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Abstract 

Myeloperoxidase (MPO) is the enzyme that is responsible for the formation of 

hypochlorous acid (HOCl), which is utilised by neutrophils and other cell types of 

the immune system to destroy invading pathogens. HOCl reacts with amine groups 

to form the secondary oxidants N-chloramines. HOCl and N-chloramines are potent 

bactericidal agents, however, under chronic inflammatory conditions, excessive 

oxidant production can lead to damage of host tissue, and is implicated in the 

initiation and progression of disease. 

Antioxidants react with oxidant species such as HOCl and N-chloramines, 

removing them from biological systems thereby limiting damage. Thiol compounds, 

including the endogenous antioxidant glutathione (GSH), have demonstrated 

efficacy as oxidant scavengers, due to their rapid rates of reaction with MPO-derived 

oxidants. Recently, selenium containing compounds have gained interest due to 

their elevated rate constants for the reaction with oxidants compared to thiol 

compounds, and the potential for them to be recycled by thiols. This thesis assesses 

the potential for selenomethionine (SeMet) and 1,4-anhydro-5-selenotalitol (SeTal), 

a novel seleno-sugar, to act as catalytic scavengers of MPO-derived oxidants. 

Previous studies have demonstrated that oxidation of SeMet by hydrogen 

peroxide (H2O2) and peroxynitrous acid (ONOOH) yields a selenoxide as the major 

product. The studies in Chapter 3 characterise the reactions of SeMet and SeTal with 

HOCl and various model N-chloramines. It is shown that SeMet and SeTal react with 

MPO-derived oxidants to form the respective selenoxides, SeMetO and SeTalO.  

These compounds are characterised using mass spectrometry and NMR 

spectroscopy, and quantification of their conversion is assessed by HPLC. In each 

case these reactions are near stoichiometric with low oxidant doses. The second-

order rate constants for the reaction with N-chloramines have been determined 

using stopped flow techniques, and are in the range k = 102 – 103 M-1 s-1. These 

represent some of the fastest biologically relevant rate constants for N-chloramines, 

suggesting that SeMet and SeTal could provide a competitive target for N-

chloramines in vivo. 



 ix 

Previous studies have demonstrated that GSH is capable of reducing SeMetO to 

reform SeMet. The studies in Chapter 4 confirm and extend this observation, and 

assess the potential for the reduction of SeTalO by GSH. The rate constants for the 

reaction of SeMetO and SeTalO with thiols have been determined, and found to be 

in the range of k = 103 – 104 M-1 s-1. This rapid reduction of selenoxides demonstrates 

the potential for a catalytic oxidant scavenging cycle, where small amounts SeMet 

and SeTal may be capable of efficiently consuming oxidants. 

Antioxidant enzymes have also been demonstrated to reduce SeMetO to SeMet. 

The initial studies reported in Chapter 5 assess the potential for a number of 

enzymes to reduce SeMetO and SeTalO. The thioredoxin reductase enzyme system 

(NADPH/TrxR) is capable of reducing SeMetO, but not SeTalO. The glutathione 

reductase enzyme system (NADPH/GSR/GSH) is capable of reducing both SeMetO 

and SeTalO, facilitated by the reaction between GSH and the selenoxides. Further 

studies assess the ability of SeMet and SeTal to remove N-chloramines in the 

presence of these enzymatic systems. The presence of SeMet and SeTal reduces the 

rate at which NADPH is consumed when N-chloramines are added to the TrxR 

system (and in the presence of other enzymes). In contrast, NADPH consumption is 

increased in the presence of SeMet when the GSR system is exposed to TauCl. 

The ability of SeMet and SeTal to rapidly react with MPO-derived oxidants, 

and subsequently be reduced by GSH and enzymes systems suggests that SeMet and 

SeTal may be able to prevent oxidative damage to cellular systems. The studies in 

Chapter 6 assess the ability of SeMet and SeTal to modulate the oxidative damage to 

J774A.1 murine macrophage-like cells resulting from exposure to HOCl and TauCl. 

However, limited protection is observed, with the presence of SeMet and SeTal 

unable to ameliorate the loss of thiols, oxidation of Met residues, or inhibit necrosis 

when the cells are exposed to either HOCl or TauCl. This lack of protection may arise 

from insufficient concentration of SeMet and SeTal, and suggest that additional 

functional cellular assays to assess cellular damage may be more informative.  

Overall, the studies presented in this Thesis demonstrate the potential for 

SeMet and SeTal to act as catalytic MPO-derived oxidant scavengers. They are 

capable of rapidly reacting with HOCl and N-chloramines to form products that are 

reduced by endogenous antioxidant systems, including GSH and TrxR. This work 



 x 

provides a detailed analysis of the potential efficacy of SeMet and SeTal as catalytic 

MPO-derived oxidant scavengers, and provides the basis for further studies to 

assess the potential of SeMet and SeTal to modulate damage in cellular and 

biological systems. 
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 Immune response and inflammation 

When bacteria and other pathogens enter the body, the innate immune system 

responds, initiating inflammation [1]. Pathogens are detected by cell-surface 

receptors on cell types such as macrophages, dendritic cells, Kupffer cells and 

mastocytes [1]. These cells then release inflammatory mediators and chemokines, 

which perform a variety of functions such as vasodilation and increased 

permeability of vessels [1]. The released chemokines attract circulating immune 

cells to the site of inflammation along a chemotactic gradient [1]. 

Neutrophils, a key effector cell of the immune response, engulf pathogens, and 

during this process of phagocytosis, a nicotinamide adenine dinucleotide 

phosphate-oxidase (NADPH) complex is activated [1]. The purpose of this oxidase 

is to produce superoxide (O2
•-), a strong oxidant. O2

•- can dismutate either 

spontaneously or by action of superoxide dismutases (SOD), to give hydrogen 

peroxide (H2O2) [1]. Alternatively, O2
•- can combine with other species, including 

nitric oxide (NO•), to form other oxidants such as peroxynitrite and radical species. 

Immune cells contain specialised enzymes, such as myeloperoxidase, whose major 

function is to catalyse the reaction of H2O2 and halide ions to form hypohalous acids 

[2]. These strongly oxidising species are then involved in the destruction of the 

invading pathogen by chemically attacking its cellular components [1].  

 Myeloperoxidase and related peroxidases 

Neutrophils are generally considered to be the major effector cells of the innate 

immune system. Their role is to seek out and destroy invading pathogens. They 

achieve this by phagocytosis, engulfing the pathogen followed by bombardment 

with strong oxidants designed to destroy the foreign body. One of the major oxidant 

producing enzymes found in neutrophils is myeloperoxidase (MPO), which makes 

up about 5% the dry cell mass [2]. MPO is stored in the azurophilic granules of 

neutrophils [3], and is released into the phagolysomal compartment after 

neutrophil activation. Eosinophils play similar roles to neutrophils, with eosinophil 

peroxidase (EPO) producing strong oxidants. 
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 Structure of peroxidases 

MPO is a dimeric protein consisting of two 73 kDa monomers linked by a 

disulfide bond at Cys153 [4]. The monomers are identical and functionally 

independent, and dimerisation appears to have no effect on the function of MPO [5]. 

The monomer has 2 major components, a large glycosylated (heavy) chain of 58.5 

kDa (red) and a shorter (light) chain of 14.5 kDa (blue) (Figure 1.1) [4]. The modified 

iron protoporphyrin IX active site [6] (green) is located in the heavy chain, and is 

surrounded by α-helices from both chains (H2, H6, H7, H9, H10 and H14), which 

hinders access to the heme for most materials except H2O2 and small anions [4, 7]. 

The heme is bound to the protein by two ether linkages and a sulfonium ion link [8]. 

Helices H2, H6 and H7 form a hydrophobic pocket at the distal heme entrance which 

allows substrates to bind and be oxidised by MPO [9]. The calcium ion (yellow) plays 

a role in the distal His orientation and interactions between monomers [9].  

 

Figure 1.1 - (A) Overall structure of mature homodimeric human myeloperoxidase. 
(B) Monomer structure of myeloperoxidase showing assignment of structural 
elements – Taken from [9] 

EPO is found in the granular compartments of eosinophils [10] whose function 

is to eliminate parasites as part of the immune system. EPO is similar in size and 

structure to MPO, being a highly cationic protein consisting of a heavy 57.9 kDa 

chain and a light 11.9 kDa chain surrounding a modified iron protoporphyrin IX 

group [9]. Lactoperoxidase (LPO) is a ca. 80 kDa single chain glycoprotein secreted 

in human tears, milk, saliva and vaginal fluid [9]. The primary role of LPO, like MPO 

and EPO, is as a first line of defense of the immune system in destroying invading 

bacteria and other pathogens. Vascular peroxidase (VPO) is a peroxidase expressed 
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in vascular cells and heart tissues, with a 42 % sequence identity with MPO [11]. 

LPO and MPO have similar heme group and binding sites [12] with an overall 51% 

sequence identity [13]. EPO and LPO have the ether linkages to the heme conserved, 

but do not contain the sulfonium ion link to the heme group characteristic of MPO, 

resulting in a more planar structure [8].  

 Function of peroxidases 

Peroxidases use H2O2 produced by enzymes such as SOD in order to produce 

strong oxidants [14]. SOD produces H2O2 from O2
- generated by NADPH during the 

respiratory burst of neutrophils, which is caused by activation in response to 

invading pathogens [1]. The heme active site of peroxidases is oxidised by H2O2 

forming an oxy-ferryl heme centre and porphyrin radical known as Compound I [9]. 

Compound I can be reduced back to the native ferric enzyme by a 2-electron reaction 

with halides and pseudohalides forming hypohalous acids (Figure 1.2 - 

Halogenation cycle) [9]. Alternatively, Compound I can undergo 2 one-electron 

reductions to reform the native enzyme, via Compound II, a ferryl-oxy heme centred 

intermediate (Figure 1.2 - Peroxidase cycle) [15, 16]. Human peroxidases are 

capable of oxidising a wide variety of substances due to their high reduction 

potentials (See Table 1.1).  

H2O2 and O2
- can interact with each step of the MPO catalytic cycles. Reaction 

with Compound I oxidises H2O2 to O2
-and forms Compound II [9, 14, 17]. Compound 

II can also react with H2O2 to form Compound III, a ferrous enzyme with molecular 

oxygen bound to the heme centre [17]. However this reaction is relatively slow 

compared to the reaction of Compound II with O2
- and other substrates, that reduce 

MPO back to the native compound [17]. Compound III can also be formed by 

reaction of O2
- with the native enzyme. Compound III is then recycled to the native 

enzyme by a second reaction with O2
-, producing H2O2 [17, 18]. In this way, MPO 

displays SOD activity. Compound III is capable of reacting very slowly with 

substrates, including acetaminophen and ascorbate to form radicals, and regenerate 

the native form of the enzyme [19, 20]. 
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Figure 1.2 – Catalytic cycles of myeloperoxidase a) Halogenation and peroxidase 
cycles of MPO b) Interaction of MPO with superoxide and hydrogen peroxide 

MPO has the highest reduction potential of the human peroxidases (Table 1.1). 

This is thought to be due to the sulfonium ion linkage between the heme and Met 

243 [8]. This linkage, combined with the ester bond from Glu242, has the effect of 

puckering the heme surface distorting the planar symmetry, and acts as an electron-

withdrawing moiety due to its positive charge. EPO, LPO and VPO do not contain this 

Met 243 linkage, but all three contain 2 ester links to the heme group from Asp94 

and Glu 242 [8, 11].  

a) 

b) b

) 
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Table 1.1 - Standard reduction potentials of species in the catalytic cycles of human 

peroxidases at pH 7 

 Standard reduction potentials (V) 
 MPO EPO LPO 
Compound I/native enzyme 1.16 a  1.10 a  1.09 b  
Compound I/Compound II 1.35 c   1.14 b  
Compound II/native enzyme 0.97 c  1.04 b  

a[21]; b [22]; c [23] 

 Halogenation cycle 

The major function of MPO is to oxidise halide ions Cl-, Br- and the pseudohalide 

SCN- to hypohalous acids, hypochlorous acid (HOCl), hypobromous acid (HOBr) and 

hypothiocyanous acid (HOSCN) respectively. Human peroxidases preferentially 

oxidise SCN- when compared to Cl- and Br-, with MPO recognised as the primary 

peroxidase capable of oxidising Cl- at reasonable rates (See Table 1.2). MPO 

produces primarily HOCl and HOSCN under physiological conditions, with about 45 

% and 50 % of the H2O2 consumed producing these respectively (HOBr production 

represents the final 5 %) [24]. Kinetic analysis would suggest that HOCl production 

would be preferred over HOSCN production, as Cl- is at a much higher concentration 

in vivo compared to SCN-.  However, the high levels of HOSCN produced by MPO 

reflects the specificity of MPO for SCN- over Cl-, with the relative specificity for SCN- 

being 730-fold greater than Cl- [24]. EPO produces HOSCN and HOBr [25] and LPO 

almost exclusively produces HOSCN [26]. VPO produces primarily HOBr and HOSCN, 

though 18 % of the H2O2 consumed is used to produce HOCl [27]. The preference for 

SCN- oxidation is reflected in the apparent second order rate constants for these 

processes (see Table 1.2).  The reduction potentials for the different peroxidases do 

not necessarily correlate with the rate constants (see Table 1.1 and Table 1.2), as 

halide and pseudohalide specificity is strongly affected by differences in the active 

and binding sites [9]. Hence, an increase of ca. 10 fold in the rate of Br- and SCN- 

oxidation for EPO over MPO is observed, even though MPO has a greater reduction 

potential compared to EPO. 
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Table 1.2 – Apparent second order kinetics and reduction potentials for hypohalous 
acids produced by human peroxidases 

Reaction Second order rate constant (M-1s-1) Reduction 
potential of halide 
(HOX/X-) (V) MPO EPO LPO VPO 

Compound I + Cl-  Native 
enzyme + HOCl 

2.5 x 104 a  3.1 x 103 b  - 2.0 x 102 c 1.28 d  

Compound I + Br-  Native 
enzyme + HOBr 

1.1 x 106 e  1.9 x 107 f 4.1 x 104 a 7.3 x 104 c 1.13 d  

Compound I + SCN-  
Native enzyme + HOSCN 

9.6 x 106 e  1.0 x 108 g 2.0 x 108 g  1.4 x 105 c 0.56 d  

a [28]; b [29]; c [27]; d [30]; e [31]; f  [32]; g  [33] 

The relative concentrations of oxidants produced by human peroxidases are also 

drastically affected by pH [9, 30, 34]. At acidic pH, the rates of oxidation of halides 

and pseudohalides are dramatically increased [30], particularly Cl- oxidation. The 

increased affinity for Cl- at low pH is proposed to be due to the protonated distal His 

allowing direct access of the heme centre to Cl- but not the larger Br- and SCN- ions 

[35]. At pH > 7, the proportion of HOBr produced by MPO is significantly enhanced 

[34], possibly due to a lower reduction potential of MPO at high pH, inhibiting the 

oxidation of Cl- due to its higher reduction potential  [36].  

 Peroxidase cycle 

MPO is also capable of oxidising substrates, to form radicals, in 2 one-electron 

reduction steps in a process known as the peroxidase cycle. The porphyrin radical 

of compound I oxidises the substrate to give a substrate radical and forms 

Compound II, which retains the oxy-ferryl heme [15, 30]. Compound II then accepts 

a second electron from another substrate and is reduced back to the native enzyme 

[15]. Due to the lower oxidation potential of Compound II, some substrates can be 

oxidised by Compound I but not Compound II. These substrates, termed “poor” 

substrates, act as inhibitors of MPO activity as Compound II accumulates, inhibiting 

further oxidation of substrates in either the peroxidase or halogenation cycle [37]. 

However, O2
- and ascorbate radicals are capable of recycling Compound II, 

reforming the native enzyme [38].  

Due to the high reduction potential of human peroxidases, a wide variety of 

substrates can be oxidised by their peroxidase cycles. MPO has the widest range of 

possible substrates due to its higher reduction potential compared to EPO and LPO 
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(Table 1.1). Major targets for the peroxidase cycle include phenolic and aromatic 

compounds such as Tyr, Trp, ascorbate and urate, the oxidation of which produces 

radical species, as well as nitrogen species such as nitrate and nitrite forming 

reactive nitrogen species. Second order rate constants for these reactions are 

summarised in Table 1.3. 

Table 1.3 - Second order rate constants for reactions between Compounds I and II 
of human peroxidases in the peroxidase cycle 

Substrate Second order rate constant (M-1s-1) 

MPO 
Compound I Compound II 

Tyr 7.7 x 105 a   1.6 x 104  a  
Dityrosine 1.12 x 105 b  7.5 x 102  b  
Trp 4.5 x 105 a  6.9 a  
Nitrite 2.0 x 106 c 5.5 x 102  c  
Substrate Second order rate constant (M-1s-1) 

LPO 
Compound I Compound II 

Tyr 1.1 x 105 a  1.0 x 104 a  
Dityrosine ND ND 
Trp 2.4 x 104 a  8.4 x 101 a  
Nitrite  2.2 x 107 c  3.5 x 105 c  

a [15]; b[37]; c[39]; ND – not determined 

Compounds I and II of MPO and LPO are capable of oxidising the amino acids Tyr 

and Trp to form radicals [15, 40-43]. The tyrosyl radicals formed can undergo 

radical-radical termination with a major product being dityrosine [44]. Radicals 

formed on Tyr residues on proteins can also react with nitrogen dioxide radicals 

(NO2
) forming nitrotyrosine [45, 46]. Dityrosine is also capable of reaction with 

Compounds I and II [37], though the second order rate constant with Compound II 

is 2 orders of magnitude slower than for Tyr. Tyr radicals can promote the cross 

linking of proteins via the formation of dityrosine [40]. The oxidation of Trp residues 

is considerably faster for Compound I than Compound II for MPO and LPO [15]. 

Other phenolic and aromatic compounds are oxidised by Compound I of 

peroxidases, but not by Compound II, leading to accumulation of Compound II when 

no species capable of recycling Compound II are present [38]. 

MPO can oxidise NOto form nitrite ions (NO2
-) at low levels of NO[29, 47, 

48]  though at higher levels of NOa Fe-nitrosyl complex is formed, inhibiting the 

action of MPO [49]. However, at physiological levels of SCN- and ascorbate, the 

consumption of NOby MPO is inhibited [50].  MPO can also oxidise NO2
- to form 
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NO2
 [39, 51]. Nitrite shows an increased binding capacity at lower pH, proposed to 

be due to the protonation of the distal His, and consequently the rate of reaction 

increases by two orders of magnitude for oxidation by Compound I [39]. The 

nitrating and chlorinating ability of neutrophils is enhanced in the presence of 

nitrite, and this is likely to be by NO2Cl, which is produced by the interaction of the 

MPO-derived oxidants HOCl and NO2
 [52].  

 Production of secondary oxidants 

HOCl and HOBr are capable of reacting with nucleophilic nitrogens to form N-

chloramines and N-bromamines respectively [53-58]. Under physiological 

conditions, the major target for the formation of N-halamines are free amino acids, 

the N-termini of proteins, or amino acids with a nitrogen centre in the side chain, i.e. 

Lys, His and Arg. Taurine chloramine (TauCl) is a major product of neutrophils as 

approximately 20 mM Tau is released locally upon stimulation, which then reacts 

with the HOCl produced by MPO [59]. Rate constants for the reaction with HOCl are 

approximately 104 – 105 M-1s-1 for the α-amino groups of amino acids [60, 61]. 

Secondary amines react less rapidly, with second order rate constants for the 

reaction of HOCl with endocyclic DNA bases residues are around 103 - 104 M-1 s-1 [62, 

63], though the imidazole ring in His reacts with a rate constants of 1 x 105 M-1 s-1 

[60]. Other primary amines (i.e. not the α-amine groups of amino acids), including 

those on the Lys side chain, have rate constants of typically 5 x 103 M-1 s-1 [60, 61]. 

HOBr reacts with Lys and His residues much faster than HOCl, with rate constants 

of 2.9 x 105 and 3.0 x 106 M-1 s-1 respectively, yielding N-bromamines [61]. 

At low pH, MPO may be capable of producing Cl2, Br2 and the transhalogen BrCl 

[36, 64]. These species would be capable of halogenation reactions with biological 

substrates. The transhalogen species BrCl is produced by oxidation of Br- by HOCl 

[64]. In vitro studies have demonstrated that the MPO-H2O2-Cl-/Br- system is 

capable of bromination at acidic pH values using deoxycytidine as a bromination 

target through an interaction between HOCl and Br- [65]. However, at pH > 7 with 

physiological Br- concentrations, the MPO system showed no bromination of 

deoxycytidine [65] or Tyr residues [66], suggesting that bromination by MPO is 

unlikely to be significant pathway in vivo.  
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In addition, the formation of singlet oxygen [67-74] and ozone [75-81] by MPO, 

LPO and EPO systems has been suggested, through a reaction between HOCl or HOBr 

and H2O2 [68, 69, 74]. However, this is unlikely to be physiologically relevant due to 

the slow kinetics [17, 74], making it unable to compete with the faster reactions. 

 Reactions of MPO-derived oxidants 

 Hypohalous acids 

At physiological pH, HOCl, HOBr and HOSCN exist in equilibrium with their 

conjugate bases, OCl-, OBr- and OSCN- respectively. As the pKa of HOCl is 7.59, it 

exists as an approximately 1:1 ratio of HOCl : OCl- at pH 7.4 [82, 83]. The pKa of HOBr 

is 8.7, and so it primarily exists as the neutral HOBr species at pH 7.4 [83]. In 

contrast, the pKa of HOSCN is 5.3, and therefore exists mainly as the anion OSCN- at 

pH 7.4 [83]. In acidic conditions, with an excess of halide ions, HOCl and HOBr are 

also in equilibrium with Cl2 and Br2 [36]. In addition to HOSCN production by MPO, 

HOCl and HOBr are capable of directly oxidising SCN- to form HOSCN [84, 85].  

HOCl is capable of reacting with a wide variety of substrates [86]. Due to the high 

reactivity of HOCl, it will react with most biomolecules, and therefore proteins are 

major substrates, owing to their abundance in biological systems [87]. HOCl reacts 

most rapidly with sulfur residues, followed by amine and Trp residues, followed by 

other targets [60]. HOSCN, on the other hand, is a much more selective oxidant and 

reacts preferentially with thiols [88]. HOBr is less reactive with thiols compared to 

HOCl, however with other amino acid targets, such as amines, and aromatic residues 

such as Tyr, HOBr is more reactive [61]. The reaction of these oxidants with 

biological components can have a wide range of detrimental effects, including 

protein fragmentation or aggregation, and inactivation or modification of enzymatic 

function [2, 89].  

 Sulfur containing amino acids 

The reactions with thiols (e.g. Cys, glutathione (GSH)) and thioethers (e.g. Met) 

are some of the fastest biologically relevant reactions known for HOCl, HOBr and 

HOSCN. The reaction of HOCl and HOBr with Cys is extremely rapid with rate 

constants of 3.6 x 108 and 1.2 x 107 M-1 s-1 (at pH 7.4) respectively [61, 90]. However, 
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these rates can dramatically change with pH, and are dependent on the pKa of the 

thiol with lowered pH resulting in a lower rate of reaction observed [61, 90]. This is 

because the thiolate ion is more reactive towards the hypohalous acids than the 

protonated thiol [61, 90].  The reaction with Met is slower, but still extremely rapid 

with second order rate constants of 3.4 x 107 and 3.6 x 106 M-1 s-1 for HOCl and HOBr 

respectively [61, 90]. Rate constants for HOSCN are significantly less with Cys and 

GSH at a rate of 7.8 x 104 and 2.5 x 104 M-1 s-1 respectively [91, 92]. HOSCN reacts 

with Met slowly, with an upper limit of ~1000 M-1 s-1 [92]. 

The initial reaction product between HOCl and thiols is the sulfenyl chloride 

species (RS-Cl) [93-96] (Figure 1.3). The sulfenyl chloride species are short lived 

and can react either with H2O to yield a sulfenic acid (RSOH), or with excess thiols 

to yield a disulfide [95]. Sulfenic acids can be further oxidised to give sulfinic and 

sulfonic acids, by HOCl or other 2-electron oxidants [95]. Alternatively, RS-Cl can 

decompose via radical pathways to form thiyl radicals [97]. For HOSCN, the reaction 

with a thiol initially produces the corresponding RS-SCN species [91, 98]. RS-SCN 

groups can also react to yield sulfenic acids, but are more stable than their RS-Cl 

counterparts, and have lifetimes of a few minutes to hours depending on their 

environment [99, 100]. The formation of sulfenic acids is a key mechanism of 

antioxidants enzymes such as peroxiredoxin [101], as they can react with nearby 

cysteine residues to form disulfides that can be reduced through the action of other 

enzymes such as thioredoxin (Trx) [102]. However, over-oxidation of these residues 

can inactivate proteins, with sulfinic acid formation being reversible only through 

the action of sulfiredoxin, though this process is slow [103]. Sulfonic acid formation 

is irreversible, leading to permanent inactivation of enzymes [103-105].  

Sulfenamides are produced when RS-Cl react with a nucleophilic nitrogen [95, 

106] (Figure 1.3). Subsequent oxidation of a sulfenamide produces sulfinamides and 

sulfonamides [95]. HOCl induces the formation of glutathione sulfonamide at sub-

stoichiometric amounts of HOCl, where N-chloramines needed to be in excess of GSH 

in order to produce detectable levels of the sulfonamide [107]. The formation of 

sulfonamides can induce crosslinking in peptides, including GSH, and proteins when 

the nucleophile is a Lys or Arg side chain [95, 108]. 
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Figure 1.3 - Reaction schemes for production of sulfenic, sulfinic and sulfonic acid 
and sulfenamides, sulfinamides and sulfonamides produced from reactions of HOCl 
with thiol groups. Taken from [95] 

Oxidation of Met residues by HOCl primarily gives rise to methionine sulfoxide 

(MetSO) [106]. MetSO is a stable product, which is only reduced in vivo by 

methionine sulfoxide reductases [109, 110]. Formation of MetSO at the active site of 

proteins can lead to inactivation. A classic example of this is the inactivation of α1-

proteinase by HOCl [111, 112], which can be prevented by the presence of 

antioxidants [112-114]. Further oxidation of MetSO residues results in the 

formation of methionine sulfone, an irreversible oxidation product [88].  

Oxidation of Met by HOCl and N-chloramines can form dehydromethionine as a 

lower yield product [115]. The formation of this product can occur at N-terminal 

Met residues [116]. Thiols are capable of reducing dehydromethionine, with the 

half-life of this product in cytosol where GSH concentration is higher is predicted to 

be only a few hours [117]. Exposure of peptides containing Met and Lys residues to 

HOCl can also result in the formation of inter and intra-molecular sulfilimine 

crosslinks, though HOBr was more effective in forming these products [118]. The 

mechanism is proposed to be via a halamine intermediate reaction [118].   
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 Aromatic amino acids 

HOCl can react with the aromatic side chains of amino acids. Tyr residues are 

particularly important due to the formation of the stable 3-Cl-Tyr, which has been 

used a biomarker for HOCl, and hence MPO damage [119]. HOCl chlorinates Tyr to 

form 3-Cl-Tyr [64, 120-122] and can further chlorinate Tyr to form 3,5-dichloro-Tyr 

[122, 123]. This can occur by direct chlorination by HOCl or chlorine transfer from 

N-chloramines formed near Tyr residues [121, 124]. The reaction of HOCl with Tyr 

is much slower than other reactions mediated by HOCl, with second order rate 

constants of 71 M-1 s-1, and 238 M-1 s-1 for the reaction of 3-Cl-Tyr with HOCl [125].  

HOBr is also capable of reacting with Tyr residues to form the 3-brominated 

product, and this reaction is significantly faster than the reaction with HOCl, with a 

second order rate constant of 2.3 x 105 M-1 s-1 [61]. 3-Br-Tyr has been used a 

biomarker for MPO and EPO damage, and increased relative levels of 3-Br-Tyr to 3-

Cl-Tyr have been interpreted as HOBr being the primary oxidant present [33, 126]. 

However, based on the relative rate constants of the oxidants with Tyr, and relative 

to other targets, 3-Br-Tyr would be a more favourable product than 3-Cl-Tyr, which 

may make interpretation of relative oxidant levels based off relative halogenated 

Tyr residues more difficult [60, 61]. Tyr does not react directly with HOSCN, though 

the LPO/H2O2/SCN- system can oxidise Tyr residues, it is thought to be mediated by 

the formation of thiocyanogen, (SCN)2 or require the presence of LPO [127]. It 

should be noted the formation of these chlorinated and brominated products may 

also be mediated by the formation of Cl2 and Br2 [36, 64], though these halogen 

species are only formed at low pH, and are unfavourable under physiological 

conditions [66]. 

HOCl reacts with Trp with a second order rate constant of 7.8 x 103 [60] and can 

form a number of different products [128, 129]. Reaction of Trp with excess HOCl 

gives rise to products with chlorinated aromatic groups [128]. In the presence of 

TEMPO, a stable nitroxide capable of rapidly scavenging free radical species, a 

different chlorinated epoxide product formed at the amino acid, suggesting that 

radical interactions are important in the oxidation of Trp by HOCl [128]. Oxidation 

of Trp residues in peptides by HOCl gives rise to hydroxytryptophan and 

oxyindolyalanine products [94, 130]. Alternatively, the reaction can produce 
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kynurenine and N-formylkynurenine via reaction of nitrogen-centred radicals 

produced by N-chloramine formation and subsequent decomposition [131]. These 

reactions are protein structure dependent and Trp residues adjacent to Gly residues 

can be oxidised to a cyclic Trp-Gly species [130]. HOSCN is also capable of oxidising 

Trp to yield oxyindolamine products [132], though these reactions are favoured at 

low pH and therefore may have limited biological relevance [133].  

HOCl also reacts with His residues, with the major product being the formation 

of N-chloramines on the imidazole ring [60]. These N-chloramines are more reactive 

than those formed at the α-amino acid group, and capable of mediating 

transchlorination reactions [134-136]. It has also been suggested that the formation 

of 2-oxohistidine may occur with HOCl treatment [137]. 

 Amides 

Similar to the reaction with amines (Sections 1.2.5 and 1.3.2), HOCl can react 

with amides to form N-chloramides, though these reactions are much slower with 

rate constants in the range of < 102 [60, 138]. HOBr can also react with amides to 

form N-bromamides and this reaction is faster than that reported for HOCl at 1 x 103 

M-1 s-1 for the reaction with protein backbone amide groups [61].  N-Chloramides are 

capable of transferring chlorine and oxidising other substrates such as nicotinamide 

adenine dinucelotide (NADH), though this reaction is slow with rate constants <102 

M-1 s-1 and dependent on N-chloramide structure [138, 139]. In the presence of 

water, N-chloramides can undergo hydrolysis, which results in the cleavage of the 

amide bond [56]. One potential mechanism involves formation of a nitrogen-centred 

radical followed by hydrogen abstraction [140-144]. Protein backbone 

fragmentation can be prevented by the presence of radical scavenging antioxidants 

such as Trolox, ascorbate and GSH, indicating radical processes are occurring [145].  

 Lipids 

In addition to protein targets, HOCl can react with the unsaturated fatty acid side 

chains of lipids, forming halohydrins [9, 119, 146]. The second order rate constants 

for these reactions are in the range of 5 – 50 M-1 s-1 in aqueous solutions [63, 147]. 

However, kinetic studies have shown that the rate constant for lipids contained in 

liposome cores in vivo to be considerably (up to 10-fold) slower [148]. This is 
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attributed to the limited ability of HOCl to diffuse into the lipid environments. HOCl 

has been shown to react with cholesterol, forming halohydrin isomers, which can 

then undergo dehydrohalogenation reactions to form epoxides [119, 149, 150]. 

Plasmalogens are glycerophosphospholipids characterised by a vinyl ether 

group at the sn-1 position, and represent up to 15 – 20% of total phospholipid in the 

body. HOCl and HOBr react with plasmalogens, with the primary target of the 

reaction being the vinyl-ether bond [151-153]. HOCl reacts more slowly compared 

to HOBr, with rate constants for the HOCl and HOBr reaction with a model vinyl-

ether being 1.6 x 103 and 3.5 x 106 M-1 s-1 [151]. The reaction with HOCl cleaves the 

vinyl ether bond, and the products of the reaction depend on the fatty acid bound to 

the plasmalogen. Low levels of HOCl react with oleic fatty acids to yield chloro fatty 

aldehydes [152, 154, 155], with higher concentrations yielding chlorohydrin 

products [152]. Glycerophosphocholine products are formed upon reaction of HOCl 

with fatty acids with higher levels of unsaturation, [152, 153]. 

Reaction of HOCl with amine-containing phospholipid head groups results in the 

formation of N-chloramines [147]. Phosphatidyl-ethanolamine and phosphatidyl-

serine react with HOCl with second-order rate constants of 1.8 x 104 M-1s-1 and 3.3 x 

104 M-1s-1 [147]. In contrast, N-chloramine formation on the quarternary ammonium 

group of phosphatidyl-choline head groups is significantly slower at 0.018 M-1s-1 

[147]. HOBr also reacts with phospholipids, though faster than HOCl with rate 

constants of ca. 106 M-1 s-1 [156]. HOSCN has limited reactivity with lipids, though it 

has been shown that HOSCN and the MPO/H2O2/SCN- system can promote the 

formation of lipid peroxides upon exposure to low-density lipoproteins [157, 158].  

 RNA and DNA 

HOCl can react with DNA and RNA bases and form N-chloramines through 

reaction with amine groups, or react with the aromatic ring to form chlorinated 

products. The predominant reaction is believed to be the formation of N-

chloramines [55, 159-161]. The second order rates for monomeric endocyclic 

amines (thymidine, uridine and guanosine monophosphates) range from 103 – 104 

M-1s-1 [62, 63] and between 101 and 102 M-1s-1 [62, 63] for monomeric exocylic 

amines (adenosine and cytidine monophosphates). The N-chloramines formed are 

capable of oxidising GSH, NADH, free amino acids and peptide bonds [63], with rates 
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10-100 times slower than HOCl itself. The reaction of HOCl with polymeric bases, 

such as in DNA, is considerably slower  (~10 M-1s-1), and is attributed to base pairing 

protecting amine sites from HOCl oxidation, with heat denatured DNA reacts ~10 

times faster than native DNA [63]. 

Alternatively, HOCl and N-chloramines are capable of chlorinating DNA and RNA 

components with adenine, guanine and cytosine being major targets [162]. 5-

chloro-2’-deoxycytidine, 8-chloro-2’-deoxyadenosine and 8-chloro-2’-

deoxyguanosine are formed as in vitro products of these reactions, and 5-chloro-2’-

deoxycytidine has also been detected when cells are exposed to HOCl [162]. These 

products can also be formed by the degradation of N-chloramines formed on DNA 

bases [55, 163, 164]. HOCl is also capable of oxidising nucleosides to form other 

products including 5-hydroxy-cytosine, 5-hydroxy-uracil, and hypoxanthine [165, 

166]. HOBr is also capable of similar reaction, with exposure of guanine forming 

various oxy-guanine products as well as 8-bromoguanine [167]. In contrast, HOSCN 

has no reported reactivity with DNA [168]. 

 Carbohydrates 

HOCl reacts with the carbohydrates hyaluronan and glucosamine sugars at the 

amine site forming N-chloramines [169]. Amines are the primary target of HOCl, 

with substitution of the N decreasing reactivity [169]. HOCl reacts with amine and 

amide moieties of heparan sulfate, forming products including N-monochloramines, 

N-dichloramines, N-chlorosulfonamides, and N-chloramides [170-172], though the 

rate constants for these reaction are significantly slower (< 1 M-1 s-1) than those 

other chlorination reactions [173]. N-Monochloramines can decompose with no 

significant modifications to structure, but N-dichloramines and N-

chlorosulfonamides can cause strand breakage via radical mechanisms [172]. N-

Chloramides formed on hyaluronan and chondrotin sulfate chains cause 

fragmentation when exposed to radicals [170, 174, 175]. These reactions may be of 

particular relevance in arthritis, where oxidation of proteoglycans leads to 

degradation of cartilage [176, 177], and in atherosclerosis, where degradation of the 

matrix proteins in the arterial wall may contribute to the development of the disease 

[178]. 
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 N-Chloramines 

N-Chloramines undergo transchlorination reactions [134, 179, 180], 

demonstrated by the equilibrium between Tau, Gly and His N-chloramines [135]. As 

N-chloramines, particularly β-N-chloramines such as TauCl, are less reactive than 

HOCl, it has been hypothesised that N-chloramines may be able to propagate 

oxidative damage away from the source of HOCl, by travelling further before 

decomposition or further reaction [181]. Transfer of chlorine to imidazole or N-

acetylhistidine from monochloroamine allowed for chlorination of Tyr to occur via 

the more reactive imidazole chloramine (ImdCl) [182]. Alternatively, N-chloramines 

can undergo chlorine transfer or decomposition to radicals, transferring the damage 

to different sites [141]. 

Degradation of N-chloramines can occur in two ways, forming aldehydes or 

nitrogen-centred radicals (Figure 1.4) [86]. Aldehyde formation occurs when the N-

chloramine bond forms an imine intermediate (Figure 1.4), which is then 

hydrolysed to yield an aldehyde [183, 184]. These aldehyde products can form by 

degradation of N-chloramines formed on either free amino acids, such as Tau [183, 

184], peptides such as GSH [185], or on protein residues, as in low-density 

lipoprotein (LDL) [186, 187]. The resulting aldehydes can form advanced glycation 

end products, typically associated with diabetes and cardiovascular disease, via 

Schiff base imine intermediates [188].  
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Figure 1.4 - Reaction scheme of degradation of N-chloramines to form aldehyde and 
Schiff bases and nitrogen centred radicals and subsequent products – taken from 
[137] 

Alternatively, one-electron reduction of the N-chloramine can occur, resulting in 

the formation of nitrogen-centred radicals (Figure 1.4) [145, 189, 190]. The radicals 

form in a time dependent manner through thermal decomposition, though can be 

accelerated in the presence of one-electron reductants, such as metal ions Cu+ and 

Fe2+ [190].  These radicals can then undergo a range of intra and intermolecular 

reactions [145, 189]. In the case of proteins, hydrogen abstraction from the 

backbone carbon yields carbon-centred radicals, which can then cause protein 

cleavage [145, 189]. This cleavage can be inhibited by the presence of radical 

scavengers such as Trolox, GSH and ascorbate [145], which rapidly react with the 

nitrogen-centred radical [191]. 

N-chloramines retain the oxidising power of HOCl, though the rates of reaction 

are significantly decreased [136, 192]. N-chloramines have been shown to be 

capable of oxidising thiols and thioether groups, including Cys and Met residues and 

GSH [86, 136, 192]. Analogous to HOCl reactions, oxidation of thiols such as GSH 

primarily yields disulfides [136, 192]. Oxidation of Met by N-chloramines results in 

the formation of MetSO [192]. The rate constants for these reactions depend on the 

amino acid on which the N-chloramine is formed, particularly with side chain N-
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chloramines. N-chloramine formed on the imidazole ring of His (HisCl) react with 

sulfur residues with rate constants of 721 and 91 M-1 s-1 for GSH and Met 

respectively [136]. N-chloramines formed on the amine groups of Gly (GlyCl) and 

Tau, and those formed on the side chain amine of Lys (LysCl), are significantly less 

reactive than HisCl, with rate constants for the reaction with the thiol species Cys 

and GSH in the range of 1 – 2 x 102 M-1 s-1 [192]. Similarly, the reaction of these N-

chloramines with Met is also decreased in comparison to HOCl and HisCl with rate 

constants in the range of 0.4 – 2 x 102 M-1 s-1 [192]. 

Table 1.4 – Second order rate constants for the reaction of hypohalous acids and N-
chloramines with Cys, GSH and Met. 

 Second order rate constants / M-1 s-1 
Compound HOCla  HOBr  HOSCNb  HisClc  GlyCld  LysCld TauCld 

Cys 3.6 x 108 1.2 x 107 e 7.8 x 104 9.1 x 102 3.5 x 102  4.8 x 102 2.1 x 102 
GSH 1.2 x 108  2.5 x 104 7.2 x 102 2.3 x 102 2.6 x 102 1.2 x 102 
Met 3.4 x 107 3.6 x 106 f Slow 91 2.1 x 102 53 39 

a[90]; b[92]; d[136]; e[192]; e[61]; f[61] rate constant determined for NAc-Met-OMe 

 Cell and tissue damage 

MPO and the oxidants it produces have been demonstrated to be detrimental to 

the cellular environment and play a role in the initiation and progression of 

numerous diseases [2]. This Thesis focuses on damage caused by HOCl and N-

chloramines, as HOCl-induced damage has been thoroughly characterised and N-

chloramineshave the capacity to propagate HOCl-induced damage away from 

inflammation sites. However, the role of other MPO-derived oxidants, particularly 

HOSCN, should not be discounted in MPO related pathologies, as while the reactivity 

of this oxidant is less than and more specific compared to HOCl, damage induced by 

HOSCN may also play a role in disease [193]. The biological effects of HOSCN have 

been reviewed recently, with particular focus on the differences in reactivity and the 

extent of damage between HOSCN and HOCl [88, 89]. 

 Beneficial effects 

MPO-derived oxidants are generally believed to be important species in 

neutrophil-mediated bacterial cell killing. MPO knockout mice have been shown to 

be more susceptible to infections [194, 195], and neutrophils from MPO-deficient 

people kill some types of bacteria poorly [196]. Furthermore, the introduction of 
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MPO inhibitors, such as azides, impair the ability of the cells to kill bacteria 

effectively in vitro [197]. This supports MPO-derived oxidants as an important 

source of antimicrobial activity. 

HOCl is proposed to be the major lethal oxidant produced by MPO [198, 199], 

however roles for the other oxidants, particularly HOSCN cannot be excluded. EPO 

has been shown to be effective at killing bacteria in the presence of H2O2 and Br- or 

SCN- ions [200, 201], indicating that the HOBr and HOSCN produced by this enzyme 

could play a role in pathogen killing. Secondary oxidants, including N-chloramines, 

may also play significant role as microbicidal agents, with the high flux of HOCl [17], 

and kinetic predictions that demonstrate the majority of HOCl produced will react 

with cellular constiuents [198]. TauCl, which is produced at high levels after 

neutrophil activation, has the capacity to kill numerous bacterial strains and viruses 

[202-205]. It achieves this by penetrating into the pathogen cytosol and oxidising 

proteins and thiols [202, 203]. 

TauCl can prevent host cell damage by multiple pathways, including by the 

inhibition of O2
- production by activated neutrophils [206-210]. TauCl can prevent 

the phosphorylation of p47phox and subsequent translocation to the membrane, 

preventing the formation of NADPH oxidase machinery and hence O2
- production 

[210]. This has been postulated as a mechanism to prevent neutrophils from self-

imposed cellular damage due to excessive oxidant production. 

 Detrimental effects 

1.4.2.1 Damage in the cellular environment 

HOCl is toxic to cells. Reagent HOCl can kill a number of cell types including red 

blood cells (from concentrations of 100 nmol HOCl per 106 cells) [211-213], 

endothelial cells (from 25 nmol per 106 cells) [214], epithelial cells (from 500 nmol 

per 106 cells) [215, 216], fibroblasts (from 5 µmol per 106 cells) [217] and T-cell 

lines (from 1.5 µmol per 106 cells) [218]. Multiple mechanisms have been suggested 

to be responsible including pore formation due to surface protein crosslinking 

[219], and inactivation of potassium channels, possibly caused by thiol inactivation 

[220]. Treatment of cells with lower concentrations induces apoptosis (< 50 nmol 

per 106 cells), though with increasing concentrations of HOCl (> 1 µmol per 106 
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cells), necrosis and cell lysis dominates the cell death pathways [221, 222]. 

However, in many cases the specific pathways have not been fully defined. N-

chloramines have also been shown to induce apoptosis via activation of caspases 

[223] and cause cell death [136, 224]. 

Treatment of cells with sub-lytic concentrations of HOCl induces the oxidation 

of thiols and as HOCl reacts very quickly with the thiol components of cells, it is likely 

that thiols are major targets. Cells exposed to HOCl have decreased levels of GSH and 

protein thiols [225, 226]. Treatment of human vein endothelial cells (HUVECs) with 

HOCl showed increases in glutathione sulfonamide, with limited disulfide products 

being detected [227]. Rapid consumption of GSH has also been observed in human 

coronary artery endothelial cells (HCAECs) [221] and human monocyte derived 

macrophages (HMDMs) [228]. 

Protein oxidation of thiols in cells may lead to enzyme inactivation and have 

further detrimental consequences for the cell. Cells treated with sub-lethal amounts 

of HOCl show modifications on a number of proteins including glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) and numerous enzymes involved in protein 

folding [221, 222, 225, 229]. GAPDH has been shown to be preferentially oxidised 

compared to GSH on exposure of cells to HOCl [225]. The primary function of GAPDH 

is to catalyse the sixth step of glycolysis, though it is also involved in a number of 

other cellular processes [230]. For example, GAPDH is involved in apoptosis, and 

when exposed to oxidants, becomes nitrosylated and binds to DNA and Siah1 

leading to apoptosis pathway activation [231, 232]. GAPDH inactivation by HOCl can 

lead to ATP depletion in cells, though HOCl can affect energy production in multiple 

ways, including inhibition of mitochondrial respiration or glucose transport [220, 

233]. ATP levels are decreased when cells are treated with sub-lethal concentrations 

of HOCl [215, 220, 225, 234].  HOCl can also react directly with ATP [63].  

Peptidylprolyl isomerase A (cyclophilin A) and protein disulfide isomerase 

are affected by HOCl treatment of endothelial cells [229]. Peptidylprolyl isomerase 

A and protein disulfide isomerase are enzymes involved in protein folding [235, 

236] and inactivation of enzymes related to protein folding could potentially lead to 

the accumulation of misfolded proteins within cells. This is significant as it may 
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trigger detrimental signalling cascades, for example, the unfolded protein response, 

which ultimately leads to apoptosis of the cell [237]. 

HOCl treatment can also perturb phosphorylation via inactivation of protein 

tyrosine phosphates (PTPs) [238], and cause disruption of sulfur-metal ion clusters, 

leading to inactivation or changes in function of enzymes [239-243]. Treatment of 

enzymes containing thiol-zinc finger motifs causes the release and mobilisation of 

zinc from these enzymes [239-241]. Exposure of aconitase, an enzyme containing 

an iron-sulfur cluster, to HOCl induced a release of iron and inhibition of function, 

from both isolated aconitase and when HCAECs were treated with HOCl [244]. 

Inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS), 

both containing sulfur-metal clusters, when coupled produce NO•, but when treated 

with HOCl, they uncouple resulting in production of O2
•- [242, 243], thereby 

increasing cellular oxidative stress. Exposure of HCAECs demonstrated an 

uncoupling of eNOS, with subsequent inhibiton of NO• formation [243].  

N-Chloramines have similar potential to oxidise intracellular thiols upon 

exposure to cells. Exposure of cells to N-chloramines causes a consumption of 

intracellular thiols and GSH [136, 229]. GAPDH, peptidylprolyl isomerase A and 

protein disulfide isomerase are also targeted by monochloramine (NH2Cl), GlyCl and 

HisCl treatment to endothelial cells [229]. While TauCl is a more potent inhibitor of 

GAPDH and creatine kinase in isolated enzymes studies [245], its inability to cross 

the cell membrane means that it cannot inactivate intracellular GAPDH [135]. 

Hence, the ability for N-chloramines to oxidise intracellular thiols is dependent upon 

structure and the potential for these species to cross the cell barrier. However, 

transchlorination reactions can occur [135, 179], transferring the N-chloramine 

group from amines unable to cross the cell membrane, such as TauCl, to more cell 

permeable molecules, such as GlyCl, which can then induce oxidative damage in the 

cytosol [135].  

While TauCl is relatively impermeable to the cell membrane, studies have 

demonstrated the ability to regulate signalling pathways by acting on receptors 

outside the cell [246]. TauCl can influence the nuclear factor κB (NF-κB) pathways 

of pro-imflammatory mediators. NF-κB is bound by inhibitor κB (IκB) keeping it in 

the cytoplasm [247]. When stimulated, IκB becomes phosphorylated by IκB kinase 
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(IKK) and subsequently ubiquitinated and degraded, releasing NF-κB which 

translocates to the nucleus and upregulates proinflammatory mediators including 

iNOS, tissue necrosis factor α (TNF-α) and cyclooxygenase-2 (COX-2) [247].  TauCl 

inhibits NF-κB translocation to the nucleus, though the exact mechanism in unclear 

[248, 249]. One study suggests that TauCl inhibits IKK, preventing IκB 

phosphorylation [250]. Another study demonstrated oxidation of a Met residue on 

IκB by TauCl, though phosphorylation of serine residues was not inhibited [251]. 

Others demonstrated a reduced DNA binding affinity of NF-κB suggested to be 

caused by the inactivation of the extracellular signal-regulated kinase (ERK) 

pathway [251, 252]. 

TauCl has been shown to increase nuclear translocation of nuclear response 

factor 2 (Nrf2). Nrf2 is bound in the cytoplasm by the protein Keap-1, which when 

oxidised releases Nrf2 for translocation to the nucleus [253], where Nrf2 binds to 

antioxidant response elements and upregulates genes including heme oxygenase-1 

(HO-1), NADPH:quinone oxidoreductase (NQO-1), glutathione peroxidase (GPx), 

peroxiredoxin (Prx), and Trx [254]. TauCl induced a rapid increase in Nrf2 

translocation to the nucleus as well as an increase in cytosolic levels of Nrf2 [255, 

256]. Consequently, increases in heme oxygenase 1 (HO-1) protein and activity 

levels were observed with TauCl treatment of cells [255-257]. Pretreatment of cells 

with TauCl lead to inhibition of cell death by H2O2 [256, 258] and this has been 

attributed to the effects of TauCl on Nrf-2 activation. 

1.4.2.2 MPO in inflammatory pathologies 

HOCl-induced damage to tissue can lead to cellular dysfunction, and hence 

promote disease. MPO and MPO-derived oxidant damage is implicated in numerous 

inflammatory conditions. For example, elevated levels of MPO are found in disease 

samples from patients with cystic fibrosis [259-261], Parkinson’s disease [262], 

multiple sclerosis [263], and Alzheimer’s disease [264-266]. Increases in MPO levels 

are accompanied with biomarkers of HOCl-induced damage including elevated 

levels of 3-Cl-Tyr residues [259] and glutathione sulfonamide [267] in the sputum 

of cystic fibrosis patients; elevated 3-Cl-Tyr in the brain tissue of patients with 

Alzheimer’s disease [264, 268], Parkinson’s disease [269] and multiple sclerosis 
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[263, 270]. MPO and MPO-oxidant damage is also closely correlated in chronic 

kidney disease [271] and rheumatoid arthritis [272].  

In addition, the role of MPO and HOCl-induced oxidative damage in relation to 

cardiovascular disease (CVD) and atherosclerosis has been extensively 

documented. This is of significance as cardiovascular disease is the leading cause of 

death in Australia being the cause of about 30 % of deaths in Australian population 

[273]. As MPO plays a significant role in the development of atherosclerosis, which 

is a major cause of CVD, its contribution to this disease is reviewed in more detail 

below.  

 MPO and atherosclerosis 

Atherosclerosis is an inflammatory disease characterised by the development of 

fatty streaks in the arterial wall, caused by the accumulation and deposition of lipid-

laden macrophages (or foam cells) [274]. As the lesions develop, more foam cells 

accumulate leading to plaque formation, characterised by a fibrous cap with a 

necrotic cell core [274]. MPO has been detected in all stages of atherosclerosis lesion 

development [275], indicating a significant role for MPO in the progression of the 

disease. Numerous markers of MPO-induced oxidative damage have been detected 

in lesions including p-hydroxyphenylacetaldehyde, α-chloro fatty aldehydes, 

unsaturated lysophosphatidylcholine, 3-Cl-Tyr and 5-chloro-uracil [155, 276, 277]. 

Binding of antibodies raised against HOCl-damaged proteins (HOP-1) correlate with 

progression of disease, further implicating MPO as a factor in the progression of the 

disease [278].  

