequisite ELEC 3302 Fundamentals of Feedback Control. Offered: March. Classes: (Two lec and a 2hr lab/tut) per week. Assessment: Assignments, lab reports and a 2hr exam at end of semester.
Recommended elective unit of study for Electrical and Computer Engineering.

ELEC 4302 Image Processing and Computer Vision
4 credit points
Prerequisite: Advisory prerequisites ELEC 3301 Signals and Systems, and ELEC 4303 Digital Signal Processing. Offered: July. Classes: (Two lec and a 1-Hr tut) per week. Assessment: Assignments and a 2hr exam at end of semester.
Recommended elective unit of study for Electrical, Electrical (Information Systems) and Software Engineering.

Mathematical preliminaries: two-dimensional (2D) signals and systems, image models and image transformation, image digitisation, visual perception, sampling, quantisation and colour representation. Image enhancement and restoration; histological imaging; centred and extrapolation. Image compression: predictive methods, transform coding, vector quantisation and fractal based methods. Image reconstruction: Radon transform and projection theorem computer tomography (CT) and magnetic resonance imaging (MRI) systems and three-dimensional (3D) imaging. Image analysis and computer vision; edge detection and boundary extraction, region and object representation, image segmentation and pixel classification, texture analysis and scene detection and matching.

ELEC 4303 Digital Signal Processing
4 credit points
Prerequisite: Advisory prerequisites ELEC 2501 Signals and Communications, and ELEC 3301 Signals and Systems. Offered: March. Classes: (2 lec & 2hr lab/tut) wk. Assessment: Lab reports, assignments and one 2hr exam at end of Sem.
Core unit of study for Electrical (Information Systems), Computer and Telecommunications Engineering. Recommended elective unit of study for Electrical Engineering.

ELEC 4401 Electronic Design
4 credit points
Prerequisite: Advisory prerequisite ELEC 3301 Signals and Systems, and ELEC 3302 Fundamentals of Feedback Control and ELEC 3401 Electronic Devices and Circuits. Offered: March. Classes: (2 lec and a 2hr lab/tut) per week. Assessment: Assignments and/or quizzes, lab work and a 2hr exam at end of semester.
Core unit of study for the degree in Electrical Engineering (Information Systems). Recommended elective unit of study for Electrical, Computer, and Telecommunications Engineering.
Electronic design practice, passive and active component models, electronic circuit analysis, linear and nonlinear circuits for digital and analogue communication systems, operational amplifier circuits in practice, theory and application of phase locked loops, integrated circuit techniques, electronic filter design and implementation, analog-digital conversion techniques, distortion and noise in electronic circuits, special topics in electronic design.

ELEC 4402 Integrated Circuit Design
4 credit points
Prerequisite: Advisory prerequisites ELEC 3403 Switching Devices and High Speed Electronics, and ELEC 3601 Digital Systems Design. Offered: March. Classes: A design project and a 2hr exam at end of semester. Assessment: (Two lec and a 2hr lab/tut) per week.
Recommended elective unit of study for Electrical, Electrical (Information Systems) and Computer Engineering.
Technology (IC production process, design rules, layout). Design automation and verification (DRC, circuit extraction, simulation and hardware design languages). Basic digital building blocks (inverters, simple logic gates, transmission gates, propagation delays, power dissipation and noise margins). Digital circuits and systems (PLAs, dynamic circuits, RAM, ROM, microprocessors, systolic arrays). Semiconduct design (gate arrays and standard cells). Analog VLSI (switches, active resisters, current sources and mirrors, voltage, current references, amplifiers, DAC, ADC, continuous time filters, switch capacitor circuits, analog signal processing circuits).

ELEC 4501 Data Communication Networks
4 credit points
Prerequisite: Advisory prerequisite ELEC 3501 Communications. Offered: March. Classes: Two lec and a 2hr lab/tut) per week.
Assessment: Assignments, lab work and a 2hr exam at end of semester.
Core unit of study for Electrical (Information Systems) and Telecommunications Engineering. Recommended elective unit of study for Electrical and Software Engineering.
Multi-channel optical communication systems. Introduction to FDDI, DQDB and interworking of LANs with wide area high speed networks. Comprehensive broadband networks for user access. Standards.

ELEC 4502 Digital Communication Systems
4 credit points
Prerequisite: Advisory prerequisite ELEC 3501 Communications. Offered: March. Classes: (2 lec & 1hr lab)/wk. Assessment: Assignments, lab work and one 2hr exam at end of Sem 1.
Core unit of study for Electrical (Information Systems) and Telecommunications Engineering. Recommended elective unit of study for Electrical and Computer Engineering.

ELEC 4503 Error Control Coding
4 credit points
Prerequisite: Advisory prerequisite ELEC 3501 Communications. Offered: March. Classes: (2 lec & 1hr lab)/wk. Assessment: Assignments and a 2hr exam at end of semester.
Recommended elective unit of study for Electrical, Electrical (Information Systems) and Telecommunications Engineering.
Error control coding principles, linear algebra, linear block codes, cyclic codes, BCH codes, Reed-Solomon codes, burst error correcting codes, design of encoders for block codes, applications of block codes in communications and digital recording, convolutional codes, Viterbi algorithm, design of encoders for convolutional codes, applications of convolutional codes in communications, soft decision decoding of block and convolutional codes, trellis coded modulation, block coded modulation, design of codes for trellis codes, applications of trellis codes in data transmission, mobile communications, turbo codes.

ELEC 4601 Computer Design
4 credit points
Prerequisite: Advisory prerequisites ELEC 3403 Switching Devices and High Speed Electronics, and ELEC 3601 Digital Systems Design. Offered: March. Classes: (Two lec and a 2hr lab/tut) per week. Assessment: Assignments, lab reports and a 2hr exam at end of semester.
Core unit of study for Electrical (Information Systems) and Computer Engineering. Recommended elective unit of study for Electrical, Software and Telecommunications Engineering.

ELEC 4602 Real Time Computing
4 credit points
Prerequisite: Advisory prerequisites ELEC 3601 Digital Systems Design, and COMP 3100 Software Engineering. Offered: March. Classes: (2 lec & 2 hr lab/wk) per week. Assessment: Lab marks, reports and a 2hr exam at the end of semester.
Core unit of study for the degrees in Electrical (Information Systems), Computer and Software Engineering. Recommended elective unit of study for Electrical and Telecommunications Engineering.

ELEC 4604 Engineering Software Requirements
4 credit points
Prerequisite: Advisory prerequisites ELEC 3601 Digital Systems Design. ELEC 3701 Management for Engineers, COMP 3100 Algorithms, COMP 3205 Product Development Project. Offered: July. Classes: (2 lec and 2 hr lab/wk) per week. Assessment: Lab work, project and a 2hr exam at end of semester.
This unit of study will not be available until 2001. Core unit of study for Software Engineering.

The objective of this course is for students: to become aware of issues, tools and techniques involved in the engineering of software to meet specific performance, safety and security requirements; to understand the factors that affect software reliability and be familiar with design techniques that can enhance reliability. Topics covered include: systems design process; system specifications; functional decomposition; safety requirements aspects; security requirements; reliability concepts, models and design techniques.

ELEC 4701 Project Management
4 credit points
Prerequisite: Advisory prerequisite ELEC 3701 Management for Engineers. Offered: July. Classes: (Two lec and one 2hr tutorial/workshop) per week. Assessment: Assignments and in-course involvement, and a 2hr exam at end of semester.
Recommended elective unit of study for Electrical Engineering.

The objective of this course is for students to understand the issues involved in software project management and the factors that affect software quality; to be familiar with a range of standards, techniques and tools developed to support software project management and the production of high quality software; and to be able to develop software project plans, supporting software quality plans and risk management plans. Topics covered include: project management issues such as client management; management of technical teams; project planning and scheduling; risk management; configuration management; quality assurance and accreditation; legal issues. Topics on software quality include: factors affecting software quality; planning for quality; software quality assurance plans; software measurement; Australian and international standards.

ELEC 4702 Practical Experience
0 credit points
Offered: March. Assessment: Assessment in this course is by the submission, within the first two weeks of the February semester, of a written (hand or typed) report of about 2500 words of the industrial experience undertaken in accordance with regulations. This report is to be general in nature, indicating the overall structure of the company, the areas that the student became familiar with and their relationship to the firm and finally, what the student did. Detailed material may be incorporated as appendices if desired, and the student should have the report vetted beforehand by a responsible officer of the company.

Core unit of study for Electrical, Electrical (Information Systems), Computer, Software and Telecommunications Engineering.

It is necessary for the student to obtain industrial experience of 12 weeks' duration. This experience is normally gained at the end of Senior year before entering Senior Advanced Year. The work which is acceptable to the Faculty may range from rocess-type work in a large industrial complex, where many different engineering processes and labour management relations may be observed, to semi professional or research work with small specialist companies.

The responsibility rests with the student to obtain work acceptable to the Faculty, although the University, through the School of Electrical and Information Engineering and the Careers and Appointments Service, will assist as much as possible. The student is required to inform the School of Electrical and Information Engineering of any work arrangements made and to obtain approval of these arrangements from the School.

ELEC 4703 Thesis
12 credit points
Prerequisite: A minimum of 36 credit points from third or fourth year units of study. Offered: July. Classes: There are no formal classes. The bulk of the work will be carried out during the July semester with some preparatory work in the March semester. Assessment: Thesis, final presentation and interim progress submissions. Assessment: Thesis, final presentation and interim progress submissions.
Core unit of study for Electrical, Electrical (Information Systems), Computer, Software and Telecommunications Engineering.

Each student is required to select a topic, carry out background searches, experimental investigations, and to document such achievements and conclusions as are appropriate. The subject requires a consistent and significant effort equivalent to one or two hours per week in Semester 1, and two days per week in Semester 2.

ELEC 4704 Software Project Management
4 credit points
Prerequisite: Advisory prerequisites ELEC 3701 Management for Engineers, COMP 3100 Algorithms, and COMP 3205 Product Development Project. Offered: March. Classes: (2 lec and 2 hr lab/tut) per week. Assessment: Lab work, project and a 2hr exam at end of semester.
This unit of study will not be available until 2001. Core unit of study for Software Engineering.

The objective of this course is for students to understand the issues involved in software project management and the factors that affect software quality; to be familiar with a range of standards, techniques and tools developed to support software project management and the production of high quality software; and to be able to develop software project plans, supporting software quality plans and risk management plans. Topics covered include: project management issues such as client management; management of technical teams; project planning and scheduling; risk management; configuration management; quality assurance and accreditation; legal issues. Topics on software quality include: factors affecting software quality; planning for quality; software quality assurance plans; software measurement; Australian and international standards.

ELEC 4801 Biomedical Engineering Systems
4 credit points
Prerequisite: Advisory prerequisite ELEC 3801 Fundamentals of Biomedical Engineering. Offered: July. Classes: (Two lec and a 2hr lab/tut) per week. Assessment: Assignments, lab and a 2hr exam at end of semester.
Recommended elective unit of study for Electrical Engineering.
Advanced medical imaging - X-ray, ultrasound, magnetic resonance imaging (MRI), nuclear imaging, confocal microscopy, computed tomography (CT).

Medical image processing - pattern recognition, image compression, chromosome analysis. Functional electrical stimulation — bladder and bowel control, cerebellar and mid-brain stimulation, limb control, walking in paraplegics. Advanced instrumentation - automated blood pressure measurement and control, automated anaesthesia, artificial insulin injectors, biophotonic and optical fibre sensors. Laboratory experiments - respiratory measurements, blood pressure measurement, image processing and pattern recognition.

ELEC 5201 Electrical Systems Control
4 credit points
Prerequisite: Advisory prerequisites ELEC 3302 Fundamentals of Feedback Control, and ELEC 4201 Electrical Systems Modelling and Analysis. **Offered:** July. **Classes:** (2 lec & 1 hr lab/tut) per wk.
Assessment: Assignments and a 2hr exam at end of semester. Recommended elective unit of study for Electrical Engineering.

Application of control theory to a selection of electrical systems such as power systems, drives, and robotic and vehicle systems. Control issues such as voltage, frequency and power regulation, protection, stability, reliability and security. Industrial controllers. Digital control and microcontrollers. Aspects of adaptive control, robust control. Supervisory control and data acquisition (SCADA) systems.

ELEC 5202 Advanced Power Electronics and Drives
4 credit points
Prerequisite: Advisory prerequisite ELEC 3202 Power Electronics and Drives. **Offered:** July. **Classes:** (2 lec & 1 hr lab/tut) per wk.
Assessment: Assignments and a 2hr exam at end of semester. Recommended elective unit of study for Electrical Engineering.

Modern power semiconductor devices ‘smart power’; design analysis and simulation of power electronic circuits, digital firing control; recent machine developments; DC and AC drives, analysis, control; digital techniques for control, protection and data logging; applications.

ELEC 5301 Non-linear and Adaptive Control
4 credit points
Prerequisite: Advisory prerequisites ELEC 3302 Fundamentals of Feedback Control, and ELEC 4301 Computer Control System Design. **Offered:** July. **Classes:** (Two lec and a 2hr lab/tut) per week. **Assessment:** Assignments, labs and an exam at the end of semester.

Recommended elective unit of study for Electrical Engineering.

ELEC 5302 Fuzzy Systems
4 credit points
Offered: July. **Classes:** (2 lec & one 1 hr lab/tut) per wk. **Assessment:** Assignments and one 2hr exam at end of Sem. Recommended elective unit of study for Electrical Engineering.

Mathematical background: ordinary set theory, uncertainty and linguistic variables, fuzzy sets, algebra of fuzzy sets, membership functions. Fuzzy control: approximate reasoning, fuzzy logic, fuzzification, defuzzification, fuzzy associative memory, fuzzy system design, a fuzzy controlled vehicle, advanced fuzzy controllers, fuzzy-nerval systems. Other applications: fuzzy pattern recognition, fuzzy image transform coding, fuzzy knowledge based systems.

ELEC 5501 Advanced Communication Networks
4 credit points
Prerequisite: Advisory prerequisites ELEC 3501 Communications, and ELEC 4501 Data Communication Networks. **Offered:** July. **Classes:** (Two lec and a 1 hr tut) per week. **Assessment:** Assignments, reports and a 2hr exam at end of semester. Recommended elective unit of study for Electrical, Electrical (Information Systems) and Telecommunications Engineering. ISDN architecture and organisation, common channel signalling system 7. Concepts of broadband, metropolitan and wide area networks.

Network technologies, asynchronous mode transfer, fast packet switching, FDDI, DSDB. Multimedia communications networks.

ELEC 5502 Satellite Communication Systems
4 credit points
Prerequisite: Advisory prerequisites ELEC 3501 Communications, and ELEC 4502 Digital Communication Systems. **Offered:** July. **Classes:** (Two lec and a 1 hr tut) per week. **Assessment:** Assignments and a 2hr exam at end of semester. Recommended elective unit of study for Electrical, Electrical (Information Systems) and Telecommunications Engineering.

Introduction to satellite communication, satellite link design, propagation characteristics of fixed and mobile satellite links, channel modelling, access control schemes, system performance analysis, system design, mobile satellite services, global satellite systems, national satellite systems, mobile satellite network design, digital modem design, speech codex design, error control codex design, low earth orbit communication satellite systems.

ELEC 5503 Optical Communication Systems
4 credit points
Prerequisite: Advisory prerequisites ELEC 3402 Communications Electronics, and ELEC 3501 Communications. **Offered:** July. **Classes:** (Two lec and a 1 hr tut) per week. **Assessment:** Lab, assignments and a 2hr exam at end of semester. Recommended elective unit of study for Electrical, Electrical (Information Systems) and Telecommunications Engineering.

Introduction to optical fibre communications, optical fibre transmission characteristics, semiconductor and fibre laser signal sources, optical transmitters, direct and external modulation, optical amplifiers, optical repeaters, fibre devices and multiplexers, fibre nonlinearity, optical detectors, optical receivers and regenerators, sensitivity and error rate performance, photonic switching and processing, lightwave local area networks, multi-channel multiplexing techniques, optical fibre communication systems.

ELEC 5601 Advanced Real Time Computing
4 credit points
Prerequisite: Advisory prerequisite ELEC 4602 Real Time Computing. **Offered:** July. **Classes:** (Two lec and a 2hr lab/tut) per week. **Assessment:** Lab mark and a 2hr exam at the end of semester. Recommended elective unit of study for Electrical, Electrical (Information Systems), Computer and Software Engineering.

Modelling of real-time systems, design techniques, analysis and prediction of real-time behaviour, advanced scheduling techniques, simulation, verification and validation, communications, distributed real-time systems, reliability and fault tolerance, hardware architectures, CASE tools for real-time systems. Standards for real-time languages and operating systems.

ELEC 5602 Advanced Computer Architecture
4 credit points
Prerequisite: Advisory prerequisites ELEC 4601 Computer Design and (COMP 2001 Computer Systems or COMP 2901 Computer Systems Adv). **Offered:** July. **Classes:** (Two lec and a 2hr lab/tut) per week. **Assessment:** Lab mark and a 2hr exam at the end of semester.
Recommended elective unit of study for Electrical, Electrical (Information Systems), Computer and Software Engineering.

ELEC 5603 Biologically Inspired Signal Processing 4 credit points
Offered: July. Classes: (2 lec & 1 hr lab/tut)/wk. Assessment: Assignments and a 2hr exam at the end of semester. Recommended elective unit of study for Electrical Engineering.

Textbooks
Jabri, Coggins and Flower Adaptive Analog Neural Systems (Chapman and Hall, 1995)

ELEC 5604 Adaptive Pattern Recognition 4 credit points
Offered: July. Classes: (2 lec & 1 hr lab/tut)/wk. Assessment: Assignments and one 2hr exam at end of Sem. Recommended elective unit of study for Electrical Engineering.

ELEC 5605 Advanced Digital Engineering 4 credit points
Prerequisite: Advisory prerequisite ELEC 4601 Computer Design. Offered: July. Classes: (Two lec and a 1 hr lab/tut) per week. Assessment: Assignments and a 2hr exam at the end of semester. Recommended elective unit of study for Electrical, Electrical (Information Systems) and Computer Engineering.

Advanced HDL skills for FPGA and ASIC design. CAD methodologies for design verification. Prototyping very high speed systems, reconfigurable prototypes. Testing, debugging and design for testability. Design methodologies for low power, high speed, small area or low cost. Assessment and selection of vendor technologies. System design exercise. Management of team designs.

ELEC 5606 Multimedia Systems and Applications 4 credit points
Prerequisite: Advisory prerequisites COMP 3100 Software Engineering, ELEC 4303 Digital Signal Processing, and ELEC 4501 Data Communication Systems. Offered: July. Classes: (Two lec and a 2hr lab/tut) per week. Assessment: Lab mark and a 2hr exam at end of semester. Recommended elective unit of study for Electrical, Electrical (Information Systems), Computer, Software and Telecommunications Engineering.

This course covers the design and implementation of interactive networked multimedia processing and communication applications. The course will cover principles of switched networks, local area networks, wide area networks and their interoperability. Standards and protocols will be studied as examples, including the International Telecommunications Union (ITU) H.320 and H.323 series for conferencing, and H.324 for telephony. Video and audio coding principles will be covered and associated protocols and standards studied.

ELEC 5607 Hardware/Software Co-design 4 credit points
Prerequisite: Advisory prerequisites ELEC 3601 Digital Systems Design and COMP 3100 Software Engineering. Offered: July. Classes: (2 lec and 2 hr lab/tut) per week. Assessment: Lab mark and an exam at end of semester. Recommended elective unit of study for Electrical, Electrical (Information Systems) and Computer Engineering.

Hardware Specification; Software Specification; CAD tools Review of Operating System Principles; Review of Computer Bus and I/O Systems; Interrupts and DMA; I/O Device Abstraction; Device Drivers; Microcode Design.

ELEC 5608 Electronic Commerce 4 credit points
Prerequisite: Advisory prerequisites ELEC 3701 Management for Engineers and ELEC 4501 Data Communication Networks. Offered: July. Classes: (2 lec and 2 hr lab/tut) per week. Assessment: Lab mark and an exam at end of semester. Recommended elective unit of study for Electrical, Electrical (Information Systems) and Computer Engineering

Mechanical Engineering

MECM1500 Mechanical Engineering 1 6 credit points
Prohibition: Mutually exclusive with: MECH 1501 Engineering Statics. Classes: Statics: 1 x 2hr plus 1x1 hr lecture-tute session/week. Professional Eng: 2 x 1 hr lecture-tute per week. Assessment: In class assessments, exam, assignments. First year core unit of study for the degrees in Mechanical and Mechatronics Engineering.

Syllabus Summary
Professional Engineering (2 Cr): structure and management of engineering projects, engineering project planning, engineering economics. Engineering management issues, total quality management, ethics, liability, environment, health, etc. Development of both verbal and written communication skills. Accessing information technology.

Statics (4 Cr): scalar and vectors; units and dimensional homogeneity. Statics of a rigid body; forces and moments; free body diagrams in two and three dimensions; resultants of forces and moments. Equilibrium of rigid bodies, trusses, frames and machines; statically determine pin-jointed structures. Distributed forces, centroids of lines, areas and volumes; cables. Friction, wedges, screws; flexible belts.

Objectives
Students will develop skills in:
- engineering management techniques
- working in groups
- verbal and written communication
- solving problems in static engineering structures

Expected outcomes
To develop an understanding of:
- the role of professional engineers and their responsibilities
- the basic methods required to perform static engineering mechanics calculations.

Textbooks

Library Classification: 531.64
MECH 1501 Engineering Statics
4 credit points
Prohibition/other: MECH 1500 Mechanical Engineering 1.
Classes: 1 x 2hr plus 1 x 1hr lec-tut session/wk. Assessment: In
class assessment, assignments, exam.
First year core unit of study for the degree in Aeronautical En­
ingeering
Syllabus Summary: Scalar and vectors; units and dimension­
al homogeneity. Statics of a rigid body; forces and moments;
free body diagrams in two and three dimensions; resultants of
forces and moments. Equilibrium of rigid bodies, trusses, frames
and machines; statically determinate pin-jointed structures. Dis­
tributed forces, centroids of lines, areas and volumes; cables.
Friction, wedges, screws; flexible belts.
Objectives: To develop an understanding of:
• the basic methods required to perform static engineering me­
chanics calculations
Expected outcomes: Students will develop skills in:
• solving problems in static engineering structures

Textbooks
Bedford and Fowler, Engineering Mechanics: Statics (vol 1) SI
Edition, Addison Wesley
Library Classification: 531.64

MECH 1510 Kinematics and Dynamics
6 credit points
Prohibition/other: MATH 1051 Mechanics 1E. Classes: 2 x 2hr lec­
tut/wk. Assessment: Assignments, in class assessment, exam.
First year core unit of study for the degrees in Mechanical and
Mechatronic Engineering and Junior elective unit of study for
the degree in Aeronautical Engineering.
Syllabus Summary: Particle motion; cartesian, normal and
tangential, and polar coordinate systems; relative motion; work,
energy and power; mass flows and variable mass systems; mo­
momentum of particles and systems of particles; collisions and
the coefficient of restitution. Gearing, fundamental law of toothed
gearing, parallel axis gear trains, epicyclic gear trains, tubular
analysis of planetary trains, free body diagrams, power trans­
mission.
Objectives: To develop: an understanding, and competence in,
performing basic engineering mechanics calculations; prob­
lem-solving skills in team work
Expected outcomes: Students will develop problem-solving
skills in engineering mechanics.

Textbooks
Bedford and Fowler, Engineering Mechanics: Dynamics (vol 2) SI
Library Classification: 531.3

MECH 1600 Manufacturing Technology
4 credit points
Prohibition/other: Mutually exclusive with: AERO 1600 Workshop
Technology. Classes: One 3 hour lab per week. Assessment:
Practical work.
First year core unit of study for the degrees in Mechanical and
Mechatronic Engineering
(a) Fitting - Measurement, measuring tools, marking tools,
testing tools, holding tools, hammers, cutting tools, bolts and
studs, tapping and screwing, reaming and scraping.
(b) Machining - Various metals and their machinability, cut­
ting tool materials, cutting tool shape, the machine tools: lathe,
mill, grinder, drill, shaper, deburring and finishing operations.
(c) Welding - Various welding processes, distortions, flame
cutting, resistance welding. Practical work in gas welding and
arc welding.
(d) Heat treatment, blacksmithing and forging - Definition
and importance of heat treatment, and the process of forging,
normalising hardening, case hardening.
(e) Founding - Materials used in the foundry, moulding and
core making, the casting process.
Safety requirements: All students are required to comply with
the safety regulations. Students who fail to do this will not be
permitted to enter the workshops. In particular, approved indus­
trial footwear must be worn, and long hair must be protected by
a hair net. Safety glasses must be worn at all times.

Objectives
To develop an understanding of a range of machining and manu­
facturing processes required to make mechanical components
Expected outcomes
Students should develop skills in machining and manufacturing
methods through practical experience

Textbooks
Library Classification: 671.

MECH 1800 Computational Engineering 1A
7 credit points
Prohibition/other: MECH 1801 Computational Engineering 1C.
Classes: Lectures and Computer labs. Assessment: In-class
assessment, assignments, exam.
First year core unit of study for the degrees in Mechanical and
Mechatronic Engineering.
CAD (2 Cr): Elements of solid modelling systems; basic spa­
tial concepts. The manufacture and assembly of machine com­
ponents. Kinematics interaction and modelling, with examples
taken from machinery.
Mechatronic Design (2 Cr): Introduction to the design of me­
chatronic systems. Elements of mechatronic systems; actuators,
sensors. Industrial examples.

Textbooks
Madab: Introduction to Matlab, basic features; array opera­
tions; graphing; relations and logical operations. Linear algebra.
Applications in mechanics and numerical analysis. Tool boxes.
MSOffice: Introduction to spread sheet calculations, data
structures, graphing. Applications in numerical analysis. Object­
ives: To introduce engineering design concepts in the context of
a computational environment
Expected outcomes: Students will develop skills in
• problem-solving with Matlab
• solving problems with spread sheets
• understanding spatial concepts in design
• solving engineering mechanics problems with a solid model­
ing package
• use of mechatronics elements

SolidWorks Course Notes, from Wentworth Copy Centre

Library Classification: 620.0042

MECH 1801 Computational Engineering 1C
5 credit points
Prohibition/other: MECH 1800 Computational Engineering 1 A.
Classes: Lectures and Computer labs. Assessment: In-class
assessment, assignments, exam.
First year core unit of study for the degree in Aeronautical En­
ingeering.
CAD (2 Cr): Elements of solid modelling systems; basic spa­
tial concepts. The manufacture and assembly of machine com­
ponents. Kinematics interaction and modelling, with examples
taken from machinery

Matlab: Introduction to Matlab, basic features; array opera­
tions; graphing; relations and logical operations. Linear algebra.
Applications in mechanics and numerical analysis. Tool boxes.

Textbooks
SolidWorks Course Notes, from Wentworth Copy Centre

Library Classification: 620.0042
MECH 1810 Computational Engineering 1B
3 credit points
Classes: 1 hr lec and 2 hr lab/week. Assessment: One 11/2 hr exam and computer exercises.

First year core unit of study for the degree in Mechatronic Engineering.

Objectives: To provide the basic computational tools in the context of engineering applications currently being studied.

Expected outcomes: Students will develop skills in the design and implementation of C programs to solve engineering problems.

Textbooks
Kernhan and Ritchie The C programming Language 2nd edn (Prentice Hall, 1988)
McConnell Code Complete (Microsoft Press, 1994)

MECH 2200 Thermofluids
6 credit points
Prohibition/other: MECH 2201 Thermodynamics 1. Classes: (3 lec and one 3 hr lab/rotu)wk. Assessment: One 2 hr exam, one 11/2 hr exam, assignments and laboratory work.

Second year core unit of study for the degree in Mechanical Engineering and Mechatronic Engineering.

(a) Thermodynamics (4 Cr) - concepts, work and heat, property of substances, 1st law of thermodynamics, control mass and control volume analysis of power and refrigeration cycles; thermal efficiency, entropy and 2nd law of thermodynamics, reversible and irreversible processes, isentropic and irreversible processes, data structures, etc.

(b) Fluids (2 Cr) - fluid properties, pressure, shear, hydrostatics, forces, moments, buoyancy, stability, continuity equations, streamlines, Euler, Bernoulli equations, linear momentum, propulsion, angular momentum, turbomachinery, dimensional analysis, boundary layers, pipe flow and friction.

Objectives: The understanding of fluids and thermodynamics fundamentals.

Expected outcomes: To be able to analyse engineering problems involving fluid flow, power systems, engine and refrigeration cycles.

Textbooks
Cengel and Boles, Thermodynamics, an Engineering Approach, 2nd edn (McGraw Hill)
Potter and Wiggert, Mechanics of Fluids, Prentice-Hall.
Library Classification: 536.7, 621.4, 532., 620.106

MECH 2201 Thermodynamics 1
4 credit points
Prohibition/other: MECH 2200 Thermofluids. Classes: (2 lec and one 3 hr lab/rotu)wk. Assessment: Assessment: one 2 hr exam, assignments and laboratory work.

Second year core unit of study for the degree in Aeronautical Engineering.

Syllabus summary: Thermodynamics - concepts, work and heat, property of substances, 1st law of thermodynamics, control mass and control volume analysis of power and refrigeration cycles; thermal efficiency, entropy and 2nd law of thermodynamics, reversible and irreversible processes, isentropic efficiency.

Objectives: The understanding of thermodynamics fundamentals.

Expected outcomes: To be able to understand engineering problems involving power systems, engine and refrigeration cycles.

Textbooks
Cengel and Boles, Thermodynamics, an Engineering Approach, 2nd edn (McGraw Hill)
Library Classification: 536.7, 621.4

MECH 2202 Fluids 1
2 credit points
Prohibition/other: MECH 2200 Thermofluids. Classes: 1 lecture/wk and labs and tut. Assessment: One 11/2 hr exam, assignments and laboratory work.

Second year unit of study for the degrees in Mechanical and Mechatronic Engineering.

Syllabus Summary: Fluid properties, pressure, shear, hydrostatics, forces, moments, buoyancy, stability, continuity equations, streamlines, Euler, Bernoulli equations, linear momentum, propulsion, angular momentum, turbomachinery, dimensional analysis, boundary layers, pipe flow and friction.

Objectives: The understanding of fluids fundamentals.

Expected outcomes: To be able to analyse engineering problems involving fluid flow.

Textbooks
Potter and Wiggert, Mechanics of Fluids, Prentice-Hall.
Library Classification: 536.7, 621.4, 532., 620.106

MECH 2300 Materials 1
4 credit points
Prohibition/other: CIVL 2101 Properties of Materials. Classes: 2 lectures and 1 hr tut/wk plus three 1 hr lab sessions. Assessment: One 2 hr exam plus assignment work.

Second year core unit of study for the degrees in Mechanical Engineering and Aeronautical Engineering.

Syllabus Summary: Materials classification; understanding materials properties and their relation to structure as a function of forming methods and heat treatment processes; materials behaviour in service; selection criteria and case studies for engineering applications.

Objectives: To understand the classification of engineering materials, their properties in relation to microstructure.

Expected outcomes: Students should be able to appreciate the properties of a range of engineering materials and how and why these are connected with microstructures and forming and treatment methods.

Textbooks
Reference books
Bailey The Role of Microstructure in Metal (Metallurgical Services, 1966)
Bailey Introductory Practical Metallography (Metallurgical Services, 1966)
Bailey The Strength and Strength of Metal (Metallurgical Services, 1967)
John Understanding Phase Diagrams (Macmillan, 1974)

MECH 2400 Mechanical Design 1
6 credit points
Classes: (2 lec/wk, plus 2 x 2hr drawing office sessions)wk. Assessment: assignments and quizzes.

Second year core unit of study for the degrees in Mechanical and Mechatronic Engineering and Aeronautical Engineering.

(b) Machine Design - engineering innovation, creativity, teamwork. Design process, problem specification, conceptual techniques and design evaluation. Ergonomic manufacturing and assembly considerations.

Detail design of components including: design loads, failure and factor of safety; calculation approach and presentation conventions; stress effects in shape definition and material selection; introduction to engineering hardware including fasteners,
To develop an understanding of:

- Textbooks
 - standard components
 - the design process from initial idea to finished product
 - the need for and use of standard drawings in the communication and definition of parts and assemblies
 - creativity
 - the design process from initial idea to finished product
 - methods use to analyse designs
 - standard components

Expected outcomes: Students will develop skills in:

- working in teams
- freehand sketching and drafting practices
- idea generation methods
- design analysis techniques and layout
- design development and testing
- written and graphical communication.

Textbooks

- Boudny Engineering Drawing (McGraw-Hill)
- Reference books
 - SFINGLYE & MISCHKE Mechanical Engineering Design (McGraw-Hill)

Library Classification: 621.815

Library Classification: 621.815

MECH 2500 Engineering Dynamics 1

4 credit points

Prerequisite: MATH 1001, 1002 and MECH 1510 Kinematics and Dynamics. Classes: Two lec/wk, three 3 hr lab sessions and ten 2 hr tutorials. Assessment: Exam and assignments.

Second year core unit of study for the degree in Mechanical and Mechatronic Engineering and Aeronautical Engineering.

Syllabus Summary: Planar mechanisms, linkages, mobility; instant centres of rotation, Kennedy's theorem; velocity and acceleration polygons. Kinematics of rigid bodies, frames of reference, velocity and acceleration, rotating frame of reference, relative velocity and acceleration, gyroscopic acceleration. Kinetics of rigid bodies, linear momentum and Euler's first law; angular momentum and Euler's second law; centre of mass; moments of inertia, parallel axis and parallel plane theorems, principal axes and principal moments of inertia, rotation about an axis; impulse and momentum; work and energy, kinetic and potential energies. Applications to orbital and gyroscopic motion. Introduction to Lagrangian methods.

Objectives: To develop an understanding of the basic methods required to perform rigid body dynamics calculations.

Expected outcomes: Students will develop skill in analysing planar mechanisms, and in performing rigid body dynamics calculations.

Reference

- Smith and Smith Mechanics 2nd edn (Wiley, 1990)
- Mabie and Reinholz Mechanisms and Dynamics of Machinery 4th edn (Wiley, 1987)

Library Classification: 621.8

MECH 2700 Mechatronics 1

6 credit points

Classes: 3 hr lectures and a 3 hr lab/wk. Assessment: 2 hr exam plus project work.

Second year core unit of study for the degree in Mechatronic Engineering.

Mechatronic Systems: General principles of mechatronic systems. Components of systems: basic sensor devices and sensor conditioning; actuation devices including basic electrical servos, pneumatics and hydraulics; essential principles in control and programming.

Embedded Computing: Principles of common industrial control computers including PLCs and single-board computers.

Applications: Detailed case studies of mechatronic systems with examples from manufacturing, automobile systems and other areas.

Objectives: To provide an introduction to mechatronics principles and an appreciation of the working of mechatronic systems.

Expected outcomes:

- A broad understanding of the main components of mechatronic systems.
- Understanding of the principles involved in computer controlled machinery, including sensing, actuation and control.
- Practical knowledge of the development of simple embedded computer programs
- Understanding of the practical application of mechatronic systems in applications such as manufacturing, automobile systems and robotics.

Textbooks

Library Classification: 670.427, 629.89, 629.895, 621.2, 629.804

MECH 2900 Anatomy and Physiology for Engineers

4 credit points

Prerequisite: Biology BIOL 1001 or some previous biology experience. Classes: 3 hrs/wk, including lectures and laboratory sessions. Assessment: exam plus assignments and laboratory reports.

Syllabus summary: Gross anatomy of the major body systems; physiology of cell homeostasis; physiology of nervous, circulatory, respiratory, muscular-skeletal, digestive and renal systems relevant to biomedical engineering.

Objectives:

- Students should gain familiarity with anatomical and physiological terms and understanding their meaning
- Students should gain an understanding of the gross anatomy of the major systems in the human body and their importance in the design of biomedical devices
- Students should gain an understanding of the major physiological principles which govern the operation of the human body

Expected outcomes: Students will be able to

a) identify the gross anatomical features of the human body
b) describe the normal function of the major body systems (nervous, circulatory, respiratory, muscular-skeletal, digestive and renal)
c) determine how these functions relate to cellular function

d) determine how a biomedical engineering device affects the normal anatomy and function of the body.

MECH 3200 Thermal Engineering 1

7 credit points

Prerequisite: MECH 2200 Thermofluids or MECH 2201 Thermodynamics 1. Prohibition/other: MECH 3201 Thermodynamics 2.

Thermodynamics 2. Classes: (3 lec and 2 x 1 hr tut)/week and laboratory work. Assessment: two 2hr exams, assignments and laboratory reports.

Third year core unit of study for the degree in Mechanical Engineering.

Thermodynamics (57%): Availability, statistical entropy and second law of thermodynamics, generalised charts for properties, engine characteristics, gas mixtures, psychrometry, air conditioning and refrigeration, thermodynamics of combustion.

Heat transfer (43%): Plane and cylindrical conduction convection, thermal networks, fins, heat exchangers, LMTD and NTU methods, unsteady conduction, forced and natural convection heat transfer coefficients, dimensional analysis, radiation introduction.

Objectives: To develop an understanding of the basic principles of heat transfer, thermodynamic cycles, gas mixtures, combustion and chemical equilibrium.

Expected outcomes: Ability to tackle and solve a range of heat transfer, thermodynamics and fluid flow problems including: (i) finned heat exchangers, cooling by fluids, quenching, insulation, and solar radiation; (ii) complex thermodynamics cycles, air conditioning, combustion, chemical equilibrium, problems involving gas mixtures.
Thermodynamics

Chapter 2 - Undergraduate units of study

Textbooks
Incropera and DeWitt Fundamentals of Heat and Mass Transfer (Wiley)
Cengel and Boles Thermodynamics, and Engineering Approach (McGraw-Hill) 2nd Edn

Library Classification: 536.7, 621.4, 536.2

MECH 3201 Thermodynamics 2
4 credit points
Prerequisite: MECH 2200 Thermofluids or MECH 2201 Thermodynamics 1. Prohibition/other: MECH 3200 Thermal Engineering 1. Classes: (2 lec and 1 x 1 hr tut)wk and laboratory work. Assessment: one 2hr exam, assignments and laboratory reports.

Third year core unit of study for the degree in Aeronautical Engineering

Syllabus summary: Thermodynamics: availability, statistical entropy and second law of thermodynamics, generalised charts for properties, engine characteristics, gas mixtures, psychrometry, air conditioning and refrigeration, thermodynamics of combustion.

Objectives: To develop an understanding of the basic principles of thermodynamic cycles, gas mixtures, combustion and chemical equilibrium.

Expected outcomes: Ability to tackle and solve a range of complex thermodynamic cycles, air conditioning, combustion, chemical equilibrium, problems involving gas mixtures.

Textbooks
Cengel and Boles Thermodynamics, an Engineering Approach (McGraw-Hill) 2nd Edn.

Library Classification: 536.7, 621.4

MECH 3210 Fluid Mechanics
4 credit points
Prerequisite: MECH 2200 Thermofluids, AERO 2200 Introductory Aerodynamics or MECH 2202 Fluids 1. Classes: 3 hr/week + laboratory sessions. Assessment: Assignments, laboratory and 2 hr exam.

Third year core unit of study for the degree in Mechanical Engineering

Navier-Stokes equations - derivation, significance and fundamental importance.

Pipe flow - Bernoulli, shear losses, minor losses, networks.
Pumps - pump types, characteristics, applications.
Potential flow - stream function and potentials. Laplace's Equation, some basic building blocks. Flow around a cylinder, lift, drag, etc.

Boundary layers - derivation of equations, solution procedures for Laminar case, introduce the concept of turbulence, transition.

Turbulence - concept, properties of turbulence, eddy viscosity, more advanced approaches.

Turbulent flow near a wall - law of the wall, pipe flow velocity profiles.

Channel flow - flow in a channel, weir, hydraulic jump, etc. Compressible flow - sound waves, normal shock, nozzle flow, shock tube.

Objectives: To be able to solve problems involving pipe flow, pumps, free surface flow, boundary layers, drag, lift and turbulent flow.

Expected outcomes: an intuitive understanding of force and energy balances in fluid mechanics. Ability to design pipe networks and determine pump requirements; to determine and optimise the drag on streamlined and bluff bodies, to apply basic turbulence models.

MECH 3300 Materials 2
4 credit points
Prerequisite: MECH 2300 Materials 1 & AERO 2300 Mechanics of Solids 1. Classes: 2 lec/wk plus 1 tut/wk & two labs. Assessment: One 2 hr closed book exam plus assignments and lab reports as specified at the commencement of the semester.

Third year core unit of study for the degrees in Aeronautical and Mechanical Engineering.

Syllabus summary: Short-term and long-term mechanical properties, introductory fracture and fatigue mechanics, dislocations, polymers and polymer composite materials, ceramics and glasses, structure-property relationships, selection of materials in mechanical design.

Objectives: (a) To understand the relationship between properties of materials and their microstructures; and (b) to improve mechanical design based on knowledge of mechanics and properties of materials.

Expected outcomes: Students should gain the capabilities to select proper materials for simple engineering design.

Textbooks
Lecture notes

Reference Books
Ashby & Jones Engineering Materials 1 (Butterworth Heinemann)
Ashby & Jones Engineering Materials 2 (Butterworth Heinemann)
Higgins Properties of Engineering Materials (Edward Arnold)
Gallister, Jr. Materials Science and Engineering-An Introduction (John Wiley & Sons)
Bolton Engineering Materials Technology (Butterworth Heinemann)
Ashby Materials Selection in Mechanical Design (Pergamon Press)

Library Classification: 620-624, 666-679

MECH 3310 Mechanics of Solids 2
4 credit points
Prerequisite: AERO 2300 Mechanics of Solids 1 and MATH 2005. Classes: 2 lec/wk plus 2 tut/wk. Assessment: One two hour examination plus assignments and a lab in the semester.

Third year core unit of study for the degree in Mechanical Engineering.

Syllabus Summary: Stress and strain, linear elasticity and fundamental plasticity, primary solution strategy, introduction to variational methods, introduction to numerical stress analysis, case studies.

Objectives: To understand how to evaluate the behaviour of solid materials subjected to stress and deformation.

Expected outcomes: Students should gain the ability, to analyse simple engineering problems in terms of strength, stress, and deformation in relation to properties of materials.

Textbooks
Lecture notes

Reference books
Chandrupatla and Belegundu Introduction to Finite Elements in Engineering (Prentice Hall, 1991)
Johnson and Mellor, Engineering Plasticity (D. Van Nostrand Company Ltd, 1973)
Timoshenko and Goodier Theory of Elasticity (McGraw-Hill, 1951)

MECH 3400 Mechanical Design 2A
4 credit points
Prerequisite: MECH 2400 Mechanical Design 1. Classes: 2 lectures & one 1 hr drawing office session/wk. Assessment: Assignments and quizzes.

Third year core unit of study for the degrees in Mechanical and Mechatronic Engineering

Syllabus Summary: The following areas of design are usually included, together with others which may be added: Introduction to weld practice, strength analysis of welded joints leading to more extensive weldment designs. Principles and applications in the design of a spatial structure. Review of failure mechanism and fatigue analysis. Power screws and preloaded bolted joints. The application of the spreadsheets to design calculations and optimal analyses. Bolted joints in shear and bearing. The uses and examinations of shafts. Introduction to Computer Aided Design packages which may include a wire frame and a solid modeller. Belt and drives. Couplings and power transmission components.

Objectives: To provide students with techniques with which they can analyse classes of machine components. To demonstrate that these techniques have common underlying principles which may be applied with various degrees of precision.
make the student aware of the range of machinery that has thus far been invented and developed and how this process is continuing. To provide an understanding of the functions of the design engineer in a company structure and the effectiveness of management techniques in ensuring successful designs.

Expected outcomes: Students will be able to set up mathematical models representing the stresses, deflection and fatigue life expectancy of a range of machine components. This will provide the student with the means of applying the underlining principles to new parts and assemblies. To be able to function in a team, set up communication links, distribute work load and make adjustments leading to desired conclusions.

Textbooks
Reference Books
Orlov Fundamentals of Machine Design Vol I to V (M.I.R. Moscow)

Faculty of Engineering Handbook 1999

MECH 3410 Mechanical Design 2B
4 credit points
Prerequisite: MECH 2400 Mechanical Design 1. Classes: 2 lectures & one 1 hr drawing office session/wk. Assessment: Assignments and quizzes.
Third year core unit of study for the degrees in Mechanical and Mechatronic Engineering

Syllabus Summary: The following areas of design are usually included, together with others which may be added: 3 Dimensional drawings and solid models. Application programming from within a CAD system. Scheduling design and manufacturing tasks, Analysis of springs. Evolution and selection of CAD system for design and drafting applications. Hydrodynamic bearings. Gears and gear drives. Clutches and brakes. Open-ended projects that utilise many elements of the unit of study.

Objectives: To provide students with techniques with which they can analyse classes of machine components. To demonstrate that these techniques have common underlining principles which may be applied with various degrees of precision. To make the student aware of the range of machinery that has thus far been invented and developed and how this process is continuing. To provide an understanding of the functions of the design engineer in a company structure and the effectiveness of management techniques in ensuring successful designs.

Expected outcomes: Students will be able to set up mathematical models representing the stresses, deflection and fatigue life expectancy of a range of machine components. This will provide the student with the means of applying the underlining principles to new parts and assemblies. To be able to function in a team, set up communication links, distribute work load and make adjustments leading to desired conclusions.

Textbooks
Reference Books
Orlov Fundamentals of Machine Design Vol I to V (M.I.R. Moscow)

MECH 3500 Engineering Dynamics 2
4 credit points
Prerequisite: MECH 2500 Engineering Dynamics 1 and (MATH 2001 & MATH 2005). Classes: 2 lec and 1 tut/wk plus laboratory sessions. Assessment: One 2 hr exam, assignments and laboratory work.
Third year core unit of study for the degrees in Mechanical and Mechatronic and Aeronautical Engineering

Syllabus Summary: Vibration of machines and structures. Modelling of linear and nonlinear mechanical systems; equations of motion; state-space representation; numerical solution. Linear system analysis in the frequency and time domains; transfer functions. Matrix formulation for multi-degree-of-freedom systems; natural frequencies; modal analysis. Introduction to the analysis of vibration and whirl of simple distributed systems such as beams and shafts.

Objectives: To provide techniques from mechanics and system theory applicable to the dynamics of machines and structures.

Expected outcomes: (a) Competence in modelling the dynamics of mechanical systems, setting up their equations of motion and solving them numerically or analytically.

(b) Familiarity with the occurrence, isolation and measurement of mechanical vibration.

Reference books
Rao Mechanical Vibrations (Addison-Wesley, 1995)
Inman Engineering Vibration (Prentice-Hall, 1996)
Dimarogonas Vibration for Engineers (Prentice-Hall, 1996)
Ogata System Dynamics (Prentice-Hall, 1992)
Ettor Engineering Problem Solving with MATLAB (Prentice-Hall)

Assessment: One 2 hr exam plus labs, poster and industrial visits.

6 credit points
Prerequisite: MECH 1600 Manufacturing Technology. Classes: lec: 3hrs/wk; plus an average of 2hrs/wk for tut, lab and industrial visits. Assessment: One 2 hr exam plus labs, poster and industrial visits.
Third year core unit of study for the degrees in Mechanical and Mechatronic Engineering.

Manufacturing processes - several manufacturing processes will be considered from the points of view of fundamentals of the process, limitations on the production rates and runs and product quality, general purpose and specialised machinery, automation, numerical control and computer-aided manufacture. Processes considered include machining, casting, powder metalurgy, metal working, welding, polymer processing, blending and composite manufacture.

Manufacturing systems - economics of automation, flexible manufacturing, just in time, group technology, material requirements planning, quality control, introduction of new technology, human factors, plant layout.

Objectives: To understand some fundamental manufacturing processes and systems

Expected outcomes: Students will learn how to manufacture mechanical parts and understand the principles, merits and disadvantages of some commonly used manufacturing techniques

Textbooks
Reference books

MECH 3610 Team Project
2 credit points
Prerequisite: 30 credit points of second year units of study.
Classes: One hr/week for team consultations and several lectures on relevant topics; presentations in final two weeks of Semester. Assessment: On the basis of progressive contribution to the group effort and on the quality of the final presentations.
Third year core unit of study for the degrees in Mechanical and Mechatronic Engineering.

Syllabus Summary: Team building, considerations of conceptual design, economic analysis, project management outline, environmental impact and consideration of benefits to society in major projects. This part of the unit of study will culminate in team presentations.

Objectives: To plan a multidisciplinary project, to consider technical, managerial, economic, environmental and societal factors in bringing a project from concept to conclusion and to make a verbal presentation.

Expected outcomes: Students will learn how to work in a team, to plan and assign responsibilities and to achieve common objectives. Tasks will include information searches, conceptual planning and design and consideration of all the complexities of modern project planning.
MECH 3620 Industrial Management
5 credit points
Offered: July
Third year core unit for the degree in Aeronautical Engineering.
Microeconomics, the Australian business environment, the role of government, accounting systems and procedures, the accounting cycle, financial statements, internal performance, financial structures, intellectual property, contract law, legal obligations of business, capital budgeting and investment analysis, introduction to contract administration.
Reference books
Stanley How to Read and Understand a Balance Sheet (Schwartz & Wilkinson, Melbourne)
The Small Business Handbook (Small Business Development Corp, Victoria)
Eyre Mastering Basic Management (Macmillan)
Stoner, Collins and Vetton Management in Australia (Prentice-Hall)
Blank and Tarquin Engineering Economy (McGraw-Hill)

MECH 3700 Mechatronics 2
5 credit points
Prerequisite: MECH 2700 Mechatronics 1. Classes: 2 hr lectures plus a 3 hr lab/wk. Assessment: 2 hr exam plus project work.
Third year core unit of study for the degree in Mechatronic Engineering.
Syllabus Summary: Mechatronics Systems Architectures: Single processor systems, multiple and distributed processing systems, special purpose architectures (DSPs etc) and their application.
Development of Advanced Mechatronic Systems: Use of multi-tasking, message passing and multi-threading in environments such as NT and/or Unix. Objected oriented programming in languages such as C++.
Design of Modern Mechatronic Systems: Standard interfacing of sensor and actuation systems; ADC/DAC, SSI, parallel, Can Bus etc. Organisation of components and overall design issues including safety, verifiability, modularity, etc. Analysis of detailed case study.
Objectives: To provide an advanced understanding of modern industrial mechatronics systems.
Expected outcomes: Understanding of modern hardware and software architectures as related to the design of mechatronic systems. Practical knowledge of the design and implementation of mechatronic systems, including organisation, safety and reliability and interaction with hardware components.
Textbooks
An extensive list of reference books will be distributed
Library Classification: 004.22, 004.35, 005.133

MECH 3800 Systems Control
4 credit points
Prerequisite: MATH 2001 and MATH 2005. Classes: 2 lec and 1 1/2 hr lab/wk plus laboratory sessions. Assessment: One 11/2 hr exam, assignments and laboratory work.
Third year core unit of study for the degrees in Mechanical and Mechatronic Engineering
Syllabus Summary: A number of case studies based on practical examples will be presented. The unit of study will concentrate on linear systems and will be based on classical control theory. Topics covered will include system modelling, time and frequency response, stability, root locus and Bode diagrams, and control using computers. Computer programs Matlab and Simulink will be used to illustrate the concepts presented in the lectures and for the design and simulation exercises associated with the case studies.
Objectives: To introduce the methods used for the analysis and design of feedback control systems.
Expected outcomes: Students will be able to develop a mathematical model and design a suitable feedback controller for a wide range of physical systems. Students will also be able to examine the behaviour of these physical systems and the performance of their controllers using computer simulations.
Reference books
G. F. Franklin, J. D. Powell and A. Emami-Naeini, "Feedback Control of Dynamic Systems", Addison-Wesley
A. K. Ogata, "Modern Control Engineering", Prentice-Hall
B. C. Kuo, "Automatic Control Systems", Prentice-Hall
N. S. Nise, "Control Systems Engineering", Benjamin/Cummings
Library classifications: 629.8, 629.83, 629.8312, 629.832

MECH 3900 Fundamental Biomedical Engineering
4 credit points
Details to be advised.

MECH 3910 Biomedical Technology
3 credit points
Details to be advised.

MECH 3920 Biomedical Design Project
2 credit points
Details to be advised.

MECH 4100 Thesis
12 credit points
Prerequisite: 36 credit points of Senior units of study. Assessment: Examination of thesis.
Fourth Year core unit of study for the degree in Mechanical and Mechatronic Engineering.
Syllabus summary: In the Senior Advanced year of the unit of study, each candidate works towards and writes an undergraduate thesis, at least one copy of which should be submitted in completed form (see below) before a date to be announced, which is normally not later than the last day in November.
Towards the end of each academic year a list of suggested topics and supervisors for thesis work is published for the information of current Senior year students. Each prospective Senior Advanced year student is then required to consult with some or all of the prospective supervisors, who will select students for their topics.

In the normal course of events some or all of the theoretical, developmental, and experimental aspects of research or design work are expected in a thesis. These aspects may be either directed by the supervisor or of a partly original nature, but in either case the student is directly responsible to his or her supervisor for the execution of his or her practical work and the general layout of the thesis itself.
Theses should be typewritten - with text, diagrams, graphs, photographs, etc., properly displayed - and not less than one size of the paper be A4.
It is customary in most investigational work for the worker to show some evidence of his or her activities in this respect.

The Charles Kolling Prize may be awarded for the best graduation thesis.
Objectives: To involve students in a research or major design project and give them the opportunity to conduct systematic investigations.
Expected outcomes: Ability to plan and execute a complete piece of scientific work and to report their study in a thesis.

MECH 4110 Professional Engineering
4 credit points
Prerequisite: 36 credit points of Senior units of study. Classes: lectures/consultations/student presentations - 4hr/week for one semester. Assessment: student assignments/presentations and 2hr exam.
Fourth year core unit of study for the degree in Mechanical and Mechatronic Engineering.
Syllabus summary: Project management: specific aspects of project management including initial establishment of projects and design criteria, and capital cost estimating. Design management: topics will cover design integration, codes and standards,
specification preparation, and sources of information. Plant engineering management: the areas will include decision making, computerised maintenance, understanding unit operations, environment protection measures, engineering as an element in the cost of production, continuous improvement, provision of plant and ancillary services, and the engineer as a trainer.

Objectives: To impart knowledge resulting in a more global approach to the practice of engineering and engineering management, as well as to provide a vehicle for improving communication skills.

Expected outcomes: A good understanding of the management of projects and engineering plants.

MECH 4120 Professional Communication
4 credit points
Prerequisite: 32 credit points of third year units of study. Classes: some instructional sessions will be arranged to provide basic techniques for preparation and presentation of technical material to an audience by audio-visual means. Assessment: Satisfactory performance in the seminar as assessed by the participants and seminar workshops as assessed by the course coordinator.

Fourth year core unit of study for the degree in Mechanical and Mechatronic Engineering.

During the latter part of the year, one or two whole days are set aside for the presentation of student addresses at a public conference. Each final year student, usually in consultation with his or her thesis supervisor, prepares an abstract of the seminar for distribution one week in advance of the conference. Although it is not obligatory, the subject for the seminar is normally closely related to the student’s thesis work; thus it tends to deal in depth with some relatively narrow technical field. At the conference (where the audience comprises senior, senior advanced and postgraduate students, departmental staff and visitors), oral presentation of the thesis is followed by critical discussion under formal chairmanship.

Objectives: To improve student competence and confidence in developing and presenting a formal technical presentation.

Expected outcomes: The ability to structure and deliver a competent and informative technical presentation.

MECH 4130 Practical Experience
0 credit points
Prerequisite: 28 credit points of second year units of study. Classes: 12 weeks of practical work experience. Assessment: A written report is required. Pass/Fail grade only is awarded. Marks will not be given. (This unit of study will not contribute to the weighted averages used to determine Honours.)

Fourth year core unit of study for the degree in Mechanical and Mechatronic Engineering.

Syllabus summary: Each student is required to work as an employee of an approved engineering organisation and to submit a satisfactory written report of his or her work. Normally 12 weeks of practical work experience (375 hours minimum) is required and this is undertaken after the completion of some or all of the prescribed third year core units of study and before enrolment in the final year of study. The University Careers and Appointments Service is available to assist students to obtain suitable employment. This unit of study must be passed in order to graduate.

The industrial experience report must be submitted early in Semester 1. The report is assessed on content in accordance with details that are distributed to students earlier. The report should contain a section on management.

Objectives: To give students the opportunity to work in an engineering organisation and gain some professional experience. To enhance student abilities and experience in technical report writing.

Expected outcomes: (i) A better appreciation of the role of engineers in the workplace, (ii) The ability to present structured observations and reflections in the mode of a formal written report.

MECH 4210 Computational Fluid Dynamics
4 credit points
Prerequisite: MECH 3210 Fluid Mechanics. Classes: 2 lectures and one tutorial per week. Assessment: tut work, projects and one 2 hr exam.

Fourth year elective unit of study.

Syllabus summary: Conservation equations of fluid flow; boundary conditions, classification of flow problems. Numerical solution schemes based on pressure correction; the SIMPLE algorithm and its variants, convection schemes. Solution of the resulting algebraic equations. Turbulence modelling; implementation of boundary conditions in turbulent flow. Coupled heat transfer: convection, combustion, radiation heat transfer. Multiphase flow. Introductions to compressible flow, the physical significance of hyperbolic equations; characteristic based methods; FCT and TVD schemes. Pitfalls to avoid in CFD.

Objectives: To give students an understanding of basic Navier-Stokes solution methods and turbulence models.

Expected outcomes: Ability to write a simple Navier-Stokes solver and to use a state-of-the-art CFD package.

Reference books
Fletcher Computational Techniques for Fluid Dynamics, vols I and 2 (Springer, 1988)
Patankar Numerical Heat Transfer and Fluid Flow (Hemisphere, 1983)

MECH 4220 Environmental Engineering
6 credit points
Prerequisite: 24 credit points of third year units of study.
Prohibition/other: MECH 4240 Energy and the Environment and MECH 4230 Environmental Acoustics and Noise Control. Classes: 5 hrs/wk plus 2 Saturday field-trips. Assessment: one 1.5 hr exam, plus assignments.

Fourth year elective unit of study.

Syllabus summary: The unit of study will consist of the following components:

Environmental acoustics and noise control (2 credit points) – Basic acoustics theory, sound generation and propagation, impedance, absorbing materials, industrial noise sources, isolation methods of noise control, enclosures, instrumentation and measurement, frequency analysis, noise regulations. Computational methods in acoustics.

Objectives: To acquaint students with the methods engineers use to assess and deal with the environmental consequences of industry and other human activities, with particular emphasis on impact assessment and noise.

Expected outcomes: Students will appreciate the social, economic, and legislative aspects of environmental protection. They will understand the requirements of an environmental impact statement. They will be able to make the calculations and measurements necessary to estimate acoustic noise levels in machinery, buildings and the outside environment and to make recommendations as to how best to reduce them.

Reference books
Bies and Hansen Engineering Noise Control (Allen and Unwin, 1988)
Hassall and Zaveri Acoustic Noise Measurement (Bruel and Kjaer, 1988)
Preliminary reading can be made on the web at http://www.ieagreen.org.uk/
Other books as advised during classes

Library Classification: 534.8, 620.23, 620.8, 628.1

MECH 4230 Environmental Acoustics and Noise Control
2 credit points
Prerequisite: 24 credit points of third year units of study.
Prohibition/other: MECH 4220 Environmental Engineering, MECH 4220 Environmental Engineering. Classes: 2 lec and 1 tutw. Assessment: one 1.5 hr exam.
Fourth year elective unit of study.

Objectives: To acquaint students with the methods engineers use to assess and deal with the environmental noise due to industry and other human activities.

Expected outcomes: Students will appreciate the social, economic, and legislative aspects of environmental noise. They will be able to make the calculations and measurements necessary to estimate sound levels and noise in machinery, buildings and the outside environment and to make recommendations as to how best to reduce them.

Reference books
Bies and Hansen Engineering Noise Control (Allen & Unwin, 1988)
Hassall and Zaveri Acoustic Noise Measurement (Bruel & Kjaer, 1988)

Library classification: 534.8, 620.23

MECH 4240 Energy and the Environment
4 credit points
Prerequisite: 24 credit points of Senior units of study. Prohibition/other: MECH 4210 Environmental Engineering. Classes: 3hrs per week in Semester 1. Assessment: assignments and classwork.

Fourth year elective unit of study

Expected outcomes: Students will be able to carry out economic and environmental impact analyses for energy systems.

Textbooks
No text or reference books are set. Preliminary reading can be made on the web at http://www.ieagreen.org.uk/

MECH 4250 Air conditioning and Refrigeration
3 credit points
Prerequisite: MECH 3200. Classes: 1.5hr lecture and 1 hr tut/wk. Assessment: Assignments, project and one 2hr exam.

Fourth year elective unit of study

Syllabus summary: Applied psychrometrics, air conditioning systems, design principles, cooling load calculations, heating load calculations, introduction and use of computer-based load estimation packages software, air distribution, fans, ducts, air conditioning controls.

Refrigeration cycles, evaporators, condensers, cooling towers, compressors, pumps, throttling valves, piping, refrigerants, control, refrigeration equipment, stimulation of refrigeration systems, food refrigeration and industrial applications.

Use of CFD packages as tools to simulate flows in building and to optimise air conditioning design, energy estimation methods and software, energy management in buildings.

Objectives: To develop a practical understanding of air conditioning and refrigeration applications.

Expected outcomes: Students will be able to determine thermal loads on structures, and design an air conditioning or refrigeration system with attention to air distribution and energy consumption.

MECH 4260 Combustion and Fire Safety
3 credit points
Prerequisite: MECH 3200. Classes: 1.5hr lecture and 1 hr tut/wk. Assessment: Assignments, project and one 2 hr exam.

Fourth year elective unit of study.

Syllabus summary: Basics of combustion and chemical kinetics, flames and simple reacting systems, basics of fire dynamics: initiation, development and spread of smoke and fire, pollutants formation, use of CFD in fire modelling.

Objectives: To give students a basic understanding of combustion and fire protection, and safety issues.

Expected outcomes: Students will be able to perform a simple analysis of real reacting systems. They will also be capable of assessing fire risks and fire protection systems in buildings.

MECH 4310 Advanced Engineering Materials
6 credit points
Prerequisite: MECH 3300 Materials 2. Prohibition/other: MECH 4311 Advanced Aerospace Materials. Classes: 3 lec/wk plus 3 tut & lab/wk. Assessment: One 2 hr exam, one project report, assignments and lab reports as specified at the commencement of the semester.

Fourth year elective unit of study.

Syllabus summary: Postyield fracture mechanics, embrittlement, creep rupture, damage tolerance, structure integrity and reliability, thin film science and technology, advanced polymer matrix composites, toughening mechanisms, processing and manufacturing, superalloys, advanced joining methods.

Objectives: To understand (a) how to conduct failure diagnosis of engineering structures, (b) how to define the relationship between properties and microstructures of advanced engineering materials, and (b) how to improve mechanical design with the knowledge of mechanics and properties of materials.

Expected outcomes: Students should gain the capabilities: (a) to conduct failure diagnosis of simplified failure cases of engineering structures, (b) to define structure-property relationships of advanced engineering materials, and (c) to improve the performance of engineering structures through tailoring materials microstructure and manufacturing processes.

Textbooks
Lecture notes
Reference books
Ashby, Materials Selection in Mechanical Design (Pergamon, 1993)
Atkins and Mai, Elastic and Plastic Fracture (Ellis Horwood, 1985)
Chawala, Composite Materials (Springer-Verlag, 1987)
Davidge, Mechanical Behaviour of Ceramics (C.U.P., 1979)
Eckold, Design and Manufacture of Composite Structures (McGraw-Hill, 1994)
Richerson, Modern Ceramic Engineering (M. Dekker, 1982)
Harris, Engineering Composite Materials (Institute of Metals, 1986)
Jones, Engineering Materials 3 - Materials Failure Analysis (Pergamon, 1993)
Richerson, Modern Ceramic Engineering (M Dekker, 1982)

MECH 4311 Advanced Aerospace Materials
4 credit points
Prerequisite: MECH 3300 Materials 2. Prohibition/other: MECH 4310 Advanced Engineering Materials. Classes: 3 lec/wk plus 3 tut & lab/wk. Assessment: One 2 hr exam plus assignments and lab reports as specified at the commencement of the semester.

Fourth year elective unit of study.

Syllabus summary: Postyield fracture mechanics, embrittlement, creep rupture, damage tolerance, structure integrity and reliability, thin film science and technology, advanced polymer matrix composites, toughening mechanisms, processing and manufacturing, superalloys, advanced joining methods.

Objectives: To understand (a) how to conduct failure diagnosis of engineering structures, (b) how to define the relationship between properties and microstructures of advanced engineering materials, and (b) how to improve mechanical design with the knowledge of mechanics and properties of materials.

Expected outcomes: Student should gain the capabilities: (a) to conduct failure diagnosis of simplified failure cases of engineering structures, (b) to improve the performance of engineer-
ing structures through tailoring materials microstructure and manufacturing processes.

Textbooks

Lecture notes

Reference books

Ashby Materials Selection in Mechanical Design (Pergamon, 1993)

Akins and Mai Elastic and Plastic Fracture (Ellis Horwood, 1985)

Cook et al, Finite Element Modelling for Stress Analysis

Knight, The Finite Element Method in Mechanical Design

Shigley and Mischke, Mechanical Engineering Design 5th Edition

Norton, Machine Design - an integrated approach

Singh, Mechanical design Principles - Applications, Techniques and Guidelines for Manufacture

Cook et al, Finite Element Modelling in Engineering Practice

Gurney, Fatigue of Welded Structures

Gorenc & Tinty, Steel Designers Handbook

Papane, Design for the Real World

Blackler, Considerations in Design

Blodgett, Design of Welded Structures

Lincoln Electric, The Procedure Handbook of Arc Welding

Bleier, Fan Handbook: Selection, Application and Design

Matthews, Handbook of Mechanical Works Inspection

Regular reference will be made to other publications, journals, trade information as well as Australian and International Standards and Codes of Practice, societies and organisations.

MECH 4510 Machine Vibration and Monitoring

3 credit points

Prerequisite: MECH 3500 Engineering Dynamics 2. **Classes:** 3 hrs/wk including tutorials and practical sessions. **Assessment:** one 2 hr exam plus assignments.

Fourth year elective unit of study.

Syllabus summary: Review of dynamics, including modal analysis of lumped and continuous systems and appropriate methods for nonlinear systems. Aspects of applied problems, especially the dynamics of rotating machinery, the measurement of vibration and condition monitoring of machines. Some aspects of random vibrations, including measurement and prediction of failure.

Objectives:

- the types of vibration which can arise in machinery
- mathematical models which can be used to analyse vibration
- machine condition monitoring by vibration measurements
- the types of vibration which can arise in machinery, the measurement of vibrations and condition monitoring of machines. Some aspects of random vibrations, including measurement and prediction of failure.

Expected outcomes:

- Students will be able to identify the causation of damaging vibrations from measurements and analysis, predict the likelihood of failure due to vibration, and determine how to deal with it in order to minimise cost and loss of production.

MECH 4620 Industrial Engineering

6 credit points

Prerequisite: MATH 2001 and MATH 2005 and MECH 3620 Industrial Management. **Prohibition/other:** MECH 4620 Industrial Engineering, MECH 4630 Introduction to Operations Research, and MECH 4610 Industrial and Engineering Management. **Classes:** 3 lec/wk plus associated tut and lab work and industrial visits. **Assessment:** assignments plus exams.

Fourth year elective unit of study.

Industrial ergonomics - refer to syllabus summary for MECH 4620 Industrial Ergonomics.

Operations research - refer to syllabus summary for MECH 4630 Introduction to Operations Research.

Industrial and Engineering Management - total quality management, production planning and control, costing and pricing, inventory management and control, management reporting systems, value analysis, problem resolution strategies, dispute management, project management, contract administration, marketing management, business planning, the management of engineering enterprises, professional engineering skills.

Objectives:

- understanding of the Finite Element Method and knowledge obtained from other courses studied.
- development of an understanding of the Finite Element Method and knowledge obtained from other courses studied.
- a fuller understanding of design and related analysis tasks likely to be encountered in early industrial employment, and should have an understanding of the many aspects associated with such an activity. These include strength/fatigue/vibration analysis, manufacturing methods including inspection and testing, maintenance considerations, operational troubleshooting, and design rectification methods. Strong competence and understanding of application of the Finite Element Method in design stress and vibration analysis will be expected.

Textbooks

Shigley and Mischke, Mechanical Engineering Design 5th Edition

Norton, Machine Design - an integrated approach

Singh, Mechanical design Principles - Applications, Techniques and Guidelines for Manufacture

Cook et al, Finite Element Modelling for Stress Analysis

Knight, The Finite Element Method in Mechanical Design

Strykakos, Finite Element Modelling in Engineering Practice

Gurney, Fatigue of Welded Structures

Gorenc & Tinty, Steel Designers Handbook

Papane, Design for the Real World

Blackler, Considerations in Design

Blodgett, Design of Welded Structures

Lincoln Electric, The Procedure Handbook of Arc Welding

Bleier, Fan Handbook: Selection, Application and Design

Matthews, Handbook of Mechanical Works Inspection

Regular reference will be made to other publications, journals, trade information as well as Australian and International Standards and Codes of Practice, societies and organisations.
an appreciation of the interrelationships and complexities associated with the management of a modern industrial organisation

• the development of logical, thoughtful and creative presentations concerning industrial management

• ergonomic analysis

• information processing

• consideration of the workspace

• consideration of the workers and their skills

• the solution of a range of operations research and reliability problems

Textbooks
Samson Management for Engineering (Longmans)

Reference books
Hicks Introduction to Industrial Engineering and Management Science (McGraw-Hill, 1977)

Harding Production Management 2nd edn (MacDonald & Evans, 1974)

Hussey Introducing Corporate Planning (Pergamon, 1972)

Currie Work Study 4th edn (Pitman, 1977)

Heyde Concise MODAPTS (AAPTSKR, 1975)

Blakemore The Quality Solution (Australian Business Library, Vic.)

Kotler, Fitzroy, Shaw Australian Marketing Management (Prentice-Hall)

Macnamara Australian Marketing and Promotion Handbook (Australian Business Library)

Case Studies in Australian Strategic Management

Other books may be advised

MECH 4610 Industrial and Engineering Management

2 credit points

Syllabus summary: Total quality management, production planning and control, costing and pricing, inventory management and control, management reporting systems, value analysis, problem resolution strategies, dispute management, project management, contract administration, marketing management, business planning, the management of engineering enterprises, professional engineering skills.

Objectives: To develop an understanding of:

• principles and practices of industrial and engineering management

• effects of globalisation on Australia’s economic performance, and the competitiveness of Australian firms

• insight into the importance of innovation

• roles appropriate to governments

Expected outcomes: Students should develop skills and abilities in:

• the application of problem solving solutions to management issues

• an appreciation of the interrelationships and complexities associated with the

• management of a modern industrial organisation

• the development of logical, thoughtful and creative presentations concerning industrial management.

Textbooks
Samson D., Management for Engineering (Longmans)

Reference books
As for MECH 4600

MECH 4620 Industrial Ergonomics

2 credit points

Prerequisite: MECH 4600 Industrial Engineering. Classes: 2 hrs lec/tut/wk plus associated lab work. Assessment: assignment. Fourth year elective unit of study.

(a) Lectures - History and scope of ergonomics; biomechanics; receiving and processing information; presentation of information; anthropometry and seating; ergonomic aspects of noise; human factors in safety; selection, skill and training; industrial lighting; fatigue, shiftwork and the organisation of work; absenteeism; mental health and automation; design of equipment and workspace; biomechanics of handling materials; ergonomic job analysis; personal factors in work performance.

(b) Laboratory - Demonstration of protective clothing and equipment. Methods of measurement of work environment. Climatic chamber.

Objectives: To introduce ergonomics and increase awareness of ergonomics issues;

To provide information about humans particularly in the workplace.

Expected outcomes: Students will have sufficient practical information to allow them to optimise the human-environment performance in the workplace.

Reference books
As advised during classes

Library Classification: 150, 331.1, 611, 612, 620, 658

MECH 4630 Introduction to Operations Research

2 credit points

Assessment: one 2hr paper plus assignments.

Fourth year elective unit of study.

Syllabus summary: Method and history of operations research: broad aims; general problem approach. Inventory control problems, with constant and random demand. Allocation problems; linear programming; transportation problem. Introduction to reliability analysis; component and system reliability; effect of maintenance and repair.

Objectives: To develop an understanding of:

• the role of operations research in modern industry problem formulation and analysis techniques for operations research problems

• the importance of reliability analysis in part and system designs

• the use of maintenance and repair to extend the useful life of systems.

Expected outcomes: Students should develop skills in:

• the solution of a range of operations research and reliability problems.

Reference books
Daellenbach, George and McNickle Introduction to Operations Research Techniques (Allyn and Bacon, 1984)

Lewis Introduction to Engineering Reliability (Wiley, 1987)

Library Classification: 658

MECH 4640 Product Life Cycle Design

2 credit points

Prerequisite: MECH 3600. Classes: 2 hrs/wk, semester two.

Fourth year elective unit of study.

Syllabus summary: It is becoming more and more critical that product design incorporates the implications of disposal at the end of the operational life cycle of the product. For manufacturers this is emerging as a legislative issue as environmental implications enforce their responsibility over the entire life cycle of the product. This requires consideration of processing technology, materials and parts recycling, and design for disassembly. The course content addresses these issues via examples of consumer products manufacture and their design. An assignment based on small consumer product redesign to improve recyclability will form an important component of the course. More specifically the contents focus on:

• Product life cycle engineering based on environmental and legislative issues.

• Net recovery value analysis based materials, parts, processes and energy model.

• Task analysis for disassembly planning based on clustering.

• Product profile and redesign to improve recyclability.

Objectives: To provide students with necessary knowledge and techniques to plan at the design stage the life cycle problems of the product.

Expected outcomes: Students will learn the major issues involved in product life cycle engineering, relevant methods to
improve the recyclability and the principal considerations on legislative, environmental, materials, processes etc.

MECH 4650 Workplace Industrial Relations
2 credit points
Prerequisite: 36 credit points of senior units of study. Classes: 20 hrs of lectures and tutorials.
Fourth year elective unit of study.
Syllabus summary: Introduction to industrial relations, principal players in the system, Industrial relations law. Awards and agreements, working with unions, responsibility of managers, handling individual grievances, identifying and resolving conflict.
Objectives: To give students an understanding of industrial relation issues in Australia.
Expected outcomes: Students will develop skills to handle industrial relations in the workplace and deal with conflicts and disputes.

MECH 4700 Robotic Systems
4 credit points
Prerequisite: MECH 3500. Classes: (2 lec and one 2hr lab/tut)/wk.
Assessment: one 11/2 hr exam plus assignment, project and lab work.
Fourth year elective unit of study.
Objectives: To introduce aspects of design, control and use of industrial robots.
Expected outcomes: Students should gain an appreciation for the important factors that need to be considered in the selection and use of robots for industrial applications.
Reference Books

MECH 4710 Microprocessors in Engineered Products
6 credit points
Prerequisite: ELEC 3601 Digital Systems Design and ELEC 3401 Electronics Devices & Circuits. Classes: (3 lec and one 2hr lab/tut)/wk. Assessment: project and assignment work, plus one 2 hr exam. Satisfactory performance in project and assignment work is required.
Fourth year elective unit of study.
Syllabus summary: Specific requirements for microprocessor-based products. Problem definition and system design. CPU, memory and interface circuits. Tools for design, development and testing of prototype systems. The unit of study will include a major project, where groups of students design, develop and commission a microprocessor-based product.
Objectives: To provide experience, confidence and basic competence in the design and implementation of microprocessor-based products and instruments. To impart a detailed knowledge of the software and hardware architecture of a typical modern microcontroller, and an understanding of the use of these resources in product design. To give experience with modern cross-development tools. To provide experience of working in a project team to prototype a realistic product to meet a specification.
Expected outcomes: The student will have a detailed knowledge of the software and hardware architecture of a modern microcontroller. This knowledge will include an in-depth understanding of the relationship between assembly language, high-level language, and the hardware, of the utilisation and interfacing of microcontroller hardware resources, and of the design and development of software comprised of multiple interrupt-driven processes. The student will have the competence to develop prototype microprocessor-based products.

Textbooks
Peatman Design with microcontrollers (McGraw Hill)
Reference books
An extensive reference list will be distributed

Library Classification: 629.398, 629.895, 621.3815, 621.38195, 001.6425,005.1

MECH 4720 Sensors and Signals
6 credit points
Prerequisite: MECH 3500 Engineering Dynamics 2 & MECH 3800 Systems Control & ELEC 3601 Digital Systems Design & ELEC 3401 Electronics Devices & Circuits. Classes: 3hrs lec, 1 hr tut and 2hrs lab/wk. Assessment: Laboratory work and one 3 hour exam.
Fourth year elective unit of study.
Syllabus summary: This unit of study comprises three equal parts: Devices, Signals and Systems. Devices deals with sensors and the interfacing of sensors to computers and machines. Signals deals with the modeling and conditioning and analysis of sensor signals. Systems deals with the use of sensor signals in control and systems design, with reference to key mechatronics applications:
(a) Devices: Process and machine instrumentation: sensor types (temperature, pressure, force, proximity) and properties; interfacing considerations, hardware and applications. Automotive, aerospace and robotic sensors: sensor types; accelerometers, gyroscopes, lasers, ultrasonics, radar) and measurement principles; interfacing considerations, hardware and applications. One 6-hour laboratory on sensor interfacing example.
(b) Signals: Introduction to signals and noise as stochastic processes; signal characterisation, signal conditioning. Signal analysis in the time domain; signal analysis in the frequency domain; modeling and processing of signals; introduction to estimation theory. Two 2-hour computer laboratories; signal characterisation and signal modeling.
(c) Systems: Signal processing systems, hardware and software; special purpose and digital signal processing hardware; introduction to data fusion theory. Condition monitoring, reliability and fault detection. Example applications; process monitoring and automotive systems. One 10-hour computer laboratory on system design.
Objectives: To provide and understanding of essential sensor data processing algorithms and an understanding of a variety of different sensor technologies.
Expected outcomes: Understanding of common signals and the means of processing and interpreting sensory information. An appreciation of available sensor technologies and where they may be used.

MECH 4730 Computers in Real Time Control and Instrumentation
6 credit points
Prerequisite: ELEC 3601 Digital Systems Design & ELEC 3401 Electronics Devices & Circuits. Classes: (3 lec and one 2hr lab/tut)/wk. Assessment: Project and assignment work, plus 2 hr exam. Satisfactory performance in project and assignment work is required.
Fourth year elective unit of study.
Objectives: Microcomputer and microprocessor system, operating in real time have become very common components in today’s engineering applications. The objective of this unit of study is to teach the fundamentals of real time software and to build competence in the engineering use of such systems through lectures emphasising standard computer architectures, programming, and through intensive laboratory work with microcomputer systems interacting with experimental mechatronic processes.
Expected outcomes: The student will have a basic knowledge of the hardware components available in a microcomputer system and detailed knowledge of facilities and capabilities typically present in a professional real time operating system. The student will have the competence to design, implement and debug interrupt-driven multitasking systems with graphical user interfaces.

Textbooks
Aulander DM, Tham CH, Real Time Software for Control, (Prentice Hall, 1990)

Library reference number: 629.8955133 1, Engineering Reserve

MECH4900 Orthopaedic Engineering
4 credit points
Prerequisite: MECH 3300 Materials 2 and MECH 3310 Mechanics of Solids 2. Classes: 4hrs of tut/lab classes/wk. Assessment: one 2hr exam.

Fourth year elective unit of study.

Syllabus summary: Musculoskeletal anatomy, physiology and function, including basic medical terminology, anatomy and physiology, normal and abnormal joints, bones, cartilage, ligaments and tendons. Introduction to orthopaedic injuries, including fractures, bone healing, fracture fixation, electrical stimulation of bone healing. Overview of the design, manufacture and use of artificial ligaments, hip, knee and shoulder joint prostheses, bone cement, finite element modelling of prostheses, material considerations, testing of orthopaedic implants, failure of implants.

Objectives: To introduce students to the biomechanics of the musculoskeletal system and to the fundamentals of biomedical engineering as applied to orthopaedic devices used for the replacement and repair of the diseased or damaged skeleton.

Expected outcomes: Students will become acquainted with the physical properties of human bones and joints. They will understand how the skeleton functions as an engineering structure. They will learn the physical characteristics of the materials from which the musculoskeletal system is fabricated and be able to adapt basic engineering principles to the design and fabrication of prosthetic joints and to other devices used for replacement and repair of bones and joints.

MECM 4910 Biomaterials and Biomechanics
4 credit points
Prerequisite: 36 credit points of third year units of study. Classes: 4hrs of lecture/tut/lab per week. Assessment: continual assessment and exam.

Fourth year elective unit of study.

Syllabus summary: Introduction to biomaterials, characteristics of materials, including mechanical testing and advanced analysis techniques, metallic, polymeric, ceramic, composite implant materials and their properties; structure/property relationships to biological materials and the study of 'biomimetics' (mimicry of biological materials), tissue response to implants, soft tissue replacement, hard tissue replacement and laboratory testing of biomaterials and biological materials.

Introduction to biomechanics, modelling the human body from the macroscopic level to the microscopic level, soft tissue mechanics - non-linear and viscoelastic descriptions, muscle mechanics, joint mechanics, kinesiatics and dynamics of human gait (gait analysis), biomechanics of cells, physiological fluid flow, biomechanics of injury, functional and mechanical response of tissues to mechanical loading.

Objectives: To gain a basic understanding of the major areas of interest in both the biomaterials and biomechanics fields, learn to apply basic engineering principles to biomedical systems, and understand the challenges and difficulties of biomedical systems.

Expected outcomes: Students should be able to:
- Apply static and dynamic mechanical analyses to the human body to describe motion.
- Understand the mechanical behaviour of biological tissues and the types of models used to describe this behaviour.
- Understand all the factors involved in the selection of a biomaterial for tissue replacement, including mechanical, bio-compatibility, material property and fixation factors.
- Improve their written and oral communication skills in a technical setting.
- The students should gain a basic understanding of the major areas of current research in both the biomaterials and biomechanics fields, learn to apply basic engineering principles to biomedical systems, and understand the challenges and difficulties of biomedical systems.

Reference books
Y.-C. Fung Biomechanics of Living Tissues (Springer-Verlag)

MECH 4920 Biomedical Engineering Systems
4 credit points
To be advised

Interdisciplinary units of study

ENGG 1001 Interdisciplinary Project
12 credit points
Prerequisite: UAI score of at least 98. Students considering this option are advised to see their Head of Department. Prohibition/other: This unit of study is mutually exclusive with a number of other first year units of study. As these latter units of study will vary depending on the branch of Engineering, students considering this option are advised to see their Head of department prior to enrollment. Assessment: A written report on the project undertaken and other oral and written presentations as specified.

First year unit of study for all degree branches in Engineering. Interdisciplinary Project: This is a major component of this unit of study. Although the project will be supervised by a senior Faculty member, the emphasis here is on the team members setting and achieving their own goals, and presenting their work in both oral and written form. Groups will be expected to make an engineering project by the end of Semester 1.

ENGG 2002 Advanced Engineering Project
2 credit points
Prerequisite: Only students who have been named on the Dean's list at the end of Year 1 will be eligible. Classes: 2 Hours tutorials per week for one semester. This Unit of study will be offered in either March or July Semesters. Assessment: Assessment will be on the basis of a written report and oral presentations. Satisfactory tutorial performance is also required.

Syllabus: Students will work in groups on a defined Industrial Project, or continue with one of the projects previously carried out in unit of study ENGG 1001. Each group will be expected to provide details and insight into how their findings could be used or exploited commercially.

Objectives/Outcomes: This unit of study is designed to provide students with an insight into engineering practice in industry. By its end, it is expected that students will be able to carry out the following tasks:
- Analyse an industrial problem
- Carry out the background research required to fully define and solve the problem
- Work effectively as a team member at all stages of the project
- Write a coherent report, outlining the problem and its solution, as well as making an oral presentation
- Prepare a business plan with respect to an industrial or research project.

ENGG 3001 Engineering Technology Education
2 credit points
Classes: 2 Hours tutorials per week for one semester. This Unit of study will be offered in either March or July Semesters. Assessment: Assessment will be on the basis of a written report and oral demonstrations. Satisfactory tutorial performance is also required.

Syllabus: Students will work alone or with a partner to develop an educational unit for Year 9 High School Students which will involve them in some aspect of engineering science or technolo-
In selecting the projects for the unit of study, the organisers will include projects across a wide range of the fields of engineering studied and researched within the Faculty of Engineering at the University of Sydney.

In preparing the case studies, presenters will aim to cover the following:

- Outline the historical context of the project.
- Outline the justification for the project from the point of those who promoted the project.
- Identify the resources required for the project and the sources of those resources.
- Identify the main engineering objectives and challenges of the project.
- Identify the social and ethical issues involved in the project from the points of view of (a) the society of the time and (b) Australian society today.
- Provide an assessment of the 'success' of the project in terms of (a) the people who promoted the project and (b) the personal opinions of the presenter of the case study.