Circulating MPO levels are an independent predictor for presence of coronary 

artery disease with relative plasma concentrations of MPO correlated with severity 

of the disease [279, 280]. In healthy subjects, MPO levels increase the risk of 

cardiovascular disease, though levels could not predict a cardiovascular event [281-

284]. However, MPO levels can predict the incidence of cardiovascular events in 

patients with established coronary artery disease [285-287], and MPO have 

prognostic value for patients presenting with chest pain, with MPO levels a risk 

factor for major cardiovascular events in these patients [288]. Higher than median 

levels of MPO demonstrated a higher all cause mortality in patients who were 

hospitalised after their first myocardial infarction [289]. It should be noted, 



 25 

however, that MPO deficient atherosclerotic mice (ApoE or LDL receptor knockout 

mice) have demonstrated an increase in atherosclerosis [290]. However, in the non-

MPO deficient mice, limited levels of MPO derived biomarkers such as 3-Cl-Tyr are 

observed, suggesting a limited role for MPO in murine atherosclerosis [290]. Mice 

which express human MPO demonstrate a significant increase in lesion size, 

suggesting that the species difference in MPO may be a significant factor [291]. 

Foam cells form when macrophages take up oxidised lipoproteins in an 

uncontrolled manner via interaction with scavenger receptors [274]. An 

MPO/H2O2/Cl- system and reagent HOCl have been shown to oxidize LDL [292, 293]. 

This oxidised LDL is more readily taken up by macrophages [294] and impairs 

cholesterol efflux [295] leading to lipid accumulation and foam cell formation. As 

levels of 3Cl-Tyr are elevated in LDL found in the arterial wall compared to that 

found in circulating LDL, it is suggested that MPO-induced LDL oxidation is 

occurring within the arterial wall [296].  

HOCl is also capable of oxidising high-density lipoprotein (HDL) resulting in 

impaired cholesterol efflux ability [297-301]. The apolipoprotein A-I (apoA-I) 

protein residues are the primary target for HOCl, and there is evidence for oxidation 

of Tyr, Trp and Met residues [124, 298, 302-306]. Loss of Trp residues reduces the 

efflux capacity of HDL [302], and recent data are consistent with the Trp72 residue 

being oxidised by HOCl [303]. Oxidised Trp residues are elevated in atherosclerotic 

lesion, and correlate with increased risk of cardiovascular disease [303]. Selective 

oxidation of the Tyr192 residue of apoA-I is also correlated with impaired 

cholesterol efflux capacity [304], and oxidation of Tyr residues can be mediated by 

a LysCl intermediate [124]. Elevated levels of 3Cl-Tyr and 3-nitro-Tyr are also found 

on HDL of patients with atherosclerosis, compared to healthy subjects, suggesting 

that Tyr oxidation may also play a role [124, 298, 305, 307]. In addition to Tyr and 

Trp, Met residues are oxidised by HOCl, reducing the efflux capacity [306, 307]. 

Furthermore, HOCl exposure to HDL reduces its anti-inflammatory properties by 

reducing the ability to inhibit pro-inflammatory pathways [308, 309], and causes 

the activation NF-κB pathways suggesting HOCl exposure transforms HDL to a more 

pro-inflammatory mediator [309]. 



 26 

Endothelial dysfunction is also considered to be a contributing factor to the 

initiation of atherosclerosis and cardiovascular disease, with endothelial function 

closely related to NO bioavailability [310]. MPO is capable of binding to endothelial 

cells through interactions with the negatively charged glycosaminoglycans and is 

localized to the caveolae [311-313]. The binding of MPO is increased in the presence 

of albumin [312]. Internalisation of the caveloae allows for transcytosis of MPO, 

which is dependent on the albumin binding receptor, to the basement membrane 

where MPO is then localized with fibronectin [311, 312, 314]. The localization of 

MPO to endothelial thus allows for the modulation of NO· availability and 

contributes to endothelial dysfunction.  

MPO has been suggested to induce endothelial dysfunction by the production of 

HOCl, which uncouples eNOS and iNOS, hence perturbing NO production. In both 

isolated enzymes studies and upon treatment of HCAECs, HOCl is reported to 

convert these enzymes from the generation of NO to the production of O2
- [242, 

243]. MPO further reduces NO availability by consuming it as a substrate [29, 52]. 

Moreover, HOCl treatment of guinea pig hearts [315] or arterial rings from rats 

[316] or rabbits [317] inhibits the acetylcholine-dependent relaxation of arterial 

rings. VPO, a peroxidase which produces HOCl, is elevated in spontaneously 

hypertensive rats, which exhibit decreased NO availability and lowered response to 

vasodilators, further implicating HOCl in endothelial dysfunction [318].  

Atherosclerotic plaque rupture and the resulting thrombosis is the underlying 

cause of the majority of heart attacks and stroke [319]. MPO may play a role in 

plaque rupture as MPO levels predict infarction risk [288, 320].  Similarly, systemic 

MPO levels are elevated in patients with eroded plaques [321], and monocytes and 

MPO levels are elevated in patients with ruptured plaques [322]. MPO and HOCl-

damaged proteins colocalise in the lesions of patients who have experienced sudden 

cardiac death [323]. Furthermore, HOCl has been shown to induce apoptosis of 

endothelial cells leading to destabilised plaques [324]. MPO release is also thought 

to activate metalloproteins through oxidation of a “cysteine switch” [325], which 

could further destabilise the plaque [326]. 
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 Prevention of MPO damage 

As MPO is a contributing factor to a number of pathologies, particularly 

atherosclerosis, there is considerable interest in the development of therapeutic 

strategies to prevent damage caused by the inappropriate production of oxidants. 

 Inhibition of MPO 

A major limiting factor in hypohalous acid production by MPO is the availability 

of H2O2 to form Compound I. The concentration of available H2O2 is primarily 

dependent on the presence of enzymes, such as GPx, catalase and Prxs, which 

compete with peroxidases for H2O2 [2]. Inhibition of NADPH oxidases, which 

produce O2
•-, and hence H2O2 by dismutation, can also limit H2O2 concentrations 

[327].  A common inhibitor of NADPH oxidases is diphenylene iodonium chloride, 

which prevents the production of O2
•- in neutrophils, reducing their effectiveness in 

bacteria cell killing [328, 329].  

Many agents can inhibit MPO, LPO and EPO in a non-specific manner [330]. 

Heme poisons, such as cyanide and suicide substrates such as hydrazines and 

hydrazides, can very effectively inhibit peroxidases by heme destruction [330]. 

However, due to their toxicity and lack of specificity, they are not appropriate for 

MPO inhibition in a therapeutic setting. 

As heme poisons have high toxicity, there has been interest in development of 

more specific MPO inhibitors. Novel 2-thioxanthine compounds have recently been 

developed, which have demonstrated ability to inhibit HOCl formation by MPO by 

initially reacting with Compound I, forming a radical that then covalently binds to 

the heme group of MPO causing inactivation [331]. Hydrogen sulfide can reversibly 

bind to the iron in the heme group of MPO at physiological levels, reducing H2O2 

consumption by MPO [332]. Hydroxymates have been shown to be specific toward 

MPO in neutrophils, and reversibly bind to the active site cavity of MPO, inhibiting 

access to the heme moiety inhibiting MPO activity [333]. Ceruloplasmin is capable 

of binding MPO in serum and reducing it from Compound I to Compound II [334]. 

The presence of ceruloplasmin has been suggested to inhibit the recovery of the 

native MPO, keeping as in the Compound II form, inhibiting the production of HOCl 

[334].  However, another study suggested that the binding of ceruloplasmin may not 
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be completely inhibiting the halogenation cycle, instead the binding promotes the 

formation of HOSCN instead of HOCl [335].  

Hypohalous acid production by peroxidases can be competitively inhibited by 

other substrates that react readily with Compounds I and II [336, 337], though this 

is limited by the necessity for high concentrations of substrate to effectively 

compete with the halogenation cycle. Acetominophen has been shown to inhibit 

total oxidant production by MPO, at plasma levels achieved using typical therapeutic 

doses of the drug [20, 338, 339]. However the initial rate of HOCl production was 

enhanced, due to the recycling of Compounds II and III [20].  

Nitroxides have been shown to prevent oxidative damage by acting as effective 

radical scavengers [340, 341]. However, they can also act as substrates for MPO, 

leading to accumulation of Compound II [340]. While Compound II can be recycled 

by O2
  [340]. 

Nitroxides, particularly 4-amino-2,2,6,6-tetramethylpiperidin-1-yloxyl, are capable 

of preventing Met oxidation by MPO/H2O2/Cl-  systems, using both purified MPO and 

activated neutrophils [342], however nitroxides can be rapidly reduced by 

biological reductants [339]. Substitution with longer alkyl chains protect the 

nitroxide from reduction, allowing more effective inhibition of MPO [339]. 

Poor peroxidase substrates can inhibit the production of hypohalous acids at low 

physiological concentrations by trapping the enzyme as Compound II. Trp is one 

such substrate, which is readily oxidised by Compound I, though reacts very slowly 

with Compound II [15]. This results in accumulation of Compound II, and hence 

inhibition of HOCl production [343]. However, in the presence of O2
•-, Compound II 

is recycled quickly, resulting in poor inhibition [43, 336]. Extracellularly, SOD may 

be able to counter this, but as SOD levels intracellularly are low, SOD may be unable 

to effectively remove the O2
•- to inhibit MPO turnover [2]. Substrates such as 

hydroquinone [344] and amascrine [345] can stimulate the production of 

Compound III, inhibiting the halogenation cycle, but Compound III is also recycled 

effectively by O2
•- [38]. 

MPO inhibition may lead to a decrease in oxidation damage, and prevention or 

inhibition of disease, however, the enzyme is important in the immune system for 

the role it plays in killing invading pathogens and preventing infection [194, 195]. 
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An alternative method for preventing MPO-related damage may be to remove excess 

oxidant from the sites of inflammation before the damage can occur. 

 Endogenous antioxidant enzyme systems 

Within cells, there are numerous enzymatic systems that control redox 

homeostasis, with many containing redox active Cys or Sec sites. A number of these 

systems scavenge oxidants, including MPO-derived species, before they can cause 

major detrimental effects on cells. These include GPx, the Trx system and Prxs [98, 

101, 346-350]. Other enzymes can reverse oxidative damage caused by cells by 

reducing the oxidised products. Examples of these are methionine sulfoxide 

reductase (Msr) [351-355], which reduce MetSO residues, and glutathione 

reductase (GSR), glutaredoxin and Trx, which are all capable of reducing disulfides 

[356-360].  

 SOD and catalase 

SOD and catalase are metalloproteins responsible for the removal of O2
- and 

H2O2 respectively. SODs contain a reactive metal centre, either Cu or Mn, which 

catalyses the dismutation of O2
- to form H2O2 [361-363]. While H2O2 is still an 

oxidant capable of damaging cellular components, it is significantly less reactive 

compared to O2
-, and so this is considered to be beneficial. Catalase contains 4 heme 

centres and removes H2O2 via two stages, the first is an initial reaction with one 

equivalent of H2O2 to form an oxyferryl heme, followed by a second reaction with 

H2O2 to produce O2 and the native catalase [364-367]. Together, they may work to 

keep the relative level of reactive oxidants in the cell at a manageable level.  

 Glutathione peroxidase 

GPxs were the first identified seleno enzyme, having a selenocysteine at the 

active site [368]. They play an important regulatory role in the redox state of cells 

[369]. GPx enzymes are capable of reducing H2O2 and other peroxides in a catalytic 

cycle (Figure 1.5) [346]. The mechanism involves oxidation of the selenol active site 

to a selenenic acid by peroxides [370], which in turn is reduced by two GSH 

molecules via a selenosulfide intermediate, with the products being the reduced 

enzyme and GSSG [346]. The removal of H2O2 from the cellular environment by such 

mechanisms limits the capacity for MPO to produce HOCl and other oxidants. 
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Figure 1.5 - Catalytic cycle of GPx – adapted from [370] 

 Thioredoxin reductase and thioredoxin 

Thioredoxin reductases (TrxR) are dimeric selenoenzymes containing redox 

active selenocysteines at the active site [371, 372]. TrxRs show direct antioxidant 

activity through reaction with a wide range of oxidative substrates including H2O2, 

ONOOH and HOSCN, with TrxR being subsequently reduced by NADPH [98, 347, 

348]. This system is essential to cells, and lack of it is embryonically lethal [373-

375]. The effectiveness of the TrxR system is due to the presence of selenium-

containing amino acids at the active site. Loss of the Sec residue reduces the capacity 

of the enzymes to act as antioxidants [376-379], with substitution of Sec with Cys 

significantly reducing the catalytic potential of TrxR [379, 380]. 

Trxs are small proteins that are capable of reducing disulfide bonds in the cell 

with the activity arising from the presence of redox active Cys residues at the active 

site (Figure 1.6)[356, 357]. The active site typically consists of a Trp-Cys-Gly-Pro-

Cys motif [381]. In its reduced form, the active site consists of two thiols. When in 

the presence of a protein disulfide, the protein is reduced, and the Cys residues of 

the Trx active site form a disulfide bond. This occurs through a mixed disulfide 

intermediate [381, 382].  

 

Figure 1.6 - The Trx catalytic system – adapted from [356] 
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Oxidised Trx is reduced to its active form by TrxR. Mice overexpressing Trx are 

more resistant to oxidative stress and have a greater life span than wild type mice 

[383]. Trx is found in higher concentrations in the plasma of people with diseases 

linked to increased oxidative stress including human immunodeficiency virus, 

hepatitis C virus and some cancers [384-389]. This enzyme plays essential roles in 

the reduction of oxidative species, as well as reducing other important enzymes 

such as the peroxiredoxins, glutathione reductases and methionine reductases 

(Figure 1.7) [390, 391]. The Trx system is also capable of removing nitrosyl 

modifications from proteins, though its oxidised form is capable of nitrosylating 

proteins [392].  

Trx play significant roles in signalling pathways involved in the response to a 

variety of stresses including virus infection, UV-irradiation, H2O2 and ischemia-

reperfusion injury [393-396]. Reduced Trx inhibits apoptosis through interactions 

with apoptosis signal-regulating kinase (ASK) [397]. Trx can also promote the DNA 

binding capabilities of NF-κB via a direct interaction [394]. It enhances DNA binding 

capabilities of activator protein-1 through interactions with redox factor 1. It also 

interacts with other cofactors such as hypoxia inducible factor 1 and thioredoxin 

interacting protein [398]. Hence, Trx plays a role in cell redox status through direct 

scavenging, reversal of oxidative damage and cell signalling pathways. 

 Peroxiredoxins 

 

Figure 1.7 – Prx and Msr enzyme systems use the thioredoxin system as electron 
donors to reduce H2O2 and MetSO – adapted from [356] 

Prxs are small enzymes that use the Trx system as an electron donor to reduce 

peroxides [102]. They are capable of detoxifying H2O2, ONOOH and other peroxides 

(Figure 1.7) [101, 349, 350]. The rate constant for the reaction with ONOOH (k = 7 x 

107 M−1 s−1) is 5 times faster than that of GPx [399]. The mechanism of action is 
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similar to that described for GPx, except that the reactive residue is a Cys, rather 

than Sec. Prx silencing increases oxidative stress in breast cancer cells [400]. Prx 

knock out mice develop anemia, have an increased incidence of tumours [401, 402], 

lower life spans and increased protein oxidation [403]. The loss of Prxs does not 

appear to be compensated for by increases in other antioxidant enzymes [404]. 

Thus, Prxs, in conjunction with the Trx system, contribute to antioxidant defense of 

the cell by maintaining oxidant levels. 

Prxs may play a role in H2O2 signalling in cells, as H2O2 regulates a number of 

signalling cascades including platelet growth factors and tumor necrosis factors, 

which can be influenced by Prxs [403, 405-409]. Prxs can be inactivated by 

hyperoxidation of the active site Cys [103-105], though this only occurs when all 

factors of the catalytic cycle are present [105]. The inactivation of Prxs is reversible 

in the presence of sulfiredoxins [105, 410]. The inactivation of Prxs allows for the 

build-up of H2O2 in cell, which can then mediate cell signalling via other pathways 

[411, 412].  

 Methionine sulfoxide reductase 

Msr are Trx dependent enzymes that repair oxidative damage in cells [413-416]. 

The Msr family of enzymes reduces methionine sulfoxide back to Met, hence 

repairing oxidative damage (Figure 1.7). Msrs have either 2 Cys residues or a 

Sec/Cys pair at the active site and reduce MetSO via a sulfenic acid intermediate, 

with subsequent formation of an intermolecular disufide bond [351-355]. Msrs is 

then reduced by the Trx system [417]. However, some isoforms of Msr lack the 

second resolving Cys and are reduced by a free thiol or seleno group [417-420]. Msrs 

prefer to reduce oxidised methionine residues on unfolded proteins [413], 

suggesting a role in reducing the impact of oxidative stress on the protein folding 

process. Overexpression of Msr reduces oxidative stress levels in cells [414-416]. 

Msr levels decrease with age [421, 422] and inflammatory diseases such as 

Alzheimer’s disease [423]. Hence, Msrs may play a critical role maintaining cellular 

function and the redox homeostasis in cells. 
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 Glutathione reductase 

GSR is a dimeric flavin-containing enzyme with sub-units of 50 kDa [359, 424, 

425]. The primary function of this enzyme is to reduce GSSG to GSH by catalysis of 

the reaction with NADPH (Figure 1.8) [358-360]. It achieves this by funnelling 

electrons from NADPH through the FAD domain to the Cys residues present in the 

GSSG binding site [426]. GSSG is reduced by GSR via disulfide exchange mechanisms 

with active site Cys residues [427]. This allows for catalytic oxidant scavenging by 

GSH, where GSH reacts with numerous oxidants to produce GSSG, which can then be 

reduced by the action of GSR. By maintaining GSH in a reduced state in cells, GSRs 

play a role in antioxidant defence of cells.  

 

Figure 1.8 – GSR uses NADPH as an electron donor in order to reduce GSSG to GSH 
– adpated from [427] 

 Low molecular mass scavengers 

In addition to a number of enzymatic oxidant detoxification systems, low 

molecular mass antioxidants such as ascorbate have been shown to scavenge MPO-

derived oxidants and protect cells from oxidative damage [428-430]. Ascorbic acid 

has been shown to protect Lys and Trp residues of the LDL protein from oxidation 

by HOCl [429]. Ascorbic acid offers protection of Cys from HOCl and N-chloramine 

oxidation, and displays an ability to reverse N-chloramine formation on LDL protein 

[428, 429]. Ascorbate can also prevent HOCl- and N-chloramine induced apoptosis 

[223, 431, 432], but as thiols are still consumed with ascorbate treatment, this 

protection may not be due to scavenging of HOCl. However, it has been shown that 

ascorbate, at levels achieved in plasma in human supplementation studies, is unable 

to compete kinetically with other targets of HOCl, particularly proteins and amino 

acids [87].  

Low molecular mass thiol compounds are also potent scavengers for MPO-

derived oxidants, and are a major target for HOCl and N-chloramines in the cellular 

environment. Cys has been shown to reduce and reverse HOCl oxidative damage to 
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cells [429] and protect mononuclear leukocytes from inactivation by HOCl [430]. 

GSH reacts with HOCl and other activated oxygen species to form the oxidised 

species GSSG or a sulfonamide [433, 434] in a sacrificial manner to protect cell 

proteins [225]. Differing GSH levels in HMDMs from donors correlate to 

susceptibility of HOCl-induced toxicity [228]. GSH loss in HOCl-treated red blood 

cells occurs before loss of protein thiol residues, indicating a protective effect [226] 

and its presence significantly increases the ability of bacteria to survive treatment 

with HOCl [435].  

Other low molecular mass compounds also demonstrate potential as HOCl 

scavengers. Bilirubin, a product of heme degradation, inhibited N-chloramine 

formation in plasma after exposure to the MPO/H2O2/Cl- system, and reduced levels 

of oxidative stress markers [436]. Probucol protects endothelial cells and aortic 

rings from HOCl-induced inhibition of endothelial relaxation, though as the rate 

constants for the reaction with HOCl are low (~ 102 M-1 s-1) it is unlikely to be due to 

direct scavenging of HOCl [437]. MitoQ, a mitochondrially targeted antioxidant, is 

able to protect against HOCl-induced mitochondrial dysfunction, and hence cell 

death [438]. 

 Selenium compounds as antioxidants 

Selenium compounds have gained increasing interest as potential catalytic 

oxidant scavengers in vivo [90, 439-443]. This is primarily due to the rapid reactions 

with various biological oxidants, which occur at higher rates than the analogous 

sulfur compounds [90, 98, 439], and subsequent recycling by biological reductants 

like GSH [444, 445]. The increased reactivity of selenium compounds is primarily 

attributed to the increased nucleophilicity of selenium compared to sulfur, as well 

as the lowered pKa of selenols compared to thiols [446, 447]. As the ability of 

selenium compounds to act as antioxidants is a focus for this Thesis, the reactions 

of various selenium compounds with both one- and two-electron oxidants are 

discussed below. 

 Ebselen and derivatives 

Ebselen is a benzisoselenazolone that has been used to treat inflammatory 

disorders, due to its capability to act as a GPx mimetic [448]. It has been shown to 
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have low toxicity as the selenium is not bioavailable.  Ebselen has been shown to be 

capable of scavenging both one-electron oxidants, such as the peroxyl radical 

CCl3OO·- with a rate constant for the reaction of 2.9 x 108 M-1 s-1 [449], and the two 

electron oxidants ONOOH [450] and H2O2 [451] with second order rate constants of 

2.0 x 106 M-1 s-1 and 4.8 M-1 s-1 respectively [450, 452] (Figure 1.9). The mechanism 

is thought to involve oxidation to the selenoxide, which is then reduced by two GSH 

molecules to reform ebselen [450]. In the second mechanism, it is thought that 

ebselen reacts with two GSH molecules, via a selenosulfide, to produce the selenol, 

which can then be oxidised to form the selenenic acid. The selenenic acid can 

eliminate water to reform ebselen, or react directly with GSH to form the 

selenosulfide [448, 453, 454]. 

 

Figure 1.9– Catalytic cycles of ebselen – adapted from [454] 

Numerous studies have looked at derivatives of ebselen in order to try to 

improve the efficacy of the GPx mimetic cycle [440-442]. Substitution of the phenyl 

group bound to the N demonstrated that for ideal GPx mimetic activity, the group 

bound needed to have a balance between promoting Se…N interaction to stabilise 

the selenol, without making the Se-N bond too strong reducing the rate at which 

oxidants could react with the selenium centre [440, 441]. Addition of amide groups 

to the benzyl ring in the position next to where Se is bound could increase the GPx 

mimetic activity via Se...O interactions [442].  

Derivatives of ebselen have also been designed as multifunctional drugs [455, 

456]. Substitution of methoxy groups to the selenazolone ring, and a benzyl 
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muscle disease,
165

 a degeneration of muscle fibre in livestock, Keshan disease, a wasting 

and enlargement of the heart tissue, Kaschin-Beck disease, a disabling joint disorder and 

Kwashiorkor, a protein malnutrition disorder.
166

 

 

As a consequence of discovering the importance of selenoproteins, much research has 

been directed towards the development of organic selenides as GPx and catalase 

mimetics. The benzisoselenazolone ebselen 161 is the most well known and researched of 

these. Ebselen is an anti-inflammatory compound that has been shown to catalyze the 

same reactions as GPx; it has also been shown to have very low toxicity due to the 

selenium not being bioavailable.
167

 Depending on the ROS scavenged ebselen has been 

shown to possess two different in vivo catalytic cycles.  
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Scheme 3.2 The catalytic cycles of ebselen 161. 

 

For the ROS peroxynitrite for example, the selenide 161 is simply oxidized to the 

selenoxide 162, before being reduced by two equivalents of glutathione (GSH) to reform 

the active compound 161. For ROS such as hydrogen peroxide the mechanism is more 

complex. In this case ebselen 161 is thought to react with two equivalents of GSH to give 

the selenol 164 via the selenosulfide 163. The selenol 164 then reacts with peroxide to 

give a seleninic acid, which eliminates water to reform ebselen (Scheme 3.2).
143a

 

 

Other examples of selenium-containing GPx mimetics include the water-soluble amino 

acid selenomethionine 165 and the synthetic phenylaminoethyl selenide 167. Both 

Ebselen 
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piperidine structure instead of the phenyl group maintains the GPx mimetic activity 

of ebselen, though allows for additional cholinesterase inhibition [455]. Similarly, 

substitution of the phenyl group an alkyl chain linked tacrine demonstrated dual 

function as a cholinesterase inhibitor and GPx mimetic [456]. This dual function as 

antioxidant and cholinesterase inhibitor may be beneficial in Alzheimers disease 

where both oxidative stress and cholinesterase activity can contribute to disease 

[455, 456].  

 Selenomethionine 

Selenomethione (SeMet) is a selenoether analogous to Met, where a Se atom 

replaces the sulfur. It is capable of reacting with the MPO-derived oxidants HOCl and 

HOBr with second order rate constants of 3.2 x 108 and 1.4 x 107 M-1 s-1 respectively 

[90]. The rate constants for these reactions are approximately 10 times greater than 

those reported for Met and similar to those reported for GSH [90]. HOSCN is also 

capable of reacting with SeMet with a rate constant of 2.8 x 103 M-1 s-1 [98], whereas 

it is unreactive towards Met [92].  

SeMet has demonstrated rapid reactivity with numerous other one- and two-

electron oxidants. SeMet reacts with hydroxyl radicals with a rate constant of 1.4 x 

1010 M-1 s-1 [457], which is comparable to reaction rates of Met [458] and thiols such 

as Cys [459] and GSH [460], with these sulfur species reacting with rate constants in 

the range of 1.4 x 1010 – 4 x 1010 M-1 s-1. SeMet is capable of reacting with ONOOH, 

with a rate constants of 2.4 x 103 M-1 s-1 [461]. The rate constants for reactions of 

SeMet with oxidants are some of the fastest reported for these oxidants in vivo and 

suggest SeMet would be a competitive target. As such, SeMet is able to protect 

dihydrorhodamine [462] and super-coiled plasmid DNA [463] from ONOOH 

mediated oxidation.  

SeMet has been shown to form selenomethionine selenoxide (SeMetO) upon 

reaction with H2O2 [464], ONOOH [465, 466] and by the enzymatic action of flavin 

containing monooxygenases [464]. This is analogous to the formation of MetSO 

upon oxidation of Met. One-electron oxidation of SeMet (in the presence of O2) also 

yields SeMetO via the radical cation SeMet+ [457], however, MetSO is only a minor 

product under these conditions, with other radicals forming higher abundance 

products [458, 467-469]. SeMet+, and the analogous species Met+, are stabilised by 
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a 3-electron bond between the Se or S and the N or O of the amino acid moiety, or 

interaction with the Se or S of a nearby parent compound [457, 470, 471]. SeMet+ 

and Met+ can then react with O2 to form the corresponding SeMetO or MetSO [457, 

472]. The higher yield of SeMetO compared to SeMetO is attributed to the increased 

stability observed for SeMet+, which has a lifetime 300 times greater than that 

observed for Met+[457, 470, 471]. The increased stability is primarily thought to be 

due to the presence of Se as opposed to S, though pH dependent effects are also 

observed [457].  

SeMetO can be reduced to reform SeMet in the presence GSH (Figure 1.10) [465, 

473]. Cys, ascorbate and methimazole can also achieve the reduction of SeMetO to 

SeMet [445]. Antioxidant enzymes such as Trx are also capable of reducing SeMetO 

[474]. It has been shown that the protective effects of SeMet, as well as other 

selenium-containing antioxidants, can be significantly increased in the presence of 

GSH [465]. 

 

Figure 1.10 – Catalytic cycle of selenomethionine – adapted from [444] 

SeMet can be non-selectively incorporated into proteins in place of Met residues 

[475]. In a cell-free synthesis system in the absence of Met in the cell culture media, 

95% of Met residues were replaced with SeMet in the human c-Ha-Ras protein 

[475]. However, under normal conditions, SeMet incorporation does not occur to 

this extent. The substitution of Met for SeMet can affect protein structure and 

function, with SeMet substituted amyloid proteins showing decreased ability to 

form fibrils and lowered toxicity [476]. However, it is unclear whether this is due to 
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an antioxidant effect provided by SeMet incorporation or by some other means 

[476].  

 Selenols 

Selenols are compounds which contain the functional group R-Se-H. The 

reactions of selenols are difficult to study due to their rapid reaction with 

atmospheric oxygen and subsequent diselenide formation. As such, most 

experiments discussed here were performed under N2 to minimise the contribution 

of auto-oxidation, even though this does not necessarily reflect in vivo conditions. 

The rates of reaction between selenols and other MPO-derived oxidants have not 

yet been determined, though it would be expected that they would be faster than for 

GSH which reacts with HOCl and HOBr with second order rate constants of ~108 and 

~107 M-1 s-1 respectively [90]. Rate constants for the reaction of HOSCN with Sec and 

derivatives (Sec-methyl ester, selenocystamine and 3-selenopropionic acid) were 

determined to be in the range of 1.2 – 5.8 x 106 M-1 s-1 [98]. These rate constants are 

at least 10-fold greater than those reported for the corresponding thiol compounds 

(k = 7.7 x 104 – 1.6 x 105 M-1 s-1) [92]. Rate constants for the reaction between HOSCN 

and selenium substituted GSH (GSeH) and the peptide Gly-Sec-Gly were determined 

to be 1.7 x 106 M-1 s-1, compared to 2.5 x 104 M-1 s-1 for GSH [98].  

GPx contains a Sec residue at the active site, which is capable of reacting with 

oxidants including H2O2 [346], ONOOH [477, 478] and HOSCN [98, 348]. The rate 

constant for these reactions have been shown to be in the range 105 – 107 M-1 s-1 [98, 

477]. These values were higher than calculated for free selenocysteine with H2O2, 

with this attributed to hydrogen bonding interactions between the GPx protein 

structure and H2O2 [479].  

The reaction of selenols with 2-electron oxidants is proposed to initially result 

in the formation of a selenenic acid, analogous to thiol oxidation. These selenenic 

acid intermediates then rapidly react with selenols or thiols to result in diselenide 

or mixed disulfide-selenide species [480, 481]. Selenenic acid species have not been 

reported for low molecular mass species in aqueous solution, though they have been 

described in organic solvents [482]. A selenenic acid intermediate formed at the GPx 

active site after oxidation has been trapped using dimedone [370]. It has been 
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proposed that the protein structure stabilises this selenenic acid, which 

demonstrated stability in the presence of both oxidising and reducing agents [370].  

Sec residues also react rapidly with one-electron oxidants. Sec and GSeH react 

with the phenoxyl radical formed on N-acetyl-Tyr-amide with rate constants of 8 x 

108 and 5 x 108 M-1 s-1 [483]. The rate constant for this oxidation of Sec is ~3 orders 

of magnitude greater than that reported for Cys (k = 6 x 105 M-1 s-1) [483]. Sec and 

GSeH also reacted with insulin bound Tyr radicals with rate constants of 1.6 x 108 

and 4 x 106 M-1 s-1 [483]. The lower rate of reaction of GSeH was attributed to steric 

considerations due to its increased size, though it still reacted significantly faster 

than GSH (k = 1 x 104 M-1 s-1) [483]. 

One-electron oxidation of Sec residues results in the formation of selenyl 

radicals, analogous to thiyl radicals. However, selenyl radicals have a lower 

reduction potential than thiyl radicals [484]. Thiyl radicals quickly abstract 

hydrogen from nearby carbon centres, propagating radical damage [480, 485]. 

Selenyl radicals are more stable and are less likely to undergo hydrogen abstraction, 

and primarily undergo radical recombination reactions, preventing the propagation 

of damage [480]. The increased stability of selenyl radicals is proposed to be 

protective and may partially explain the use of Sec residues in enzymes such as GPx 

as opposed to Cys [480]. 

 Other seleno compounds 

Novel compounds that incorporate selenium in a cyclic carbohydrate structure 

also show potential as MPO-derived oxidant scavengers [439]. 1,5-Anhydro-5-

seleno-L-gulitol (SeGul) has been shown to have a second order rate constant for 

reaction with HOCl of ~ 107 M-1s-1 [439]. A similar compound, 1,4-anhydro-4-

seleno-D-talitol (SeTal) also shows promise as an MPO-derived oxidant scavenger, 

reacting with HOCl, HOBr and HOSCN with rate constants of 1 x 108, 1.5 x 107 and ~ 

1 x 102 M-1 s-1
 respectively [486]. Consistent with other selenium species, these 

selenium species react faster than their sulfur analogues [90, 486]. These cyclic 

selenides have been shown to protect human serum albumin from oxidative damage 

induced by HOCl [439, 486]. A related cyclic selenide, trans-3,4-

dihydroxyselenolane, exhibits GPx like activity, being oxidised by H2O2 followed by 

reduction by thiols groups such as GSH [487].  
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Selenoethers with the general structure of Se(CH2CH2X)2, where X is either OH, 

CO2
- or NH3

+, have GPx mimetic properties, catalysing the reaction between H2O2 and 

GSH [443]. They also react very rapidly with one-electron oxidants such as the 

model peroxyl radical CCl3O2
 (k = 1 x 108 – 4.2 x 108 M-1 s-1) [443]. Pyrazole 

conjugated selenoethers also demonstrate significant radical scavenging ability, 

reacting with HO and CCl3O2
 with rate constants of 1.4 x 1010 M-1 s-1 and 7.8 x 108 

M-1 s-1 respectively [488]. 

Diselenides also react rapidly with radicals, with selenocystamine reacting with 

HO with a rate constant of 8.1 x 109 M-1 s-1 [489] and (SeCH2CH2COOH)2 reacting 

with CCl3O2
 with a  rate constant of 2.7 x 108 M-1 s-1 [490].  Direct reactions between 

diselenides and two-electron oxidants have not been studied extensively. However, 

some have demonstrated GPx activity, with these reacting catalytically with H2O2 

and ONOOH in the presence of GSH or enzymatic reduction systems [491, 492]. 

Selenocystine is reduced by GSH or Trx forming the selenol, which then reacts 

rapidly with oxidants to reform the diselenide, resulting in catalytic scavenging 

[491, 492]. A novel diselenide nicotinamide derivative, and GSeSeG (selenium 

substituted GSSG) have also demonstrated this GPx mimetic ability in the presence 

of GSH [493]. Ebselen is also capable of reacting in this manner, though it is the Se-

N bond that is reduced by GSH and Trx, as opposed to a diselenide bond [448].  

 Endogenous selenium levels and selenium supplementation 

 Dietary selenium and the risk of disease 

In the light of the above data, there is considerable interest in the biological 

activity of selenium and optimal dietary selenium levels. Selenium is an essential 

micronutrient, typically found in human plasma at concentrations of 70 – 140 µg L-

1 with a recommended daily intake of 55 – 70 µg per day [494]. Deficiency in 

selenium intake (< 20 µg per day) is known to have detrimental health 

consequences, with low selenium levels correlating with numerous diseases. 

Selenium levels have been shown to inversely correlate with instances of cancer, 

with incidences of prostrate [495, 496], bladder, lung [497] and laryngeal cancers 

[497] being reduced with higher levels of plasma selenium. Low selenium levels 

correlate with increased markers of oxidative stress in the plasma of sepsis patients 



 41 

[498].  Selenium levels in plasma have been shown to correlate inversely with 

instances of coronary artery disease, myocardial infarction and death from 

cardiovascular disease [499, 500]. Furthermore, supplementation of selenium in 

patients with low selenium levels reduced plasma lipid levels [501]. In contrast, 

where selenium levels were much higher (with a mean of 125.6 ng mL-1), no 

correlation was observed between selenium levels and cardiovascular disease risk 

factors [502]. Furthermore, high selenium levels were correlated with elevated lipid 

levels [503] and hypertension [504], which are both risk factors for cardiovascular 

disease. These data suggest that selenium supplementation may only be effective in 

patients where base levels of selenium are low.  

The observation that selenium supplementation may only be effective in low-

baseline selenium level patients is backed up by observations from the NPC [505] 

and SELECT [506] trials. Both these trials aimed to reduce incidence of cancer by 

supplementation of selenium, and in the SELECT trial Vitamin E was also 

supplemented. The NPC trial demonstrated that patients with lower (though 

nutritionally sufficient) selenium levels (< 123 ng mL-1) showed a decrease in lung 

and prostate cancer incidences [496, 507]. This effect was not observed in the 

SELECT trial, though the mean baseline selenium levels were much higher in this 

study (135 in SELECT vs 114 in NPC) [505, 506].  

 Actions of selenium in biological systems 

While selenium supplementation may not demonstrate efficacy in preventing 

incidence of disease states in people with adequate selenium intake, many studies 

have shown a therapeutic potential of Se compounds in disease models. Selenium 

has been proposed to exert its effects in 3 ways including induction of reactive 

oxygen species (ROS) in cancer cells, upregulation of antioxidant enzymes in the 

selenoproteome and by direct scavenging of oxidants.  

Treatment with sodium selenite can induce the formation of ROS in a number of 

different cell types [508-514]. Selenodiglutathione [514] and selenocystamine [515, 

516], which readily react with thiols such as GSH to produce selenolates are also 

capable of producing ROS [514]. O2
  production is thought to be the cause of the 

observed selenium-induced apoptosis, with SOD overexpression inhibiting this 

apoptosis [517]. Methylated selenium species such as methylselenocysteine 
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(MeSeCys) and SeMet are much less toxic, though also have demonstrated capacity 

to induce ROS formation [513, 518, 519], and this is attributed to the formation of 

methylselenolate after metabolism of MeSeCys and SeMet by methioninases [513]. 

Cancer cells are believed to be much more susceptible to selenium induced ROS 

formation than normal cells; this has been demonstrated using selenite and 

selenocystine in patient matched pairs of cancerous and normal prostate cells [520], 

fibroblasts [515] and malignant and benign mesothelioma cells [521]. In each case, 

the cancerous cells were more susceptible to selenium supplementation and this has 

been attributed to a higher level of oxidative stress already occurring in the cancer 

cells, which is then exacerbated in the presence of selenium. Furthermore, inhibition 

of TrxR with auranofin and ethaselen made cancer cells more sensitive to selenium-

induced apoptosis [522, 523], further implicating increased levels of ROS as the 

cause of apoptosis. 

Selenium supplementation results in an upregulation of selenium containing 

enzymes, including GPx, TrxR and other selenoproteins [524-526]. Selenite 

supplementation enhanced GPx expression in rat cardiomyocytes, human lung 

cancer cells [527], and HCAECs [528]. SeMet was also capable of increasing GPx 

expression in the rat cardiomyocytes [529] as well as human trophoblasts [530, 

531], but not HCAECs [532]. This increase in GPx activity protected cells from 

peroxide induced oxidative damage and reduced lipid peroxidation in a hypoxia-

reoxygenation model [529]. Upregulation of selenoenymes by supplementation of 

trophoblasts with SeMet decreased oxidative stress induced by addition of H2O2, as 

well as mitochondrial oxidative stress induced by addition of antimycin [530, 531]. 

Rats given selenite, selenocystine or SeMet in their diet also demonstrated an 

increase in GPx activity in blood and tissue samples [524]. Selenite supplementation 

in rats resulted in a small increase in GPx activity, which improved cardiac outcomes 

in an ischaemia reperfusion model [525, 526].  Low selenium levels have been 

shown to correlate with incomplete GPx expression and an increased risk of 

myocardial infarction [499, 533, 534], and it has been suggested that selenium 

supplementation could reduce this risk [466]. Patients supplemented with selenite 

demonstrated an increased GPx expression when their baseline selenium levels 

were less than 90 ng mL-1 [535], which is postulated to be protective in the context 

of heart disease. 
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TrxR can also be upregulated by supplementation with selenium compounds. 

Selenite supplementation increased TrxR expression in HUVECs, and led to 

increased viability on peroxide exposure [528]. Selenite supplementation in rats 

also demonstrated an increase in TrxR level at low doses [536]. However, at higher 

doses, whilst there was an initial increase in TrxR levels, a subsequent decline in 

levels was observed [525, 526]. MeSeCys and methylselenic acid supplementation 

demonstrated no effects on TrxR levels in the same study [537].  

 Selenium supplementation in disease 

As discussed above, numerous selenium compounds exhibit GPx mimetic 

activity, catalysing the reaction of H2O2 and other oxidants with GSH. This direct 

scavenging of oxidants appears to have multiple beneficial effects in vitro and in vivo, 

particularly when GPx is absent or downregulated. The presence of (additional) 

SeMet, MeSeCys and selenocystamine can protect erythrocytes from lipid 

peroxidation and hemolysis [538]. SeMet also protects J774A.1 murine macrophage 

cells from peroxide damage [474].  The Trx system can also increase the efficacy of 

SeMet [474], and has also been shown to enhance the scavenging potential of 

selenocystamine, ebselen and diselenoglutathione [491, 492].  

Selenium containing compounds have demonstrated particular efficacy in 

models of atherosclerosis. A GPx/ApoE double knock-out mouse model has been 

developed, and these animals quickly develop atherosclerotic lesions [539, 540]. 

Supplementation with ebselen decreases lesion size, and decreases inflammation 

and oxidative stress, and is postulated to achieve this by boosting antioxidant 

defences [539-541]. Ebselen also prevented diabetes related kidney and retina 

nephropathy observed in this model [539, 542, 543]. Diphenyldiselenide has been 

shown to reduce lesion size in an LDL receptor knockout model of atherosclerosis 

[544]. Selenocystamine-coated stents have also been reported to have improved 

bio-compatibility compared to bare metal stents, reducing platelet aggregation, 

smooth muscle proliferation, which is thought to be due to antioxidant activity of 

the selenocystamine [545]. 

While selenium supplementation does not appear to reduce the incidence of 

disease if patients are not selenium deficient, selenium containing compounds have 

demonstrated efficacy in models of disease where oxidative stress plays a major role 
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in the pathogenesis, such as atherosclerosis.  Furthermore, research has 

demonstrated that toxicity of selenium is mostly related to selenolate metabolites 

[519], and toxicity can be reduced by supplementation with different forms of 

selenium [546]. Therefore, there is potential for the development of selenium 

containing compounds that may act as antioxidants to reduce or prevent disease.  

 Hypothesis and aims 

Overall, it is clear from the data above that MPO produces strong oxidants that 

are designed to kill invading pathogens. However, excessive or misplaced 

production of these oxidants has been associated with the development of 

numerous diseases, including atherosclerosis. As sulfur and selenium compounds, 

and enzymes containing these residues show great potential as catalytic 

antioxidants due to their fast reaction kinetics it is proposed that they may be able 

to attenuate damage caused by MPO-derived oxidants, such as HOCl and N-

chloramines. While the rate constants for the reaction of selenium compounds with 

HOCl and other hypohalous acids have been determined recently [90, 98], the 

products of these reactions have not been fully characterised. Furthermore, the rate 

constants for the reaction with N-chloramines are yet to be determined. 

The ability for facile recycling of oxidised selenium compounds suggests a 

potential for a catalytic reduction of MPO-derived oxidants. However, the 

mechanisms and rate constants for the reduction of selenoxides by thiols have not 

been determined. Furthermore, antioxidant enzymes with reactive Cys and Sec 

residues may also be capable of reducing HOCl, N-chloramines and selenoxides, 

though this has yet to be examined. 

The hypothesis for this project is therefore that thiol and seleno compounds and 

related enzymes may modulate oxidative damage induced by myeloperoxidase and 

related peroxidases during inflammation, by acting as catalytic agents and as such 

will be able to modulate the development of disease.  

The proposed studies will address the following specific aims: 

1. Examination of the kinetics and mechanisms of reaction of HOCl and related 

species with thiol and seleno compounds. 
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2. Identification of potential repair / recycling mechanism(s) of low-

molecular-mass compounds. 

3. Determining whether thiol and seleno-dependent enzymes also behave as 

catalytic protective systems. 

4. Examination of the efficacy of these compounds and enzymes in protecting 

cells from oxidant damage. 
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2 Materials and Methods 
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 General Information 

This Chapter contains details of the general Materials and Methods used 

throughout this Thesis. 

Nanopure water, referred to as H2O, is water filtered through a four-stage Milli Q 

system (Millipore-Water, Lane Cove, NSW, Australia). Solutions were prepared in pH 

7.4 0.1 M sodium phosphate buffer (preparation detailed in Section 2.3.1.1) unless 

otherwise stated. The pH of solutions was determined using a Radiometer Analytical 

PHM220 pH meter with pHC2401 probe (Radiometer Analytical, Villeurbanne Cedex, 

France), calibrated with pH 4, 7 and 10 standards (Radiometer Analytical). 

All centrifugation was performed on an Eppendorf Refrigerated Micro Centrifuge 

(Model 5215R, Eppendorf, Hamburg, Germany), unless otherwise stated. 

 Materials 

Reagent Supplier 

Acetic acid, glacial Merck Pty Ltd (Vic, Australia) 

N-α-acetyl-L-histidine (His) Sigma-Aldrich (Castle Hill, NSW, Australia) 
N-α-acetyl-L-lysine (Lys) Sigma-Aldrich (Castle Hill, NSW, Australia) 

N-acetylselenomethionine (NASM) Gift from Dr. Lara Malins and Prof. Richard 
Payne (School of Chemistry, University of 
Sydney, Sydney) 

Acetone Merck Pty Ltd (Vic, Australia) 
Acetonitrile Merck Pty Ltd (Vic, Australia) 

Allophycocyanin-conjugated annexin 
V 

BD Biosciences, Sydney, NSW, Australia 

1,4-anhydro-4-seleno-L-talitol 
(SeTal) 

Gift from Prof. Carl Schiesser (School of 
Chemistry and Bio21 Molecular Science 
and Biotechnology Institute, University of 
Melbourne) 

Auranofin Sigma-Aldrich (Castle Hill, NSW, Australia 

Bovine serum albumin, essentially 
fatty acid free (BSA) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Chelex 100 resin BioRad Laboratories, Inc. (Hercules, CS, 
USA) 

CompleteMini protease inhibitor 
cocktail tablet 

Roche (Mannheim, Germany) 

L-Cysteine (Cys) Sigma-Aldrich (Castle Hill, NSW, Australia) 

Deuterium oxide (D2O) Sigma-Aldrich (Castle Hill, NSW, Australia) 
Dimethylformamide (DMF) Sigma-Aldrich (Castle Hill, NSW, Australia) 

Dimethylsulfone Sigma-Aldrich (Castle Hill, NSW, Australia) 
Dimethylsulfoxide (DMSO) Sigma-Aldrich (Castle Hill, NSW, Australia) 
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Reagent Supplier 

Disodium hydrogen orthophosphate 
dodecahydrate 

Ajax FineChem, Ltd. (Sydney, NSW, 
Australia) 

5,5’-dithiobis(2-nitrobenzoic acid) 
(DTNB) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Dithiothreitol (DTT) Sigma-Aldrich (Castle Hill, NSW, Australia) 
Dulbecco’s modified Eagle’s medium 
(DMEM) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Ethidium bromide (EtBr) Sigma-Aldrich (Castle Hill, NSW, Australia) 
Ethylenediaminetetraacetic acid 
(EDTA) 

Sigma-Aldrich (Castle Hill, NSW, Australia 

N-ethylmaleimide (NEM) Sigma Chemical Co. (Castle Hill, NSW, 
Australia) 

Fetal calf serum (FCS) Invitrogen (Eugene, OR, USA) 
Formaldehyde, 37 % Biotechnology 
Grade 

Amresco (Solon, OH, USA) 

Formic acid, > 96% ACS reagent Sigma-Aldrich (Castle Hill, NSW, Australia) 

L-Glutamine Sigma-Aldrich (Castle Hill, NSW, Australia) 
Glutathione (GSH) Sigma-Aldrich (Castle Hill, NSW, Australia) 

Glutathione peroxidase, from bovine 
erythrocytes (GPx) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Glutathione reductase from Baker’s 
yeast (GR) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Glutathione, oxidised approx 98% 
(GSSG) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Glyceraldehyde 3-phosphate (GAP) Sigma-Aldrich (Castle Hill, NSW, Australia) 

Glycine (Gly) Sigma-Aldrich (Castle Hill, NSW, Australia) 
Hank’s balanced buffer solution 
(HBSS) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Hydrogen peroxide, 30% (w/w) 
(H2O2) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

2-[4-(2-hydroxyethyl)piperazin-1-
yl]ethanesulfonic acid (HEPES) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

5-Iodoacetamidofluorescein (IAF) Invitrogen (Mount Waverley, VIC, 
Australia) 

2-mercaptoethanol Sigma-Aldrich (Castle Hill, NSW, Australia 
Methane sulfonic acid (MSA), 4 M 
containing 0.2 % w/v tryptamine 

Sigma-Aldrich (Castle Hill, NSW, Australia 

Methanol Merck Pty Ltd (Vic, Australia) 

L-Methionine (Met) Sigma-Aldrich (Castle Hill, NSW, Australia) 
Methionine Sulfoxide Reductase A 
(Human Recombinant) (MSRA) 

ProSpec Protein Specialists (East 
Brunswick, NJ, USA) 

Methionine Sulfoxide Reductase B2 
(Human Recombinant) (MSRB2) 

ProSpec Protein Specialists (East 
Brunswick, NJ, USA) 

Methylselenocysteine hydrochloride 
(MeSeCys) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Myeloperoxidase (MPO) Planta Natural Products (Wein, Austria) 
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Reagent Supplier 

Nicotinamide adenine dinucleotide 
(NADH) 

Roche (Mannheim, Germany) 

Nicotinamide adenine dinucleotide 
(oxidised) (NAD+) 

Roche (Mannheim, Germany) 

Nicotinamide adenine dinucleotide 
phosphate (NADPH) 

Roche (Mannheim, Germany) 

Nitrogen Coregas (Yennora, NSW, Australia) 
Phorbol 12-myristrate 13-acetate 
(PMA) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Phthaldialdehyde reagent 
(Incomplete) (OPA) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

PolyMorph Prep Axis-Shield PoC AS (Oslo, Norway) 
Propidium iodide (PI) BD Biosciences, Sydney, NSW, Australia 

Red cell hypotonic lysis buffer Sigma-Aldrich (Castle Hill, NSW, Australia) 
Seleno-bispropionic acid (SeProp) Gift from Prof. K. Indira Priyadarsini 

(Radiation and Photochemistry Division, 
Bhabha Atomic Research Centre, Bombay, 
India) 

Selenocystamine dihydrochloride 
(SeCysta) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Selenomethionine (SeMet) Sigma-Aldrich (Castle Hill, NSW, Australia) 

Silver nitrate Sigma-Aldrich (Castle Hill, NSW, Australia) 
Sodium acetate trihydrate Sigma-Aldrich (Castle Hill, NSW, Australia) 

Sodium carbonate Sigma-Aldrich (Castle Hill, NSW, Australia) 
Sodium chloride (NaCl) Sigma-Aldrich (Castle Hill, NSW, Australia) 

Sodium deoxycholate Sigma-Aldrich (Castle Hill, NSW, Australia 
Sodium dihydrogen orthophosphate 
monohydrate 

Merck Pty Ltd (Vic, Australia) 

Sodium hydroxide (NaOH) Sigma-Aldrich (Castle Hill, NSW, Australia) 

Sodium hypochlorite, 12.5 % w/v 
(HOCl) 

Ajax FineChem, Ltd. (Sydney, NSW, 
Australia) 

Sodium iodide Sigma-Aldrich (Castle Hill, NSW, Australia) 
Sodium pyrophosphate Sigma-Aldrich (Castle Hill, NSW, Australia) 

Sodium pyruvate Sigma-Aldrich (Castle Hill, NSW, Australia) 
Sodium thiosulfate Sigma-Aldrich (Castle Hill, NSW, Australia) 

Taurine (Tau) Sigma-Aldrich (Castle Hill, NSW, Australia) 
3,3’,5,5’-tetramethylbenzidine (TMB) Sigma-Aldrich (Castle Hill, NSW, Australia) 

ThioGlo-1 reagent Berry and Associates (Dexter, MI, USA) 
Thioredoxin 1, human (Trx) IMCO (Stockholm, Sweden) 

Thioredoxin reductase, rat (TrxR) IMCO (Stockholm, Sweden) 
Trichloroacetic acid (TCA) Sigma-Aldrich (Castle Hill, NSW, Australia) 

Trifluoroacetic acid (sequencing 
grade) (TFA) 

Sigma-Aldrich (Castle Hill, NSW, Australia) 

Triton X-100 Sigma-Aldrich (Castle Hill, NSW, Australia) 

Trypan blue Sigma-Aldrich (Castle Hill, NSW, Australia) 
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 Methods 

 Preparation of buffers 

2.3.1.1 0.1 M Phosphate buffer pH 7.4 

A 0.1 M sodium phosphate pH 7.4 buffer was prepared as previously described 

[547]. Solutions of 0.1 M monobasic orthophosphate and 0.1 M dibasic orthophosphate 

were prepared in H2O. Trace transition metal ions were removed by the addition of 

washed Chelex resin, followed by stirring for 1 h. The Chelex resin was removed by 

vacuum filtration. The monobasic solution was then added to the dibasic solution while 

stirring, until the pH was 7.4. 