Industrial organisations will be invited to contribute to the unit of study by:

- Suggesting engineering projects and people to be included in the unit of study.
- Suggesting retired or current members of the organisation's staff for the role of the 'staff facilitators presenting case studies.'

Table 1: Aeronautical Engineering

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1001 Differential Calculus</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1901 or 1011</td>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1002 Linear Algebra</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1902 or 1912</td>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1003 Integral Calculus and Modelling</td>
<td>3</td>
<td>A) HSC4-unit Mathematics or Mathematics1001.</td>
<td>N) May not be counted with Mathematics 1903 or 1913</td>
<td>July</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1005 Statistics</td>
<td>3</td>
<td>A) HSC 2-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1905 or 1915</td>
<td>July</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1501 Engineering Statics</td>
<td>4</td>
<td>N) MECH 1500 Mechanical Engineering 1</td>
<td></td>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERO 1600 Workshop Technology</td>
<td>4</td>
<td>N) MECH 1600</td>
<td></td>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1801 Computational Engineering 1A</td>
<td>5</td>
<td>N) MECH 1800 Computational Engineering 1A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 1002 Computational Engineering</td>
<td>3</td>
<td>N) COMP 1001 Introductory Programming and COMP 1002 Introductory Computer Science</td>
<td></td>
<td>July</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERO 1900 Introductory Aeronautics</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core units of study - Aeronautical Engineering

First Year

- **MATH 1001** Differential Calculus
 - Credit: 3
 - A) HSC 3-unit Mathematics.
 - N) May not be counted with Mathematics 1901 or 1911
 - Offered: March

- **MATH 1002** Linear Algebra
 - Credit: 3
 - A) HSC 3-unit Mathematics.
 - N) May not be counted with Mathematics 1902 or 1912
 - Offered: March

- **MATH 1003** Integral Calculus and Modelling
 - Credit: 3
 - A) HSC4-unit Mathematics or Mathematics1001.
 - N) May not be counted with Mathematics 1903 or 1913
 - Offered: July

- **MATH 1005** Statistics
 - Credit: 3
 - A) HSC 2-unit Mathematics.
 - N) May not be counted with Mathematics 1905 or 1915
 - Offered: July

- **MECH 1501** Engineering Statics
 - Credit: 4
 - N) MECH 1500 Mechanical Engineering 1
 - Offered: March

- **ELEC 1001** Introductory Electrical Engineering
 - Credit: 4
 - C) MATH 1001 Differential Calculus.
 - N) ELEC 1102 Foundations of Electronic Circuits, and ELEC2002 Electrical Technology.
 - Offered: July

- **AERO 1600** Workshop Technology
 - Credit: 4
 - N) MECH 1600
 - Offered: March

- **MECH 1801** Computational Engineering 1A
 - Credit: 5
 - N) MECH 1800 Computational Engineering 1A
 - Offered: March

- **CIVL 1002** Computational Engineering
 - Credit: 3
 - N) COMP 1001 Introductory Programming and COMP 1002 Introductory Computer Science
 - Offered: July

- **AERO 1900** Introductory Aeronautics
 - Credit: 4
 - Offered: March

Second Year

- **MATH 2001** Vector Calculus and Complex Variables
 - Credit: 4
 - P) Prerequisite: Mathematics (1001 or 1001), (1002 or 1902), and (1003 or 1903).
 - N) May not be counted with Mathematics 2901
 - Offered: March

- **MATH 2002** Matrix Applications
 - Credit: 4
 - P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.
 - N) May not be counted with Mathematics 2902
 - Offered: March

- **MATH 2005** Fourier Series and Differential Equations
 - Credit: 4
 - P) Prerequisite: Mathematics 2001 or 2901.
 - N) May not be counted with Mathematics 2905
 - Offered: July

- **AERO 2300** Mechanics of Solids 1
 - Credit: 4
 - P) 12 credit points of first year Maths (i.e Maths 1001, 1002, 1003, 1005).
 - Offered: March

- **AERO 2200** Introductory Aerodynamics
 - Credit: 4
 - P) 12 credit points of first year Maths.
 - N) MECH 2200, MECH 2201, MECH 2500
 - Offered: July

- **AERO 2500** Introductory Flight Mechanics and Performance
 - Credit: 4
 - P) MATH 1001, 1002, 1003, 1005.
 - Offered: March
Table 1: Aeronautical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 2201 Thermodynamics 1</td>
<td>4</td>
<td>N) MECH 2200 Thermofluids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 2300 Materials 1</td>
<td>4</td>
<td>N) CIVL 2101 Properties of Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 2400 Mechanical Design 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 2500 Engineering Dynamics 1</td>
<td>4</td>
<td>p) MATH 1001, 1002 and MECH 1510 Kinematics and Dynamics.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

| MECH 3201 Thermodynamics 2 | 4 | p) MECH 2200 Thermofluids or MECH 2201 Thermodynamics 1. N) MECH 3200 Thermal Engineering 1 | | |
| MECH 3500 Engineering Dynamics 2 | 4 | p) MECH 2500 Engineering Dynamics 1 and (MATH 2001 & MATH 2005). | | |

AERO 3200 Aerodynamics 1	4	p) AERO 2200.	March
AERO 3250 Aerodynamics 2	4	p) AERO 2200.	July
AERO 3300 Aircraft Structures 1	4	p) AERO 2300.	March
AERO 3350 Aircraft Structures 2	4	p) AERO 2300.	July
AERO 3400 Aircraft Design 1	4	p) MECH 2400.	March
AERO 3450 Aircraft Design 2	4	p) MECH 2400.	July
AERO 3500 Flight Mechanics 1	4	p) AERO 2500.	

Fourth Year

AERO 4200 Aerodynamics 3	3	p) AERO 3250.	March	
AERO 4250 Aerodynamics 4	3	p) AERO 3250.	July	
AERO 4201 Propulsion	4	p) MECH 3201.	July	
AERO 4300 Aircraft Structures 3	5	p) AERO 3350. N) AERO 4301 Applied Numerical Stress Analysis	March	
AERO 4350 Aircraft Structures 4	3	p) AERO 3350. N) AERO 4301 Applied Numerical Stress Analysis	July	
AERO 4400 Aircraft Design 3	6	p) AERO 3450.	March	
AERO 4500 Flight Mechanics 2	6	p) AERO 3500.	March	
AERO 4900 Thesis or Design Project	10	p) 40 credit points of Senior Subjects.		
AERO 4920 Seminar	2	p) 40 credit points of Senior Subjects.	July	
AERO 4600 Practical Experience	0		July	
Resolutions of the Faculty of Engineering relating to Table 1

Degree eligibility

To be eligible for the degree of BE (Aeronautical) or combined degrees BE(Aero)/BSc; BE (Aero)/B/Com and BE(Aero)/BA, students must satisfy the following requirements:

(a) Pass all core subjects as detailed in the above table. Core total of 160 credit points;
(b) Complete either: a minimum of 32 credit points of additional approved elective units of study (for BE degree); or The requirements for a combined degree as set out on the Joint Resolutions of the Faculty of Engineering and Faculties of Science, Economics and Arts.
(c) Complete a period of practical experience (approximately 12 weeks), usually undertaken in the vacation period between years 3 and 4 of the course. A report on this work must be submitted and approved to satisfy this requirement.

Acceptable alternative units of study

Most Mathematics, Chemistry, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent Advanced level unit of study subject to prerequisite conditions (as required by the Faculty of Science) being met. Students considering doing Advanced options should seek advice from their Department before enrolling.

Recommended Elective Units of Study for BE (Aero)

First Year: BE

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 1400 Introduction to Aircraft Construction and Design</td>
<td>6</td>
<td>July</td>
</tr>
<tr>
<td>MATH 1051 Mechanics IE</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

First Year: BE/BSc

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1001 Physics (Regular)</td>
<td>6</td>
<td>March</td>
</tr>
<tr>
<td>PHYS 1002 Physics (Fundamentals)</td>
<td>6</td>
<td>March</td>
</tr>
<tr>
<td>COMP 1001 Introductory Programming</td>
<td>6</td>
<td>March & July</td>
</tr>
<tr>
<td>COMP 1002 Introductory Computer Science</td>
<td>6</td>
<td>March & July</td>
</tr>
</tbody>
</table>

Second Year: BE

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2051 Linear Programming & Boundary Value Problems</td>
<td>2</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2052 Numerical Methods</td>
<td>2</td>
<td>July</td>
</tr>
<tr>
<td>AERO 2800 Aeronautical Engineering Computing</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Second Year: BE/BSc

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2001 Physics (Technological) A</td>
<td>8</td>
<td>March</td>
</tr>
<tr>
<td>PHYS 2001 Physics (Technological) B</td>
<td>8</td>
<td>July</td>
</tr>
</tbody>
</table>
Table 1: Aeronautical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2002 Design and Data Structures</td>
<td>4</td>
<td>P) Qualifying: Computer Science 1002 or 1902.</td>
<td>N) May not be counted with Computer Science 2902. See prerequisites for Senior Computer Science units of study. Consult Departmental Handbook</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>COMP 2003 Languages and Logic</td>
<td>4</td>
<td>P) Qualifying: Computer Science 1002 or 1902. Prerequisite: Mathematics 1004 or 1904 or Econometrics or Mathematics 2009.</td>
<td>N) May not be counted with Computer Science 2903. See prerequisites for Senior Computer Science units of study. Consult Departmental Handbook</td>
<td>July</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Points</th>
<th>Prerequisites</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 3501 Flying Operations</td>
<td>2</td>
<td>P) AERO 2500, AERO 2200.</td>
<td>March</td>
</tr>
<tr>
<td>AERO 3600 Aviation Technology</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3620 Industrial Management</td>
<td>5</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>AERO 3601 Aviation Operation and Management</td>
<td>3</td>
<td></td>
<td>July</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Points</th>
<th>Prerequisites</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERO 4290 Rotary Wing Aircraft</td>
<td>4</td>
<td>P) AERO 3250.</td>
<td>March</td>
</tr>
<tr>
<td>AERO 4291 Advanced Computational Aerodynamics</td>
<td>3</td>
<td>P) AERO 3250.</td>
<td>July</td>
</tr>
<tr>
<td>AERO 4292 Aeroelasticity</td>
<td>3</td>
<td>P) AERO 3250.</td>
<td>July</td>
</tr>
<tr>
<td>AERO 4490 Advanced Aircraft Design</td>
<td>4</td>
<td>P) AERO 3450.</td>
<td></td>
</tr>
<tr>
<td>AERO 4590 Advanced Flight Mechanics</td>
<td>3</td>
<td>P) AERO 3500.</td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. Choice of electives as shown in the above table will depend upon subject availability, timetabling and prerequisite conditions.
2. Approved elective units of study from Departments other than Aeronautical Engineering may be considered subject to the approval of the Head of Department.
3. Prerequisites are shown in the above table for AERO courses only. Prerequisites for service courses given by other faculties and departments can be found in the tables for those departments.
Candidates for the degree of Bachelor of Engineering in Chemical Engineering are required to gain credit for the core units of study set out below. Any additional credit necessary to satisfy Section 9 shall be gained by completing additional credit points of elective units of study, as recommended by the Faculty, as may be necessary to gain credit for a total of not less than 192 credit points. See note (1) relating to core units of study offered by faculties other than Engineering.

Core units of study - Chemical Engineering

First Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1001 Differential Calculus</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1901 or 1011</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1002 Linear Algebra</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1902 or 1012</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1003 Integral Calculus and Modelling</td>
<td>3</td>
<td>A) HSC 4-unit Mathematics or Mathematics 1001.</td>
<td>N) May not be counted with Mathematics 1903 or 1013</td>
<td>July</td>
</tr>
<tr>
<td>MATH 1005 Statistics</td>
<td>3</td>
<td>A) HSC 2-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1905 or 1015</td>
<td>July</td>
</tr>
<tr>
<td>CHEM 1101 Chemistry 1A</td>
<td>6</td>
<td>A) HSC Mathematics 2 unit course; and the Chemistry component of the 4-unit or 3-unit HSC Science course, or 2-unit Chemistry.</td>
<td>C) Recommended concurrent unit of study: Preferred - Mathematics 1001 and 1002 or 1901 and 1902; otherwise - Mathematics 1011 and 1012.</td>
<td>March & July</td>
</tr>
<tr>
<td>CHEM 1102 Chemistry 1B</td>
<td>6</td>
<td>P) Qualifying: Chemistry 1101 or a Distinction in Chemistry 1001 or equivalent.</td>
<td>C) Recommended concurrent unit of study: Preferred - Mathematics 1003 and 1005 or 1003 and 1004 or 1903 and 1905 or 1903 and 1904; otherwise - Mathematics 1004 and 1005 or 1013 and 1015.</td>
<td>March & July</td>
</tr>
<tr>
<td>CHNG 1001 Chemical Engineering Applications</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 1101 Chemical Engineering 1A</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 1102 Chemical Engineering 1B</td>
<td>4</td>
<td>P) CHNG 1101 Chemical Engineering 1A.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 1201 Chemical Process Case Studies</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 1301 Computing for Chemical Engineers</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2001 Vector Calculus and Complex Variables</td>
<td>4</td>
<td>P) Prerequisite: Mathematics (1001 or 1001) and (1002 or 1002) and (1003 or 1903).</td>
<td>N) May not be counted with Mathematics 2901</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2002 Matrix Applications</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 1002 or 1002 or Distinction in Mathematics 1012.</td>
<td>N) May not be counted with 2902</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2005 Fourier Series and Differential Equations</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 2001 or 2901.</td>
<td>N) May not be counted with Mathematics 2905</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2051 Linear Programming & Boundary Value Problems</td>
<td>2</td>
<td>C) MATH 2001 or 2901, and MATH 2002 or 2902.</td>
<td>N) MATH 2953</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2052 Numerical Methods</td>
<td>2</td>
<td>C) MATH 2001 or 2901.</td>
<td>N) MATH 2952</td>
<td>July</td>
</tr>
<tr>
<td>AERO 2300 Mechanics of Solids 1</td>
<td>4</td>
<td>P) 12 credit points of first year Maths (i.e Maths 1001,1002,1003,1005).</td>
<td></td>
<td>March</td>
</tr>
</tbody>
</table>
Table 2: Chemical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2101 Chemistry 2 (Environmental)</td>
<td>8</td>
<td>p) Qualifying: Chemistry 1102 or 1902 or 1904. Prerequisite: 6 credit points of Junior Mathematics. N) May not be counted with Chemistry 2001 or 2301 or 2502 or 2901</td>
<td>March</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 2101 Chemical Engineering 2A</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 2102 Chemical Engineering 2B</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 2301 Chemical Engineering Computations</td>
<td>4</td>
<td>p) Maths 1001, 1002,1003,1005 CHNG 1301.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 2501 Fundamentals of Environmental Chemical Engineering</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Third Year

CHNG 3001 Chemical Engineering Laboratory	4	p) CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B.				
CHNG 3101 Unit Operations (Heat Transfer)	4	p) CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B.				
CHNG 3102 Unit Operations (Mass Transfer)	4	p) CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B.				
CHNG 3103 Unit Operations (Particle Mechanics)	4	p) CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B.				
CHNG 3104 Unit Operations (Fluid Mechanics)	4	p) CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B.				
CHNG 3105 Thermodynamics 1	4	p) CHNG 2101 Chemical Engineering 2A; CHNG 2102 Chemical Engineering 2B.				
CHNG 3106 Thermodynamics 2	4	p) CHNG 3105 Thermodynamics 1.				
CHNG 3107 Reaction Engineering 1	4					
CHNG 3301 Process Modelling	4	p) CHNG 2301 Chemical Engineering Computations.				
CHNG 3302 Process Control 1	4					
CHNG 3401 Project Economics	4					
CHNG 3601 Materials and Corrosion	4					

Fourth Year

CHNG 4001 Practical Experience	0	p) 28 credit points of 3rd Year units.				
CHNG 4002 Thesis	8	p) Students should have completed (or be enrolled in) all other 4th Year core units.				
CHNG 4201 Chemical Engineering Design 1	4	p) CHNG 3101,3102,3103,3104.				
CHNG 4202 Chemical Engineering Design 2	8	p) CHNG 3101, 3102,3103,3104; CHNG 3105 Thermodynamics 1; CHNG 3106 Thermodynamics 2; CHNG 3401 Project Economics.				
CHNG 4401 Project Engineering	4					
CHNG 4402 Process Plant Risk Management	4					
Table 2: Chemical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1052</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>CHNG 1021</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 2002</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>September</td>
</tr>
<tr>
<td>AERO 2300</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>September</td>
</tr>
<tr>
<td>MATH 2051</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>September</td>
</tr>
<tr>
<td>MATH 2052</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>September</td>
</tr>
<tr>
<td>STAT 2004</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>September</td>
</tr>
<tr>
<td>STAT 2002</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>September</td>
</tr>
<tr>
<td>CHEM 2001</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>September</td>
</tr>
<tr>
<td>CHEM 2201</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>September</td>
</tr>
<tr>
<td>ASNS 2601</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ASNS 2602</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>CHNG 2701</td>
<td>4 P) CHEM 1101 CHEM 1201.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>CHNG 2702</td>
<td>4 P) CHEM 1101 CHEM 1201.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>MICR 2007</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>MICR 2008</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ASNS 2603</td>
<td>4 P) ASNS 2601, ASNS2602. C) ASNS2604.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ASNS 2604</td>
<td>4 P) ASNS2601,ASNS2602. C) ASNS2603.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ENGG 4002</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>REL 1001</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ASNS 3601</td>
<td>4 P) ASNS2603, ASNS2604. C) ASNS3602.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
</tbody>
</table>

Notes to Table 2
(1) For core units offered by other than the Faculty of Engineering, any assumed knowledge, prerequisite requirements, will be as prescribed by that Faculty.
(2) Students doing any of the combined degree options (ie BE/BSc; BE/BCom and BE/BA) will be exempt from First Year core units of study MATH 1052 and CHNG 1021, and Second Year core units of study ELEC 2002 and AERO 2300.
(3) Students doing the BE/BCom degree would replace: Second Year core units MATH 2001, MATH 2051 and MATH 2052 with STAT 2002, 4 credit points and STAT 2004, 4 credit points.
(4) Acceptable alternatives are CHEM 2001 and CHEM 2201.
(5) Students who wish to specialise in the biochemical applications of chemical engineering should select the following units of study:
Second Year: CHNG 2701 and CHNG 2702 in place of ELEC 2002 and AERO 2300.
Third Year: MICR 2007 and MICR 2008. Note that one or more of the Third Year core units of study may need to be deferred until the following year.
Fourth Year: The elective unit of study CHNG 4501.

Resolutions of the Faculty of Engineering relating to Table 2

Bachelor of Engineering in Chemical Engineering
Candidates for the degree of Bachelor of Engineering in Chemical Engineering are required to complete all the core units in Table 2 (total 172 credit points). They are also required to gain at least 12 elective credit points.

Combined Degree (Bachelor of Engineering in Chemical Engineering with either a Bachelor of Arts, Bachelor of Commerce or Bachelor of Science)
Candidates commencing in one of the combined degree options (that is Bachelor of Engineering in Chemical Engineering with either a Bachelor of Arts, Bachelor of Commerce or Bachelor of Science) are required to complete all the core units of study in Table 2 except where specific exemptions are noted. They are also required to gain at least 4 elective credit points, all of which must come from the Year 4 electives listed in the table of Recommended Elective Units of Study for BE (Chem) as shown below. This total of 160 credit points is only sufficient to be awarded a Bachelor of Engineering in Chemical Engineering as part of an approved combined degree program.

Acceptable alternative units of study
Most Mathematics, Chemistry, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent Advanced level unit of study subject to prerequisite conditions (as required by the Faculty of Science) being met. Students considering doing Advanced options should seek advice from their Department before enrolling.

Recommended elective units of study for BE (Chemical)

- Second Year
 | ASNS 2601 | Asian Studies 1A (Japanese) | 4 | March |
 | ASNS 2602 | Asian Studies 1B (Japanese) | 4 | March |
 | CHNG 2701 | Fundamentals of Bioprocess Engineering 1 | 4 P) CHEM 1101 CHEM 1201. | July |
 | CHNG 2702 | Fundamentals of Bioprocessing Engineering 2 | 4 P) CHEM 1101 CHEM 1201. | July |

- Third Year
 | MICR 2007 | Microbiology for Engineers A | 4 | March |
 | MICR 2008 | Microbiology for Engineers B | 4 | March |
 | ASNS 2603 | Asian Studies 2A | 4 P) ASNS 2601, ASNS2602. C) ASNS2604. | March |
 | ASNS 2604 | Asian Studies 2B | 4 P) ASNS2601,ASNS2602. C) ASNS2603. | July |

- Fourth Year
 | ENGG 4002 | New Business Creation | 4 | March |
 | REL 1001 | Macro Industrial Relations | 6 | March |
 | ASNS 3601 | Asian Studies 3A | 4 P) ASNS2603, ASNS2604. C) ASNS3602. | March |
Table 2: Chemical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASNS 3602 Asian Studies 3B</td>
<td>4 P)</td>
<td>ASNS2603. ASNS2604.</td>
<td></td>
<td></td>
<td>ASNS3601.</td>
<td></td>
</tr>
<tr>
<td>ENGG 4001 Innovation and International Competitiveness</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>CHNG 4003 Advances in Chemical Engineering A</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4004 Advances in Chemical Engineering B</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4005 Laboratory Projects in Unit Operations</td>
<td>4 P)</td>
<td>CHNG 3001 Chemical Engineering Laboratory.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4006 Professional Option</td>
<td>2 P)</td>
<td>Passed at least 144 credit points.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4101 Separation Processes</td>
<td>4 P)</td>
<td>Unit Operations (all four components).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4102 Transport Phenomena</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4103 Advances in Polymer Engineering</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4104 Reaction Engineering 2</td>
<td>4 P)</td>
<td>CHNG 3107 Reaction Engineering 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4105 Advanced Topics in Thermodynamics</td>
<td>4 P)</td>
<td>CHNG 3105 Thermodynamics 1; CHNG 3106 Thermodynamics 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4203 Major Industrial Project</td>
<td>24 P)</td>
<td>Passed at least 144 credit points. Students wishing to do this unit of study are required to discuss the matter with the Head of Department prior to enrolment.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4301 Advanced Fluid Dynamics Modelling</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4302 Reservoir Engineering</td>
<td>4 P)</td>
<td>CHNG 3103 Unit Operations (Particle Mechanics); CHNG 3104 Unit Operations (Fluid Mechanics).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4303 Optimisation Techniques</td>
<td>4 N)</td>
<td>CHNG 4305 Process Systems Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4305 Process Systems Engineering</td>
<td>4 N)</td>
<td>CHNG 4303 Optimisation Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4403 Engineering Business Skills</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4501 Biochemical Engineering</td>
<td>8 P)</td>
<td>CHNG 2701 & CHNG 2702 Fundamentals of Bioprocess Engineering 1 & 2; MICR 2007 Microbiology for Engineers A; MICR 2008 Microbiology for Engineers B.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4502 Advanced Topics in Environmental Engineering A</td>
<td>4 P)</td>
<td>All four components of "Unit Operations"; CHNG 3106 Thermodynamics 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4503 Advanced Topics in Environmental Engineering B</td>
<td>4 P)</td>
<td>All four components of "Unit Operations"; CHNG 3106 Thermodynamics 2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4504 Environmental Decision Making</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4505 Bioremediation</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4601 Advanced Particle Mechanics</td>
<td>4 P)</td>
<td>All four components of "Unit Operations".</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4602 Mineral Processing (Extractive Metallurgy)</td>
<td>4 P)</td>
<td>Unit Operations (all four components).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4603 Mineral Processing (Mineral Dressing)</td>
<td>4 P)</td>
<td>Unit Operations (all four components).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Chemical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>DESC Computer-Based Design 6001</td>
<td>3</td>
<td>N) Not available every year.</td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
</tbody>
</table>

Note

Choice of electives as shown in the above table will depend upon subject availability, timetabling and prerequisite conditions. Choices and combinations of elective units of study are subject to approval by the Head of Department.
Candidates for the degree of Bachelor of Engineering in Civil Engineering are required to gain credit for the core units of study set out below. Any additional credit necessary to satisfy Section 9 shall be gained by completing additional elective units of study, as recommended by the Faculty, as may be necessary to gain credit for a total of not less than 192 credit points. See note (1) relating to core units of study offered by faculties other than Engineering.

Core units of study - Civil Engineering

First Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1001</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1901 or 1011</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1002</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1902 or 1012</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1003</td>
<td>3</td>
<td>A) HSC 4-unit Mathematics or Mathematics 1001.</td>
<td>N) May not be counted with Mathematics 1903 or 1013</td>
<td>July</td>
</tr>
<tr>
<td>MATH 1005</td>
<td>3</td>
<td>A) HSC 2-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1905 or 1015</td>
<td>July</td>
</tr>
<tr>
<td>CHEM 1401</td>
<td>6</td>
<td>P) Mathematics 2-unit course and a satisfactory knowledge of 2-unit Chemistry or the Chemistry component of the 3 or 4-unit Science HSC course.</td>
<td>N) CHEM 1101, CHEM 1102</td>
<td>March</td>
</tr>
<tr>
<td>CIVL 1051</td>
<td>5</td>
<td>A) Assumed standard of knowledge: Mathematics 3 unit course and Science 4 unit course (or the Physics core of 3-4 unit Science) at the HSC.</td>
<td>C) MATH 1001, 1002, 1003, 1005.</td>
<td>July</td>
</tr>
<tr>
<td>CIVL 1001</td>
<td>4</td>
<td>P) Assumed standard of knowledge. Mathematics 3 unit course and a satisfactory knowledge of 2 unit Chemistry or the Chemistry component of the 3 or 4 unit Science HSC course and of the 2 unit Physics course or the Physics component of the 3 or 4 unit Science HSC course.</td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>CIVL 1052</td>
<td>5</td>
<td>A) Mathematics 3 unit course at the HSC.</td>
<td>C) MATH 1001, 1002, 1003, 1005.</td>
<td>N) Mutually exclusive with: MECH 1500 Mechanical Engineering 1, MECH 1501 Engineering Statics</td>
</tr>
<tr>
<td>CIVL 1002</td>
<td>3</td>
<td>N) COMP 1001 Introductory Programming and COMP 1002 Introductory Computer Science</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>CIVL 1003</td>
<td>3</td>
<td>C) Either CIVL 1002 Computational Engineering or COMP 1001, COMP 1002 Computer Science.</td>
<td>N) MECH 1800 Computational Engineering 1A and MECH 1801 Computational Engineering 1C</td>
<td>July</td>
</tr>
<tr>
<td>CIVL 1406</td>
<td>5</td>
<td>N) GEOL 1002</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2001</td>
<td>4</td>
<td>P) Prerequisite: Mathematics (1001 or 1901) and (1002 or 1902) and (1003 or 1903).</td>
<td>N) May not be counted with Mathematics 2901</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2002</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.</td>
<td>N) May not be counted with 2902</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2005</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 2001 or 2901.</td>
<td>N) May not be counted with Mathematics 2905</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2051</td>
<td>2</td>
<td>C) MATH 2001 or 2901, and MATH 2002 or 2902.</td>
<td>N) MATH 2953</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2052</td>
<td>2</td>
<td>C) MATH 2001 or 2901.</td>
<td>N) MATH 2952</td>
<td>July</td>
</tr>
<tr>
<td>CIVL 2407</td>
<td>5</td>
<td>P) Either GEOL 1002 or CIVL 1406 Engineering Geology.</td>
<td></td>
<td>July</td>
</tr>
</tbody>
</table>
Table 3: Civil Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL 2101 Properties of Materials</td>
<td>4</td>
<td>p) CHEM 1401 Chemistry IE.</td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>CIVL 2202 Structural Mechanics</td>
<td>5</td>
<td>p) CIVL 1051 Dynamics and CIVL 1052 Statics.</td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>CIVL 2601 Fluids 1</td>
<td>5</td>
<td>P) MATH 1001, MATH 1002, MATH 1003, MATH 1005.</td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>CIVL 2004 Engineering Communications 1</td>
<td>2</td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>CIVL 2203 Structural Design</td>
<td>4</td>
<td>P) CIVL 1051 Dynamics and CIVL 1052 Statics.</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>CIVL 2001 Engineering Construction 1</td>
<td>4</td>
<td></td>
<td></td>
<td>July</td>
</tr>
</tbody>
</table>

Third Year

CIVL 3206 Steel Structures 1	6	P) CIVL 2202 Structural Mechanics, CIVL 3102 Materials Aspects in Design, CIVL 3204 Structural Analysis.		July
CIVL 3223 Concrete Structures - Behaviour	3	P) CIVL 2202 Structural Mechanics and CIVL 2203 Structural Design.		March
CIVL 3224 Concrete Structures - Design	3	P) CIVL 2202 Structural Mechanics and CIVL 2203 Structural Design, CIVL 3205 Concrete Structures 1		July
CIVL 3401 Soil Mechanics A	4	P) CIVL 2202 Structural Mechanics.		March
CIVL 3402 Soil Mechanics B	4	P) CIVL 2202 Structural Mechanics, CIVL 3401 Soil Mechanics A.		July
CIVL 3501 Surveying 1	4	P) MATH 1001, MATH 1002, MATH 1003, MATH 1005.		March
CIVL 3602 Fluids 2	4	P) CIVL 2601 Fluids 1.		July
CIVL 3701 Transportation Engineering and Planning	2			July
CIVL 3802 Engineering Construction 2	4	P) CIVL 2801 Engineering Construction 1.		March

Fourth Year

CIVL 4014 Thesis/Design/Project	5	P) 40 credit points of Senior Subjects.		Full year
CIVL 4008 Practical Experience	0	P) Prereq 28 cp of Senior courses.		March
CIVL 4010 Civil Engineering Camp	4	P) CIVL 3501 Surveying 1.		March
CIVL 4803 Engineering Management	4			March
CIVL 4011 Professional Practice	4			July
CIVL 4901 Civil Engineering Design	4	P) CIVL 3223 Concrete Structures - Behaviour, CIVL 3224 Concrete Structures - Design, CIVL 3206 Steel Structures 1.		March
Notes to Table 3

(1) For core units of study offered by other than the Faculty of Engineering, any assumed knowledge, prerequisite and corequisite requirements will be as prescribed by the Faculty.

Resolutions of the Faculty of Engineering relating to Table 3

Degree eligibility

Candidates for the degree of Bachelor of Engineering in Civil Engineering are expected to complete all the core units for the study in Table 3 (161 credit points). They are also required to gain at least 31 credit points from the elective units of study listed under ‘Resolutions of the Department of Civil Engineering’. Of the 31 points of elective units of study, at least 20 of these must be from Senior Advanced Units of Study. Candidates commencing one of the combined degree options from 1998 onwards (that is, Bachelor of Engineering in Civil Engineering with either a Bachelor of Arts, Bachelor of Science or Bachelor of Commerce) are required to complete all of the core units of study in Table 3 (161 credit points). This total of 161 credit points is only sufficient to be awarded a Bachelor of Engineering in Civil Engineering as part of an approved combined degree program. The remaining credit points for the combined degree will be taken in the appropriate Faculty (Arts, Science or Economics) and candidates should refer to the Joint Resolutions of the Faculty of Engineering and the relevant Faculty requirements.

NOTE: Most Mathematics, Chemistry, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent Advanced level units of study subject to prerequisite conditions (as required by the Faculty of Science) being met. Students considering doing Advanced options should seek advice from their Department before enrolling.

Acceptable alternative units of study

Pursuant to Resolution 3, the Faculty has prescribed the following acceptable alternatives to core units of study listed in Table 3.

<table>
<thead>
<tr>
<th>Acceptable alternative</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1401 Chemistry 1E</td>
<td>CHEM 1101 and CHEM 1102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 1406 Engineering Geology 1</td>
<td>GEOL 1001 and GEOL 1002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 1002 Computational Engineering</td>
<td>COMP 1001 and; COMP 1002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 1003 Computer Graphics</td>
<td>COMP 2001 and COMP 2002 and COMP 2003 and COMP 2004 or MECH 1800 and MECH 1810</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 1052 Statics</td>
<td>MECH 1500 or MECH 1501</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 1051 Dynamics</td>
<td>MECH 1510</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 1001 Introductory Electrical Engineering</td>
<td>PHYS 1202 or PHYS 1001 and PHYS 1003 or ELEC 2002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 2407 Engineering Geology 2</td>
<td>GEOL 2001 and GEOL 2002 and GEOL 2003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4014 Thesis/Design/Project</td>
<td>CIVL 4013</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended elective units of study for the BE (Civil)

First Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1202 Physics 1E</td>
<td>6</td>
<td>HSC 3-unit Mathematics.</td>
<td>Computer Science 1001 or 1901.</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>COMP 1001 Introductory Programming</td>
<td>6</td>
<td></td>
<td>Computer Science 1001 or 1901.</td>
<td></td>
<td>March & July</td>
</tr>
<tr>
<td>COMP 1002 Introductory Computer Science</td>
<td>6</td>
<td></td>
<td>Computer Science 1001 or 1901.</td>
<td></td>
<td>March & July</td>
</tr>
<tr>
<td>GEOL 1001 Earth and Its Environment</td>
<td>6</td>
<td></td>
<td>No previous knowledge of Geology assumed.</td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>GEOL 1002 Earth Processes and Resources</td>
<td>6</td>
<td></td>
<td>No previous knowledge of Geology assumed.</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>MECH 1600 Manufacturing Technology</td>
<td>4</td>
<td></td>
<td>Mutually exclusive with: AERO 1600 Workshop Technology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

66
Table 3: Civil Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNE 1001</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASNE 1002</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARPH 1001</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARPH 1002</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC 6001</td>
<td>3</td>
<td>N) Not available every year.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC 6002</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC 9020</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESC 9030</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BREL 1002</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4222</td>
<td>5</td>
<td>P) CIVL 3204 Structural Analysis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHNG 4504</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4221</td>
<td>5</td>
<td>P) CIVL 3223 Concrete Structures - Behaviour, CIVL 3224 Concrete Structures - Design and CIVL 3206 Steel Structures 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4218</td>
<td>5</td>
<td>P) CIVL 3223 Concrete Structures - Behaviour, CIVL 3224 Concrete Structures - Design.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4219</td>
<td>5</td>
<td>P) CIVL 3204 Structural Analysis.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4220</td>
<td>5</td>
<td>P) CIVL 3206 Steel Structures 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4406</td>
<td>5</td>
<td>P) CIVL 3401 Soil Mechanics A, CIVL 3402 Soil Mechanics B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4504</td>
<td>5</td>
<td>P) CIVL 3501 Surveying 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4607</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4608</td>
<td>5</td>
<td>A) Material covered in Environmental Fluids 1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4609</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4806</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 4807</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4407</td>
<td>5</td>
<td>P) CIVL 3401 Soil Mechanics A, CIVL 3402 Soil Mechanics B.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4630</td>
<td>2</td>
<td>P) MATH 2001 and MATH 2005.</td>
<td>N) MECH 4600 Industrial Engineering</td>
<td></td>
</tr>
</tbody>
</table>

Note: A) Assumed Knowledge, P) Prerequisite, C) Corequisite, N) Prohibitions and other information.
Table 3: Civil Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL 4105 Advanced Materials</td>
<td>5</td>
<td>P) CIVL 3102 Materials Aspects in Design.</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ARCH 6009 The Building Industry in Australia</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOL 2004 Environmental Geology: Hazards</td>
<td>4</td>
<td>P) Prerequisite: 24 credit points of Science units of study. See prerequisites for Senior Geology.</td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>GEOL 2005 Environmental Geology: Resources</td>
<td>4</td>
<td>P) Prerequisite: 24 credit points of Science units of study. See prerequisites for Senior Geology.</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>CIVL 4013 Major Thesis/Design/Project</td>
<td>10</td>
<td>P) 40 credit points of senior subjects, WAM of credit average or above in Senior year subjects.</td>
<td>N) CIVL 4014</td>
<td>Full year</td>
</tr>
<tr>
<td>CIVL 4014 Thesis/Design/Project</td>
<td>5</td>
<td>P) 40 credit points of Senior Subjects.</td>
<td>N) CIVL 4013 Major Thesis/Design/Project</td>
<td>Full year</td>
</tr>
</tbody>
</table>

Notes

1) Choice of electives as shown in the above table will depend upon subject availability, timetabling and prerequisite conditions.
2) For the BE degree (Civil), students must take at least 20 elective units of study at Senior Advanced level, however, two 4-credit-point units of study may be replaced by at least 8 credit points available elsewhere in the Faculty of Engineering and subject to the approval of the Head of Civil Engineering.
3) Honours candidates replace the core unit of study CIVL 4014 Thesis by CIVL 4013 Thesis Honours.
4) Recommended subjects for the elective streams are:
 - Construction Engineering and Management Stream: IREL 1001, CIVL 4806, CIVL 4807, MECH 4630.
 - Structural Engineering Stream: CIVL 4221, CIVL 4222, CIVL 4218, CIVL 4219, CIVL 4220.
 - Environmental Stream: CIVL 4406, CIVL 4607, CIVL 4608, CIVL 4609, CHNG 4504, (MECH 4220).
Candidates for the degree of Bachelor of Engineering in Computer Engineering, and candidates for the combined degree courses of Bachelor of Engineering in Computer Engineering with Bachelor of Art or Bachelor of Science or Bachelor of Commerce, are required to gain credit for the core units of study set out below. Any additional credit necessary to satisfy Section 9 shall be gained by completing additional elective units of study as prescribed by the Faculty.

Core units of study - Computer Engineering

First Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>Assumed Knowledge</th>
<th>Prerequisite</th>
<th>Corequisite</th>
<th>Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1001 Introductory Programming</td>
<td>6</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>P) Prerequisite: Computer Science 1001 or 1901.</td>
<td>C) Students intending to major in Computer Science are advised to enrol in Mathematics 1003 and 1004 or 1004 and 1005 or 1903 and 1904 or 1904 and 1905 in their first year.</td>
<td>N) May not be counted with Computer Science 1901.</td>
<td>March & July</td>
</tr>
<tr>
<td>COMP 1002 Introductory Computer Science</td>
<td>6</td>
<td>P) Prerequisite: Computer Science 1001 or 1901.</td>
<td>N) May not be counted with Computer Science 1902</td>
<td></td>
<td></td>
<td>March & July</td>
</tr>
<tr>
<td>ELEC 1101 Foundations of Computer Systems</td>
<td>6</td>
<td>P) Prerequisite: Computer Science 1001 or 1901.</td>
<td>N) May not be counted with Computer Science 1902</td>
<td></td>
<td></td>
<td>March & July</td>
</tr>
<tr>
<td>PHYS 1101 Physics (Regular)</td>
<td>6</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>P) Prerequisite: Computer Science 1001 or 1901.</td>
<td>C) Recommended concurrent units of study: Mathematics 1001 and 1002 or 1901 and 1902.</td>
<td>N) May not be counted with Physics 1002 or 1901.</td>
<td>March & July</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>Assumed Knowledge</th>
<th>Prerequisite</th>
<th>Corequisite</th>
<th>Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 2002 Design and Data Structures</td>
<td>4</td>
<td>Qualifying: Computer Science 1002 or 1902.</td>
<td>P) Prerequisite: Computer Science 1002 or 1902.</td>
<td>N) May not be counted with Computer Science 2902.</td>
<td>See prerequisites for Senior Computer Science units of study. Consult Departmental Handbook</td>
<td>March</td>
</tr>
<tr>
<td>COMP 2003 Languages and Logic</td>
<td>4</td>
<td>Qualifying: Computer Science 1002 or 1902. Prerequisite: Mathematics 1004 or 1904 or Econometrics or Mathematics 2009.</td>
<td>P) Prerequisite: Computer Science 1002 or 1902.</td>
<td>N) May not be counted with Computer Science 2902.</td>
<td>See prerequisites for Senior Computer Science units of study. Consult Departmental Handbook</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2001 Vector Calculus and Complex Variables</td>
<td>4</td>
<td>P) Prerequisite: Mathematics (1001 or 1901) and (1002 or 1902) and (1003 or 1903).</td>
<td></td>
<td>N) May not be counted with Mathematics 2901</td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>MATH 2002 Matrix Applications</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.</td>
<td></td>
<td>N) May not be counted with 2902</td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>MATH 2005 Fourier Series and Differential Equations</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 2001 or 2901.</td>
<td></td>
<td>N) May not be counted with Mathematics 2905</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>PHYS 2203 Physics 2EE</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
</tbody>
</table>
Faculty of Engineering Handbook 1999

Table 4: Computer Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC 2501 Signals and Communications</td>
<td>4</td>
<td>P3</td>
<td>Advisory prerequisites MATH1701 Differential Calculus and Linear Algebra, and MATH 1703 Integral Calculus and Discrete Mathematics, and ELEC1102 Foundations of Electronic Circuits.</td>
<td></td>
<td></td>
<td>July</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3007(3) Networked Systems</td>
<td>4</td>
<td>P3</td>
<td>Qualifying: Computer Science 2004 or 2904. Prerequisite: Computer Science 2001 or 2901 or ELEC 2601.</td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>COMP 3009(3) Operating Systems</td>
<td>4</td>
<td>P3</td>
<td>Qualifying: Computer Science 2004 or 2904. Prerequisite: Computer Science 2001 or 2901 or ELEC 2601.</td>
<td>N3</td>
<td>May not be counted with Computer Science 3909</td>
<td>March</td>
</tr>
<tr>
<td>COMP 3100(3) Software Engineering</td>
<td>4</td>
<td>P3</td>
<td>Prerequisite: Computer Science 2004 or 2904.</td>
<td>N3</td>
<td>May not be counted with Computer Science 3800</td>
<td>March</td>
</tr>
<tr>
<td>ELEC 3401 Electronic Devices and Circuits</td>
<td>4</td>
<td>P3</td>
<td>Advisory prerequisite ELEC2401 Electronic Devices and Circuits and ELEC2101 Circuit Analysis.</td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ELEC 3403 Switching Devices and High Speed Electronics</td>
<td>4</td>
<td>P3</td>
<td>Advisory prerequisite ELEC 3401 Electronic Devices and Circuits.</td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 3501 Communications</td>
<td>4</td>
<td>P3</td>
<td>Advisory prerequisite ELEC 2501 Signals and Communications, and ELEC 3301 Signals and Systems.</td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 3601 Digital Systems Design</td>
<td>4</td>
<td>P3</td>
<td>Advisory prerequisite ELEC2601 Microcomputer Systems.</td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 3701 Management for Engineers</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC 4303 Digital Signal Processing</td>
<td>4</td>
<td>P3</td>
<td>Advisory prerequisites ELEC2501 Signals and Communications, and ELEC3301 Signals and Systems.</td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ELEC 4601 Computer Design</td>
<td>4</td>
<td>P3</td>
<td>Advisory prerequisites ELEC3403 Switching Devices and High Speed Electronics, and ELEC3601 Digital Systems Design.</td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ELEC 4602 RealTime Computing</td>
<td>4</td>
<td>P3</td>
<td>Advisory prerequisites ELEC3601 Digital Systems Design, and COMP3100 Software Engineering.</td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ELEC 4702 Practical Experience</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 4703 Thesis</td>
<td>12</td>
<td>P3</td>
<td>A minimum of 36 credit points from third or fourth year units of study.</td>
<td></td>
<td></td>
<td>July</td>
</tr>
</tbody>
</table>

Notes to Table 4

1. For core units of study offered by other than the Faculty of Engineering, any assumed knowledge, prerequisite and corequisite requirements will be as prescribed by that Faculty.
2. PHYS 1003 is an acceptable alternative to PHYS 1203.
3. Students who have completed one or more of these units of study toward the Bachelor of Science degree shall, in their place, complete an equivalent number of credit points from units of study in the table below of Recommended Elective Units of Study for BE (Computer Engineering) or such other units of study as are approved by the Head of School.
Resolutions of the Faculty of Engineering relating to Table 4: Degree Eligibility

BE (Computer Engineering)

In addition to gaining credit for the 154 credit points of core units of study set out in Table 4, candidates are required to complete at least 16 credit points of elective units of study from the table of recommended elective units of study for BE (Computer Engineering). Further credit for a total of not less than 192 credit points shall be gained by completing additional elective units of study approved by the Faculty.

BE (Computer Engineering) / BSc or BA or BCom

In addition to gaining credit for the 154 credit points of core units of study set out in Table 4, candidates must complete at least 8 credit points of elective units of study from the table of recommended elective units of study for BE (Computer Engineering).

Candidates for combined degrees should refer to the Joint Resolutions of the Faculty of Engineering and the Faculty in which they are undertaking the combined degree program.

Acceptable alternative units of study

Most Mathematics, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent Advanced level unit of study subject to prerequisite conditions (as required by the Faculty of Science) being met.

Recommended elective units of study for BE (Computer Engineering)

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC 4301</td>
<td>4</td>
<td>p)</td>
<td>ELEC 3302 Fundamentals of Feedback Control.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 4401</td>
<td>4</td>
<td>p)</td>
<td>ELEC3301 Signals and Systems, and ELEC3302 Fundamentals of Feedback Control and ELEC3401 Electronic Devices and Circuits.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 4402</td>
<td>4</td>
<td>p)</td>
<td>ELEC3403 Switching Devices and High Speed Electronics, andELEC3601 Digital Systems Design.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 4502</td>
<td>4</td>
<td>p)</td>
<td>ELEC3501 Communications.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 5601</td>
<td>4</td>
<td>p)</td>
<td>ELEC4602 Real Time Computing.</td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>ELEC 5605</td>
<td>4</td>
<td>p)</td>
<td>ELEC4601 Computer Design.</td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>ELEC 5607</td>
<td>4</td>
<td>p)</td>
<td>ELEC3601 Digital Systems Design and COMP3100 Software Engineering.</td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>ELEC 5608</td>
<td>4</td>
<td>p)</td>
<td>ELEC3701 Management for Engineers and ELEC4501 Data Communication Networks.</td>
<td>July</td>
<td></td>
</tr>
</tbody>
</table>

Note: The level 5 units will not all be available3 in a particular year.
Table 5: Electrical Engineering

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core units of study - Electrical Engineering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates for the degree of Bachelor of Engineering in Electrical Engineering, and candidates for the combined degree courses of Bachelor of Engineering in Electrical Engineering with Bachelor of Art or Bachelor of Science or Bachelor of Commerce, are required to gain credit for the core units of study set out below. Any additional credit necessary to satisfy Section 9 shall be gained by completing additional elective units of study, as prescribed by the Faculty.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ First Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1001 Introductory Programming</td>
<td>6 A) HSC 3-unit Mathematics.</td>
<td>C) Students intending to major in Computer Science are advised to enrol in Mathematics 1003 and 1004 or 1004 and 1005 or 1903 and 1904 or 1904 and 1905 in their first year.</td>
<td>N) May not be counted with Computer Science 1901.</td>
<td></td>
<td>March & July</td>
<td></td>
</tr>
<tr>
<td>COMP 1002 Introductory Computer Science</td>
<td>6 P) Prerequisite: Computer Science 1001 or 1901.</td>
<td>N) May not be counted with Computer Science 1902</td>
<td></td>
<td></td>
<td>March & July</td>
<td></td>
</tr>
<tr>
<td>ELEC 1101 Foundations of Computer Systems</td>
<td>6 P) Advisory prerequisites HSC Maths 3 unit.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 1001 Differential Calculus</td>
<td>3 A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1901 or 1011</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 1002 Linear Algebra</td>
<td>3 A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1902 or 1012</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 1003 Integral Calculus and Modelling</td>
<td>3 A) HSC 4-unit Mathematics or Mathematics 1001.</td>
<td>N) May not be counted with Mathematics 1903 or 1013</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MATH 1004 Discrete Mathematics</td>
<td>3 A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1904</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>PHYS 1001 Physics (Regular)</td>
<td>6 A) HSC Physics or HSC 4-unit Science.</td>
<td>P) See prerequisites for Intermediate Physics units of study.</td>
<td>C) Recommended concurrent units of study: Mathematics 1001 and 1002 or 1901 and 1902.</td>
<td>N) May not be counted with Physics 1002 or 1901.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>PHYS 1203 Physics 1EE</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>■ Second Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 2002 Design and Data Structures</td>
<td>4 P) Qualifying: Computer Science 1002 or 1902.</td>
<td>N) May not be counted with Computer Science 2902. See prerequisites for Senior Computer Science units of study. Consult Departmental Handbook</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 2001 Vector Calculus and Complex Variables</td>
<td>4 P) Prerequisite: Mathematics (1001 or 1901) and (1002 or 1902) and (1003 or 1903).</td>
<td>N) May not be counted with Mathematics 2901</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 2002 Matrix Applications</td>
<td>4 P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.</td>
<td>N) May not be counted with 2902</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 2005 Fourier Series and Differential Equations</td>
<td>4 P) Prerequisite: Mathematics 2001 or 2901.</td>
<td>N) May not be counted with Mathematics 2905</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>PHYS 2203 Physics 2EE</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
</tbody>
</table>
Table 5: Electrical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 2501 Signals and Communications</td>
<td>4</td>
<td>P) Advisory prerequisites MATH 1701 Differential Calculus and Linear Algebra, and MATH1703 Integral Calculus and Discrete Mathematics, and ELEC1102 Foundations of Electronic Circuits.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 3102 Engineering Electromagnetics</td>
<td>4</td>
<td>P) Advisory prerequisites (PHYS2203 Physics2EE or PHYS2002 Physics (Technological) B) and ELEC2101 Circuit Analysis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 3401 Electronic Devices and Circuits</td>
<td>4</td>
<td>P) Advisory prerequisite ELEC2401 Electronic Devices and Circuits and ELEC2101 Circuit Analysis.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 3501 Communications</td>
<td>4</td>
<td>P) Advisory prerequisite ELEC 2501 Signals and Communications, and ELEC 3301 Signals and Systems.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 3701 Management for Engineers</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes to Table 5

(1) For units of study offered by a Faculty other than the Faculty of Engineering, any assumed knowledge, prerequisites and corequisites, will be as prescribed by that Faculty.

(2) PHYS 1003 is an acceptable alternative to PHYS 1203.

Resolutions of the Faculty of Engineering relating to Table 5: Degree Eligibility

BE (Electrical Engineering)

In addition to gaining credit for the 130 credit points of core units of study set out in Table 5, candidates are required to complete at least 40 credit points of elective units of study (at least 32 of which must be at the 4 or 5 level) from the table of recommended elective units of study for BE (Electrical Engineering). Further credit for a total of not less than 192 credit points shall be gained by completing additional elective units of study approved by the Faculty.

BE (Electrical Engineering) / BSc or BA or BCom

In addition to gaining credit for the 130 credit points of core units of study set out in Table 5, candidates are required to complete at least 32 credit points of elective units of study (at least 24 of which must be at the 4 or 5 level) from the table of recommended elective units of study for BE (Electrical Engineering). Candidates should refer to the Joint Resolutions of the Faculty of Engineering and the Faculty in which they are undertaking the combined degree program.
Table 5: Electrical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE (Electrical Engineering) / BCom and admitted to Junior Year prior to 1998</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candidates who commenced Junior Year prior to 1998 are not required to gain credit for the unit of study ELEC 3701 Management for Engineers. In addition to satisfying the remaining core requirements set out in Table 5, they are required to gain credit for at least 20 credit points of elective units of study (at least 8 of which must be at the 4 or 5 level) from the table of recommended elective units of study for BE (Electrical and Information Engineering). The unit of study ELEC 3701 Management for Engineers may count toward the additional 20 credit points. Candidates should refer to the Joint Resolutions of the Faculty of Engineering and the Faculty in which they are undertaking the combined degree program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Acceptable alternative units of study
Most Mathematics, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent Advanced level unit of study subject to prerequisite conditions (as required by the Faculty of Science) being met. |
| Resolutions of the Department of Electrical Engineering relating to Table 5
- Recommended elective units of study for BE (Electrical Engineering) |
| Third Year |
| COMP 3100 Software Engineering 4 P) Prerequisite: Computer Science 2004 or 2904, N) May not be counted with Computer Science 3800 | March |
| ELEC 3103 Electrical Engineering Design 4 P) Advisory prerequisites ELEC 2101 Circuit Analysis, and ELEC 2401 Electronic Devices and Circuits, and ELEC 2501 Signals and Communications, and ELEC2601 Microcomputer Systems. | March |
| ELEC 3202 Power Electronics and Drives 4 P) Advisory prerequisites ELEC 2101 Circuit Analysis, and ELEC 2401 Electronic Devices and Circuits. | July |
| ELEC 3402 Communications Electronics 4 P) Advisory prerequisite ELEC 3401 Electronic Devices and Circuits. | July |
| ELEC 3403 Switching Devices and High Speed Electronics 4 P) Advisory prerequisite ELEC 3401 Electronic Devices and Circuits. | July |
| ELEC 3801 Fundamentals of Biomedical Engineering 4 P) Advisory prerequisite ELEC2401 Electronic Devices and Circuits or ELEC2001 Electrical and Electronic Engineering. | March |
| Fourth Year |
| ELEC 4303 Digital Signal Processing 4 P) Advisory prerequisites ELEC2501 Signals and Communications, and ELEC3301 Signals and Systems. | March |
| ELEC 4401 Electronic Design 4 P) Advisory prerequisite ELEC3301 Signals and Systems, and ELEC3302 Fundamentals of Feedback Control and ELEC3401 Electronic Devices and Circuits. | March |
| ELEC 4402 Integrated Circuit Design 4 P) Advisory prerequisites ELEC3403 Switching Devices and High Speed Electronics, and ELEC3601 Digital Systems Design. | March |
| ELEC 4501 Data Communication Networks 4 P) Advisory prerequisite ELEC3501 Communications. | March |
| ELEC 4502 Digital Communication Systems 4 P) Advisory prerequisite ELEC3501 Communications. | March |
| ELEC 4503 Error Control Coding 4 P) Advisory prerequisite ELEC3501 Communications. | March |
| ELEC 4601 Computer Design 4 P) Advisory prerequisites ELEC3403 Switching Devices and High Speed Electronics, and ELEC3601 Digital Systems Design. | March |
Table 5: Electrical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC 4701 Project Management</td>
<td>4</td>
<td>p)</td>
<td>Advisory prerequisite ELEC3701 Management for Engineers.</td>
<td>July</td>
</tr>
<tr>
<td>ELEC 4801 Biomedical Engineering Systems</td>
<td>4</td>
<td>p)</td>
<td>Advisory prerequisite ELEC3801 Fundamentals of Biomedical Engineering.</td>
<td>July</td>
</tr>
<tr>
<td>ELEC 5201 Electrical Systems Control</td>
<td>4</td>
<td>p)</td>
<td>Advisory prerequisites ELEC3302 Fundamentals of Feedback Control, and ELEC4201 Electrical Systems Modelling and Analysis.</td>
<td>July</td>
</tr>
<tr>
<td>ELEC 5202 Advanced Power Electronics and Drives</td>
<td>4</td>
<td>p)</td>
<td>Advisory prerequisite ELEC3202 Power Electronics and Drives.</td>
<td>July</td>
</tr>
<tr>
<td>ELEC 5302 Fuzzy Systems</td>
<td>4</td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 5501 Advanced Communication Networks</td>
<td>4</td>
<td>p)</td>
<td>Advisory prerequisites ELEC3501 Communications, and ELEC4501 Data Communication Networks.</td>
<td>July</td>
</tr>
<tr>
<td>ELEC 5503 Optical Communication Systems</td>
<td>4</td>
<td>p)</td>
<td>Advisory prerequisites ELEC3402 Communications Electronics, and ELEC3501 Communications.</td>
<td>July</td>
</tr>
<tr>
<td>ELEC 5601 Advanced Real Time Computing</td>
<td>4</td>
<td>p)</td>
<td>Advisory prerequisite ELEC4602 Real Time Computing.</td>
<td>July</td>
</tr>
<tr>
<td>ELEC 5603 Biologically Inspired Signal Processing</td>
<td>4</td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 5604 Adaptive Pattern Recognition</td>
<td>4</td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 5607 Hardware/Software Co-design</td>
<td>4</td>
<td>p)</td>
<td>Advisory prerequisites ELEC3601 Digital Systems Design and COMP3100 Software Engineering.</td>
<td>July</td>
</tr>
<tr>
<td>ELEC 5608 Electronic Commerce</td>
<td>4</td>
<td>p)</td>
<td>Advisory prerequisites ELEC3701 Management for Engineers and ELEC4501 Data Communication Networks.</td>
<td>July</td>
</tr>
</tbody>
</table>

Notes

1. For units of study offered by a Faculty other than the Faculty of Engineering, any assumed knowledge, prerequisites and corequisites, will be as prescribed by that Faculty.
2. The level 5 units of study will not all be available in a particular year.
Table 5A: Electrical Engineering (Information Systems)

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1001 Introductory Programming</td>
<td>6</td>
<td>A) HSC 3-unit Mathematics.</td>
<td></td>
<td></td>
<td></td>
<td>March & July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C) Students intending to major in Computer Science are advised to enrol in Mathematics 1003 and 1004 or 1004 and 1005 or 1903 and 1904 or 1904 and 1905 in their first year.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Computer Science 1901.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1002 Introductory Computer Science</td>
<td>6</td>
<td>P) Prerequisite: Computer Science 1001 or 1901.</td>
<td></td>
<td></td>
<td></td>
<td>March & July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Computer Science 1902.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 1101 Foundations of Computer Systems</td>
<td>6</td>
<td>P) Advisory prerequisites HSC Maths 3 unit.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ELEC 1102 Foundations of Electronic Circuits</td>
<td>6</td>
<td>P) HSC Physics 2 unit and MATH 1001 Differential Calculus.</td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) ELEC1001 Introductory Electrical Engineering, and ELEC2002 Electrical Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1001 Differential Calculus</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Mathematics 1901 or 1011.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1002 Linear Algebra</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Mathematics 1902 or 1012.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1003 Integral Calculus and Modelling</td>
<td>3</td>
<td>A) HSC 4-unit Mathematics or Mathematics 1001.</td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Mathematics 1903 or 1013.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1004 Discrete Mathematics</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Mathematics 1904.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 1001 Physics (Regular)</td>
<td>6</td>
<td>A) HSC Physics or HSC 4-unit Science.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P) See prerequisites for Intermediate Physics units of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C) Recommended concurrent units of study: Mathematics 1001 and 1002 or 1901 and 1902.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Physics 1002 or 1901.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 1203(2) Physics IEE</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>COMP 2002 Design and Data Structures</td>
<td>4</td>
<td>P) Qualifying: Computer Science 1002 or 1902.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Computer Science 2902. See prerequisites for Senior Computer Science units of study. Consult Departmental Handbook</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 2004 Programming Practice</td>
<td>4</td>
<td>P) Qualifying: Computer Science 1002 or 1902.</td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Computer Science 2904. See prerequisites for Senior Computer Science units of study. Consult Departmental Handbook</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 2001 Vector Calculus and Complex Variables</td>
<td>4</td>
<td>P) Prerequisite: Mathematics (1001 or 1901) and (1002 or 1902) and (1003 or 1903).</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Mathematics 2901.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 2002 Matrix Applications</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with 2902.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 2005 Fourier Series and Differential Equations</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 2001 or 2901.</td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Mathematics 2905.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 2203 Physics 2EE</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 2101 Circuit Analysis</td>
<td>4</td>
<td>P) Advisory prerequisite ELEC1102 Foundations of Electronic Circuits.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) ELEC2001 Electrical and Electronic Engineering, and ELEC2002 Electrical Technology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5A: Electrical Engineering (Information Systems) - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC 2501 Signals and Communications</td>
<td>4</td>
<td>P) Advisory prerequisites MATH 1701 Differential Calculus and Linear Algebra, and MATH 1703 Integral Calculus and Discrete Mathematics, and ELEC 1102 Foundations of Electronic Circuits.</td>
<td></td>
<td>July</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

COMP 3100 Software Engineering	4	P) Prerequisite: Computer Science 2004 or 2904.		March
ELEC 3102 Engineering Electromagnetics	4	P) Advisory prerequisites (PHYS2203 Physics2EE or PHYS2002 Physics (Technological) B) and ELEC2101 Circuit Analysis.		March
ELEC 3401 Electronic Devices and Circuits	4	P) Advisory prerequisite ELEC2401 Electronic Devices and Circuits and ELEC2101 Circuit Analysis.		March
ELEC 3402 Communications Electronics	4	P) Advisory prerequisite ELEC 3401 Electronic Devices and Circuits.		July
ELEC 3403 Switching Devices and High Speed Electronics	4	P) Advisory prerequisite ELEC 2501 Signals and Communications, and ELEC 3301 Signals and Systems.		July
ELEC 3701 Management for Engineers	4			March

Fourth Year

ELEC 4303 Digital Signal Processing	4	P) Advisory prerequisites ELEC2501 Signals and Communications, and ELEC3301 Signals and Systems.		March
ELEC 4401 Electronic Design	4	P) Advisory prerequisite ELEC3301 Signals and Systems, and ELEC3302 Fundamentals of Feedback Control and ELEC3401 Electronic Devices and Circuits.		March
ELEC 4501 Data Communication Networks	4	P) Advisory prerequisite ELEC3501 Communications.		March
ELEC 4502 Digital Communication Systems	4	P) Advisory prerequisite ELEC3501 Communications.		March
ELEC 4601 Computer Design	4	P) Advisory prerequisites ELEC3403 Switching Devices and High Speed Electronics, and ELEC3601 Digital Systems Design.		March
ELEC 4702 Practical Experience	0			March
ELEC 4703 Thesis	12	P) A minimum of 36 credit points from third or fourth year units of study.		July

Notes to Table 5A

1. For units of study offered by a Faculty other than the Faculty of Engineering, any assumed knowledge, prerequisites and corequisites, will be as prescribed by that Faculty.
2. PHYS 1003 is an acceptable alternative to PHYS 1203.
Table 5A: Electrical Engineering (Information Systems) - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>Assumed Knowledge</th>
<th>Prerequisite</th>
<th>Corequisite</th>
<th>Prohibitions</th>
<th>Other Information</th>
<th>Offered</th>
</tr>
</thead>
</table>
| Resolutions of the Faculty of Engineering relating to Table 5A: Degree Eligibility

BE (Electrical Engineering - Information Systems)

In addition to gaining credit for the core units of study set out in Table 5A, candidates are required to complete at least 12 credit points of elective units of study from the table of recommended elective units of study for BE (Electrical and Information Engineering - Information Systems). Further credit for a total of not less than 192 credit points shall be gained by completing additional elective units of study approved by the Faculty.

BE (Electrical Engineering - Information Systems) / BCom

Candidates are not required to gain credit for any additional elective units of study.

Acceptable alternative units of study

Most Mathematics, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent Advanced level unit of study subject to prerequisite conditions (as required by the Faculty of Science) being met.

In addition, the following supplementary units of study are also applicable to the above degree programs:

<table>
<thead>
<tr>
<th>Recommended units of study for BE (Electrical Engineering - Information Systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Year</td>
</tr>
<tr>
<td>ELEC 4302 Image Processing and Computer Vision 4 P</td>
</tr>
<tr>
<td>ELEC 4402 Integrated Circuit Design 4 P</td>
</tr>
<tr>
<td>ELEC 4503 Error Control Coding 4 P</td>
</tr>
<tr>
<td>ELEC 5501 Advanced Communication Networks 4 P</td>
</tr>
<tr>
<td>ELEC 5503 Optical Communication Systems 4 P</td>
</tr>
<tr>
<td>ELEC 5601 Advanced Real Time Computing 4 P</td>
</tr>
<tr>
<td>ELEC 5605 Advanced Digital Engineering 4 P</td>
</tr>
<tr>
<td>ELEC 5607 Hardware/Software Co-design 4 P</td>
</tr>
<tr>
<td>ELEC 5608 Electronic Commerce 4 P</td>
</tr>
</tbody>
</table>
Candidates for the degree of Bachelor of Engineering in Mechanical Engineering are required to gain credit for the core units of study set out below. Any additional credit necessary to satisfy Section 9 shall be gained by completing additional credit points of elective units of study, as recommended by the Faculty, as may be necessary to gain credit for a total of not less than 192 credit points. See note (i) relating to core units of study offered by faculties other than Engineering.

Core units of study - Mechanical Engineering

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1001</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1901 or 1011</td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 1002</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1902 or 1012</td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 1003</td>
<td>3</td>
<td>A) HSC 4-unit Mathematics or Mathematics1001.</td>
<td>N) May not be counted with Mathematics 1903 or 1013</td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MATH 1005</td>
<td>3</td>
<td>A) HSC 2-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1905 or 1015</td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MECH 1500</td>
<td>6</td>
<td>N) Mutually exclusive with: MECH 1501 Engineering Statics</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MECH 1510</td>
<td>6</td>
<td>N) MATH 1051 Mechanics IE</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MECH 1600</td>
<td>4</td>
<td>N) Mutually exclusive with: AERO 1600 Workshop Technology</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MECH 1800</td>
<td>7</td>
<td>N) MECH 1801 Computational Engineering 1C</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>CIVL 1002</td>
<td>3</td>
<td>N) COMP 1001 Introductory Programming and COMP 1002 Introductory Computer Science</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>CHEM 1401(3)</td>
<td>6</td>
<td>P) Mathematics 2-unit course and a satisfactory knowledge of 2-unit Chemistry or the Chemistry component of the 3 or 4-unit Science HSC course.</td>
<td>N) CHEM 1101, CHEM 1102</td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 2001</td>
<td>4</td>
<td>P) Prerequisite: Mathematics (1001 or 1001) and (1002 or 1902) and (1003 or 1003).</td>
<td>N) May not be counted with Mathematics 2091</td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 2002(2)</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.</td>
<td>N) May not be counted with 2902</td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 2005</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 2001 or 2901.</td>
<td>N) May not be counted with Mathematics 2905</td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MATH 2051(2)</td>
<td>2</td>
<td>C) MATH 2001 or 2901, and MATH 2002 or 2902.</td>
<td>N) MATH 2953</td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MATH 2052</td>
<td>2</td>
<td>C) MATH 2001 or 2901.</td>
<td>N) MATH 2952</td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MECH 2200</td>
<td>6</td>
<td>N) MECH 2201 Thermodynamics 1</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MECH 2300</td>
<td>4</td>
<td>N) CIVL 2101 Properties of Materials</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MECH 2400</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>MECH 2500</td>
<td>4</td>
<td>P) MATH 1001, 1002 and MECH 1510 Kinematics and Dynamics.</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>AERO 2300</td>
<td>4</td>
<td>P) 12 credit points of first year Maths (i.e Maths 1001,1002,1003,1005).</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
</tbody>
</table>
Table 6: Mechanical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEC 2001 Electrical and Electronic Engineering</td>
<td>6</td>
<td>ELEC 1001 Introductory Electrical Engineering.</td>
<td>ELEC2101 Circuit Analysis, and ELEC2401 Electronic Devices and Circuits, and ELEC2601 Microcomputer Systems.</td>
<td></td>
<td></td>
<td>March</td>
</tr>
</tbody>
</table>

Third Year
- **MECH 3200 Thermal Engineering 1**
 - 7 | P) MECH 2200 Thermofluids or MECH 2201 Thermodynamics 1. | N) MECH 3201 Thermodynamics 2 |
- **MECH 3210 Fluid Mechanics**
 - 4 | P) MECH 2200 Thermofluids, AERO 2200 Introductory Aerodynamics or MECH 2202 Fluids 1. |
- **MECH 3300 Materials 2**
- **MECH 3310 Mechanics of Solids 2**
- **MECH 3400 Mechanical Design 2A**
 - 4 | P) MECH 2400 Mechanical Design 1. |
- **MECH 3410 Mechanical Design 2B**
 - 4 | P) MECH 2400 Mechanical Design 1. |
- **MECH 3500 Engineering Dynamics 2**
 - 4 | P) MECH 2500 Engineering Dynamics 1 and (MATH 2001 & MATH 2005). |
- **MECH 3620(2) Industrial Management**
 - 5 |
- **MECH 3600 Manufacturing Engineering**
 - 6 | P) MECH 1600 Manufacturing Technology. |
- **MECH 3610 Team Project**
 - 2 | P) 30 credit points of second year units of study. |

Fourth Year
- **MECH 4100 Thesis**
 - 12 | P) 36 credit points of Senior units of study. |
- **MECH 4110 Professional Engineering**
 - 4 | P) 36 credit points of Senior units of study. |
- **MECH 4120 Professional Communication**
 - 4 | P) 32 credit points of third year units of study. |
- **MECH 4130 Practical Experience**
 - 0 | P) 28 credit points of second year units of study. |

Notes to Table 6
(1) For core units offered by other than the Faculty of Engineering, any assumed knowledge, prerequisite requirements, will be as prescribed by that Faculty.
(2) These units of study are core for candidates for the degree of Bachelor of Engineering in Mechanical Engineering and the combined degree BE/BSc; but not for candidates for the combined degrees of BE/BCom and BE/BA.
(3) For CHEM 1401, note (2) above also applies. Candidates for the combined degree BE/BSc may take as an alternative to CHEM 1401, other units of study from the Faculties of Science or Health Services, up to 12 credit points and subject to timetabling constraints.

Resolutions of the Faculty of Engineering relating to Table 6
Candidates for the degree of Bachelor of Engineering in Mechanical Engineering and candidates for the degree of Bachelor of Engineering in Mechanical Engineering combined with Bachelor of Science are required to gain credit for all core units of study set out in Table 6. Additional credit necessary to satisfy Section 9 shall be gained by completing at least 30 credit points of elective units of study. At least 24 of these credit points must be chosen from mainstream electives.

Candidates for the degree of Bachelor of Engineering in Mechanical Engineering combined with Bachelor of Arts or Bachelor of Commerce are required to gain credit for all core units of study set out in Table 6 except those marked as (2). Additional credit necessary to satisfy Section 9 shall be gained by completing at least 16 credit points of elective units of study which must be chosen from mainstream electives.

Acceptable alternative units of study
Pursuant to Resolution 3, the Faculty has prescribed the following acceptable alternatives to core units of study listed in Table 6.

- **Acceptable Alternative:**
 - CHEM Chemistry IE CHEM 1101 1401
Table 6: Mechanical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 1510 Kinematics and Dynamics</td>
<td>PHYS 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1810 Computational Engineering</td>
<td>COMP 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 1002 Computational Engineering</td>
<td>COMP 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Most Mathematics, Chemistry, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent Advanced level unit of study, subject to prerequisite conditions (as required by the Faculty of Science) being met. Students considering doing Advanced options should seek advice from their Department before enrolling.

Resolutions of the Department of Mechanical and Mechatronic Engineering relating to Table 6

Note: Units of study not included in this table may also be selected subject to the approval of the Head of Mechanical and Mechatronic Engineering.

Recommended elective units of study for BE (Mechanical Engineering)

Mainstream electives

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 4210 Computational Fluid Dynamics</td>
<td>4 P)</td>
<td>MECH 3210 Fluid Mechanic.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4250 Air conditioning and Refrigeration</td>
<td>3 P)</td>
<td>MECH 3200.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4260 Combustion and Fire Safety</td>
<td>3 P)</td>
<td>MECH 3200.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4400 Advanced Design</td>
<td>6 P)</td>
<td>MECH 3410.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4510 Machine Vibration and Monitoring</td>
<td>3 P)</td>
<td>MECH 3500 Engineering Dynamics 2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4640 Product Life Cycle Design</td>
<td>2 P)</td>
<td>MECH3600.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4650 Workplace Industrial Relations</td>
<td>2 P)</td>
<td>36 credit points of senior units of study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4910 Biomaterials and Biomechanics</td>
<td>4 P)</td>
<td>36 credit points of third year units of study.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4700 Robotic Systems</td>
<td>4 P)</td>
<td>MECH 3500.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other electives

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASNS 2601 Asian Studies 1A (Japanese)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ASNS 2602 Asian Studies 1B (Japanese)</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ASNS 2603 Asian Studies 2A</td>
<td>4 P)</td>
<td>ASNS 2601, ASNS2602. C) ASNS2604.</td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ASNS 2604 Asian Studies 2B</td>
<td>4 P)</td>
<td>ASNS2601, ASNS2602. C) ASNS2603.</td>
<td></td>
<td></td>
<td>July</td>
</tr>
</tbody>
</table>
Table 6: Mechanical Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVL 3701 Transportation Engineering and Planning</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 3801 Fundamentals of Biomedical Engineering</td>
<td>4</td>
<td>p) Advisory prerequisite ELEC2401 Electronic Devices and Circuits or ELEC2001 Electrical and Electronic Engineering.</td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>BOL 1001 Concepts in Biology</td>
<td>6</td>
<td>A) Biology section of the HSC 4-unit Science course.</td>
<td></td>
<td>N) May not be counted with Biology 1901</td>
<td>March</td>
</tr>
<tr>
<td>ENGG 4001 Innovation and International Competitiveness</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IREL 1001 Macro Industrial Relations</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>MECH 4610 Industrial and Engineering Management</td>
<td>2</td>
<td>p) MECH 3620 Industrial Management.</td>
<td></td>
<td>N) MECH 4600 Industrial Engineering</td>
<td></td>
</tr>
<tr>
<td>MECH 4620 Industrial Ergonomics</td>
<td>2</td>
<td>N) MECH 4600 Industrial Engineering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4230 Environmental Acoustics and Noise Control</td>
<td>2</td>
<td>P) 24 credit points of third year units of study.</td>
<td></td>
<td>N) MECH 4220 Environmental Engineering. MECH 4220 Environmental Engineering.</td>
<td></td>
</tr>
<tr>
<td>MECH 4240 Energy and the Environment</td>
<td>4</td>
<td>P) 24 credit points of Senior units of study.</td>
<td></td>
<td>N) MECH4220 Environmental Engineering.</td>
<td></td>
</tr>
<tr>
<td>CHNG 45104 Environmental Decision Making</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Candidates for the degree of Bachelor of Engineering in Mechanical Engineering (Mechatronics) are required to gain credit for the core units of study set out below. Any additional credit necessary to satisfy Section 9 shall be gained by completing additional credit points of elective units of study, as recommended by the Faculty, as may be necessary to gain credit for a total of not less than 192 credit points. See note (1) relating to core units of study offered by faculties other than Engineering.

Core units of study - Mechatronics Engineering

First Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1001</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1901 or 1011</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1002</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1902 or 1012</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1003</td>
<td>3</td>
<td>A) HSC 4-unit Mathematics or Mathematics 1001.</td>
<td>N) May not be counted with Mathematics 1903 or 1013</td>
<td>July</td>
</tr>
<tr>
<td>MECH 1005</td>
<td>3</td>
<td>A) HSC 2-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1905 or 1015</td>
<td>July</td>
</tr>
<tr>
<td>MECH 1500</td>
<td>6</td>
<td>N) Mutually exclusive with: MECH 1501 Engineering Statics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1510</td>
<td>6</td>
<td>N) MATH 1051 Mechanics IE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1600</td>
<td>4</td>
<td>N) Mutually exclusive with: AERO 1600 Workshop Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1800</td>
<td>7</td>
<td>N) MECH 1801 Computational Engineering 1C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1810</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1401(3)</td>
<td>6</td>
<td>P) Mathematics 2-unit course and a satisfactory knowledge of 2-unit Chemistry or the Chemistry component of the 3 or 4-unit Science HSC course.</td>
<td>N) CHEM 1101, CHEM 1102</td>
<td>March</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2001</td>
<td>4</td>
<td>P) Prerequisite: Mathematics (1001 or 1901) and (1002 or 1902) and (1003 or 1903).</td>
<td>N) May not be counted with Mathematics 2901</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2002(2)</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.</td>
<td>N) May not be counted with Mathematics 2902</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2005</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 2001 or 2901.</td>
<td>N) May not be counted with Mathematics 2905</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2051(2)</td>
<td>2</td>
<td>C) MATH 2001 or 2901, and MATH 2002 or 2902.</td>
<td>N) MATH 2953</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2052</td>
<td>2</td>
<td>C) MATH 2001 or 2901.</td>
<td>N) MATH 2952</td>
<td>July</td>
</tr>
<tr>
<td>MECH 2200</td>
<td>6</td>
<td>N) MECH 2201 Thermodynamics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 2400</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 2500</td>
<td>4</td>
<td>P) MATH 1001, 1002 and MECH 1510 Kinematics and Dynamics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AERO 2300</td>
<td>4</td>
<td>P) 12 credit points of first year Maths (i.e Maths 1001,1002,1003,1005).</td>
<td></td>
<td>March</td>
</tr>
</tbody>
</table>
Table 7: Mechanical Engineering (Mechatronics) - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 2700 Mechatronics 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3700 Mechatronics 2</td>
<td>5</td>
<td>p) MECH 2700 Mechatronics 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3400 Mechanical Design 2A</td>
<td>4</td>
<td>p) MECH 2400 Mechanical Design 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3410 Mechanical Design 2B</td>
<td>4</td>
<td>p) MECH 2400 Mechanical Design 1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3500 Engineering Dynamics 2</td>
<td>4</td>
<td>p) MECH 2500 Engineering Dynamics 1 and (MATH 2001 & MATH 2005).</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3600 Manufacturing Engineering</td>
<td>6</td>
<td>p) MECH 1600 Manufacturing Technology.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3610 Team Project</td>
<td>2</td>
<td>p) 30 credit points of second year units of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3620(C) Industrial Management</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 3202 Power Electronics and Drives</td>
<td>4</td>
<td>p) Advisory prerequisites ELEC 2101 Circuit Analysis, and ELEC 2401 Electronic Devices and Circuits.</td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC 3401 Electronic Devices and Circuits</td>
<td>4</td>
<td>p) Advisory prerequisite ELEC2401 Electronic Devices and Circuits and ELEC2101 Circuit Analysis.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>MECH 4100 Thesis</td>
<td>12</td>
<td>p) 36 credit points of Senior units of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4110 Professional Engineering</td>
<td>4</td>
<td>p) 36 credit points of Senior units of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4120 Professional Communication</td>
<td>4</td>
<td>p) 32 credit points of third year units of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4130 Practical Experience</td>
<td>0</td>
<td>p) 28 credit points of second year units of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes to Table 7

(1) For core units offered by other than the Faculty of Engineering, any assumed knowledge, prerequisite requirements, will be as prescribed by that Faculty.

(2) These units of study are core for candidates for the degree of Bachelor of Engineering in Mechanical Engineering (Mechatronics) and the combined degree BE/BSc; but not for candidates for the combined degrees of BE/BCom and BE/BA.

(3) For CHEM 1401, note (2) above also applies. Candidates for the combined degree BE/BSc may take as an alternative to CHEM 1401, other units of study from the Faculties of Science or Health Services, up to 12 credit points and subject to timetabling constraints.

Resolutions of the Faculty of Engineering relating to Table 7

Candidates for the degree of Bachelor of Engineering in Mechanical Engineering (Mechatronics) and candidates for the degree of Bachelor of Engineering in Mechanical Engineering (Mechatronics) combined with Bachelor of Science are required to gain credit for all core units of study set out in Table 7. Additional credit necessary to satisfy Section 9 shall be gained by completing at least 30 credit points of elective units of study. At least 24 of these credit points must be chosen from mainstream electives.

Candidates for the degree of Bachelor of Engineering in Mechanical Engineering (Mechatronics) combined with Bachelor of Arts or Bachelor of Commerce are required to gain credit for all core units of study set out in Table 7 except those marked as (2). Additional credit necessary to satisfy Section 9 shall be gained by completing at least 16 credit points of elective units of study which must be chosen from mainstream electives.
Acceptable alternative units of study

Pursuant to Resolution 3, the Faculty has prescribed the following acceptable alternatives to core units of study listed in Table 7.

Acceptable Alternative:

<table>
<thead>
<tr>
<th>CHEM 1401</th>
<th>Chemistry IE</th>
<th>CHEM 1101</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 1510</td>
<td>Kinematics and Dynamics</td>
<td>PHYS 1001</td>
</tr>
<tr>
<td>MECH 1810</td>
<td>Computational Engineering</td>
<td>COMP 1001</td>
</tr>
<tr>
<td>CIVL 1002</td>
<td>Computational Engineering</td>
<td>COMP 1001</td>
</tr>
</tbody>
</table>

Note: Most Mathematics, Chemistry, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent. Advanced level unit of study subject to prerequisite conditions (as required by the Faculty of Science) being met. Students considering doing Advanced options should seek advice from their Department before enrolling.

Resolutions of the Department of Mechanical and Mechatronic Engineering relating to Table 7

Note: Units of study not included in this table may also be selected subject to the approval of the Head of Mechanical and Mechatronic Engineering.

Recommended elective units of study for BE (Mechanical Engineering - Mechatronics)

Mainstream electives

MECH 4400	Advanced Design	6	P	MECH 3410.
MECH 4510	Machine Vibration and Monitoring	3	P	MECH 3500 Engineering Dynamics 2.
MECH 4640	Product Life Cycle Design	2	P	MECH3600.
MECH 4650	Workplace Industrial Relations	2	P	36 credit points of senior units of study.
MECH 4700	Robotic Systems	4	P	MECH 3500.

Other electives

<p>| ASNS 2601 | Asian Studies IA (Japanese) | 4 | March |
| ASNS 2602 | Asian Studies IB (Japanese) | 4 | July | |
| ASNS 2603 | Asian Studies 2A | 4 | P | ASNS 2601, ASNS2602. |
| ASNS 2604 | Asian Studies 2B | 4 | P | ASNS2601,ASNS2602. |
| BIOL 1001 | Concepts in Biology | 6 | A) Biology section of the HSC 4-unit Science course. |
| ENGG 4001 | Innovation and International Competitiveness | 4 | March |
| BREL 1001 | Macro Industrial Relations | 6 | March |
| MECH 4220 | Environmental Engineering | 6 | P | 24 credit points of third year units of study. |
| | | | N | MECH4240 Energy and the Environment and MECH 4230 Environmental Acoustics and Noise Control. |</p>
<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH Biomaterials and</td>
<td>4 P)</td>
<td>36 credit points of third year units of study.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomechanics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL Transportation Engineering and planning</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>ELEC Fundamentals of Biomedical Engineering</td>
<td>4 P)</td>
<td>Advisory prerequisite ELEC2401 Electronic Devices and Circuits or ELEC2001 Electrical and Electronic Engineering.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
</tbody>
</table>
Candidates for the degree of Bachelor of Engineering in Project Engineering and Management (Civil) are required to gain credit for the core units of study set out below. Any additional credit necessary to satisfy Section 9 shall be gained by completing additional elective units of study, as recommended by the Faculty, as may be necessary to gain credit for a total of not less than 192 credit points.