 Preparation of oxidant species 

2.3.2.1 Reagent HOCl 

HOCl was diluted from a stock solution of sodium hypochlorite (17 % (w/v)) to 10 

mM in H2O, and then further diluted to the desired concentration in phosphate buffer. 

The concentration of the stock sodium hypochlorite solution was assessed by optical 

absorbance at 292 nm at pH 11, achieved by dilution into 0.1 M NaOH, using the 

absorbance co-efficient of OCl-,  = 350 M-1cm-1 [82]. 

2.3.2.2 Reagent H2O2 

H2O2 was diluted from a stock solution (30 % (w/w)) to 10 mM in water. H2O2 stock 

concentration was determined by optical absorbance at 240 nm of diluted stock 

samples in water using the absorbance co-efficient of H2O2,  = 43.6 M-1cm-1 [548]. 

2.3.2.3 Amino acid N-chloramine formation 

N-Chloramines were formed on reaction of HOCl with amine groups, including free 

amino acids, side chains of peptides (e.g. Lys, His) and the N-terminus of proteins [53, 

58].  

𝑅𝑁𝐻2 +𝐻𝑂𝐶𝑙 → 𝑅𝑁𝐻𝐶𝑙 + 𝐻2𝑂 Reaction 2.1  

A series of model N-chloramines was prepared by reaction of Tau, Gly and N-α-

acetyllysine (10 mM) by mixing with HOCl (2 mM), which yielded approximately 2 mM 
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N-chloramine solution. Final N-chloramine concentrations were determined using the 

TNB method (Section 2.3.3.1) prior to use.  

2.3.2.4 Protein N-chloramine formation 

Bovine serum albumin (BSA; 1 mg mL-1, 15 µM) was incubated with equal volumes 

of HOCl solution (0.5 mM) for 5 min. Protein N-chloramine concentrations were 

determined by the TNB method (Section 2.3.3.1) and the solution diluted to give the 

desired concentration of N-chloramines. 

2.3.2.5 Myeloperoxidase system 

MPO catalyses the reaction of H2O2 and (pseudo)-halides, Cl-, Br- and SCN-, to form 

the hypohalous acids, HOCl, HOBr and HOSCN respectively (e.g. Reaction 2.2) [24]. MPO 

(2 µM) was incubated with Cl- (100 mM) and Tau (10 mM) at 37°C for 10 min before 

addition of H2O2 (50 µM) to initiate HOCl production. Samples were further incubated 

for 30 min, then the concentration of TauCl (from Reaction 2.3) was determined using 

TMB (Section 2.3.3.2). Under these conditions approximately 50 µM HOCl, and 

subsequently TauCl, was formed. Tau was included as it traps HOCl after production as 

TauCl, a longer-lived oxidant, making it easier to detect [549]. Tau is physiologically 

relevant as neutrophils contain up 20 - 50 mM Tau [550], which is released upon 

activation and quickly chlorinated [551, 552].  

𝐻2𝑂2 + 𝐶𝑙
− + 𝐻+  

𝑀𝑃𝑂
→   𝐻𝑂𝐶𝑙 + 𝐻2𝑂 

 
Reaction 2.2  

𝑇𝑎𝑢𝑁𝐻2 +𝐻𝑂𝐶𝑙 → 𝑇𝑎𝑢𝑁𝐻𝐶𝑙 + 𝐻2𝑂   Reaction 2.3 

2.3.2.6 Isolation of neutrophils and formation of neutrophil-derived oxidants 

Neutrophils were isolated immediately after collection of blood into EDTA-coated 

tubes (10.0 mL BD Vacutainer, BD biosciences, Sydney, NSW, Australia) from healthy 

volunteers with informed consent and local ethical approval (Sydney South West Area 

Health Service, Protocols X09-0013 and X-12-0375) in accordance with the Declaration 

of Helsinki (2000) of the World Medical Association, as described previously [553]. 

Neutrophils were isolated using a Polymorphprep density-gradient method. 5 mL of 

whole blood was layered over 5 mL Polymorphprep and centrifuged at 510 g at 21 °C 

for 35 min with maximum acceleration and the deceleration set to 0 to ensure slow 



 52 

braking in an Allegra X-15R Centrifuge (Beckman Coulter). This separated out the 

plasma, mononuclear cells, neutrophils and the red blood cells (Figure 2.1). The plasma 

and mononuclear cell layers were removed, and the neutrophils collected and 

transferred into clean Falcon tubes. 

 

Figure 2.1 – Separation of layers observed after whole blood is layered onto 
Polymorphprep and centrifuged. 

Osmolality was restored by addition of 1.5 mL saline solution (0.45% NaCl). The 

volume was increased 12 mL with saline solution (0.9% NaCl), and mixed by inversion 

to wash neutrophils. Neutrophils were pelleted by centrifugation at 400 g for 10 min 

at 21 °C, with maximum acceleration and deceleration. The majority of supernatant 

was removed, leaving 1 mL in the tube. The pellets were resuspended in 2 mL red cell 

lysis buffer (Product number: R7757, Sigma-Aldrich, Castle Hill, NSW, Australia) and 

incubated for 15 min in the dark to remove any residual red blood cell contamination.  

The volume in tubes was then 12 mL with HBSS, and cells were re-pelleted by 

centrifugation at 400 g for 10 min at 21 °C. If any red cells remained in the pellet, as 

judged by its colour, the red cell lysis step was repeated. The supernatant was then 

removed and the neutrophils washed by resuspension in 12 mL HBSS and mixed by 

inversion. The neutrophils were then pelleted by centrifugation at 400 g for 10 min, 

the supernatant was removed and neutrophils resuspended in 2 mL HBSS for counting. 

Cell number and viability was assessed by trypan blue dye exclusion. The 

neutrophil suspension (10 µL) was mixed with equal volumes of trypan blue dye and 

mixed by aspiration. 10 µL of mixture was pipetted into a haemocytometer chamber 

and cells counted under a microscope. Cells that did not take up the dye were counted 

as viable. 

Neutrophils (2 x 106 cells mL-1) were incubated at 37 °C for 10 min, before addition 

of phorbol 12-myristate 13-acetate (PMA; 0.1 µg mL-1) to induce neutrophil activation. 
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The cells were then incubated for 30 min at 21 C with gentle agitation to ensure that 

the cells remained in suspension. Under these conditions, approximately 50 µM of 

reactive species were produced, as measured by the TMB assay (Section 2.3.3.2). 

 Assays 

2.3.3.1 TNB 

5-thio-2-nitrobenozic acid (TNB), a bright yellow thiol species, reacts with N-

chloramines (and other oxidants), to form the colourless disulfide 5,5’-thiobis(2-

nitrobenzoic acid) (DTNB) [554] (Reaction 2.4).  

2𝑅𝑆𝐻 + 𝑅𝑁𝐻𝐶𝑙 → 𝑅𝑆𝑆𝑅 + 𝑅𝑁𝐻3
+ + 𝐶𝑙−   Reaction 2.4  

The TNB reagent was prepared by alkaline hydrolysis of DTNB (2.5 mg) by NaOH 

in H2O (5 mL; 50 mM) and incubated in the dark for 5 min. This stock solution was then 

diluted 1 : 40 in phosphate buffer (0.1 M, pH 7.4), to give a yellow working solution 

with an absorbance at 412 nm of between 0.5 – 0.7 absorbance units. The working 

solution (950 µL) was mixed with oxidant solution (50 µL, 20 - 100 µM) and incubated 

in the dark for 15 min. The optical absorbance of the solution was measured at 412 nm, 

and the concentration of remaining TNB was determined using the extinction 

coefficient ε = 14150 cm-1 [555]. The concentration of the oxidant was determined by 

the difference between TNB concentration in control and oxidant treated samples, 

based on a 2 : 1 TNB to oxidant stoichiometric ratio. 

2.3.3.2 TMB 

N-chloramines and HOCl, in the presence of iodide ions (I-), rapidly react with the 

colourless 3,3’,5,5’-tetramethylbenzidine (TMB) to form a blue  oxidised product [549]. 

I- catalyses the oxidation of TMB via reaction with N-chloramines or HOCl to form 

hypoiodous acid (HOI), which is then the reactive species that oxidises TMB [549] 

(Reaction 2.5 – 2.7). 

𝑅𝑁𝐻𝐶𝑙 + 𝐻+ + 𝐼− → 𝑅𝑁𝐻2 + 𝐼𝐶𝑙 Reaction 2.5  

𝐼𝐶𝑙 + 𝐻2𝑂 → 𝐻𝑂𝐼 + 𝐻𝐶𝑙 Reaction 2.6  

𝐻𝑂𝐼 + 𝑅′𝐻2  → 𝑅
′ + 𝐼− + 𝐻+ + 𝐻2𝑂 Reaction 2.7 
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The developing reagent was prepared by dissolving 4.8 mg of 3,3’,5,5’-

tetramethylbenzidine (TMB; 20 mM) in dimethylformamide followed by the addition 

of sodium acetate buffer (9 mL, 0.44 M, pH 5.4) and sodium iodide solution (50 µL of 2 

mM). The developing reagent was prepared immediately prior to addition to the 

standards and samples to avoid any artifactual autoxidation of TMB.  

The TMB assay was used to determine oxidant concentration after sulfur and 

selenium compounds were used as scavengers of MPO-derived and neutrophil-derived 

oxidant species produced by systems described above. SeMet, SeTal and Met (0 – 50 

µM) were incubated with either the isolated MPO system or neutrophil system (final 

volume 50 µL). After 30 min, the remaining oxidant was quantified by addition of TMB 

developing reagent (50 µL) followed by a 5 min incubation period. The absorbance was 

measured at 645 nm on a Benchmark Plus microplate reader (BioRad). The oxidant 

concentration was assessed by comparison to a standard curve constructed from 

standards of TauCl (0 – 100 µM).  

2.3.3.3 ThioGlo-1 assay 

ThioGlo-1 is a malemide derived florescent dye used to determine thiol levels in 

biological samples [547]. The ThioGlo-1 reagent specifically reacts with free thiols of 

Cys residues forming a fluorescent product. ThioGlo reagent (2.6 mM) was dissolved 

in acetonitrile and stored in the dark at 4 °C before a working solution was prepared 

by dilution 1 : 100 in phosphate buffer (0.1 M, pH 7.4) immediately prior to use. ThioGlo 

working solution (50 µL) was added to sample or standard (50 µL; 0 – 5 µM thiol) in a 

96-well tissue culture plate and incubated for 10 min in the dark. Fluorescence was 

then measured at λex= 360 nm λem= 530 nm on an M2e plate reader (Molecular 

Devices). The thiol concentration was determined by comparison to a standard curve 

prepared using GSH (0 – 5 µM). 

2.3.3.4 Bicinchoninic acid (BCA) protein assay 

The BCA assay determines protein levels by measurement of the reduction of Cu2+ 

to Cu+ by peptide residues. Cu+ is then chelated by the bicinchoninic acid to form a 

complex that strongly absorbs at 562 nm [556]. Absorbance at 562 nm is proportional 

to protein content. A working solution was prepared by mixing Pierce BCA Protein 

Assay Solution A (Thermo Scientific, Rochford, IL, USA) with CuSO4 (4 % (w/v)) in a 50 
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: 1 ratio. Working solution (200 µL) was then added to protein samples (25 µL) and 

standards (25 µL; 0.1 – 1 mg mL-1) in a 96-well cell culture plate. Solutions were mixed 

by gentle shaking, followed by incubation at 60 °C for 10 min. The absorbance at 562 

nm was measured on an M2e plate reader (Molecular Devices), and protein 

concentration determined by comparison to a standard curve prepared using BSA. 

 Enzymatic reduction assays 

2.3.4.1 Glutathione reductase 

GSR reduces GSSG to GSH using NADPH as a reducing equivalent [557]. GSSG is 

formed when GSH is exposed to oxidants including N-chloramines and selenoxides 

[192, 445]. The rate of GSSG removal, by GSR can be determined by monitoring the 

concentration of NADPH in the presence of GSR and GSH (Reaction 2.8 – 2.9). 

𝑅𝑁𝐻𝐶𝑙 + 2𝐺𝑆𝐻 → 𝑅𝑁𝐻2 +  𝐺𝑆𝑆𝐺 + 𝐻
+ Reaction 2.8  

𝑁𝐴𝐷𝑃𝐻 + 𝐺𝑆𝑆𝐺
𝐺𝑆𝑅
→   𝑁𝐴𝐷𝑃+ + 2𝐺𝑆𝐻 Reaction 2.9  

Commercially available GSR comes in a solution containing DTT to stabilise the 

enzyme, which needs to be removed prior to assay as it can interfere by removing 

oxidants independently of GSR. DTT was removed from the stock solution by passing 

the GSR through a PD-10 column using phosphate buffer (0.1 M, pH 7.4) to elute the 

protein. The GSR concentration was then determined using the BCA assay (Section 

2.3.3.4).  

An Applied Photophysics SX.20MV stopped flow system was used to monitor the 

loss of NADPH upon addition of oxidants to the GSR system in the presence or absence 

of SeMet or SeTal. NADPH (500 µM), GSR (25 nM) and GSH (400 µM) was mixed in the 

stopped flow apparatus with SeMetO, SeTalO or N-chloramine (200 µM). N-Chloramine 

reduction experiments were also performed in the presence of SeMet or SeTal (20 or 

200 µM). The absorbance at 340 nm, corresponding to loss of NADPH, was monitored 

over 60 s. A linear slope was fitted to the initial fast decrease in absorbance, from 2 – 

12 seconds, where maximum enzymatic activity was observed.  
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2.3.4.2 Thioredoxin based systems 

TrxR is capable of reducing oxidants, including H2O2 [528] and HOSCN [348], and 

disulfides [390] using NADPH as a reducing equivalent. Trx reduces protein disulfides 

using TrxR and NADPH as the reducing system [390]. In turn Trx can also reduce 

enzymes including Msrs [417, 420], which reduce MetSO, and GPx [348], which reduces 

H2O2. As NADPH is the reductant used by all of these systems, the rate of enzymatic 

removal of oxidants can be assessed using the loss of NADPH determined by its optical 

absorbance at 340 nm. 

The ability of TrxR to reduce oxidants was assessed by incubating 700 µM NADPH 

and 25 nM TrxR before addition of 200 µM selenoxide or N-chloramine in the presence 

or absence of 1.5 µM Trx. N-Chloramine reduction experiments were performed in the 

presence and absence of SeMet or SeTal (20 or 200 µM).  This Trx system was also used 

to assess the ability of MsrA, MsrB2 and GPx to remove oxidants. In this case, MsrA (95 

nM), MsrB2 (0.25 µM) or GPx (1.5 µM) were incubated with NADPH (700 µM), TrxR 

(25 nM) and Trx (1.5 µM) prior to the addition of 200 µM oxidant, with N-chloramine 

experiments also performed in the presence or absence of SeMet or SeTal (20 or 200 

µM). The absorbance at 340 nm, reflecting the NADPH concentration, was measured 

every 30 s for 2 h on M2e plate reader (Molecular Devices). A straight line was fitted to 

a plot of time vs. [NADPH] to determine rate of NADPH consumption.  

2.3.4.3 Reduction of oxidants by cell lysates 

The enzymatic removal of oxidants was examined using cell lysates, for a more 

physiological representation of enzyme ratio and concentrations present in vivo. 

Auranofin, which binds to Sec residues to inhibit selenoproteins [558], was used as an 

inhibitor of TrxR to enable determination of TrxR’s contribution, as well as the 

contribution of downstream enzymes, on oxidant removal. 

J774A.1 cells (106 cells) were lysed in 3 mL ice-cold H2O and incubated on ice for 15 

min to maximise lysis. Protein levels in the lysates were determined by BCA assay 

(Section 2.3.3.4), with this adjusted to 1 mg protein mL-1. Lysate (50 µg protein) was 

incubated with NADPH (500 µM) in the presence or absence of auranofin (25 nM) for 

15 min, and then SeMetO, SeTalO, N-chloramine or insulin (200 µM) was then added 

and absorbance at 340 nm monitored for 2 h. N-Chloramine experiments were also 
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performed in the presence or absence of SeMet or SeTal (20 or 200 µM). The rate of 

NADPH consumption was determined by fitting a straight line to the resulting NADPH 

vs time plot. 

 HPLC methods 

Buffers were made as specified in each method, and then vacuum filtered using a 

hydrophilic polypropylene 0.2 µm membrane filter (Pall, MI, USA) before use. Samples 

were filtered through 0.2 µm NanoSep centrifugal devices (Pall, MI, USA) before being 

transfered to HPLC vials with 200 µL glass inserts. Samples were kept in the 

autosampler at 4 °C until injection onto the column. 

2.3.5.1 HPLC instrumentation 

A Shimadzu Nexera system, consisting of binary pumps (LC30AD), degasser (DGU-

20A5R), autosampler (SIL30AC) and column oven (CTO-20A), was used to perform 

HPLC experiments. UV-vis detection was performed with a photodiode array (SPD-

M20A). Fluorescence measurements were performed with a fluorescence detector 

(RF-20AXS). 

2.3.5.2 SeMet and SeMetO 

Separation of SeMet, SeMetO, GSH and GSSG was achieved by injection of 20 µl of 

each sample onto a Beckman Ultrasphere ODS column (5 µM , 4.6 x 250 mm), at 40 °C 

as previously described [464]. The mobile phase consisted of acetonitrile (1 % (v/v)) 

adjusted to pH 2.5 with trifluoroacetic acid (TFA) (TFA < 0.05% (v/v)). An isocratic 

elution method was employed with a flow rate of 1 ml min-1. SeMetO eluted at 3.2 min 

and SeMet eluted at 8.6 min, as determined by their UV absorbance.  A photodiode 

array (PDA) detector was used (Shimadzu SPD-M20A) and quantification of peak areas 

was performed at 220 nm. SeMetO standards were produced as described in Section 

2.3.7.1. 

2.3.5.3 SeTal and SeTalO 

Separation of SeTal and SeTalO was achieved by injecting 20 µL of sample onto a 

Zorbax carbohydrate column from Agilent, USA (5 µm, 4.6 x 150 mm) at 35 C with an 

isocratic elution using a flow rate of 1 mL min-1. SeTal and SeTalO were eluted using 

acetonitrile (75 % (v/v)) in H2O with TFA (0.005% (v/v)) for 8 min, followed by a 
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washing step whereby the H2O content was increased to 75% over 1 min, held for 3.5 

min, before decreasing back to 25% water over 1 min, and re-equilibration for 2.5 min. 

SeTal and SeTalO eluted at 2.7 min and 4.4 min respectively. SeTal and SeTalO were 

quantified by their UV absorbance at 220 nm using a PDA detector (Shimadzu SPD-

M20A). SeTalO standards were produced as described in Section 2.3.7.1. 

2.3.5.4 Selenoxides in the presence of NADPH 

The methods described above were unsuitable for separating selenoxides and 

selenoethers when NADPH was present in the samples, due to coelution of NADPH 

derived peaks with other peaks of interest. As such, a different HPLC method was 

developed as described below. 

20 µL samples from enzymatic reduction assays (Section 2.3.4) were injected onto 

an Agilent Zorbax 300SCX column (5 µm, 4.6 x 250 mm) at 30 °C. An isocratic elution 

was performed using a mobile phase of NaH2PO4 (0.01 M, pH 4.8) with a flow rate of 1 

mL min-1
. SeMet eluted at 3.9 min, SeMetO eluted at 4.4 min, SeTal eluted at 3.4 min 

and SeTalO eluted at 3.7 min under these conditions. Samples were detected and 

quantified using their absorbance at 220 nm using a PDA detector (Shimadzu SPD-

M20A). 

2.3.5.5 Hydrolysis of protein using methane sulfonic acid (MSA) 

MSA hydrolysis was employed to digest proteins to their component amino acids, 

allowing investigation of oxidative changes to these residues [547]. The MSA method 

was chosen to digest the protein samples, as there is less destruction of MetSO and 

tryptophan products, unlike other methods such as HCl hydrolysis [547]. 

Protein samples (200 µL; 1 mg mL-1) contained in glass hydrolysis vials were 

delipidated then precipitated by addition of TCA (25 µL, 50% (w/v)) and deoxycholate 

(25 µL 0.3 % (w/v)) and incubated for 5 min on ice. Samples were pelleted by 

centrifugation at 7500 g at 4 °C for 10 min. Samples were washed twice with ice-cold 

acetone with the protein pelleted by centrifugation (as above) between washes. 

Acetone was removed and the samples were dried under a gentle stream of nitrogen. 

Samples were then resuspended in MSA (150 µL, 4 M) containing tryptamine (0.2 % 

(w/v)), and the hydrolysis vials placed in Pico-tag vessels. The Pico-tag vessels were 

evacuated using a vacuum pump and flushed with nitrogen three times, before a final 
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evacuation and incubation overnight in an oven at 110 °C. The samples were then 

allowed to cool to 21 °C before being neutralised with freshly prepared NaOH (150 µL; 

4 M) solution. Samples were filtered using 0.2 µm NanoSep centrifugal devices (Pall, 

MI, USA), centrifuged for 2 min at 9300 g, and 40 µL of each sample was transferred to 

a HPLC vial with insert for analysis. 

Standards were prepared by dilution from stock amino acid standards for protein 

hydrolysates (Product number A9781, Sigma Aldrich, St Louis, MI, USA) to 0 - 12.5 µM. 

MetSO (0 – 12.5 µM) was prepared in water and added to the mixed standard. 

Standards (40 µL) were transferred to HPLC vials and analysed. 

Samples were derivatized immediately before injection onto the column in the 

autosampler by the addition of 20 µL ortho-phthalaldehyde (OPA) (995 µL OPA 

reagent, 5 µL 2-mercaptoethanol) with 3 mixing cycles and a 1 min incubation, prior to 

injection of 6 µL of the final mixture onto a Shimadzu ShimPack XR ODS column (2.2 

µm, 4.6 x 100 mm) and eluted with a binary gradient method. Buffer A consists of 

sodium acetate (50 mM; pH 5.3), tetrahydrofuran (THF) (2.5 % (v/v)) and methanol 

(20 % (v/v)) in H2O and Buffer B consists of sodium acetate (50 mM; pH 5.3), THF (2.5 

% (v/v)) and methanol (80 % (v/v)) in H2O. The flow rate was set to 1.2 mL min-1, and 

the initial concentration of buffer B was 0%. The concentration of buffer B was 

increased to 25 % over 6 min, before 1 min at 25 % buffer B and increasing to 62 % 

buffer B over 30 sec which was then held for 2.5 min, before increasing to 100 % buffer 

B over two min and holding for 1 min. The concentration of B was then reduced to 0 % 

over the next 30 s and held there for 3.5 min to re-equilibrate the column. The detection 

of derivatised amino acids was achieved by measuring the fluorescence (λex= 340 nm, 

λem= 440 nm) using a Shimadzu RF-AXS20 fluorescence detector. Figure 2.2 shows a 

sample chromatogram depicting observed retention time and peak shape for the amino 

acids standards.  
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Figure 2.2 – Typical chromatogram observed for amino acid separation using OPA 
derivatisation. Trace shows a 50 pmol standard. 

 Mass spectrometry 

Samples to be analysed by mass spectrometry were prepared in H2O before dilution 

with an equal volume of formic acid (0.2% (v/v)) in methanol. The acidified sample 

was analysed by direct injection on a Thermo Finnigan LCQ Deca XP Max Plus ion trap 

mass spectrometer. The analysis was performed in the positive-ion mode, with the 

electrospray needle held at 4500 V. Nitrogen, the sheath gas, was held at 10 units. The 

collision gas was helium. The temperature of the heated capillary was 275 °C. For 

MS/MS studies the normalized collision energy was set at 35%. Mass values were 

scanned between 100 – 500 m/z and spectra were produced by the average of 50 scans. 

QualBrowser (Version 1.4, ThermoElectron, Rochford, IL, USA) was used to analyse 

spectra. Simulations were obtained from QualBrowser with Gaussian outputs, with a 

0.4 Da resolution and full width and half maximum (FWHM) valleys. 

 NMR spectroscopy 

Samples to be analysed were dried overnight in a rotational vacuum concentrator 

(Christ, Osterode am Harz, Germany), before being dissolved in D2O. A Varian VNMRS 

500 MHz instrument (Bruker, MA, USA) was used to collect NMR data. The machine 

was controlled and analysis performed in VNMR Walkup (Version 6.1, Bruker, MA, 

USA). Spectra were collected at 25 °C. 1H NMR spectra were recorded with a relaxation 

delay of 0.01 seconds and a pulse of 60 degrees with an average of 256 scans. 13C 

experiments were performed with 1H de-coupling with a relaxation delay of 0.01 

seconds and a pulse of 45 degrees and spectra produced from the average of 1024 

0 5 10
0

200000

400000

600000

800000

Time / min

In
te

n
s
ity

Asp / Asn

Glu / Gln

His

Ser

MetSO

Arg
Gly

Thr
Ala

Tyr

Trp

Met

Val

Phe

Ile

Leu

Lys



 61 

scans. HHCOSY experiments were performed with a relaxation delay of 2.0 scans and 

spectra produced from the average of 512 scans. HSQCAD experiments were 

performed with 1H de-coupling with a relaxation delay of 1.5 seconds and spectra 

produced from the average of 512 scans. Peaks were reported as the ppm shift from 

the residual H2O peak set to 4.74 ppm.  

2.3.7.1 Preparation and quantification of selenoxides 

Selenoxides were formed on selenomethionine, 1,4-anhydro-4-seleno-L-talitol, N-

acetylselenomethionine, methylselenocysteine and seleno-bispropionic acid. Parent 

selenoethers (2 mM) were dissolved in water and mixed with either HOCl or H2O2 (1 

mM in H2O).  

SeMetO and SeTalO concentrations were quantified for use as standards in HPLC 

experiments. SeMetO and SeTalO were produced as above, and then dried overnight in 

a rotational vacuum concentrator (Christ, Osterode am Harz, Germany). SeMetO and 

SeTalO were dissolved in D2O (500 µL) and the 1H NMR spectrum obtained using a 

Varian VNMRS 500 MHz instrument. Dimethyl sulfone (100 µL, 5.3 µM) was added as 

quantification standard, and the 1H NMR spectrum collected again. The concentration 

of selenoxides was calculated by comparison of peak areas of the dimethyl sulfone (δ = 

3.153 ppm, 6H) and product (SeMetO: δ = 2.80 ppm, 3H and δ = 2.71 ppm, 3H; SeTalO: 

δ = 4.74 ppm, 3H). 

 Kinetic analysis 

Kinetics experiments were carried out using an Applied Photophysics SX.20MV 

stopped flow system maintained at 22 °C using a thermostatted water bath. The 

detection system consisted of an ozone-producing Xe light source (150 W; Osram 

GmbH, Munich, Germany) with wavelength selection achieved using a single 

monochromator (slit width, 0.5 mm; bandwidth, ±1.2 nm) and photomultiplier 

detection. The system was controlled by a personal computer running Pro-Data SX 

(version 2.2.12; Applied Photophysics). 

Spectral data from 200 to 310 nm were obtained in a point-by-point manner by 

acquiring kinetic traces at 10-nm intervals with the photomultiplier over this 

wavelength region. Second-order rate constants were obtained by global analysis of 

the kinetic traces using second order models with  > 240 nm using ProKIV (Applied 
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Photophysics, Version 1.0.1.4). Rates were confirmed using pseudo-first order analysis 

at appropriate wavelengths. 

2.3.8.1 First and second order reactions 

The rates for first and second order rate laws can be expressed as Equation 2.1 for 

first order reactions, and Equation 2.2 for second order reactions. 

−
𝛿[𝐴]

𝛿𝑡
= 𝑘[𝐴]𝑎 Equation 2.1 

−
𝛿[𝐴]

𝛿𝑡
= 𝑘[𝐴]𝑎[𝐵]𝑏 Equation 2.2 

Integration of these rate laws give rise to Equation 2.3 and Equation 2.4, for first 

and second order plots respectively, where [A] is the concentration of reactant A at 

time = t, and [A]0 is the initial concentration of reactant A.  

ln[𝐴] = ln[𝐴]0 −  𝑘𝑡 Equation 2.3 

1

[𝐴]
=  

1

[𝐴]0
+ 𝑘𝑡 Equation 2.4 

Based on these equations, if a plot of ln[A] vs time graph is linear, the reaction 

follows first order kinetics. If a plot of 1/[A] vs time graph is linear, the reaction follows 

second order kinetics. As concentration is proportional to absorbance, absorbance data 

can be used to determine whether the reaction follows first or second order kinetics. 

2.3.8.2 Global wavelength analysis 

Global wavelength analysis uses mathematical modelling to determine second 

order rate constants from spectral kinetic data.  It monitors the change in absorbance 

across numerous wavelengths, and can correlate these changes to the contribution of 

changes in the concentrations of reactants and products simultaneously. Based on this, 

the model can determine rate constants from each wavelength, and determine an 

average across the entire range.  

This method has significant advantages over pseudo-first order analysis. Under 

first order conditions, the concentration of [A] is assumed to be constant throughout 

the reaction but the global analysis is capable of accounting for the changes in [A]. The 

wavelengths used in pseudo-first order analysis need to be selected so that the 



 63 

detected absorbance arises primarily from one species, whereas global wavelength 

analysis can account for a contribution from multiple species at the same wavelength. 

Global wavelength analysis can also handle more complex models, unlike pseudo-first 

order analysis which assumes an A + B  C model.  

2.3.8.3 Pseudo-first order analysis 

Second order bimolecular reactions, characterised by Reaction 2.10, have kinetics 

that can be described by the rate law in Equation 2.5. 

𝐴 + 𝐵 → 𝑃𝑟𝑜𝑑𝑢𝑐𝑡 Reaction 2.10 

𝑅𝑎𝑡𝑒 = 𝑘2[𝐴][𝐵] Equation 2.5 

where [A] and [B] are the concentrations of the reactants and k2 is the second order 

rate constant for the reaction. When [A] >> [B], it can be assumed that [A] does not 

significantly change over the course of the reaction, and hence [A] can be considered 

constant. The rate can also be expressed as the change in [B] over time. This can be 

represented by Equation 2.6 

−
𝛿[𝐵]

𝛿𝑡
=  𝑘𝑜𝑏𝑠[𝐵] Equation 2.6 

where 

𝑘𝑜𝑏𝑠 = 𝑘2[𝐴] Equation 2.7 

Integration of Equation 2.7 gives When [B] is kept constant, and initial [A] is varied, 

this allows the plotting of the observed rate constant against the initial [A], and the 

second order rate constant can be determined by the gradient of the slope. Single 

exponential functions were fitted to kinetic traces to give kobs for each concentration of 

A, using ProData Viewer (Applied Photophysics, Version 4.2.12), which were 

subsequently used to determine the observed rate constant., and allows the 

determination of kobs from the absorbance vs. time plots. The absorbance vs time plots 

are used as the absorbance at a given wavelength is proportional to concentration. 

[𝐵] = [𝐵]0𝑒
−𝑘𝑜𝑏𝑠𝑡  Equation 2.8 

When [B] is kept constant, and initial [A] is varied, this allows the plotting of the 

observed rate constant against the initial [A], and the second order rate constant can 
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be determined by the gradient of the slope. Single exponential functions were fitted to 

kinetic traces to give kobs for each concentration of A, using ProData Viewer (Applied 

Photophysics, Version 4.2.12), which were subsequently used to determine the 

observed rate constant.  

 Cell culture 

J774A.1 cells (A.T.C.C. TIB-67) were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) supplemented with fetal calf serum (FCS; 10% (v/v)) and L-

glutamine (2 mM), in 175 cm2 flasks under sterile conditions in an atmosphere of 

humidified 5% CO2, at 37 °C. When the cells had reached confluency, they were 

passaged by first washing twice in warm (37 °C) DMEM, followed by scraping into 

media (10 mL). 2 mL of cell suspension was added to each new flask and volume made 

up to 25 mL with DMEM. Cells reached confluency 2-3 days after splitting. 

2.3.9.1 Oxidant treatment of cells 

Confluent flasks of J774A.1 cells were washed twice with warm (37 °C) DMEM 

before scraping into media (10 mL). Cell number and viability were assessed by trypan 

blue dye exclusion. The cell suspension (10 µL) was mixed with equal volumes of 

trypan blue dye and mixed by aspiration. The resulting mixture (10 µL) was pipetted 

into haemocytometer chamber and cells counted under a microscope. Cells that did not 

take up the dye were counted as viable. Cell suspensions were adjusted to 1 x 106 cell 

mL-1 and cells plated at a density of 0.5 x 106 cells per well in 12-well plates, and 

allowed to adhere overnight in an atmosphere of humidified 5 % CO2, at 37 °C. Cells 

were washed twice with warm (37 °C) HBSS, with various concentrations of SeMet or 

SeTal (0 – 50 µM) added to the HBSS, prior to addition of HOCl or TauCl (100 or 200 

µM) for 20 min or 2 h. Cells were then assessed for changes in viability and function as 

described in sections below (Section 2.3.10. to 2.3.9.3). 

2.3.9.2 GADPH activity 

GAPDH is a thiol-dependent cellular enzyme that is critical for glycolysis, and is 

known to be inactivated when cells are treated with HOCl, HOSCN and N-chloramines 

[229, 245]. GAPDH converts glyceraldehyde 3-phosphate (GAP) to 1,3-

bisphosphateglycerate (BPG), reducing NAD+ to NADH in the process [230] (Reaction 

2.11). 
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𝐺𝐴𝑃 + 𝑁𝐴𝐷+
𝐺𝐴𝑃𝐷𝐻
→     𝐵𝑃𝐺 + 𝑁𝐴𝐷𝐻 Reaction 2.11 

J774A.1 cells were prepared and treated as described in Section 2.3.9.1, before 

washing with warm HBSS and lysis in 600 µL ice cold H2O, and centrifuged at 5900 g 

for 5 min at 4 °C to remove any cellular debris. 20 µL of each sample was mixed with 

120 µL of pyrophosphate buffer (28.5 mM sodium pyrophosphate, 38 mM sodium 

phosphate buffer, pH 7.4) and 60 µL of NAD+/GAP solution (1.2 mM GAP, 2.5 mM NAD+) 

in a 96-well plate. The absorbance increase at 340 nm, corresponding to the increase 

in the concentration of NADH, was measured over 10 min using a M2e plate reader 

(Molecular Devices). Enzyme activity was determined by the rate of change in 

absorbance of the resulting time vs absorbance graph. 

2.3.9.3 LDH assay 

Lactate dehydrogenase (LDH) is a cytosolic enzyme that converts pyruvate to 

lactate by consuming NADH and forming NAD+ (Reaction 2.12). LDH activity can be 

measured by the change in NADH concentration, measured by the change in 

absorbance at 340 nm. The release of LDH from the cytosol into cell media reflects cell 

lysis and can be used as a measure of cell viability [559]. 

𝑃𝑦𝑟𝑢𝑣𝑎𝑡𝑒 + 𝑁𝐴𝐷𝐻 
𝐿𝐷𝐻
→   𝐿𝑎𝑐𝑡𝑎𝑡𝑒 + 𝑁𝐴𝐷+ Reaction 2.12 

J774A.1 cells were plated at a density of 0.5 x 106 cells per well in 12-well plates, 

and allowed to adhere overnight in an atmosphere of humidified 5 % CO2, at 37 °C. Cells 

were washed twice with warm (37 °C) HBSS, then HBSS was added with or without 

SeMet or SeTal (0 – 50 µM) and incubated for 2 h. The cell media was then collected, 

and remaining cells washed with warm (37 °C) HBSS, before lysis using 600 µL cold 

H2O and incubation on ice for 15 min. The protein content was measured by BCA assay 

(Section 2.3.3.4). Media or lysate samples (50 µL) were mixed with NADH (375 µM) 

and sodium pyruvate (2.88 mM) in a total volume of 200 µL, and the absorbance at 340 

nm was monitored over 15 min using an M2e plate reader (Molecular Devices).  The 

rate of change in NADH concentration was determined by fitting a linear slope to the 

Abs vs time plot, which was then normalised to protein concentration. Viability was 

assessed as LDH activity in the lysate over the total LDH activity in both media and 

lysate and expressed as a percentage of untreated control. 
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2.3.9.4 Ethidium bromide release assay 

Ethidium bromide (EtBr) interchelates with DNA causing an increase in 

fluorescence. DNA release from intact cells into the cellular media can be quantified by 

EtBr fluorescence and used as a measure of cell viability [560]. 

Neutrophils (2 x 106 cells) were incubated in HBSS in the presence of SeMet or SeTal 

(0, 25 or 50 µM) at 37 °C for 10 min, before centrifugation (13000 g for 5 min at 4 °C) 

to pellet cells. The cell media was removed and cells resuspended in 500 µL H2O and 

lysed by addition of Triton-X solution (50 µL, 0.2 % (v/v)). EtBr (25 µM) was added to 

both the lysate and media samples and incubated for 5 min, before fluorescence was 

measured (λex = 360 nm, λem= 580 nm) using an M2e plate reader (Molecular Devices). 

Viability was determined by measuring the fluorescence in the lysate sample as a 

percentage of total fluorescence (media + lysate).  

2.3.9.5 IAF labelling of reversibly oxidised thiols 

Oxidation of thiols can result in the formation of various reversible oxidation 

products including disulfides and sulfenic acids, and also non-reversible products such 

as sulfonic acids [2]. MPO-derived oxidants are known to deplete cell thiols [225] and 

cause inactivation of thiol-dependant proteins [245]. If the modifications are 

reversible, then the cell could potentially recover from the oxidative insult. The effect 

of SeMet and SeTal on the formation of reversible thiol modification in cells exposed to 

HOCl or TauCl was assessed using the fluorescent probe 5-iodoacetamide fluorescein 

(IAF).  

J774A.1 cells were prepared and treated as outlined in Section 2.3.9.1, before 

washing in warm (37 °C) HBSS and lysis in a buffer containing HEPES (35 mM), Triton 

X (0.1 % (v/v)), Roche complete protease inhibitor (1x) and N-ethylmaleimide (NEM; 

100 mM). Lysates were centrifuged at 8000 g for 5 min, at 4 °C to remove any insoluble 

cell debris. Excess NEM was removed by filtering the resulting supernatant through a 

10 kDa molecular mass cut-off filter (Amicon, 5 min at 9300 g) twice with washing 

using 200 µL phosphate buffer (0.1 M, pH 7.4). Protein concentrations were 

determined by BCA assay (Section 2.3.3.4) and samples adjusted to 1 mg protein  

mL-1. DTT (1 M) was added to samples to reduce any reversibly oxidised thiols prior to 

addition of IAF (100 µM) and incubation for 10 min in the dark. Excess IAF and salts 
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were removed by addition of 10 % (w/v) TCA to the incubation mixture for 10 min on 

ice to precipitate the protein, before pelleting the protein by centrifugation at 5900 g 

for 5 min, at 4 °C. The supernatant was then removed and protein pellet washed with 

ice-cold 80% (v/v) acetone, before centrifugation at 5900 g for a further 5 min, at 4 oC. 

The acetone was then removed and samples air-dried at 22 °C. Samples were then 

resuspended in 20 µL BioRad NuPage reagent (13 µL H2O, 5 µL NuPAGE LDS sample 

buffer (4X), 2 µL Reducing agent (10X)) for electrophoresis. 

Samples were loaded onto 4-12% tris-acetate gels, and separated at 200 V for 1 h 

in the dark. NuPAGE MOPS SDS running buffer was used as the buffer. Gels were then 

removed and the lower 1 cm of the gel cut off to prevent residual IAF diffusion through 

the gel. Gels were rinsed in water and scanned for fluoresence using a BioRad FX Plus 

Pharox Molecular Imager (λex= 495 nm, λem= 520 nm). Gels were stained for total 

protein levels using either a silver stain [561] or Coomassie blue stain [562]. 

Gels for silver staining were initially placed in solution containing 50 % (v/v) 

methanol and 10 % (v/v) acetic acid in H2O for 30 min to fix the gel, thereby minimising 

protein diffusion and smearing of the bands. Gels were subsequently washed with 5% 

(v/v) methanol for 15 min, followed by washing 3 times with H2O for 5 min. The gels 

were then soaked in a solution containing sodium thiosulfate (0.02 % (w/v)) in H2O to 

sensitise the gel. The gel was then washed with H2O before soaking in silver nitrate 

solution (0.2 % (w/v)) in H2O for 25 min. Excess silver was removed by washing with 

H2O for 5 min and the gels were then developed by soaking in a solution containing 

sodium carbonate (3 % (w/v)), formaldehyde (0.02 % (v/v)) and sodium thiosulfate 

(0.0004 % (w/v)) in H2O. The developing solution was removed when a desired level 

of staining was achieved, and an EDTA solution (1.4 % (w/v)) in H2O was added to stop 

further colour development. Gels were imaged using a UMax PowerLook 1120 gel 

scanner and densitometry using in ImageJ software. 

Gels for Coomassie staining were placed in a staining solution containing 

Coomassie R-250 ((0.1 % (w/v)), ethanol (40 % (v/v)), acetic acid (10% (v/v)) in H2O 

and heated in a Panasonic NN-S548WA microwave oven at high power, loosely covered 

for 1 min, followed by gentle agitation on an orbital shaker for 15 min. The gels were 

then rinsed with H2O prior to destaining in a destain solution (ethanol (10 % (v/v)), 

acetic acid (7.5 % (v/v)) in H2O and heated in a microwave oven at high power, loosely 



 68 

covered for 1 min. The gels were then incubated overnight in fresh destain solution 

prior to imaging using a UMax PowerLook 1120 gel scanner. Densitometry was 

performed using ImageJ software. 

 Flow cytometry 

Apoptotic and necrotic cell death was determined by dual staining with 

allophycocyanin-conjugated annexin V (annexin V-APC) and propidium iodide (PI) 

[563]. Annexin V-APC binds to the phosphatidyl serine that is exposed on the cell 

surface when cells undergo apoptosis [564]. PI is taken up by necrotic cells and binds 

to DNA fragments [565]. 

The J774A.1 cells were plated and treated as described in Section 2.3.9.1 before 

removal from the 12-well plate and transfer to flow cytometry tubes. Cells were spun 

down at 2000 g for 5 min in an Allegra X-15R Centrifuge (Beckman Coulter) to pellet 

cells. Cells were then washed twice with warm (37 °C) HBSS, with 5 min spins (as 

above) to pellet cells between washes. The cells were then resuspended in a master 

mix of Annexin V-APC and PI stains (100 µL, 5 µg mL-1) in HBSS and incubated in an 

atmosphere of humidified 5% CO2, at 37 °C for 15 min. HBSS (400 µL) was added to the 

samples, before placing on ice until analysis. Flow cytometry was performed on a BD 

FACSVerse machine (BD Biosciences, Australia) with fluorescence measurement of 

Annexin V-APC (λex= 650 nm, λem= 661 nm) and PI  (λex= 493 nm, λem= 636 nm). Viable 

cells were determined to be Annexin V and PI negative (Figure 2.3 – lower left 

quadrant). Annexin-V positive cells were determined to be apoptotic (Figure 2.3 – 

lower right quadrant), and PI positive cells were determined to be necrotic (Figure 2.3 

– upper quadrants). 
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Figure 2.3 – Typical flow cytometry plot obtained for control cells with annexin V-APC 
and propidium iodide dual staining 

 Statistical analysis 

Data are reported as the mean ± standard deviation from three or more 

independent experiments, unless otherwise stated. Statistical analyses were 

performed in GraphPad Prism v6.0 (GraphPad Software, San Diego, USA), with p < 0.05 

taken as significant. Statistical and post-hoc tests are detailed in relevant Figure 

legends.  
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3 Reaction of selenium compounds with MPO-derived oxidants 
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 Introduction 

Neutrophils, via the action of released MPO in the presence of H2O2 and Cl-, produce 

HOCl together with other strong oxidants in order to destroy invading pathogens as 

part of the innate immune system. However, when oxidants are produced in excess or 

inappropriately, they are capable of causing damage to host cells and are believed to 

play a role in disease initiation and progression [2].  

Major targets for the reaction of HOCl in the cellular environment are free thiol 

groups, such as the Cys residue of GSH, or thioethers such as Met residues [88]. The 

reaction between HOCl and sulfur residues are some of the fastest reported biological 

reactions with second order rate constants in the order of 107 - 108 M-1 s-1 [86, 90].  

HOCl is also known to react with amine groups, such as those on free amino acids, 

amino acid side chain (e.g. Lys, His) and N-terminal amino acids, to form N-

chloramines, with rate constants ca. 105 M-1 s-1 for alpha amino acids [53, 55, 58, 145, 

554]. N-Chloramines are also capable of inducing oxidation reactions in a similar 

manner to HOCl, though they are more specific to sulfur residues [181].  Second order 

rate constants for the reaction of N-chloramines with thiols and thioethers are in the 

range of 102 – 103 M-1 s-1 [136, 192]. N-Chloramines have demonstrated potential to 

inactivate thiol-dependent enzymes, such as GAPDH and creatine kinase (CK) [245]. 

The higher specificity of N-chloramines for thiol sites results in a lower concentration 

required for GAPDH and CK inactivation compared to HOCl. They also have a 

demonstrated ability to induce apoptosis and cell death [136, 223, 224]. As N-

chloramines have higher stability and reduced reactivity compared to HOCl, they are 

capable of diffusing away from their site of formation and may propagate oxidative 

damage at remote sites [87, 181, 566]. However, the stability and reactivity of N-

chloramines is dependent on structure, with primary N-chloramines more stable than 

those formed on other sites such as the imidazole ring of His [134, 136, 179, 181, 192]. 

Oxidation of Met residues results in the formation of MetSO as a primary product 

[467]. Dehydromethionine is also formed in a lower yield when Met is oxidised by HOCl 

and N-chloramines [115]. It has been suggested that Met oxidation may play a role in 

antioxidant defence, as exposed Met residues are preferentially oxidised over other 

functionally important sites, hence preserving enzymatic function [110, 567, 568]. 
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Oxidation of Met can also lead to inactivation of enzymes, with α1-antiproteinase 

activity being inhibited when exposed to HOCl or N-chloramines [113, 181]. 

Organic selenium compounds have been shown to react with peroxides, 

hypohalous acids and ONOOH [90, 98, 439, 454, 461, 486, 569]. This process is 

significantly faster for SeMet than Met, with second order rate constants for the 

reaction with HOCl > 108 M-1 s-1 [90]. Similarly, other selenoethers react with HOCl and 

HOSCN at a faster rate than the sulfur analogues [90, 98, 439]. These higher rate 

constants have been attributed to the increased nucleophilicity of selenium compared 

to sulfur [570]. Analogous to Met oxidation, SeMet is oxidised by ONOOH, H2O2 and 

flavin-containing monooxygenases to form the selenoxide, SeMetO [461, 464, 474, 

571].  

The increased reactivity of selenium compounds towards MPO-derived oxidants 

suggests that they may be competitive in vivo targets for oxidation. The ability of 

selenium compounds to react with MPO-derived oxidants before these oxidants can 

cause damage to cells and cellular components may have therapeutic benefit in 

inflammatory conditions. 

 Aims 

The aim of the studies presented in this Chapter was to investigate the reactions 

between MPO-derived oxidants, specifically N-chloramines, with the selenoethers, 

SeMet and SeTal (structures shown in Figure 3.1). Reaction products were determined 

by HPLC, mass spectrometry and NMR spectroscopy, and second order rate constants 

were determined using stopped flow methods.  

 

Figure 3.1 - Molecular structures of a) SeMet and b) SeTal 
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 Results 

 Sulfur and selenium compounds scavenge MPO-derived oxidants 

As previous studies have shown that SeMet, SeTal and Met react with the MPO-

derived oxidants HOCl and HOSCN [90, 98, 439], the ability of these compounds to 

remove oxidants produced enzymatically by the MPO system was investigated. The 

efficacy of SeMet, SeTal and Met in scavenging oxidants generated by the MPO/H2O2/Cl- 

system or freshly isolated neutrophils was assessed by the TMB assay in the presence 

of excess Tau [549]. Tau was present in a large excess (10 mM) to scavenge HOCl, 

resulting in the formation of the more stable TauCl, which facilitates accurate oxidant 

measurement [549]. The TMB assay was used as it reacts specifically with HOCl and 

TauCl, and will not react with the other oxidants present in the system (e.g. H2O2) or 

the selenoxides that may be formed as products. 

3.3.1.1 Isolated MPO/H2O2/Cl- 

Myeloperoxidase (2 µM) was incubated with Cl- (100 mM), Tau (10 mM) and SeMet, 

SeTal or Met (0 – 100 µM) for 10 min at 37 °C. H2O2 (50 µM) was added to initiate the 

production of HOCl by MPO, and allowed to incubate for 30 min at 21 °C. On completion 

of the incubation period, the concentration of MPO-derived oxidants was assessed 

using the TMB assay, and quantified by comparison to a standard curve generated 

using known amounts of TauCl.  

The MPO/H2O2/Cl- system produced approximately 50 µM TauCl over 30 min 

following the addition of H2O2, as assessed by the TMB assay, consistent with complete 

conversion of H2O2 to HOCl.  Addition of 12.5 µM SeMet to the MPO/H2O2/Cl- system 

prior to the addition of H2O2 caused a 25 % decrease in the presence of TauCl compared 

to the absence of SeMet (Figure 3.2). Increasing the concentration of SeMet 

demonstrated a further decrease in remaining oxidant levels. After addition of 50 µM 

SeMet, essentially no TauCl was observed after the 30 min incubation. Similarly, 

addition of increasing concentrations of SeTal and Met demonstrated a dose-

dependent decrease in the remaining oxidant concentration (Figure 3.2). The decrease 

in oxidant concentration occurred with a 1 : 1 ratio of scavenger to oxidant removed, 

with a linear decrease and essentially all oxidant removed at 50 µM of Met and SeTal. 

IC50 values were determined by a non-linear fit (log(inhibitor) vs normalised response 
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– variable slope) to TMB scavenging data in GraphPad Prism and are reported in Table 

3.1. No significant differences were observed in the scavenging ability of the various 

compounds SeMet, SeTal and Met under these conditions, which may reflect the long 

(30 min) incubation time employed. 

 

Figure 3.2 – SeMet, SeTal and Met scavenge oxidants produced by the MPO/H2O2/Cl- 
system 

HOCl and TauCl (ca. 50 µM oxidant over 30 min) were produced by adding H2O2 (50 µM) 
to MPO (2 µM) in the presence of Cl- (100 mM), Tau (10 mM) and Met , SeMet  or 
SeTal  (0 – 100 µM). The remaining oxidant concentration after 30 min was 
quantified using the TMB assay. Met, SeMet and SeTal dose dependently decreased the 
concentration of TauCl present 30 min after addition of H2O2. * represents a significant 
(p < 0.05) decrease in remaining TauCl from the 0 µM scavenger control based on one-
way ANOVA with Dunnett’s post-hoc test.  
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Table 3.1 – IC50 values (µM) for the scavenging of MPO-derived oxidants by sulfur and 
selenium compounds.  

IC50 values were determined by using a non-linear fit (log(inhibitor) vs normalised 
response – variable slope) to TMB scavenging data using GraphPad Prism 6.0. Values are 
expressed as IC50 ± 95% confidence interval.  

 Oxidant Met SeMet SeTal 

MPOa 19 ± 7 22 ± 3 19 ± 2 

Neutrophilsb 23 ± 4 25 ± 4 29 ± 3 

a MPO system: MPO (2 µM) / H2O2 (50 µM) / Cl- (100 mM) 

b Neutrophils (2 x 106 cells mL-1) stimulated with PMA (0.1 µg mL-1) for 30 min at 21 
C 

3.3.1.2 Neutrophil viability 

Neutrophils are a potent source of MPO in the circulation, therefore the ability of 

Met, SeMet and SeTal to scavenge oxidants produced by neutrophils was assessed. 

Initially, experiments were performed to assess the toxicity of Met, SeMet and SeTal to 

ensure any reduction in oxidant production was not due to neutrophil death. 