Core units of study - Project Engineering and Management

First Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1001 Differential Calculus</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1001 or 1011</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1002 Linear Algebra</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1002 or 1012</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1003 Integral Calculus and Modelling</td>
<td>3</td>
<td>A) HSC 4-unit Mathematics or Mathematics 1001.</td>
<td>N) May not be counted with Mathematics 1903 or 1013</td>
<td>July</td>
</tr>
<tr>
<td>MATH 1005 Statistics</td>
<td>3</td>
<td>A) HSC 2-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1905 or 1015</td>
<td>July</td>
</tr>
<tr>
<td>CIVL 1051 Dynamics</td>
<td>5</td>
<td>A) Assumed standard of knowledge: Mathematics 3 unit course and Science 4 unit course (or the Physics core of 3-4 unit Science) at the HSC.</td>
<td>C) MATH 1001, 1002, 1003, 1005.</td>
<td>July</td>
</tr>
<tr>
<td>CHEM 1401 Chemistry IE</td>
<td>6</td>
<td>P) Mathematics 2-unit course and a satisfactory knowledge of 2-unit Chemistry or the Chemistry component of the 3 or 4-unit Science HSC course.</td>
<td>N) CHEM 1101, CHEM 1102</td>
<td>March</td>
</tr>
<tr>
<td>CIVL 1001 Civil Engineering 1</td>
<td>4</td>
<td>P) Assumed standard of knowledge. Mathematics 3 unit course and a satisfactory knowledge of 2 unit Chemistry or the Chemistry component of the 3 or 4 unit Science HSC course and of the 2 unit Physics course or the Physics component of the 3 or 4 unit Science HSC course.</td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>CIVL 1052 Statics</td>
<td>5</td>
<td>A) Mathematics 3 unit course at the HSC.</td>
<td>C) MATH 1001, 1002, 1003, 1005.</td>
<td>March</td>
</tr>
<tr>
<td>CIVL 1002 Computational Engineering</td>
<td>3</td>
<td>N) COMP 1001 Introductory Programming and COMP 1002 Introductory Computer Science</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>CIVL 1003 Computer Graphics</td>
<td>3</td>
<td>C) Either CIVL 1002 Computational Engineering or COMP 1001, COMP 1002 Computer Science.</td>
<td>N) MECH 1800 Computational Engineering IA and MECH 1801 Computational Engineering 1C</td>
<td>July</td>
</tr>
<tr>
<td>ACCT 1001 Accounting IA</td>
<td>6</td>
<td>A) 2 unit Maths.</td>
<td>N) Restricted entry (code 511500 or 521500 or 511503 or 521503 or Combined Commerce)</td>
<td>March & July</td>
</tr>
<tr>
<td>ACCT 1002 Accounting IB</td>
<td>6</td>
<td>P) ACCT1001.</td>
<td>N) Restricted entry (code 511500 or 521500 or 511503 or 521503 or Combined Commerce)</td>
<td>March & July</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2001 Vector Calculus and Complex Variables</td>
<td>4</td>
<td>P) Prerequisite: Mathematics (1001 or 1901) and (1002 or 1902) and (1003 or 1903).</td>
<td>N) May not be counted with Mathematics 2901</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2002 Matrix Applications</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.</td>
<td>N) May not be counted with 2902</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2005 Fourier Series and Differential Equations</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 2001 or 2901.</td>
<td>N) May not be counted with Mathematics 2905</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2051 Linear Programming & Boundary Value Problems</td>
<td>2</td>
<td>C) MATH 2001 or 2901, and MATH 2002 or 2902.</td>
<td>N) MATH 2953</td>
<td>July</td>
</tr>
<tr>
<td>Unit of Study</td>
<td>Credit Points</td>
<td>A) Assumed Knowledge</td>
<td>P) Prerequisite</td>
<td>N) Prohibitions and other information</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>MATH 2052 Numerical Methods</td>
<td>2</td>
<td>C) MATH 2001 or 2901</td>
<td>N) MATH 2952</td>
<td></td>
</tr>
<tr>
<td>CIVL 1406 Engineering Geology 1</td>
<td>5</td>
<td>N) GEOL 1002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 2101 Properties of Materials</td>
<td>4</td>
<td>P) CHEM 1401 Chemistry IE.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 2202 Structural Mechanics</td>
<td>5</td>
<td>P) CIVL 1051 Dynamics and CIVL 1052 Statics.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 2004 Engineering Communications 1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 2203 Structural Design</td>
<td>4</td>
<td>P) CIVL 1051 Dynamics and CIVL 1052 Statics.</td>
<td>C) CIVL 2202 Structural Mechanics.</td>
<td></td>
</tr>
<tr>
<td>CIVL 2801 Engineering Construction 1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECON 1001 Introductory Microeconomics</td>
<td>6</td>
<td>A) HSC 2 unit Mathematics.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The third and fourth year core and elective units of study are to be determined to make a total of 192 credit points for the degree of Bachelor of Engineering in Project Engineering and Management (Civil).
Table 9: Telecommunications Engineering

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1001 Introductory Programming</td>
<td>6</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>C) Students intending to major in Computer Science are advised to enrol in Mathematics 1003 and 1004 or 1004 and 1005 or 1903 and 1904 or 1904 and 1905 in their first year.</td>
<td>March & July</td>
</tr>
<tr>
<td>COMP 1002 Introductory Computer Science</td>
<td>6</td>
<td>P) Prerequisite: Computer Science 1001 or 1901.</td>
<td>N) May not be counted with Computer Science 1902.</td>
<td>March & July</td>
</tr>
<tr>
<td>ELEC 1101 Foundations of Computer Systems</td>
<td>6</td>
<td>P) Advisory prerequisites HSC Maths 3 unit.</td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>MATH 1001 Differential Calculus</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1901 or 1011</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1002 Linear Algebra</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N), May not be counted with Mathematics 1902 or 1012</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1003 Integral Calculus and Modelling</td>
<td>3</td>
<td>A) HSC 4-unit Mathematics or Mathematics 1001.</td>
<td>N) May not be counted with Mathematics 1903 or 1013</td>
<td>July</td>
</tr>
<tr>
<td>MATH 1004 Discrete Mathematics</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1904</td>
<td>July</td>
</tr>
<tr>
<td>PHYS 1001 Physics (Regular)</td>
<td>6</td>
<td>A) HSC Physics or HSC 4-unit Science.</td>
<td>P) See prerequisites for Intermediate Physics units of study.</td>
<td>March</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C) Recommended concurrent units of study: Mathematics 1001 and 1002 or 1901 and 1902.</td>
<td>N) May not be counted with Physics 1002 or 1901.</td>
<td></td>
</tr>
<tr>
<td>PHYS 1203(2) Physics IEE</td>
<td>4</td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ELEC 2501 Signals and Communications</td>
<td>4</td>
<td>P) Advisory prerequisites MATH 1701 Differential Calculus and Linear Algebra, and MATH 1703 Integral Calculus and Discrete Mathematics, and ELEC 1102 Foundations of Electronic Circuits.</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>COMP 2002 Design and Data Structures</td>
<td>4</td>
<td>P) Qualifying: Computer Science 1002 or 1902.</td>
<td>N) May not be counted with Computer Science 2902. See prerequisites for Senior Computer Science units of study. Consult Departmental Handbook</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2001 Vector Calculus and Complex Variables</td>
<td>4</td>
<td>P) Prerequisite: Mathematics (1001 or 1901) and (1002 or,1902) and (1003 or 1903).</td>
<td>N) May not be counted with Mathematics 2901</td>
<td>March</td>
</tr>
</tbody>
</table>

Candidates for the degree of Bachelor of Engineering in Telecommunications Engineering, and candidates for the combined degree courses of Bachelor of Engineering in Telecommunications Engineering with Bachelor of Art or Bachelor of Science or Bachelor of Commerce, are required to gain credit for the core units of study set out below. Any additional credit necessary to satisfy Section 9 shall be gained by completing additional elective units of study as prescribed by the Faculty.
Table 9: Telecommunications Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2002</td>
<td>4</td>
<td></td>
<td>P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>MATH 2005</td>
<td>4</td>
<td></td>
<td>P) Prerequisite: Mathematics 2001 or 2901.</td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>PHYS 2203</td>
<td>4</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>Third Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 3102</td>
<td>4</td>
<td></td>
<td>P) Advisory prerequisites (PHYS2203 Physics2EE or PHYS2002 Physics (Technological) B) and ELEC2101 Circuit Analysis.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 3301</td>
<td>4</td>
<td></td>
<td>P) Advisory prerequisites MATH2005 Fourier Series and Differential Equations, and ELEC2501 Signals and Communications.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 3302</td>
<td>4</td>
<td></td>
<td>P) Advisory prerequisite ELEC 3301 Signals and Systems.</td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>ELEC 3401</td>
<td>4</td>
<td></td>
<td>P) Advisory prerequisite ELEC2401 Electronic Devices and Circuits and ELEC2101 Circuit Analysis.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 3402</td>
<td>4</td>
<td></td>
<td>P) Advisory prerequisite ELEC 3401 Electronic Devices and Circuits.</td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>ELEC 3501</td>
<td>4</td>
<td></td>
<td>P) Advisory prerequisite ELEC 2501 Signals and Communications, and ELEC 3301 Signals and Systems.</td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>ELEC 3601</td>
<td>4</td>
<td></td>
<td>P) Advisory prerequisite ELEC2601 Microcomputer Systems.</td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>ELEC 3701</td>
<td>4</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>Fourth Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 4303</td>
<td>4</td>
<td></td>
<td>P) Advisory prerequisites ELEC2501 Signals and Communications, and ELEC3301 Signals and Systems.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 4501</td>
<td>4</td>
<td></td>
<td>P) Advisory prerequisite ELEC3501 Communications.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 4502</td>
<td>4</td>
<td></td>
<td>P) Advisory prerequisite ELEC3501 Communications.</td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 4702</td>
<td>0</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 4703 Thesis</td>
<td>12</td>
<td></td>
<td>P) A minimum of 36 credit points from third or fourth year units of study.</td>
<td>July</td>
<td></td>
</tr>
</tbody>
</table>

Notes to Table 9

1. For units of study offered by other than the Faculty of Engineering, any assumed knowledge, prerequisites and corequisites will be as prescribed by that Faculty.
2. PHYS 1003 is an acceptable alternative to PHYS 1203.

Resolutions of the Faculty of Engineering relating to Table 9: Degree Eligibility

BE (Telecommunications Engineering)

In addition to gaining credit for the 142 credit points of core units of study set out in Table 9, candidates are required to complete at least 28 credit points of elective units of study (at least 20 of which must be at the 4 or 5 level) from the table of recommended elective units of study for BE (Telecommunications Engineering). Further credit for a total of not less than 192 credit points shall be gained by completing additional elective units of study approved by the Faculty.

BE (Telecommunications Engineering) / BSc or BA or BCom

In addition to gaining credit for the 142 credit points of core units of study set out in Table 9, candidates are required to complete at least 20 credit points of elective units of study (at least 12 of which must be at the 4 or 5 level) from the table of recommended elective units of study for BE (Telecommunications Engineering). Candidates for combined degrees should refer to the Joint Resolutions of the Faculty of Engineering and the Faculty in which they are undertaking the combined degree program.
Table 9: Telecommunications Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Corequisite</th>
<th>Prohibitions</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3100 Software Engineering</td>
<td>4 P)</td>
<td>Prerequisite: Computer Science 2004 or 2904.</td>
<td>N) May not be counted with Computer Science 3800</td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ELEC 3403 Switching Devices and High Speed Electronics</td>
<td>4 P)</td>
<td>Advisory prerequisite ELEC 3401 Electronic Devices and Circuits.</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>ELEC 4401 Electronic Design</td>
<td>4 P)</td>
<td>Advisory prerequisite ELEC3301 Signals and Systems, and ELEC3302 Fundamentals of Feedback Control and ELEC3401 Electronic Devices and Circuits.</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 4503 Error Control Coding</td>
<td>4 P)</td>
<td>Advisory prerequisite ELEC3501 Communications.</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 4601 Computer Design</td>
<td>4 P)</td>
<td>Advisory prerequisites ELEC3403 Switching Devices and High Speed Electronics, and ELEC3601 Digital Systems Design.</td>
<td></td>
<td></td>
<td>March</td>
<td></td>
</tr>
<tr>
<td>ELEC 5501 Advanced Communication Networks</td>
<td>4 P)</td>
<td>Advisory prerequisites ELEC3501 Communications, and ELEC4501 Data Communication Networks.</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
<tr>
<td>ELEC 5503 Optical Communication Systems</td>
<td>4 P)</td>
<td>Advisory prerequisites ELEC3402 Communications Electronics, and ELEC3501 Communications.</td>
<td></td>
<td></td>
<td>July</td>
<td></td>
</tr>
</tbody>
</table>

Notes
1. For units of study offered by a Faculty other than the Faculty of Engineering, any assumed knowledge, prerequisites and corequisites, will be as prescribed by that Faculty.
2. The level 5 units of study will not all be available in a particular year.

Acceptable alternative units of study
Most Mathematics, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent Advanced level unit of study subject to prerequisite conditions (as required by the Faculty of Science) being met.
Table 10: Software Engineering

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1001</td>
<td>6</td>
<td>A) HSC 3-unit Mathematics.</td>
<td></td>
<td></td>
<td></td>
<td>March & July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C) Students intending to major in Computer Science are advised to enrol in Mathematics 1003 and 1004 or 1004 and 1005 or 1903 and 1904 or 1904 and 1905 in their first year.</td>
<td></td>
<td></td>
<td>N) May not be counted with Computer Science 1901.</td>
<td></td>
</tr>
<tr>
<td>COMP 1002</td>
<td>6</td>
<td>P) Prerequisite: Computer Science 1001 or 1901.</td>
<td></td>
<td></td>
<td></td>
<td>March & July</td>
</tr>
<tr>
<td>ELFC 1101</td>
<td>6</td>
<td>P) Advisory prerequisites HSC Maths 3 unit.</td>
<td></td>
<td></td>
<td></td>
<td>March</td>
</tr>
<tr>
<td>ELFC 1102</td>
<td>6</td>
<td>P) HSC Physics 2 unit and MATH 1001 Differential Calculus.</td>
<td></td>
<td></td>
<td>N) ELEC 1001 Introductory Electrical Engineering, and ELEC2002 Electrical Technology</td>
<td>July</td>
</tr>
<tr>
<td>MATH 1001</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td></td>
<td></td>
<td>N) May not be counted with Mathematics 1901 or 1011</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1002</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td></td>
<td></td>
<td>N) May not be counted with Mathematics 1902 or 1012</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1003</td>
<td>3</td>
<td>A) HSC 4-unit Mathematics or Mathematics 1001.</td>
<td></td>
<td></td>
<td>N) May not be counted with Mathematics 1903 or 1013</td>
<td>July</td>
</tr>
<tr>
<td>MATH 1004</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td></td>
<td></td>
<td>N) May not be counted with Mathematics 1904</td>
<td>July</td>
</tr>
<tr>
<td>PHYS 1003/723</td>
<td>6</td>
<td>A) HSC 2-unit Physics or HSC 4-unit Science or Physics 1001 or 1002 or 1902 or equivalent.</td>
<td></td>
<td></td>
<td>Q) See prerequisites for Intermediate Physics units of study.</td>
<td>March & July</td>
</tr>
<tr>
<td></td>
<td></td>
<td>P) See prerequisites for Intermediate Physics units of study.</td>
<td></td>
<td></td>
<td>Q) Recommended concurrent unit of study: Mathematics 1003 and 1005 or 1903 and 1905.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>N) May not be counted with Physics 1004 or 1902.</td>
<td></td>
<td></td>
<td>N) May not be counted with Physics 1004 or 1902.</td>
<td></td>
</tr>
</tbody>
</table>

Core units of study - Software Engineering

First Year

- **COMP 1001** Introductory Programming
 - Credit Points: 6
 - A) HSC 3-unit Mathematics.
 - C) Students intending to major in Computer Science are advised to enrol in Mathematics 1003 and 1004 or 1004 and 1005 or 1903 and 1904 or 1904 and 1905 in their first year.
 - N) May not be counted with Computer Science 1901.
 - Offered: March & July

- **COMP 1002** Introductory Computer Science
 - Credit Points: 6
 - P) Prerequisite: Computer Science 1001 or 1901.
 - N) May not be counted with Computer Science 1902.
 - Offered: March & July

- **ELFC 1101** Foundations of Computer Systems
 - Credit Points: 6
 - P) Advisory prerequisites HSC Maths 3 unit.
 - Offered: March

- **ELFC 1102** Foundations of Electronic Circuits
 - Credit Points: 6
 - P) HSC Physics 2 unit and MATH 1001 Differential Calculus.
 - N) ELEC 1001 Introductory Electrical Engineering, and ELEC2002 Electrical Technology
 - Offered: July

- **MATH 1001** Differential Calculus
 - Credit Points: 3
 - A) HSC 3-unit Mathematics.
 - N) May not be counted with Mathematics 1901 or 1011.
 - Offered: March

- **MATH 1002** Linear Algebra
 - Credit Points: 3
 - A) HSC 3-unit Mathematics.
 - N) May not be counted with Mathematics 1902 or 1012.
 - Offered: March

- **MATH 1003** Integral Calculus and Modelling
 - Credit Points: 3
 - A) HSC 4-unit Mathematics or Mathematics 1001.
 - N) May not be counted with Mathematics 1903 or 1013.
 - Offered: July

- **MATH 1004** Discrete Mathematics
 - Credit Points: 3
 - A) HSC 3-unit Mathematics.
 - N) May not be counted with Mathematics 1904.
 - Offered: July

- **PHYS 1003/723** Physics (Technological)
 - Credit Points: 6
 - A) HSC 2-unit Physics or HSC 4-unit Science or Physics 1001 or 1002 or 1902 or equivalent.
 - P) See prerequisites for Intermediate Physics units of study.
 - Q) Recommended concurrent unit of study: Mathematics 1003 and 1005 or 1903 and 1905.
 - N) May not be counted with Physics 1004 or 1902.
 - Offered: March & July

Second Year

- **COMP 2000** System Analysis and Design
 - Credit Points: 4
 - P) Prerequisite: Computer Science 1000 or 1001 or 1901.
 - Offered: March

- **COMP 2002** Design and Data Structures
 - Credit Points: 4
 - P) Qualifying: Computer Science 1002 or 1902.
 - N) May not be counted with Computer Science 2902. See prerequisites for Senior Computer Science units of study. Consult Departmental Handbook
 - Offered: March

- **COMP 2004** Programming Practice
 - Credit Points: 4
 - P) Qualifying: Computer Science 1002 or 1902.
 - N) May not be counted with Computer Science 2904. See prerequisites for Senior Computer Science units of study. Consult Departmental Handbook
 - Offered: July

- **ELFC 2401** Electronic Devices and Circuits
 - Credit Points: 4
 - Offered: July

- **ELFC 2501** Signals and Communications
 - Credit Points: 4
 - P) Advisory prerequisites MATH 1701 Differential Calculus and Linear Algebra, and MATH 1703 Integral Calculus and Discrete Mathematics, and ELEC 1102 Foundations of Electronic Circuits.
 - Offered: July

- **ELFC 2601** Microcomputer Systems
 - Credit Points: 4
 - P) Advisory prerequisite ELEC 1101 Foundations of Computer Systems. ELEC2001 Electrical and Electronic Engineering
 - Offered: March

- **MATH 2001** Vector Calculus and Complex Variables
 - Credit Points: 4
 - P) Prerequisite: Mathematics (1001 or 1901) and (1002 or 1902) and (1003 or 1903).
 - N) May not be counted with Mathematics 2901
 - Offered: March

- **MATH 2002** Matrix Applications
 - Credit Points: 4
 - P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.
 - N) May not be counted with 2902
 - Offered: March
Chapter 3 - Tables of undergraduate units of study

Notes to Table 10

1. For core units of study offered by other than the Faculty of Engineering, any assumed knowledge, prerequisite and corequisite requirements will be as prescribed by that Faculty.
2. PHYS 1203 is an acceptable alternative to PHYS 1003.

Table 10: Software Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2005 Fourier Series and</td>
<td>4 P)</td>
<td></td>
<td>Prerequisite: Mathematics 2001 or 2901.</td>
<td>N) May not be counted with Mathematics 2905 July</td>
<td></td>
</tr>
<tr>
<td>Differential Equations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 3001 Algorithms</td>
<td>4 P)</td>
<td>Qualifying: Computer Science 2002 or 2902. Prerequisite: Mathematics 1004 or 1904 and 8 credit points in Intermediate Mathematics and/or Statistics and/or Econometrics.</td>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N) May not be counted with Computer Science 3901</td>
<td></td>
</tr>
<tr>
<td>COMP 3007 Networked Systems</td>
<td>4 P)</td>
<td>Qualifying: Computer Science 2004 or 2904.</td>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>N) May not be counted with Computer Science 3908</td>
<td></td>
</tr>
<tr>
<td>COMP 3008 Object-Oriented Systems</td>
<td>4 P)</td>
<td>Qualifying: Computer Science 2004 or 2904.</td>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 3009 Operating Systems</td>
<td>4 P)</td>
<td>Qualifying: Computer Science 2004 or 2904.</td>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 3100 Software Engineering</td>
<td>4 P)</td>
<td>Prerequisite: Computer Science 2004 or 2904.</td>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 3205 Product Development Project</td>
<td>4 P)</td>
<td>Prerequisite: Computer Science 3008.</td>
<td>March (only for those with prereq.) & July</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>C) Students intending to major in Computer Science are advised to enrol in one of Computer Science 3201, 3202, 3203, 3204 or 3205, 3206 or 3809.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 3701 Management for Engineers</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 4405 Formal Methods</td>
<td>4</td>
<td></td>
<td></td>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 4702 Practical Experience</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 4704 Software Project Management</td>
<td>4 P)</td>
<td>Advisory prerequisites ELEC3701 Management for Engineers, COMP3100 Algorithms, and COMP3205 Product Development Project.</td>
<td>March</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC 4703 Thesis</td>
<td>12 P)</td>
<td>A minimum of 36 credit points from third or fourth year units of study.</td>
<td>July</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Resolutions of the Faculty of Engineering relating to Table 10: Degree Eligibility

BE (Software Engineering)

In addition to gaining credit for the 138 credit points of core units of study set out in Table 10, candidates are required to complete at least 32 credit points of elective units of study (at least 20 of which are at the 4 or 5 level) from the table of recommended elective units of study for HE (Software Engineering). Further credit for a total of not less than 192 credit points shall be gained by completing additional elective units of study approved by the Faculty.
Table 10: Software Engineering - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE (Computer Engineering) / BSc or BA or BCom</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In addition to gaining credit for the 138 credit points of core units of study set out in Table 10, candidates must complete at least 24 credit points of elective units of study (at least 12 of which are at the 4 or 5 level) from the table of recommended elective units of study for BE (Software Engineering). Candidates for combined degrees should refer to the Joint Resolutions of the Faculty of Engineering and the Faculty in which they are undertaking the combined degree program.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acceptable alternative units of study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Most Mathematics, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent Advanced level unit of study subject to prerequisite conditions (as required by the Faculty of Science) being met.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recommended elective units of study for BE (Software Engineering)

Third Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
<th>Prerequisite/Qualifying</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 3004</td>
<td>Computer Graphics</td>
<td>4</td>
<td>Qualifying: Computer Science 2004 or 2904. Prerequisite: Computer Science 2002 or 2902 and Mathematics 1002 or 1902 and 8 credit points in Intermediate Mathematics and/or Statistics and/or Econometrics.</td>
<td>July</td>
</tr>
<tr>
<td>COMP 3102</td>
<td>User Interfaces Design and Programming</td>
<td>4</td>
<td>Qualifying: Computer Science 2004 or 2904. May not be counted with Computer Science 3802</td>
<td>July</td>
</tr>
<tr>
<td>COMP 3204</td>
<td>Large-Scale Software Project</td>
<td>4</td>
<td>Prerequisite: Computer Science 3100 or 3800. Students intending to major in Computer Science are advised to enrol in one of Computer Science 3201, 3202, 3203, 3204 or 3205, 3206 or 3608.</td>
<td>March</td>
</tr>
<tr>
<td>ELEC 3103</td>
<td>Electrical Engineering Design</td>
<td>4</td>
<td>Advisory prerequisites ELEC 2101 Circuit Analysis, and ELEC 2401 Electronic Devices and Circuits, and ELEC 2501 Signals and Communications, and ELEC 2601 Microcomputer Systems.</td>
<td>March</td>
</tr>
<tr>
<td>ELEC 3302</td>
<td>Fundamentals of Feedback Control</td>
<td>4</td>
<td>Advisory prerequisite ELEC 3301 Signals and Systems.</td>
<td>July</td>
</tr>
<tr>
<td>ELEC 3401</td>
<td>Electronic Devices and Circuits</td>
<td>4</td>
<td>Advisory prerequisite ELEC 2401 Electronic Devices and Circuits and ELEC 2101 Circuit Analysis.</td>
<td>March</td>
</tr>
<tr>
<td>ELEC 3501</td>
<td>Communications</td>
<td>4</td>
<td>Advisory prerequisite ELEC 2501 Signals and Communications, and ELEC 3301 Signals and Systems.</td>
<td>July</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
<th>Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 4300</td>
<td>Information Systems (Advanced Topic)</td>
<td>4</td>
<td>Credit in COMP 3000 Management of Information Systems.</td>
<td></td>
</tr>
<tr>
<td>COMP 4305</td>
<td>Networked Systems (Advanced Topic)</td>
<td>4</td>
<td>Credit in COMP 3007 Networked Systems.</td>
<td></td>
</tr>
<tr>
<td>COMP 4307</td>
<td>Distributed Systems (Advanced Topic)</td>
<td>4</td>
<td>Credit in (COMP 3007 Networked Systems or COMP 3009 Operating Systems).</td>
<td></td>
</tr>
<tr>
<td>COMP 4309</td>
<td>Object-Oriented Systems (Advanced Topic)</td>
<td>4</td>
<td>Credit in COMP 3008 Object-Oriented Systems.</td>
<td></td>
</tr>
<tr>
<td>COMP 4400</td>
<td>Operating Systems (Advanced Topic)</td>
<td>4</td>
<td>Credit in COMP 3009 Operating Systems.</td>
<td></td>
</tr>
<tr>
<td>COMP 4401</td>
<td>Software engineering (Advanced Topic)</td>
<td>4</td>
<td>Credit in COMP 3100 Software Engineering.</td>
<td></td>
</tr>
<tr>
<td>ELEC 4302</td>
<td>Image Processing and Computer Vision</td>
<td>4</td>
<td>Advisory prerequisites ELEC 3301 Signals and Systems, and ELEC 4303 Digital Signal Processing.</td>
<td>July</td>
</tr>
<tr>
<td>ELEC 4501</td>
<td>Data Communication Networks</td>
<td>4</td>
<td>Advisory prerequisite ELEC 3501 Communications.</td>
<td>March</td>
</tr>
<tr>
<td>ELEC 4601</td>
<td>Computer Design</td>
<td>4</td>
<td>Advisory prerequisites ELEC 3403 Switching Devices and High Speed Electronics, and ELEC 3601 Digital Systems Design.</td>
<td>March</td>
</tr>
<tr>
<td>Unit of Study</td>
<td>Credit Points</td>
<td>A) Assumed Knowledge</td>
<td>P) Prerequisite</td>
<td>C) Corequisite</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---------------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
</tbody>
</table>

Notes

1. For units of study offered by a Faculty other than the Faculty of Engineering, any assumed knowledge, prerequisites and corequisites, will be as prescribed by that Faculty.
2. The level 5 units of study will not all be available in a particular year.
Candidates for the degree of Bachelor of Engineering in Mechanical Engineering (Biomedical) are required to gain credit for the core units of study set out below. Any additional credit necessary to satisfy Section 9 shall be gained by completing additional credit points of elective units of study, as recommended by the Faculty, as may be necessary to gain credit for a total of not less than 192 credit points. See note (1) relating to core units of study offered by faculties other than Engineering.

Core units of study - Mechanical Engineering (Biomedical)

First Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1001 Differential Calculus</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1901 or 1011</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1002 Linear Algebra</td>
<td>3</td>
<td>A) HSC 3-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1902 or 1012</td>
<td>March</td>
</tr>
<tr>
<td>MATH 1003 Integral Calculus and Modelling</td>
<td>3</td>
<td>A) HSC 4-unit Mathematics or Mathematics 1001, 1003.</td>
<td>N) May not be counted with Mathematics 1903 or 1013</td>
<td>July</td>
</tr>
<tr>
<td>MATH 1005 Statistics</td>
<td>3</td>
<td>A) HSC 2-unit Mathematics.</td>
<td>N) May not be counted with Mathematics 1905 or 1015</td>
<td>July</td>
</tr>
<tr>
<td>MECH 1500 Mechanical Engineering 1</td>
<td>6</td>
<td>N) Mutually exclusive with: MECH 1501 Engineering Statics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1510 Kinematics and Dynamics</td>
<td>6</td>
<td>N) MATH 1051 Mechanics IE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1800 Computational Engineering IA</td>
<td>7</td>
<td>N) MECH 1801 Computational Engineering 1C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 1002 Computational Engineering</td>
<td>3</td>
<td>N) COMP 1001 Introductory Programming and COMP 1002 Introductory Computer Science</td>
<td></td>
<td>July</td>
</tr>
<tr>
<td>Biol 1001 Concepts in Biology</td>
<td>6</td>
<td>A) Biology section of the HSC 4-unit Science course.</td>
<td>N) May not be counted with Biology 1901</td>
<td>March</td>
</tr>
<tr>
<td>Biol 1003 Human Biology</td>
<td>6</td>
<td>A) Biology section of the HSC 4-unit Science course.</td>
<td>N) May not be counted with Biology 1903</td>
<td>July</td>
</tr>
<tr>
<td>CHEM 1401 Chemistry IE</td>
<td>6</td>
<td>P) Mathematics 2-unit course and a satisfactory knowledge of 2-unit Chemistry or the Chemistry component of the 3 or 4-unit Science HSC course.</td>
<td>N) CHEM 1101, CHEM 1102</td>
<td>March</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2001 Vector Calculus and Complex Variables</td>
<td>4</td>
<td>P) Prerequisite: Mathematics (1001 or 1901) and (1002 or 1902) and (1003 or 1012).</td>
<td>N) May not be counted with Mathematics 2901</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2002 Matrix Applications</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 1002 or 1902 or Distinction in Mathematics 1012.</td>
<td>N) May not be counted with 2902</td>
<td>March</td>
</tr>
<tr>
<td>MATH 2005 Fourier Series and Differential Equations</td>
<td>4</td>
<td>P) Prerequisite: Mathematics 2001 or 2901.</td>
<td>N) May not be counted with Mathematics 2905</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2051 Linear Programming & Boundary Value Problems</td>
<td>2</td>
<td>C) MATH 2001 or 2901, and MATH 2002 or 2902.</td>
<td>N) MATH 2953</td>
<td>July</td>
</tr>
<tr>
<td>MATH 2052 Numerical Methods</td>
<td>2</td>
<td>C) MATH 2001 or 2901.</td>
<td>N) MATH 2952</td>
<td>July</td>
</tr>
<tr>
<td>MECH 1600 Manufacturing Technology</td>
<td>4</td>
<td>N) Mutually exclusive with: AERO 1600 Workshop Technology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 2200 Thermofluids</td>
<td>6</td>
<td>N) MECH 2201 Thermodynamics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 2300 Materials I</td>
<td>4</td>
<td>N) CIVL 2101 Properties of Materials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH Mechanical Design 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unit of Study</td>
<td>Credit Points</td>
<td>A) Assumed Knowledge</td>
<td>P) Prerequisite</td>
<td>C) Corequisite</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-----------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>MECH 2500 Engineering Dynamics 1</td>
<td>4</td>
<td></td>
<td>p) MATH 1001, 1002 and MECH 1510 Kinematics and Dynamics.</td>
<td></td>
</tr>
<tr>
<td>MECH 2900 Anatomy and Physiology for Engineers</td>
<td>4</td>
<td></td>
<td>p) Biology BIOL 1001 or some previous biology experience.</td>
<td></td>
</tr>
<tr>
<td>AERO 2300 Mechanics of Solids 1</td>
<td>4</td>
<td></td>
<td></td>
<td>p) 12 credit points of first year Maths (i.e Maths 1001,1002,1003,1005).</td>
</tr>
<tr>
<td>■ Third Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3210 Fluid Mechanics</td>
<td>4</td>
<td></td>
<td>p) MECH 2200 Thermofluids, AERO 2200 Introductory Aerodynamics or MECH 2202 Fluids 1.</td>
<td></td>
</tr>
<tr>
<td>MECH 3400 Mechanical Design 2A</td>
<td>4</td>
<td></td>
<td>p) MECH 2400 Mechanical Design 1.</td>
<td></td>
</tr>
<tr>
<td>MECH 3410 Mechanical Design 2B</td>
<td>4</td>
<td></td>
<td>p) MECH 2400 Mechanical Design 1.</td>
<td></td>
</tr>
<tr>
<td>MECH 3500 Engineering Dynamics 2</td>
<td>4</td>
<td></td>
<td>p) MECH 2500 Engineering Dynamics 1 and (MATH 2001 & MATH 2005).</td>
<td></td>
</tr>
<tr>
<td>MECH 3620 Industrial Management</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3600 Manufacturing Engineering</td>
<td>6</td>
<td></td>
<td>p) MECH 1600 Manufacturing Technology.</td>
<td></td>
</tr>
<tr>
<td>MECH 3900(4) Fundamental Biomedical Engineering</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3910(4) Biomedical Technology</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 3920(4) Biomedical Design Project</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Fourth Year</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 4100 Thesis</td>
<td>12</td>
<td></td>
<td>p) 36 credit points of Senior units of study.</td>
<td></td>
</tr>
<tr>
<td>MECH 4110 Professional Engineering</td>
<td>4</td>
<td></td>
<td>p) 36 credit points of Senior units of study.</td>
<td></td>
</tr>
<tr>
<td>MECH 4120 Professional Communication</td>
<td>4</td>
<td></td>
<td>p) 32 credit points of third year units of study.</td>
<td></td>
</tr>
<tr>
<td>MECH 4130 Practical Experience</td>
<td>0</td>
<td></td>
<td>p) 28 credit points of second year units of study.</td>
<td></td>
</tr>
<tr>
<td>MECH 4910 Biomaterials and Biomechanics</td>
<td>4</td>
<td></td>
<td>p) 36 credit points of third year units of study.</td>
<td></td>
</tr>
<tr>
<td>MECH 4920(4) Biomedical Engineering Systems</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 11: Mechanical Engineering (Biomedical) - continued

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1810</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 1002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1401</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1510</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MECH 1810</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIVL 1002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes to Table 8
(1) For core units of study offered by other than the Faculty of Engineering, any assumed knowledge, prerequisite and corequisite requirements will be as prescribed by that Faculty.
(2) These units of study are core for candidates for the degree of Bachelor of Engineering in Mechanical Engineering (Biomedical) and the combined degree BE/BSc; but not for candidates for the combined degrees BE/BCom and BE/BA.
(3) Candidates for the combined degree BE/BSc may take as an alternative to CHEM 1401, other units of study from the Faculties of Science or Health Sciences, up to 12 credit points and subject to timetabling constraints.
(4) Unit of study information to be advised.

Resolutions of the Faculty of Engineering relating to Table 8 (Biomedical)
Candidates for the degree of Bachelor of Engineering in Mechanical Engineering (Biomedical) and candidates for the degree of Bachelor of Engineering in Mechanical Engineering (Biomedical) combined with Bachelor of Science are required to gain credit for all core units of study set out in Table 8. Additional credit necessary to satisfy Section 9 shall be gained by completing at least 4 credit points of elective units of study.
Candidates for the degree of Bachelor of Engineering in Mechanical Engineering (Biomedical) combined with Bachelor of Arts or Bachelor of Commerce are required to gain credit for all core units of study set out in Table 6 except those marked as (2).

Acceptable alternative units of study
Pursuant to Resolution 3, the Faculty has prescribed the following acceptable alternatives to core units of study listed in Table 8.

Acceptable Alternative:

CHEM 1401	Chemistry IE	CHEM 1001
MECH 1510	Kinematics and Dynamics	PHYS 1001
MECH 1810	Computational Engineering	COMP 1001
CIVL 1002	Computational Engineering	COMP 1001

Note: Most Mathematics, Chemistry, Physics and Computer Science units of study offered by the Faculty of Science can be replaced by an equivalent. Advanced level unit of study subject to prerequisite conditions (as required by the Faculty of Science) being met. Students considering doing Advanced options should seek advice from their Department before enrolling.

Resolutions of the Department of Mechanical and Mechatronic Engineering relating to Table 8
Note: Units of study not included in this table may also be selected subject to the approval of the Head of Mechanical and Mechatronic Engineering.

Recommended elective units of study for BE (Mechanical Engineering - Biomedical)

Electives

<p>| MECH 4210 | Computational Fluid Dynamics | 4 | P) MECH 3210 Fluid Mechanics. |
| ASNS 2601 | Asian Studies IA (Japanese) | 4 | March |
| ASNS 2602 | Asian Studies IB (Japanese) | 4 | July |
| ASNS 2603 | Asian Studies 2A | 4 | P) ASNS 2601, ASNS2602. C) ASNS2604. |
| ASNS 2604 | Asian Studies 2B | 4 | P) ASNS2601,ASNS2602. C) ASNS2603. |
| ENGG 4001 | Innovation and International Competitiveness | 4 |
| MECH 4610 | Industrial and Engineering Management | 2 | P) MECH 3620 Industrial Management. N) MECH 4600 Industrial Engineering |</p>
<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 4620 Industrial Ergonomics</td>
<td>2</td>
<td>N) MECH 4600 Industrial Engineering</td>
<td></td>
<td></td>
<td>March 99</td>
</tr>
<tr>
<td>MECH 4240 Energy and the Environment</td>
<td>4</td>
<td>P) 24 credit points of Senior units of study.</td>
<td></td>
<td>N) MECH4220 Environmental Engineering.</td>
<td></td>
</tr>
<tr>
<td>BCHM 2001 Genes and Proteins</td>
<td>8</td>
<td>P) Qualifying: 6 credit points of Junior Chemistry which must include one of Chemistry 1101, 1102, 1901, 1902, 1903, 1904 or, with the permission of the Head of Department, exceptional performance in Chemistry 1001 or 1002.</td>
<td></td>
<td>N) May not be counted with Agricultural Chemistry 2001 or Biochemistry 2101 or 2901</td>
<td>March</td>
</tr>
<tr>
<td>MICR 2001 Introductory Microbiology</td>
<td>8</td>
<td>P) Qualifying: Biology 1002 or 1902 or 1903 or 1904. Prerequisite: Chemistry 1102 or 1902 or 1904. C) Biology 1001 or 1901 and Chemistry 1101 or 1901 or 1903 and Mathematics (1001 or 1011 or 1901) and (1005 or 1015 or 1905).</td>
<td></td>
<td>N) May not be counted with Microbiology 2003 or 2901</td>
<td>March</td>
</tr>
</tbody>
</table>
Candidates for the degree of Bachelor of Engineering in any discipline. These elective subjects are available for advanced engineering students and students in all disciplines of engineering. Any additional credit necessary to satisfy Section 9 shall be gained by completing additional elective units of study, as recommended by the Faculty, as may be necessary to gain credit for a total of not less than 192 credit points. Students are eligible for the advanced stream of engineering by obtaining a UAI of 98+ in the NSW HSC or equivalent, or by being named on the Dean's List at the end of Year 1 of their course.

Units of study

<table>
<thead>
<tr>
<th>Unit of Study</th>
<th>Credit Points</th>
<th>A) Assumed Knowledge</th>
<th>P) Prerequisite</th>
<th>C) Corequisite</th>
<th>N) Prohibitions and other information</th>
<th>Offered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG 1001 Interdisciplinary Project</td>
<td>12</td>
<td>P) UAI score of at least 98. Students considering this option are advised to see their Head of Department.</td>
<td>N) This unit of study is mutually exclusive with a number of other first year units of study. As these latter units of study will vary depending on the branch of Engineering, students considering this option are advised to see their Head of department prior to enrolment.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGG 2002 Advanced Engineering Project</td>
<td>2</td>
<td>P) Only students who have been named on the Dean's list at the end of Year 1 will be eligible.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGG 3001 Engineering Technology</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGG 4001 Innovation and International Competitiveness</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGG 4002 New Business Creation</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGG 4003 Economic, Social and Ethical Aspects of Engineering</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These units of study are elective units of study available in any discipline of Engineering.
CHAPTER 4
Regulations

Undergraduate Degree Requirements
Bachelor of Engineering

Resolutions of the Senate

1. Specialisations
(1) The degree of Bachelor of Engineering shall be awarded in the following specialisations:
 (i) Aeronautical Engineering
 (ii) Chemical Engineering
 (iii) Civil Engineering
 (iv) Computer Engineering
 (v) Electrical Engineering
 (vi) Mechanical Engineering
 (vii) Mechanical Engineering (Mechatronics)
 (viii) Mechanical (Biomedical) Engineering
 (ix) Project Engineering and Management (Civil)
 (x) Software Engineering
 (xi) Telecommunications Engineering
(2) Each specialisation may, with the permission of the Faculty, be undertaken as part of a combined degree program with the Bachelor of Commerce (BCom), Bachelor of Arts (BA) or Bachelor of Science (BSc).
(3) The Faculty may in special circumstances grant approval to any other specialisation.
(4) Additional specialisation may be admitted to the program for another specialisation on conditions to be determined by the Faculty.
(5) A candidate who has completed a unit of study shall be regarded as a re-examination.

2. Definitions
For the purposes of these resolutions:
(1) A "unit of study" shall comprise such lectures, tutorial instruction, essays, exercises and practical work as the Faculty may prescribe.
(2) To complete a unit of study means:
 (i) to attend the lectures and any tutorials; and
 (ii) to complete satisfactorily any essays, exercises and practical work and to pass any final examination;
(3) "Core" unit of study means a unit of study which must be completed in order to qualify for the award of the degree, unless exemption is granted by the Faculty.
(4) "Elective" unit of study means a unit of study other than a core unit of study.
(5) "Prerequisite" means a unit of study which must be completed before enrolment in any unit of study for which that unit of study has been prescribed as a prerequisite.
(6) "Corequisite" means a unit of study in which, unless previously completed, a candidate must enrol concurrently with any unit of study for which that unit of study has been prescribed as a corequisite.

3. Units of Study
(1) The units of study for the degree shall each have a credit point value.
(2) The units of study which may be taken for the degree are:
 (i) the units of study set out in the tables appended to these resolutions; and
 (ii) such other units of study as are approved by the Faculty.
(3) The Faculty may prescribe units of study as acceptable alternatives to one or more of the units of study set out in the tables appended to these resolutions.
(4) The head of the department concerned may accept other work completed by a candidate as the equivalent of a corequisite or prerequisite for any unit of study provided by that Department.
(5) A candidate may only enrol in units of study in accordance with these resolutions and subject to the constraints of the timetable, unless approval is given by the head of department.

4. Credit
A candidate who has completed a unit of study shall be credited with the credit point value of that unit of study except that:
(a) a candidate may not receive credit for more than one of such units of study as the Faculty may deem to be mutually exclusive; and
(b) a candidate may not receive credit for units of study which are deemed to be mutually exclusive with units of study credited toward the Bachelor of Science degree when enrolled in the Faculty of Science under Section 14 of the Resolutions of the Senate relating to the degree of Bachelor of Science.

5. Final Examination
(1) A final examination shall be prescribed for each unit of study.
(2) The final examination may consist of such written and/or oral examination(s), exercises, essays or practical work or any combination of these as the Faculty may determine.
(3) A candidate who has been prevented by duly certified illness or misadventure from sitting for the whole or part of the final examination may be tested at such times and in such a way as the Faculty shall determine. This shall not be regarded as a re-examination.

6. Conditions of Enrolment
(1) Except with the permission of the Faculty, a candidate in the first year of attendance shall enrol in First Year units of study with a total of not less than 48 credit points and not more than 54 credit points.
(2) In each subsequent year of attendance after the first, a candidate may enrol in any of the units of study for which there is no prerequisite or for which the candidate has completed the prerequisites provided that:
 (i) in the second year of attendance the candidate may enrol in First Year and/or Second Year units of study only;
 (ii) the candidate shall enrol in any core units of study for which he/she was qualified to enrol in the previous year of attendance and for which credit has not yet been gained, and for which the candidate has not been granted exemption under subsection 7(2);
 (iii) except with Faculty approval, the candidate shall not enrol for units of study totalling more than 60 credit points, nor enrol for units of study totalling less than 36 credit points, unless the candidate already has credit for 156 or more credit points.
(3) The Faculty may in special circumstances grant dispensation from the requirements of subsections (1) and (2).
(4) A candidate enrolled in a unit of study provided outside the Faculty of Engineering shall, in respect of that unit of study, be governed by the requirements of the department providing the unit of study.
7. Conditions for Advanced Standing and Credit
(1) Graduates of other faculties of the University of Sydney, or graduates of other universities, who desire to proceed to the degree of Bachelor of Engineering may be admitted to candidature with credit for such of the units of study set out in the appended tables as the Faculty may determine, up to a maximum of 96 credit points, provided they have completed as part of their previous degree units of study considered by the Faculty to be equivalent.