Neutrophil viability on exposure to Met, SeMet and SeTal was assessed by measuring 

DNA release using an EtBr assay. Neutrophils (2 x 106 cells mL-1) were incubated for 

30 min at 37 °C in the presence of Met, SeMet or SeTal (25 or 100 µM), before examining 

DNA release from the cells as a marker of lysis by measuring changes in EtBr 

fluorescence. No changes in neutrophil viability were observed with Met, SeMet or 

SeTal compared to control neutrophils in the absence of these compounds (Figure 3.3).  
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Figure 3.3 – Neutrophil viability is not affected by incubation with Met, SeMet and 
SeTal. 

Neutrophils (2 x 106 cell mL-1) were incubated for 30 min at 37 °C in the presence of 0 
(black bar), 25 µM (no stripe) or 100 µM (striped) SeMet (white bars), SeTal (dark grey 
bars) or Met (light grey bars). Neutrophil viability was not affected by presence of these 
compounds under the conditions employed as measured by DNA release using EtBr. No 
significant difference was observed relative to control based on one-way ANOVA with 
Dunnett’s post-hoc test. Data are reported as the mean ± SD from 3 independent 
experiments. 

3.3.1.3 Neutrophil derived oxidants 

As SeMet, SeTal and Met demonstrated no toxicity for neutrophils under these 

conditions, the ability of each compound to remove oxidants formed by neutrophils 

activated by PMA stimulation (0.1 µg mL-1) was assessed using the TMB assay. Freshly 

isolated neutrophils (2 x 106 cell mL-1) were incubated in warm (37 °C) HBSS in the 

presence of Met, SeMet or SeTal (0 – 100 µM) for 10 min. Neutrophils were stimulated 

by addition of PMA (0.1 µg mL-1), and incubated for a further 30 min. Under these 

conditions, approximately 50 µM oxidant was formed as assessed by the TMB assay. 

The major TMB oxidising species was assumed to be TauCl, as neutrophils release up 

to 20 mM Tau upon activation, which reacts with HOCl formed by the action of MPO. 

After 30 min, the remaining oxidant was assessed using the TMB assay, and quantified 

by comparison to a standard curve prepared using TauCl. 

Addition of SeMet, SeTal or Met to the neutrophil suspension prior to activation 

with PMA resulted in a decrease in the formation of TauCl (Figure 3.4). The 
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concentration of remaining oxidant decreased in a dose-dependent manner with 

increasing concentrations of SeMet, SeTal and Met. A significant difference in 

remaining oxidant relative to the system without added scavenger was achieved with 

addition of 25 µM scavenger. Essentially no oxidant was detected when 62.5 µM SeMet, 

SeTal and Met was present in the incubation mixture. This represents a near 1 : 1 

stoichiometric scavenging of oxidant produced, similar to that observed in the 

MPO/H2O2/Cl- system. IC50 values were determined by a non-linear fit (log(inhibitor) 

vs normalised response – variable slope) to TMB scavenging data in GraphPad Prism 

and are reported in Table 3.1. No significant differences were observed in the 

scavenging efficacy between the compounds examined under these conditions.  

 

Figure 3.4 - SeMet, SeTal and Met scavenge oxidants produced by activated neutrophils. 

HOCl and subsequently TauCl, (ca. 50 µM oxidant over 30 min) was produced by 
stimulating neutrophils (2 x 106 cells mL-1) with PMA (0.1 µg mL-1) in the presence Met 

, SeMet  or SeTal  (0 – 100 µM). The remaining oxidant concentration after 
30 min was quantified by the TMB assay. Met, SeMet and SeTal dose dependently 
decreased the concentration of TauCl present 30 min after activation of neutrophils. * 
represents a significant (p < 0.05) decrease in remaining TauCl from 0 µM scavenger 
control based on one-way ANOVA with Dunnett’s post-hoc test. Data are reported as the 
mean ± SD from 3 independent experiments. 
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in a more complex system, these compounds would need to have favourable reaction 

kinetics in order to scavenge oxidants before they react with endogenous species. 

Second order rate constants for the reaction between N-chloramines and Met have 

previously been reported [192], and were therefore not examined in this study. 

However, the rate constants for the reaction of a variety of model N-chloramines with 

SeMet and SeTal were determined.  

Second order rate constants for the reaction between SeMet, SeTal and model N-

chloramines, derived from Tau, N-α-acetyllysine and glycine were determined using 

stopped-flow methods. N-Chloramines (125 µM) and SeMet or SeTal (0.5 – 2.5 mM) 

were mixed in the stopped-flow apparatus and kinetic traces recorded for the spectral 

region between 240 - 310 nm in 10 nm steps.  

SeMet and SeTal both absorb in the 200 - 300 nm region and sample spectra are 

shown in Figure 3.5. N-Chloramines are also detectable by UV absorbance and have a 

maximum absorbance at ca. 250 nm (Figure 3.5c) [554]. Absorbance decreases were 

observed in the 250 – 290 nm region when each N-chloramine was mixed with SeMet 

or SeTal (Figure 3.6), which is attributed to N-chloramine loss. In experiments with 

SeTal, absorbance decreases were observed between 250 – 300 nm, though at 240 nm 

an increase in absorbance was observed, possibly due to the formation of a selenoxide 

(SeTalO).  
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Figure 3.5 – Initial spectra recorded for SeMet, SeTal and TauCl 

The UV-vis absorbance spectra were collected at 10 nm steps between 240 – 310 nm for 
use as fixed spectra in global wavelength analysis. Spectra are a) SeMet (1 mM), b) SeTal 
(1 mM) and c) TauCl (250 µM) phosphate buffer (in 0.1 M pH 7.4) at 22 °C. Data are 
representative of three independent experiments.  
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Figure 3.6 – UV absorbance changes over time and at different wavelengths when TauCl 
(125 µM) was mixed with SeMet (500 µM) or SeTal (500 µM) 

Spectral absorbance changes observed over time between 240 – 310 nm recorded at 10 
nm intervals for reaction mixtures containing TauCl (125 µM) and a) SeMet (500 µM) or 
c) SeTal (500 µM) at 22 °C and pH 7.4. For clarity, selected spectra are shown at intervals 
of 2 s for SeMet and 10 s for SeTal. The direction of absorbance change is indicated by the 
arrows. b and d) show the typical changes in absorbance over time b) for SeMet at 250 
nm and d) SeTal at 270 nm. Data are representative of three independent experiments. 

Rate constants were determined by global wavelength analysis in ProKIV (Applied 

Photophyscis) using a simple “N-chloramines + scavenger  Product” second order 

mechanism and are reported in Table 3.2. Fixed spectra of the reactants (250 µM N-

chloramine; 1 mM SeMet or SeTal Figure 3.5) were used to aid analysis and allow for 

the determination of extinction coefficients by the analysis program. Kinetic analysis 

of data was performed between 240 – 310 nm as below 240 nm limited absorbance 

changes were observed. This was due to strong absorbance ( > 1 Abs unit), which 

affects the linearity of the response and yields less accurate data. The second order rate 

constants determined are reported in Table 3.2. The rate constants determined are 

some of the fastest known for N-chloramine reactions, with the rate constants SeMet 
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being greater than the analogous Met, and the thiol antioxidant GSH [192]. Similarly, 

the rate constants for SeTal are comparable to those reported for GSH [192]. 

Table 3.2 – Second order rate constants for the reaction between SeMet and SeTal and 
model N-chloramines 

Second order rate constants determined by global wavelength analysis (with 95% 
confidence limits) at pH 7.4 (0.1 M phosphate buffer) and 22 °C for the reactions of SeMet 
and SeTal with the N-chloramines formed on Tau, N-α-acetyl-lysine and Gly. Values in 
brackets are second order rate constants determined by pseudo-first order analysis of the 
data, and are included as a comparison of the data analysis methods. 

 

N-Chloramine 

k2 (M-1 s-1) 

SeMet SeTal 

TauCl  
817 ± 20 

(890 ± 50) 

115 ± 4 

(108 ± 3) 

LysCl 
3430 ± 70 

(4600 ± 450) 

683 ± 14 

(670 ± 60) 

GlyCl 
2250 ± 40 

(2460 ± 170) 

430 ± 7 

(400 ± 30) 

Second order rate constants were confirmed using pseudo-first order analysis at 

250 nm for SeMet reactions and 270 nm for SeTal reactions. 250 nm was selected for 

SeMet, as 250 nm is the maximum for N-chloramine absorbance, therefore changes at 

this wavelength should be primarily due to N-chloramine loss. However, absorbance 

changes at 250 nm for SeTal experiments were complicated by contributions from 

SeTal, and therefore, absorbance changes at 270 nm were used for pseudo first order 

analysis. The observed rate constant, kobs, was determined by fitting exponential curves 

to absorbance vs time plots. Second order rate constants were then derived from the 

gradient of the line of a [SeMet] or [SeTal] vs kobs plot, and are reported in Table 3.2. 

The second order rate constants determined in both analyses agree well with one 

another (Table 3.2), though the rate constant determined by global analysis is 

considered to be the more accurate reflection of the rate constant. This is because the 

global analysis uses data from multiple wavelengths and accounts for the change in 

concentration of reagents as the reaction progresses, whereas the pseudo first order 

analysis requires the assumption that scavenger concentration are constant during the 
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course of the reaction. As a result of these considerations, there should be less error in 

the global analysis rate constant, compared to the pseudo first order analysis, making 

the determination more reliable.  

 

Figure 3.7 – Pseudo first order plots for reaction between SeMet and SeTal and N-
chloramines 

N-chloramine (125 µM) (TauCl (circle), LysCl (triangle) or GlyCl (square)) was mixed 
with a) SeMet or b) SeTal (0.5 – 2.5 mM) and the absorbance change monitored at 250 
nm for SeMet and 270 nm for SeTal. Exponential decay plots were fitted to the resulting 
kinetic traces to determine the observed rate constant for the reaction, kobs. The gradients 
of these linear fits provide the rate constant and are reported in the paratheneses in Table 
3.2. Data represent mean ± SD from three independent experiments. Where not visible 
error bars are hidden by symbol.  

 Characterisation of selenomethionine oxidation products 

In the previous section, data have been presented which are consistent with SeMet 

reacting rapidly with MPO-derived oxidants, however, the products of the reaction of 

SeMet with HOCl and N-chloramines have not been characterised. Previous studies 

have demonstrated that reaction of SeMet with H2O2 and ONOOH gives rise to SeMetO, 

which has been previously characterised [461, 464, 571]. Initial studies focussed on 

the products formed when HOCl and N-chloramines react with SeMet. 

3.3.3.1 Mass spectrometry 

SeMet (500 µM) in H2O was mixed with HOCl or H2O2 (400 µM) and incubated at 22 

°C for 5 min. The resulting solutions were mixed in equal volumes with 0.02% (v/v) 

formic acid in methanol and analysed by mass spectrometry. H2O was used for the 

experiments, rather than the phosphate buffer used in the kinetic studies, to minimise 

contamination of the mass spectrometer with buffer salts.  
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Selenium occurs naturally in multiple different isotopes with 80Se being the most 

abundant (49.6 %), 78Se the second most abundant (23.8 %), followed by 76Se, 82Se, 77Se 

and 74Se (9.4 %, 8.7 %, 7.6 % and 0.9 % respectively) [572]. This natural abundance 

gives rise to a characteristic mass spectrum for compounds containing selenium, with 

peak areas proportional to the abundance of each isotope. This isotope ratio can be 

observed in the simulated mass spectra for SeMet shown in Figure 3.8b. 

The parent SeMet species, [SeMet+H]+, was observed in all samples at m/z 198.1 

(the 80Se isotope) with the expected pattern for Se from m/z 192.4 – 201.2 (Figure 

3.8a,c,e). Peaks reported are those for the 80Se isotope, which is the most abundant 

isotope of selenium. Isotope ratios correspond with the expected patterns, and this was 

confirmed by computer modelling (Figure 3.8b). 

Treatment of the samples with H2O2 and HOCl would be expected to yield a 

selenoxide, on the basis of literature data [571]. However, no peak was detected at m/z 

214.0, which would be the expected mass of the singly charged selenoxide species 

[SeMetO+H]+ (Figure 3.8d demonstrates the expected ions for this species based on 

simulation).  This ion may not be seen under the conditions employed due to poor 

ionisation of the SeMetO species. However, upon treatment of SeMet with HOCl, new 

peaks were detected at m/z 196.3 and 218.2 (80Se peak, with the expected isotope 

patterns), which corresponds to a loss of 2 mass units or a gain of 20 mass units 

respectively compared to the parent ion [SeMet+H]+ at m/z 198.1. These mass changes 

are consistent with the loss of H2 to form dehydroselenomethionine ions as either H+ 

or Na+ adducts, [DeHSeMet+H]+ and [DeHSeMet+Na]+ respectively (supported by 

computer modelling in Figure 3.8f).  
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Figure 3.8 – Distribution of ions detected by mass spectrometry when SeMet was 
treated with HOCl or H2O2 with supporting computer simulation. 

Species detected by mass spectroscopy on reaction of SeMet (500 µM) with HOCl or H2O2 

(400 µM). Samples were mixed in a 1 : 1 ratio with 0.02% (v/v) formic acid in methanol 
before analysis by mass spectrometry. a) Parent SeMet (250 µM). c) SeMet (250 µM) 
treated with 200 µM H2O2. e) SeMet (250 µM) treated with 200 µM HOCl. b, d and f) show 
computer simulation of b) the parent ion of SeMet, d) the H-adduct of SeMetO and f) the 
H- and Na-adducts of dehydroselenomethionine. Neither of the experimental spectra 
show the expected ion pattern for SeMetO at m/z 214.0 for 80Se as seen in the computer 
simulation d). H2O2 only shows ions which correspond to ions from SeMet as seen in the 
model c). HOCl treatment gives rise to ions that are m/z 2 less than the parent SeMet (m/z 
196.3), and are consistent with the dehydroselenomethionine hydrogen adduct, 
[DeHSeMet+H]+. The peaks centred around m/z 218.2 are consistent with the Na adduct 
of dehydroselenomethionine, [DeHSeMet+Na]+. f) shows a computer simulation of equal 
concentrations of [DeHSeMet+H]+ and [DeHSeMet+Na]+. Simulations were produced 
using QualBrowser by inputting empirical formulae with Gaussian outputs with a 0.4 Da 
resolution and full width half maximum valleys. 
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MS/MS fragmentation spectra of the m/z 196.3 and 218.2 ions yielded major 

fragment ions at m/z 167.9 and 189.9 (Figure 3.9), corresponding to a loss of 28 mass 

units. This fragmentation pattern has been previously described for 

dehydromethionine and is attributed to loss of C2H2 [115]. The difference in fragment 

masses of 22 mass units after fragmentation suggests that the m/z 196.3 and 218.2 ions 

are the same species present as either the H+ or Na+ adduct. Thus, the peaks at m/z 

167.9 and 189.9 are attributed to the ions [DeHSeMet+H-C2H2]+ and [DeHSeMet+Na-

C2H2]+ respectively. 

 

Figure 3.9 – MS/MS fragmentation pattern of m/z 196.3 and m/z 218.2 peaks for SeMet 
treated with HOCl. 

SeMet (250 µM) treated with HOCl (200 µM) and mixed in a 1 : 1 ratio with 0.02% (v/v) 
formic acid in methanol before analysis by mass spectrometry. MS/MS analysis was 
performed on ions at a) m/z 196.3 and b) m/z 218.1. A loss of 28 mass units was observed 
for both species, and attributed to loss of C2H2 giving rise to ions [DeHSeMet+H-C2H2]+ and 
[DeHSeMet+Na-C2H2]+ respectively. 
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3.3.3.2 NMR 

Although SeMetO was not observed in the mass spectrometry experiments using 

the conditions employed in this study, oxidation of SeMet by H2O2 has been previously 

demonstrated to produce SeMetO [464, 571]. Therefore, SeMet was treated with H2O2 

and the resulting products were analysed by NMR. SeMet (5 mg, 25 µmoles) in H2O was 

reacted with equimolar concentrations of H2O2 or HOCl for 15 min at 22 °C. The 

samples were then dried overnight using a rotational vacuum concentrator (Christ, 

Osterode am Harz, Germany). The resulting white solid was dissolved in 600 µL D2O 

and analysed by NMR.  

Reaction of SeMet with H2O2 resulted in a product consistent with 1H NMR 

spectroscopy data previously reported for SeMetO [464]. The spectra demonstrate the 

formation of two products, which are attributed to SeMetO, and hydrated SeMetO as 

previously described [464], and chemical shifts and splitting are reported in Table 3.3. 

Peaks consistent with SeMetO were the only product peaks observed. However, 

residual signals from the parent SeMet compound were present at 1.893, 2.00-2.16, 

2.48-2.56 and 2.73 ppm, as well as overlapping with a SeMetO signal at 3.70 ppm. 

Table 3.3 – 13C NMR chemical shifts for selenoxide formed on reaction of SeMet with 
H2O2 

 SeMetO SeMetO.H2O 

Environment ppm Splitting H ppm Splitting H 

A 2.564 s 3 2.654 s 3 

B 2.82 - 3.16 Multiplet 2 3.52 - 3.66 Multiplet 2 

C 2.20 – 2.26 q 2 2.36 – 2.44 Multiplet 2 

D 4.18 - 4.22 t 1 ~3.704 obscured 1 

SeMet (5 mg, 25 µmol) was also treated an equimolar concentration of HOCl and 

the product of the reaction analysed by 1H NMR spectroscopy (Figure 3.11). The most 

intense signals detected corresponded to SeMetO proton environments with ppm and 

relative integral areas the same as that observed for H2O2 treated SeMet (Figure 3.10). 

As a result, the primary product of HOCl treatment of SeMet was therefore assigned to 

the selenoxide, SeMetO. However, HOCl treated SeMet also gave rise to small 1H NMR 
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signals at 3.75, 4.11 and 4.42 ppm which could not be attributed to either parent SeMet 

or SeMetO, and were not observed with H2O2 treatment. This suggests the formation of 

a secondary product, potentially dehydroselenomethionine, though due to low 

intensity and poor resolution of these peaks, this could not be confirmed from these 

data. However, this is consistent with the mass spectrometry data that suggest HOCl 

can lead to formation of dehydroselenomethione, whereas H2O2 cannot.  
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Figure 3.10 – 1H NMR spectra of SeMet treated with H2O2 

SeMet (5 mg; 25 µmol) dissolved in water was mixed with equimolar H2O2, dried overnight 
and redissolved in D2O (600 µL) was analysed by 1H NMR spectroscopy. Chemical shifts 
are reported using the residual H2O peak as a reference (∂ = 4.64 ppm). Product signals 
are consistent with those previous reported for SeMetO. The conversion to SeMetO was 
incomplete with residual parent peaks observed in the spectra.  
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Figure 3.11– 1H NMR spectra of SeMet treated with HOCl 

SeMet (5 mg; 25 µmol) dissolved in water was mixed with equimolar HOCl, dried 
overnight and redissolved in D2O (600 µL) and analysed by 1H NMR spectroscopy. 
Chemical shifts are reported relative to the residual H2O peak set to 4.64 ppm. The largest 
signals are consistent with the formation of SeMetO.  Peaks at 3.75, 4.11 and 4.42 ppm 
attributed to minor product, possibly dehydroselenomethionine. 

3.3.3.3 Standardisation of SeMetO for HPLC 

1H NMR spectroscopy was used as a method of quantifying the selenoxide 

standards for use in HPLC. As the relative peak areas in 1H NMR spectra correlate to 

the number of protons in the environment, the concentration of products can be 

determined by comparison to a known concentration of an internal standard.  
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SeMetO was produced by the reaction of SeMet (25 µmol) with an equimolar 

concentration of H2O2, which was incubated for 15 min, before it was divided into 2 

aliquots and dried overnight in a rotational vacuum concentrator (Christ, Osterode am 

Harz, Germany). One aliquot of the resulting white solid was dissolved in 600 µL D2O, 

before addition of the internal standard dimethyl sulfone (DMSO2) (5.3 µM). The 1H 

NMR spectra were collected (Varian VNMRS 500 MHz) (Figure 3.10), and the 

concentration of SeMetO determined by comparison of dimethyl sulfone peaks (∂ = 

3.15 ppm, 6H) to SeMetO peaks (∂ = 2.80 ppm, 3H; ∂ = 2.71 ppm, 3H). The calculated 

concentration for SeMetO was 15 mM, giving a SeMetO recovery of ~85 %. As peaks 

consistent with unreacted SeMet in the sample were observed, the low recovery may 

be attributed to unreacted parent SeMet. 

 Selenoxide formation upon exposure of SeMet to HOCl and N-chloramines 

The NMR data presented in the previous section suggests that the major oxidation 

product generated when SeMet reacts with HOCl is SeMetO. An HPLC method was used 

to enable quantification of SeMetO formation upon exposure of SeMet to HOCl and 

other MPO-derived species, including N-chloramines. 

3.3.4.1 HPLC method development 

Initial studies employed an HPLC method that has previously been used in the 

literature [445], which uses a Beckman Ultrasphere ODS column with an isocratic 

elution using 0.1 % ACN made to pH 2.5 with TFA as a mobile phase. Under these 

conditions, SeMetO eluted close to the solvent front at 3.2 min. However, a peak was 

observed in all samples at 3 min that was attributed to the phosphate buffer salts in the 

samples. Furthermore, a negative peak was observed immediately after the SeMetO 

peak, which is also believed to buffer-derived. The SeMetO peak eluted between these 

two features of the chromatogram, and whilst separation was not ideal, the peak was 

resolved from the buffer peaks. As this made integration of SeMetO difficult, attempts 

to optimise the separation of SeMetO from SeMet using different HPLC methods and 

columns were performed. 

Numerous buffer compositions and columns were attempted in order to better 

resolve SeMetO. The columns attempted are detailed in Table 3.4, and were selected 

based on the varied properties of the stationary phases. The buffer solutions conditions 
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tested comprised of an isocratic run with a flow rate of 1 mL min-1 consisting of varying 

concentrations of ACN in H2O made to pH 2.5 with TFA.  The concentrations of ACN 

used were 0, 0.1, 1, 10, 50 or 100 % ACN v/v, to assess whether varying concentrations 

of organic components in the mobile phase could affect retention times. The range of 

conditions used has very little difference in SeMetO peak position, which generally 

eluted either with the solvent front or immediately after the solvent front. As these 

attempts to increase retention of SeMetO on different columns were unsuccessful, the 

original HPLC method described in Section 2.3.5.2 was used for further analysis. 

Table 3.4 – Columns used in HPLC method development for SeMet oxidation 
experiments. 

Column details 

Ultrasphere ODS, 5 µm, 4.6 x 250 mm, Beckman 

Hypercarb PGC, 5 µm, 2.1 x 100 mm ThermoScientific 

Supelcosil LC-NH2, 5 µm, 4.6 x 250 mm, Supelco 

Viva C18, 5 µm, 4.6 x 250 mm, ResTek 

Synergi Polar RP 80A, 4 µm, 4.6 x 250 mm, Phenomenex 

Zorbax ODS, 5 µm, 4.6 x 250 mm, Agilent 

Kinetex C18 100A, 2.6 µm, 100 x 2.1 mm, Phenomenex 

3.3.4.2 Quantification of SeMetO formation 

Oxidation of SeMet to SeMetO by HOCl, TauCl and BSA-Cl was assessed by HPLC, as 

described in Section 2.3.5.2. SeMetO standards were prepared by mixing SeMet with 

H2O2 and standardised using NMR with dimethylsulfone as an internal standard as 

described in Section 3.3.3.3. SeMet (160 µM) was mixed with each oxidant (0 – 320 µM) 

and allowed to react for 15 min at 22 °C before filtering and analysis by HPLC (Figure 

3.12). With HOCl, a decrease in the SeMet peak (8.6 min) was observed when 40 µM 

oxidant was added to SeMet (160 µM). This corresponded with an increase in the 

SeMetO peak (3.2 min) area. With increasing oxidant concentrations, further decreases 

in the SeMet peak area were observed, with corresponding increases in the SeMetO 

peak (Figure 3.12). 
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Figure 3.12 – Representative chromatograms of SeMet exposed to 0 - 200 µM HOCl 

SeMet (160 µM) was mixed with 0 µM (unbroken line), 120 µM (dashed line) or 200 µM 
(dotted line) HOCl and subsequently analysed by HPLC. A dose dependent decrease in the 
parent SeMet peak area (8.6 min) with a concomitant increase in the SeMetO peak area 
(3.2 min) was observed with increasing oxidant concentration.  

Upon quantification, an initial decrease of 36 µM SeMet was observed with the 

addition of 40 µM HOCl (Figure 3.13a). This corresponded to an increase of 30 µM 

SeMetO (Figure 3.13b). With each subsequent addition of 40 µM SeMet, a similar ratio 

of SeMet was consumed with corresponding SeMetO increase. With an excess of HOCl 

(200 µM) added, essentially all the SeMet was consumed and a maximum SeMetO 

concentration of 128 µM was detected. When HOCl was in greater excess over SeMet 

(> 200 µM), decreases in the SeMetO concentration were observed, though these 

changes were not statistically significant from the concentration observed at 200 µM 

HOCl. A similar dose-dependent decrease in SeMet concentrations was observed in the 

corresponding experiments with TauCl where an increase in the formation of SeMetO 

was also seen (Figure 3.13c,d). In this case, essentially all SeMet was consumed with 

addition of 200 µM TauCl. A loss of SeMetO was not observed when a molar excess 

TauCl was added to SeMet, in contrast to experiments with HOCl (Figure 3.13d). A 

lower conversion of SeMet to SeMetO was seen with BSA-Cl (0 – 320 µM) (Figure 

3.13e,f), which was prepared by mixing BSA (1 mg mL-1) with HOCl (0.5 mM) for 5 min 

and adjusted to 320 µM as assessed by the TNB assay, prior to reaction with SeMet (160 

µM). In the case of BSA-Cl (Figure 3.13e,f), approximately 20 µM SeMet was consumed 

for every 40 µM BSA-Cl added. SeMet was essentially completely consumed upon 
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addition of 320 µM BSA-Cl, and this corresponded to the maximum amount of SeMetO 

observed.  The percentage conversions of SeMet to SeMetO were calculated by the ratio 

of the maximum SeMetO observed to the concentration of SeMet consumed, giving 

values of 80%, 84% and 86% for HOCl, TauCl and BSA-Cl respectively. The highest 

yields of SeMetO were observed with HOCl and TauCl when the oxidants were in slight 

excess (200 µM) of SeMet, whereas the maximum conversion of SeMet to SeMetO was 

observed when BSA-Cl was present with a 2-fold excess of SeMet. 
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Figure 3.13 – Conversion of SeMet to SeMetO by HOCl, TauCl and BSA-Cl 

SeMet (160 µM) was mixed with a,b) HOCl, c,d) TauCl or e,f) BSA-Cl (0 – 320 µM) and 
incubated for 15 min at 22 °C before analysis by HPLC. a,c,e) show a dose-dependent 
decrease in SeMet concentration upon addition of increasing concentrations of each 
oxidant. b,d,f) show a corresponding increase in the SeMetO concentration. * indicates 
significant difference from control (0 µM oxidant) based on one-way ANOVA with 
Dunnett’s post-hoc test. Data represent the mean ± SD from 5 independent experiments. 

 Characterisation of further oxidation products of SeMetO 

As SeMetO formation was decreased with higher excesses of HOCl, preliminary 

experiments investigating further oxidation products of SeMetO with HOCl were 

performed. As a similar decrease in SeMetO was not observed with TauCl or BSA-Cl, 

only higher excesses of HOCl were investigated. 
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SeMet (200 µM) was incubated with HOCl (0 – 0.8 mM) for 15 min and the resulting 

products of the reactions were analysed by HPLC using a Beckman Ultrasphere ODS 

column with a 0.1 % ACN made to pH 2.5 with TFA as the mobile phase. Addition of an 

increasing concentration of HOCl to SeMet lead to a dose-dependent decrease in the 

concentration of SeMetO (Figure 3.14). Under these conditions, increases in 2 

unidentified peaks were observed (#1 3.1 min, #2 10.2 min). The higher 

concentrations of HOCl (600 – 800 µM) led to decreases in the size of peak #1, whereas 

the #2 peak size was more consistent, with a maximum at 1x HOCl, with a subsequent 

decrease at 2x, with no further changes with increasing concentration.  
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Figure 3.14 – SeMetO reacts with HOCl to form additional products 

SeMet (200 µM) was mixed with HOCl (0 – 0.8 mM) and the products analysed by HPLC. 
Traces show SeMet treated with a) 1 x, b) 2 x, c) 3 x or d) 4 x molar excess of HOCl. 2 
unidentified peaks were observed in the HPLC traces at 3.1 min and 10.2 min. A dose-
dependent decrease of SeMetO was observed with increasing HOCl. Initially the peak at 
3.1 min increased, followed by a decrease with increasing HOCl. The peak at 10.2 min was 
increased at 1 x excess of HOCl, followed by a decrease at 2 x molar excess and stayi 
consistent with 3 – 4 x excess. 
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The differences observed between HOCl and H2O2 treated SeMet samples in the 

mass spectrometry and NMR data, and the unidentified peaks in the HPLC traces after 

excess HOCl treatment suggested that HOCl could give rise to additional products to 

H2O2, potentially by further reaction with SeMetO. As HOCl is also reactive with the 

amine group, whereas this is not a favourable site for reaction with H2O2, the reaction 

of SeMetO with HOCl was monitored by UV-vis spectroscopy, to assess potential N-

chloramine formation and decay. N-Chloramines typically absorb at 250 nm [554], 

therefore changes in absorbance in this region as the reaction progresses may indicate 

N-chloramine formation. SeMetO (500 µM) formed by reaction of SeMet (1 mM) with 

excess concentrations of H2O2 (2.5 mM) was mixed with HOCl (2 mM) using a stopped-

flow instrument, and the change in absorbance measured, between 200 and 300 nm 

with 5 nm steps for 30 s (Figure 3.15). An initial increase in absorbance was observed 

over the first 6 s in the range between 250 - 280 nm as demonstrated at 260 nm (Figure 

3.15 a), before a subsequent decrease in absorbance. This is potentially due to the 

formation of N-chloramines and subsequent rapid decay. Absorbance changes 

consistent with 2 phases were also observed in the 200 – 235 and 290 – 300 nm ranges, 

with an initial fast increase in absorbance, followed by a slower further increase in 

absorbance as demonstrated by absorbance changes at 290 and 225 nm (Figure 3.15 

b,c). This is likely due to the formation of the final products that may be further 

oxidation of the selenium centre forming a selenone analogous to MetSO oxidation 

[88], or aldehyde formation due to N-chloramine decay [86]. As the data is preliminary 

and the mechanism is not well characterised, kinetic analysis to determine rate 

constants cannot be performed. However, from these data presented, the observed rate 

constant was determined to be 0.582 for the intial reaction of SeMetO and HOCl. This 

gives an estimated rate constant of 5.82 x 105 M-1 s-1, which is in the same order of 

magnitude as the formation of other chloramines [60].  
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Figure 3.15 – Absorbance vs time traces when pre-formed SeMetO was mixed with 
HOCl at 260, 290 and 225 nm.  

SeMetO (250 µM) and HOCl (500 µM) were mixed in stopped flow apparatus and 
absorbance changes between 200 and 300 nm were monitored for 30 seconds. 
Absorbance vs time plots are shown for a) 260 nm, b) 290 nm and c) 225 nm. 2 phase 
kinetics were observed, at each wavelength with a fast initial phase followed by a slow 
second phase.  
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 SeTal oxidation products 

The data presented in the previous section demonstrate that HOCl and N-

chloramines react with SeMet to form a selenoxide, though with HOCl there is also 

evidence for the formation of further oxidation products. As SeTal is a selenoether that 

is also capable of reacting rapidly with MPO-derived oxidants including HOCl [486], 

selenoxides are a likely product of this reaction. However, the products of these 

reactions have not yet been characterised upon exposure of SeTal to HOCl and N-

chloramines. Experiments were therefore undertaken to characterise potential 

products, using mass spectrometry and NMR spectroscopy, and to quantify the 

conversion of SeTal to these products in each case. 

3.3.6.1 Mass spectrometry 

Initial mass spectrometry studies with SeTal were undertaken with SeTal (250 µM) 

in a solution containing methanol (50 % (v/v)) and formic acid (0.01 % (v/v)). 

However, no signal was detected at around m/z 229 which is the expected mass for 

ions of the H-adduct of SeTal, [SeTal+H]+. This is attributed to a low extent of ionisation 

of SeTal due to the absence of facile protonation sites. Thus, further experiments were 

undertaken in the presence of NaCl (500 µM) with the expectation that the 

[80SeTal+Na]+ ion might be detected at m/z 251.3, as reported previously [486]. As 

anticipated, a group of peaks centred at m/z 251.3 (Figure 3.16a), attributed to 

[80SeTal+Na]+, were detected, with the expected isotope ratios for selenium 

(demonstrated by computer simulation in Figure 3.16b). However, additional peaks 

were detected at m/z 255.0, 257.0 and 259.0. These are attributed to Na adducts of 

contaminants, as they are also observed with NaCl in the absence of SeTal (Figure 

3.16e). 

Following detection of the parent [80SeTal+Na]+ ion, HOCl oxidation of SeTal was 

investigated by taking SeTal in H2O (500 µM) and mixing with HOCl (400 µM), before 

incubating at 21 °C for 5 min. The resulting solution was mixed in equal volumes with 

0.02% (v/v) formic acid in methanol and analysed by mass spectrometry. NaCl was not 

added to the samples in this case as the HOCl solution contains high levels of NaCl. The 

major product peak detected was characterised by an increase of 16 mass units at m/z 

267.2 (Figure 3.16c) when compared to the parent Na+ adduct ion, with this attributed 

to [80SeTalO+Na]+ (demonstrated by a computer model in Figure 3.16d). Weak signals 
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corresponding to that of the H+ adduct product [80SeTalO+H]+ were also detected at 

m/z 245.3, but these were partially obscured by residual parent [SeTal+Na]+ peaks.  

In order to further characterise the SeTal product and determine the site of oxygen 

incorporation, MS/MS studies of the [80SeTalO+Na]+ ion were undertaken. This gave 

rise to numerous fragments (Figure 3.17). The major fragment, m/z 248.9, 

corresponded to a loss of 18 mass units, consistent with loss of water from the 

[80SeTalO+Na]+ ion. Two subsequent losses of 30 mass units to give ions with m/z 218.8 

and 188.8, are both consistent subsequent elimination of two CH2O groups from 

[80SeTalO+Na-H2O]+. A final loss of 26 mass units to give the fragment at m/z 162.8 is 

consistent with C2H2 loss. The suggested structures of these ions and fragmentation 

mechanism are presented in Figure 3.18. 
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Figure 3.16 – Mass spectra of SeTal and the proposed oxidation product SeTalO 

a) SeTal (500 µM) and NaCl (500 µM) were mixed with an equal volume of formic acid 
(0.02 % (v/v)) in methanol and analysed by mass spectrometry. The peak at m/z 251.3 
corresponds to [80SeTal+Na]+ ion as shown by a simulation in b), with the surrounding 
peaks consistent with the Se isotope pattern. The peaks at m/z 255.0, 257.0 and 259.0 are 
due to NaCl present in sample, and are observed in e) NaCl (500 µM) control. b) SeTal in 
H2O (500 µM) was mixed with HOCl (400 µM) and incubated at 22 °C for 5 min and then 
mixed in equal volumes with formic acid (0.02 % (v/v)) in methanol and analysed by mass 
spectrometry. The peak at m/z 267.2 represents a mass increase of 16 mass units from 
the parent [80SeTal+Na]+ ion consistent with selenoxide formation with the major ion 
attributed to [80SeTalO+Na]+ as shown by a computer simuution in d). Simulations were 
produced using QualBrowser by inputting empirical formulae with Gaussian outputs with 
a 0.4 Da resolution and full width half maximum valleys. 
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Figure 3.17 – MS/MS fragmentation pattern of the m/z 267.2 ion attributed to 
[SeTalO+Na]+ 

SeTal in H2O (500 µM) was mixed with HOCl (400 µM) and incubated at 21 °C for 5 min, 
prior to mixing with equal volumes of 0.02% (v/v) formic acid in methanol and analysis 
by mass spectrometry. MS/MS was performed on the ion with m/z 267.2 that is assigned 
to [SeTalO+Na]+, and gives rise to ions with m/z 247.8, consistent with loss of water 
[SeTalO+Na-H2O]+. Peaks at 218.8 and 188.8 correspond to losses of 30 mass units, 
consistent with 2 subsequent losses of CH2O, [SeTalO+Na-H2O-CH2O]+, and [SeTalO+Na-
H2O-(CH2O)2]+ respectively. The peak at m/z 162.8 represents a further loss of 28 mass 
units consistent with loss of C2H2, [SeTalO+Na-H2O-(CH2O)2-C2H2]+. Proposed structures 
are shown in Figure 3.18. 
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Figure 3.18 – Proposed fragmentation pattern of SeTalO 

Figure shows the proposed fragments observed in Figure 3.17 arising from MS/MS 
analysis of the peak at 267.2 when SeTal is treated with HOCl.  

3.3.6.2 NMR spectroscopy 

The data presented in the previous section are consistent with the addition of an 

oxygen atom to the SeTal structure. As such, the proposed product was tentatively 

assigned as a selenoxide (Figure 3.18). NMR spectroscopy studies were performed in 

order to fully characterise the proposed species. SeTal (5 mg, 22 µmoles) in H2O was 

reacted with equimolar concentrations of HOCl for 15 min at 22 °C. Samples were dried 

overnight using a rotational vacuum concentrator (Christ, Osterodeam Harz, 

Germany). The resulting white solid was dissolved in 600 µL D2O and analysed by 1H 

NMR spectroscopy, as well as acquisition of the NMR spectra of the parent SeTal 

compound. The spectra for SeTal agree with previous results, and peaks are assigned 

in Figure 3.19 and Figure 3.20 
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Figure 3.19 – 1H NMR spectrum for SeTal 

SeTal (5 mg) was dissolved in 600 µL D2O and the 1H NMR spectrum collected. Chemicals 
shifts are reported relative to the residual H2O peak which was set to 4.64 ppm. 
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Figure 3.20 – 13C NMR spectrum for SeTal 

SeTal (5 mg) was dissolved in 600 µL D2O and the 13C NMR spectrum collected. Chemical 
shifts reported as relative ppm. 

The 13C NMR spectrum for the oxidised SeTal sample showed a total of 12 product 

carbon environments for SeTalO, all with similar intensity signals (Figure 3.21). This 

suggests the formation of two products on exposure of SeTal to HOCl, as SeTal only 

contains 6 carbons. As addition of an oxygen to the selenium centre can form either R 

or S isomers of the selenoxide (Figure 3.22), this is consistent with the formation of 

SeTalO. The 13C peaks were assigned after analysis of the COSY and HSQCAD spectra, 

though relative ppm is reported here for ease of explanation. All 12 peaks can be 

attributed to products (Table 3.5), as they are shifted from the parent compound peaks 

(Figure 3.20), particularly those at lower ppm values, which are closer to the selenium 

centre. For example, carbon A shifts from 26.6 ppm in the parent SeTal to 55.6 and 51.5 

ppm in the R and S isomers respectively. The shift in ppm is consistent with the 

shielding caused by addition of oxygen to the selenium centre. As the intensities of all 

peaks are similar, this suggests the products are formed in almost equal ratios. 

A	

B	
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Figure 3.21 – 13C NMR spectra for SeTal treated with HOCl 

SeTal (5 mg; 22 µmoles) was dissolved in water, mixed with equimolar HOCl, dried 
overnight and redissolved in 600 µL D2O before analysis by 13C NMR spectroscopy. 
Chemical shifts are reported as relative ppm. Two species with similar concentrations 
were detected, and determined to be isomers of SeTalO. Peak assignment is given in Table 
3.5 
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Table 3.5 – 13C NMR chemical shifts for selenoxide formed on reaction of SeTal with 
HOCl. 

 

 

 

 

 

 

Figure 3.22 – R and S stereoisomers of SeTalO 

The 1H NMR spectrum shows 13 peaks, which corresponds to each isomer 

containing 7 proton environments, with the peak at a chemical shift of 4.74 being an 

overlapping signal for a proton environment in both isomers (Figure 3.23).  The 

relative peak integral area supports this, with an integration value consistent with 2 

protons being present. The peak identities are reported in Table 3.6, and were assigned 

using COSY analysis, which are discussed later. The product peaks are shifted 

downfield from their parent counterparts (Figure 3.19). For example, the protons in 

environment B in both R and S isomers give rise to a signal at 4.74 ppm, compared to 

4.34 in the parent SeTal spectrum. The down field shift is consistent with shielding 

observed by the addition of an electronegative atom such as oxygen. 

Environment R S 

A 55.571 51.497 

B 76.725 76.725 

C 78.679 78.478 

D 76.073 62.889 

E 70.928 72.184 

F 67.722 66.793 

A 

B C 

D 
E 

F 
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Figure 3.23 – 1H NMR spectrum for SeTal treated with HOCl 

SeTal (5 mg; 22 µmoles) dissolved in water, mixed with equimolar HOCl, dried overnight 
and redissolved in 600 µL D2O before analysis by 1H NMR spectroscopy. Chemical shifts 
are reported as ppm relative to the residual H2O peak set to 4.64 ppm. Two species with 
similar concentrations were observed, and determined to be isomers of SeTalO. Proton 
environment and J-coupling constants are assigned in Table 3.6. 
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Table 3.6 - 1H NMR chemical shifts for selenoxide formed on reaction of SeTal with 
HOCl. 

Chirality R S 

Environment ppm Splitting H ppm Splitting H 

A1 3.71 d; J = 4 1 3.25 d; J = 14 1 

A2 2.79 dd; J = 14, 4 1 2.87 dd; J= 14 1 

B 4.74 obscured 1 4.74 Obscured 1 

C 4.13 dd; J = 12, 4 1 4.45 dd; J = 11, 3 1 

D 3.32 dd J = 11, 4 1 3.36 dd; J = 9 1 

E 4.10 obscured 1 4.08 obscured 1 

F 3.72 dq; J= 70, 12, 4 2 3.76 dq; J = 13, 3 2 

 

Heteronuclear single quantum coherence experiments (HSQCAD) correlate carbon 

centres with coupled protons. Signals are observed in the 2D spectrum where the 

proton signal (across the top) is bound to the carbon (down the left) (Figure 3.24), and 

allows for the determination of which protons are bound to which carbon centres. The 

correlation for the proton signals bound to carbon A are outlined as an example. The 

HSQCAD spectra demonstrated a significant shift in 2 protons bound to the carbon A in 

the R isomer at chemical shifts of 2.79 and 3.71, and a similar though smaller shift 

between protons bound to carbon A in the S isomer at 2.87 and 3.25. A large shift in 

proton environments suggests that one proton from the pair has become significantly 

shielded compared to the other. This is consistent with the addition of oxygen on an 

adjacent atom.   

A1, A2 

B C 

D 
E 

F 
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Figure 3.24 – HSQCAD spectra for SeTalO treated with HOCl 

SeTal (5 mg; 22 µmoles) dissolved in water was mixed with equimolar HOCl, dried 
overnight and redissolved in 600 µL D2O was analysed by HSQCAD NMR. Peaks reported 
as ppm relative to the residual H2O peak set to 4.64 ppm. 
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The formation of a selenoxide would result in the addition of oxygen to the Se atom 

in SeTal, giving rise to chirality around the Se.  As SeTal is cyclic in structure, the 

formation of R and S isomers of SeTalO (structures in Figure 3.22) would be expected 

to differentially shield protons above and below the plane of the ring. Assuming that 

the Se atom is above the plane of the ring structure due to steric considerations, the R 

isomer, where the oxygen is bound in plane with the ring, would be expected to shield 

the protons axial to the ring. In the S isomer, where the oxygen is out of plane with the 

ring, smaller shifts would be expected due to lower shielding. Hence, the protons 

observed with the more significant shifts are attributed to the R isomer.  

Homonuclear correlation spectroscopy (HHCOSY) correlates spin-coupled protons. 

Signals are observed in the 2D spectrum where 2 proton environments are spin-

coupled (Figure 3.25). Therefore signals off the diagonal indicate protons that are on 

adjacent carbons. This allows for the determination of proton environments that are 

adjacent to one another, and the assignation of peaks. Protons coupling with the peak 

at 4.74 is outlined as an example. As this represents an overlapping proton 

environment from both the R and S isomer, it appears to be coupled to 6 other proton 

environments. From the HSQCAD spectrum, the signals at 2.79 and 3.71 ppm represent 

protons bound to carbon A in the R isomer, and signals at 2.87 and 3.25 ppm represent 

the protons from the S isomer. Therefore the signals at 4.13 and 4.45 ppm must 

represent the protons from position C. The further down field proton is assigned to the 

S isomer, due to the greater effect of the oxygen being above the ring. The proton 

assignation was confirmed using J-coupling values and splitting patterns observed in 

the 1H spectrum, where these values could be determined.  Once the 1H spectrum was 

assigned, analysis of the HSQCAD spectrum (Figure 3.24) allowed for the carbon 

centres to be assigned (Table 3.5). 
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Figure 3.25 – HHCOSY spectra for SeTalO treated with HOCl 

SeTal (5 mg; 22 µmoles) dissolved in water was mixed with equimolar HOCl, dried 
overnight and redissolved in 600 µL D2O was analysed by HHCOSY NMR. Peaks are 
reported as ppm relative to the residual H2O peak set to 4.64 ppm.  
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3.3.6.3 Standard quantification for HPLC 

1H NMR spectroscopy was used a method of quantifying the selenoxide standard 

for use in HPLC.  SeTal was produced by the reaction of SeTal (22 µmol) with equimolar 

concentration of HOCl for 15 min. The sample was divided into 2 aliquots and dried 

overnight in a rotational vacuum concentrator (Christ, Osterodeam Harz, Germany). 

One aliquot of the resulting white solid was dissolved in 600 µL D2O, before addition of 

the internal standard dimethyl sulfone (DMSO2) (5.3 µM). The 1H NMR spectra was 

collected (Varian VNMRS 500 MHz), and the concentration of SeTal determined by 

comparison of dimethyl sulfone peaks (∂ = 3.15 ppm, 6H) to SeTalO peaks (∂ = 4.74, 2H 

– 1H from the R and S isomer each). The concentration of SeTalO recovered was 

determined to be 15 mM, which represents a ~ 96 % recovery of SeTalO. 

 Selenoxide formation upon exposure of SeTal to HOCl and N-chloramines 

The mass spectrometry and NMR data demonstrated formation of SeTalO upon 

addition of HOCl to SeTal, however, the stoichiometry for this reaction could not be 

determined from these experiments. As such, an HPLC method was developed in order 

to quantify the conversion of SeTal to SeTalO upon addition of HOCl and model N-

chloramines.  

3.3.7.1 HPLC method development 

Initially SeTal oxidation experiments were attempted using the same buffer and 

column conditions as those reported for SeMet oxidation experiments (Section 3.3.3.1). 

However, the SeTalO species was not retained by the column very efficiently and eluted 

immediately after the solvent front. As a result, a carbohydrate specific column was 

sourced and found to give excellent separation of SeTal and SeTalO. The method is 

described in Section 2.3.5.3, and example chromatograms can be seen in Figure 3.26.  

3.3.7.2 Quantification of SeTalO formation 

Oxidation of SeTal to SeTalO by HOCl, TauCl and BSA-Cl was assessed using the 

HPLC method as optimised above. SeTalO standards were prepared by exposing SeTal 

to HOCl and were standardised by 1H NMR spectroscopy using an internal standard of 

dimethylsulfone as described in Section 3.3.7. SeTal (160 µM) was mixed with HOCl, 

TauCl or BSA-Cl (0 – 320 µM) and allowed to react for 15 min at 22 °C before filtering 
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and analysis by HPLC (Figure 3.26). Addition of 40 µM of oxidant caused a decrease in 

area of the SeTal peak. The decrease was concentration dependent with smaller areas 

observed with higher concentrations of oxidant added. The decreases in SeTal area 

corresponded with an increase in the area for the SeTalO peak. 

 

Figure 3.26 – Representative chromatograms of SeTal exposed to 0 - 200 µM HOCl 

SeTal (160 µM) was mixed with HOCl (0 µM (unbroken line), 120 µM (dashed line) or 200 
µM (dotted line)) and analysed by HPLC. A dose-dependent decrease in the parent SeTal 
peak area (2.7 min) was observed, with a concomitant increase in the SeTalO peak area 
(4.4 min).  

An initial loss of 40 µM SeTal was observed with addition of 40 µM HOCl to 160 µM 

SeTal, with a corresponding (40 µM) increase in the SeTalO concentration (Figure 

3.27a,b). As the concentration of HOCl increased, further dose-dependent decreases of 

SeTal were observed until SeTal was completely consumed at a concentration of 200 

µM HOCl. This corresponded to increases in SeTalO, which reached a maximum 

concentration (151 µM) after addition of 200 µM HOCl. TauCl addition resulted in a 

similar trend with SeTal totally consumed at 200 µM TauCl, which corresponded to a 

maximum SeTalO yield of 153 µM (Figure 3.27c,d). HOCl and TauCl consumed SeTal in 

a ratio that was very close to 1 : 1, with concentrations of SeTalO observed very similar 

to the concentrations of SeTal consumed. Maximum conversion of SeTal to SeTalO was 

achieved with 200 µM HOCl or TauCl with a 94% and 96% conversion respectively. 

BSA-Cl addition exhibited a dose-dependent decrease in SeTal concentration with a 

corresponding SeTalO increase, however, BSA-Cl did not completely consume SeTal 
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until a 2 : 1 BSA-Cl to SeTal molar ratio was reached, with a maximum conversion to 

SeTalO of 91% (145 µM) (Figure 3.27e,f).   

 

Figure 3.27 – Oxidation of SeTal to SeTalO by HOCl, TauCl and BSA-Cl 

SeTal (160 µM) was mixed a,b) HOCl, c,d) TauCl or e,f) BSA-Cl (with 0 – 320 µM) and 
incubated for 15 min at 22 °C before analysis by HPLC. a,c,e) show dose-dependent 
decrease in SeTal upon addition of increasing concentration of each oxidant. b,d,f) show 
a corresponding increase in SeTalO concentration. * indicates significant difference from 
control (0 µM oxidant) based on one-way ANOVA with Dunnett’s post-hoc test. Data 
represent the mean ± SD from 3 independent experiments. 

 Discussion 

The studies reported in this Chapter examined the reaction between the 

selenoethers, SeMet and SeTal, and oxidants derived from neutrophils, primarily HOCl 
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and N-chloramines. It has been shown that SeMet and SeTal rapidly scavenge oxidants 

produced by MPO/H2O2/Cl- and neutrophils, and that the primary oxidation product 

formed upon reaction with HOCl, TauCl and BSA-Cl was the respective selenoxide.  

Met, SeMet and SeTal were capable of reducing concentrations of TauCl present in 

samples 30 min after initiation of HOCl formation by either an isolated MPO-system or 

neutrophils. This suggests that SeMet and SeTal may be scavenging HOCl directly 

before TauCl formation, as the rate constants for this reaction are 108 M-1 s-1 [90] for 

both species, compared to 105 M-1 s-1 for N-chloramine formation [60]. Alternatively, 

this may be occurring by direct scavenging of H2O2 by Met, SeMet and SeTal, reducing 

the total HOCl and hence TauCl formation, as selenoethers are known to react with 

H2O2 [454, 464, 569, 571]. However the reaction kinetics for the reaction of Met and 

H2O2 are slow (reported as 13.95 M-1 h-1 (3.9 x 10-3 M-1 s-1) at pH 4.5) [573], and while 

rate constants for SeMet and SeTal with H2O2 have not been determined, the rate 

constants for H2O2 oxidation of similar selenoethers are in the range of 10 - 102 M-1 s-1 

[569]. As MPO has favourable kinetics for the consumption of H2O2 [24], it is reasonable 

to suggest that HOCl is being produced under these conditions. Alternatively, if SeMet 

and SeTal do not react directly with HOCl, they may be scavenging TauCl after its 

formation prior to assay with TMB. 

SeMet is known to be oxidised to SeMetO by H2O2, ONOOH and flavin containing 

monooxygenases [461, 464, 571]. The primary oxidation product detected in the 

current study when SeMet and SeTal were oxidised by HOCl, TauCl and BSA-Cl was the 

respective selenoxide, SeMetO or SeTalO. The stoichiometry of the reaction for SeTal is 

very close to a 1 : 1 reaction of HOCl and TauCl with SeTal, with SeMet occuring less 

efficiently with ca. 85 % of SeMet being converted to SeMetO. HOCl oxidation of SeMet 

also gave rise to a small amount of a second product, which is proposed to be 

dehydroselenomethionine on the basis of mass spectrometry results. This is analogous 

to the formation of dehydromethionine upon oxidation of Met by HOCl and N-

chloramines [115]. In the current study, dehydroselenomethionine was not detected 

when SeMet was oxidised by H2O2. With only 85 % conversion SeMetO upon exposure 

of SeMet to HOCl or N- chloramines, formation of dehydroselenomethionine may 

account for some of the “missing” SeMet that does not form SeMetO. While the 

concentrations of dehydroselenomethione formed were not quantified in this study, it 
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may be possible quantify dehydroselenomethionine concentrations via the use of an 

iodine assay, as dehydromethionine has been detected via reaction with iodide to form 

iodine at low pH, or by a HPLC method [115]. 

Alternatively, the formation of selenones may be occuring, analogous with sulfone 

formation on Met. Oxidation of MetSO leads to the formation of methionine sulfone, 

though the reaction occurs slowly [88]. While selenone formation may be possible, 

direct evidence for the formation of the selenone has not been reported.  The data 

presented in this Chapter do not appear to indicate selenone formation. 

Reaction of excess HOCl with SeMet resulted in a loss of SeMetO, suggesting 

potential further reactions. Initial studies demonstrated that SeMetO treated with HOCl 

showed a loss of SeMetO that was not observed with H2O2. This decrease in SeMetO 

corresponded to an increase in unidentified peaks detected by HPLC. UV-vis data 

collected on stopped flow instrumentation demonstrated an initial increase at ca. 250 

nm followed by a rapid decrease in intensity. As reactivity was not observed with H2O2 

and the absorbance changes occur around 250 nm, which is the region where N-

chloramines absorb, it suggests that the further reactivity of SeMetO with HOCl is 

mediated through chlorine chemistry at the amine site. Furthermore, SeTalO did not 

exhibit reactivity with HOCl, further implicating reaction via the amine site.  

N-Chloramine formation may be more significant for reaction of SeMetO and HOCl 

than for SeMet, though chloramine formation on SeMet has not been assessed. Whilst 

N-chloramines are known to be generated on amino acids with rate constants of ca. 105 

M-1 s-1 for α-amino acid, and HOCl reacts with SeMet at a rate of 108 M-1 s-1, indicating 

that formation of SeMetO is kinetically favourable [60, 90]. Furthermore, N-

chloramines are capable of oxidising SeMet to SeMetO, so it is conceivable that any N-

chloramines formed on SeMet would react with a second SeMet to form SeMetO. 

However, in the case of SeMetO, oxidation of SeMetO to the selenone is likely to be 

significantly slower than SeMetO formation, if the chemistry is similar to sulfur 

chemistry. This may mean that the N-chloramine formation becomes more favourable 

once initial oxidation of the selenium centre to the selenoxide has occurred. The decay 

of the N-chloramine, observed at ~ 260 nm, could be due to formation of an aldehyde 

species, consistent with other N-chloramines [86], which may account for the 

unidentified peaks in the HPLC trace. 
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The [SeMetO+H]+ formed from SeMetO was not detected by mass spectrometry 

under the conditions used in this study, though the 1H NMR data confirm formation of 

SeMetO. Gamelgaard has previously detected SeMetO at m/z 214 for [80SeMetO+H]+, 

when SeMet was treated with H2O2 and then subsequently exposed to microwaves 

[571]. This is potentially due to microwave induced homolysis of H2O2 forming HO• 

radicals (as previously suggested [574]), which may induce the formation of 

dehydroselenomethionine. Gamelgaard also detected peaks at m/z 196.3 (as observed 

in the current study), which was attributed to [SeMetO+H-H2O]+, suggesting a loss of 

water after ionisation. The ions detected in the current study at m/z 196.3 have been 

attributed to the formation of dehydroselenomethonine, as they were only detected in 

HOCl treated samples. If the source of the m/z 196.3 ion was due to the loss of water 

from SeMetO, these ions should also be detected in H2O2 treated SeMet. 

The data obtained in the current study suggest that selenium compounds react 

more rapidly with N-chloramines than the analogous sulfur compounds. The second 

order rate constants for SeMet determined in this study (k2 = (0.8 – 3.4) x 103 M-1 s-1) 

are at least ten times greater than those previously reported for Met (k2 = (0.4 – 2.0) x 

102 M-1 s-1) [192]. This is consistent with data for other MPO-derived oxidants, HOCl, 

HOSCN and HOBr, for both SeMet and SeTal and their respective sulfur analogues [90, 

98].  

N-chloramines formed in a biological setting are reported to display a selectivity 

for thiols, which can lead to protein inactivation if the targeted thiol is part of the active 

site of an enzyme [245]. GSH, a major intracellular thiol antioxidant, would be expected 

to be a major target of N-chloramines in vivo, with second order rate constants in the 

range of (1.1 – 2.6) x 102 M-1 s-1 [192], which are some of the fastest reported for N-

chloramines. This reactivity is similar to that reported for various peroxides, which 

have been shown to preferentially oxidise SeMet in the presence of the thiol- and 

thioether-containing targets GSH and Met [474]. As the reaction of N-chloramines and 

SeTal has similar rate constants to that of GSH, and SeMet rate constants are ca. 10 

greater than GSH, it suggests that selenoethers should provide a potential target for N-

chloramine reactions in vivo, providing that they are present in sufficient 

concentration.  
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 Conclusions 

The data in this Chapter demonstrate that SeMet and SeTal are capable of reacting 

rapidly with HOCl and model N-chloramines (Figure 3.28). The primary products of 

these reactions are selenoxides, which have been characterised here by mass 

spectrometry and NMR spectroscopy. The second order rate constants for these 

reactions determined in these studies suggest that SeMet and SeTal will be competitive 

in vivo targets for the oxidants. The following Chapter investigates potential 

subsequent reactions that may be mediated by selenoxides.  

 

Figure 3.28 – SeMet and SeTal react with MPO-derived chlorinating oxidants to 
produce selenoxides. 
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4 Reduction of selenoxides by thiols 
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 Introduction 

Selenoxides are the major product formed when selenoethers are oxidised by 

peroxides and MPO-derived oxidants [444, 464]. Selenoxides can be subsequently 

reduced by thiols [444, 445]. Thiol-containing compounds, including GSH, are capable of 

reducing SeMetO to SeMet, forming a disulfide (Reaction 4.1). Ascorbate is also capable 

of reducing SeMetO, though this process is significantly slower than for thiols [445]. 

𝑆𝑒𝑀𝑒𝑡𝑂 + 2𝑅𝑆𝐻 → 𝑆𝑒𝑀𝑒𝑡 + 𝑅𝑆𝑆𝑅 + 𝐻2𝑂 Reaction 4.1  

One electron reduction of SeMetO has also been demonstrated through pulse 

radiolysis studies [473]. The reduction is very fast with hydrated electrons, occurring 

with a rate constant near the diffusion limit (k = 1010 M-1s-1), and with k = 5.9 x 108 M-1s-

1 and 3.5 x 107 M-1s-1 for the one electron reductants CO2
•- and (CH3)2C•OH respectively 

[473]. The rate of one electron reduction is enhanced by a nitrogen-selenium non-

covalent interaction [473]. 

The facile reduction of selenoxides has given rise to the hypothesis that selenium 

compounds may be able to catalytically scavenge oxidants in vivo. Numerous 

selenoethers and other selenocompounds have been described as GPx mimetics, with 

ebselen being one of the first described [441, 443, 490, 569, 575]. These GPx mimetics 

catalyse the reaction between GSH and H2O2 or other oxidants, which may be lead to a 

decrease in oxidative damage.  

SeMet and SeTal can react rapidly with MPO-derived oxidants to produce the 

corresponding selenoxides [90, 486]. In order for SeMet and SeTal to act as catalytic 

oxidant scavengers, the reduction of the selenoxides must also be a favourable and rapid 

reaction, otherwise a build-up of selenoxide would occur, and inhibit the catalytic cycle.  

This Chapter explores the reaction rate constants and mechanisms of selenoxide 

reduction in order to determine the feasibility of the proposed catalytic scavenging cycle 

in biological systems.  

 Aims 

The aim of the studies presented in this chapter was to assess and quantify the ability 

of thiols to reduce selenoxides formed on SeMet (and related selenoethers) and SeTal. 
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This was achieved by monitoring the concentration of reaction products after thiols 

were mixed with selenoxides, and by determining the rate constants and mechanisms of 

these reactions. 

 Results 

 Selenoxides oxidise thiols 

Previous studies have demonstrated that SeMetO is reduced by thiols, including GSH, 

forming SeMet and GSSG [444, 445]. It was therefore hypothesised that GSH should be 

capable of reducing other selenoxides, including SeTalO and an analogue of SeMetO, 

methylselenocysteine selenoxide (MSCO). In order to assess this hypothesis, the loss of 

thiols upon reaction of various selenoxides with GSH was examined using the ThioGlo 

assay to monitor thiol concentration. SeMetO, SeTalO or MSCO (0 – 1 µM) were added to 

GSH (4 µM) and incubated for 10 min at 22 °C. Remaining thiol levels were determined 

by the ThioGlo assay (Figure 4.1).   

Initial experiments examined the loss of thiols upon SeMetO addition (Figure 4.1 a). 

Addition of 0.2 µM SeMetO to 4 µM GSH resulted in a loss of approximately 0.4 µM GSH. 

Further addition of SeMetO dose-dependently decreased the GSH concentration with the 

maximum addition of 1 µM SeMetO decreasing the GSH concentration by 2 µM. This 

represents a 2 : 1 stoichiometry of the reaction of GSH and SeMetO, which is consistent 

with previous reports [444, 445]. Similar experiments were performed with SeTalO and 

MSCO. Addition of these selenoxides also resulted in a dose-dependent decrease in GSH 

concentration. The observed stoichiometry was 2 : 1: for GSH to selenoxide added.  
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Figure 4.1 – Concentration of GSH remaining after selenoxide addition 

a) SeMetO, b) SeTalO or c) MSCO (0 – 1 µM) was added to GSH (4 µM) and incubated for 
10 min at 22 °C. Remaining thiol levels were determined by ThioGlo assay. Thiol levels dose-
dependently decreased upon addition of selenoxides in all cases. * represents a significant 
decrease (p < 0.05) in thiol concentration compared to control (0 µM selenoxide) based on 
one-way ANOVA with a Tukey’s post-hoc test. Data represent mean ± SD of three 
independent experiments. 

 GSH reduces selenoxides 

The above data indicate that selenoxides are capable of consuming GSH, consistent 

with previous reports of selenoxide reduction by thiols [444, 445]. As SeTalO also caused 

a decrease in thiol levels upon addition to GSH, it was anticipated that the reduction of 

the SeTalO was also occurring. In order to assess these hypotheses, products of the 

reaction between SeMetO and SeTalO with GSH were assessed by HPLC. 

4.3.2.1 Reduction of SeMetO 

Initial experiments assessed the ability of GSH to reduce SeMetO, formed by reaction 

of SeMet (3.2 mM) with HOCl (1.6 mM).  An excess of SeMet was used in order to 
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minimise the formation of products other than SeMetO. Preformed SeMetO (1.6 mM) 

was mixed with GSH (0 – 3.2 mM) and incubated for 10 min at 22 °C before a 10-fold 

dilution into H2O and analysis by HPLC. 

Addition of 0.4 mM GSH caused a decrease in the peak area of SeMetO, with a 

corresponding increase in the SeMet peak area (Figure 4.2). Furthermore a peak for 

GSSG was observed, and no GSH peak was observed, suggesting complete conversion of 

GSH to GSSG on reaction with SeMetO. Upon addition of increasing GSH concentrations, 

further decreases in SeMetO peak size were observed, with increases in the peak area 

for both SeMet and GSSG. 

 

Figure 4.2 – Representative chromatograms of SeMetO (1.6 mM) exposed to GSH (0 – 3.2 
mM) 

SeMetO (1.6 mM) was mixed with 0 (unbroken line), 1.2 mM (dashed line) or 3.2 mM (dot-
dashed line) GSH and incubated for 10 min at 22 °C, prior to 1 in 10 dilution into H2O and 
HPLC analysis with UV detection at 230 nm. A dose-dependent decrease of SeMetO was 
observed with increasing GSH, and this corresponded to an increase in SeMet and GSSG 
concentrations. Arrows indicate direction of peak change observed with increasing GSH 
concentration. 
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Upon quantification (Figure 4.3), a dose-dependent decrease of SeMetO was 

observed with increasing GSH concentration. Approximately 0.2 mM SeMetO was 

reduced for every 0.4 mM GSH added to SeMetO. This corresponded with an equal 

increase in SeMet and GSSG, of about 0.2 mM each for every 0.4 mM GSH added. These 

data are consistent with the reduction of SeMetO to SeMet by GSH, with the expected 

stoichiometry observed as described in Reaction 4.2. 

𝑆𝑒𝑀𝑒𝑡𝑂 + 2𝐺𝑆𝐻 → 𝑆𝑒𝑀𝑒𝑡 + 𝐺𝑆𝑆𝐺 + 𝐻2𝑂 Reaction 4.2  

 

Figure 4.3 – GSH (0 – 3.2 mM) reduces SeMetO (1.6 mM) forming SeMet and GSSG 

SeMetO (1.6 mM), formed by the reaction of SeMet and HOCl, was mixed with GSH (0 – 3.2 
mM) and incubated for 10 min before 1 in 10 dilution into H2O and analysis by HPLC. 
Species measured were a) SeMetO, b) SeMet and c) GSSG. A dose dependent decrease in 
SeMetO was observed with increasing GSH concentration, which corresponded with a 
stoichiometric increase in SeMet and GSSG formation. * represents a significant difference 
(p < 0.05) from control (0 mM GSH) based on one-way ANOVA with a Tukey’s post-hoc test. 
Data represent mean ± SD of three independent experiments. 
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4.3.2.2 Reduction of SeTalO 

The ability of GSH to reduce SeTalO was also assessed using HPLC analysis. SeTalO 

(1.6 mM), formed by the reaction of SeTal (3.2 mM) and HOCl (1.6 mM), was mixed with 

GSH (0 – 3.2 mM) and incubated for 10 min at 22 °C, before a 10-folddilution into H2O 

and analysis by HPLC. 

Addition of GSH (0 – 3.2 mM) to SeTalO (1.6 mM) resulted in a decrease in peak area 

for SeTalO, which corresponded to an increase in the peak area for SeTal (Figure 4.4). 

However, as the HPLC conditions used for the separation of SeTal and SeTalO were 

different to those employed for the separation of SeMet and SeMetO, no peak 

corresponding to GSSG or GSH was observed. It is thought that these species were 

eluting with the solvent front. Higher concentrations of GSH caused a greater decrease 

in SeTalO peak area, with a corresponding increase in SeTal peak area. 

 

Figure 4.4 – Representative chromatograms of SeTalO (1.6 mM) exposed to GSH (0 – 3.2 
mM) 

SeTalO (1.6 mM) was mixed with 0 (unbroken line), 1.2 mM (dashed line) or 3.2 mM (dotted 
line) GSH and incubated for 10 min at 22 °C, prior to 1 in 10 dilution into H2O and HPLC 
analysis with UV detection at 230 nm. A dose-dependent decrease of SeTalO was observed 
with increasing GSH, and this corresponded to an increase in SeTal. Arrows indicate 
direction of peak change observed with increasing GSH concentration. 
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SeMetO with GSH (Reaction 4.2). However, due to limitations with the HPLC method, 

GSSG concentrations could not be determined as they eluted with the solvent front.  

 

Figure 4.5 – GSH (0 – 3.2 mM) reduces SeTalO (1.6 mM) forming SeTal 

SeTalO (1.6 mM), formed by the reaction of SeTal (3.2 mM) and HOCl (1.6 mM), was mixed 
with GSH (0 – 3.2 mM) and incubated for 10 min before 1 in 10 dilution into H2O and 
analysis by HPLC with UV detection at 230 nm. Species measured were a) SeTalO and b) 
SeTal. A dose-dependent decrease in SeTalO was observed with increasing GSH 
concentration, which corresponded to an equal increase in SeTal formation. * represents a 
significant difference (p < 0.05) from control (0 mM GSH) based on one-way ANOVA with a 
Tukey’s post-hoc test. Data represent mean ± SD of three independent experiments. 

 Determination of rate constants for selenoxide reduction by thiols 

As the above data indicate that GSH is capable of reducing SeMetO and SeTalO to the 

corresponding selenoethers SeMet and SeTal, in biological systems there is a potential 

for a catalytic reduction cycle where SeMet and SeTal could consume multiple 

equivalents of oxidant. However, for this to be biologically relevant, the reduction 

kinetics would need to be rapid for efficient selenoxide removal. In order to investigate 

this in more detail, stopped flow kinetic analysis was used to determine the kinetics of 

the reactions between selenoxides and thiols. 

Initially reduction of SeMetO and most biologically relevant thiol, GSH, was 

attempted. However, the reaction of SeMetO with GSH led to complex kinetics, which 

were difficult to analyse due to overlap of the selenoxide and thiol absorbance spectra 

(Section 4.3.3.4). As a result, the aromatic thiol, TNB, which absorbs at 412 nm, was used 

as a model thiol to investigate the reduction kinetics of selenoxides in an attempt to 

simplify the observed kinetic data. 
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4.3.3.1 Reduction of SeMetO and SeTalO by TNB 

TNB, which has a yellow colour, can react with oxidants to form the colourless 

disulfide DTNB [555]. As TNB and DTNB have distinguishable peak absorbance (TNB = 

412 nm; DTNB = 324 nm) [555] that do not overlap with the absorbances of selenoxides 

(200 – 300 nm), TNB presented an ideal model thiol to explore the kinetics and 

mechanisms of selenoxide reduction.  

SeMetO or SeTalO (5 µM) and TNB (25 – 125 µM) were mixed in the stopped flow 

apparatus and the absorbance monitored at 412 nm (loss of TNB, i.e. thiol consumption) 

and 324 nm (increase in DTNB product, i.e. disulfide formation). Decreases in 

absorbance over time were observed at 412 nm, consistent with a consumption of TNB, 

whilst concomitant increases in absorbance were observed at 324 nm, consistent with 

DTNB formation.  
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Figure 4.6 – Representative figures demonstrating the change in absorbance at a,c) 412 
nm or b,d) 324 nm after a,b) SeMetO (5 µM) or c,d) SeTalO (5 µM) was mixed with TNB 
(25 µM) monitored by stopped flow apparatus 

a,b) SeMetO (5 µM) or c,d) SeTalO (5 µM) was mixed with TNB (25 µM) by stopped flow 
apparatus in phosphate buffer (pH 7.4, 0.1 M) at 22 °C and the absorbance at a,c) 412 and 
b,d) 324 nm was monitored over time. In both cases, a loss in absorbance was observed at 
412 nm, indicating TNB consumption. Concomitantly, an increase in absorbance was 
observed at 324 nm, indicating DTNB formation. 

First-order (t vs. ln(Abs)) and second-order (t vs. 1/Abs) analysis of the absorbance 

data at 412 nm obtained when SeMetO or SeTalO were mixed with TNB yielded the 

graphs in Figure 4.7. For both SeMetO and SeTalO a linear first-order plot was observed, 

and the second-order plots were non-linear. The linearity of the first-order plots 

indicates a first order (or, more likely, a pseudo first-order) mechanism is occurring.  
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Figure 4.7 – First- and second-order plots for the reaction between a,b) SeMetO (5 µM) 
or c,d) SeTalO (5 µM) and TNB (25 µM) based on absorbance data obtained at 412 nm 

SeMetO (5 µM) or SeTalO (5 µM) was mixed with TNB (25 µM) by stopped flow apparatus 
in phosphate buffer (pH 7.4, 0.1 M) at 22 °C and the absorbance at 412 nm was monitored 
over time. The absorbance data obtained was then analysed by either a,c) first-order 
conditions (ln(Abs) vs time) or b,d) second-order conditions (1/Abs vs time). For both 
SeMetO and SeTalO, the ln(Abs) vs time plots were observed to be linear, indicating first-
order reaction mechanisms are occurring. 

The stoichiometry of the reaction of thiols and selenoxides indicate that for every 

one mole of selenoxide reduced, 2 moles of thiols will be consumed. Based on this, the 

reaction may be occurring via one of two mechanisms.  One potential mechanism is a 
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time. This would result in a kinetic profile demonstrating a second-order reaction with 
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produce the disulfide and selenoether, with the rate constant for this step designated as 

k2 (Figure 4.8). Kinetic models demonstrate that in such a 2-step system where the k1 > 

k2 (for modelling purposes a 10-fold increase of k1 over k2 was used), the thiol 

concentration [RSH] decreases exponentially and the first-order plot is linear (Figure 

4.9). k1 can then be determined from the gradient of the pseudo first-order plot. 

However, if k2 > k1, 2-phase kinetics will be observed for [RSH]. This gives a non-linear 

first-order plot, and a single exponential decay does not fit to the data well.  

 

Figure 4.8 – Proposed two-step mechanism of selenoxide reduction by thiols 

Initial reaction of selenoxides (A) with thiols is proposed to lead to the formation of a 
seleno-sulfide intermediate (B). The rate constant for the initial reaction is designated as 
k1. A second thiol then reacts with the intermediate with a rate constant k2, producing a 
selenoether (C), disulfide (D) and water (E) as products. 
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Figure 4.9 – Computational models showing reaction profile for the proposed two-step 
mechanism 

a) shows computational model (black line) of the reaction (A + RSH  C + RSH  D + E + 
F) where concentration of RSH is set to 5 M, representing a ten-fold excess of the 
concentration of A, set to 0.5 M. The rate constant for the k2 was set to 10 and k1 was set to 
1. The simulation was run for 1000 points, with the theoretical concentrations of A and 
RSH calculated at 0.001 s intervals. An exponential decay function was fitted to the data 
obtained for concentrations of RSH (white line). c) shows the same model (black line), with 
k2 set to 1 and k1 set to 10, with the exponential fit (white line). The concentration of RSH 
obtained in a) was plotted as ln[RSH] vs time in b). The concentration of RSH obtained in 
c) was plotted as ln[RSH] vs time in d). When k2 > k1 first-order conditions are observed, 
with concentration data fitting to single exponential curve, and ln[RSH] vs time plots 
linear. When k2 < k1, first-order mechanisms are not observed. Computational models were 
performed in Mechanism-Based Kinetics Simulator available at 
(http://www.stolaf.edu/depts/chemistry/courses/toolkits/126/js/kinetics/). Exponential 
fits were performed in Prism v6.  

As first-order kinetics were observed when SeMetO and SeTalO were mixed with 

TNB, based on the linearity of the first-order plots and good fits to single exponential 

decays, this suggests that the rate limiting step in this reaction is k1, based on kinetic 
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observed rate constant (kobs) for the condition. The kobs values were determined by 

fitting a single exponential curve to absorbance data in ProData Viewer (Applied 

Photophysics). The determined second-order rate constants for the reduction of SeMetO 

and SeTalO by TNB were k1 = (3.8 ± 0.1) x 104 and k1 = (4.9 ± 0.2) x 103 M-1 s-1 respectively 

(Figure 4.10). 

 

Figure 4.10 – Pseudo-first order plots for the reduction of a) SeMetO and b) SeTalO by 
TNB 

SeMetO (5 µM) or SeTalO (5 µM) was mixed with increasing concentrations of TNB (25 - 
125 µM) by stopped flow apparatus in phosphate buffer (pH 7.4, 0.1 M) at 22 °C and the 
absorbance at 412 nm was monitored over 60 s. The observed rate constant, kobs, for each 
condition was determined from the absorbance vs time plots using single exponential 
fitting in ProData Viewer software (Applied Photophysics). kobs  was plotted against the 
initial TNB concentration for a) SeMetO or b) SeTalO, and the second order rate constants 
determined from the gradients of these plots. Data represent mean ± SD of three 
independent experiments. 

The rate of DTNB production was also measured from the absorbance changes at 324 

nm by the same pseudo first-order method. The observed rate constants at 412 nm and 

324 nm were very similar, and points overlay one another in the pseudo first-order 

analysis plots of 412 and 324 nm data. The rate of DTNB production observed was not 

significantly different to the rate at which TNB was being consumed, with k1 = (3.8 ± 0.1) 

x 104 M-1 s-1 for SeMetO and (4.8 ± 0.2) x 103 M-1 s-1 for SeTalO. This supports the 

mechanism proposed where a rate-limiting intermediate formation occurs followed by 

a fast second step where the disulfide is formed.  
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Figure 4.11 – kobs determined from data measured at 324 nm (open circles) and 412 nm 
(closed circles) when SeMetO (5 µM) was mixed with increasing concentration of TNB 
(25 – 125 µM) 

SeMetO (5 µM) was mixed with increasing concentrations of TNB (25 - 125 µM) by stopped 
flow apparatus in phosphate buffer (pH 7.4, 0.1 M) at 22 °C and the absorbance at 412 or 
324 nm was monitored over 60 s. The observed rate constant, kobs, for the reaction at 412 
nm (closed circles) or 324 nm (open circles) was determined from the absorbance vs time 
plots using single exponential fitting in ProData Viewer software (Applied Photophysics). 
kobs  was plotted against initial TNB concentration for SeMetO, and the second order rate 
constant determined from the gradients of these plots. Data represent mean ± SD of three 
independent experiments. 

4.3.3.2 Reduction of other selenoxides by TNB 

The rate constant determined for the reduction of SeMetO by TNB was an order of 

magnitude greater than that for SeTalO. It was thought that this may be due to effects of 

the surrounding molecular environment of the selenoxide moiety, with the amine group 

of SeMetO potentially interacting with the selenium, and increasing the rate at which the 

reaction occurs as seen in one-electron reduction of SeMetO [473]. In order to examine 

this possibility, the rate constants for the reaction of TNB with various selenoxides with 

structures related to SeMetO were determined. 

The selenoxides were chosen based on chemical structures similar to that of SeMetO 

with the amine group either hindered or absent (Figure 4.12).  Se-Methyl selenocysteine 

selenoxide is also an α-amino acid with one carbon less in the side chain than SeMetO 

and therefore the nitrogen and selenium atoms should not be able to interact due to 

steric considerations. N-acetylselenomethionine selenoxide has the amine group of 
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SeMetO blocked by an N-acetyl group. SePropO keeps the carboxyl group the same 

distance from the Se atom, though the amine group is removed.  

 

Figure 4.12 – Structures of model selenoxides used in the determination of the 
mechanisms and kinetics of selenoxide reduction by thiols. 

MSCO, NASMO or SePropO (5 µM) were mixed with increasing concentrations of TNB 

(25 – 125 µM) and absorbance changes monitored at 412 and 324 nm (Figure 4.13). 

Upon mixing, a time dependent decrease in absorbance was observed at 412 nm, 

corresponding to consumption of TNB. At the same time, an increase in absorbance at 

324 nm was observed, corresponding to formation of DTNB. Absorbance data at 412 nm 

was used to plot both first- (ln(Abs) vs time) and second-order (1/Abs vs time) plots. 

The first-order plots for MSCO, NASMO and SePropO were observed to be linear, 

confirming the mechanism is likely to be the same as that observed in the reduction of 

SeMetO and SeTalO by TNB. 
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Figure 4.13 – Changes in absorbance at 412 nm over time and the corresponding first-
order analysis plots (lnAbs vs time) for the reactions of MSCO, NASMO and SPO with TNB 

a) MSCO (5 µM), b) NASMO (5 µM) or c) SePropO (5 µM) were mixed with TNB (25 µM) by 
stopped flow apparatus in phosphate buffer (pH 7.4, 0.1 M) at 22 °C and the absorbance at 
412 nm was monitored over time. Absorbance data were plotted as ln(Abs) vs time for d) 
MSCO, e) NASMO or f) SePropO in order to determine the order of reaction. The ln(Abs) vs 
time plots for MSCO, NASMO and SPO were all linear, and therefore the reaction with TNB 
follows a first-order mechanism. 
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As a first-order (or pseudo first-order) mechanism was observed, second order rate 

constants were determined by pseudo first-order analysis. The observed rate constants 

(kobs) for each condition were determined by fitting exponential curves to the 

absorbance vs time data for each sample (Figure 4.14). Second-order rate constants for 

the reaction of MSCO, NASMO and SePropO with TNB were then determined by plotting 

kobs against initial TNB concentration. The rate constants were determined to be k1 = 

(4.4 ± 0.3) x 103, k1 = (1.2 ± 0.04) x 103 and k1 = (1.3 ± 0.03) x 103 M-1 s-1 for MSCO, NASMO 

and SePropO respectively. The rate constant for the formation of DTNB was also 

calculated from absorbance data at 324 nm, and the rate constants obtained were not 

significantly different from those determined at 412 nm (Table 4.1).  Interestingly, all 

these selenoxides gave rate constants about 10-fold lower than those determined for 

SeMetO, supporting the hypothesis that the presence of an amine group may contribute 

to the facile reduction of SeMetO.  
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Figure 4.14 – Pseudo first-order plots for the reaction of a) MSCO, b) NASMO and c) 
SePropO with TNB 

MSCO (5 µM), NASMO (5 µM) or SePropO (5 µM) was mixed with increasing concentrations 
of TNB (25 - 125 µM) by stopped flow apparatus in phosphate buffer (pH 7.4, 0.1 M) at 22 
°C and the absorbance at 412 nm was monitored over time. The observed rate constant, 
kobs, for each condition was determined from the absorbance vs time plots using single 
exponential fitting in ProData Viewer software (Applied Photophysics). kobs  was plotted 
against initial TNB concentration for a) MSCO, b) NASMO or c) SPO and the second-order 
rate constants determined from the gradient of these plots. Data represent mean ± SD of 
three independent experiments. 
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Table 4.1 – Second-order rate constants for the reduction of selenoxides by TNB 

 k1 / M-1 s-1 

Selenoxide -d[TNB]/dt  +d[DTNB]/dt 

SeMetO (3.8 ± 0.1) x 104 (3.8 ± 0.1) x 104 

SeTalO (4.9 ± 0.2) x 103 (4.8 ± 0.2) x 103 

MSCO (4.4 ± 0.3) x 103 (4.9 ± 0.6) x 103 

NASMO (1.2 ± 0.04) x 103 (1.2 ± 0.1) x 103 

SePropO (1.3 ± 0.03) x 103 (1.3 ± 0.06) x 103 

4.3.3.3 Contribution of amine group to rate constant 

SeMetO has a rate constant for reduction by TNB that is about 10 times higher than 

the other selenoxides measured (Table 4.1). This is proposed to be due to the amine 

group present in the structure, as nitrogen and selenium non-bonding interactions have 

been shown to have effects on redox properties of compounds [473]. Thus, experiments 

were performed examining the reduction of NASMO and MSCO by TNB in phosphate 

buffer (pH 7.4, 0.1 M) supplemented with Gly (10 mM) to investigate whether the 

presence of an extramolecular amine group could effect the rate of reduction.  

MSCO, NASMO and TNB were prepared using a phosphate buffer (pH 7.4, 0.1 M) 

containing Gly (10 mM). The rate of reaction between selenoxides and TNB was assessed 

by stopped flow as described above. Absorbance changes consistent with the loss of TNB 

and formation of DTNB were observed. Second-order rate constants were determined 

from the data by plotting kobs against TNB concentration (Figure 4.15). Linear regression 

analysis yielded the second-order rate constants shown in Table 4.2. These rate 

constants were higher than those measured in the absence of Gly, and a statistical 

comparison of the slope (Prism v6 – unpaired t-test) indicated that there was a 

significant 2-fold increase in k1 for NASMO in the presence of Gly. The small increase in 

k1 determined for MSCO in the presence of Gly was not significantly different to the k1 

determined in the absence of Gly.  
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These results initially appear inconsistent. However, the rate constant for the 

reduction of MSCO by TNB is already elevated compared to NASMO in the absence of Gly. 

This may arise from the fact that MSCO already contains a free amine group, that though 

unlikely to interact intramolecularly, may interact intermolecularly with the Se centre. 

Therefore, the addition of excess in the form of Gly may not have as dramatic an impact 

compared to the NASMO, which has no free amine. The increased rate constant for 

NASMO suggests that extramolecular amine groups may interact favourably with 

selenoxides to facilitate their reduction by thiols, but this effect is not as profound as that 

of an intramolecular Se…N interaction.  

 

Figure 4.15 – Plots of kobs values measured by stopped flow at 412 nm after a) NASMO 
(5 µM) or b) MSCO (5 µM) was mixed with increasing TNB (25 – 125 µM) with (open 
symbol) or without (closed symbol) Gly (10 mM) in buffer 

a) NASMO (5 µM) or b) MSCO (5 µM) was mixed with increasing concentrations of TNB (25 
- 125 µM) by stopped flow apparatus in phosphate buffer (pH 7.4, 0.1 M) with (closed 
symbol) or without (open symbol) Gly (10 mM) at 22 °C and the absorbance at 412 nm was 
monitored over time. The observed rate constant, kobs, for each condition was determined 
from the absorbance vs time plots using single exponential fitting in ProData Viewer 
software (Applied Photophysics). kobs  was plotted against initial TNB concentration for a) 
NASMO or b) MSCO and the second order rate constants determined from the gradient of 
these plots. Data represent mean ± SD of three independent experiments. 
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Table 4.2 – Comparison of second order rate constants determined for the reaction of 
NASMO and MSCO in the presence or absence of Gly (10 mM) 

Selenoxide k1  / M-1 s-1 k1 in presence of 
10 mM Gly / M-1 s-1 

MSCO (4.4 ± 0.3) x 103 (5.0 ± 0.3) x 103 

NASMO (1.2 ± 0.04) x 103 (2.5 ± 0.2) x 103 

 Reduction of selenoxides by GSH 

In the previous section, TNB was used as a reductant to simplify the kinetics of 

selenoxide reduction compared to that for GSH. However, TNB is an aromatic thiol that 

may not be a representative model for reduction of selenoxides by biologically relevant 

thiols. Thus, the reduction of selenoxides by the endogenous thiol GSH was examined 

using stopped flow.  

SeMetO, SeTalO, NASMO, MSCO or SePropO (125 µM) and GSH (0.5 – 2.5 mM) were 

mixed in the stopped flow apparatus and absorbance monitored between 200 – 310 nm 

in 10 nm steps. Upon mixing, increases in absorbance were observed across the 

spectrum with a maximum increase at around 280 nm (Figure 4.13a). This is likely to 

correspond to the formation of GSSG, as disulfide bonds are known to exhibit absorbance 

maxima in the region of 250-300 nm, depending on structure [576, 577]. 

SeTalO, MSCO, NASMO and SePropO demonstrated pseudo first-order kinetics upon 

reaction with GSH. This is demonstrated by the linear first-order plots of the absorbance 

vs time data at 270 nm (Figure 4.16c). The data observed at 270 nm shows a single 

exponential increase, however due to the small absorbance changes and fluctuations in 

light source, the data are not completely smooth. As the kinetics demonstrated pseudo 

first-order kinetics the same mechanism as exhibited for reduction by TNB was used for 

rate constant determination in ProKIV. The spectra of the reactants were measured at 

known concentrations and fixed for the analysis procedure in order to simplify the 

global analysis by decreasing the number of unknown fitting parameters. The second-

order rate constants that were determined from these fits and reported in Table 4.3, and 

were confirmed by pseudo first-order analysis at 270 nm.  
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Figure 4.16 – Spectral kinetics, absorbance change at 270 nm and first-order plot for the 
reaction between SeTalO and GSH 

SeTalO (125 µM) was mixed with GSH (0.5 mM) in phosphate buffer (pH 7.4, 0.1 M) at 22 
°C by stopped flow apparatus. a) shows the absorbance changes over 0.75 s monitored at 
wavelengths between 240 - 300 nm at 10 nm steps.  b) shows the  absorbance change at 
270 nm over time after mixing. The absorbance data from b) were analysed for first-order 
behaviour by plotting as ln(Abs) vs time. As the ln(Abs) vs time is linear, the reaction follows 
a first-order mechanism. 

Table 4.3 - Second order rate constant determined for the reduction of selenoxides with 
GSH 

Selenoxide k1 / M-1 s-1  

SeTalO (3.4 ± 0.3) x 103 

MSCO (2.5 ± 0.4) x 104 

NASMO (1.3 ± 0.2) x 103  

SePropO (4.6 ± 0.6) x 102 
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SeMetO showed more complex reaction kinetics with GSH than the other 

selenoxides. The data obtained for TNB suggest that the mechanism is likely to be 

occurring via a two-step reduction. The kinetic data for SeMetO reduction by GSH shows 

two phases, as demonstrated by the change in absorbance over time data at 240 nm 

(Figure 4.17). The data show an initial fast decrease in absorbance followed by a slower 

increase in absorbance. This suggests that the initial reaction of the selenoxide, k1, and 

the subsequent reaction of the selenosulfide intermediate, k2, occur on timescales that 

allow for both to be observed. Thus, it is proposed that the same mechanism is occurring 

for the TNB reduction, but in the case of SeMetO reduction by GSH, the first step, k1, is 

occurring significantly faster than the second step, k2, and therefore the two phases are 

observed.  

 

Figure 4.17 - Spectral kinetics and absorbance at 240 nm for the reaction between 
SeMetO and GSH. 

SeMetO (125 µM) was mixed with GSH (0.5 mM) in phosphate buffer (pH 7.4, 0.1 M) at 22 
°C by stopped flow apparatus and a) shows the absorbance changes over 0.2 s monitored 
at wavelengths between 240 – 300 nm at 10 nm steps.  b) shows the change in absorbance 
at 240 nm after mixing SeMetO and GSH. In this plot, two-phase kinetics are observed with 
an initial rapid drop in absorbance, followed by an increase in absorbance. 

Based on these assumptions, a kinetic model based on the mechanism in Figure 4.8 

was used for global wavelength analysis. Initial analysis using this model was unable to 

converge to the data due to too many unknown parameters. In order to assist with the 

fitting, pseudo first-order analysis of the fast initial decrease, k1, was performed at 240 

nm. This gave a second-order rate constant of 1.2 x 105 M-1 s-1 (Figure 4.18). The value of 

k1 was then fixed in the global analysis fitting using the above model. This resulted in 

good convergence of the model, and led to the determination of second-order rate 
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constant for the reaction of the selenosulfide intermediate with GSH, k2, as 1.5 x 104 M-1 

s-1. 

 

Figure 4.18 - Plots of kobs values for initial absorbance decrease measured by stopped 
flow at 240 nm SeMetO (125 µM) was mixed with increasing GSH (0.5 – 2.5 mM)  

SeMetO (125 µM) was mixed with increasing concentrations of GSH (0.5 – 2.5 mM) by 
stopped flow apparatus in phosphate buffer (pH 7.4, 0.1 M) at 22 °C and the absorbance at 
240 nm was monitored over time. The observed rate constant for the initial decrease in 
absorbance, kobs, for each condition was determined from the absorbance vs time plots 
using single exponential fitting in ProData Viewer software (Applied Photophysics). kobs  
was plotted against initial GSH concentration and the second order rate constants 
determined from the gradient of this plot. Data represent mean ± SD of three independent 
experiments. 
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that the presence of a second thiol group could increase the rate of the second step k2, 

particularly for SeMetO reduction through intramolecular interactions. It was 
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were mixed in the stopped flow apparatus and the absorbance was monitored between 
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absorbance were observed at wavelengths < 240 nm, which is potentially due to loss of 

the selenoxide. 

The change in absorbance at 270 nm was plotted in both first- and second-order 

plots in order to determine the appropriate reaction mechanism. First-order plots for 

SeTalO, NASMO and SePropO were linear (Figure 4.19), whereas the data for SeMetO 

and MSCO did not fit to either first- or second-order kinetic analysis (Figure 4.20).  

As the first-order plots for SeTalO, NASMO and SePropO were linear, the mechanism 

was determined to be a pseudo-first order kinetic mechanism. Global wavelength 

analysis of the data was performed in ProKIV with a a model reflecting the proposed 

mechanism in Figure 4.8. This mechanism is identical to that for the TNB reduction of 

selenoxides where only a rate limiting initial reaction, k1, with one thiol is observed. The 

spectra of the reactants were measured at known concentrations and fixed for the 

analysis procedure in order to simplify the global analysis by decreasing the number of 

unknown fitting parameters. Second order rate constants were confirmed by pseudo-

first order analysis of absorbance vs time data at 270 nm. Again, while the single 

exponential increase is observed at 270 nm (Figure 4.19b), the data are not smooth due 

to small absorbance changes and fluctuations in the light source. 
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Figure 4.19 – Spectral kinetics, absorbance change at 270 nm and first-order plot for the 
reaction between SeTalO and DTT  

SeTalO (125 µM) was mixed with DTT (0.5 mM) in phosphate buffer (pH 7.4, 0.1 M) at 22 
°C by stopped flow apparatus. a) shows the absorbance changes over time monitored at 
wavelengths between 240 – 300 nm at 10 nm steps.  b) shows absorbance change at 270 
nm over time after mixing. The absorbance data from b) were analysed for first-order 
behaviour by plotting as ln(Abs) vs time; as the ln(Abs) vs time is linear, the reaction follows 
a first-order mechanism. 

Table 4.4 – Second order rate constants determined for the reduction of selected 
selenoxides with DTT 

Selenoxide k2 / M-1 s-1  

SeTalO (3.0 ± 0.3) x 103 

NASMO (2.3 ± 0.3) x 104 

SePropO (7.3 ± 1) x 102  
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The absorbance data obtained at 270 nm when SeMetO or MSCO was mixed with DTT 

were analysed by both first-order (ln(Abs) vs time) or second-order (1/Abs vs time) 

analysis plots (Figure 4.20c and d respectively), in an attempt to determine the reaction 

mechanism. However, as neither of these plots were linear, it was concluded that the 

reduction of SeMetO and MSCO by DTT does not follow either first- or second-order 

mechanisms.  

 

Figure 4.20 - Spectral kinetics, absorbance change at 270 nm and kinetic analysis for the 
reaction between SeMetO and DTT  

SeMetO (125 µM) was mixed with DTT (0.5 mM) in phosphate buffer (pH 7.4, 0.1 M) at 22 
°C by stopped flow apparatus and a) shows the absorbance changes over 0.5 s monitored 
at wavelengths between 240 – 300 nm at 10 nm steps.  b) shows absorbance changes 
measured at 270 nm over time after mixing. The absorbance data from b) were analysed 
for first-order behaviour by plotting c) ln(Abs) vs time., or  second order behaviour by 
plotting d) 1 / Abs vs time. As neither of these plots are linear, the reaction does not appear 
to follow either first- or second-order mechanisms.  
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A number of potential models for the reaction were considered, but none of these 

yielded satisfactory fits to the data in ProKIV. Models attempted included; 

 Se=O + RSH  Intermediate 

 Se=O + RSH  Intermediate + RSH  Se + RSSR 

 Se=O + RSH  Intermediate Se + RSSR 

 Se=O + RSH  Intermediate A Intermediate B 

The observed complex kinetics are proposed to be due to the initial formation of a 

seleno-sulfide intermediate as proposed in Figure 4.8 for TNB that can then react via a 

number of different pathways. Once formed, the intermediate can then react with 

another DTT thiol, either intramolecularly or extramolecularly. Alternatively, two of the 

selenosulfide intermediates may react with one another, either at the selenosulfide 

bond, or at the free thiol on DTT.  As the kinetic data were complex, definitive rate 

constants could not be determined from these data. However, the data suggest that the 

reduction occurs with a rate constant that is in the same order of magnitude as TNB 

reduction of selenoxide, due to the similar time frames of the absorbance changes.  

 Discussion 

The data in this Chapter demonstrate that selenoxides are capable of reacting with 

thiols, producing disulfides and reforming the parent selenoether compound. The 

mechanism of these reactions were examined and have been proposed to occur via a 

selenosulfide intermediate. The rate constants for these reactions have also been 

defined in this Chapter and are summarised in Table 4.5. 



 149 

Table 4.5 – Second-order rate constants determined for the reaction between 
selenoxides and various model low molecular mass thiol compounds 

 Second order rate constants determined for the reaction 
between selenoxides and thiols / M-1 s-1 

 TNB  DTT GSH 

SeMetO 3.8 x 104 - k1 1.2 x 105 

k2 1.5 x 104 

SeTalO 4.9 x 103 3.0 x 103 3.4 x 103 

MSCO 4.4 x 103 - 2.5 x 104 

NASMO 1.2 x 103 2.3 x 104 1.3 x 103 

SePropO 1.3 x 103 7.3 x 102 4.6 x 102 

 

GSH was capable of reducing SeMetO as has been previously described [444, 445]. 

The products of the reaction between GSH and SeMetO were SeMet and GSSG.  The 

stoichiometry observed was a 2 : 1 ratio of thiol consumed to selenoxide reduced. The 

reaction between SeTalO and GSH occurred with the same stoichiometry, with 1 mol 

SeTalO consumed and 1 mole of SeTal recovered for every 2 moles of GSH added. It is 

reasonable to assume that the reaction would occur via the same mechanism as the 

reduction of SeMetO, resulting in the formation of GSSG as a product. However, this was 

unable to be measured due to limitations with the HPLC method employed to separate 

SeTal and SeTalO. This could be measured with further development of HPLC methods, 

or using a fluorescent labelling approach to label GSSG, which was though it was 

considered beyond the scope of this project. 

The stopped flow data show that TNB and DTT are also capable of reacting with 

selenoxides. A decrease in the TNB concentration and concomitant increase in the DTNB 

concentration was observed by optical absorbance at 412 and 324 nm respectively. With 

DTT, the likely product will be the disulfide based on the absorbance increases observed 

around 290 nm, which correspond to the region of disulfide absorbance [576, 577]. The 
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proposed mechanism is a two-step process, where the initial step is the reaction of the 

selenoxide and a thiol to form a selenosulfide intermediate. This species could then be 

reduced by reaction with a second thiol, eliminating water and forming the selenoether 

and disulfide. 

The two-phase reduction mechanism was most clearly observed for the reduction of 

SeMetO with GSH. At 240 nm, an initial rapid decrease in absorbance is observed, which 

is proposed to be the initial reaction, followed by a slower increase in absorbance, which 

is proposed to be due to the second step. The data obtained for the other selenoxide 

reactions with thiols are also consistent with this mechanism, assuming that the second 

step has a rate constant (k2) significantly greater than the rate constant for the first step 

(k1). Data obtained for the reduction of SeMetO by GSH suggest that the rate constant for 

the second thiol reaction (k2) is in the order of  

104 M-1 s-1. If this rate constant holds for the other selenoxide species and with TNB as 

the thiol, this value is an order of magnitude greater than that measured for the first thiol 

reaction. This would give rise to kinetic traces that appear first order, as described in 

Section 4.3.3.1. 

A selenosulfide species has been proposed as the intermediate formed after the 

reaction with the first thiol. However, studies to characterise this product were not 

performed, though thermodynamic modelling may provide further evidence to support 

this as a viable mechanism. A similar selenosulfide has been proposed as an intermediate 

formed when MsrB reduces MetSO [354, 446, 578]. In the case of the MsrB reaction, the 

selenol of the active site SeCys attacks the sulfur residue of MetSO, forming a Se-S-OH 

structure. The resolving Cys residue then reacts with the Se, forming an Se-S bond on 

MsrB, and Met and H2O act as leaving groups [354, 446, 578]. This mechanism is similar 

to the one proposed in this Chapter.  

Selenosulfide species are known to react with thiols to produce disulfides and selenol 

species as products [579]. It is this disulfide exchange mechanism that gives enzymes 

like TrxR its reducing capability [446]. Previously, the rate constants between low 

molecular mass thiol and selenosulfide species (DTT and hemi-selenocystine) have been 

extrapolated from experimental data based on thermodynamic calculations and 

determined to be ~ 10 M-1 s-1 [579]. Similar selenosulfide reactions take place during 

the enzymatic cycles of the Msr family (described above) and TrxR, where disulfide or 
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selenosulfide exchange reactions occur in order to reduce the oxidised substrates [379, 

446, 580, 581]. Analysis of the reaction of the Sec catalytic domain of TrxR with active 

thioredoxin gives rate constants of up to 107 -108 M-1 min-1 [379, 581]. The higher rate 

constant observed with the enzymatic system likely reflects the positive influence of the 

surrounding protein structure. 

In the current studies, the rate constants determined for further reaction of the 

selenosulfide intermediate are ~ 104 M-1 s-1, based on the rate determined for the second 

step of SeMetO reaction with GSH. This is significantly greater than that calculated for 

the hemi-selenocysteine and DTT reaction [579], however in this latter case, the 

selenosulfide intermediate is proposed to still be bound to the –OH group. The presence 

of the electronegative oxygen atom bound to the Se centre may contribute to the 

electrophilicity of the Se atom by withdrawing electrons. This would lead to a more rapid 

nucleophilic reaction of the second thiol. 

SeMetO consistently had the highest rate constant for reaction with thiols out of the 

selenoxides tested, and was about an order of magnitude greater than the other 

selenoxides examined. This is attributed to a non-bonding interaction between the 

selenoxide moiety and the free amine, which is present on SeMetO, but not in the other 

structures excluding MeSeCys. However, as MeSeCys has one carbon less in the side-

chain, steric considerations would mean that the amine group is unable to interact 

strongly with the selenoxide moiety.  

In Chapter 3, it was demonstrated that oxidation of SeMet in particular may give rise 

to other products, with a major secondary product being dehydroselenomethionine 

(Section 3.3.3). In this Chapter, the ability for thiols to reduce selenoxides was 

investigated to establish the potential for a catalytic scavenging cycle. If the products of 

the initial oxidation of SeMet is not SeMetO, there is potential for the proposed cycle to 

be disrupted. However, if the other products are also capable of being reduced by thiols, 

the catalytic cycle may still have potential. In the case of dehydroselenomethione, it is 

likely that a reduction by GSH will occur, as dehydromethionine is reduced by GSH to 

give methionine [117], and ebselen, a selenocompound containing a Se-N bond like 

dehydroselenomethionine, also reacts with GSH [454].  

As amine interactions appear to have a positive effect on the selenoxide reduction 

rate constant, experiments were undertaken with Gly supplemented phosphate buffer 
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(10 mM). An increase in reduction rate was observed with NASMO, though no increase 

in rate was observed for MSCO. As MSCO already contains an amine group, it is proposed 

that the increase in extramolecular amine concentration had minimal effect on the rate 

constant. The increased NASMO reduction rates suggest that amine groups are indeed 

playing a role in the selenoxide reduction. However, the addition of Gly to the buffer did 

not increase the rate constant for NASMO reduction to that observed for SeMetO. This is 

likely due to the fact that interaction with the intramolecular amine group is more 

favourable for entropic reasons in SeMetO, compared to the extramolecular amine of Gly 

for NASMO.  

Interaction of the amine group with the Se atom of SeMet has been shown to facilitate 

the one-electron reduction of SeMetO [473]. A three-electron bond between the Se and 

N atoms forms upon reaction with a hydrated electron, based on transient absorbance 

changes, and the rate constant determined for this reaction is 1.2 x 1010 M-1 s-1 [473]. In 

contrast, the reduction of the sulfur analogue MetSO by the hydrated electron occurs 

with a significantly lower rate constant of k = 2 x 108 M-1 s-1 [582]. It is proposed that the 

Se-N three-electron bond stabilises the intermediate, allowing for reduction to SeMet, 

and this stabilisation does not occur with MetSO [473]. Similarly, the same intermediate 

is proposed to facilitate the one-electron oxidation of SeMet to SeMetO, with stabilisation 

of the intermediate increasing the rate of one-electron oxidation compared to Met [457, 

470, 471]. 

The rate constants determined for the reduction of selenoxides by GSH are 

comparable to, or greater than, the rate constants determined in Chapter 3 for the 

oxidation of SeMet and SeTal by a variety of N-chloramines to form the selenoxides. The 

rapid reduction observed for selenoxides suggests that GSH will be capable of reducing 

selenoxides in vivo, potentially giving rise to a catalytic scavenging cycle of N-

chloramines. The rate constants suggest that a build-up of selenoxide would not occur, 

given sufficient thiol concentration, thereby providing rapid turnover of the 

selenoethers and allowing selenium compounds to further react with oxidants.  