(2) Students who have completed units of study in other faculties of the University of Sydney may apply for permission to enrol as candidates for the degree of Bachelor of Engineering. If granted such permission, they may be given credit for any of the units of study set out in the appended tables which have been completed in the other faculties, or for any units of study considered by the Faculty to be equivalent, provided they have abandoned credit for such units of study in the other faculties,

(3) Students who have completed units of study in another university or institution may apply for permission to enrol as candidates for the degree of Bachelor of Engineering. If granted such permission, they may be given credit for, or exempted from, such of the units of study set out in the appended tables as the Faculty may determine.

(4) With regard to each of the previous subsections, where an applicant for candidature has completed units of study which are not comparable with any of the units of study set out in the tables appended to these resolutions, the Faculty may grant non-specific credit points. Such credit points will be designated by the Faculty as First Year, Second Year, Third Year or Fourth Year.

8. Levels of Award
(1) The degree of Bachelor of Engineering shall be awarded in two grades, namely, the Pass degree and the Honours degree.

(2) (i) There shall be three classes of Honours, namely, Class I, Class II and Class III.

(ii) Second Class Honours may be awarded in two divisions, namely Division 1 and Division 2.

(3) If a candidate qualifies for the award of the degree with First Class Honours and the Faculty is of the opinion that the candidate's work is of outstanding merit, that candidate shall receive a University Medal.

9. Requirements for the Pass Degree
(1) To qualify for the award of a Pass degree a candidate shall, unless granted exemption by the Faculty under subsection (2) of this resolution:

(i) satisfy the requirements prescribed in those tables appended to these resolutions pertaining to the specialisation which the candidate is pursuing, and

(ii) complete additional elective units of study as may be necessary to gain credit for a total of not less than 192 credit points.

(2) In special circumstances, the Faculty may exempt a candidate from completion of any core unit of study. No credit shall be granted for any such exempted unit of study.

(3) A candidate who, with the prior permission of the Faculty, completes units of study at another university or appropriate institution may be given credit for such of the units of study set out in the tables attached to these resolutions as the Faculty may determine.

10. Honours and Prizes
(1) To qualify for the award of an Honours degree a candidate shall:

(i) complete the Pass degree requirements;

(ii) complete such Honours units of study as may be determined by the head of the department in which the candidate is pursuing the degree; and

(iii) attain a level of performance acceptable to the head of department.

(2) The Faculty may prescribe any Third Year or Fourth Year of study as being an Honours unit of study.

(3) Where an Honours unit of study and a core unit of study are deemed by the Faculty to be mutually exclusive, completion of the Honours unit of study will be taken as satisfying the core unit of study.

(4) Except with the permission of the Faculty, a candidate shall not be eligible for the award of an Honours degree unless the candidate has completed all the requirements in minimum time, namely, four years for the BE degree and five years for the combined BE/BSc, BE/BCom or BE/BA degrees.

(5) A candidate for an Honours degree who has failed to be placed in any Honours classification may be awarded a Pass degree.

(6) A candidate who has previously failed any unit of study shall not be eligible for any prize or scholarship awarded in connection with that unit of study.

11. Transitional Arrangements
The provisions of these resolutions came into force on 1 January 1998. All candidates who commenced candidature prior to this date shall complete the degree requirements under such conditions as the Faculty may determine.

Combined Degrees of Bachelor of Engineering with Bachelor of Science, Commerce or Arts

Resolutions of the Faculty
Minimum and maximum completion times
1. That the minimum time for completion of the BE degree shall be two years and the maximum shall be eight years.

Joint resolutions of the Faculties of Engineering and Arts (BE/BA)
1. Candidature for this combined degree program is a minimum of 5 years of full-time study.

2. Candidates qualify for the award of the two degrees of the combined program (a separate testamur being awarded for both the BE and the BA) by completing the following:

(a) The units of study prescribed for the BE specialisation undertaken (totalling 160-162 credit points, depending on the specialisation). These units of study are set out in the tables appended to the Senate Resolutions relating to the BE degree.

(b) BA units of study totalling at least 80 credit points, of which at least 56 must be Third Year credit points from Part A of the Table of Units of Study for the BA degree, including a major as defined in the resolutions relating to the BA degree.

3. Candidates may not enrol in any unit of study which is substantially the same as one they have already passed (or in which they are currently enrolled).

4. Candidates will be under the general supervision of the Faculty of Engineering. General supervision covers all areas of policy and procedures affecting candidates, such as combined degree program rules and enrolment procedures.

Candidates will be under the supervision of the Faculty of Arts regarding enrolment and progression within the BA component of the combined degree program, as defined in subsection 2(b).

5. Candidates may qualify for the award of the BE degree with Honours.
6. Candidates who complete the combined degree program may qualify for an honours year in the Faculty of Arts.
7. Candidates who abandon the combined degree program may elect to complete the BE degree or BA degree in accordance with the appropriate Senate Resolutions.
8. The Deans of the Faculties of Engineering and Arts shall jointly exercise authority in any matter concerning this combined degree program not otherwise dealt with in the Senate Resolutions or these joint resolutions.

Joint resolutions of the Faculties of Engineering and Economics (BE/BCom)

1. Candidature for this combined degree program is a minimum of 5 years of full-time study.
2. Candidates qualify for the two degrees of the combined program (a separate testamur being awarded for both the BE and the BCom) by completing the following:
 (a) The units of study prescribed for the BE specialisation undertaken (totaling 160-162 credit points, depending on the specialisation). These units of study are set out in the tables appended to the Senate Resolutions relating to the BE degree.
 (b) Units of study in the Faculty of Economics worth at least 108 credit points including:
 (i) 12 credit points in Accounting;
 (ii) 12 credit points in Economics or Political Economy;
 (iii) 12 credit points in Econometrics;
 (iv) no more than 48 credit points at first-year level; and
 (v) a major in each of two subject areas as given in Table A of the Bachelor of Commerce degree, or one major and one minor from subjects listed in Table A. Note that a major is a sequence of 44 credit points as described for each subject in Table A; a minor in a subject comprises a sequence of not less than 28 credit points, including 12 credit points in the subject at first-year level and 16 credit points from later year units of study required to complete a major in that subject.
3. Candidates may not enrol in any unit of study which is substantially the same as one they have already passed (or in which they are currently enrolled).
4. Candidates will be under the general supervision of the Faculty of Engineering. General supervision covers all areas of policy and procedures affecting candidates, such as combined degree program rules and enrolment procedures. Candidates will be under the supervision of the Faculty of Economics regarding enrolment and progression within the BSc component of the combined degree program, as defined in subsection 2(b).
5. Candidates may qualify for the award of the BE degree with Honours.
6. Candidates who complete the combined degree program may qualify for admission to an honours year in the Faculty of Science.
7. Candidates who abandon the combined degree program may elect to complete the BE degree or the BCom degree in accordance with the appropriate Senate Resolutions.
8. Candidates in the combined degree program may apply for admission to the BSc degree and enrol in such units of study as are required to complete the requirements for the degree. Such candidates shall be deemed to have abandoned the BE/BSc combined degree program.
9. The Deans of the Faculties of Engineering and Science shall jointly exercise authority in any matter concerning this combined degree program not otherwise dealt with in the Senate Resolutions or these joint resolutions.

Previous joint resolutions

The previous joint resolutions, which apply to those entering the combined degree as second year students up to and including 1998, appear in Volume 1 of the 1996 Calendar.

Joint resolutions of the Faculties of Engineering and Science (BE/BSc)

1. Candidature for this combined degree program is a minimum of 5 years of full-time study.
2. Candidates qualify for the two degrees of the combined program (a separate testamur being awarded for both the BE and the BSc) by completing at least 240 credit points which must include the following:
 (a) At least 160 credit points from the units of study prescribed for the BE specialisation undertaken. These units of study are set out in the tables appended to the Senate Resolutions relating to the BE degree.
 (b) At least 80 credit points from units of study listed in Table 1 for the BSc degree other than those in the Science discipline area of Engineering Science, 32 of which must be from Second Year units of study and 24 of which must be from Third Year units of study in one Science discipline area.
3. (a) Candidates may not enrol in any unit of study which is substantially the same as one they have already passed (or in which they are currently enrolled).
 (b) The choice of units of study made by a candidate shall be limited by the exigencies of the timetable except that, where two units of study are given wholly or partly at the same time, the heads of the departments concerned may give permission for the candidate to attend equivalent units of study (or parts of units of study) at another time.
4. Candidates will be under the general supervision of the Faculty of Engineering. General supervision covers all areas of policy and procedures affecting candidates, such as combined degree program rules and enrolment procedures. Candidates will be under the supervision of the Faculty of Science regarding enrolment and progression within the BSc component of the combined degree program, as defined in subsection 2(b).
5. Candidates may qualify for the award of BE degree with Honours.
6. Candidates who complete the combined degree program may qualify for admission to an honours year in the Faculty of Science.
7. Candidates who abandon the combined degree program may elect to complete the BE degree in accordance with the appropriate Senate Resolutions.
8. Candidates in the combined degree program may apply for admission to the BSc degree and enrol in such units of study as are required to complete the requirements for the degree. Such candidates shall be deemed to have abandoned the BE/BSc combined degree program.
9. The Deans of the Faculties of Engineering and Science shall jointly exercise authority in any matter concerning this combined degree program not otherwise dealt with in the Senate Resolutions or these joint resolutions.

Student Guide to Regulations

A summary of many of the rules and regulations governing the undergraduate degrees in Engineering is set out below. This is intended to assist students in understanding the rules but is not intended to replace them in any way.

Summary of degree requirements

To become eligible for the award of the degree of Bachelor of Engineering, you must
- complete the core units of study (and satisfy any requirements on recommended electives) of your chosen branch of engineering,
- gain credit for a minimum of 192 credit points,
- complete a period of practical experience in engineering and
- be a candidate for a minimum of two years and a maximum of eight years.
Core and elective units of study
For each of the branches of engineering in which a degree is awarded there is a list of prescribed core and recommended elective units of study.

A core unit of study is one that must be passed to fulfil the requirements for the degree. An elective unit of study is one that is acceptable as part of the requirements but is not a compulsory unit of study.

The core and recommended elective units of study for each branch of engineering are listed in tables.

Descriptions of each unit of study, in numerical order, are also provided in this document.

Credit point value of Units of study
Each unit of study has a credit point value, which is an approximate measure of the time required for lectures, tutorials and practical classes.

When you pass a unit of study you are credited with its credit point value, except where it is mutually exclusive with a unit of study you have already passed.

Completion of Units of study
In order to complete a unit of study you must: attend the lectures, tutorials and laboratory and practical classes prescribed for the unit of study; complete the exercises, practical work and assignments prescribed; and pass the examination(s) set for the unit of study.

If you have been absent without leave from more than ten percent of the classes in any one semester in a particular unit of study, you may be asked to show cause why you should not be deemed to have failed to complete that unit of study.

Should you fail to show cause, you shall be deemed not to have completed that unit of study.

Absence from lectures and other classes
If you are unable to attend lectures and/or practical classes because of illness, accident or for any other reason, you must submit an 'Application for Special Consideration' form. When applicable, a medical certificate or other supporting evidence should be attached. Notification forms for this purpose are available at the Engineering Faculty Office. The forms must be submitted to the Student Centre (Carslaw) within 7 days of the incident, and a copy given to the Department. The Faculty's policy on its handling of Special Consideration applications is available from the Student Enquiry Office.

Minimum number of credit points and rates of progress
To satisfy the requirements for a pass degree you must gain not less than 192 credit points, and satisfy all requirements on core and recommended elective units of study.

The minimum time in which you can qualify for the degree is four years. Some candidates, however, plan to progress at a slower rate, sometimes so that they can take a number of elective units of study.

At present, the BE degree is available on a full-time basis only and students cannot complete the degree requirements on a part-time basis or externally.

Classification into years
Students are classified as being in First Year, Second Year, Third Year or Fourth Year according to the year from which the majority of their credit points are being taken.

Changing your specialisation
Students who wish to change their specialisation (eg from Chemical to Mechanical) must obtain written Faculty approval. Such a change may entail an extra year (or more) of study.

First year enrolment
In your first year of attendance you must enrol in at least 48, and no more than 54, credit points.

Second and later year enrolments
The minimum enrolment for re-enrolling students is normally 36 credit points and the maximum is normally 60 credit points (unless the Faculty has imposed any special conditions on your re-enrolment because of unsatisfactory progress in the previous year).

Enrolments outside the 36 to 60 credit points limit require written Faculty permission.

Second Year students must include in their enrolment any outstanding First year core units of study for their chosen branch of engineering. Outstanding core units of study are units of study which a student either did not attempt in the previous year, or attempted but did not complete satisfactorily.) Similarly, Third Year students must include in their enrolment any outstanding First Year and Second Year core units of study, etc.

Your enrolment in any outstanding core units of study must generally take priority over your enrolment in higher year units of study and you must not enrol in units of study with timetable clashes.

If you wish to take the opportunity of transferring to the Faculty of Science at the end of your Second (or Third) BE year, you should consult the appropriate Faculty of Science resolutions relating to this double degree.

Advice for students
An academic Year Adviser is appointed for each year in each branch of Engineering. You should consult the noticeboards in your Department and the Student Enquiry Office to find the name and location of your Year Adviser.

Result grades
The Board of Examiners of the Faculty of Engineering is the body which determines BE students’ examination results. The Board meets after each semester when it considers the results recommended by the examiners of each unit of study for each student. Official examination result notices are then sent to students.

Satisfactory performance in a unit of study is recognised by the award of the grade of Pass (P). Performance at levels higher than this is recognised by the award of a Credit (Cr), Distinction (D) or High Distinction (HD). If the requirements for a unit of study are not completed then a grade of Fail (XX) may be awarded.

<table>
<thead>
<tr>
<th>Grade</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pass</td>
<td>50-64</td>
</tr>
<tr>
<td>Credit</td>
<td>65-74</td>
</tr>
<tr>
<td>Distinction</td>
<td>75-84</td>
</tr>
<tr>
<td>High Distinction</td>
<td>85-100</td>
</tr>
<tr>
<td>Fail</td>
<td>below 50</td>
</tr>
</tbody>
</table>

If a student failed a unit of study but the failure was borderline, then the Board of Examiners may award a concessional pass (PCON) instead of a Fail. A PCON is treated as a full pass for progression purposes.

Students awarded supplementary examinations should consult the department that teaches the unit of study for information about the form and content of the supplementary examination.

Students who have been awarded a Result to Come (V) should consult the Department.

A grade of R denotes that a unit of study has been satisfactorily completed.

Exemption from attendance at classes
If you enrol in a unit of study which you have previously attempted you may be granted exemption by the Department from attendance at laboratory or practical classes.

Deferment of enrolment
Deferment of enrolment is only possible from Second Year onwards. To ensure your place is kept open, you must apply in writing to the Faculty stating the reasons for your requested deferment. Deferment is normally granted for only one year,
although this may be extended in exceptional circumstances which must be detailed in your letter of application.

Practical experience

At an appropriate stage of your training you are required to work as an employee of an approved engineering-related organisation and submit a satisfactory written report of your work. This period of experience, usually about 10 weeks, is normally undertaken after you complete some or all of the prescribed Third Year units of study and before you enrol for your final year of study. It is possible to undertake all of the work experience at the end of Third Year, or undertake a part at the end of Second Year and complete the work experience at the end of Third Year. There is a core unit of study prescribed for each of the branches of engineering which comprises this practical experience requirement. Please refer to the unit of study descriptions later in this Handbook for specific conditions applying in each department in relation to when the work experience can be undertaken and what type of experience is suitable.

If you are not committed to employment as a cadet or scholarship holder the Careers and Appointments Service of the University is available to help you obtain suitable employment.

Honours degree

Conditions for the award of Honours are described elsewhere. Note that there is no special admission procedure to an Honours program.

An alternative to the combined BE/BSc degree program

Many Engineering students take the opportunity of gaining the BE and BSc degrees over five years. As well as the combined BE/BSc degree (described previously), there is a second option (henceforth referred to as the double degree BSc/BE program).

If you satisfy certain requirements you may be permitted to transfer to the Faculty of Science for one year in order to complete the requirements for the BSc degree. This one year is additional to the four years required to complete the BE degree. Students who proceed towards the 'double degree' usually transfer to the Faculty of Science after they have completed two years of Engineering, but there is provision for students to do so after they have completed the Third Year of the BE degree. There is also provision for students to remain in the Faculty of Science for an extra year in order to complete an Honours BSc degree.

After completion of the Science year(s), students then transfer back to the Faculty of Engineering in order to complete their BE degrees.

If you wish to take the opportunity of transferring to the Faculty of Science at the end of your Second Year (earlier Third Year) BE year, you should consult the appropriate Faculty of Science resolutions relating to this double degree.

If you are interested in proceeding towards the 'double degree' it is essential that you plan your units of study carefully in your First Year, so that you fulfil prerequisite requirements for the Second Year Science units of study which you must take in your Second Year.

Application to transfer to the Faculty of Science should be made at the end of your second (or third) year of studies.

Applications for transfer to the Faculty of Science are available at the Student Centre and the Faculty of Science and Faculty of Engineering Offices.

Admission of BSc graduates

If you are enrolled in the Bachelor of Science degree unit of study at this University and wish to transfer to the Bachelor of Engineering degree unit of study, you must make application through the Universities Admissions Centre by the advertised closing date.

Your application will be considered on the basis of academic merit. Consideration will be given to your HSC examination results and to your examination results in the Faculty of Science (and to your results in any other tertiary units of study you may have completed). The offer of a place in the Faculty of Engineering is NOT automatic and the competition for entry is keen.

If you are a graduand/graduate in the Faculty of Science and if you are offered a place in the Faculty of Engineering, you may be able to complete the BE degree requirements in two further years of full-time study. You would need to have completed appropriate units of study in the Faculty of Science so that you could be given credit for/exemption from all or most of the First Year and Second Year core units of study prescribed for that branch of Engineering in which you wish to proceed.

You should seek advice from the Engineering Department in which you wish to study regarding their requirements in order that you might complete the BE degree requirements in two years.

Advanced Engineering Program

The Faculty makes special provision for First Year students who have achieved outstanding academic results before coming to the Faculty. For students who achieve a UAI of 98+ with 4 Unit Mathematics and Science (4 Units from Physics, Chemistry, Engineering Science or Science), HSC students in this category will be granted exemption for half of their Semester 1 material, and may choose to commence study in the Iudy Semester or undertake a special interdisciplinary engineering project in a group with other Advanced Students. Students can apply to enter this arrangement on enrolment in their first year by discussing their options with the Dean or Head of Department.

The optional Advanced Engineering Program continues through years 2 and 3 with special subjects available only to those students named on the Dean's List for Excellence in the previous year.

Discontinuation and variation of enrolment

Please note that your enrolment is your responsibility. It is in your best interests to ensure that the formal record of your academic record.

If you wish to cease attending a unit of study (or all your units of study), you are discontinuing your enrolment in those units of study. You must notify the University of your intention to discontinue by submitting the appropriate form to the Engineering Faculty Office.

There are three categories of discontinuation results used to record discontinuations: 'Withdrawn', 'Discontinued with Permission', and 'Discontinued'. These results are dependent upon the time of year you choose to discontinue (see below). If your enrolment is 'Withdrawn' (W), then your enrolment is cancelled as though you had never enrolled. This enrolment does not appear on an official transcript of your academic record.

If your enrolment is 'Discontinued with Permission', it means that you commenced the unit(s) of study and were given permission to discontinue without any academic penalty or implication of failure whatsoever. However, if you have not completed appropriate units of study (your result is 'Discontinued'), your enrolment appears with the result of 'Discontinued'. As this result implies failure, you will be allocated a 0% unit value for this subject in the calculation of your weighted average mark. The Faculty takes student WAMs into consideration when determining whether or not students have made satisfactory progress.

Total discontinuation

If you wish to discontinue all your units of study, then you must notify the University of this intention by submitting a 'Variation of Enrolment' form to the Engineering Faculty Office.
Office. You should note your reasons for discontinuing on this form.

Variation of enrolment

Any change to your enrolment, including total withdrawal from the degree, can only be done through the Engineering Faculty Office. This includes units of study taken outside this Faculty. Collect a 'Variation of Enrolment' form from the Faculty Office, have the changes approved by your Year Adviser/Supervisor and hand the completed form back to the Faculty Office.

You may enrol in a unit of study given in first semester (or full-year) prior to March 31. You may enrol in a unit of study given in second semester prior to August 31.

Discontinuations from units of study are described below.

Before March 31 (First Semester HECS deadline)

You may withdraw from any unit of study without academic or financial penalty. Your discontinuation result will be 'Withdrawn'.

After March 31

- You may withdraw from Second Semester units of study without academic or financial penalty.
- If you drop a First Semester (or full-year) unit of study between March 31 and the seventh teaching week of First Semester, you will automatically receive a 'Discontinue with Permission' result.
- If you drop any unit of study after the seventh teaching week, you will receive a result of 'Discontinue'. If, however, you believe you have good reason for discontinuing at this late stage, discuss this with your Year Adviser, who may recommend a result of 'Discontinue with Permission';
- You remain liable for the HECS payment for these units of study.

After August 31 (Second Semester HECS deadline)

- You cannot drop any unit of study without penalty;
- If you drop a Second Semester unit of study between August 31 and the seventh week of teaching of Second Semester, you will automatically receive a 'Discontinued with Permission' result;
- If you drop any unit of study after the seventh teaching week, you will receive a result of 'Discontinued'. If, however, you believe you have good reason for discontinuing at this late stage, discuss this with your Year Adviser, who may recommend a result of 'Discontinue with Permission';
- You remain liable for the HECS payment for these units of study.

There is no way these rules can be varied, so it is in your best interests to ensure that your enrolment is correct.

You should note that variations of enrolment are subject to all the other rules relating to enrolment in the BE degree unit of study.

Weighted Average Mark (WAM)

The Faculty uses students' weighted average marks (or WAMs) when considering a number of aspects of students' candidature. Engineering departments use WAM calculations when determining students' eligibility for the award of Honours degrees. The Faculty uses WAM calculations when ranking applicants for scholarships for postgraduate study and for undergraduate prizes and scholarships. The Faculty also takes account of students' WAMs when determining whether or not students have made satisfactory progress with their studies. A WAM is calculated for every student for every year of enrolment by adding together the products of the marks achieved with the unit value of each unit of study attempted (including units of study which have been failed or 'Discontinued') and dividing by the total number of credit points attempted.

Units of study which have been 'Withdrawn' or 'Discontinued with Permission' are not included in the WAM calculation.

Application procedure to re-enrol in the BE degree after total discontinuation

New first year students

If you are a new First Year student who totally discontinues his/her enrolment and you now wish to re-enrol in the BE degree unit of study, then generally speaking you need to apply for re-enrolment through the Universities Admissions Centre (unless you were recorded as 'Discontinued with Permission' and were given 'Repeat status'). (Repeat status' means that you may enrol in the BE degree unit of study in the next calendar year by completing an internal University 'General application for enrolment' form and that you will not need to compete for a place through UAC for that one calendar year only. If you do not take up that option and then wish to re-enrol in the BE degree unit of study in a future year, you will need to apply for re-admission through UAC.)

UAC applications must be lodged by the closing date late in September/early in October in the year prior to that in which you wish to re-enrol.

Re-enrolling students

If you are a re-enrolling student in the BE degree unit of study who totally discontinues his/her enrolment and wish to re-enrol in the BE degree unit of study, then generally speaking you should apply for re-enrolment by completing an internal University 'General application for enrolment' form by 1 October in the year prior to that in which you wish to re-enrol.

Failure to make satisfactory progress and exclusion

If the Faculty considers that you have failed to make satisfactory progress with your studies, the Faculty may exclude you from re-enrolment in the Faculty of Engineering. This process of excluding students is designed to ensure that the resources available in the Faculty are used to teach those students who make the best use of them. Failure to make satisfactory progress cannot be defined precisely in all cases in advance, but generally you will be considered not to have made satisfactory progress if:

- you had special conditions imposed on your re-enrolment;
- you do not gain at least half of the credit points for which you are enrolled; and/or
- you fail a major unit of study more than once; and/or
- you had special conditions imposed on your re-enrolment (usually because of lack of satisfactory progress in the previous year of enrolment) and you fail to meet these conditions.

If the Faculty considers that your annual progress has not been satisfactory, it may decide that you should be sent a 'Warning Letter', in which you are advised of this and also of certain conditions that you would need to meet in your next year of enrolment in the Faculty. These conditions would normally specify the number of credit points and particular credit points of study that you would need to pass in the next year of enrolment in the Faculty. Failure to meet such conditions would normally result in you being asked to show cause as to why you should be allowed to re-enrol in the Faculty of Engineering.

If the Faculty considers that your progress has been particularly unsatisfactory, then it may decide that you should be asked to show cause as to why you should be allowed to re-enrol in the Faculty of Engineering. This means that you are being asked for an explanation for your failure to make satisfactory progress in your studies. When the Faculty considers students' statements purporting to show good cause, it takes account of illness, accident and/or personal problems.

If the Faculty accepts your explanation, then it will allow you to re-enrol. In doing so, the Faculty will probably impose certain conditions on your re-enrolment (such as specifying the number of credit points and particular credit points of study that you must pass in your next year of enrolment). Should you fail to meet these conditions you may be called upon again to show cause as to why you should be allowed to re-enrol in the Faculty of Engineering.
If the Faculty considers that you have failed to show good cause on this occasion (or if no statement is received from you), then the Faculty may exclude you from enrolment. If you are excluded, you have the right of appeal to the Senate. The Senate may either uphold your appeal and allow you to re-enrol in the Faculty of Engineering or it may disallow your appeal and confirm your exclusion.

A student who is excluded from re-enrolment in the Faculty may apply for re-admission to the Faculty after two academic years have elapsed. When considering an application for re-admission, the Faculty takes account of the following: the circumstances that led to the student's failure to make satisfactory progress; how these circumstances have changed; and the student's activities since being excluded. The Faculty would normally expect a student to have undertaken relevant tertiary studies successfully during this period.
CHAPTER 5

Postgraduate study

The Faculty of Engineering offers a wide range of postgraduate research and coursework programs within the Departments of Aeronautical, Chemical, Electrical and Mechanical and Mechatronic Engineering and the specialisation, Environmental Engineering.

Full details of the postgraduate degrees and diplomas are contained in a graduate brochure which is updated annually and is available from the Faculty Office.

Doctor of Engineering

The senior of the higher degrees in the field of engineering is the DEng degree. Originally called Doctor of Science in Engineering, DScEng, the name was changed to Doctor of Engineering in 1981. The degree is awarded for distinguished published work. The first doctorate in engineering was conferred in 1924.

DScEng
John Job Crew Bradfield, 1924
William George Baker, 1932
David Milton Myers, 1938
David Lipscombe Holloway, 1954
Bernard Yarnton Mills, 1959
Robert Thomas Fowler, 1960
James Brydon Rudd, 1962
John Ernest Benson, 1975
Harry George Poulos, 1976
George Kossoff, 1981
Robert Henry Frater, 1982

DEng
John Robert Booker
Bhushan Lai Karihaloo
Kerry Rowe
Nicholas Snowden Trahair

Doctor of Philosophy

The degree of Doctor of Philosophy is a research degree awarded for a thesis considered to be a substantially original contribution to the subject concerned. This degree is becoming a prerequisite for research appointments in government and industrial research and development laboratories.

Applicants should normally hold a master's degree or a bachelor's degree with first or second class honours of the University of Sydney, or an equivalent qualification from another university or institution.

The degree may be taken on either a full-time or part-time basis.

In the case of full-time candidates, the minimum period of candidature is six semesters (3 years). The maximum period of candidature is normally ten semesters.

Part-time candidature may be approved for applicants who can demonstrate that they are engaged in an occupation or other activity which leaves them substantially free to pursue their candidature for the degree. Normally the minimum period of candidature will be determined on the recommendation of the Faculty but in any case will not be less than six semesters; the maximum period of candidature is normally 14 semesters.

The Faculty may admit some applicants on a probationary basis for a period not exceeding twelve months.

Master of Engineering (Research)

The Master of Engineering (Research) degree provides candidates with opportunities to develop specialist interests through a program of supervised research (theoretical or applied), shorter than the three years usually required for the PhD degree. Candidature is normally on a full-time basis but may also be undertaken part-time. The ME(Res) degree may be undertaken in the Departments of Aeronautical, Chemical, Electrical or Mechanical Engineering in the Department of Civil Engineering.

The minimum academic entry requirement is normally the 4-year Bachelor of Engineering degree from the University of Sydney with first or second class honours in the same branch of engineering as that in which the ME(Res) degree is to be undertaken, or an equivalent qualification from another university or tertiary institution. In exceptional circumstances a graduate in engineering with a pass degree or a graduate with an honours degree in a different branch of engineering or from another Faculty may be admitted to candidature but such an applicant may be required to undergo a preliminary examination.

The Faculty may admit some applicants on a probationary basis for a period not exceeding twelve months.

The minimum period of candidature is one year full-time and two years part-time and the maximum period of candidature is two years full-time and three years part-time. If a candidate is required to undertake a preliminary examination then the candidature commences after the completion of the preliminary examination.

Special attention is drawn to the need for applicants to provide concise details of their proposed research program including aims and methodology and evidence of their ability to carry out intensive research and advanced study. Candidates who enrol for this degree with the object of later transferring to candidature for the PhD degree should select a research project that is suitable for this purpose.

Applicants admitted to candidature for the ME(Res) degree are expected to work individually on advanced study and research under the direction of a supervisor, with whom regular consultation about their work and the general planning of their thesis is required. On completion of their candidature a thesis must be submitted embodying the results of their work.

Master of Engineering Studies

The MES degree provides candidates with programs of formal coursework alone or coursework and applied research aimed at meeting the professional development needs of engineers and scientists in the private and public sectors of industry and in private practice. The degree is offered on a full-fee paying basis.

The minimum academic entry requirement is the 4-year Bachelor of Engineering degree from the University of Sydney, or an equivalent qualification from another university or tertiary institution.

The minimum period of candidature is one year full-time and two years part-time and the maximum period of candidature for all candidates is two years full-time and three years part-time.

Candidates for the MES have two alternative methods of candidature, by coursework alone or by coursework and project. They are required to complete either 30 units of coursework or at least 20 units of coursework and a project valued at 10 units.

Candidates may choose to complete the units of coursework from the same subject area or from related subject areas, in the same department or school, or they may choose to complete all subjects from departments other than the one in which they are primarily studying. Candidates may also be given permission to take subjects from another Faculty at this University or from another tertiary institution such as the
University of New South Wales or the University of Technology, Sydney. If you wish to apply to count subjects from another tertiary institution, you would of course need approval from that institution to enrol there and the permission of the University of Sydney.

The regulations in regard to coursework taken external to the Faculty are:

- Up to 12 units and a maximum of 4 approved subjects can be taken in other Faculties or external to the institution.
- Up to 12 units of approved business related subjects.
- A maximum of 5 units of approved undergraduate engineering subjects can be taken within the Faculty at this university.
- A minimum of 50% of all coursework must be undertaken within the Faculty of Engineering at the postgraduate level.
- Approval to take courses at another institution is given on the understanding that you may not count these courses towards a degree, diploma or any other qualification at the other institution where you are taking them.
- A candidate who fails to demonstrate satisfactory progress may be asked to show good cause why his or her candidature should not be terminated. A candidate who fails (or discontinues without permission) in more than 2 courses or 6 units (whichever is the higher) will be deemed not to have made satisfactory progress and may be asked to show good cause why he or she should be allowed to re-enrol.

Most postgraduate subjects are run in the afternoon or evening.

A 1-hour lecture each week for one semester (i.e. 14 weeks) together with the associated tutorial, laboratory and assignment work, is rated normally as one unit.

For their projects, candidates are encouraged to select problems based on their professional experience or their research interests. Many projects will be closely related to the research activity within the Faculty, and in some cases it may be possible for original work to be reported in the project report. A design study or a critical examination of a professional problem may also be acceptable as a project. The work on the project is expected to occupy about one-third of a candidate's total program, i.e. a maximum of 10 units credit.

Aeronautical Engineering
There is no coursework program currently available.

Chemical Engineering
The Department of Chemical Engineering offers the MES course and the MEEP (Master of Environmental Engineering Practice)

Civil Engineering
The School of Civil and Mining Engineering offers the MES coursework program in the areas of Geotechnical Engineering, Structural Engineering and Structural and Foundation Engineering.

You should note, however, that the Department of Civil Engineering may not be able to offer all its courses each year, so that even a full-time candidate may take 18 months or two years to complete the degree requirements in that School.

Electrical Engineering
The Department of Electrical Engineering is in the process of restructuring its postgraduate coursework options into a smaller number of more focused and relevant subjects which will be offered more regularly than has been the case in the past. Since the primary focus is on part-time enrolments, it may well require two years in order to complete requirements for the degree. The process of restructuring is to better relate a masters degree as the top level qualification with more focused diplomas and (approval being sought for 1998) certificates in specified areas as discussed below.

Mechanical and Mechatronic Engineering
The coursework program is available on both a full- and part-time basis. The Mechanical Engineering course includes the option of a thesis and is available at present. In order to complete the degree requirements in one year, however, a candidate would need to take subjects from those offered by other departments or by another tertiary institution.

Environmental Engineering
The Faculty of Engineering offers a coursework program in Environmental Engineering for the MES degree and DipEnvironEng. While the program is managed by the Department of Chemical Engineering, teaching is by Chemical, Civil and Mechanical Engineering, as well as by other departments in the University.

Both MES and Diploma candidates will be required to complete certain core requirements:

- MES candidates will need to choose at least 15 units from the list of postgraduate environmental subjects taught by the Faculty of Engineering and Diploma candidates 10. The course P4.300 Environmental Impact Assessment will be a core requirement for all candidates within these 15/10 compulsory units. This will mean that 50% of the coursework will have to be taken from postgraduate Environmental Engineering subjects.
- All candidates will also be required to complete at least one subject from each of the approved Economics subjects and Planning and Law subjects.
- The remaining units to be completed may be chosen from any of the postgraduate subjects offered by the Faculty of Engineering.

Diplomas and certificates

Diplomas
Graduate Diplomas are offered on a full fee-paying basis. Courses leading to the award of a diploma are currently available in the following specialist areas:

- Geotechnical Engineering - DiplGeotEng
- Structural Engineering - DiplStructEng
- Structural and Foundation Engineering - DiplStructFoundEng
- Power Engineering - DiplPowEng
- Computer Systems Engineering - DiplCompSystEng
- Technology Venture Creation
- Telecommunications - DiplTelecomm
- Environmental Engineering - DiplEnvironEng

Graduate Certificates are offered on a full fee paying basis. Courses leading to the award of a graduate certificate are available in the following specialist areas:

- Electrical Energy Systems
- Integrated Systems
- Photonics
- Signal Processing
- Technology Commercialisation
- Wireless Communications

The minimum academic entry requirement is the 4-year Bachelor of Engineering degree from the University of Sydney, or an equivalent qualification from another university or tertiary institution.

The minimum period of candidature is one year full-time and two years part-time and the maximum period of candidature for all candidates is two years full-time and three years part-time.

Candidates are required to complete 20 units of coursework, chosen from the subjects available for the MES degree. The Diploma requirements differ from the MES requirements only in that no project is required.

The Department of Civil Engineering offers Diplomas in Geotechnical Engineering, in Structural Engineering and in Structural and Foundation Engineering. As for the MES, even full-time candidates could take 18 months to two years to complete the diploma requirements.

The Department of Electrical Engineering offers Graduate Certificates and Diplomas in specific areas.: Tables of courses for these diplomas are being continually developed in line with industry and graduate need. This can lead to requiring more than one year of part-time candidature in order to enrol in specific courses.

The Diploma in Environmental Engineering is managed by the Department of Chemical Engineering. The teaching is provided by Chemical, Civil and Mechanical Engineering and by other teaching departments in the University. As for the
MES in Environmental Engineering, the DipEnvironEng has certain requirements:

- Diploma candidates will need to choose at least 10 units from the list of postgraduate environmental subjects taught by the Faculty of Engineering.
- The course P4.300 Environmental Impact Assessment will be a core requirement, as will the completion of at least one subject from each of the approved Economics and Planning and Law subjects.

The Committee for Postgraduate Studies of the Faculty of Engineering has prescribed subjects which may be taken by candidates for the degree of Master of Engineering Studies and by candidates for postgraduate diplomas within the Faculty.

Note: For information about these subjects, please contact the postgraduate adviser in the Faculty Office, or the coursework adviser in your school or department.
CHAPTER 6
Other Faculty information

The Faculty

Faculty adviser
You are most welcome to discuss with the undergraduate or postgraduate advisers any questions about your studies, difficulties in maintaining your studies for financial or personal reasons, or any other questions or problems that may arise. As difficulties can usually be handled more easily in the early stages, you should seek help without delay. Discussions are held in strict confidence - simply come to the Faculty Office, in Room 226, Engineering Faculty Building and make an appointment.

Special enrolment instructions
These are the special requirements for Engineering students. To complete your enrolment in Engineering you proceed to the PNR Enrolment Centre in the Drawing Office, where you
• collect your enrolment form,
• complete a registration form,
• consult an adviser about your plan of courses and
• record your courses on the computer and receive your timetable.

Examinations

Freedom of Information Act
Examination scripts, or copies of same, are available for viewing or collection from Departmental Offices for three months after final examinations each year, after which they will be shredded.

Enquiries
All examination result enquiries must be made with your Department. The Engineering Faculty Office is not equipped to handle examination enquiries.

Supplementary examinations
A supplementary examination may be granted by the Faculty:
(a) to candidates whose performance in an examination has been significantly affected by duly certified illness or misadventure;
(b) to candidates who have failed an examination but whose overall level of performance in the year's work is deemed sufficient to warrant the concession of a further test.

Supplementary examinations under category (b) are normally granted only to those candidates who are in their first year of attendance.

The award of supplementary examinations is a privilege and not a right.

Illness or misadventure
The Faculty of Engineering recognises that the performance of students may be adversely affected by illness or other misadventure, and makes provision for special consideration in such cases when examination results are considered. Any student who believes that his/her performance has been or may be adversely affected by an occurrence of illness or misadventure may request the Faculty to make special consideration of same. All such requests must include a special consideration application on the form provided by the Faculty, supplied within one week of the occurrence and accompanied by an appropriate medical certificate or other relevant documentary evidence apart from the student's own submission. Such certificates or documentary evidence should state not only the nature of the illness or misadventure but also (where relevant) the opinion of the issuer as to the extent of the disability involved.

If the student has completed the assessment for which special consideration is requested, then further documentary evidence of the extent of the disability from a specialist medical practitioner/counsellor etc. must also be supplied. For example, if a student completes an examination but still wishes to request special consideration for it, this additional specialist evidence is required.

Finally, the Faculty intends only to compensate for sub-standard performance in assessments which do not reflect a student's true competence in a subject, and such provisions must not act to the disadvantage of other students. The Faculty will only compensate students when there is clear evidence that results have been adversely affected by the disability for which special consideration is requested.

Financial assistance

Special assistance
In certain circumstances assistance is available to students who encounter some unforeseen financial difficulty during their studies. The assistance is usually in the form of bursaries or interest free loans. Students wishing to apply for financial assistance should make enquiries from either of the following:
Financial Assistance Office, Student Services,
+61 93512416.
President of the Students' Representative Council,
+61 2 9660 5222.

J.N. Ellis Memorial Fund
The J.N. Ellis Memorial Fund was established in 1969 following an appeal made to all graduates in engineering to honour the memory of Neil Ellis, who as Sub-Dean and later as Administrative Assistant to the Dean over a considerable period of years was able, by sympathetic counselling, to help many students who were having difficulties in completing their studies.

The object of the fund is to provide financial assistance to students in the Faculty of Engineering who are in such a position that without assistance they would not be able to continue their studies. Students seeking such assistance should apply to Financial Assistance, Student Services, phone 9351 2416. Awards are made on the recommendation of the Dean. Value: $500. Applications may be made at any time.

Those who receive assistance from the fund are asked to make a contribution to it when they are financially able to do so. In this way the fund will be able to continue and grow in the extent to which it can help deserving students in future years.

Learning assistance
The University's Learning Assistance Centre offers a wide range of workshops and other activities to assist students develop the learning and language skills needed for academic study. The workshops are available free to all enrolled students of the University. Workshop topics include essay and assignment writing, oral communication skills, studying at university, conducting research.

The Learning Assistance Centre is located on Level 7 of the new Education Building next to Manning House (phone +612 93513853).