The main products of these proposed catalytic reactions appear to be the disulfides, 

particularly GSSG. Numerous enzymes in the body are capable of reducing disulfides, 

thus providing a regeneration of the reducing equivalents to keep the catalytic cycle 

active. Furthermore, many of these enzymes contain either a thiol or selenol at the active 
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site. The rapid reaction of selenoxides with thiols, and production of disulfide products 

like GSSG, may lead to the potential of endogenous antioxidant defence systems to 

interact with selenium compounds in order to reduce oxidative damage. This hypothesis 

is explored further in Chapter 5.  

 Conclusions 

SeMetO and SeTalO are readily reduced by GSH and other thiol compounds to reform 

SeMet and SeTal and disulfide species. The reduction is proposed to happen in a two-

step mechanism, via a selenosulfide intermediate. The rate constants for these reactions 

have been defined and are summarised in Table 4.5. The facile reduction of SeMetO and 

SeTalO by GSH highlights the potential for a catalytic oxidant scavenging cycle in vivo, 

that may provide therapeutic benefit in inflammatory conditions.  
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5 Reduction of selenoxides and N-chloramines by redox enzymes 
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 Introduction 

Exposure to MPO-derived oxidants can lead to conformational and functional 

changes of proteins within the cellular environment [106]. In order to combat oxidative 

stress the cell uses a variety of redox systems that either detoxify oxidant species, such 

as GPx [583], or reduce oxidation products, such as TrxR, Trx [357] and Msrs [584]. 

TrxR is a selenoprotein whose primary function is to reduce protein disulfide 

bonds, like those formed on oxidised Trx [585]. It achieves this via the formation of 

intermolecular selenosulfide bonds, which are then reduced by a resolving Cys residue, 

forming an intramolecular Se-S bond [372]. TrxR uses NADPH as an electron donor to 

reduce the Se-S formed on oxidised TrxR [372, 585]. TrxR has also demonstrated 

ability to reduce MPO-derived oxidants, particularly HOSCN (Figure 5.1) [348].  

 

Figure 5.1 – TrxR uses NADPH as a reducing equivalent to detoxify oxidants such as 
HOSCN 

Trx is one of the primary disulfide reductase enzymes present in cells. It reduces 

disulfides formed on proteins through disulfide exchange processes, forming an 

intermolecular disulfide bond on Trx [357]. This disulfide can then be reduced by TrxR, 

regenerating Trx [357]. While TrxR is the primary reductant for Trx, GSH can also 

perform this role when TrxR is inhibited or down-regulated [586]. Trx participates in 

antioxidant defence through multiple roles, including reduction of the Prxs, which are 

redox proteins responsible for detoxification of peroxide species (Figure 5.2) [102]. 
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Figure 5.2 – Trx is capable of reducing a wide variety of substrates such as protein 
disulfides, peroxides, diselenides and SeMetO. Oxidised Trx is then subsequently 
oxidised by TrxR using NADPH. 

The Trx system has been shown to interact with numerous selenium compounds. 

It is capable of reducing selenite [587], as well as organic selenium species, such as 

diselenides, selenodiglutathione [588] and selenocystine [492]. The interaction of the 

Trx system and selenocysteine or ebselen enhances the removal of peroxides [379, 

589, 590] and ONOOH [591]. The Trx system has also been shown to reduce SeMetO to 

SeMet and catalytically remove protein hydroperoxides [474]. 

Msrs reduce MetSO residues to Met (Figure 5.3) [109, 592]. Msrs are stereospecific 

with MsrA reducing S stereoisomers of MetSO, and MsrB reducing the R stereoisomer 

[593, 594]. MsrA is capable of reducing both free and peptide bound MetSO, though it 

shows a preference for peptide bound residues [109]. MsrB almost exclusively reduces 

peptide bound MetSO [109], demonstrating a specificity for unfolded protein residues 

[413]. The presence of Msrs suggests that Met oxidation may play a protective role 

maintaining protein function under oxidising conditions in vivo [110, 567]. 

 

Figure 5.3 – Msrs are capable of reducing MetSO, and are subsequently reduced by the 
NADPH/TrxR/Trx system 

GPx is a selenoprotein that detoxifies H2O2 and lipid peroxides (Figure 5.4) [583]. 

The peroxides oxidise the catalytic Sec residue, forming a seleninic acid (RSeOH) group 

[370], which is then reduced by 2 equivalents of GSH to reduce the protein and form 
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GSSG [583]. While GSH is the primary reductant for GPx, the Trx system is also capable 

of donating electrons to reduce the enzyme [595].  

 

Figure 5.4 – GPx is capable of using either the NADPH/GSR/GSH system or 
NADPH/TrxR/Trx system to reduce H2O2  

GSR is a thiol dependent enzyme that is responsible for the reduction of GSSG to 

GSH (Figure 5.5) [557]. GSH is a key antioxidant in cellular systems and reacts with a 

variety of oxidants, including N-chloramines [192] and selenoxides [444], to form 

GSSG. GSSG is then recycled back to GSH by the action of GSR [557]. GSR achieves 

reduction of GSSG by disulfide exchange reactions [427]. 

 

Figure 5.5 – GSR catalyses the reaction between GSSG and NADPH to form GSH 

These enzymes use NADPH as a reducing equivalent to reduce their substrates. 

HOCl and N-chloramines can react directly with NADPH, though the reaction of N-

chloramines is quite slow (~1 M-1 s-1) [63, 138, 139]. This reaction forms a 

chlorohydrin species in a reaction that can not be reversed by the cells enzymatic 

NADPH recycling enzymes such as GAPDH, and the production of this enzyme is toxic 

to cells [63, 138, 139].  

These enzymatic systems all play a role in the maintenance of redox homeostasis in 

the cell. The key feature consistent throughout these systems is the presence of a thiol 

or selenol at the active redox site of the enzyme that takes part in the reaction with 

oxidants in order to detoxify them. As N-chloramines have demonstrated reactivity 

with thiols [192], it was expected that they should also react with enzymes containing 
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a Cys active site. HOCl is capable of reacting with selenols, including the Sec active site 

of GPx, with higher rate constants than analogous thiol compounds [98]. In addition, N-

chloramines retain the oxidising power of HOCl in relation to thiols, and so N-

chloramines also have the potential to react with selenols. Furthermore, given that 

selenoxides also react with thiol groups [444, 445], there may be the potential for these 

enzymes to reduce selenoxides. 

 Aims 

Given that many redox enzymes contain either a thiol or selenol at their active site, 

it was hypothesised that the cellular antioxidant enzymes should be able to react with, 

and hence reduce, selenoxides and N-chloramines. The aim of the studies presented in 

this Chapter was therefore to determine the ability of redox enzymes to reduce 

selenoxides and N-chloramines.  

 Results 

 Reduction of selenoxides 

5.3.1.1 Thioredoxin reductase and thioredoxin 

Trx and TrxR are capable of reducing a wide variety of substrates including 

peroxides [379, 589, 590], disulfides [357] and numerous selenium species [491, 492, 

587]. They have previously been shown to reduce SeMetO [474]. Initial experiments 

aimed to confirm the ability of the Trx system to reduce SeMetO, and assess the ability 

of this system to reduce SeTalO, as proposed in Figure 5.6. 

 

Figure 5.6 – Proposed mechanism for the reduction of SeMetO and SeTalO by 
NADPH/TrxR/Trx. The selenoxides may be reduced by either the TrxR or Trx in this 
system. 
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The ability of TrxR to reduce SeMetO and SeTalO was investigated by both HPLC 

and the spectrophotometric consumption of NADPH. NADPH (700 µM) and TrxR (25 

nM) with or without Trx (1.5 µM) were incubated together for 5 min before addition of 

SeMetO or SeTalO (200 µM) in phosphate buffer (0.1 M, pH 7.4) at 22 °C. Insulin (200 

µM) was also added to the NADPH/TrxR/Trx system as a positive control, as it is a 

native substrate for Trx. The concentration of NADPH and TrxR were selected based 

on previously published results [474]. TrxR uses NADPH as a reducing agent, therefore 

the amount of NADPH consumed should be equal to the amount of substrate reduced. 

NADPH concentrations were monitored by optical absorbance at 340 nm (Figure 5.8a). 

The rate of reduction was determined by fitting the initial (25 min) linear section of the 

[NADPH] vs time graph (Figure 5.8b).  

It should be noted that the starting concentration of NADPH in these assays was 

observed to be about 540 µM, in contrast to the 700 µM NADPH that was added. The 

reported NADPH concentrations were determined based on the absorbance coefficient 

at 340 nm (ε = 6300 cm-1 M-1). However, based on the UV-vis absorbance spectra 

obtained for NADPH (50 µM (based on mass)) (Figure 5.7), it is suspected that some 

impurities were present, as the calculated concentrations of NADPH were 28 and 37 

µM based on extinction coefficients at 340 and 260 nm respectively. The increase in 

apparent concentration using the extinction coefficient at 260 nm is likely to be due to 

auto-oxidation of NADPH to NADP+, which would also contribute to absorbance at 260 

nm. This discrepancy caused an underestimation of the initial starting concentration of 

NADPH as solutions were prepared assuming the total mass of the sample was NADPH. 

This may also affect the interpretation of total NADPH consumption, potentially 

underestimating the concentrations of NADPH consumed, therefore introducing 

greater error that should be considered when calculating the stoichiometry between 

NADPH and substrate.  
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Figure 5.7 – UV-vis spectrum of NADPH 

NADPH (50 µM (based on mass)) was prepared in phosphate buffer (0.1 M, pH 7.4) and 
the UV-vis spectrum between 200 and 400 nm at 22 °C was measured. Absorbance values 
at 340 nm and 260 nm were 0.177 and 0.528 absorbance units respectively.  
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Figure 5.8 – Change in NADPH concentration over 25 min after SeMetO and SeTalO 
were added to NADPH, TrxR and Trx. 

SeMetO, SeTalO or insulin (200 µM) was added to NADPH (700 µM) and TrxR (25 nM) in 
the c,d) presence or a,b) absence of Trx (1.5 µM) and the absorbance monitored for 45 
min at 340 nm. a, b) show typical [NADPH] vs time plots obtained for the control (solid) 
or when 200 µM SeMetO (dashed), SeTalO (dotted) and insulin (dot-dashed) were added 
to a) NADPH/TrxR and c) NADPH/TrxR/Trx. SeMetO increased the rate at which NADPH 
is consumed compared to the control (NADPH/TrxR) though SeTalO does not. b, d) The 
rate of NADPH consumption was determined by fitting a straight line to the data 
represented in a, c). Data in a,c) are representative of 3 independent experiments. Data 
in b,d) represent mean ± SD from 3 independent experiments. * indicates significant 
difference (p < 0.05) from control based on one-way ANOVA with Tukey’s post-hoc test. 

A small time dependent decrease of 6 ± 2 nM s-1 in the control sample (700 µM + 25 

nM TrxR) was observed and was attributed to the slow auto-oxidation of NADPH. 

Addition of SeTalO did not produce any further significant increase in the rate of 

NADPH consumption over the control, with an observed NADPH loss rate of 8 ± 6 nM 

s-1, suggesting that TrxR is unable to reduce SeTalO. SeMetO increased the rate at which 

NADPH was consumed to 42 ± 6 nM s-1, which is consistent with a previous report on 

TrxR reducing SeMetO [474]. Total NADPH consumption reflected the differences in 

the rate of NADPH consumed by each sample, with SeMetO demonstrating a significant 
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increase in total NADPH consumed compared to control samples, whereas no 

significant difference was observed for SeTalO (Figure 5.9).  

 

Figure 5.9 – Total NADPH consumed after SeMetO, SeTalO or insulin was added to 
NADPH and a) TrxR with or without b) Trx  

SeMetO (200 µM), SeTalO (200 µM) or insulin (200 µM) was added to NADPH (700 µM) 
(control bars) and TrxR (25 nM) and in the b) presence and a) absence Trx (1.5 µM) and 
the absorbance monitored for 45 min at 340 nm. The difference in NADPH concentration 
immediately after the addition of SeMetO, SeTalO or insulin and 45 min afterward was 
determined by absorbance at 340 nm. Addition of SeMetO or insulin caused an increase 
in NADPH consumption over control, though addition of SeTalO did not. Data represent 
mean ± SD from 3 independent experiments. * represents a significant difference (p < 
0.05) from control based on one-way ANOVA with Tukey’s post-hoc test..  

The above data indicate that TrxR is capable of reducing SeMetO, and previous 

studies suggest that the presence of Trx should increase the rate of SeMetO reduction 

[474]. If Trx is increasing the rate of selenoxide reduction, an increase in rate of NADPH 

consumption would be expected over that observed for NADPH/TrxR. Similar to the 

TrxR data, a small time dependent decrease in NADPH was observed in control samples 

of 6 ± 2 nM s-1 (NADPH/TrxR/Trx), and upon addition of SeTalO there was no 

significant effect on the rate of change of absorbance with a decrease of 8 ± 1 nM  

s-1 observed (Figure 5.8c,d). SeMetO increased the rate of NADPH consumption to 42 ± 

4 nM s-1, which is not significantly different to the rate observed with NADPH/TrxR. 

Again, total NADPH consumption demonstrated the same trend, with SeMetO 

consuming a significantly greater amount of NADPH than observed in control samples, 

though SeTalO did not (Figure 5.9b). 
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As there was no increase in reduction on addition of Trx, insulin was included as a 

positive control to ensure Trx activity could be observed. An increase in rate of NADPH 

consumption to 12 ± 1 µM s-1 was observed over NADPH/TrxR samples, though this 

change was not significantly different (Figure 5.8). However, over the course of 45 min, 

addition of insulin caused a consumption of the NADPH of 14 ± 7 µM compared to the 

control samples where only of 3 ± 1 µM was consumed (Figure 5.9b).  

As NADPH was being consumed by the TrxR and Trx systems after SeMetO addition, 

HPLC methods were used to determine whether reduction of SeMetO was occurring 

with a corresponding increase in SeMet (Section 2.3.5.4). Samples were incubated for 

2 h before removal of the proteins by centrifugal filtering through 10 kDa molecular 

mass cut-off filters. The concentrations of selenoxide and parent selenoether were 

determined by UV-Vis detection of peaks at 220 nm, and the concentrations of SeMet 

and SeMetO determined by comparison with standard curves generated using 

authentic materials (Section 2.3.7.1) (Figure 5.10). After 2 h SeMetO (200 µM) had been 

completely reduced, with a corresponding increase in SeMet concentration. In 

analogous experiments with SeTalO (200 µM), no change in SeTalO or SeTal 

concentration was observed after 2 h, consistent with the NADPH data monitored at 

340 nm. The levels of SeMet, SeMetO, SeTal and SeTalO were the same whether Trx was 

present or samples contained TrxR alone, demonstrating that TrxR is capable of 

reducing SeMetO to SeMet, though is unable to reduce SeTalO. These data suggest that 

Trx did not contribute any additional reduction potential to the system. 

There is a discrepancy between the amount of NADPH consumed by the TrxR and 

Trx (Figure 5.9) and the concentration of SeMetO reduced (Figure 5.10), though here 

this is partially explained by the fact that NADPH concentrations were monitored over 

45 min, compared to the 2 h when SeMet and SeMetO levels were assessed by HPLC. 

However, by extrapolating the 45 min data, an underestimation of NADPH 

consumption compared to the 200 µM expected consumption, based on the amount of 

SeMetO reduced, still occurs. This is thought to be related to issues that caused an 

underestimation of the starting concentration of NADPH, discussed earlier in this 

section. 
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Figure 5.10 – Concentration of selenoxides reduced and selenoether recovered after 
selenoxides are incubated with NADPH and TrxR with or without Trx. 

SeMetO or SeTalO (200 µM) was added to NADPH (700 µM) and TrxR (25 nM) in the 
presence or absence of Trx (1.5 µM) and incubated for 2 h before analysis by HPLC. a) 
shows the concentration of selenoxide reduced and b) shows recovery of the respective 
selenoether. NADPH/TrxR (black) and NADPH/TrxR/Trx (white) were both able to 
reduce SeMetO (200 µM), with a full recovery of SeMet. No changes were observed for 
SeTalO. Data represent the mean ± SD from 3 independent experiments. 

5.3.1.2 Glutathione peroxidase 

GPx, an enzyme with the primary function of removing H2O2, contains an active site 

thiol that may be capable of reducing selenoxides [583]. GPx can use the Trx system, 

and ultimately NADPH, as a reducing equivalent [595]. The ability of GPx to reduce 

selenoxides was assessed by UV-vis spectroscopy and HPLC analysis (Figure 5.11). 

 

Figure 5.11 – Proposed mechanism for the reduction of SeMetO and SeTalO by 
NADPH/TrxR/Trx/GPx. The selenoxides may be reduced by the TrxR, Trx or GPx in 
this system. 

The loss of NADPH was monitored after SeMetO, SeTalO or H2O2 (200 µM) was 

added to NADPH (700 µM), TrxR (25 nM), Trx (1.5 µM) and GPx (1.5 µM) (Figure 5.12). 
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The rate of NADPH loss was determined by fitting the initial (25 min) linear section of 

the [NADPH] vs time graph (Figure 5.12a). The loss NADPH occurred at 5 ± 0.3 nM s-1 

in control samples (NADPH + TrxR + Trx + GPx). No change in the rate of NADPH 

consumption was observed when SeTalO was added to samples with NADPH being 

consumed at a rate of 3 ± 1 nM s-1. NADPH consumption increased to 32 ± 4 nM s-1 upon 

the addition of SeMetO. This increase was not significantly different to that obtained 

with NADPH and TrxR alone (Figure 5.8).  

 

Figure 5.12 – Change in NADPH concentration over time when SeMetO, SeTalO or H2O2 
were added to the GPx system. 

SeMetO, SeTalO or H2O2 (200 µM) was added to NADPH (700 µM) + TrxR (25 nM), Trx 
(1.5 µM) and GPx (1.5 µM) and the absorbance monitored for 2 h at 340 nm. a) show 
typical [NADPH] vs time obtained for the control (NADPH/TrxR/Trx/GPx) (solid) or when 
SeMetO (dashed), SeTalO (dotted) or H2O2 (dot-dashed) were added to the 
NADPH/TrxR/Trx/GPx system. SeMetO increases the rate at which NADPH is consumed 
compared to the control though SeTalO does not. b) The rate of NADPH consumption was 
determined by fitting a straight line to the initial 25 min represented in a). Data represent 
mean ± SD from 3 independent experiments. * indicates significant difference (p < 0.05) 
from control based on one-way ANOVA with Tukey’s post-hoc test. 

H2O2 is a substrate for GPx and was included as a positive control. An increase to 11 

± 4 nM s-1 of NADPH consumption was observed with H2O2 addition, though this was 

not statistically significant compared to NADPH/TrxR/Trx/GPx control samples. 

However, over the course of 2 h, a significantly higher amount of NADPH was 

consumed by H2O2 samples, with a total of 81 ± 30 µM NADPH consumed, compared to 

control samples with 37 ± 8 µM NADPH consumed (Figure 5.13). Total NADPH 

consumption upon addition of SeMetO and SeTalO reflected the trend observed in the 
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rate of NADPH consumption, with SeMetO consuming a significantly greater amount of 

NADPH than the NADPH/TrxR/Trx/GPx alone, though SeTalO did not.  

 

Figure 5.13  - Total NADPH consumed after H2O2, SeMetO or SeTalO was added to GPx 
system 

H2O2, SeMetO or SeTalO (200 µM) was added to NADPH (700 µM), TrxR (25 nM), Trx (1.5 
µM) and GPx (1.5 µM) and the absorbance monitored for 2 h at 340 nm. The difference in 
NADPH concentration from addition of H2O2 and 2 h post addition was determined by 
absorbance at 340 nm. H2O2 and SeMetO caused an increase in total NADPH consumed 
over control, whereas SeTalO did not. Data represent mean ± SD from 3 independent 
experiments. * indicates significant difference (p < 0.05) from control based on one-way 
ANOVA with Dunnett’s post-hoc test. 

As NADPH consumption increased with SeMetO addition, this suggested that 

reduction of SeMetO was occuring. SeMet and SeMetO levels were therefore assessed 

by HPLC with UV-vis detection at 220 nm to determine whether SeMetO reduction was 

occuring. Samples were incubated for 2 h before removal of the proteins by filtering 

through 10 kDa molecular mass cut-off filters and the concentrations of selenoxide and 

parent selenoether were quantified as described in Section 2.3.5.4. Similar to the Trx 

system, complete reduction of SeMetO to SeMet was observed after 2 h, but no change 

was observed for SeTalO (Figure 5.14). There is also a difference between the 

concentration of NADPH consumed (Figure 5.13) and the amount of SeMetO reduced 

(Figure 5.14), potentially due to the underestimation of NADPH concentrations based 

on the extinction co-efficient. 
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Figure 5.14 – Concentrations of selenoxides and selenoethers following 2 h incubation 
of SeMetO and SeTalO with the GPx system. 

SeMetO or SeTalO (200 µM) was added to NADPH (700 µM), TrxR (25 nM), Trx (1.5 µM) 
and GPx (1.5 µM) and incubated for 2 h before analysis by HPLC. a) shows concentration 
of selenoxide reduced and b) shows recovery of the respective selenoether. The GPx system 
was able to reduce the SeMetO (200 µM), with a full recovery of SeMet. No changes were 
observed for SeTalO. Data represent mean ± SD from 3 independent experiments. Error 
bars may not be visible due to small error measured. 

In summary, addition of SeMetO to the NADPH/TrxR/Trx/GPx system 

demonstrated a consumption of NADPH as measured by optical absorbance at 340 nm. 

This corresponded with a decrease in levels of SeMetO and increase in levels of SeMet 

2 hours after SeMetO addition as assessed by HPLC. However, NADPH consumption, or 

reduction of SeTalO levels were not observed upon addition of SeTalO to the 

NADPH/TrxR/Trx/GPx system. 

5.3.1.3 Methionine sulfoxide reductases 

Msrs are enzymes that specifically reduce MetSO residues [109, 592]. As they 

contain Cys and Sec residues at the active site, there may also be potential for reaction 

with selenoxides [109, 592]. Furthermore, due to the structural similarity of SeMetO 

and MetSO, there is potential for Msrs to reduce SeMetO in particular (Figure 5.15).   
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Figure 5.15 – Proposed mechanism for the reduction of SeMetO and SeTalO by 
NADPH/TrxR/Trx/Msrs. The selenoxides may be reduced by either the TrxR, Trx or 
Msrs in this system. 

The loss of NADPH was monitored after SeMetO, SeTalO or MetSO (200 µM) was 

added to NADPH (700 µM), TrxR (25 nM), Trx (1.5 µM) and MsrA (95 nM) or MsrB2 

(0.25 µM) (Figure 5.16). These concentrations of Msr were chosen as they represent 

one unit of enzyme activity according to the manufacturer’s data sheet. A decrease of 4 

± 1 nM s-1 was observed in control samples without addition of selenoxides. Addition 

of SeMetO (200 µM) increased the rate of NADPH consumption to 51 ± 16 and 51 ± 14 

nM s-1 for MsrA and MsrB2 respectively. A slight increase in the NADPH consumption 

rate was observed with MetSO addition to 8 ± 3 nM s-1 for MsrA and 10 ± 4 nM s-1 for 

MsrB2, but this was not a significant increase. It is likely that the small observed change 

with MetSO is because although Msrs are capable of reducing free MetSO, peptide 

bound MetSO is a more favourable substrate [109]. SeTalO addition did not affect the 

rate of NADPH consumption with an NADPH consumption rate of 9 ± 5 and 9 ± 8 nM s-

1 for MsrA and MsrB2 respectively, suggesting no reduction was occurring. As with the 

other enzyme systems (Figure 5.8 and Figure 5.12), total NADPH consumption 

reflected the differences in the inital rates of NADPH consumption, with SeMetO 

causing a significant increase in total NADPH consumed compared to control, where 

SeTalO does not (Figure 5.17). 
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Figure 5.16 – Change in NADPH concentration over time after SeMetO, SeTalO or MetSO 
were added to Msr systems 

SeMetO, SeTalO or MetSO (200 µM) was added to NADPH (700 µM) + TrxR (25 nM), Trx 
(1.5 µM) and MsrA (95 nM) or MsrB2 (0.25 µM) and the absorbance monitored for 2 h 
min at 340 nm. Graphs show typical [NADPH] vs time obtained of the control (solid) or 
when 200 µM SeMetO (dashed), SeTalO (dotted) and MetSO (dot-dashed) were added to 
the a) MsrA or c) MsrB2 system. The rate of NADPH consumption was determined by 
fitting a straight line to the initial 25 min represented in a and c). SeMetO increases the 
rate at which NADPH is consumed compared to the control though SeTalO does not. b, d) 
The rate of NADPH consumption was determined by fitting a straight line to the data 
represented in a, c). Data represent mean ± SD from 3 independent experiments. * 
indicates significant difference (p < 0.05) from control based on one-way ANOVA with 
Tukey’s post-hoc test. 
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Figure 5.17 – Total NADPH consumed 2 h after SeMetO or SeTalO addition to NADPH, 
TrxR, Trx and MsrA or MsrB 

SeMetO or SeTalO (200 µM) was added to NADPH (700 µM) + TrxR (25 nM), Trx (1.5 µM) 
and a) MsrA (95 nM) or b) MsrB2 (0.25 µM) and the absorbance monitored for 2 h at 340 
nm. NADPH consumed was determined by the difference in NADPH concentration from 
the initial reading to 2 h after selenoxide addition. Addition of SeMetO caused a 
significantly greater consumption of NADPH compared to control, whereas SeTalO 
addition did not.  Data represent mean ± SD from 3 independent experiments. * indicates 
significant difference (p < 0.05) from control based on one-way ANOVA with Tukey’s post-
hoc test. 

As NADPH consumption was observed with SeMetO addition, it was anticipated 

that there should be a loss of SeMetO with a corresponding increase in SeMet. SeMet 

and SeMetO levels were measured after 2 h by HPLC. Samples were incubated for 2 h 

before removal of enzymes by filtering through a 10 kDa molecular mass cut-off filters 

and the concentrations of selenoxide and parent selenoether were analysed by HPLC 

with UV detection, and quantification performed as in Section 2.3.5.4. Similar to the 

data obtained from the NADPH/TrxR/Trx system (Figure 5.10), after 2 h complete 

reduction of SeMetO to SeMet was observed, and no change was observed with SeTalO 

(Figure 5.18). Again, a difference in NADPH consumed and selenoxide reduced is 

observed, which is believed to be related to the measurement of NADPH concentration 

discussed in Section 5.3.1.1. 
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Figure 5.18 – Concentrations of selenoxides and selenoethers following 2 h incubation 
of SeMetO and SeTalO with the Msr systems 

SeMetO or SeTalO (200 µM) was added to NADPH (700 µM), TrxR (25 nM), Trx (5 µM) 
and MsrA (95 nM) (black bars) or MsrB2 (0.25 µM) (white bars) and incubated for 2 h 
before analysis by HPLC. a) shows the concentration of selenoxide reduced and b) shows 
the recovery of  corresponding selenoether. The Msr systems were able to reduce the 200 
µM SeMetO, with a full recovery of SeMet. No changes were observed for SeTalO. Data 
represent mean ± SD from 3 independent experiments.  

In summary, addition of SeMetO to NADPH/TrxR/Trx/MsrA or MsrB2 resulted in 

the loss of NADPH as measured by optical absorbance at 340 nm, with a decrease in 

SeMetO observed with a concomitant increase in SeMet concentrations, as measured 

by HPLC. SeTalO had no effect when added to these antioxidant enzyme systems. 

5.3.1.4 Glutathione reductase 

Selenoxides react with GSH to form GSSG as demonstrated in Chapter 4. GSSG 

should then be reduced by GSR at the expense of NADPH [557]. The ability of the GSR 

system to reduce SeMetO and SeTalO was monitored by NADPH consumption as 

assessed by optical absorbance at 340 nm.   

 

Figure 5.19 – Proposed reaction mechanism for the reduction of selenoxides by the 
NADPH/GSR.GSH system, with the formation of GSSG by reaction of selenoxides with 
GSH. 
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NADPH (500 µM), GSR (25 nM) and GSH (400 µM) was mixed with either SeMetO 

or SeTalO (200 µM) in phosphate buffer (0.1 M, pH 7.4) at 22 °C by stopped flow 

apparatus. Consumption of NADPH was monitored by UV-vis absorbance at 340 nm 

over 1 min (Figure 5.20). It should be noted that the concentration of NADPH was 

required to be lowered as initial experiments performed with 700 µM NADPH, 

consistent with other experiments in this Chapter, resulted in the UV-Vis detector 

attached to the stopped flow apparatus being saturated. Upon addition of selenoxides, 

an increase in the rate of NADPH consumption was observed over 1 min. The maximum 

rate of NADPH consumption was determined by fitting a linear slope to the UV-vis data, 

and this was assumed to correspond to the rate of selenoxide removal from the system. 

The rate of NADPH consumption was 7.4 ± 1 µM s-1 upon mixing the GSR system with 

SeMetO, and 6.7 ± 0.3 µM s-1 with SeTalO addition. Total NADPH consumption upon 

SeMetO or SeTalO addition is also consistent with the reduction of selenoxides. The loss 

of NADPH concentration suggests that the NADPH/GSR/GSH system reduced both 

SeMetO and SeTalO.  

 

Figure 5.20 - Change in NADPH concentration over time after SeMetO or SeTalO was 
added to the GSR system. 

SeMetO or SeTalO (200 µM) was mixed by stopped flow apparatus with NADPH (500 µM), 
GSR (25 nM) and GSH (400 µM) and the absorbance monitored for 1 min at 340 nm. a) 
shows typical [NADPH] vs time data obtained when 200 µM SeMetO (dashed), SeTalO 
(dotted) were mixed with the GSR system. Both SeMetO and SeTalO induced a steady 
decrease in NADPH concentration. b) The rate of NADPH consumption was determined 
by fitting a straight line to the initial 10 s of data represented in a). Data represent mean 
± SD from 3 independent experiments.  
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Figure 5.21 – Total NADPH consumed following addition for SeMetO or SeTalO to 
NADPH, GSH and GSR after 1 min 

SeMetO or SeTalO (200 µM) was added to NADPH (500 µM), GSR (25 nM) and GSH (400 
µM) and the absorbance monitored for 1 min at 340 nm. NADPH consumed was 
determined by the difference in NADPH concentration from the initial reading to 1 min 
after selenoxide addition. Addition of SeMetO and SeTalO both demonstrated an equal 
consumption of NADPH. 

As NADPH consumption was observed that suggested a reduction of selenoxides 

via GSSG formation, an HPLC method was used to determine the concentrations of 

selenoethers and selenoxides after incubation of selenoxides with the 

NADPH/GSR/GSH system (Section 2.3.5.4). After addition of SeMetO to the GSR system, 

no SeMetO remained in the samples after 10 min, corresponding to a consumption of 

200 µM SeMetO. An increase of 200 µM SeMet levels was observed at the same time 

point, demonstrating that the GSR system was capable of reducing SeMetO to SeMet.  A 

difference between the total NADPH consumed (Figure 5.21) and the concentration of 

SeMet recovered (Figure 5.22) was observed, with this thought to be due to issues with 

NADPH concentration determination discussed in Section 5.3.1.1. Unfortunately, due 

to interference by components of the GSR system, similar experiments to give the 

concentrations of SeTal and SeTalO could not be determined. 
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Figure 5.22 – Concentration of SeMetO reduced and SeMet recovered after SeMetO was 
added to the NADPH/GSR/GSH system 

SeMetO (200 µM) was added to NADPH (500 µM), GSR (25 nM) and GSH (400 µM) and 
incubated for 10 min, before the SeMetO and SeMet concentrations were determined by 
HPLC. A decrease in SeMetO concentration of 200 µM was observed, which corresponded 
to an increase in SeMet of 200 µM. Data represent mean ± SD from 3 independent 
experiments. 

In summary, TrxR was capable of reducing SeMetO and the addition of additional 

enzymes to the TrxR system, i.e. Trx and GPx or Msr, did not result in an increase in the 

rate of NADPH consumption. The TrxR system was unable to reduce SeTalO, and 

addition of other enzymes did not allow for reduction to occur. The NADPH/GSR/GSH 

system however, was capable of reducing both SeMetO and SeTalO, which occurred 

much more rapidly than the TrxR reduction of SeMetO.  

 Redox enzymes reducing N-chloramines 

N-Chloramines have previously been reported to react with thiol groups [192], and 

selenols are generally more reactive towards oxidants and therefore should be capable 

of reacting with N-chloramines [90, 98]. As redox enzymes often have either a thiol or 

selenol active site, they should be able to react with N-chloramines. This reaction 

should lead to oxidation of the redox enzyme and reduction of N-chloramine. These 

enzymes therefore may be able to protect cells against oxidative damage via direct 

antioxidant capacity toward N-chloramines. Furthermore, TrxR and GSR have 
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demonstrated ability to reduce selenoxides, and as selenoethers rapidly scavenge N-

chloramines, this may lead to enhanced oxidant removal. 

5.3.2.1 Thioredoxin reductase 

TrxR and Trx can detoxify peroxides, ONOOH and HOSCN, via reaction with active 

site SeCys and Cys respectively [348, 591]. As they are capable of removing these 

oxidants, their ability to reduce N-chloramines was investigated. In the presence of 

ebselen and selenocystamine the rate of peroxide removal by the Trx system is 

enhanced [492], and as TrxR and Trx has demonstrated the ability to reduce SeMetO 

[474], the presence of selenium compounds may further enhance oxidant removal 

(Figure 5.23). 

 

Figure 5.23 – Potential reactions occurring when N-chloramines are added to 
NADPH/TrxR/Trx/SeMet or SeTal. N-Chloramines may react directly with NADPH, or 
with TrxR, or Trx, or with SeMet and SeTal to form selenoxides which are subsequently 
reduced by TrxR and Trx.  

The ability of TrxR to reduce model N-chloramines, TauCl, LysCl and GlyCl, was 

investigated by HPLC and the rate of NADPH consumption. NADPH (700 µM) and TrxR 

(25 nM) were incubated together for 5 min before addition of N-chloramine (200 µM). 

NADPH concentrations were monitored by optical absorbance at 340 nm (Figure 5.24). 

Only the UV-vis data for TauCl is shown, as comparable data is obtained with LysCl and 

GlyCl addition. The rate of NADPH consumption was determined by fitting a line to the 

initial (25 min) linear section of the [NADPH] vs time graph (Figure 5.25). 
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A rate of loss of NADPH of 104 ± 2 nM s-1 was observed when TauCl was added to 

NADPH alone. This is attributed to the direct reaction of TauCl with NADPH. The 

NADPH consumption rate increased to 111 ± 4 nM s-1 in the presence of TrxR, however 

this increase was not statistically significant. The presence of SeMet or SeTal (20 µM) 

reduced the rate of NADPH consumption to 92 ± 5 and 91 ± 6 nM s-1 respectively. 

Increasing the concentration of SeMet (200 µM) further reduced the rate of NADPH 

loss to 50 ± 7 nM s-1, whereas with SeTal (200 µM) the NADPH consumption rate was 

reduced to 18 ± 4 nM s-1. The reduction in the rate of NADPH consumption is attributed 

to the formation of selenoxides upon N-chloramine addition, with higher 

concentrations of SeMet or SeTal leading to a further reduction in NADPH consumption 

rate as more selenoxide is formed. As the TrxR system is capable of reducing SeMetO, 

but not SeTalO (Section 5.3.1.1), the rate of NADPH consumption is further reduced by 

the formation of SeTalO. The rates of NADPH loss was very similar to that observed in 

the presence of the selenoxides, consistent with the rapid generation of the selenoxide, 

which is then reduced by the Trx system (Figure 5.8). 

The UV-vis vs time data monitored at 340 nm for LysCl and GlyCl were very similar 

to that obtained for TauCl (Figure 5.24) and the rate of NADPH consumption was 

determined by fitting to the NADPH concentration over time data obtained for the 10 

min following N-chloramine addition (Figure 5.25). The rates of NADPH loss in control 

samples were higher for LysCl and GlyCl, 211 ± 13 and 184 ± 12 nM s-1 respectively, 

than for TauCl. As with TauCl, no significant difference in the rates of NADPH 

consumption were seen in the presence of TrxR compared to the control for LysCl or 

GlyCl, with rates of 203 ± 11 and 179 ± 13 nM s-1 respectively. Small decreases in the 

NADPH consumption rate were observed with SeMet (20 µM) and SeTal (20 µM), 

though this change was not significant for either LysCl (182 ± 16 and 174 ± 13 nM s-1 

respectively) or GlyCl (154 ± 12 and 154 ± 9 nM s-1 respectively). At higher 

concentrations, SeMet (200 µM) and SeTal (200 µM) significantly reduced the rate of 

NADPH consumption to 44 ± 6 and 28 ± 7 nM s-1 respectively upon LysCl addition, and 

42 ± 4 and 16 ± 9 nM s-1 for GlyCl addition. These rates of NADPH consumption are 

similar to those observed in the reduction experiments with pre-prepared selenoxides 

(Figure 5.8). 
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Figure 5.24 – Loss of NADPH over time when TauCl is added to NADPH ± TrxR ± SeMet 
or SeTal. 

UV-vis absorbance at 340 nm was monitored after addition of TauCl to samples 
containing NADPH, TrxR with or without SeMet and SeTal. a) TauCl (200 µM) was added 
to NADPH (700 µM) in the a) presence (dotted line) or absence (solid) of TrxR (25 nM). 
b,c) TauCl (200 µM) was added to NADPH (700 µM) and TrxR (25 nM) in the presence of 
20 µM (dashed line) or 200 µM (dot-dashed line) b) SeMet or c) SeTal. Addition of TauCl 
caused a time dependent decrease in NADPH, which was inhibited by the presence of 
SeMet and SeTal. Data are representative of 3 independent experiments. 
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Figure 5.25 - Rate of NADPH consumption when N-chloramines were added to NADPH 
in the presence of TrxR and SeMet or SeTal 

The UV-vis absorbance of NADPH at 340 nm was monitored after a) TauCl (200 µM), b) 
LysCl (200 µM) or c) GlyCl (200 µM), were added to samples of NADPH (700 µM) ± TrxR 
(25 nM) (black bars) ± SeMet or SeTal (20 µM (white bars) or 200 µM (grey bars)). The 
rate of NADPH consumption was determined by fitting a straight line to the data 
obtained. The presence of N-chloramines caused a high rate of loss of NADPH that was 
decreased by the presence of SeMet and SeTal in a concentration-dependent manner. 
Data represent mean ± SD from 3 independent experiments. * indicates significant 
difference (p < 0.05) from control based on one-way ANOVA with Tukey’s post-hoc test. 
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In addition to examining the initial rate of NADPH loss, the total amount of NADPH 

consumed 2 h after the addition of N-chloramines was assessed (Figure 5.26). A total 

decrease of 150 ± 5 µM NADPH was observed 2 h after addition of TauCl (200 µM), with 

140 ± 6 and 149 ± 4 µM being consumed upon LysCl (200 µM) or GlyCl (200 µM) 

addition respectively. However, the NADPH consumption may be underestimated due 

to issues with NADPH concentration measurement, as discussed in Section 5.3.1.1, and 

it should be noted that these numbers do not account for the loss of NADPH due to 

autooxidation. The presence of TrxR did not significantly increase the total NADPH 

consumed upon N-chloramine addition, nor did the presence of lower concentration of 

SeMet or SeTal (20 µM). A slight decrease in the total NADPH consumed was observed 

in the presence of higher concentrations of SeMet (200 µM) upon TauCl and GlyCl 

addition, though this was not significant, and probably reflects the ability of 

NADPH/TrxR to reduce SeMetO though at a lower rate than N-chloramines (Figure 

5.8). The presence of SeTal (200 µM) significantly reduced the total NADPH 

consumption upon addition of N-chloramines, consistent with the inability of 

NADPH/TrxR to reduce SeTalO (Figure 5.8). 
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Figure 5.26 - Total NADPH consumed 2 h after N-chloramines were added to NADPH 
in the presence of TrxR and SeMet or SeTal 

The UV-vis absorbance of NADPH at 340 nm was monitored after a) TauCl (200 µM), b) 
LysC (200 µM)l or c) GlyCl (200 µM), were added to samples of NADPH (700 µM) ± TrxR 
(25 nM) (black bars) ± SeMet or SeTal (20 µM (white bars) or 200 µM (grey bars)). 
NADPH consumed was determined by the difference in NADPH concentration from the 
initial reading to 2 h after N-chloramine addition. The addition of N-chloramines caused 
consumption of NADPH. There was a slight decrease in NADPH consumption when SeMet 
(200  µM) was present, though this was not significant. Significantly less NADPH was 
consumed when SeTal (200 µM) was present for each N-chloramine. Data represent mean 
± SD from 3 independent experiments. * indicates significant difference (p < 0.05) from 
control based on one-way ANOVA with Tukey’s post-hoc test. 

As the rate consumption of NADPH in the presence of TrxR was significantly 

decreased in the presence of SeMet (200 µM) or SeTal (200 µM), it was proposed that 

SeMet and SeTal were scavenging the N-chloramines to form the respective 

selenoxides. The selenoxides are then the species that are reduced by the NADPH/TrxR 

system rather than the N-chloramines themselves. In order to investigate this possible 

interpretation of the data further, the levels of SeMet, SeTal, SeMetO and SeTalO were 
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assessed by HPLC with UV detection at 20 min and 2 h after TauCl addition (Figure 

5.27). 

NADPH (700 µM) and TrxR (25 nM) were incubated with SeMet (200 µM) or SeTal 

(200 µM) for 5 min before addition of TauCl (200 µM). The proteins were removed by 

filtering through 10 kDa molecular mass cut-off filters after incubation for 20 min or 2 

h after N-chloramine addition. The concentration of SeMet and SeTal and the 

corresponding selenoxides was then determined by HPLC (Section 2.3.5.4). 

SeMetO and SeTalO were the primary species present 20 min after TauCl addition 

to the samples with 164 ± 8 µM SeMetO and 175 ± 6 µM SeTalO present, compared to 

56 ± 25 µM SeMet and 19 ± 7 µM SeTal. After 2 h, in SeMet samples, the majority of the 

SeMetO had been reduced with only 12 ± 13 µM remaining. This corresponded to a 

recovery of SeMet with a final concentration of 173 ± 10 µM. The concentrations of 

SeTal and SeTalO remained unchanged between the time points, with 23 ± 16 and 174 

± 10 µM measured at 2 h for SeTal and SeTalO respectively, consistent with the 

NADPH/TrxR system being unable to reduce SeTalO. These concentrations better 

reflect the concentration of NADPH consumed in previous experiments (Figure 5.26) 

compared with the experiments with selenoxide alone, as discussed in Section 5.3.1.1, 

though it should be noted that total NADPH consumption may be underestimated due 

to autoxidation of NADPH. 
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Figure 5.27 – Concentrations of SeMet, SeMetO, SeTal and SeTalO after TauCl was 
added to NADPH, TrxR and SeMet or SeTal. 

NADPH (700 µM) and TrxR (25 nM) were incubated with a) SeMet (200 µM) or b) SeTal 
(200 µM) for 5 min before addition of TauCl (200 µM). The concentrations of a) SeMet 
(black bars) and SeMetO (white bars) or b) SeTal (black bars) and SeTalO (white bars) 
were determined by HPLC at 20 mins or 2 h after addition of TauCl. At 20 min SeMetO 
and SeTalO were the primary species present. After 2 h SeMetO had been reduced, but no 
change was observed for SeTalO. Data represent mean ± SD from 3 independent 
experiments.  

In summary, a decrease in the rate of NADPH consumption was observed when N-

chloramines were added to NADPH in the presence of Trx, however this rate was not 

significantly different from NADPH alone. The presence of SeMet and SeTal reduced 

the rate at which NADPH was consumed when N-chloramines were added to 

NADPH/TrxR. This is attributed to the rapid formation of selenoxides, followed by 

subsequent reduction of SeMetO, though SeTalO could not be reduced by this system 

(consistent with Section 5.3.1.1). This was confirmed by HPLC studies which showed 

that high levels of selenoxides were present 20 mins after N-chloramine addition for 

both SeMetO and SeTalO, and SeMetO levels were decreased at 2 hours with a 

concurrent increase in SeMet, whereas no changes were observed in SeTalO 

concentrations. 

5.3.2.2 Thioredoxin 

N-Chloramines, TauCl, LysCl or GlyCl, (200 µM) were added to NADPH (700 µM), 

TrxR (25 nM) and Trx (1.5 µM) with or without SeMet or SeTal (20 or 200 µM) and the 

absorbance at 340 nm was monitored for 2 h. The rate of NADPH consumption, and 

hence N-chloramine reduction, was determined by fitting a straight line to the linear 

portion (10 min) of the NADPH concentration vs. time plots (Figure 5.28). 
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There was an increase in the rate of NADPH consumption from 104 ± 2 nM s-1 in the 

NADPH controls to 116 ± 6 nM s-1 when TauCl (200 µM) was added to 

NADPH/TrxR/Trx (Figure 5.28a). However, the increase over NADPH/TrxR was not 

significant. There were no significant increase in NADPH consumption over NADPH 

alone when LysCl or GlyCl were added to NADPH/TrxR/Trx, with rates of 204 ± 5 and 

183 ± 17 nM s-1 observed (Figure 5.28b,c).  
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Figure 5.28 – Rate of NADPH consumption when N-chloramines were added to the  
NADPH/TrxR/Trx system with SeMet or SeTal 

The UV-vis absorbance of NADPH at 340 nm was monitored after a) TauCl (200 µM), b) 
LysCl (200 µM) or c) GlyCl (200 µM), were added to samples of NADPH (700 µM) ± TrxR 
(25 nM) ± Trx (1.5 µM) (black bars) ± SeMet or SeTal (20 µM (white bars) or 200 µM (grey 
bars)). The rate of NADPH consumption was determined by fitting a straight line to the 
data obtained. The presence of both TrxR and Trx increased the rate at which NADPH was 
consumed when TauCl was added to the system. TrxR and Trx had no effect on NADPH 
consumption rates when LysCl or GlyCl was added. N-Chloramines caused a rapid rate of 
consumption of NADPH which could be inhibited by the presence of SeMet and SeTal. Data 
represent mean ± SD from 3 independent experiments. # indicates significant difference 
(p < 0.05) from NADPH alone, and * indicates significant difference (p < 0.05) from 
NADPH.TrxR.Trx based on one-way ANOVA with Tukey’s post-hoc test. 

The presence of SeMet (20 µM) and SeTal (20 µM) significantly decreased the 

NADPH consumption rate to 92 ± 1 and 96 ± 5 nM s-1 respectively when TauCl was 

added to the Trx system. Small decreases in the NADPH consumption rates were also 

observed when LysCl and GlyCl were added to the TrxR system in the presence of 

SeMet or SeTal (20 µM) to 178 ± 16 and 176 ± 10 nM s-1 with LysCl (200 µM) addition 
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and 157 ±11 and 161 ±19 with GlyCl (200 µM) addition (Figure 5.28b,c). As for TauCl, 

these rates were not significantly different from the rate of NADPH consumption either 

alone or in the presence of TrxR and Trx. The presence of higher concentrations of 

SeMet (200 µM) in the NADPH/TrxR/Trx system reduced the NADPH consumption 

rate further to 46 ± 3, 43 ± 5 and 45 ± 3 nM s-1 for TauCl, LysCl and GlyCl respectively. 

These rates are similar to those observed when 200 µM SeMetO was added to 

NADPH/TrxR/Trx system (Figure 5.9). The presence of SeTal (200 µM) reduced the 

NADPH consumption rate to 19 ± 4, 23 ± 6 and 18 ± 3 nM s-1 for TauCl, LysCl and GlyCl 

respectively. 

In addition to examining the initial rate of NADPH loss, the total amount of NADPH 

consumed 2 h after the addition of N-chloramines was assessed (Figure 5.29). Total 

losses of 161 ± 18, 143 ± 22 and 161 ± 18  µM NADPH were observed 2 h after the 

addition of TauCl, LysCl or GlyCl to NADPH/TrxR/Trx respectively. As for the 

NADPH/TrxR system (Figure 5.26), this was less than the 1 : 1 ratio as expected. The 

presence of SeMet (20 µM) or SeTal (20 µM) did not have an affect on total NADPH 

consumed, but the presence of higher concentrations of SeMet (200 µM) demonstrated 

a decrease in total NADPH consumed to 117 ± 14, 118 ± 10 and 120 ± 8 µM upon 

addition of TauCl, LysCl and GlyCl respectively, though this was not significantly 

different to NADPH/TrxR/Trx alone. The presence of SeTal (200 µM) significantly 

reduced the total NADPH consumed by the system as seen with the NADPH TrxR 

system (Figure 5.26), and reflects the inability of NADPH/TrxR/Trx to reduce SeTalO. 
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Figure 5.29 - Total NADPH consumed 2 h after N-chloramines were added to NADPH 
in the presence of TrxR, Trx and SeMet or SeTal 

The UV-vis absorbance of NADPH at 340 nm was monitored after a) TauCl (200 µM), b) 
LysCl (200 µM) or c) GlyCl (200 µM), were added to samples of NADPH (700 µM), TrxR 
(25 nM) (black bars) and Trx (1.5 µM) ± SeMet or SeTal (20 µM (white bars) or 200 µM 
(grey bars)). NADPH consumed was determined by the difference in NADPH 
concentration from the initial reading to 2 h after N-chloramine addition. The addition 
of N-chloramines caused consumption of NADPH. Less NADPH was consumed when SeMet 
(200  µM) was present, though this was not significant. Significantly less NADPH was 
consumed when SeTal (200 µM) was present in each case. Data represent mean ± SD from 
3 independent experiments. * indicates significant difference (p < 0.05) from control 
based on one-way ANOVA with Tukey’s post-hoc test. 

In light of the above data, it was proposed that N-chloramines were reacting with 

N-chloramines to form selenoxides, which are then reduced by the NADPH/TrxR/Trx 

system. As such, the levels of selenoxides, SeMetO and SeTalO, and parent selenoethers, 

SeMet and SeTal, were measured by HPLC (Section 2.3.5.4) with UV-vis detection at 

incubation times of 20 min and 2 h after the addition of TauCl (200 µM) to NADPH (700 

µM), TrxR (25 nM) and Trx (1.5 µM) (Figure 5.30). After 20 min, the selenoxides were 
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the major species present at 165 ± 8 µM and 175 ± 7 µM of SeMetO and SeTalO detected 

respectively, with the corresponding SeMet and SeTal concentrations being 52 ± 30 

and 21 ± 7 µM respectively. After 2 h, the majority of SeMetO had been reduced to 

SeMet with 12 ± 13 µM SeMetO and 170 ± 10 µM SeMet detected. No significant changes 

were observed in the concentration of SeTal and SeTalO after 2 h compared to 20 min, 

with 21 ± 14 and 174 ± 10 µM SeTal and SeTalO measured at 2 h respectively.  

 

Figure 5.30 – Concentrations of SeMet, SeMetO, SeTal and SeTalO after TauCl was 
added to NADPH, TrxR, Trx and SeMet or SeTal 

NADPH (700 µM) TrxR (25 nM) and Trx (1.5 µM) were incubated with 200 µM a) SeMet 
or b) SeTal for 5 min before addition of TauCl (200 µM). The concentrations of a) SeMet 
(black bars) and SeMetO (white bars) or b) SeTal (black bars) and SeTalO (white bars) 
were determined by HPLC at 20 mins or 2 h after addition of TauCl. After 20 min SeMetO 
and SeTalO were the primary species present. After 2 h, the concentration of SeMetO had 
been reduced, whilst no change was observed for SeTalO. Data represent mean ± SD from 
3 independent experiments.  

A decrease in NADPH was observed when N-chloramines were added to NADPH in 

the presence of TrxR and Trx. The rate of NADPH consumption was only increased 

when TauCl was added to NADPH/TrxR/Trx. The presence of SeMet and SeTal reduced 

the rate at which NADPH was consumed when N-chloramines was added to 

NADPH/TrxR/Trx. As with NADPH and TrxR alone, this was attributed to the rapid 

formation of selenoxides, with reduction of SeMetO levels observed after 2 h. 

5.3.2.3 GPx 

GPx is capable of reducing peroxides, via reaction of the peroxide with the active 

site Sec [583]. As HOCl has demonstrated reactivity with SeCys residues [98], N-

chloramines are also likely to react with this site, thus GPx may be capable of reacting 
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with and reducing N-chloramines. The ability of GPx to reduce N-chloramines, and the 

interactions with SeMet and SeTal were assessed (Figure 5.31). 