List of staff by departments

Faculty staff

Dean
Professor Judy A Raper, BE PhD U.N.S. W. CEng., FIChemE FIEAust

Pro Dean
Professor Yiu-Wing Mai BSc (Eng) PhD H.K., MASME FIEAust

Associate Dean (Postgraduate and Research)
Associate Professor John C Small, BSc(Eng) Lond. Phd, MIEAust MASCE
Associate Dean (Undergraduate)
Associate Professor Geoffrey W. Barton, BE PhD

Advisers to undergraduate students

Aeronautical
Undergraduate Adviser - Dr Doug Auld
First Year — Dr Kee Choon Wong
Second Year - Dr Osvaldo Querin
Third Year - Dr K Srinivas
Fourth Year - Dr Peter Gibbens

Chemical
Undergraduate Adviser - Associate Professor Geoff Barton
First Year — Mr Bruce Chow
Second Year - Dr Vincent Gomes
Third Year - Dr Tim Langrish
Fourth Year - Dr Ian. Furzer

Civil
First Year - Associate Professor R.J. Wheen
Second Year - Mr N.L. Ings
Third Year - Dr M.J. Clarke
Fourth Year - Dr K.J.R. Rasmussen

Electrical and Information Engineering
First Year - Associate Professor David Wong
Second Year - Dr Swamidoss Sathiaakumar
Third Year - Dr Jim Rathmell
Fourth Year - Dr Yash Shrivastava

Mechanical
Undergraduate Adviser - A/Prof. Assaad Masri
Postgraduate Adviser - Prof. Nhan Phan-Thien
First Year - Dr Lynne Bilston
Second Year - Mr Paul McHugh
Third Year-Dr Lin Ye
Fourth Year - Dr Steven Armfield

Student Administration Staff
Postgraduate Adviser - Ms Josephine Harty, BA Macq.
Undergraduate Adviser - Mrs Anna Maria Brancato

Executive Assistant to the Dean
Ms Kylie Williams BSc

Executive Officer, Engineering Advancement Office
Mr Jeremy M. Steele, BA Keele

Marketing Manager
Mr Eric-van Wijk, BSc (ANU) GradDipEd GradDipAppEcon (UCan)

Engineering Scholarships Office
Executive Officer: Ms Lec Glasson BA DipEd (Flinders)
Administrative Assistant: Ms Kay Fielding

Professional Officer
DidierDepreu, BE, M EngSc U.N.S.W.
Industry Liaison
Dr Maurice Barton, BSc Hons Brighton C.O.T. MSc Oxon
PhD Aston, FAIM

Faculty Librarian
vacant

Aeronautical Engineering

Head of Department
Grant P. Steven, BSc Glas. DPhil Oxf.
Lawrence Hargrove Professor
Grant P. Steven, BSc Glas. DPhil Oxf. Appointed 1991

Senior Lecturers
Douglass J. Auld, BSc BE MEEngSc PhD
Karkenahalli Srinivas, ME PhD I.I.Sc.
Liyong Tong, BSc MEEngSc Dalian PhD B.U.A.A., MIEAust, MAIAA

Lecturers
Peter W. Gibbens, BE, PhD, MAIAA
Kee Choon Wong, BE PhD, MAIAA
Osvaldo M. Querin, BE ME(Res), PhD
David P. Boyle, BE, MAIAA

Professional Officer
Jehangir Madhani, MSc, Strath, BSc S'landUK

Chemical Engineering

Head of Department
Brian S Haynes, BE PhD U.N.S.W., FIChemE, FIEAust, CEng

Professors
Brian S Haynes, BE PhD U.N.S.W., FIChemE, FIEAust, CEng. Appointed 1997
Emeritus Professor Rolf G.H. Prince, AO, BE BSc NZ. PhD, FIChemE HonFIEAust FTSE Feng (Retired 1998).
Orra Australia/University of Sydney Professor of Process Systems Engineering

Shell Professor of Environmental Engineering
James G Petrie BSc, PhD Capetown (Director of Research)

Professional Fellow
Ric Charlton, BE MESc, FTS

Associate Professors
David F. Bagster, BScApp BSc BE Qld PhD Camb., FIEAust

FIChemE CEng

John P. Barford, BE PhD U.N.S.W., FIChemE FIEAust CEng

Geoffrey W. Barton, BE PhD

Senior Lecturers
Ian A. Furzer, DSc(Eng) PhD Lond., MChemE CEng

Professor Emeri
Vincent G. Gomes, BTech MEng PhD McGill
Timothy A.G. Langrish, BE NZ. DPhil Ox, MChemE
Raj K Malik, Btech, Mtech, PhD (IIT, Delhi)
Cynthia A Mitchell, BE (Qld), PhD (UNSW)

Lecturers
B Choy, BE
M Valix, BSc, PhD (UNSW)

Senior Research Fellow
David F Fletcher, BSc PhD(Exeter)

Professional Officers

Denis M. Nobbs, BE U.N.S.W.
Robert Staker, PhD Adel.

Research & Business Development Manager
Dr Maurice Barton, BSc, MSc, PhD (Aston)

Marketing & Industry Liaison Manager
Ms Trish Powers, BA, DipEd

Honorary Associates
Wayne A. Davies, BSc PhD, MIEAust
G. DeLeon, PhD, MAIMM GSA
P. Dun, BE, PhD, MChE
Kenneth C. Hughes, BSc PhD (UNSW)

Peter B. Linkson, BE PhD, FIChemE F AusIMM FGAA

CEng

S Makarytevich, MSc, PhD (Moscow)
H M Tweeddale, BE, MEng (Melb), FI MechE, FIChemE, FIEAust, CEng

Barry W. Walsh, BE PhD, MChemE CEng SPE

Civil Engineering

Head of Department
John P. Carter, BE PhD, MASCE FIEAust

Professors
Harry George Poulois, AM, BE PhD DScEng, FIEAust FASCE

FAA. Appointed 1982
John P. Carter, BE PhD, FIEAust MASCE. Appointed 1990

BHP Steel Professor of Steel Structures
Gregory J. Hancock, BE BSc PhD, FIEAust. Appointed 1990

Associate Professors
Andrew Abel, DipIng T.U. Bud. MSc McM. PhD U.N.S.W., CEng FIM

Peter Ansourian, BSc BE PhD, FIEAust

Ali Ja'afari, BSc ME Tehr. MSc PhD Sur.

Kenny C.S. Kwok, BE PhD Monash, FIEAust

Stuart G. Reid, ME Cant. PhD Mc.G.

John C. Small, BSc(Eng) Lond. PhD, FIEAust MASCE
Robert J. Wheen, BSc BE MEngSc, FIEAust MASCE
Senior Lecturers
David W. Airey, BA MPhil PhD Camb.
Logan W. Apperley, BE PhD Auck
Murray J. Clarke, BSc BE PhD
Kim J.R. Rasmussen, MScEng T.U. Denmark PhD
Lecturers
Noel L. Ings, MEngSc U.N.S.W. BE, MASCE MIEAust
Lloyd J. Pilgrim, BSurv PhD N'cle(N.S.W)
Tutor in Surveying
John Curdie, ME Dip&T&CP, FIS
Professional Officers
Nigel P. Balaam, BE PhD
Tim S. Hull, BE PhD
John P. Papangelis, BE PhD MIEAust
Craig Polley, BSc ECE Wisconsin
Computer Systems Officer
Danny D.Q. Kim, BSc Ho Chi Minh United
Adjunct Associate Professor
Ian S.F. Jones, BE U.N.S.W. PhD Wat., MIEAust
Honorary Research Associates
Russell Q. Bridge, BE (Hons) U.N.S.W., PhD, FIEAust
Howard B. Harrison, BE PhD, MIEAust
Harold Roper, BSc PhD Witr. MEngSc, MAIMM
Richard D. Watkins, BE Qld PhD Aherd., MIEAust
Honorary Teaching Associate
Ian G. Bowie, MSc Mane, MCSCE MIEAust

Electrical and Information Engineering

Head of School
David Hill, BE BSc Qld PhD N'cle(NSW), MSIAM FIEAust FIEEE
Manager, Resources
Paul Beed, BBus UWS ASA
Manager, Academic Support Services
Peter Finnenan, BA
Executive Officer, Electrical Engineering Foundation
Stuart Glinfield, BA, Dip Ed, MA
P.N. Russell Professor
Trevor William Cole, BE WAust PhD Camb, FIEAust FTSE. Appointed 1980
Professors
David Hill, BE BSc Qld PhD N'cle(NSW), MSIAM FIEAust FIEEE. Appointed 1994
Marwan A. Jabri, Maitrise de Physique Paris PhD SMEEIE FIEAust. Personal Chair 1996
Hong Yan, BE Nanking IPTUSE Mich PhD Yale. Personal Chair 1997
Associate Professors
Robert A. Minasian, BE PhD Melb. MSc Lond., MIEEIE FIEEE FIEAust
Stephen W. Simpson, BSc PhD, FAIP
Anthony D. Stokes, BSc BE PhD, FIEAust
Branka S. Vucetic, MSCE PhD Belgrade
David G. Wong, BSc BE MEngSc PhD, FIEAust
Senior Lecturers
David G. Godden, ME UNSW MBA, AGSM, MIEAust
Ling Guan, BSc Tianjin MSc Waterloo PhD UBC, SMEEIE
Xiheng Hu, DipElecEng Chongqing Indusat MElecfCompEng China PhD
David Levy, BSc MSc PhD Natal. MIEEIE MACM
James G. Rathmell, BSc BE PhD, SMEEIE
Graham E. Town, BE N'SWIT PhD. MIEEIE MIREE
Hansen Yee, BSc BE PhD, MIEEIE
Lecturers
Abbas Jamalipour, BScsfsahan MS SharfPhD Nagoya, MIEEIE MIEEIE(Japan)
Swamidoss Sathiaakumar, BSc American Coll. India BE ME PhD 11.Sc.
Yash Shrivastava, BTech ITT Kanpur India, PhD Iowa

Research Fellows
Yuxing Zhao, BSc Suzhou, MSc Shanghai Inst Optics PhD, MIEEE MOSA
U2900
Javid Atai BSc W Aust PhD ANU, MIEEE
Wan Quan Liu BA Oufu MA Acad Sci Beijing PhD Shanghai
Jiaotong SMEEIE
William Girling Watson
Kamal Alameh, BE Beirut MEngSc Melb PhD
Richard Coggins. BE, BSc, PhD
Jinhong Yuan, MSc, PhD Beijing Inst Tech
Emeritus Professors
Ebrahim Gogani, ME Tehran Polytechnic PhD Brunei
Ross Hutton, BE QIT
Michael Rados, BSc BE MEngSc
Ali Raghemi-Azar, BSc Tehran Polytechnic MSc PhD S'ton
Robert G. Sutton, ME UNSW (on leave)

Mechanical and Mechatronic Engineering

Head of Department
John H. Kent, BE MEngSc PhD FIEAust
P.N. Russell Professor
Roger I. Tanner, BSc Brist. MS Calif. PhD Mane, FAA FTS FIEEE FIEAust MASME MAIChE. Appointed 1975
Professors
Robert W. Bilger, BSc BEMZ DPhil Oxf, FTS FIEAust. Appointed 1976
Hugh F. Durrant-Whyte, BSc(Eng) Lond. MSE PhD Penn. Appointed 1995
Yiu-Wing Mai, BSc(Eng) PhD H.K., FTS MASME FIEEE FIEAust FHKIE. Appointed 1987
Nhan Phan-Thien, BE PhD FIEAust. Appointed 1991
Michael V Swain, BSc PhD U.N.S.W. Appointed 1997
Associate Professors
John H. Kent, BE MEngSc PhD FIEEE FIEAust
Assaad R. Masri, BE PhD
Senior Lecturers
Steven W Armfield, BSc Flinders PhD
John D. Atkinson, PhD Cal.Tech. BSc BE
Lynne E. Bilston, MSE PhD Penn. BE
M.W.M. Dissanayake, BSc(Eng) Peradeniya MSc PhD Birm.
Andrei Lozzi, BSc U.N.S.W. MEngSc PhD
P.J. McHugh, BSc BE
Eduardo M. Nebot, BS Bahia Blanca MS PhD Colorado
David C. Rye, BE Adel. PhD
Robert W. Bilger, BSc BEMZ DPhil Oxf, FTS FIEAust. Appointed 1976
Hugh F. Durrant-Whyte, BSc(Eng) Lond. MSE PhD Penn. Appointed 1995
Yiu-Wing Mai, BSc(Eng) PhD H.K., FTS MASME FIEEE FIEAust FHKIE. Appointed 1987
Nhan Phan-Thien, BE PhD FIEAust. Appointed 1991
Michael V Swain, BSc PhD U.N.S.W. Appointed 1997
Associate Professors
John H. Kent, BE MEngSc PhD FIEEE FIEAust
Assaad R. Masri, BE PhD
Senior Lecturers
Steven W Armfield, BSc Flinders PhD
John D. Atkinson, PhD Cal.Tech. BSc BE
Lynne E. Bilston, MSE PhD Penn. BE
M.W.M. Dissanayake, BSc(Eng) Peradeniya MSc PhD Birm.
Andrei Lozzi, BSc U.N.S.W. MEngSc PhD
P.J. McHugh, BSc BE
Eduardo M. Nebot, BS Bahia Blanca MS PhD Colorado
David C. Rye, BE Adel. PhD
Lin Ye, BS Harbin MS PhD BIAA
Liangchi Zhang, BSc MEng Zhejiang PhD Peking MASME MASPE MJIEEE MSJME
Visiting Professor
Raymond A Jarvis BE (Elect), PhD WA.
Adjunct Associate Professor
Robin J. Higgs, MBBS Lond FRCS Edin FRACS FA Orth A

Chapter 6 - Other Faculty information
Scholarships and prizes

Many students enrolling in the Faculty of Engineering obtain financial assistance by way of a cadetship or scholarship, either at the time of enrolment, or at a later stage in their studies.

Information about the Australian government Austudy Scheme is available from the State Director, Department of Employment, Education and Training, 477 Pitt Street, Sydney 2000.

Scholarships are also awarded by a number of industrial organisations. Many of these do not require the student to enter into a financial bond.

Some government departments and public authorities provide cadetships or traineeships which require the student to enter into an agreement to work for the employer for a specified number of years after graduation.

Before accepting a bonded cadetship or traineeship students should give careful consideration to the conditions of the award and in particular the obligations which they will incur should they decide to relinquish the award for any reason.

A list of currently available prizes and scholarships is available from the University’s Scholarships Office in the Main Quadrangle, phone +61 2 9351 3250.

Engineering scholarships

UNISEN Scholarships represent an expanded choice of scholarships offering a wide range of cooperative education choices. UNISEN comprises the Chancellor’s Industry Scholarship (CISE, ordinary degree only, $11000 pa), the Dean’s Industry Scholarship (DISE, ordinary and combined degrees, $4000 pa + $3500 for 10 weeks paid work experience) and the Industrial Experience Placement Scholarship (IEPS, ordinary and combined degrees, $1000 pa + $3500 for 10 weeks paid work experience).

Web site is at http://www.eng.usyd.edu.au/scholarships/

WM Neirous Scholarship

For women enrolling in structural (civil) engineering, valued at $3000 pa for 4 years.

EnergyAustralia Scholarship in Engineering

For school leavers undertaking a standard electrical engineering program, with a complete year in industry, valued at $44,500 for 5 years.

Contact: Faculty Scholarships Office
LeeGlasson, Executive Officer
Phone:+61 2 9351 2834/2131
Fax:+61 2 9351 3885
Email: L.Glasson@eng.usyd.edu.au

Student facilities and societies

Noticeboards

Faculty noticeboards, one for First year courses and one for Second year courses, located outside the Student Enquiry Office, 2nd level, Faculty Building. Each of the Engineering departments has a noticeboard for Third and Fourth year students.

Noticeboards are also in the various Science departments, and information concerning the courses given by those departments will be posted on these boards.

Details of class lists, timetable variations, examination times and other information relating to courses of study will be posted on the relevant noticeboards. Students are expected to inspect the noticeboards at frequent intervals.

Notices referring to cadetships, scholarships, vacation employment and career opportunities and other matters of this nature are also displayed on the noticeboards in and around the Student Enquiry Office, 2nd level, Engineering Faculty Building.

The Faculty library

The University of Sydney Library consists of a central library - called Fisher Library - and a number of branch libraries of which Engineering is one. The Engineering Library is on the ground floor of the PNR Building in the Engineering Precinct.

Other branch and department libraries within the University contain relevant material, e.g. Architecture, Physics, Mathematics, Chemistry, Wolstenholme and Badham Libraries. Engineering students may use all the libraries of the University.

Multiple copies of reference books for Junior and Intermediate courses are held in the undergraduate section of Fisher Library. Students in the senior years in Engineering will find most of their reference material in the Engineering Faculty Library. Books may be borrowed for two weeks with two loan renewals permitted. Journals may not be borrowed but photocopying facilities are available.

The Engineering Library opens from 8.45 am to 6.00 pm Monday - Friday during term. Vacation hours are 9.00 am to 5.00 pm Monday to Friday.

Dewey Decimal Classification numbers are given for some courses in chapter 4: Courses of Study. These are not meant to be exhaustive lists and reference should also be made to the subject catalogue in the library.

Engineering associations

SUEA

The Sydney University Chemical Engineering Association (SUEA) is a body representing the graduates of the Department of Chemical Engineering. Established in the 1950s, it is one of the oldest alumni associations at the University of Sydney. With 1326 members living in over 20 countries around the world, it is also one of the largest.

SUEA holds a number of social events and a technical symposium each year with the aim of maintaining strong contact between the Department and its graduates (some of whom are well into their sixties). So, via SUEA, you will still be part of the ‘Chem Eng’ family even after you graduate. SUEA

The objects of SUEA, the Sydney University Engineering Undergraduates’ Association, are:

(a) to perform such actions and to organise such functions as the committee may deem necessary and desirable in the interests of the Faculty of Engineering, University of Sydney, and the students thereof;

(b) to act as an intermediary body between the teaching staff on the one hand and the members of the Association on the other;

(c) to organise Engineering teams for inter-faculty sport.

The office of the SUEA is on the ground floor of the PNR Building close to the Faculty library.

In this office the association conducts a bookshop where many items of stationery, and some textbooks and codes of practice, are available at competitive prices.

The SUEA normally holds an election for the president and other office bearers in March each year and all financial members of the association are eligible to vote. The president becomes a member of the Faculty by virtue of this office. The by-laws of the University provide for the undergraduates in Engineering to elect two others of their number to be members of Faculty and an election for this purpose is conducted in October each year. All Engineering undergraduates, including those enrolled in the Faculty of Science as candidates for the double degree, are eligible to vote.

Institution of Engineers, Australia

The professional body for Engineering in Australia is the Institution of Engineers, Australia, whose first objective is to promote the science and practice of engineering in all its branches.

The institution functions through a series of divisions, the local one being the Sydney Division. Within each division are branches representing the main interests within the profession - e.g. civil, electrical, mechanical, chemical and transportation to name a few.

Any student of an approved School of Engineering can join the Institution as a student member (Student Aust).

As a student member you will receive the fortnightly magazine Engineers Australia, containing articles of general
A short history of the Faculty

A hundred and seventeen years of engineering education

In 1983 the Faculty of Engineering celebrated one hundred years of engineering education at the University of Sydney.

At the beginning of March 1883 the first classes in engineering were held in the Main Building. Engineering then formed part of the newly created Faculty of Science (1882). The classes were attended by three matriculated students who were candidates for the engineering certificate and seven non-matriculated students.

The lecturer in engineering was Mr W.H. Warren, who had been appointed in December 1882 following a decision by the University Senate to carry out significant revisions to the teaching of the University. These revisions, which provided for the establishment of Schools of Medicine, Science and Engineering, were unable to be implemented in 1881 for lack of staff, accommodation, and facilities.

In 1883, when the new engineering curriculum was introduced, the Senate reported that 'great inconvenience [had] been felt during the year, born by the lecturers and the students, through the deficiency in accommodation for lecturing purposes ... the room occupied by the Lecturer in Engineering was much too small to contain the apparatus required for the illustration of his lectures ...'. A temporary structure was erected at the rear of the Main Building, and in 1885 classes moved to a fairly commodious low white building with a verandah facing Paramatta Road, on a site now partly occupied by the Holme Building.

In 1909 the new building for the P.N. Russell School of Engineering was sufficiently completed early in the year for the work of the school to be conducted within its walls. This building - an outcome of the extraordinary benefaction of Peter Nicol Russell - was formally opened by the Governor on 20 September 1909 at the same time as he opened the new Fisher Library building (now MacLaurin Hall). During the course of the next few decades extensions were made to the PNR Building until, with the expansion in student numbers in the 1950s and early 1960s, new facilities were constructed in the Darlington extension area across City Road. Since the mid-seventies all departments have been accommodated in this area, although a wind tunnel in the Woolley Building is still in use by Aeronautical Engineering.

Foundations

Chemical Engineering Foundation

The Chemical Engineering Foundation within the University of Sydney was established in 1981 with the following objectives:

- to foster good communications between industry and commerce and the Department of Chemical Engineering,
- to advise on courses of instruction in Chemical Engineering,
- to encourage students of high calibre to work in the Department,
- to assist graduates in Chemical Engineering to make appropriate contributions to industry,
- to facilitate and develop research in Chemical Engineering with particular reference to industry-oriented projects.

The Chemical Engineering Foundation provides an opportunity for executives in Australian industry to assess and discuss what is taught in the undergraduate course in chemical engineering.

Activities include financial support to the undergraduate program and to research by both postgraduates and staff. Continuing education courses for practising engineers are regularly arranged, publication of updates on the Department's research activities is undertaken twice yearly, and emphasis is placed on expanding industry-university collaboration.

Executive Officer Ms Trish Powers, telephone +61 2 9351 6743, fax +61 2 9351 7180, email t.powers@chem.eng.usyd.edu.au.

The Civil Engineering Foundation

The objectives of the Foundation are to assist the University of Sydney on matters associated with education and research in Civil Engineering and mining Engineering. By securing the resources the Foundation enables the Department to be the leading provider of civil engineering education and research in Australia.

In particular the Foundation aims to identify the needs and to provide the resources to:

- Assist the Department to achieve and maintain pre-eminence in selected disciplines in civil and mining engineering.
- Establish the Department as the leader in the provision of postgraduate and continuing education.
- Enhance cooperation between industry and the Department in education, research and technical services.
- Facilitate communication at all levels between the civil and mining engineering community and the Department.

The Foundation actively fosters collaboration between the school, the engineering profession and the industry it serves. This is achieved by:

A hundred and seventeen years of engineering education

In 1983 the Faculty of Engineering celebrated one hundred years of engineering education at the University of Sydney.

At the beginning of March 1883 the first classes in engineering were held in the Main Building. Engineering then formed part of the newly created Faculty of Science (1882). The classes were attended by three matriculated students who were candidates for the engineering certificate and seven non-matriculated students.

The lecturer in engineering was Mr W.H. Warren, who had been appointed in December 1882 following a decision by the University Senate to carry out significant revisions to the teaching of the University. These revisions, which provided for the establishment of Schools of Medicine, Science and Engineering, were unable to be implemented in 1881 for lack of staff, accommodation, and facilities.

In 1883, when the new engineering curriculum was introduced, the Senate reported that 'great inconvenience [had]
• Promoting engineering consultation, research, training, lectures, short courses and technical reporting.
• Providing direction to undergraduate and postgraduate education programs.
• Sponsoring research projects in the School and encouraging research links with industry.
• Forming working parties of top engineers from government, consulting practices, the civil and mining industry and the University to study topical issues arising in the engineering profession.
• Reporting the important results of all these activities to Members and the Public through reports and engineering publications.

The Foundation is supported by annual subscriptions from its Benefactors, Governors, Members and Personal Members, functions and by special donors. The annual subscriptions, as determined by the Foundation Council are: $5000 for Governor level and $1000 for Member. Details of other grades of membership are obtainable from the Foundation. Phone +612 93512127.

Management of the Foundation is vested in a Council of not less than five representatives of Governor organisations and up to five representatives of Members appointed by the Senate. Ex-Officio members of the Council include the Chancellor, deputy Chancellor, Vice Chancellor, the Professors in the Department of Civil and Mining Engineering, the Head of Department, the President of the Civil Engineering Graduates' Association, the Directors of the School's Centres, and representatives of the Students.

Executive Officer: Mr George Slack, phone +61 2 9351 2127, email g.slack@civi.usyd.edu.au.

Electrical Engineering Foundation

The mission of the Electrical Engineering Foundation is to build a successful partnership between Sydney University Electrical Engineering, industry and the profession which facilitates, in Australia, the achievement of world-class performance through education, research and development.

The Foundation is managed by a Board made up of representatives from industry, University staff, students and graduates.

The Foundation pursues its mission through activities in the following areas:
• Forward Planning for the Department
• Presenting University Research
• Identifying Industry’s Research needs
• Industry Funding of new Research and Teaching
• Bringing Industry and Students together
• Encouraging Student and Teaching Excellence
• Professional Development for Industry
• Marketing to potential Students
• Alumni Relations

President: Mr Allan Gillespie, Chief Executive Officer of AUSTA Electric. Director: Professor Trevor Cole.

Executive Officer: Mr Stuart Glanfield. Phone +61 2 9351 7172, email eef@ee.usyd.edu.au.
General university information

See also the Glossary for administrative information relating to particular terms.

Admissions office
Student Centre
Ground Floor, F07 Carslaw
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 4117 or +61 2 9351 4118. Special
Admissions (including Mature Age) +61 2 9351 3615
Fax: +61 2 9351 4869
Email: admissions@records.usyd.edu.au

The Admissions Office is responsible for overseeing the
distribution of offers of enrolment and can advise prospective
local undergraduate students regarding admission
requirements. Applicants without Australian citizenship or
permanent residency should contact the International Office.
Postgraduate students should contact the appropriate faculty.

Applying for a course
Prospective (intending) students must lodge an application
form with the Universities Admissions Centre (UAC) by the
last working day of September of the year before enrolment.
Note that some faculties, such as Dentistry and Sydney
College of the Arts, have additional application procedures.

Assessment
For matters regarding assessment, refer to the relevant
Department.

Co-op Bookshop
Sydney University Sports and Aquatic Centre
G09, Cnr Codrington St and Darlington Rd
Phone: +61 2 9351 3705 or +61 2 9351 2807
Fax: +61 2 9600 5256
Email: sydu@email.coop-bookshop.com.au
http://www.coop-bookshop.com.au
Sells textbooks, reference books, general books and software.
Special order services available.

Enrolment and pre-enrolment
Students entering first year
Details of the enrolment procedures will be sent with the UAC
Offer of Enrolment. Enrolment takes place at a specific time
and date, depending on your surname and the Faculty in which
you are enrolling, but is usually within the last week of
January. You must attend the University in person or else
nominate, in writing, somebody to act on your behalf. On the
enrolment day, you pay the compulsory fees for joining the
Student Union, the Students' Representative Council and
sporting bodies. You also choose your first-year units of study,
so it's important to consult the Handbook before enrolling.
All other students
A pre-enrolment package is sent to all enrolled students in late
September, and contains instructions on the procedure for pre-
enrolment.

Examinations
Examinations and Exclusions Office
Student Centre
Level One, F07 Carslaw
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 4005 or +61 2 9351 5054
Fax: +61 2 9351 7330
Email: exams.office@exams.usyd.edu.au

The Examinations and Exclusions Office looks after exam
papers, timetables and exclusions.

Graduations
Ground Floor, Student Centre, F07 Carslaw
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 3199 or +61 2 9351 4009.
Protocol: +61 2 9351 4612
Fax: +61 2 9351 5072
Email: k.fizzell@records.usyd.edu.au

(Grievances) Appeals
Many decisions about academic and non-academic matters are
made each year and you may consider that a particular
decision affecting your candidature for a degree or other
activities at the University may not have taken into account all
the relevant matters. In some cases the by-laws or resolutions of
the Senate (see Calendar Volume 1) specifically provide for
a right of appeal against particular decisions; for example,
there is provision for appeal against academic decisions,
disciplinary decisions and exclusion after failure.

Normally a matter should be resolved by discussing it with
the academic staff member concerned, or with a senior
member of staff within the department. However, a situation
could arise where you wish to have a decision reviewed or to
draw attention to additional relevant information. In this case
you should put your case in writing to the head of department
and if you're still not satisfied with the result you should
contact your Dean. Only after following these steps can you
appeal to the Senate.

In the case of examination results the appeal may be made
to the department.

A document outlining the current procedures for appeals
against academic decisions is available at the Student Centre
and on the University's web site at: http://www.usyd.edu.au/
su/planning/policy/index.htm

Parking appeals should be addressed to the Manager,
Campus Services.

You may wish to seek assistance or advice from the SRC
regarding an appeal; if so, contact the Education/Research
Officer, SRC, Level 1, Wentworth Building. Phone
+61 2 9660 5222 Legal Aid.

HECS & other fees
Student Centre
Ground Floor, F07 Carslaw
The University of Sydney
NSW 2006 Australia
HECSEnquiries
Phone: +61 2 9351 2086, +61 2 9351 5062, +61 2 9351 5499,
+61 2 9351 5659
Fax: +61 2 9351 5081
Fees Office
K07 Margaret Telfer
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 5222
Fax: +61 2 9351 5861
Privacy and Freedom of Information
The NSW Freedom of Information (FOI) Act 1989 provides the public with a legally enforceable right of access to University documents, subject to particular exemptions. In addition, the Act enables individuals to ensure that information held about them is accurate, up-to-date and complete. The University has a number of policies permitting access by individuals to information about themselves without recourse to the Freedom of Information Act.

Part-time, full-time
Students are normally considered as full-time if they have a HECS weighting of at least 0.375 each semester. Anything under this amount is considered a part-time study load. Note that some faculties have minimum study load requirements for satisfactory progress.

Student Services
Room 711, Level 7
A35 Education Building
The University of Sydney
NSW 2006 Australia
http://www.usyd.edu.au/su/stuserv/

Accommodation Service
Phone:+61 2 9351 3312
Fax:+61 2 9351 8262
Email: jlarburr@mail.usyd.edu.au
http://www.usyd.edu.au/su/accom

Counselling Service
Level 7
A35 Education Building (Manning Road)
The University of Sydney
NSW 2006 Australia
Phone:+61 2 9351 2228
Fax:+61 2 9351 7055
Email: lpoerio@mail.usyd.edu.au
http://www.usyd.edu.au/su/cas_emp/

Disability and Welfare Services
Phone:+61 2 9351 4554
Fax:+61 2 9351 7055
Email: cstuckin@mail.usyd.edu.au

Financial Assistance
Phone:+61 2 93512416
Fax:+61 2 9351 7055
Email: psweet@mail.usyd.edu.au
http://www.usyd.edu.au/su/fin_assist

Refer to the University of Sydney Calendar 1996, Volume 2, for a listing of all undergraduate and postgraduate sources, conditions and benefits or financial support funded by the University.

Learning Assistance Centre
Level 7
A35 Education Building (Manning Road)
The University of Sydney
NSW 2006 Australia
Phone:+61 2 9351 3853
Fax:+61 2 9351 4865
Email: lewalker@mail.usyd.edu.au
http://www.usyd.edu.au/su/lac/

Holds free workshops to assist undergraduate and postgraduate students wanting to improve their academic writing and communication skills at university.

Other student assistance
Careers information
Room 147, Ground Level
KOI Mackie Building (Arundel St, Forest Lodge)
The University of Sydney
NSW 2006 Australia
Phone:+61 2 9351 3481
Fax:+61 2 9351 5134
Email: info@careers.usyd.edu.au (general enquiries)
The Courses & Careers Unit provides careers information, advice and help in finding course-related work both while you’re studying and employment when you commence your career.

Centre for Continuing Education (bridging courses)
KOI Mackie
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 2585
Fax: +61 2 9351 5022
Email: info@cce.usyd.edu.au
http://www.usyd.edu.au/homepage/externel/cont_edu/

Health Service
Level 3, G01 Wentworth
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 3484 Wentworth, +61 2 9351 4095 Holme
Fax: +61 2 9351 4110 Wentworth, +61 2 9351 4338 Holme
Email: p.brown@unihealth.usyd.edu.au

Provides full general practitioner services and emergency medical care to the University community

Koori Centre and Yooroang Garang
Ground Floor, A22 Old Teachers’ College
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 2046 General Enquiries
+61 2 9351 7001 Liaison Officer
+61 2 9351 7073 Student Counsellor
Fax: +61 2 9351 6923
Email: adminoff@koori.usyd.edu.au
http://www.koori.usyd.edu.au/

The Koori Centre runs the AEA training program, supports Aboriginal and Torres Strait Islander students on campus and during enrolment. There is also an educational unit which supports Aboriginal studies in the University.

Language Centre
Room 312, A19 Griffith Taylor and Levels 1 and 2
A18 Christopher Brennan
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 2046 General Enquiries
+61 2 9351 7001 Liaison Officer
+61 2 9351 7073 Student Counsellor
Fax: +61 2 9351 6923
Email: langscent@language.usyd.edu.au

Provides self-access course materials in over 100 languages; beginners and intermediate courses in Spanish language and Culture; beginners and advanced courses in Celtic languages and cultures.

Mathematics Learning Centre
Fourth Floor, Room 455
F07 Carslaw
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 4061
Fax: +61 2 9351 5797
Email: MLC@mail.usyd.edu.au
http://www.usyd.edu.au/su/mlc/

Scholarships
Research and Scholarships Office
Scholarships Administration Room N410.1,
A14 Main Quadrangle
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 3250 Enquiries, Scholarships
Fax: +61 2 9351 3256
Email: scholars@reschols.usyd.edu.au
http://www.usyd.edu.au/su/reschols/scholarships

International students

International Office
Level 2, K07 Margaret Telfer
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 4161, +61 2 9351 4079
Fax: +61 2 9351 4013
Email: info@io.usyd.edu.au

International Student Services Unit
Level 2, K07 Margaret Telfer Building
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 4749
Fax: +61 2 9351 4013
Email: info@issu.usyd.edu.au
http://www.usyd.edu.au/su/issu/

Provides a advisory and counselling service to international students at the University of Sydney.

Student organisations

Students’ Representative Council
Level 1, Wentworth G01
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9660 5222 Editors, Honi Soit
+61 2 9660 4756 Secondhand Bookshop
+61 2 9660 5222 Legal Aid
Fax: +61 2 9660 4260
Email: postmaster@src.usyd.edu.au

University of Sydney Union
Box 500 Holme Building
A09 Holme
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9563 6000 Switchboard/Enquiries
+61 2 9563 6282 Academic Dress
+61 2 9563 6103 ACCESS Centre, Manning
+61 2 9563 6269 Campus Store, Holme
+61 2 9563 6016 Campus Store, Wentworth
+61 2 9563 6160 Clubs and Societies Office
+61 2 9563 6010 School Tutoring Co-ordinator
+61 2 9563 6032 Union Broadcasting Studio
+61 2 9563 6115 Welfare & Information Services Manager
Fax: +61 2 9563 6239
Email: email@usu.usyd.edu.au
http://www.usu.usyd.edu.au/

Provides welfare, social and recreational services to the University community.

Sydney University Sports Union
G09 Sports and Aquatic Centre
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9351 4960
Fax: +61 2 9351 4962
Email: sports_unions@susu.usyd.edu.au
http://www.usyd.edu.au/su/susu/sports_unions/

Provides services, facilities and clubs for sport, recreation and fitness.

Women's Sports Association
Room 214, A30 Sports Centre
The University of Sydney
NSW 2006 Australia
Phone: +61 2 9660 6355, +61 2 9351 2057
Fax: +61 2 9660 0921
Email: secretary@suswa.usyd.edu.au

Provides services, predominantly women, to participate in sport and recreation through the provision of facilities, courses and personnel.
Glossary

This glossary both defines terms in common use in the University and gives some useful administrative information.

Enrolment and general terms

Academic year
The period during which teaching takes place, from March to November. The academic year is divided into two semesters.

Advanced standing
(See also: Credit) Recognition of previous experience or studies, meaning that the candidate has satisfied the entry requirements for a unit. Advanced standing does not reduce the number of credit points required to complete the degree course.

Associate Diploma
The undergraduate award granted following successful completion of Associate Diploma course requirements. An Associate Diploma course usually requires less study than a Diploma course.

Assumed knowledge
The level of knowledge expected for entry to a Unit of Study. Unlike prerequisites, levels of assumed knowledge are not compulsory for entry to a Unit. Students who do not have the assumed knowledge may, however, be at a considerable disadvantage and may consider completing a bridging course prior to enrolment. Contact the Learning Assistance Centre, Mathematics Learning Centre, Language Centre or Centre for Continuing Education for further information.

Bachelor's degree
The highest undergraduate award offered at the University of Sydney (other undergraduate awards are Associate Diploma and Diploma). A Bachelor's degree course normally requires three or four years of full-time study (or the part-time equivalent).

Campus
The grounds on which the University is situated. There are eleven campuses of the University of Sydney: Burren Street (Australian Graduate School of Management), Camperdown and Darlington ('Main campus'), Camden (Agriculture and Veterinary Science), Conservatorium (Conservatorium of Music), Cumberland (Health Sciences and Nursing), Mallett Street (Nursing), Orange Agricultural College, Rozelle (Sydney College of the Arts), St James (Law) and Surry Hills (Dentistry).

Chancellor
(See also: Vice-Chancellor) The non-resident head of the University.

Combined degree course
A program consisting of two degree courses taken together, which usually requires less time than if the courses were taken separately.

Core
(See also: Elective/Option) A Unit of Study that is compulsory for the course or subject area.

Corequisite
A Unit of Study that must be taken with a given Unit. If a corequisite is not successfully completed, it becomes a prerequisite for further study in that subject area.

Course
A complete degree or diploma program.

Credit
(See also: Advanced standing) Recognition of previous studies or studies completed at another institution. If credit is granted then the number of credit points required for completion of the degree course is reduced.

Credit point
A measure of value indicating the contribution each Unit of Study provides towards meeting course completion requirements stated as total credit point value.

Dean
The head of a faculty.

Deferral of enrolment
People who have not previously attended a recognised tertiary institution are normally able to defer commencement of their candidature for one year. Applications are handled by the Admissions Office of the University. Application for deferral must be made during the UAC enrolment week at the 'Deferral desk' in MacLaurin Hall and be accompanied by the 'offer of enrolment' card.

Degree
The award conferred following successful completion of a degree course (for example Bachelor's degree or Master's degree).

Department/School
The academic unit responsible for teaching in a given subject area.

Diploma
The award granted following successful completion of Diploma course requirements. A Diploma course usually requires less study than a degree course. Graduate Diploma courses are for graduates only.

Doctorate
(See also: PhD) The Doctorate and the PhD are the highest awards available at the University of Sydney. A Doctorate course normally involves research and coursework; the candidate submits a thesis that is an original contribution to the field of study. Entry to a Doctorate course often requires completion of a Master's degree course. Note that the Doctorate course is not available in all Departments of the University of Sydney.

Elective/Option
(See also: Core) A Unit of Study that may be taken towards, but is not compulsory for, a course or subject area.

Enrolment
The process whereby an applicant officially accepts the offer of a place in a particular course. If UAC application is successful, an 'offer of enrolment' card is mailed to the applicant, along with instructions for enrolment. In most cases, the applicant must attend the University on a particular enrolment day or, if unable to attend, must appoint somebody to enrol on his or her behalf. Units of Study (for March Semester or whole of First Year) must be nominated on enrolment day. Academic records and HECS liability calculations are based on the enrolment details, so students must ensure that the Faculty holds correct enrolment information (see also: Variation of enrolment).

Entry requirement
The level of knowledge and/or experience required for entry to a particular Unit of Study.

Faculty
The administrative unit responsible for overseeing satisfactory progress during a degree or diploma course.

Full-time
A study load usually defined in terms of HECS weighting of at least 0.575 each semester.

Intermediate
Faculty of Science: Second-year level.

Junior
First-year level.
Laboratory practical
See: Practical.
Lecture
(See also: Tutorial) A class given to a large group of students, during which the lecturer speaks or presents audiovisual material and students take notes.
Major
The subject area(s) in which a student specialises at Senior level. Students usually specialise in one (single major) or two (double major) subject areas. The major is usually recorded on the transcript.
Master's degree
A postgraduate award. Master's degree courses may be offered by coursework, research only or a combination of coursework and research. Entry to the course often requires completion of an Honours year at undergraduate level.
Mature age
A category of Special Admission applicants who are 21 years or older on 1 March of the year in which they want to study and who do not have the high school qualifications normally required for entry into a course.
Minor
Subject areas in which a student studies, but does not specialise at Senior level.
Orientation period
'O Week' takes place during the week prior to lectures in March semester. During O Week, students can join various clubs, societies and organisations, register for courses with Departments and take part in activities provided by the University of Sydney Union.
Part-time
A study load usually defined in terms of HECS weighting of less than 0.375 each semester.
PhD
(See also: Doctorate) The Doctor of Philosophy (PhD) and other Doctorate awards are the highest awards available at the University of Sydney. A PhD course is normally purely research-based; the candidate submits a thesis that is an original contribution to the field of study. Entry to a PhD course often requires completion of a Master's degree course. Note that the PhD course is available in most Departments of the University of Sydney.
Postgraduate
The term used to describe a course leading to an award such as Graduate Diploma, Master's degree or PhD, which usually requires prior completion of a relevant undergraduate degree (or diploma) course. A 'postgraduate' is a student enrolled in such a course.
Practical
Similar to a tutorial, during which experiments or other relevant applied activities are carried out.
Prerequisite
A Unit of Study that must be taken prior to entry to a given Unit.
Prohibition
A Unit of Study that cannot be taken with a given Unit.
Recommended reading
Reading material that is suggested but not compulsory for a Unit of Study.
Registrar
The head of the administrative divisions of the University.
Registration
In addition to enrolling (with the Faculty) in Units of Study, students must register with the Department responsible for teaching each Unit. This is normally done during the Orientation period (O' Week). Note that unlike enrolment, registration is not a formal record of Units attempted by the student.
Resolutions of Senate
Regulations determined by the Senate of the University of Sydney that pertain to degree and diploma course requirements and other academic matters.
School
Similar to a large Department, otherwise a grouping of Departments.
Semester
A period of 14 weeks during which teaching takes place. There are two semesters each year for most faculties. Semesters are named by the month in which they start, typically 'March' and 'July'.
Senior
Second-year level or higher. Faculty of Science: third-year level.
Special Admission
Certain categories of applicants, such as mature-age applicants, students who have experienced educational disadvantage or Aboriginal or Torres Strait Islander applicants, may apply for admission to the University under one of several Special Admission schemes. Contact the Special Admissions office for further information.
Subject area
One or more Units of Study that comprise a particular field of study (eg Japanese or Chemistry).
Textbook
Reading material that the student is expected to own.
Tutorial
(See also: Lecture) A small class consisting of a tutor and up to about 25 students, during which concepts raised in lectures are discussed in detail and may be supplemented with readings, demonstrations and presentations.
UAI
The University Admissions Index (UAI) is the numerical expression of a student's performance in the NSW Higher School Certificate (HSC), which takes into account both assessment and examination results.
UAI cut-off
The UAI of the last student admitted to a course. Some courses have a minimum UAI as an entry requirement.
Undergraduate
The term used to describe a course leading to a diploma or Bachelor's degree. An 'undergraduate' is a student enrolled in such a course.
Unit of Study
A stand-alone component of a degree or diploma course that is recordable on the academic transcript.
Universities Admissions Centre (UAC)
The organisation that processes applications for most NSW undergraduate university and TAFE courses.
Variation of enrolment
The process whereby students officially notify the Faculty of changes regarding the Units of Study they are attending. This must be done by a certain deadline in each semester, to avoid penalties such as 'discontinued' results on the academic transcript (see: Results) or unnecessary HECS charges.
Vice-Chancellor
(See also: Chancellor) The administrative head of the whole University, including academic and administrative divisions.
Costs
Bursary
A sum given to a student who has limited resources or is experiencing financial hardship, ranging from $100 to $1000.
Fees (full-fee undergraduate/postgraduate)
Tuition, examination or other fees payable to the University by an enrolled or enrolling student in connection with a course of study or attendance at the University and includes fees payable in respect of the granting of a degree, diploma, associate diploma or other award. It does not include annual
Prize

Matriculation, undergraduate and postgraduate funding automatically awarded on academic results in courses, yearly examinations or on the recommendation of the Head of Department. There are also prizes for essay writing and composition by anonymous application. Prize values range from $100 to $6250.

Scholarship

Matriculation and undergraduate funding by application awarded on UAI results for students enrolling in the first year of a degree course. Postgraduate funding for full-time candidates enrolled in a research degree course with scholarship conditions and benefits varying according to specific awards. The intention is to encourage and support scholarship at the University in general or in targeted areas.