 

Figure 5.31 – Potential routes of N-chloramine consumption when exposed to 
NADPH/TrxR/Trx/GPx/SeMet or SeTal 

The N-chloramines, TauCl, LysCl and GlyCl (200 µM), were added to NADPH (700 

µM), TrxR (25 nM), Trx (1.5 µM) and GPx (1.5 µM) with or without SeMet or SeTal (20 

µM or 200 µM). The changes in absorbance at 340 nm were monitored for 2 h (Figure 

5.32), and the rate of NADPH consumption was determined by the fitting of a straight 

line to the initial 25 min of the resulting NADPH concentration vs time plots (Figure 

5.33).  
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Figure 5.32 – Plots of the NADPH concentration over time after TauCl was added to the 
GPx system in the presence or absence of SeMet and SeTal. 

UV-vis absorbance was monitored at 340 nm after addition of TauCl to samples 
containing NADPH, TrxR, Trx and GPx with or without SeMet and SeTal. a) TauCl (200 
µM) was added to NADPH (700 µM) in the a) presence (dotted line) or absence (solid) of 
the TrxR (25 nM), Trx (1.5 µM) and GPx (1.5 µM). b,c) TauCl (200 µM) was added to the 
GPx system in the presence of 20 µM (dashed line) or 200 µM (dot-dashed line) b) SeMet 
or c) SeTal. Addition of TauCl caused a time dependent decrease in NADPH concentration 
and the rate of this decreased by presence of SeMet and SeTal. Data are representative of 
3 independent experiments. 

The addition of N-chloramines causes a loss of NADPH in control samples of 106 ± 

18, 186 ± 36, and 164 ± 27 nM s-1 after addition of TauCl, LysCl and GlyCl respectively 

(Figure 5.33). The presence of the TrxR/Trx/GPx did not have an effect on the rate of 

NADPH consumption upon N-chloramine addition with rates of NADPH consumption 

of 112 ± 15, 170 ± 30 and 170 ± 26 nM s-1 observed upon addition of TauCl, LysCl and 

GlyCl to NADPH/TrxR/Trx/GPx respectively. The presence of SeMet (20 µM) lowered 

the rate of NADPH consumption to 93 ± 19, 126 ± 30 and 137 ± 20 nM s-1 for TauCl, 

LysCl and GlyCl respectively, and 20 µM SeTal lowered the rates to 91 ± 9, 142 ± 35 and 

134 ± 11 nM s-1, though none of these changes were not significantly different to 

NADPH alone and the NADPH/TrxR/Trx system (Figure 5.28). The presence of SeMet 
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(200 µM) significantly reduced the rate of NADPH consumption for all N-chloramines, 

to 61 ± 20, 56 ± 30 and 69 ± 16 nM s-1 for TauCl, LysCl and GlyCl respectively. The 

presence of SeTal (200 µM) demonstrated a greater reduction in NADPH consumption 

rate for all N-chloramines, to 17 ± 10, 7 ± 9 and 18 ± 9 nM s-1 for TauCl, LysCl and GlyCl 

respectively. The rates of NADPH consumption in the presence of SeMet (200 µM) and 

SeTal (200 µM) are similar to those observed when SeMetO (200 µM) or SeTalO (200 

µM) are added to the GPx system (Figure 5.12). 

In addition to examining the initial rate of NADPH loss, the total amount of NADPH 

consumed 2 h after the addition of N-chloramines was assessed (Figure 5.34). Addition 

of TauCl, GlyCl of LysCl (200 µM) to NADPH/TrxR/Trx/GPx caused a decrease of 145 ± 

6, 147 ± 12 and 159 ± 6 µM NADPH respectively. Again, this is less than what might be 

expected, and could be related to NADPH concentration determination. The presence 

of SeMet (20 µM) or SeTal (20 µM) did not significantly affect the total NADPH 

consumed by the system. The presence of 200 µM SeMet and SeTal significantly 

reduced the total NADPH consumed, reflecting the lower reduction rate of SeMetO and 

the inability of the system to reduce SeTalO (Section 5.3.1.2).  
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Figure 5.33 – NADPH consumption rates when N-chloramines are added to the GPx 
system in the presence or absence of SeMet and SeTal. 

The UV-vis absorbance of NADPH at 340 nm was monitored after a) TauCl (200 µM), b) 
LysCl (200 µM) or c) GlyCl (200 µM), were added to samples of NADPH (700 µM) ± TrxR 
(25 nM) ± Trx (1.5 µM) ± GPx (1.5 µM) ± SeMet or SeTal (20 µM (white bars) or 200 µM 
(grey bars)). The rate of NADPH consumption was determined by fitting a straight line to 
the initial 25 min if the data obtained. Addition of TauCl caused a time dependent 
decrease in NADPH concentration and this rate was decreased by presence of SeMet and 
SeTal. Data represent mean ± SD from 3 independent experiments. * indicates significant 
difference (p < 0.05) from control based on one-way ANOVA with Tukey’s post-hoc test. 
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Figure 5.34 - Total NADPH consumed 2 h after N-chloramines were added to NADPH 
in the presence of TrxR, Trx, GPx and SeMet or SeTal 

The UV-vis absorbance of NADPH at 340 nm was monitored after a) TauCl (200 µM), b) 
LysCl (200 µM) or c) GlyCl (200 µM), were added to samples of NADPH (700 µM) ± TrxR 
(25 nM) ± Trx (1.5 µM) ± GPx (1.5 µM) ± SeMet or SeTal (20 µM (white bars) or 200 µM 
(grey bars)). The amount of NADPH consumed was determined by the difference in 
NADPH concentration from the initial reading to 2 h after N-chloramine addition. The 
addition of N-chloramines caused consumption of NADPH. Significantly less NADPH was 
consumed when SeMet (200  µM) or SeTal (200  µM) was present. Data represent mean ± 
SD from 3 independent experiments. * indicates significant difference (p < 0.05) from 
control based on one-way ANOVA with Tukey’s post-hoc test. 

The concentrations of SeMet and SeTal and their respective selenoxides were 

assessed by HPLC with UV-vis detection after incubation for 2 h of NADPH (700 µM), 

TrxR (25 nM), Trx (1.5 µM), GPx (1.5 µM) and SeMet (200 µM) or SeTal (200 µM) with 

TauCl (200 µM) (Figure 5.35). The primary species present after 2 h incubation for the 

SeMet containing samples was SeMet at a concentration of 160 ± 12 µM, and SeMetO at 

a concentration of 18 ± 10 µM. At the same time point, the primary species in the SeTal 

containing samples was SeTalO present at 157 ± 11 µM, with SeTal present at 18 ± 5 
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µM. This is consistent with results with the TrxR and Trx samples (Section 5.3.2.1 and 

5.3.2.2), demonstrating formation of SeMetO and SeTalO, with subsequent enzymatic 

reduction of SeMetO but not SeTalO. 

 

Figure 5.35 – Concentrations of SeMet, SeMetO, SeTal and SeTalO 2 h after TauCl was 
added to the GPx system in the presence of SeMet or SeTal. 

NADPH (700 µM), TrxR (25 nM), Trx (1.5 µM) and GPx (1.5 µM) were incubated with a) 
SeMet (200 µM) or b) SeTal (200 µM) for 5 min before addition of TauCl (200 µM). After 
2 h, SeMet was the major species present in SeMet samples, and SeTalO was the major 
species present in SeTal samples. Data represent mean ± SD from 3 independent 
experiments.  

A decrease in NADPH was observed when N-chloramines were added to NADPH in 

the presence of TrxR, Trx and GPx, however, no increase in rates were observed 

compared to NADPH alone. The presence of SeMet and SeTal reduced the rate at which 

NADPH was consumed when N-chloramines were added to NADPH/TrxR/Trx/GPx. 

This is attributed to the rapid formation of selenoxides upon addition of N-

chloramines, followed by slower reduction of SeMetO but not SeTalO. 

5.3.2.4 Methionine sulfoxide reductases 

The active sites of Msrs contain either a Cys, in the case of MsrA, or Sec, in the case 

of MsrB2 [109, 592]. As many other thiol and seleno enzymes demonstrate ability to 

reduce oxidants via reaction with active site thiol and selenol active sites, Msrs may 
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spectroscopy at 340 nm when TauCl was added to NADPH/TrxR/Trx/MsrA or MsrB2. 
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TauCl (200 µM) was added to NADPH (700 µM), TrxR (25 nM), Trx (1.5 µM) and 

MsrA (95 nM) or MsrB (0.25 µM). The change in absorbance at 340 nm was monitored 

for 2 h. The rate of NADPH consumption was determined by fitting a straight line to the 

initial 25 min to the NADPH vs time plot. A time dependent decrease in NADPH was 

observed upon the addition of TauCl to the Msr systems, yielding a decrease of 94 ± 16 

and 87 ± 10 nM s-1 in NADPH for the MsrA and MsrB2 systems respectively (Figure 

5.36). These changes represent a slight decrease in NADPH consumption rate 

compared to previous systems examined, though this was not statistically significant 

from NADPH alone (104 ± 2 nM s-1), or the Trx system (116 ± 6 nM s-1) (Section 5.3.2.2). 

Similarly, no difference was observed in the total NADPH consumed by the system 

(Figure 5.37), though total NADPH consumption measured was lower than the 

concentration of TauCl added, which may be due to the underestimation of NADPH 

concentrations, discussed in Section 5.3.1.1. This may reflect the inability of the Msrs 

to increase the rate of TauCl removal. Due to limited supply of the Msr enzymes, the 

analogous experiments were not performed with LysCl and GlyCl, or N-chloramines 

scavenging by these enzyme systems in the presence of SeMet and SeTal. However, it 

is anticipated based on previous data presented that the same trend of decreased 

NADPH consumption in the presence of SeMet and SeTal would occur, as the presence 

of Msr was unable to increase NADPH consumption over that observed for TrxR in the 

presence of preformed SeMetO or SeTalO. 
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Figure 5.36 - NADPH consumption rates when N-chloramines are added to the Msr 
system. 

The UV-vis absorbance of NADPH at 340 nm was monitored after TauCl (200 µM) was 
added to NADPH (700 µM) ± TrxR (25 nM) ± Trx (1.5 µM) ± MsrA (95 nM) or MsrB2 (0.25 
µM). The rate of NADPH consumption was determined by fitting a straight line to the data 
obtained. N-Chloramine addition caused a loss of NADPH, and no change was observed 
with the addition of Msrs. Data represent mean ± SD from 3 independent experiments. No 
significant difference (p < 0.05) was observed from control based on one-way ANOVA with 
Tukey’s post-hoc test. 
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Figure 5.37 – Total NADPH consumed after addition of TauCl to NADPH in the presence 
or absence of TrxR, Trx and MsrA or MsrB 

The UV-vis absorbance of NADPH at 340 nm was monitored after TauCl (200 µM) was 
added to NADPH (700 µM) ± TrxR (25 nM) ± Trx (1.5 µM) ± MsrA (95 nM) or MsrB2 (0.25 
µM). NADPH consumed was determined by the difference in NADPH concentration from 
the initial reading to 2 h after N-chloramine addition. N-Chloramine addition caused a 
loss of NADPH, and no change was observed with the addition of Msrs. Data represent 
mean ± SD from 3 independent experiments. No significant difference (p < 0.05) was 
observed from control based on one-way ANOVA with Tukey’s post-hoc test. 
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Figure 5.38 – Potential routes of N-chloramine consumption upon addition to 
NADPH/GSR/GSH/SeMet or SeTal 

N-Chloramines (200 µM) were mixed with NADPH (500 µM), GSR (25 nM) and GSH 

(400 µM) in the presence and absence of SeMet or SeTal (20 or 200 µM) using stopped 

flow apparatus and the absorbance at 340 nm monitored over 1 min (Figure 5.39). A 

short lag phase in NADPH consumption was observed, which is attributed to the time 

taken to form GSSG upon addition of oxidant, which is then reduced by GSR. A decrease 

in NADPH concentration was observed under all conditions. The rate of NADPH 

consumption was determined by fitting a linear slope to UV-vis data between 2 – 10 s 

after mixing (Figure 5.40).  

 

Figure 5.39 – Concentration of NADPH over time after TauCl was added to the GSR 
system in the presence and absence of SeMet. 

TauCl (200 µM) was mixed with NADPH (500 µM), GSR (25 nM) and GSH (400 µM) using 
stopped flow apparatus in the presence or absence of SeMet (20 or 200 µM). The NADPH 
concentration, based on absorbance at 340 nm, was monitored for 1 min. The NADPH 
concentration decreased over time after addition of TauCl consistent with the GSR system 
detoxifying TauCl. 
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Addition of TauCl, LysCl and GlyCl (Figure 5.40 a, b and c respectively) showed a 

decrease in NADPH concentrations at a rate of 6.3 ± 0.2, 7.8 ± 0.2 and 6.9 ± 0.1 µM s-1 

respectively. Inclusion of lower concentrations of SeMet (20 µM) or SeTal (20 µM) did 

not significantly effect the rate of NADPH consumption, with NADPH consumption 

rates of 6.4 ± 0.02, 7.9 ± 0.4 and 7.1 ± 0.1 µM s-1 when TauCl, LysCl or GlyCl was added 

to NADPH/GSR/GSH/SeMet (20 µM) respectively, and 6.0 ± 0.3, 7.4 ± 0.2 and 6.7 ± 0.4 

µM s-1 when added to NADPH/GSR/GSH/SeTal (20 µM). When higher concentrations 

of SeMet (200 µM) was present with the GSR system, the rate NADPH consumption was 

significantly increased to 7.1 ± 0.2 µM s-1 upon addition of TauCl. A trend towards an 

increase in rate was observed with SeTal (200 µM) and TauCl addition though this 

change was not statistically significant, with an observed NADPH consumption rate of 

6.6 ± 0.2 µM s-1. A slight increase in the rate of NADPH consumption was observed in 

the presence of SeMet (200 µM) or SeTal (200 µM) when GlyCl was added, with rates 

of 7.5 ± 0.3 and 7.0 ± 0.3 µM s-1, but again this was not statistically significant. The 

inclusion of SeMet (200 µM) and SeTal (200 µM) did not appear to have any effect on 

the rate of NADPH consumption when LysCl was added to NAPDH/GSR/GSH in the 

presence or absence of these compounds, with NADPH consumption rates of 8.1 ± 0.3 

and 7.8 ± 0.5 µM s-1. The rate of NADPH consumption by these N-chloramines is most 

likely a reflection of the rate at which these species react with GSH to form GSSG. 

However, the NADPH consumption rate may also be being limited by the rate at which 

GSR can reduce GSSG. 
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Figure 5.40 – Rate of NADPH consumption after N-chloramines were added to the GSR 
system in the presence and absence of SeMet or SeTal. 

N-Chloramines, a) TauCl, b) LysCl, or c) GlyCl, (200 µM), were mixed with NADPH (500 
µM), GSR (25 nM) and GSH (400 µM) by stopped flow apparatus in the presence or 
absence (black bars) of SeMet or SeTal (20 (white bars) or 200 µM (grey bars)). NADPH 
concentration, based on absorbance at 340 nm, was monitored for 1 min and the rate of 
NADPH consumption determined by fitting a linear slope to the slope observed 2 – 10 s 
after mixing. Addition of N-chloramine caused a decrease in NADPH concentration. 200 
µM SeMet increased the rate of TauCl scavenging. No significant difference was observed 
with any other N-chloramine or SeMet or SeTal concentration. Data represent mean ± SD 
from 3 independent experiments. * indicates significant difference (p < 0.05) from control 
based on one-way ANOVA with Tukey’s post-hoc test. 
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NADPH consumed compared to the NADPH/GSR/GSH system alone, though this was 

not statistically significant. The presence of SeTal (20 or 200 µM) reduced the total 

NADPH consumed upon addition of TauCl (200 µM) compared to the NADPH/GSR/GSH 

system alone, to 157 ± 2 and 155 ± 4 respectively. The total NADPH consumed upon 

addition of GlyCl was also reduced by SeTal (200 µM) to 155 ± 9. The total NADPH 

consumed upon addition of LysCl to the system containing SeTal was also reduced, 

though this was not significant.   

 

Figure 5.41 – Total NADPH consumption after N-chloramines were added to the GSR 
system in the presence and absence of SeMet or SeTal. 

N-Chloramines, a) TauCl, b) LysCl, or c) GlyCl, (200 µM), were mixed with NADPH (500 
µM), GSR (25 nM) and GSH (400 µM) by stopped flow apparatus in the presence or 
absence (black bars) of SeMet or SeTal (20 (white bars) or 200 µM (grey bars)). NADPH 
concentration, monitored at 340 nm, was measured for 1 min and the total of NADPH 
consumption determined by difference of initial and final absorbance observed. The 
addition of N-chloramine caused a decrease in NADPH concentration. The presence of 
SeMet did not affect the total NADPH consumed. SeTal reduced total NADPH consumption 
upon addition of TauCl, and reduced NADPH consumption at 200 µM upon addition of 
GlyCl. The presence of SeTal did not have an affect with LysCl. Data represent mean ± SD 
from 3 independent experiments. * indicates significant difference (p < 0.05) from control 
based on one-way ANOVA with Tukey’s post-hoc test. 
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In parallel with the NADPH consumption experiments, the concentrations of SeMet 

and SeMetO were assessed by HPLC (Section 2.3.5.4) 10 min after 200 µM TauCl, LysCl 

and GlyCl were added to NADPH (500 µM), GSR (25 nM), GSH (400 µM) and SeMet (200 

µM). For each N-chloramine, approximately 200 µM SeMet was observed in the 

samples (Figure 5.42). No SeMetO was observed in any of the samples after 10 min. 

This is consistent with the formation of GSSG upon addition of N-chloramines, either 

via selenoxide formation or direct reaction with GSH. The total SeMetO reduced 

appears to be greater than the amount of NADPH consumed, and this may be due to 

difficulties with NADPH concentration measurement (see Section 5.3.1.1). 

Unfortunately, due to interferences in the chromatogram, SeTal and SeTalO levels 

could not be assessed.  

 

Figure 5.42 – Concentrations of SeMet recovered after N-chloramines were added to 
the GSR system in the presence of SeMet.  

TauCl, LysCl and GlyCl (200 µM) were added to NADPH (500 µM), GSR (25 nM), GSH (400 
µM) and SeMet (200 µM). The concentration of SeMet was determined after 10 min 
incubation by HPLC. SeMet (200 µM) was observed in each sample. Data represent mean 
± SD from 3 independent experiments. 
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the presence of SeMet or SeTal. This is likely due to the reduced rate of selenoxide 

reduction by the TrxR system compared to the GSR system. 

 Reduction by J774A.1 cell lysates 

As the TrxR and GSR systems demonstrated ability to reduce selenoxides and N-

chloramines in isolated experiments, their ability to reduce these oxidants in a cell 

lysate system was investigated. Lysates of J774A.1 cells were prepared by lysing 6 x 

106 cells in 3 mL ice-cold H2O and incubating on ice for 15 min. Lysates were 

centrifuged to remove cellular debris, and the supernatant collected. The protein level 

was assessed by BCA assay and adjusted to 1 mg protein mL-1. 

5.3.4.1 Selenoxides 

Lysates (50 µg protein) were incubated with NADPH (500 µM) for 5 min before 

addition of SeMetO, SeTalO or insulin (200 µM). These experiments were performed in 

the presence or absence of auranofin (2.5 µM), as auranofin binds to Sec residues 

inhibiting the function of selenoenzymes, with TrxR being a major target [558]. The 

addition of auranofin should allow the contribution of the TrxR/Trx system to the 

overall rate and extent of NADPH loss to be determined. The concentrations of protein 

in lysates and auranofin used in this study are similar to those used previously [596, 

597]. The absorbance of NADPH at 340 nm was monitored for 2 h after the addition of 

selenoxide or the positive control insulin (Figure 5.43). Rates of NADPH consumption 

were determined by fitting a straight line to the initial 25 min of the NADPH vs time 

plot (Figure 5.43).  

A decrease of 3 ± 0.4 nM s-1 of NADPH concentration was observed in control 

samples (50 µg lysate and 500 µM NADPH) (Figure 5.43). Addition of SeMetO (200 µM) 

and SeTalO (200 µM) did not significantly affect the rate of NADPH consumption 

compared to the control, with NADPH consumption rates of 3 ± 0.5 and 3 ± 0.2 nM s-1 

respectively. Auranofin had no effect on in the rate of NADPH consumption in either 

the control (NADPH and lysate alone at 3 ± 0.4 nM s-1) or when SeMetO and SeTalO was 

added, with rates of 3 ± 0.4 and 3 ± 0.5 nM s-1. Insulin (200 µM) was included as a 

positive control for TrxR/Trx activity and increased the rate of NADPH consumption 

over the control to 5 ± 0.4 nM s-1. Treatment of lysates with auranofin slightly 

decreased the rate of insulin reduction to 4 ± 0.5 nM s-1, though this was not a 
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significant difference. These data suggest that cell lysates under these conditions are 

unable to reduce selenoxides, or that the major NADPH consuming reaction are not 

mediated by the TrxR/Trx system. 

 

Figure 5.43 – NADPH consumption after selenoxides or insulin were added to cell 
lysates with or without auranofin. 

NADPH concentration over time when cell lysates (50 µg) with added NADPH (500 µM) 
(control represented by solid line) were incubated with SeMetO (200 µM) (dashed line), 
SeTalO (200 µM) (dotted line) or insulin (200 µM) (dot-dashed line) in the a) absence or 
b) presence of auranofin. Rates of NADPH consumption was determined by fitting a 
straight line to the data represented in a and b, and represented in c). Control - black bars; 
SeMetO - white bars; SeTalO  - dark grey bars; and insulin - checked bars. Insulin increases 
the rate of NADPH consumption, however SeMetO and SeTalO did not. Data represent 
mean ± SD from 3 independent experiments. * indicates significant difference (p < 0.05) 
from control based on one-way ANOVA with Tukey’s post-hoc test. 
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of TauCl (Figure 5.44a,b). Rates of NADPH consumption (Figure 5.44c,d) were 

determined by fitting a straight line to the initial 25 min of the NADPH concentration 

vs time plot (Figure 5.44a,b).  

Addition of TauCl to the cell lysate gave rise to an NADPH consumption rate of 26 ± 

0.9 nM s-1 (Figure 5.44c). No significant difference in the NADPH consumption rate 

induced by TauCl was observed when auranofin was pre-incubated with the lysate 

samples with an NADPH consumption rate of 24 ± 3 nM s-1 (Figure 5.44d), which 

suggests that the NADPH consumption is independent of any selenoenzymes, such as 

GPx and TrxR as these should be inhibited by auranofin presence. The presence of 

SeMet (20 µM) or SeTal (20 µM) led to a small decrease in the NADPH consumption to 

21 ± 2 and 22 ± 1 nM s-1, though these changes were not statistically significant. The 

presence of SeMet (200 µM) or SeTal (200 µM) significantly reduced the rate of NADPH 

consumption to 2 ± 0.6 and 5 ± 5 nM s-1. The addition of auranofin to the lysates again 

did not demonstrate an effect on the NADPH consumption rate when lysates were 

exposed to TauCl in the presence of SeMet (200 µM) and SeTal (200 µM). The decrease 

in rate of NADPH consumption is attributed to the formation of selenoxides, inhibiting 

direct consumption of NADPH by TauCl.  

 



 205 

 

Figure 5.44 – Rate of NADPH consumption after TauCl was added to cell lysates in the 
presence and absence of SeMet or SeTal 

TauCl (200 µM) was added to cell lysates (50 µg protein) with added NADPH (500 µM) in 
the presence or absence of SeMet or SeTal (20 or 200 µM). The NADPH concentration, 
monitored at 340 nm, was measured for 2 h and the rate of NADPH consumption 
determined by fitting a linear slope to initial 25 min. Addition of TauCl caused a decrease 
in NADPH concentration. SeMet and SeTal decreased the rate of NADPH consumption, 
with statistical significance when 200 µM was present. Data represent mean ± SD from 3 
independent experiments. * indicates significant difference (p < 0.05) from control based 
on one-way ANOVA with Tukey’s post-hoc test. 

5.3.4.3 DTNB 

As the cell lysates appeared to be unable to reduce the selenoxides or N-

chloramines, and auranofin had no effect on insulin reduction, the reduction of DTNB 

was used as an alternative positive control to ensure activity of the TrxR enzymes in 

this system. It has been shown previously that the GSR and Trx systems in cell lysates 

can reduce the colourless DTNB to the yellow TNB, which can be monitored at 412 nm 

[598, 599]. The contribution of DTNB reduction by the Trx system can be inhibited by 

the inclusion of auranofin [598, 599]. 
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Cell lysates (50 µg protein) were incubated with NADPH (500 µM) with or without 

auranofin (2.5 µM) before addition of DTNB (200 µM). The absorbance was monitored 

at 412 nm for 2 h. The rate of absorbance change was determined by fitting a line to 

the absorbance vs time plot after the first 15 min, where the rate of absorbance 

becomes more linear after an initial rapid increase. The change of absorbance occurred 

at a rate of 0.017 ± 0.001 mAbs units s-1 for samples without auranofin. This decreased 

to a rate of 0.009 ± 0.0003 mAbs units s-1 for auranofin treated samples. The ability of 

the lysates to produce TNB suggests that the lysates used were redox active. Inhibition 

of TNB production by auranofin demonstrates that selenium enzymes, presumably 

TrxR, are contributing to TNB formation. However, GPx can also be inhibited by 

auranofin, which can affect levels of GSH. As GSH can react directly with DTNB, this may 

also contribute to the TNB formation. 

 

Figure 5.45 – Change in absorbance at 412 nm after DTNB was added to cell lysates 
with or without auranofin 

DTNB (200 µM) was added to cell lysate (50 µg) with NADPH (500 µM) with or without 
auranofin (2.5 µM). a) shows absorbance over time after DTNB addition to samples with 
(dashed line) or without (solid line) auranofin. b) rates of Abs change observed in samples 
with (black bar) or without (white bar) auranofin. Cell lysates are able to reduce DTNB 
to TNB, which can be inhibited at least in part by auranofin. Data represent mean ± SD 
from 3 independent experiments. * indicates significant difference (p < 0.05) from control 
based on unpaired t-test. 
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The aims of the experiments performed in this Chapter were to determine whether 

endogenous antioxidant defence systems could act as a mechanism for the repair of 

selenoxides, which are the major products formed when SeMet and SeTal react with 

MPO-derived oxidants. If this repair process is taking place, the interaction between 
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SeMet and SeTal and these enzymes may represent a potential catalytic scavenging 

cycle of MPO-derived oxidants in vivo. Furthermore, the ability of these enzymes to 

detoxify N-chloramines in the presence and absence of SeMet and SeTal was examined, 

as thiol and selenium enzymes have demonstrated potential to remove oxidants, 

including peroxides and HOSCN [98, 347, 348]. 

The NADPH/TrxR system is capable of reducing SeMetO, but no reduction of SeTalO 

was observed (Figure 5.10). The inability of TrxR to reduce SeTalO may reflect that 

SeTalO cannot access the active site of TrxR. However this is unlikely, as the active site 

of TrxR protrudes from the body of the enzyme on a flexible tail [372], thus accessibility 

would not be expected to be an issue. It is possible that SeTalO is unable to react with 

the active site Sec, though as SeTalO is capable of reacting with thiols (see Chapter 4 of 

this thesis), and selenols are generally considered to have a greater reduction potential 

than thiols, this explanation also seems unlikely. However, there is no definitive 

experimental evidence for the reaction of SeTalO with a selenol, though this would be 

expected to be thermodynamically favourable, as Sec has a higher reduction potential 

than both GSH and Cys. Thus, it is perhaps more likely that kinetic factors are 

influencing the reaction and that the rate of reaction is too slow to be relevant under 

the conditions employed. If the inability of selenoxides to rapidly react with selenols is 

the cause, it would be anticipated that SeMetO should also be unable to react with the 

selenol active site. If this is the case, the site of reduction of SeMetO in TrxR may be the 

N-terminal Cys-X-X-Cys redox centre [372], which SeTalO may not be able to access 

due to steric considerations. 

Trx, in these experiments, was not observed to increase the rate of SeMetO 

reduction by a NADPH/TrxR/Trx system over that in samples with NADPH/TrxR 

alone. It has previously been reported that addition of Trx can almost double the rate 

at which the NADPH absorbance at 340 nm decreased upon addition of SeMetO [474]. 

However, the previous data were not converted to NADPH consumption rates and 

cannot therefore be directly compared to the data presented in this Chapter. A key 

difference that may account for this discrepancy may be that previously 20 µM Trx 

expressed in E. coli was utilised, compared to 1.5 µM human recombinant Trx used in 

the current study. 1.5 µM Trx was chosen in these experiments as it best represented 

the physiological ratio relative to 25 nM TrxR of Trx : TrxR observed in cells [600]. The 
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increased concentration of Trx used in the studies by Suryo-Rahmanto et al [474] may 

be sufficient to compete with reduction of SeMetO by TrxR, thereby increasing the rate 

of reduction compared to the current studies. 

Trx, MsrA, MsrB2 and GPx were all unable to increase the rate at which NADPH was 

consumed upon addition of SeMetO or SeTalO. This may be due to the reduction of TrxR 

by NADPH being the limiting factor in the reduction cycle, and therefore NADPH 

consumption is not being increased with the addition of coupled enzymatic systems. 

Alternatively, the kinetics of the reaction of SeMetO with TrxR may be greater than that 

observed for the other enzymes, and therefore TrxR preferentially reduces SeMetO 

directly, and no increase in NADPH consumption is observed. However, it may be a 

reflection of the inability of SeMetO and SeTalO to oxidise the active site thiols of these 

other enzymes. This is probably unlikely as the thiols at these sites demonstrate higher 

reactivity with other oxidants compared to free thiols, which have demonstrated 

reactivity with selenoxides. Alternatively, it may be a problem of selenoxides accessing 

the active site, as the active site cysteines are generally buried within protein folds. 

Again, this is probably unlikely as the selenoxides are comparatively small compared 

to disulfides formed on protein structures that are the endogenous targets of these 

enzymes, though other factors such as hydrophilic or hydrophobic interactions, with 

the protein structure may be affecting the accessibility. 

The NADPH/GSR/GSH system was capable of rapidly reducing the SeMetO and 

SeTalO with 200 µM consumed within 1 min. An initial lag phase was observed, and is 

attributed to the initial formation of GSSG, by the reaction of the selenoxides with GSH, 

which is then the species reduced by GSR, which consumes NADPH. A comparison of 

the observed NADPH consumption rates suggests that selenoxides are more likely to 

be reduced by the GSR system over the Trx system. As GSH is present in millimolar 

concentrations in cells [222], compared with much lower levels of enzymes, the GSR 

route of removal is perhaps the most likely mechanism for selenoxide repair in vivo.  

The stoichiometry of the reduction of SeMetO and N-chloramines does not agree 

well between UV-vis experiments and HPLC experiments. The HPLC experiments 

demonstrate near complete reduction of SeMetO, with corresponding recovery of 

SeMet after 2 h, reflecting a total of 200 µM SeMetO reduced. However, the NADPH 

consumed as assessed by the extinction coefficient shows less than 200 µM NADPH 
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consumed, however, the expected ratio would be 1 : 1 for NADPH consumed to SeMetO 

reduced. It is proposed that the NADPH consumption is being underestimated due to 

impurities. It was found that the NADPH absorbance at 340 nm was consistently below 

the expected level based on the mass of NADPH weighed out. This caused an 

underestimation of NADPH concentration both initially and when the total consumed 

was calculated. Further experiments would be required, using a more fully 

characterised NADPH sample, to accurately assess the stoichiometry of the enzymatic 

reductions observed in this Chapter. Consumption of selenoxides or N-chloramines via 

reaction with amino acid residues may be a possible explanation of the lower than 

expected NADPH consumption levels, however, this is unlikely. Selenoxides do not 

appear to react with residues other than Cys based on previous reports [439, 486]. 

While N-chloramines are capable of reacting with other protein residues, a lower than 

1 : 1 stoichiometry of NADPH to N-chloramine is observed where no protein is present, 

and therefore reaction with protein residues cannot fully account for the difference. 

Another possibility is consumption of oxidants by additives in the enzymes solutions, 

as some of these enzyme solutions contain DTT. When DTT was present, it was 

removed by solid-phase extraction, though this process may not have been completely 

efficient. However, this still cannot account for the difference observed when no 

enzymes were present.  

A time-dependent decrease in NADPH concentration was also observed when N-

chloramines were added to NADPH. Chlorinating oxidants, including HOCl, N-

chloramides and N-chloramines, react with NADPH to form a chlorohydrin product [63, 

83, 601-603], though this is a slow process for N-chloramines with second order rate 

constants of about 1 M-1 s-1 [83]. Previous data have shown that this product cannot be 

recycled by GAPDH to reform NADPH [603]. The formation of the chlorinated product 

depletes the NADPH pool making it unavailable for metabolism, thus the formation of 

the chlorinated nucleoside is considered to be toxic [603]. 

Selenium and sulfur enzymes have previously demonstrated capability to reduce 

MPO-derived oxidants [98, 348]. In general, the active site Sec or Cys residue is 

oxidised, to RSeOH or RSOH respectively, and subsequently reduced via selenosulfide 

or disulfide exchange mechanisms. As N-chloramines have been previously shown to 

react with thiols [192], it was expected that they would also demonstrate reactivity 
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with the selenium and sulfur enzymes examined in this study. With the exception of 

TauCl scavenging by TrxR and Trx, no significant increase in NADPH consumption was 

observed over control levels when the various enzyme systems were exposed to N-

chloramines. This may reflect that the rate constants for the reaction of N-chloramines 

with the enzymes are lower than the rate constants for the reaction of the N-

chloramines with NADPH directly. 

There is potential that while no increase in NADPH consumption rates was 

observed, that the presence of the redox enzymes promoted the formation of NADP+, 

via the transfer of electrons through the FAD domain of the proteins. NADP+ is a 

reversible product from which NADPH can be regenerated by the action of enzymes 

such as GAPDH, as opposed to the chlorohydrin product formed by N-chloramine 

reaction with NADPH, which is irreversible [603].  However, no product studies were 

performed and the ratios of NADP+ to the chlorohydrin product were not assessed, so 

further work would be required to demonstrate whether this mechanism is occurring 

in these systems.  

The presence of selenium compounds decreased the rate of NADPH consumption 

when the NADPH/TrxR system and coupled enzymes were exposed to N-chloramines. 

The rate observed was similar to the rate at which the selenoxides induced NADPH 

consumption when added directly to the NADPH/TrxR system. Similarly, cell lysates 

showed a decrease in NADPH consumption in the presence of SeMet and SeTal when 

exposed to TauCl. This is likely to be due to the rapid formation of selenoxides, as SeMet 

and SeTal react with N-chloramines with rate constants that are 3 orders of magnitude 

greater than the reaction with NADPH (Chapter 3 of this thesis; [83]). This is supported 

by the observation of high levels of selenoxides present 20 min after N-chloramine 

addition, which then reduces over the course of 2 h for SeMetO. While the rate of 

oxidant removal by the Trx system in the presence of SeMet and SeTal was reduced, 

the reaction product is likely to be NADP+ and not chlorohydrins, due to transfer of 

electrons through the protein chain, as opposed to chlorination of NADPH by N-

chloramines. As NADP+ is recyclable through the actions of enzymes such as GAPDH, 

and the chlorohydrin product is not, this presumably will result in a better outcome in 

the context of cells. However, studies on NADPH products were not performed, so this 

proposed switch in mechanism could not be confirmed. 
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The NADPH/GSR/GSH system demonstrated a more rapid consumption of NADPH 

upon the addition of LysCl than GlyCl or TauCl. This trend is consistent with the second 

order rate constants determined for the reaction of GSH with these N-chloramines, 

with LysCl having the highest rate constant, followed by GlyCl and TauCl [192]. SeMetO 

and SeTalO have rate constants for reaction with GSH significantly higher than those 

reported for N-chloramines (Table 5.1), however, GSR was not able to remove these 

selenoxides significantly faster than LysCl or GlyCl. Based on the rate constants 

reported for the reaction of LysCl and GlyCl with GSH, and those reported in Chapter 3 

for the reaction with SeMet and SeTal (Table 5.1), it would be expected that in the 

presence of 200 µM SeMet or SeTal, the majority of N-chloramine would be reacting 

with the selenium compounds as opposed to directly with the GSH. At lower 

concentrations of SeMet and SeTal, the direct reaction between the N-chloramines and 

GSH would be favoured. The increased rate of GSSG production would be expected to 

result in an increased rate of NADPH consumption, though this was not observed. This 

may be because LysCl, GlyCl and the selenoxides produce GSSG at a rate that saturates 

the GSR activity.  

The presence of SeMet when the GSR system was exposed to TauCl increased the 

rate of NADPH consumption. This is likely due to the rapid reaction of TauCl with SeMet 

and subsequent reduction, therefore producing GSSG at a faster rate than TauCl alone. 

A significant increase in NADPH consumption rate was not observed when SeTal was 

present, and this may reflect the lower rate of reaction of SeTal with TauCl, as well as 

the slower reduction of SeTalO by GSH.  
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Table 5.1 – Comparison of second order rate constants for the reaction of N-

chloramines and selenoxides with GSH, SeMet and SeTal 

Oxidant kGSH / M-1s-1
  kSeMet / M-1s-1 kSeTal/ M-1s-1 

TauCl 115a 820 c 115 c 

LysCl 259a 3400 c 680 c 

GlyCl 228a 2300 c 430 c 

SeMetO 1.5 x 104 b - - 

SeTalO 3.4 x 104 b - - 

a Peskin, A et. al. [192]; b Chapter 4 of this thesis; c Chapter 3 of this thesis 

The ability of other selenium compounds, such as ebselen and selenocystamine, to 

enhance oxidant scavenging has previously been reported, though these function via a 

different mechanism to that discussed here [492, 589, 590]. It is proposed that the 

redox enzymes reduce the diselenides or ebselen to a selenol group, which then rapidly 

reacts with the oxidant to reform the parent compound [492, 589, 590]. Ebselen was 

more effective at oxidant removal in conjunction with the Trx system compared to the 

GSR system [589], while the opposite was observed for SeMet and SeTal. This is 

consistent with the differing mechanism proposed for SeMet and SeTal, where the 

parent species react directly with the oxidant to form selenoxides, followed by 

reduction by the enzymes or GSH to reform the parent compound. 

Cell lysates did not show an increase in NADPH consumption upon addition of 

SeMetO or SeTalO. This suggests that enzymatic systems present in these preparations 

are not recycling the selenoxides efficiently as would be expected by the isolated 

enzyme results when compared to other NADPH consuming reactions. Enzymes such 

as TrxR and Trx, while expressed in this cell line [599], may not be expressed at a high 

enough level to enhance the rate of NADPH consumption when selenoxides are added 

to the lysates. This may also be the case for insulin reduction, where the increase in the 

rate of NADPH consumption upon addition of insulin was not significantly inhibited by 

auranofin as expected. The inability of auranofin to inhibit NADPH consumption in the 

presence of insulin suggests that NADPH consumption is not due to seleno enzymes as 

expected. This is in contrast to the DTNB reduction results which demonstrate that 
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there is some activity of seleno enzymes observed in the lysates as they are capable of 

reducing DTNB to TNB in a manner that is inhibited by the presence of auranofin. Based 

on these results, it cannot be discounted that the selenoxides may be reduced by a 

different mechanism when added to the cell lysates, however, as the concentrations of 

selenoxides were not measured after exposure to the lysates, so it is unclear whether 

this could be the case. 

 Conclusions 

N-Chloramines, MPO-derived oxidants, and selenoxides, the major product formed 

when selenoethers react with MPO-derived oxidants, can be reduced by the 

endogenous antioxidant systems NADPH/TrxR and NADPH/GSR/GSH. Furthermore, 

selenoethers showed the ability to increase NADPH consumption when N-chloramines 

were added to the NADPH/GSR/GSH system, however, SeMet and SeTal reduced the 

rate at which NADPH was consumed after the addition of N-chloramines to the 

NADPH/TrxR system. Together, the endogenous antioxidant defence systems and the 

selenoethers, SeMet and SeTal, may be capable of catalytically removing MPO-derived 

oxidants, preventing oxidative damage and having a therapeutic benefit. 
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6 Selenium compounds modulating MPO-derived oxidant 

damage in cells 
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 Introduction 

Macrophages are a key cell type in the initiation and progression of atherosclerosis 

[274]. They are responsible for the uptake of LDL in the arterial wall with increased 

uptake occurring after LDL is modified by oxidants [294, 301]. The increased LDL 

uptake coupled with impaired cholesterol efflux after macrophages are exposed to 

oxidants induces the formation of foam cells [297, 300]. Accumulation of foam cells is 

the initial event in the development of fatty streaks in the arterial wall, leading to the 

development of atherosclerotic plaques [274]. As such, J774A.1 cells, a murine 

macrophage-like cell line, were chosen for the studies presented in this chapter. 

Exposure of cells to high doses of HOCl, including J774A.1 murine macrophages, 

causes cell death by lysis [221]. The primary cause of lysis is thought to be via 

modifications to membrane proteins, particularly K+ pumps [220], which cause cell 

swelling, or cross linking of membrane proteins causing morphological changes [213, 

219]. Lower doses of HOCl can also cause cell death by apoptosis [222]. HOCl treatment 

has been shown to induce apoptosis in a range of different cell types, with cytochrome 

c release from mitochondria and caspase activation [604-606]. Chloramines are also 

capable of causing apoptosis through caspase activation leading to cell death [607-

609]. 

HOCl and chloramine treatment causes loss of cellular thiols [162, 221, 222, 225]. 

HOCl causes a decrease in GSH and total cellular thiols of J774A.1 cells, with a 

concomitant increase in GSSG [222]. Erythrocytes and endothelial cells treated with 

HOCl also demonstrate a loss of GSH with a corresponding increase in GSSG [221, 225, 

226]. The thiol dependent enzyme glyceraldehyde phosphate dehydrogenase (GAPDH) 

is a specific target of both HOCl and N-chloramines [229]. Exposure of cells to HOCl and 

model chloramines results in thiol loss and a decrease in GAPDH activity [245], with 

the extent of thiol loss and GAPDH inactivation induced by N-chloramines depending 

on cell permeability [135]. While TauCl is efficient at inhibiting isolated GAPDH [245], 

it was unable to affect GAPDH function in HUVECs as it is cell impermeable [135, 246]. 

However, in the presence of other amines, transchlorination can occur, forming 

membrane permeable chloramines that can inhibit GAPDH [135]. Numerous other 

thiol dependent enzymes have been shown to be inhibited on exposure to HOCl and 



 216 

chloramines including creatine kinase, glutathione S-tranferases and membrane 

ATPases [220, 225, 229, 233]. 

HOCl and TauCl also react with other protein residues including Met, Tyr and Trp 

[180]. HOCl and TauCl react with Met residues to form MetSO, which can result in 

enzyme inhibition [111]. HOCl also reacts with Tyr and Trp residues to form 

chlorinated products [120, 121, 129, 296]. Chloramines have been shown to mediate 

Tyr chlorination, though this reaction is slow [121]. These modifications can lead to 

protein inactivation depending on the site of oxidation, as well as protein cross-linking 

and aggregation [40, 106]. HOCl is capable of oxidising Met and Trp residues on 

proteins within cells [220]. 

Selenium-containing compounds rapidly scavenge HOCl and N-chloramines 

forming selenoxides as the major product (dependent on oxidant concentrations), 

which can be then recycled by cellular reductants such as GSH [444, 445] (See also 

Chapters 4 and 5). Thus, antioxidant supplementation with SeMet and SeTal may be an 

effective strategy in reducing oxidative damage to cells exposed to MPO-derived 

oxidants. Selenium compounds can react directly with oxidants, and have also 

demonstrated an ability to upregulate cellular antioxidant enzymes in order to protect 

against oxidative damage [524-526]. Supplementation of trophoblast cells with SeMet 

protected against H2O2 induced damage [531] or oxidative stress induced by the 

disruption of mitochondria with antimycin or rotenone [530]. SeMet has also 

demonstrated efficacy in protecting J774A.1 cells and erythrocytes from H2O2 and t-

butylhydroperoxide induced damage [474, 538].  Isolated protein studies have 

demonstrated SeMet and SeTal are capable of protecting protein residues from 

oxidation by HOCl by acting as a direct antioxidant [439, 486]. However, the use of 

SeMet and SeTal as an antioxidant protecting against MPO-derived oxidants in a 

cellular context has not yet been explored. 

As demonstrated in Chapter 3, SeMet and SeTal react rapidly with HOCl and TauCl 

and may provide a competitive target for oxidants in a cellular context. The data 

presented in Chapters 4 and 5 demonstrate the potential for catalytic scavenging 

cycles, where selenoxides are reduced by endogenous antioxidant systems, leading to 

an enhanced removal of oxidants. Together, these data suggest that SeMet and SeTal 
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may be capable of providing cells with protection against cellular damage caused by 

MPO-derived oxidants. 

 Aims 

This chapter examines a variety of markers of oxidative consequences arising from 

the exposure of J774A.1 cells to HOCl and TauCl, including apoptosis and cell death, 

thiol loss and thiol-dependent enzyme activity, and the oxidation status of amino acid 

residues in the presence or absence of SeMet and SeTal, to assess the ability of these 

compounds to modulate cellular damage.   

 Results 

 Cell viability in the presence of SeMet and SeTal 

Initial studies were performed to examine the viability of J774A.1 cells when 

exposed to SeMet and SeTal in the absence of oxidant treatment, as previous studies 

have shown that SeMet can be toxic under certain conditions [513, 610]. J774A.1 cells 

were plated at a density of 5 x 105 cells mL-1 and exposed to increasing concentrations 

of SeMet or SeTal in HBSS (0 – 200 µM) for 30 min, prior to assessing the viability using 

the LDH assay (Figure 6.1).  No change in viability was observed compared to the 

control (0 µM SeMet or SeTal) with increasing concentrations of selenium compounds. 

This suggests that concentrations of up to 200 µM SeMet and SeTal can be tolerated by 

J774A.1 cells under the conditions employed. 
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Figure 6.1 – J774A.1 cell viability after supplementation with SeMet or SeTal (0 – 200 
µM) 

J774A.1 cells were plated at 5 x 105 cells mL-1 in a 12-well plate and allowed to adhere 
overnight. Cells were washed with warm HBSS before incubation with SeMet or SeTal (0 
– 200 µM) in HBSS for 30 min at 37 °C. Media was collected and cells washed with HBSS 
before lysis in 600 µL H2O. LDH activity in media and lysate samples was measured and 
normalised to protein levels assessed by BCA assay. The viability ratio was determined by 
LDH activity in the lysate over the total LDH activity. No significant difference from 
control (0 µM SeMet or SeTal) was observed based on one-way ANOVA with Tukey’s post-
hoc test. Results are reported as mean ± SD, n = 3.  

 Cellular thiol levels after oxidant treatment 

HOCl and TauCl treatment of cells is known to reduce intracellular thiol levels [162, 

221, 222, 225]. As SeMet and SeTal may provide a competitive target for these oxidants 

in a cellular context, based on results from Chapter 3, supplementation of cells with 

SeMet and SeTal prior to oxidant treatment may be beneficial. The ability of SeMet and 

SeTal to modulate cellular thiol loss was assessed using the ThioGlo-1 assay. 

6.3.2.1 Intact cells 

J774A.1 cells were incubated with SeMet or SeTal (0 - 50 µM) in HBSS for 15 min at 

37 °C before addition of HOCl or TauCl (200 µM) and further incubation for 15 min at 

37 °C. Cells were lysed in 600 µL H2O and thiol levels determined by the ThioGlo-1 

assay. In each case, thiol levels were normalised to protein concentration as assessed 

by the BCA assay. 

Initial studies were performed to determine the effect of SeMet and SeTal (50 µM) 

on cellular thiol levels in the absence of oxidant. A trend towards a decrease in thiol 

levels was observed on incubation of J774A.1 cells with SeMet and SeTal, though this 
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change was not statistically significant, and is potentially due to increase production of 

reactive oxygen species by the cell [513]. Next, experiments to measure thiols after 

cells were exposed to HOCl and TauCl were performed. HOCl treatment of cells reduced 

the thiol levels to 52% of the non-treated control values (Figure 6.2a,c). TauCl 

treatment reduced thiol levels to a similar extent (Figure 6.2b,d).  

Experiments were then performed to determine whether pre-treatment of cells 

with SeMet or SeTal could modulate the levels of thiols after oxidant treatment. 

However, the presence of SeMet (Figure 6.2a) or SeTal (Figure 6.2c) did not 

significantly reduce thiol loss compared to that observed with HOCl alone. Similarly, no 

significant difference was seen between the thiol levels in cells exposed to TauCl alone, 

or TauCl in the presence of SeMet (Figure 6.2b) or SeTal (Figure 6.2d). This may reflect 

the formation of selenoxides following HOCl and TauCl oxidation of SeMet or SeTal, 

which can subsequently react with thiols, as demonstrated in previous Chapters.  
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Figure 6.2– Thiol levels after J774A.1 cells treated with HOCl or TauCl in the presence 
of SeMet or SeTal. 

J774A.1 cells (5 x 105 cells per well) were incubated with SeMet (a,b) or SeTal (c,d) (0 - 50 
µM) in HBSS  for 15 min at 37 °C before addition of HOCl (a,c) or TauCl (b,d) (200 µM) 
and further incubation for 15 min at 37 °C. Non-treated cells and cells treated with SeMet 
or SeTal alone (50 µM) were included as control samples (black bars). Cells were lysed in 
600 µL H2O and thiol levels determined by ThioGlo-1 assay, and thiol levels normalised to 
protein assessed by the BCA assay. A decrease in thiol levels was observed with HOCl and 
TauCl treatment. No significant difference was observed in thiol levels between cells 
treated with HOCl or TauCl alone and those treated with HOCl and TauCl in the presence 
of SeMet or SeTal. * indicates significant difference (p < 0.05) from untreated control 
levels based on one-way ANOVA with Tukey’s post-hoc test. Data are reported as mean ± 
SD from 3 independent experiments.  

6.3.2.2 Cell lysates 

SeMet and SeTal did not appear to have an effect on cellular thiol levels when whole 

cells were exposed to oxidants, however, it was unclear how rapidly and to what extent 

the SeMet and SeTal were taken up by the cells. As such, lysate experiments were 

performed in order to determine the effects of oxidants and SeMet and SeTal on thiol 

levels in the absence of an intact cell membrane. 
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J774A.1 cells were lysed in H2O and the lysates adjusted to 1 mg mL-1 protein 

assessed by the BCA assay. The lysates were then supplemented with SeMet or SeTal 

(0 - 25 µM) before addition of HOCl or TauCl and incubation for 15 min at 22 °C. Thiol 

levels were assessed by ThioGlo-1 assay. As the thiols in the lysate samples are 

(presumably) more accessible to oxidants than in intact cells, experiments were 

performed to optimise the level of oxidant added in each case. Lysates were therefore 

incubated with increasing HOCl or TauCl (0 – 200 µM) for 15 minutes, before thiol 

levels were determined by the ThioGlo assay. At 12.5 µM HOCl or TauCl a 92 % loss of 

thiols compared to the non-treated control was observed (Figure 6.3). Experiments 

with higher concentrations of HOCl or TauCl resulted in complete thiol consumption. 

Therefore, 12.5 µM oxidant was used for subsequent experiments. 

The addition of SeMet or SeTal (25 µM) to the lysate in the absence of oxidant did 

not significantly change the thiol levels from that observed in the untreated control 

lysate samples (Figure 6.3). Addition of HOCl or TauCl (12.5 µM) reduced the thiol 

concentration by 92 % compared to the non-treated control samples, and a similar 

extent of thiol loss was seen in the presence of SeTal (Figure 6.3c,d). However, in the 

presence of SeMet (Figure 6.3a,b) a trend towards a further decrease in thiols 

compared to HOCl or TauCl alone was observed, though this was not statistically 

significant. This is attributed to the formation of selenoxides and subsequent reaction 

with residual cellular thiols. The further decrease observed in the SeMet treated 

samples may reflect the increased rate of reaction of SeMet with HOCl or chloramines 

compared to SeTal, resulting in a higher SeMetO yield, causing a greater reduction in 

thiol levels observed. 
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Figure 6.3 - Thiol levels in lysates after HOCl or TauCl treatment in the presence or 
absence of SeMet or SeTal 

J774A.1 cells were lysed in H2O and the lysates adjusted to 1 mg mL-1 protein assessed by 
the BCA assay. Lysates were then supplemented with SeMet or SeTal (0 - 25 µM) before 
addition of HOCl or TauCl (12.5 µM) and incubation for 15 minutes at 22 °C. Non-treated 
lysates and lysates treated with SeMet or SeTal alone (50 µM) were included as control 
samples (black bars).  Thiol levels were assessed by ThioGlo-1 assay. HOCl and TauCl 
decreased the thiol concentration by 92 % of that seen in the non-treated control. No 
significant difference was observed in thiol levels between lysates treated with HOCl or 
TauCl alone and those treated with HOCl and TauCl in the presence of SeMet or SeTal. 
Data represent mean ± SD from 3 independent experiments. * indicates significant 
difference (p < 0.05) from untreated control levels based on one-way ANOVA with Tukey’s 
post-hoc test. 