Assessment, Examination, Satisfactory Progress and Graduation

Academic transcript/record

The official record of results for each student (see: Results).

Appeal

The process whereby a student may raise objections regarding results, Faculty decisions or other academic matters.

Assessment

(See also: Examination) The appraisal of a student's ability throughout the semester, by various means such as essays, practical reports or presentations, which counts towards the final mark or grade.

Candidate

Someone studying for a degree or diploma. The term may also be used to describe someone sitting for an examination.

Examination

(See also: Assessment) The appraisal of a student's ability, usually at the end of semester. Most examinations take place on campus under strictly supervised conditions but some Units may make use of take-home or open-book examinations.

Exclusion

A ruling by the Faculty, which declares the student ineligible for further enrolment for reasons such as lack of satisfactory progress. Students who wish to re-enrol must show good cause why they should be allowed to re-enrol (see: Show cause and Satisfactory progress).

Grievances

See Appeals.

Grade

A category into which a student's final mark falls (see: Results).

Graduand

A person who has fulfilled the requirements of a degree but is yet to graduate.

Graduate

(See also: Postgraduate) A person who has graduated. Also a term used to describe a course leading to an award such as Master's Degree or PhD or a student enrolled in such as course.

Graduation

The ceremony during which degrees are conferred and diplomas awarded.

Honours degree

A Bachelor's degree for which extra work (course work and/or thesis) has been completed, usually requiring an extra year of study.

Mark

(See also: Grade) The numerical result of assessments and/or examinations for a Unit of Study, which may be converted to a grade.

Pass degree

A Bachelor's degree.

Re-enrolment

The process by which continuing students enrol in Units of Study.

Results

The official statement of the student's performance in each Unit of Study attempted, as recorded on the academic transcript, usually expressed as a grade:

- High Distinction
 A mark of 85% and above
- Distinction
 A mark of 75-84%
- Credit
 A mark of 65-74%
- Pass
 A mark of 50-64%
- Terminating Pass
 Whereby the student is deemed to have completed Unit requirements, but is not permitted to re-enrol in order to attempt to achieve a higher grade.
- Fail
 A mark of less than 50%
- Withdrawn
 This is the same as if the candidate had not enrolled in the course concerned. Although the University has a record of the withdrawal, the course and result will not appear on the official academic transcript. There is no HECS liability either. In order to have a course recorded as 'withdrawn', notice must be given by the candidate to the Faculty office on or before the deadline. Refer to the section on degree regulations.
- Discontinued with Permission
 This does not count as an attempt at the particular course, but does appear on the candidate's academic record. A candidate may have enrolment recorded as 'discontinued with permission' where: (1) notice is given to the faculty office on or before the deadline or, (2) after the deadline, evidence is produced of serious illness or misadventure. Refer to the section on degree regulations for deadlines. Discontinuation with permission does not mean that the student's progress is considered to be satisfactory.
- Discontinued
 This counts as an unsuccessful attempt at the course concerned and appears on the candidate's academic record. Where notice is given after the deadline for 'discontinued with permission' but before the last day of lectures for the course, the result is 'Disc.'. Refer to the section on degree regulations for deadlines.
- Absent Fail
 If the candidate misses the deadline for 'discontinued' and does not sit the final exam, the result is 'absent fail'.

Satisfactory progress

A minimum standard of performance required for continuation of enrolment. Senate resolutions rule that if a student fails or discontinues a year of candidature or a Unit of Study more than once then he or she is ineligible for re-enrolment (see: Exclusion and Show cause). Note that some faculties may have alternative or additional requirements for satisfactory progress.

Show cause

The Faculty may require a student to show good cause why he or she may be allowed to continue in the degree or diploma.
course, where requirements for satisfactory progress have not been met (see: Exclusion and Satisfactory progress).

Special consideration
The process whereby enrolled students who have experienced significant educational disadvantage may have their assessment deadlines or grades revised.

Study Vacation (Stuvac)
The week prior to the examination period in each semester, during which no classes are held.

Supplementary examination
An extra or alternative examination taken by a student who has experienced significant educational disadvantage during semester or the examination period. Note that some faculties do not offer supplementary examinations (see also: Special consideration).

Suspension of candidature
A complete break in the studies of an enrolled student, usually for a period of one year. Applications are handled by the Faculty office. (Those wishing to postpone commencement of a course need to apply for deferment, see: Deferment of enrolment).

Testamur
The document given to the graduand at graduation.

Thesis
A substantial piece of written work (sometimes called a dissertation) by a student, normally a candidate for an Honours degree or a higher award (such as Master's degree or PhD).

Weighted Average Mark (WAM)
A numerical expression of a student's performance throughout his or her degree program, usually assigning more 'weight' to Senior or Honours years. Note that the WAM calculation may differ for purposes such as eligibility for various scholarships and will vary from faculty to faculty.
This index provides a convenient way to find units of study, course requirements, regulations and other information listed in the Faculty of Engineering handbook. All units are listed twice: by name and unit code. (Please note that names of units of study in this index are truncated after 52 characters.)

<table>
<thead>
<tr>
<th>A</th>
<th>Accommodation Service, 120</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adaptive Pattern Recognition ELEC 5604, 41</td>
</tr>
<tr>
<td></td>
<td>Admissions office, 119</td>
</tr>
<tr>
<td></td>
<td>Advanced Aerospace Materials MECH 4311, 49</td>
</tr>
<tr>
<td></td>
<td>Advanced Aircraft Design AERO 4490, 10</td>
</tr>
<tr>
<td></td>
<td>Advanced Communication Networks ELEC 5501, 40</td>
</tr>
<tr>
<td></td>
<td>Advanced Computational Aerodynamics AERO 4291, 9</td>
</tr>
<tr>
<td></td>
<td>Advanced Computer Architecture ELEC 5602, 40</td>
</tr>
<tr>
<td></td>
<td>Advanced Design MECH 4400, 50</td>
</tr>
<tr>
<td></td>
<td>Advanced Digital Engineering ELEC 5604, 41</td>
</tr>
<tr>
<td></td>
<td>Advanced Engineering Materials MECH 4310, 49</td>
</tr>
<tr>
<td></td>
<td>Advanced Engineering Project ENGG 2002, 53</td>
</tr>
<tr>
<td></td>
<td>Advanced Flight Mechanics AERO 4590, 11</td>
</tr>
<tr>
<td></td>
<td>Advanced Fluid Dynamics Modelling CHNG 4301, 19</td>
</tr>
<tr>
<td></td>
<td>Advanced Materials CIVL 4105, 28</td>
</tr>
<tr>
<td></td>
<td>Advanced Particle Mechanics CHNG 4601, 21</td>
</tr>
<tr>
<td></td>
<td>Advanced Power Electronics and Drives ELEC 5202, 40</td>
</tr>
<tr>
<td></td>
<td>Advanced Real Time Computing ELEC 5601, 40</td>
</tr>
<tr>
<td></td>
<td>Advanced Topics in Environmental Engineering A CHNG, 20</td>
</tr>
<tr>
<td></td>
<td>Advanced Topics in Environmental Engineering B CHNG, 20</td>
</tr>
<tr>
<td></td>
<td>Advanced Topics in Thermodynamics CHNG 4105, 18</td>
</tr>
<tr>
<td></td>
<td>Advances in Chemical Engineering A CHNG 4003, 16</td>
</tr>
<tr>
<td></td>
<td>Advances in Chemical Engineering B CHNG 4004, 16</td>
</tr>
<tr>
<td></td>
<td>Advances in Computer Science 1 COMP 4601, 33</td>
</tr>
<tr>
<td></td>
<td>Advances in Computer Science 2 COMP 4602, 34</td>
</tr>
<tr>
<td></td>
<td>Advances in Computer Science 3 COMP 4603, 34</td>
</tr>
<tr>
<td></td>
<td>Advances in Computer Science 4 COMP 4604, 34</td>
</tr>
<tr>
<td></td>
<td>Advances in Polymer Engineering CHNG 4103, 17</td>
</tr>
<tr>
<td></td>
<td>AERO 1400 Introduction to Aircraft Construction and, 5</td>
</tr>
<tr>
<td></td>
<td>AERO 1600 Workshop Technology, 5</td>
</tr>
<tr>
<td></td>
<td>AERO 1900 Introductory Aeronautics, 6</td>
</tr>
<tr>
<td></td>
<td>AERO 2200 Introductory Aerodynamics, 6</td>
</tr>
<tr>
<td></td>
<td>AERO 2300 Mechanics of Solids 1, 6</td>
</tr>
<tr>
<td></td>
<td>AERO 2500 Introductory Flight Mechanics and Performa, 6</td>
</tr>
<tr>
<td></td>
<td>AERO 2800 Aeronautical Engineering Computing, 6</td>
</tr>
<tr>
<td></td>
<td>AERO 3200 Aerodynamics 1, 7</td>
</tr>
<tr>
<td></td>
<td>AERO 3250 Aerodynamics 2, 7</td>
</tr>
<tr>
<td></td>
<td>AERO 3300 Aircraft Structures 1, 7</td>
</tr>
<tr>
<td></td>
<td>AERO 3350 Aircraft Structures 2, 7</td>
</tr>
<tr>
<td></td>
<td>AERO 3400 Aircraft Design 1, 8</td>
</tr>
<tr>
<td></td>
<td>AERO 3450 Aircraft Design 2, 8</td>
</tr>
<tr>
<td></td>
<td>AERO 3500 Flight Mechanics 1, 8</td>
</tr>
<tr>
<td></td>
<td>AERO 3551 Flying Operations, 8</td>
</tr>
<tr>
<td></td>
<td>AERO 3600 Aviation Technology, 8</td>
</tr>
<tr>
<td></td>
<td>AERO 3601 Aviation Operations and Management, 8</td>
</tr>
<tr>
<td></td>
<td>AERO 4200 Aerodynamics 3, 8</td>
</tr>
<tr>
<td></td>
<td>AERO 4201 Propulsion, 9</td>
</tr>
<tr>
<td></td>
<td>AERO 4250 Aerodynamics 4, 9</td>
</tr>
<tr>
<td></td>
<td>AERO 4290 Rotary Wing Aircraft, 9</td>
</tr>
<tr>
<td></td>
<td>AERO 4291 Advanced Computational Aerodynamics, 9</td>
</tr>
<tr>
<td></td>
<td>AERO 4292 Aeroelasticity, 9</td>
</tr>
<tr>
<td></td>
<td>AERO 4300 Aircraft Structures 3, 10</td>
</tr>
<tr>
<td></td>
<td>AERO 4301 Applied Numerical Stress Analysis, 10</td>
</tr>
<tr>
<td></td>
<td>AERO 4350 Aircraft Structures 4, 10</td>
</tr>
<tr>
<td></td>
<td>AERO 4400 Aircraft Design 3, 10</td>
</tr>
<tr>
<td></td>
<td>AERO 4490 Advanced Aircraft Design, 10</td>
</tr>
<tr>
<td></td>
<td>AERO 4500 Flight Mechanics 2, 10</td>
</tr>
<tr>
<td></td>
<td>AERO 4590 Advanced Flight Mechanics, 11</td>
</tr>
<tr>
<td></td>
<td>AERO 4600 Practical Experience, 11</td>
</tr>
<tr>
<td></td>
<td>AERO 4900 Thesis or Design Project, 11</td>
</tr>
<tr>
<td></td>
<td>AERO 4920 Seminar, 11</td>
</tr>
<tr>
<td></td>
<td>Aerodynamics 1 AERO 3200, 7</td>
</tr>
<tr>
<td></td>
<td>Aerodynamics 2 AERO 3250, 7</td>
</tr>
<tr>
<td></td>
<td>Aerodynamics 3 AERO 4200, 8</td>
</tr>
<tr>
<td></td>
<td>Aerodynamics 4 AERO 4250, 9</td>
</tr>
<tr>
<td></td>
<td>Aeroelasticity AERO 4292, 9</td>
</tr>
<tr>
<td></td>
<td>Aeronautical Engineering Computing AERO 2800, 6</td>
</tr>
<tr>
<td></td>
<td>Aeronautical Engineering Department, 1</td>
</tr>
<tr>
<td></td>
<td>Air conditioning and Refrigeration MECH 4250, 49</td>
</tr>
<tr>
<td></td>
<td>Aircraft Design 1 AERO 3400, 8</td>
</tr>
<tr>
<td></td>
<td>Aircraft Design 2 AERO 3450, 8</td>
</tr>
<tr>
<td></td>
<td>Aircraft Design 3 AERO 4400, 10</td>
</tr>
<tr>
<td></td>
<td>Aircraft Structures 1 AERO 3300, 7</td>
</tr>
<tr>
<td></td>
<td>Aircraft Structures 2 AERO 3350, 7</td>
</tr>
<tr>
<td></td>
<td>Aircraft Structures 3 AERO 4300, 10</td>
</tr>
<tr>
<td></td>
<td>Aircraft Structures 4 AERO 4350, 10</td>
</tr>
<tr>
<td></td>
<td>Algorithms (Advanced Topic) COMP 4301, 32</td>
</tr>
<tr>
<td></td>
<td>Anatomy and Physiology for Engineers MECH 2900, 44</td>
</tr>
<tr>
<td></td>
<td>Appeals, 119</td>
</tr>
<tr>
<td></td>
<td>Applied Numerical Stress Analysis AERO 4301, 10</td>
</tr>
<tr>
<td></td>
<td>Artificial Intelligence (Advanced Topic) COMP 4302, 32</td>
</tr>
<tr>
<td></td>
<td>Aviation Operation and Management AERO 3601, 8</td>
</tr>
<tr>
<td></td>
<td>Aviation Technology AERO 3600, 8</td>
</tr>
<tr>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>Biochemical Engineering CHNG 4501, 20</td>
</tr>
<tr>
<td></td>
<td>Biologically Inspired Signal Processing ELEC 5603, 41</td>
</tr>
<tr>
<td></td>
<td>Biomaterials and Biomechanics MECH 4910, 53</td>
</tr>
<tr>
<td></td>
<td>Biomedical Design Project MECH 3920, 47</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering, 3</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering Systems ELEC 4801, 39</td>
</tr>
<tr>
<td></td>
<td>Biomedical Engineering Systems MECH 4920, 53</td>
</tr>
<tr>
<td></td>
<td>Biomedical Technology MECH 3910, 47</td>
</tr>
<tr>
<td></td>
<td>Biomediation CHNG 4505, 21</td>
</tr>
<tr>
<td></td>
<td>Bookshop, Co-op, 119</td>
</tr>
<tr>
<td></td>
<td>Bridge Engineering CIVL 4221, 29</td>
</tr>
<tr>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>careers information, 120</td>
</tr>
<tr>
<td></td>
<td>Centre for Continuing Education, 121</td>
</tr>
<tr>
<td></td>
<td>certificates, 110</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 1A CHNG 1101, 12</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 1B CHNG 1102, 12</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 2A CHNG 2101, 12</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering 2B CHNG 2102, 12</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Applications CHNG 1001, 11</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Computations CHNG 2301, 13</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Department, 1</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Design 1 CHNG 4201, 18</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Design 2 CHNG 4202, 18</td>
</tr>
<tr>
<td></td>
<td>Chemical Engineering Laboratory CHNG 3001, 13</td>
</tr>
<tr>
<td></td>
<td>Chemical Process Case Studies CHNG 1201, 12</td>
</tr>
<tr>
<td></td>
<td>CHNG 1001 Chemical Engineering Applications, 11</td>
</tr>
<tr>
<td></td>
<td>CHNG 1101 Chemical Engineering 1A, 12</td>
</tr>
<tr>
<td></td>
<td>CHNG 1102 Chemical Engineering IB, 12</td>
</tr>
<tr>
<td></td>
<td>CHNG 1201 Chemical Process Case Studies, 12</td>
</tr>
<tr>
<td></td>
<td>CHNG 1301 Computing for Chemical Engineers, 12</td>
</tr>
<tr>
<td></td>
<td>CHNG 2101 Chemical Engineering 2A, 12</td>
</tr>
<tr>
<td></td>
<td>CHNG 2102 Chemical Engineering 2B, 12</td>
</tr>
<tr>
<td></td>
<td>CHNG 2301 Chemical Engineering Computations, 13</td>
</tr>
<tr>
<td></td>
<td>CHNG 2501 Fundamentals of Environmental Chemical Eng, 13</td>
</tr>
<tr>
<td></td>
<td>CHNG 2701 Fundamentals of Bioprocess Engineering 1, 13</td>
</tr>
<tr>
<td></td>
<td>CHNG 2702 Fundamentals of Bioprocessing Engineering, 13</td>
</tr>
<tr>
<td></td>
<td>CHNG 3001 Chemical Engineering Laboratory, 13</td>
</tr>
<tr>
<td></td>
<td>CHNG 3021 Exchange Program Iowa State University (Co, 14</td>
</tr>
<tr>
<td></td>
<td>CHNG 3022 Exchange Program Iowa State University (Co, 14</td>
</tr>
<tr>
<td></td>
<td>CHNG 3101 Unit Operations (Heat Transfer), 14</td>
</tr>
<tr>
<td></td>
<td>CHNG 3102 Unit Operations (Mass Transfer), 14</td>
</tr>
<tr>
<td></td>
<td>CHNG 3103 Unit Operations (Particle Mechanics), 14</td>
</tr>
<tr>
<td></td>
<td>CHNG 3104 Unit Operations (Fluid Mechanics), 14</td>
</tr>
<tr>
<td></td>
<td>CHNG 3105 Thermodynamics 1, 15</td>
</tr>
<tr>
<td></td>
<td>CHNG 3106 Thermodynamics 2, 15</td>
</tr>
<tr>
<td></td>
<td>CHNG 3107 Reaction Engineering 1, 15</td>
</tr>
<tr>
<td></td>
<td>CHNG 3301 Process Modelling, 15</td>
</tr>
<tr>
<td></td>
<td>CHNG 3302 Process Control 1, 15</td>
</tr>
<tr>
<td></td>
<td>CHNG 3401 Project Economics, 16</td>
</tr>
<tr>
<td></td>
<td>CHNG 3601 Materials and Corrosion, 16</td>
</tr>
<tr>
<td></td>
<td>CHNG 4001 Practical Experience, 16</td>
</tr>
<tr>
<td></td>
<td>CHNG 4002 Thesis, 16</td>
</tr>
<tr>
<td></td>
<td>CHNG 4003 Advances in Chemical Engineering A, 16</td>
</tr>
<tr>
<td></td>
<td>CHNG 4004 Advances in Chemical Engineering B, 16</td>
</tr>
<tr>
<td></td>
<td>CHNG 4005 Laboratory Projects in Unit Operations, 16</td>
</tr>
<tr>
<td></td>
<td>CHNG 4006 Professional Option, 17</td>
</tr>
<tr>
<td></td>
<td>CHNG 4021 Exchange Program Royal Stockholm Institute, 17</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>CHNG 4202</td>
<td>Chemical Engineering Design 2</td>
</tr>
<tr>
<td>CHNG 4201</td>
<td>Chemical Engineering Design 1</td>
</tr>
<tr>
<td>CHNG 4104</td>
<td>Advanced Topics in Thermodynamics</td>
</tr>
<tr>
<td>CHNG 4200</td>
<td>Chemical Engineering Design 1</td>
</tr>
<tr>
<td>CHNG 4203</td>
<td>Major Industrial Project</td>
</tr>
<tr>
<td>CHNG 4301</td>
<td>Advanced Fluid Dynamics Modelling</td>
</tr>
<tr>
<td>CHNG 4302</td>
<td>Reservoir Engineering</td>
</tr>
<tr>
<td>CHNG 4303</td>
<td>Advanced Topics in Environmental Engineering</td>
</tr>
<tr>
<td>CHNG 4304</td>
<td>Process Plant Risk Management</td>
</tr>
<tr>
<td>CHNG 4305</td>
<td>Biochemical Engineering</td>
</tr>
<tr>
<td>CHNG 4502</td>
<td>Advanced Topics in Environmental Engineering</td>
</tr>
<tr>
<td>CHNG 4503</td>
<td>Advanced Topics in Environmental Engineering</td>
</tr>
<tr>
<td>CHNG 4504</td>
<td>Environmental Decision Making</td>
</tr>
<tr>
<td>CHNG 4505</td>
<td>Bioremediation</td>
</tr>
<tr>
<td>CHNG 4601</td>
<td>Advanced Particle Mechanics</td>
</tr>
<tr>
<td>CHNG 4602</td>
<td>Mineral Processing (Exhaustive Metallurgy)</td>
</tr>
<tr>
<td>CHNG 4603</td>
<td>Mineral Processing (Mineral Dressing)</td>
</tr>
<tr>
<td>CIVL 2601</td>
<td>Fluids</td>
</tr>
<tr>
<td>CIVL 2801</td>
<td>Engineering Construction</td>
</tr>
<tr>
<td>CIVL 3005</td>
<td>Engineering Communications</td>
</tr>
<tr>
<td>CIVL 3102</td>
<td>Materials Aspects in Engineering</td>
</tr>
<tr>
<td>CIVL 3204</td>
<td>Structural Analysis</td>
</tr>
<tr>
<td>CIVL 3206</td>
<td>Steel Structures</td>
</tr>
<tr>
<td>CIVL 3207</td>
<td>Risk and Reliability Analysis</td>
</tr>
<tr>
<td>CIVL 3223</td>
<td>Concrete Structures - Behaviour</td>
</tr>
<tr>
<td>CIVL 3224</td>
<td>Concrete Structures - Design</td>
</tr>
<tr>
<td>CIVL 3401</td>
<td>Soil Mechanics A</td>
</tr>
<tr>
<td>CIVL 3402</td>
<td>Soil Mechanics B</td>
</tr>
<tr>
<td>CIVL 3501</td>
<td>Surveying</td>
</tr>
<tr>
<td>CIVL 3602</td>
<td>Fluids</td>
</tr>
<tr>
<td>CIVL 3701</td>
<td>Transportation Engineering and Planning</td>
</tr>
<tr>
<td>CIVL 3802</td>
<td>Engineering Construction 2</td>
</tr>
<tr>
<td>CIVL 4008</td>
<td>Practical Experience</td>
</tr>
<tr>
<td>CIVL 4010</td>
<td>Civil Engineering Camp</td>
</tr>
<tr>
<td>CIVL 4011</td>
<td>Professional Practice</td>
</tr>
<tr>
<td>CIVL 4013</td>
<td>Major Thesis/Design/Project</td>
</tr>
<tr>
<td>CIVL 4014</td>
<td>Thesis/Design/Project</td>
</tr>
<tr>
<td>CIVL 4105</td>
<td>Advanced Materials</td>
</tr>
<tr>
<td>CIVL 4218</td>
<td>Concrete Structures</td>
</tr>
<tr>
<td>CIVL 4219</td>
<td>Structural Dynamics</td>
</tr>
<tr>
<td>CIVL 4220</td>
<td>Steel Structures</td>
</tr>
<tr>
<td>CIVL 4221</td>
<td>Bridge Engineering</td>
</tr>
<tr>
<td>CIVL 4222</td>
<td>Finite Element Methods</td>
</tr>
<tr>
<td>CIVL 4406</td>
<td>Environmental Geotechnics</td>
</tr>
<tr>
<td>CIVL 4407</td>
<td>Geotechnical Engineering</td>
</tr>
<tr>
<td>CIVL 4504</td>
<td>Surveying</td>
</tr>
<tr>
<td>CIVL 4607</td>
<td>Environmental Fluids</td>
</tr>
<tr>
<td>CIVL 4608</td>
<td>Environmental Fluids</td>
</tr>
<tr>
<td>CIVL 4609</td>
<td>Water Resources Engineering</td>
</tr>
<tr>
<td>CIVL 4803</td>
<td>Engineering Management</td>
</tr>
<tr>
<td>CIVL 4806</td>
<td>Project Procedures</td>
</tr>
<tr>
<td>CIVL 4807</td>
<td>Project Formulation</td>
</tr>
<tr>
<td>CIVL 4901</td>
<td>Civil Engineering Design</td>
</tr>
<tr>
<td>CIVL 4902</td>
<td>Combustion and Fire Safety MCHE 4260</td>
</tr>
<tr>
<td>ELEC 4300</td>
<td>Information Systems (Advanced Topic)</td>
</tr>
<tr>
<td>ELEC 4301</td>
<td>Algorithms (Advanced Topic)</td>
</tr>
<tr>
<td>ELEC 4302</td>
<td>Artificial Intelligence</td>
</tr>
<tr>
<td>COMP 4300</td>
<td>Graphics (Advanced Topic)</td>
</tr>
<tr>
<td>COMP 4305</td>
<td>Networked Systems (Advanced Topic)</td>
</tr>
<tr>
<td>COMP 4306</td>
<td>Database Systems (Advanced Topic)</td>
</tr>
<tr>
<td>COMP 4307</td>
<td>Distributed Systems (Advanced Topic)</td>
</tr>
<tr>
<td>COMP 4309</td>
<td>Object-Oriented Systems (Advanced Topic)</td>
</tr>
<tr>
<td>COMP 4400</td>
<td>Operating Systems (Advanced Topic)</td>
</tr>
<tr>
<td>COMP 4401</td>
<td>Software engineering (Advanced Topic)</td>
</tr>
<tr>
<td>COMP 4402</td>
<td>User Interfaces (Advanced Topic)</td>
</tr>
<tr>
<td>COMP 4403</td>
<td>Computation Theory (Advanced Topic)</td>
</tr>
<tr>
<td>COMP 4404</td>
<td>Scientific Visualisation (Advanced Topic)</td>
</tr>
<tr>
<td>COMP 4601</td>
<td>Advances in Computer Science 1</td>
</tr>
<tr>
<td>COMP 4602</td>
<td>Advances in Computer Science 2</td>
</tr>
<tr>
<td>COMP 4603</td>
<td>Advances in Computer Science 3</td>
</tr>
<tr>
<td>COMP 4604</td>
<td>Advances in Computer Science 4</td>
</tr>
<tr>
<td>COMP 4605</td>
<td>Error Control Coding</td>
</tr>
<tr>
<td>COMP 4618</td>
<td>Computer Science</td>
</tr>
<tr>
<td>Elective</td>
<td>Surgical Science</td>
</tr>
<tr>
<td>ELEC 4601</td>
<td>Computer Control System</td>
</tr>
<tr>
<td>ELEC 4602</td>
<td>Real Time Computing</td>
</tr>
<tr>
<td>ELEC 4604</td>
<td>Engineering Software Requirements</td>
</tr>
<tr>
<td>ELEC 4700</td>
<td>Project Management</td>
</tr>
<tr>
<td>ELEC 4702</td>
<td>Practical Experience</td>
</tr>
<tr>
<td>ELEC 4703</td>
<td>Thesis</td>
</tr>
<tr>
<td>ELEC 4704</td>
<td>Software Project Management</td>
</tr>
<tr>
<td>ELEC 4801</td>
<td>Electronic Design</td>
</tr>
<tr>
<td>ELEC 4802</td>
<td>Communications and Circuits</td>
</tr>
<tr>
<td>ELEC 4803</td>
<td>Switching Devices and High Speed Electronics</td>
</tr>
<tr>
<td>ELEC 4804</td>
<td>Improving Energy Efficiency</td>
</tr>
<tr>
<td>ELEC 4805</td>
<td>Communication Engineering and Television</td>
</tr>
<tr>
<td>ELEC 4806</td>
<td>Error Control Coding</td>
</tr>
<tr>
<td>ELEC 4807</td>
<td>Computer Control System</td>
</tr>
<tr>
<td>ELEC 4808</td>
<td>Communication Networks</td>
</tr>
<tr>
<td>ELEC 4809</td>
<td>Digital Communication Systems</td>
</tr>
<tr>
<td>ELEC 4810</td>
<td>Image Processing and Computer Vision</td>
</tr>
<tr>
<td>ELEC 4811</td>
<td>Digital Signal Processing</td>
</tr>
<tr>
<td>ELEC 4812</td>
<td>Electronic Design</td>
</tr>
<tr>
<td>ELEC 4813</td>
<td>Integrated Circuit Design</td>
</tr>
<tr>
<td>ELEC 4814</td>
<td>Data Communication Networks</td>
</tr>
<tr>
<td>ELEC 4815</td>
<td>Digital Communication Systems</td>
</tr>
<tr>
<td>ELEC 4816</td>
<td>Error Control Coding</td>
</tr>
<tr>
<td>ELEC 4817</td>
<td>Computer Control System</td>
</tr>
<tr>
<td>ELEC 4818</td>
<td>Real Time Computing</td>
</tr>
<tr>
<td>ELEC 4819</td>
<td>Engineering Software Requirements</td>
</tr>
<tr>
<td>ELEC 4820</td>
<td>Project Management</td>
</tr>
<tr>
<td>ELEC 4821</td>
<td>Practical Experience</td>
</tr>
<tr>
<td>ELEC 4822</td>
<td>Thesis</td>
</tr>
<tr>
<td>ELEC 4823</td>
<td>Software Project Management</td>
</tr>
<tr>
<td>ELEC 4824</td>
<td>Algorithms (Advanced Topic)</td>
</tr>
<tr>
<td>ELEC 4825</td>
<td>Artificial Intelligence (Advanced Topic)</td>
</tr>
</tbody>
</table>
Index

ELEC 4801 Biomedical Engineering Systems, 39
ELEC 5201 Electrical Systems Control, 40
ELEC 5202 Advanced Power Electronics and Drives, 40
ELEC 5301 Non-linear and Adaptive Control, 40
ELEC 5302 Fuzzy Systems, 40
ELEC 5501 Advanced Communication Networks, 40
ELEC 5502 Satellite Communication Systems, 40
ELEC 5503 Optical Communication Systems, 40
ELEC 5601 Advanced Real Time Computing, 40
ELEC 5602 Advanced Computer Architecture, 40
ELEC 5603 Biologically Inspired Signal Processing, 41
ELEC 5604 Adaptive Pattern Recognition, 41
ELEC 5605 Advanced Digital Engineering, 41
ELEC 5606 Multimedia Systems and Applications, 41
ELEC 5607 Hardware/Software Co-design, 41
ELEC 5608 Electronic Commerce, 41
Electrical and Electronic Engineering ELEC 2001, 35
Electrical, Telecommunications, Software and Comp, 2
Electronic Design ELEC 4401, 38
Electronic Devices and Circuits ELEC 2401, 35
Electronic Devices and Circuits ELEC 3401, 36
employment, casual, 120
Energy and the Environment MECH 4240, 49
ENG 1001 Interdisciplinary Project, 53
ENG 2002 Advanced Engineering Project, 53
ENG 3001 Engineering Technology Education, 53
ENG 4001 Innovation and International Competitive, 54
ENG 4002 New Business Creation, 54
ENG 4003 Economic, Social and Ethical Aspects of En, 54
Engineering Business Skills CHNG 4405, 20
Engineering Communications 1 CIVL 2004, 23
Engineering Communications 2 CIVL 3005, 24
Engineering Construction 1 CIVL 2801, 24
Engineering Construction 2 CIVL 3802, 27
Engineering Dynamics 1 MECH 2500, 44
Engineering Dynamics 2 MECH 3500, 46
Engineering Electromagnetics ELEC 3102, 35
Engineering Geology 1 CIVL 1406, 23
Engineering Geology 2 CIVL 2407, 24
Engineering Management CIVL 4803, 30
Engineering Software Requirements ELEC 4604, 39
Engineering Statics MECH 1501, 42
Engineering Technology Education ENGG 3001, 53
enrolment and pre-enrolment, 119
Environmental Acoustics and Noise Control MECH 4230, 48
Environmental Decision Making CHNG 4504, 21
Environmental Engineering MECH 4220, 48
Environmental Fluids 1 CIVL 4607, 30
Environmental Fluids 2 CIVL 4608, 30
Environmental Geotechnics CIVL 4406, 29
Error Control Coding ELEC 4503, 38
Examinations and Exclusions Office, 119
Exchange Program ENSIGC Toulouse France CHNG 4022, 17
Exchange Program Iowa State University (Combined Deg, 32
Exchange Program Iowa State University CHNG 3021, 14
Exchange Program Industrial Management MECH 3620, 17
Examinations and Exclusions Office, 119
Fees Office, 119
Fees Office, 119
financial assistance, 120
Finite Element Methods CIVL 4222, 29
Flight Mechanics 1 AERO 3500, 8
Flight Mechanics 2 AERO 4500, 10
Fluid Mechanics MECH 3210, 45
Fluids 1 CIVL 2601, 24
Fluids 1 MECH 2202, 43
Fluids 2 CIVL 3602, 26
Flying Operations AERO 3501, 8
Foundations of Computer Systems ELEC 1101, 34
Foundations of Electronic Circuits ELEC 1102, 34
Freedom of Information, 120
Fundamental Biomedical Engineering MECH 3900, 47
Fundamentals of Biomedical Engineering ELEC 3801, 37
Fundamentals of Bioprocess Engineering 1 CHNG 2701, 13
Fundamentals of Bioprocessing Engineering 2 CHNG 270, 13
Fundamentals of Electrical Energy Systems ELEC 3201, 36
Fundamentals of Environmental Chemical Engineering C, 13
Fundamentals of Feedback Control ELEC 3302, 36
Fuzzy Systems ELEC 5302, 40
G
Geotechnical Engineering CIVL 4407, 29
Graduations office, 119
Graphics (Advanced Topic) COMP 4304, 32
Grievances, 119
H
Hardware/Software Co-design ELEC 5607, 41
Health Service, 121
HECS enquiries, 119
I
Image Processing and Computer Vision ELEC 4302, 37
Industrial and Engineering Management MECH 4610, 51
Industrial Engineering MECH 4600, 50
Industrial Ergonomics MECH 4620, 51
Industrial Management MECH 3620, 47
Information Systems (Advanced Topic) COMP 4300, 32
Innovation and International Competitiveness ENGG 40, 54
Integrated Circuit Design ELEC 4402, 38
Interdisciplinary Project ENGG 1001, 53
International Office, 121
International Student Services Unit, 121
Introduction to Aircraft Construction and Design AER, 5
Introduction to Airports Research MECH 4630, 51
Introductory Aerodynamics AERO 2200, 6
Introductory Aeronautics AERO 1900, 6
Introductory Electrical Engineering ELEC 1001, 34
Introductory Flight Mechanics and Performance AERO 2, 6
K
Kinematics and Dynamics MECH 1510, 42
Koori Centre, 121
L
Laboratory Projects in Unit Operations CHNG 4005, 16
Language Centre, 121
Learning Assistance Centre, 120
Library (Fisher), 120
M
Machine Vibration and Monitoring MECH 4510, 50
Major Industrial Project CHNG 4203, 18
Major Thesis/Design/Project CIVL 4013, 28
Management for Engineers ELEC 3701, 37
Manufacturing Engineering MECH 3600, 46
Manufacturing Technology MECH 1600, 42
Master of Engineering, 109
Master of Engineering (Research), 109
Master of Engineering Studies, 109
Materials 1 MECH 2300, 43
Materials 2 MECH 3300, 45
Materials and Corrosion CHNG 3601, 16
Materials Aspects in Design CIVL 3102, 24
Mathematics Learning Centre, 121
MECH 1500 Mechanical Engineering 1, 41
MECH 1501 Engineering Statics, 42
MECH 1510 Kinematics and Dynamics, 42
MECH 1600 Manufacturing Technology, 42
MECH 1800 Computational Engineering 1A, 42
MECH 1801 Computational Engineering 1C, 42
MECH 1810 Computational Engineering 1B, 43
MECH 2200 Thermofluids, 43
MECH 2201 Thermodynamics, 1, 43
MECH 2202 Fluids 1, 43
MECH 2300 Materials 1, 43
MECH 2400 Mechanical Design 1, 43
MECH 2500 Engineering Dynamics 1, 44
MECH 2700 Mechatronics 1, 44
MECH 2900 Anatomy and Physiology for Engineers, 44
MECH 3200 Thermal Engineering 1, 44
MECH 3201 Thermodynamics 2, 45
MECH 3210 Fluid Mechanics, 45
MECH 3300 Materials 2, 45
MECH 3310 Mechanics of Solids 2, 45
MECH 3400 Mechanical Design 2A, 45
MECH 3410 Mechanical Design 2B, 46
MECH 3500 Advanced Engineering, 46
MECH 3600 Manufacturing Engineering, 46
MECH 3610 Team Project, 46
MECH 3620 Industrial Management, 47
MECH 3700 Mechatronics 2, 47
MECH 3800 Systems Control, 47
MECH 3900 Fundamental Biomedical Engineering, 47

128
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 4100</td>
<td>Thesis</td>
<td>47</td>
</tr>
<tr>
<td>MECH 4110</td>
<td>Professional Engineering</td>
<td>47</td>
</tr>
<tr>
<td>MECH 4120</td>
<td>Professional Communication</td>
<td>48</td>
</tr>
<tr>
<td>MECH 4130</td>
<td>Practical Experience</td>
<td>48</td>
</tr>
<tr>
<td>MECH 4210</td>
<td>Computational Fluid Dynamics</td>
<td>48</td>
</tr>
<tr>
<td>MECH 4220</td>
<td>Environmental Engineering</td>
<td>48</td>
</tr>
<tr>
<td>MECH 4230</td>
<td>Environmental Acoustics and Noise Control</td>
<td>48</td>
</tr>
<tr>
<td>MECH 4240</td>
<td>Energy and the Environment</td>
<td>49</td>
</tr>
<tr>
<td>MECH 4250</td>
<td>Air conditioning and Refrigeration</td>
<td>49</td>
</tr>
<tr>
<td>MECH 4260</td>
<td>Combustion and Fire Safety</td>
<td>49</td>
</tr>
<tr>
<td>MECH 4310</td>
<td>Advanced Engineering Materials</td>
<td>49</td>
</tr>
<tr>
<td>MECH 4311</td>
<td>Advanced Aerospace Materials</td>
<td>49</td>
</tr>
<tr>
<td>MECH 4400</td>
<td>Advanced Design</td>
<td>50</td>
</tr>
<tr>
<td>MECH 4410</td>
<td>Machine Vibration and Monitoring</td>
<td>50</td>
</tr>
<tr>
<td>MECH 4600</td>
<td>Industrial Engineering</td>
<td>50</td>
</tr>
<tr>
<td>MECH 4610</td>
<td>Industrial and Engineering Management</td>
<td>51</td>
</tr>
<tr>
<td>MECH 4620</td>
<td>Industrial Ergonomics</td>
<td>51</td>
</tr>
<tr>
<td>MECH 4630</td>
<td>Introduction to Operations Research</td>
<td>51</td>
</tr>
<tr>
<td>MECH 4640</td>
<td>Product Life Cycle Design</td>
<td>51</td>
</tr>
<tr>
<td>MECH 4650</td>
<td>Workplace Industrial Relations</td>
<td>52</td>
</tr>
<tr>
<td>MECH 4670</td>
<td>Robotic Systems</td>
<td>52</td>
</tr>
<tr>
<td>MECH 4710</td>
<td>Microprocessors in Engineered Products</td>
<td>52</td>
</tr>
<tr>
<td>MECH 4720</td>
<td>Sensors and Signals</td>
<td>52</td>
</tr>
<tr>
<td>MECH 4730</td>
<td>Computers in Real Time Control and Instrum</td>
<td>52</td>
</tr>
<tr>
<td>MECH 4900</td>
<td>Orthopaedic Engineering</td>
<td>53</td>
</tr>
<tr>
<td>MECH 4910</td>
<td>Biomaterials and Biomechanics</td>
<td>53</td>
</tr>
<tr>
<td>MECH 4920</td>
<td>Biomedical Engineering Systems</td>
<td>53</td>
</tr>
<tr>
<td>MECH 4930</td>
<td>Mechanical Design</td>
<td>43</td>
</tr>
<tr>
<td>MECH 4950</td>
<td>Computational Fluid Dynamics</td>
<td>49</td>
</tr>
<tr>
<td>MECH 4970</td>
<td>Professional Engineering</td>
<td>47</td>
</tr>
<tr>
<td>MECH 4980</td>
<td>Professional Communication</td>
<td>48</td>
</tr>
<tr>
<td>MECH 4990</td>
<td>Product Life Cycle Design</td>
<td>51</td>
</tr>
<tr>
<td>MECH 5000</td>
<td>Industrial and Engineering Management</td>
<td>51</td>
</tr>
<tr>
<td>MECH 5600</td>
<td>Systems Control</td>
<td>47</td>
</tr>
<tr>
<td>MECH 5650</td>
<td>Professional Engineering</td>
<td>47</td>
</tr>
<tr>
<td>MECH 5670</td>
<td>Robotic Systems</td>
<td>52</td>
</tr>
<tr>
<td>MECH 5700</td>
<td>Robotics</td>
<td>52</td>
</tr>
<tr>
<td>MECH 5710</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 5720</td>
<td>Mechatronics</td>
<td>3</td>
</tr>
<tr>
<td>MECH 5730</td>
<td>Microcontroller Systems</td>
<td>3</td>
</tr>
<tr>
<td>Mechatronics 1</td>
<td>1 MECH 2700</td>
<td>44</td>
</tr>
<tr>
<td>Mechatronics 2</td>
<td>2 MECH 3700</td>
<td>47</td>
</tr>
<tr>
<td>Microcontroller Systems ELEC 2601</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Microprocessors in Engineered Products MECH 4710</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Mineral Processing (Extractive Metallurgy) CHNG 4602</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Mineral Processing (Mineral Dressing) CHNG 4603</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Multimedia Systems and Applications ELEC 5606</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Networked Systems (Advanced Topic) COMP 4305</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>New Business Creation ENGI 4002</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Non-linear and Adaptive Control ELEC 5301</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Object-Oriented Systems (Advanced Topic) COMP 4309</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Operating Systems (Advanced Topic) COMP 4400</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Optical Communication Systems ELEC 5503</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Opto-Mechanical Systems CHNG 4303</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Orthopaedic Engineering MECH 4900</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Power Electronics and Drives ELEC 3202</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Practical Experience AERO 4600</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Practical Experience CHNG 4001</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Practical Experience CIVL 4008</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Practical Experience ELEC 4702</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Practical Experience MECH 4130</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Privacy and Freedom of Information, 120</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Process Control 1 CHNG 3302</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Process Control 2 ELEC 4304</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Process Modelling CHNG 3301</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Process Plant Risk Management CHNG 4402</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Process Systems Engineering CHNG 4305</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Product Life Cycle Design MECH 4640</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Professional Communication MECH 4120</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Professional Engineering MECH 4110</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Professional Option CHNG 4006</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Professional Practice CIVL 4111</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Project EconomicsCHNG3401</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Project Engineering, 2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Project Engineering CHNG 4401</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Project Formulation CIVL 4807</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Project Management ELEC 4701</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Project Procedures CIVL 4806</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Properties of Materials CIVL 2101</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Propulsion AERO 4201</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>