 Cellular GAPDH activity after oxidant treatment 

As total cellular thiols were reduced by HOCl and TauCl oxidant exposure, the 

activity of the thiol-dependent enzyme GAPDH was examined. GAPDH is a thiol 

dependent enzyme that catalyses the conversion of glyceraldehyde-3-phosphate (GAP) 

to glycerate-1,3-biphosphate (GBP), a step in the glycolysis pathway essential for 

glucose metabolism and energy production [230]. GAPDH has a thiol at the active site 
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and is readily inactivated when cells are treated with HOCl and TauCl [245]. The ability 

of SeMet and SeTal to prevent GAPDH inactivation was therefore assessed.  

J774A.1 cells were incubated with SeMet or SeTal (0- 50 µM) in HBSS for 15 min at 

37 °C before addition of HOCl or TauCl (200 µM) and further incubation for 15 min at 

37 °C. Cells were washed with warm HBSS before lysis in 600 µL H2O and the 

measurement of GAPDH activity. GAPDH activity was measured by the increase in 

NADH concentration after addition of NAD+ and GAP (as assessed by optical absorbance 

at 340 nm) with the values normalised to the protein levels (as assessed by BCA assay). 

Initial experiments examined the effect of SeMet and SeTal (50 µM) on GAPDH 

activity in cells (Figure 6.4).  A decrease in GAPDH activity was observed in the 

presence of SeMet alone, though this was not statistically significant. A slight decrease 

in GAPDH activity in the presence of SeTal was also observed, though this decrease was 

not as large as that observed with SeMet treatment. This compares well to the extent 

of loss in total cellular thiols (Figure 6.2). 

Treatment of cells with HOCl (200 µM) in the absence of SeMet or SeTal resulted in 

a significant decrease in GAPDH activity (Figure 6.4a,c) as previously reported [222]. A 

comparable loss in GAPDH activity was observed on treatment of the cells with TauCl 

(Figure 6.4b,d), in contrast to previous reports with other cell types [135, 246]. In 

general, the presence of SeMet and SeTal did not prevent the loss of GAPDH activity. 

However, a significant increase in GAPDH activity, consistent with prevention of HOCl-

induced damage, was seen on pre-treatment of cells with 10 µM SeMet before addition 

of HOCl  (Figure 6.4a). 
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Figure 6.4 – GAPDH activity after J774A.1 cells were treated with HOCl or TauCl in the 
presence of SeMet or SeTal 

J774A.1 cells (5 x 105 cells per well) were incubated with SeMet (a,b) or SeTal (c,d) in 
HBSS (0- 50 µM) for 15 min at 37 °C before addition of HOCl (a,c) or TauCl (b,d) (200 µM) 
and further incubation for 15 min at 37 °C. Non-treated cells and cells treated with SeMet 
or SeTal alone (50 µM) were included as control samples (black bars).  Cells were lysed in 
600 µL H2O and GAPDH activity measured by monitoring the increase of NADH at 340 nm 
after addition of NAD+ and GAP to the lysates, normalised to protein concentration. 
Treatment of cells with HOCl or TauCl reduced GAPDH activity levels. Presence of 10 µM 
SeMet increased GAPDH activity levels back to control, however no effect was seen with 
TauCl treated cells or any other concentration of SeMet or SeTal. Data represent mean ± 
SD from 3 independent experiments. * indicates significant difference (p < 0.05) from 
untreated control levels, and # indicates significant difference from HOCl treated cells in 
the absence of SeMet (p < 0.05) based on one-way ANOVA with Tukey’s post-hoc test. 

 Reversible thiol oxidation 

In general, the data presented above are consistent with a lack of protection of 

thiols by SeMet and SeTal on exposure of macrophages to HOCl or TauCl. However, in 

the experiments reported above, the nature of the oxidised thiol products was not 

examined. Oxidation of thiols by HOCl and TauCl can give rise to numerous oxidation 

products, some of which are irreversible [95]. If HOCl and TauCl react with SeMet or 

SeTal, it would be expected that selenoxide species would be formed. Selenoxides 
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should give rise to disulfides as oxidation products upon reaction with thiols [444, 

445]. As disulfides are reversible oxidation products, the ability of SeMet and SeTal to 

promote reversible thiol oxidation was assessed by using the thiol-specific probe IAF 

after SDS-PAGE to separate cellular proteins. 

J774A.1 cells were incubated with SeMet or SeTal (0- 50 µM) in HBSS for 15 min at 

37 °C before addition of HOCl or TauCl (200 µM) and further incubation for 15 min at 

37 °C. Cells were lysed in the presence of NEM (100 mM) to alkylate any remaining free 

thiols after oxidant exposure. Reversibly oxidised thiols were reduced by addition of 

DTT (1 M), before the subsequent addition of IAF to fluorescently label the newly 

reduced thiol-containing proteins. The IAF labelled proteins were run out on 4-12% 

Tris-acetate gels and the proteins visualised by fluorescence (λex = 495 nm; λem = 520 

nm). Proteins were subsequently stained with Coomassie or silver stain and the 

fluorescent band density normalised to protein loading based on the total protein 

staining of 3 separate protein bands (Figure 6.5). 

Protein loading ratios were determined by densitometric analysis of 3 bands on the 

protein stained gels, with the most intense bands selected for protein loading 

determination. The relative loading of each lane was determined by densitometric 

analysis of the bands, which were averaged before expressing values as protein loading 

relative to the non-treated control for the lane. The ratio of bands within the same lane 

to each other remained consistent across all treatments, suggesting the only difference 

between lanes should be due to protein loading.  However, it is difficult to draw 

conclusions from these data owing to some discrepancies in the amount of protein 

loaded that is reflected in the Coomassie stained gels (Figure 6.5a,c). The inconsistent 

protein loading also made it difficult to attribute differences in IAF fluorescence in 

samples to changes in reversible thiol levels (Figure 6.5b,d).  These difficulties 

stemmed from redissolving the precipitated protein from the wash steps required for 

IAF staining. Further method optimisation to ensure equal protein loading before 

determination of whether SeMet and SeTal can promote irreversible thiol oxidation is 

needed, but was beyond the scope of this thesis. 
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Figure 6.5 – Representative gels showing protein loading and IAF stained reversible 
thiol products 

J774A.1 cells (5 x 105 cells per well) were incubated with a,b) SeMet or c,d) SeTal (0 - 50 
µM) in HBSS for 15 mins at 37 °C before addition of HOCl (200 µM) and further incubation 
for 15 min at 37 °C. Non-treated cells and cells treated with SeMet or SeTal alone (50 µM) 
were included as control samples. Cells were lysed in the presence of NEM and reversible 
thiols were tagged with IAF after DTT reduction. Proteins were run out on a gel and 
scanned for IAF fluorescence (λex = 495 nm; λem = 520 nm) (b,d). Gels were stained for 
protein using Coomassie stain (a,c). A, B and C represent bands chosen for densitometry 
analysis. 

 Oxidation of amino acid residues 

The above data suggest that SeMet and SeTal are ineffective as protective agents for 

cellular thiol loss induced by HOCl and TauCl under the conditions employed in this 
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study. However, Met is another significant target for oxidation by HOCl and TauCl in 

cells [220], which can influence protein function [111, 112]. SeMet and SeTal can 

prevent oxidation of Met residues when isolated proteins are exposed to HOCl [439, 

486]. Thus, the ability of SeMet and SeTal to protect Met and other amino acid residues 

from oxidation on exposure of cells to HOCl or TauCl was assessed using an HPLC 

approach in which the concentration of Met and its oxidation product MetSO were 

quantified after MSA hydrolysis of cellular proteins. 

J774A.1 cells (5 x 105 cells mL-1) were incubated in the presence of SeMet or SeTal 

in HBSS (0 – 50 µM), before addition of HOCl or TauCl (200 µM) and further incubation 

for 15 min. Cells were washed with warm HBSS and lysed in 600 µL H2O, before cellular 

proteins were isolated by precipitation by TCA (50 % (w/v)) prior to digestion into 

component amino acids by MSA hydrolysis as described in Section 2.3.5.5. Amino acids 

were derivatised with OPA and concentrations analysed after separation by HPLC, to 

assess the concentration of Met and the formation of the oxidation product MetSO. The 

results are expressed as pmol of Met or MetSO per pmol of Ile, which is generally 

resistant to oxidation by HOCl and N-chloramines [547]. 

Initially, studies to determine the effect of SeMet or SeTal alone (50 µM) on Met and 

MetSO levels were performed. No significant differences between the levels of Met and 

MetSO in the non-treated controls were observed on treating cells with SeMet or SeTal 

(Figure 6.6). Next, experiments were conducted to determine the effect of HOCl and 

TauCl on Met and MetSO levels. Surprisingly, no significant loss in Met or formation of 

MetSO was observed on exposure of the cells to HOCl, even though Met is a known 

target of HOCl oxidation (Figure 6.6) [86]. Similar results were obtained in the 

analogous experiments with TauCl (Figure 6.7).  
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Figure 6.6 – Met and MetSO levels after J774A.1 cells were exposed to HOCl in the 
presence of SeMet or SeTal 

J774A.1 cells (5 x 105 cells) were treated with HOCl (200 µM) in the presence or absence 
of SeMet or SeTal (0 – 50 µM) for 15 min. Non-treated cells and cells treated with SeMet 
or SeTal alone (50 µM) were included as control samples (black bars).   Cells were washed 
with warm HBSS and lysed in 600 µL H2O, before protein precipitation and MSA 
hydrolysis. Amino acids were derivatised with OPA and concentrations analysed by HPLC. 
Met and MetSO levels are reported relative to Ile. No significant differences were observed 
between treatments based on one-way ANOVA with Tukey’s post-hoc test. Data represent 
mean ± SD from 3 independent experiments. 
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Figure 6.7 – Met and MetSO levels after J774A.1 cells were exposed to TauCl in the 
presence of SeMet or SeTal 

J774A.1 cells (5 x 105 cells) were treated with TauCl (200 µM) in the presence or absence 
of SeMet or SeTal (0 – 50 µM) for 15 min. Non-treated cells and cells treated with SeMet 
or SeTal alone (50 µM) were included as control samples (black bars).   Cells were washed 
with warm HBSS and lysed in 600 µL H2O, before protein precipitation and MSA 
hydrolysis. Amino acids were derivatised with OPA and concentrations analysed by HPLC. 
Met and MetSO levels are reported relative to Ile. No significant differences were observed 
between treatments based on one-way ANOVA with Tukey’s post-hoc test. Data represent 
mean ± SD from 3 independent experiments. 

Met and MetSO levels did not appear to be effected after treatment of intact cells 

with HOCl and TauCl, which may reflect protection by the cell membrane, or 

insufficient concentrations of oxidant. Therefore, as Met are favoured oxidation sites in 

isolated proteins exposed to HOCl and N-chloramines, a lysate model was used to 

determine whether SeMet and SeTal could afford protection from HOCl and TauCl 

induced damage. J77A.1 cells were lysed in H2O and adjusted to 1 mg mL-1 protein 

before incubation with SeMet or SeTal (0 – 50 µM) for 15 min at 22 °C. HOCl or TauCl 

(200 µM) was then added and samples incubated for a further 15 min, before protein 
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precipitation and digestion by MSA. Amino acids were derivatised and analysed by 

HPLC.  

SeMet and SeTal alone (50 µM) did not significantly affect Met or MetSO levels in 

the cell lysate proteins compared to the non-treated control (Figure 6.8). In this case, 

addition of HOCl (200 µM) significantly decreased Met levels (Figure 6.8a,c), with a 

corresponding increase in MetSO levels (Figure 6.8b,d). Increasing concentrations of 

SeMet or SeTal demonstrated a slight trend toward Met protection, with an increase in 

Met and a decrease in MetSO, though this was not statistically significant.  

Addition of TauCl (200 µM) to cell lysates (1 mg protein mL-1) also resulted in a loss 

of Met residues (Figure 6.9 a,c), with a corresponding increase in MetSO (Figure 6.9 

b,d). However, no dose-dependent trend in Met protection was observed in this case. A 

recovery of Met was seen at the highest levels of SeMet or SeTal, though this difference 

was not statistically significant from the level detected with TauCl alone (Figure 6.9). 
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Figure 6.8 - Met and MetSO levels after J774A.1 lysates were exposed to HOCl in the 
presence of SeMet or SeTal. 

J774A.1 cells were lysed in H2O and the lysates adjusted to 1 mg mL-1 protein assessed by 
the BCA assay. Lysates were then supplemented with SeMet or SeTal (0 - 50 µM) before 
addition of HOCl (200 µM) and incubation for 15 min at 22 °C. Non-treated lysates and 
lysates treated with SeMet or SeTal alone (50 µM) were included as control samples 
(black bars).   Protein was precipitated and digested using MSA hydrolysis and amino 
acids derivatised with OPA and separated by HPLC. a,c) Met and b,d) MetSO levels are 
reported relative to Ile concentrations. HOCl treatment decreases levels of Met, with a 
corresponding increase in MetSO. No significant difference was observed in Met or MetSO 
levels between cells treated with HOCl or TauCl alone and those treated with HOCl and 
TauCl in the presence of SeMet or SeTal. Data represent mean ± SD from 3 independent 
experiments. * indicates significant difference (p < 0.05) from untreated control levels 
based on one-way ANOVA with Tukey’s post-hoc test. 
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Figure 6.9 - Met and MetSO levels after J774A.1 lysates were exposed to TauCl in the 
presence of SeMet or SeTal 

J774A.1 cells were lysed in H2O and the lysates adjusted to 1 mg mL-1 protein assessed by 
the BCA assay. Lysates were then supplemented with SeMet or SeTal (0 - 50 µM) before 
addition of TauCl (200 µM) and incubation for 15 min at 22 °C. Non-treated lysates and 
lysates treated with SeMet or SeTal alone (50 µM) were included as control samples 
(black bars).   Protein was precipitated and digested using MSA hydrolysis and amino 
acids derivatised with OPA and separated by HPLC. a,c) Met and b,d) MetSO levels are 
reported relative to Ile concentrations TauCl treatment decreases levels of Met, with a 
corresponding increase in MetSO. No significant difference was observed in Met and 
MetSO levels between cells treated with HOCl or TauCl alone and those treated with HOCl 
and TauCl in the presence of SeMet or SeTal. Data represent mean ± SD from 3 
independent experiments. * indicates significant difference (p < 0.05) from untreated 
control levels based on one-way ANOVA with Tukey’s post-hoc test. 

HOCl and TauCl can also target Tyr, Trp, Lys and His residues, causing an observed 

decrease in the concentration of these amino acid residues when HOCl or TauCl reacts 

with them [86]. The levels of these amino acids were also assessed in these 

experiments, however no changes in their concentrations were observed after oxidant 

treatment (data not shown). 
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 Cell viability after oxidant treatment 

6.3.6.1 Modulation of necrosis observed after 15 min  

Although SeMet and SeTal appear to be ineffective or only weakly protective 

against thiol and Met oxidation on exposure of J774A.1 cells to HOCl and TauCl, it is 

possible that these compounds may act as protective agents via other pathways. It has 

been shown previously that HOCl and TauCl can induce cell death via apoptosis and 

necrosis [219, 222, 606, 607].  It was therefore hypothesised that SeMet and SeTal may 

modulate the pattern of HOCl and TauCl induced cell damage that cause these 

pathways to be activated, and hence preserve cell viability after oxidant exposure.  

Initially, experiments were performed at 15 min post oxidant exposure to examine 

changes in viability observed at the same time point as the oxidative changes examined 

earlier in this Chapter. Cells were preincubated with SeMet or SeTal (0 – 50 µM) for 15 

min, prior to the addition of 200 µM HOCl or TauCl, with a further incubation of 15 min. 

The viability and percentage of necrotic and apoptotic cells were determined by dual 

staining with propidium iodide (PI) and Annexin-V respectively, with analysis by flow 

cytometry (Figure 6.10). As 15 min is too short a time period for apoptosis induction, 

only necrotic cell populations are examined here. 

Annexin-V binds to surface exposed phosphatidyl serine residues, which are 

externalised during the process of cellular apoptosis [564]. Therefore, cells that stain 

positive for Annexin-V are considered to be apoptotic. PI is taken up by necrotic cells 

and interchelates with double-stranded DNA [565].  
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Figure 6.10 – Example flow cytometry plots for control populations and cells treated 
with HOCl and TauCl 

J774A.1 cells (5 x 105 cells) were plated overnight before washing and treatment with b) 
HOCl or c) TauCl (200 µM) in HBSS for 15 min. a) shows HBSS control cells. Cells were 
scraped and pelleted before washing with HBSS and staining with Annexin-V APC and PI 
and subsequent analysis by flow cytometry. Cells in the lower left quadrant were 
considered to be viable, cells in the lower right quadrant were considered apoptotic, and 
cells in the upper quadrants were considered necrotic. TauCl and HOCl treatment induced 
necrosis in J774A.1 cells, however, no apoptotic cell population was observed under these 
conditions. 

Initial studies examined the viability of a control population of cells incubated in 

HBSS in the presence and absence of 50 µM SeMet or SeTal. The J774A.1 control cells 

were 70% viable after the 30 min incubation in HBSS and removal from the tissue 

culture plates. In this case, approximately 30% of cells were in the necrotic population 

(Figure 6.11).  The presence of SeMet or SeTal alone (50 µM) did not significantly affect 

cell viability compared to the non-treated control population, which corresponded 

with the data observed with the LDH assay (Figure 6.1). Upon addition of HOCl, the 

viable cell population decreased to 30% of the total cell population (Figure 6.9a,c). 

There was a corresponding increase in the population of necrotic cells to 70% of the 

total cell population (Figure 6.9b,d). HOCl treatment is known to cause necrosis at high 

concentrations due to chemical changes in the cell membrane [222]. Addition of 

increasing concentrations of SeMet demonstrated a trend toward increasing viability, 

with a corresponding decrease in necrosis, however, the levels of each population were 

not significantly different to cells treated with HOCl alone (Figure 6.11a,b). 

Preincubation with SeTal did not significantly affect the cell viability observed after 

oxidant treatment (Figure 6.11c,d). 
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Figure 6.11 – Viable and necrotic cell populations 15 mins after J774A.1 cells were 
exposed to HOCl in the presence of SeMet or SeTal. 

J774A.1 cells (5 x 105 cells) were treated with HOCl (200 µM) in the presence or absence 
of SeMet or SeTal (0 – 50 µM) for 15 min. Non-treated cells and cells treated with SeMet 
or SeTal alone (50 µM) were included as control samples (black bars).  Cells were pelleted 
and washed with warm HBSS before addition of Annexin-V APC and PI stains. Cell 
populations were counted using flow cytometry. A decrease in the viable cell population 
(a,c) was observed with HOCl treatment, with a corresponding increase in necrosis (b,d). 
No changes were observed with SeMet (a,b) or SeTal (c,d) treatment. Data represent 
mean ± SD from 3 independent experiments. * indicates significant difference (p < 0.05) 
from untreated control levels based on one-way ANOVA with Tukey’s post-hoc test. 

TauCl treatment also decreased the viability of cells with a corresponding increase 

in the necrotic cell population, though these differences were not statistically 

significant after incubation for 15 min (Figure 6.12). Pretreatment of cells with SeMet 

and SeTal prior to oxidant exposure did not have an effect on the distribution of cell 

populations (Figure 6.12). 
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Figure 6.12 - Viable and necrotic cell populations 15 mins after J774A.1 cells were 
exposed to TauCl in the presence of SeMet or SeTal. 

J774A.1 cells (5 x 105 cells) were treated with TauCl (200 µM) in the presence or absence 
of SeMet or SeTal (0 – 50 µM) for 15 min. Non-treated cells and cells treated with SeMet 
or SeTal alone (50 µM) were included as control samples (black bars).  Cells were pelleted 
and washed with warm HBSS before addition of Annexin-V APC and PI stains. Cell 
populations were counted using flow cytometry. A decrease in the viable cell population 
(a,c) was observed with TauCl treatment, with a corresponding increase in necrosis (b,d). 
No changes were observed with SeMet (a,b) or SeTal (c,d) treatment based on one-way 
ANOVA with Tukey’s post-hoc test. Data represent mean ± SD from 3 independent 
experiments. 

6.3.6.2 Modulation of necrosis observed after 2 h 

As 15 min is too short a time to observe apoptosis as it is regulated by signalling 

pathways, the study was extended to a 2 h incubation before changes in cell viability 

were assessed. The oxidant concentrations were reduced to 100 µM to minimise the 

extent of lysis of the cells as previously reported [222]. 

Initial preliminary experiments were performed to determine the extent of 

apoptosis observed when the cells were exposed to camptothecin (CPT; 25 µM) or 
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staurosporin (5 µM) as positive controls [611, 612]. J774A.1 cells were plated at a 

density of 0.5 x 106 cells per well in 12-well plates, and allowed to adhere overnight in 

an atmosphere of humidified 5 % CO2, at 37 °C. Cells were washed twice with warm 

HBSS, before the addition of 25 µM CTP or 5 µM staurosporin in HBSS and further 

incubation for 2 h. Staurosporin treatment was also performed with a 4 h incubation. 

Cells were then stained with Anexxin-V APC and PI, and the viable, apoptotic and 

necrotic cell populations were assessed by flow cytometry (Figure 6.13). Cells treated 

with these agents demonstrated a decrease in viability with a corresponding increase 

in necrosis (Figure 6.14). However, again no change in the apoptotic cell populations 

were observed (Figure 6.14), with less than 1% of the cell population in the lower right 

quadrant (Figure 6.13). The reason for this discrepancy compared to published data is 

not certain, but may reflect late stage apoptosis, where PI is also taken up, or that 

different, early passage cells were used in the current study [222]. 

 

Figure 6.13 – Flow cytometry plots for J774A.1 treated with CPT and staurosporin and 
stained with Annexin-APC and PI 

J774A.1 cells (5 x 105 cells) were treated with d) CPT (25 µM) for 2 h, or for staurosporin 
(5 µM) for e) 2 h or f) 4 h. a, b, c) represent controls for each condition. Cells were scraped 
and pelleted before being washed with warm HBSS and stained with Annexin-V APC and 
PI stains. Fluorescence was measured using flow cytometry and cells sorted in quadrants 
representing: Lower left – Annexin negative, PI negative; Lower right – Annexin positive, 
PI negative; Upper left – Annexin negative, PI positive; and Upper right – Annexin positive, 
PI positive. 
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Figure 6.14 - Cell viability for J774A.1 cells treated with CPT and staurosporin 

J774A.1 cells (5 x 105 cells) were treated with a) CPT (25 µM) for 2 h, or staurosporin (5 
µM) for b) 2 h or c) 4 h. Black bars represent incubation with HBSS alone, and white bars 
represent staurosporin or CPT treatment.  Cells were scraped and pelleted before being 
washed with warm HBSS and stained with Annexin-V APC and PI stains. Cell populations 
were counted using flow cytometry. All treatments showed a decrease in viability with a 
corresponding increase in necrosis. No change was observed in apoptotic cell populations. 
As n =1, no error bars are present. 
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Experiments to determine the cell viability of a control population of cells in the 

presence and absence of SeMet and SeTal (50 µM) were performed. However, due to a 

lack of Annexin V staining in the positive controls, only necrotic cell populations could 

be assessed. The viability of non-treated control cells was significantly decreased after 

2 h in HBSS when compared to that seen at 15 min, with 30 – 40% cells determined as 

viable (Figure 6.15a,c). The remaining 60-70% of the cell population were found to be 

necrotic (Figure 6.15b,d). This may be related to an increase in susceptibility of the 

cells to damage by mechanical scraping required to lift the cells from the plate into 

suspension for flow cytometry analysis following longer incubation in HBSS. The 

mechanical scraping could not be avoided as J774A.1 cells are trypsin resistant. The 

presence of SeMet and SeTal did not affect the cell populations. However, no further 

loss in cell viability was observed compared to the non-treated control cells on addition 

of either HOCl (Figure 6.15) or TauCl (Figure 6.16) (100 µM) to the J774A.1 cells. Again, 

SeMet and SeTal addition did not affect the cell populations observed in cells treated 

with HOCl (Figure 6.15). This is consistent with the HOCl treated cells, as HOCl did not 

induce cell death over and above that seen in the non-oxidant treated cells. When cells 

were treated with TauCl in the presence of SeMet, a trend towards a further decrease 

in the viable cell population together with an increase in necrotic population was 

observed, though this was not statistically significant (Figure 6.16a,b). This effect was 

not observed in the presence of SeTal. However, it should be noted that there was 

considerable variability in the extent of necrosis seen in the non-oxidant treated cells 

in these experiments, and repetition would be required to confirm this observation. 
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Figure 6.15 - Viable and necrotic cell populations 2 hrs after J774A.1 cells were exposed 
to HOCl in the presence of SeMet or SeTal. 

J774A.1 cells (5 x 105 cells) were treated with HOCl (100 µM) in the presence or absence 
of SeMet or SeTal (0 – 50 µM) for 2 h. Non-treated cells and cells treated with SeMet or 
SeTal alone (50 µM) were included as control samples (black bars).  Cells were pelleted 
and washed with warm HBSS before addition of Annexin-V APC and PI stains. Cell 
populations were counted using flow cytometry. No changes were observed in the viable 
(a,c) or necrotic (b,d) cell populations with HOCl treatment. No significant changes were 
observed with SeMet (a,b) or SeTal (c,d) treatment compared to HOCl treatment in the 
absence of SeMet or SeTal based on one-way ANOVA with Tukey’s post-hoc test.. Data 
represent mean ± SD from 3 independent experiments. 
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Figure 6.16 – Viable and necrotic cell populations 2 hrs after J774A.1 cells were 
exposed to TauCl in the presence of SeMet or SeTal. 

J774A.1 cells (5 x 105 cells) were treated with TauCl (100 µM) in the presence or absence 
of SeMet or SeTal (0 – 50 µM) for 2 h. Non-treated cells and cells treated with SeMet or 
SeTal alone (50 µM) were included as control samples (black bars).  Cells were pelleted 
and washed with warm HBSS before addition of Annexin-V APC and PI stains. Cell 
populations were counted using flow cytometry. No changes were observed in the viable 
(a,c) or necrotic (b,d) cell populations with TauCl treatment. No significant changes were 
observed with SeMet (a,b) or SeTal (c,d) treatment compared to TauCl treatment in the 
absence of SeMet or SeTal based on one-way ANOVA with Tukey’s post-hoc test.. Data 
represent mean ± SD from 3 independent experiments. 
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or Jurkat cells, though in the presence of other amines, like Gly or His, transchlorination 

reactions can occur, forming more cell permeable N-chloramines [135, 246]. However, 

TauCl is taken up by the RAW 264.7 murine macrophage cell line [249] and reversible 

oxidation of intracellular cofilin by TauCl in a human lymphoma cell line has been 

reported [609]. Furthermore, TauCl mediated oxidation of Met residues of IκBα 

resulting in loss of NF-κB activity [251]. In this study, J774A.1 cells treated with TauCl 

demonstrated a loss of cellular thiols and a decrease in GAPDH activity, which has not 

been reported with other cell types. This may indicate an increase in permeability of 

J774A.1 cell membranes compared to other cell types, allowing TauCl access to the 

cytosol and hence thiol loss. If this is occuring, it could be demonstrated by assessing 

N-chloramine concentration in media after exposure of cells to TauCl, though this 

experiment was not performed and would not rule out reactivity of TauCl with cell 

membrane components [246]. It is unlikely that transchlorination reactions would be 

occurring in the studies performed in this Chapter, as treatments were performed in 

HBSS, which contains no free amines to undergo these reactions. 

Circulating levels of SeMet in patients who have been supplemented with SeMet 

difficult to demonstrate in vivo, due to rapid metabolism and incorporation into protein 

[613]. SeTal has not previously been used in in vivo studies. The concentration of SeMet 

and SeTal used in this Chapter were selected based on previous supplementation 

studies [474, 513, 529-531, 538], and at a dose at which no effect on viability was 

observed. 

Incubation of SeMet and SeTal with J774A.1 cells in the absence of oxidant 

demonstrated a loss of cellular thiols and a decrease in GAPDH activity, though these 

differences were not statistically significant compared to non-treated control cells. 

Selenium compounds, including SeMet, have previously been shown to increase ROS 

production in cells, which is primarily attributed to the formation of selenolates after 

metabolism of SeMet by methioninases [513]. An increase in ROS due to SeMet and 

SeTal may be causing the decrease in thiol levels observed. Furthermore, reaction of 

SeMet and SeTal with basal levels of ROS, forming selenoxides which then react with 

cellular thiols may also result in a decrease in cellular thiols. 

The presence of SeMet and SeTal did not affect the levels of thiols observed in cells 

after oxidant treatment (Figure 6.2 and Figure 6.3). This is potentially due to the 
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limited scavenging of oxidant, as in this case, the HOCl or TauCl are in excess of SeMet 

and SeTal. SeMet and SeTal have higher rate constants for the reaction with the 

oxidants compared to cellular components, as demonstrated in Chapter 3, so it would 

be expected that SeMet and SeTal are at least partially consuming the HOCl or TauCl. 

The primary product produced by the reaction between SeMet or SeTal and HOCl or 

TauCl would be the respective selenoxides. As demonstrated in Chapter 4, these 

selenoxides can react with GSH and protein thiols, thus depleting cellular thiols. This 

may be why no protection from HOCl or TauCl induced damage is observed when cells 

are supplemented with SeMet and SeTal prior to oxidant addition. Furthermore, the 

presence of SeMet has a non-statistically significant trend to further reduce the 

concentration of thiols in cell lysates exposed to HOCl or TauCl (Figure 6.3). This may 

be reflecting the increased specificity of selenoxides towards thiols compared to HOCl 

and TauCl, which are capable of reacting with other targets.  

In general, the presence of SeMet and SeTal did not modulate GAPDH activity upon 

oxidant exposure to cells (Figure 6.4). This is potentially due to reaction of the active 

site of GAPDH with the selenoxides SeMetO and SeTalO formed upon HOCl or TauCl 

addition, as selenoxides have demonstrated protein thiol reactivity previously [445]. 

The ability of selenoxides to inactivate GAPDH could be assessed using isolated protein 

exposed to SeMet and SeTalO and determining activity. Alternatively, as the cells were 

treated with an excess of HOCl and TauCl over SeMet or SeTal, it may be that the 

concentration of SeMet and SeTal was not high enough to scavenge sufficient HOCl or 

TauCl to inhibit the loss of GAPDH activity.  

Experiments with cells exposed to HOCl (200 µM) in the presence of 10 µM SeMet 

consistently demonstrated an increase in GAPDH activity compared to that seen in the 

absence of SeMet (Figure 6.4a). The protection afforded at 10 µM may be indicative of 

a “sweet spot” of SeMet supplementation, where the SeMet is scavenging enough HOCl 

to prevent GAPDH inactivation, but the levels of SeMetO are not high enough for GAPDH 

to become a target for oxidation by SeMetO. However, more work would be needed in 

order to fully establish whether this is the case.  

HOCl and cell-permeable N-chloramines such as those formed on Gly can induce the 

formation of reversible thiol oxidation products [614]. TauCl is less able to penetrate 

the cell membrane [135] and therefore a lower of level of intracellular reversible thiol 
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products may be expected. However, in the data presented here, no increase in 

reversible thiol products was observed with HOCl or TauCl treatment, which may 

reflect oxidation of other targets, such as reaction with the cellular membrane. 

Furthermore, HOCl and TauCl can oxidise thiol residues to sulfinic and sulfonic acids, 

which are irreversible thiol oxidation products [86]. SeMet and SeTal may react to form 

selenoxides in cells upon HOCl or TauCl addition, which react with thiols to form 

disulfides, with no evidence reported for the formation of sulfenic or sulfonic acids 

[444, 445]. As disulfides are reversible oxidation products, the IAF protocol was 

attempted to assess levels of reversible thiols (Figure 6.5). However, due to issues with 

sample preparation, the results for this approach were inconclusive. 

The lack of significant changes in reversible oxidation products observed in this 

study may be due to the large variation between samples. Protein levels of the sample 

were adjusted prior to reaction of cellular proteins with IAF. However, the pelleting 

and washing stages that are required after IAF addition may have caused loss of 

sample. Furthermore, the purified IAF-containing proteins became very insoluble, 

potentially leading to further variation in protein levels. Thus, in order to obtain more 

consistent results, protein quantification and subsequent adjustment should be 

performed prior to protein separation by SDS-PAGE. 

HOCl and TauCl oxidise amino acid residues on proteins, particularly Met which is 

oxidised to MetSO [106]. Oxidation of Met is postulated to play a protective role in cells 

as they can be repaired by the action of Msrs [351-355]. However, when Met is at the 

active site of proteins, oxidation of Met residues may inactivate the enzyme [615, 616]. 

For example, the oxidation of the active site Met of IκBα by TauCl is proposed to result 

in the inactivation of NF-κB and play a role in the induction of apoptosis [251]. As SeMet 

and SeTal both have second order rate constants greater than that reported for Met for 

reaction with both HOCl [90] and TauCl (Chapter 3), this suggests that the SeMet or 

SeTal should be preferentially oxidised over Met residues, providing their 

concentration is sufficient and localisation in the cellular environment is appropriate. 

In the data presented in this Chapter, HOCl and TauCl were both able to decrease the 

concentration of Met when exposed to cell lysate samples, with a corresponding 

increase in MetSO observed (Figure 6.8 and Figure 6.9). The addition of SeMet and 

SeTal to lysate samples showed a trend toward protection of Met residues when the 
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lysates were exposed to HOCl, though this was not significant. This contrasts with other 

studies that have reported that the presence of selenium compounds prevents Met 

residues from oxidation [439, 486], though these studies used isolated proteins, and a 

higher ratio of selenium compound to oxidant than used in this study. A higher 

concentration of SeMet and SeTal may therefore increase the potential protective 

effects of these compounds on HOCl and TauCl induced damage. 

HOCl and TauCl treated J774A.1 cells showed no loss of Met or increase in MetSO 

(Figure 6.6 and Figure 6.7). This may be due to the oxidant reacting with other species, 

such as thiols, or the lipid bilayer of the cell, with insufficient oxidant remaining to 

oxidise Met residues. Cells also contain Msrs, which are able to reduce MetSO back to 

Met [351-355], which could result in repair of Met oxidation prior to its detection by 

these methods.  

While no significant protection of thiol or Met residues was observed with SeMet 

and SeTal treatment, these residues are not the only targets of HOCl and TauCl in cells. 

Other chemical markers of oxidation that could be assessed include chlorinated 

tyrosine and tryptophan products [106]. These products are particularly important in 

disease settings as they are used as biomarkers of HOCl-mediated damage [119]. 

However, no change in tyrosine or tryptophan residue concentrations was observed in 

these experiments, and therefore the presence of these products was not explored 

further, particularly as they are usually accompanied by significant Met oxidation.  

The cellular toxicity of SeMet and SeTal was assessed using the LDH assay as a 

measure of viability when J774A.1 cells were exposed to SeMet or SeTal (0 – 200 µM) 

(Figure 6.1). Under these conditions, no changes in viability with a 30 min treatment 

time were observed. SeMet, is a major form of dietary selenium and is generally well 

tolerated at low concentrations, although it has been demonstrated to induce apoptosis 

in cells [513, 610]. This is primarily attributed to the metabolites of SeMet, which cause 

an increase in ROS production, which subsequently lead to apoptosis and cell death in 

prostate cancer cell lines [513, 610]. However, at low concentrations of SeMet (3 µM) 

toxicity required the addition of methioninases to induce the formation of 

methylselenolates [513]. The studies in prostate cancer cell lines demonstrated 

apoptosis approximately 48 – 72 hours post SeMet treatment (50 µM) [610], so it is 

possible that toxicity may only be evident after extended incubation times.  
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Exposure of J774A.1 cells to HOCl (200 µM) for 15 min demonstrated an increase 

in necrosis compared to non-treated controls (Figure 6.12). This is consistent with 

previously reported data where significant cell lysis was observed after J774A.1 cells 

were exposed to HOCl under the same conditions employed in this study [222], and 

this has also been demonstrated in other cell types [213, 219, 605]. SeMet and SeTal (0 

– 50 µM) were unable to modulate this increase in necrosis (Figure 6.11). After a more 

prolonged (2 h) exposure to HOCl (100 µM), there was no increase observed in the 

necrotic population of cells compared to the non-treated control in this study, and the 

presence of SeMet or SeTal did not have an effect on cell populations (Figure 6.15). The 

levels of background necrosis observed in non-treated control samples were 

significantly greater (at ~70 %) in this study than reported previously in J774A.1 cells 

(~10 %) [222]. This may reflect differences in the cell populations used in each case, 

with low passage cells used in the current study that may be more susceptible to 

damage by the mechanical scraping that is required to lift the cells into suspension for 

analysis by flow cytometry. Due to the high level of necrotic cells in the non-treated 

controls and large errors, it is difficult to draw conclusions about any changes in cell 

populations that may be occurring. 

No changes in apoptotic cell populations were observed in any of the experiments 

performed in this study (Figure 6.10 and Figure 6.14). This is in contrast to previous 

reports that have demonstrated induction of apoptosis after treatment of cells by HOCl, 

TauCl, CPT and staurosporin [607, 608, 611, 612]. The previous studies used Annexin-

V FITC, whereas this current work used Annexin-V APC. Annexin-V APC was used 

instead of Annexin-V FITC for these studies as the fluorescent profiles of FITC and PI 

overlap, whereas APC and PI do not.  The change should result in less interference 

between the Annexin-V and PI fluorescence that could confound the results. 

Furthermore, Annexin-V requires calcium to be present in the buffer in order to bind 

effectively [617]. Previous work has used binding buffers with increased calcium 

compared to HBSS [222], which may explain why limited Annexin-V binding was being 

observed in this study. However, at least some Annexin-V binding was occurring in 

these experiments (Figure 6.10 and Figure 6.13), but the cell groups that were staining 

positive for Annexin-V were also PI positive and were therefore considered necrotic. 

The lack of a positive control makes it difficult to draw any conclusions about any 

apoptotic cell populations in this study. 
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In summary, SeMet and SeTal demonstrated limited efficacy in modulating 

oxidative damage to murine macrophage-like J774A.1 cells that had been exposed to 

reagent HOCl and TauCl. However, previous studies have demonstrated that SeMet is 

capable of enhancing peptide-bound hydroperoxide detoxification in J774A.1 cells 

[474]. Selenium compounds, including SeMet, are also able to reduce hemolysis of 

erythrocytes and lipid peroxidation induced by H2O2 [538]. Thus, SeMet and SeTal may 

also modulate oxidative damage in ways that have not been assessed in these studies. 

For example, SeMet has demonstrated efficacy in inducing expression of antioxidant 

enzymes including GPx and TrxR [529-531]. The increase in GPx expression was able 

to protect against oxidative damage in a hypoxia-reoxygenation model of damage to 

rat cardiomyocytes [529]. SeMet was also found to induce the upregulation of selenium 

enzymes in trophoblast cells and protect them from H2O2-mediated damage [531] or 

oxidative damage induced by mitochondrial dysfunction [530]. While there was no 

significant cellular protection in J774A.1 cells demonstrated by the assays used in these 

studies, SeMet and SeTal may be effective in reducing oxidative stress in other contexts, 

and by other mechanisms.  

 Conclusions 

SeMet and SeTal showed a limited ability to inhibit the oxidative damage to J774A.1 

cells induced by HOCl and TauCl measured in these studies. However, the majority of 

these changes were assessed only after a very short time frame following oxidative 

insult, and were only assessed using chemical markers of damage. Over longer time 

periods, SeMet and SeTal may provide more significant protection to cellular functions 

such as metabolism, proliferation and differentiation, which were not assessed by the 

methods used in this study.  
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7 General discussion and future directions 
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  General overview 

Neutrophils, through the action of MPO, produce the hypohalous acids, HOCl, 

HOSCN and HOBr in order to destroy invading pathogens [1]. Under physiological 

conditions, approximately 50 % of the H2O2 consumed by MPO goes into the formation 

of HOCl [24], which can further react with amine groups of various biological molecules 

to form the secondary oxidants N-chloramines [53-58]. HOCl and N-chloramines can 

also cause damage to host tissue if produced inappropriately in excessive quantities 

[2]. HOCl will react with most components of cellular systems [86], though the fastest 

reactions reported are those with sulfur residues, particularly thiols, with second-

order rate constants of up to 108 M-1 s-1 [90]. N-Chloramines retain the oxidising and 

chlorinating power of HOCl, however, they display a higher specificity for sulfur 

residues [86, 136, 192]. Thus, the reaction with Met and Cys are some of the fastest 

reported reactions for N-chloramines, with second-order rate constants in the range of 

102 – 103 M-1 s-1 [86, 136, 192]. Antioxidants may be capable of modulating oxidative 

damage caused by MPO-derived oxidants by scavenging these oxidants before they are 

able to react with cellular components causing damage.  

Selenium-containing compounds have garnered interest as potential antioxidants 

to modulate inflammatory damage due to their favourable reaction kinetics [90, 98, 

486]. Selenium-containing compounds have consistently demonstrated higher second 

order rate constants compared to analogous thiol compounds for reactions with 

biological oxidants including HOCl and HOSCN [90, 98, 486]. The increased reactivity 

of selenium compounds has been attributed to the increased nucleophilicity of 

selenium compared to sulfur, and the lowered pKa of selenols compared to thiols [446, 

447]. The increased rate constants suggest that selenium compounds will be 

competitive in vivo targets for oxidants, capable of acting as scavengers to reduce the 

extent of oxidative damage. Furthermore, selenium compounds have been shown to 

give rise to products such as selenoxides that can be reduced by thiols, potentially 

giving rise to catalytic oxidant scavenging cycles [444, 445].  

The studies presented in this Thesis were undertaken to examine the potential of 

the selenoethers SeMet and SeTal to scavenge MPO-derived oxidants, by determining 

the rate constants and products of these reactions, and characterising potential 

reduction pathways of the products in vivo. The potential of these compounds to 



 250 

protect cells from damage caused by exposure to MPO-derived oxidants was also 

assessed.  

 Selenium compounds as catalytic oxidant scavengers 

A key requirement of antioxidants is their ability to kinetically compete with the 

typically more abundant biological targets of oxidants, in order to prevent damage to 

cellular components. In a biological setting, the reaction of the MPO-derived oxidants 

HOCl and N-chloramines with thiols are some of the fastest reported with rate 

constants of >108 M-1 s-1 for the reaction of HOCl with GSH and Cys [90], and 102 – 103 

M-1 s-1 for the corresponding N-chloramine reactions, though these rate constants are 

dependent on the specific N-chloramine [136, 192]. The rate constants for the reaction 

of SeMet and SeTal with HOCl and the other hypohalous acids produced by MPO, HOBr 

and HOSCN, have previously been determined [90, 98], and these rate constants are 

consistently greater than those determined for the analogous sulfur compounds. These 

rate constants are comparable to those determined for the reactions with thiols and 

GSH [90, 98], suggesting that SeMet and SeTal would be able to modulate oxidation 

reactions of HOCl if present at appropriate concentrations. Similarly, the rate constants 

determined for the reaction of SeMet with biologically relevant N-chloramines 

determined in Chapter 3, demonstrate that in each case, the rate constant is 

significantly greater than those determined previously for Met [192]. Furthermore, the 

rate constants for SeMet and SeTal are comparable to those determined for Cys and 

GSH. Again, this suggests that SeMet and SeTal will be a competitive target for N-

chloramines in vivo, if present at appropriate concentrations and locations. 

This study focussed on the use of SeMet and SeTal as scavengers of HOCl and model 

N-chloramines. However, SeMet has demonstrated efficacy as a scavenger of other one- 

and two-electron oxidants. High rate constants for the reaction between SeMet and 

HOBr (k = 1.4 x 107 M-1 s-1) [90], HOSCN (k = 2.8 x 103 M-1 s-1) [98], ONOOH (k = 2.4 x 103 

M-1 s-1) [461] and HO (k = 1.4 x 1010 M-1 s-1) [457] have been reported. SeTal has been 

less extensively studied, but rate constants have been reported for HOBr (k = 1.5 x 107 

M-1 s-1) and HOSCN (k = ~100 M-1 s-1) [90]. The rate constants for SeMet and SeTal 

reactions with 2-electron oxidants are consistently greater than those reported for Met 

[90, 92], and comparable to those reported for Cys [90, 92] (Table 7.1). These data 
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suggest that SeMet and SeTal may be capable of acting as scavengers of multiple species 

of oxidants in vivo, in addition to HOCl and the N-chloramines described in this Thesis.  

Table 7.1 – Second order rate constants for the reactions of SeMet, SeTal, Met and Cys 
with biologically relevant oxidant species.  

 Second order rate constants / M-1 s-1 

 HOCl HOBr HOSCN ONOOH HO 

SeMet 3.2 x 108 a 1.4 x 107 a 2.8 x 103 b 2.4 x 103 c 1.4 x 1010 d 

SeTal 1.0 x 108 e 1.5 x 107 e ~100 e - - 

Met 3.4 x 107 a 3.6 x 106 f Slow g 3.6 x 103 h 2.3 x 1010 i 

Cys 3.6 x 108 a 1.2 x 107 f 7.8 x 104 g 3.8 x 103 h 4 x 1010 j 

a[90]; b[98]; c[461]; d[457]; e[486]; f[61] - Met rate constant determined for N-Ac-Met-
OMe and Cys rate determined for N-Ac-Cys; g[92]; h[618] – determined at 37 °C; i[468] 
; j[459] 

Thiol and selenol containing antioxidant enzymes have also demonstrated efficacy 

in detoxifying oxidants. The primary role of the GPx family (a Sec containing enzyme) 

and the peroxiredoxin family (thiol containing enzymes) is to remove H2O2, but they 

are also capable of removing other oxidants [101, 102, 346, 349, 350, 583]. TrxR is also 

capable of detoxifying ONOOH, H2O2 and the MPO-derived oxidant, HOSCN [98, 347, 

348]. In Chapter 5, the ability of selenium and thiol containing enzymes to remove N-

chloramines was assessed. The NADPH/GSR/GSH system was capable of rapidly 

removing N-chloramines, via the reaction with GSH and formation of GSSG and 

subsequent reduction by GSR. The system was capable of removing LysCl and GlyCl at 

a higher rate than TauCl, and this reflects the relative reactivity of the N-chloramines 

[192]. In contrast, the presence of TrxR was not capable of increasing the rate at which 

NADPH was consumed upon addition of N-chloramines, though the presence of both 

TrxR and Trx increased the rate of NADPH consumption upon TauCl addition. While no 

increase in NADPH consumption was observed, this does not exclude the possibility 

that some amount of the N-chloramines were reacting with the enzymatic systems. 

Direct reaction of N-chloramines with NADPH leads to the formation of a chlorohydrin, 

which is damaging to cells as the reaction cannot be reversed to reform NADPH [63, 

83]. When NADPH is consumed by the enzymatic systems, NADP+ is formed as a 
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product, which, through the action of enzymes of GAPDH, can be recycled to NADPH 

[230]. Therefore, the reduction of N-chloramines by enzymatic systems may have 

potential therapeutic benefit by reducing the amount of chlorinated NADPH. Future 

studies could assess the relative levels of NADP+ to the chlorinated NADPH species 

formed by the addition of N-chloramines to the NADPH/TrxR and related enzyme 

systems to further characterise the potential for these enzymes to react with N-

chloramines. 

The major products formed when SeMet and SeTal are exposed to HOCl and N-

chloramines are the respective selenoxides, SeMetO and SeTalO. The selenoxides form 

in a near 1 : 1 ratio of HOCl or N-chloramine scavenged to selenoxide formed, as 

demonstrated in Chapter 3. As endogenous thiols and redox enzymes can reduce 

selenoxides, as described in Chapters 4 and 5, this gives potential for a catalytic 

scavenging cycle in vivo. This would allow SeMet and SeTal to remove oxidants with a 

greater than 1 : 1 ratio, without the destruction of the seleno compounds. These 

reactions are likely to be of significance as the higher second-order rate constants for 

SeMet and SeTal suggest that these compounds will remove oxidants more rapidly than 

endogenous thiols (Table 7.1). This was observed in GSR experiments, where the 

presence of SeMet increased the rate of NADPH consumption when TauCl was added 

to the NADPH/GSR/GSH system compared to the NADPH/GSR/GSH system in the 

absence of SeMet (Chapter 5). The interaction between selenium compounds and the 

GSR system demonstrated the potential for rapid oxidant detoxification, without 

complete consumption of thiols by selenoxides. This would allow for the continuation 

of the catalytic cycle, without a build up of selenoxides occuring. 

Conversely, SeMet and SeTal in the presence of the NADPH/TrxR and other 

enzymes, Trx, Msrs and GPx, reduced the rate at which NADPH was consumed upon 

addition of N-chloramines. This is in contrast to work demonstrating the ability for 

SeMet to enhance the consumption of peroxides [474]. This may reflect the direct 

oxidation of NADPH by N-chloramines, which does not occur with peroxides [83, 138, 

139]. Alternatively, the decrease in NADPH consumption observed may be due to a 

slower turn over of SeMetO and SeTalO compared to N-chloramines, whereas with 

peroxides this is reversed, with a slow consumption of peroxides and hence an 

observed increase in NADPH consumption. Rahmanto et al demonstrated that addition 



 253 

of SeMet led to an increase in peroxide consumption when H2O2 or t-

butylhydroperoxide were exposed to either the NADPH/TrxR/Trx system or J774A.1 

cells, which was attributed to the catalytic removal of peroxides by SeMet [474]. The 

abilities of other selenium compounds to catalytically interact with the 

NADPH/TrxR/Trx system have been described with diselenides (such as selenocystine 

and Sec substituted GSSG) and other selenium compounds, such as ebselen, with these 

species increasing the rate at which H2O2 and ONOOH is removed [448, 491, 492]. 

While reduction of selenoxides mediated by TrxR is significantly slower than by thiols, 

the TrxR pathway may allow for continued catalytic scavenging of oxidants by SeMet 

and SeTal after cellular thiols are consumed. 

It has been shown that the efficacy of action of selenium compounds as antioxidants 

may be further increased by optimisation of the surrounding chemical environment. 

Selenoethers synthesised by Prabhu et al, with the structure Se(CH2CH2CHX)2 where X 

was either -OH, -COOH or NH3
+ groups  demonstrated differing GPx mimetic 

capabilities [443]. In this case, the –COOH substituted selenoether demonstrated the 

highest GPx mimetic ability, followed by –OH then -NH3
+ [443]. However, these studies 

did not determine whether the rate limiting step was the oxidation of the selenoether, 

or subsequent repair of the oxidised product, and the differences in GPx activity were 

attributed to the differing stereochemistry between the compounds, with the –COOH 

substituted compound having the most easily accessible Se atom, and the –NH3
+ 

substituted compound having the least accessible [443]. Furthermore, it has been 

proposed that weak interaction between the amino acid residues and the Sec residue 

of GPx enhance it’s nucleophilic reactivity by stabilisation of the selenolate [619]. This 

reaction cycle however proceeds through a selenenic acid intermediate before GSH 

reduction, unlike SeMet and SeTal in this study where a selenoxide is formed. 

In Chapter 4, it was demonstrated that the availability of amine groups increased 

the efficiency of selenoxide reduction. Whilst the mechanism was not fully elucidated 

in these studies, it is proposed that the selenium-amine interaction may facilitate a 

more efficient catalytic scavenging cycle. This could be further explored through 

thermodynamic modelling to assess potential interaction between the amine and 

selenium centre. Thus, strategic substitution of functional amine groups into the 

structure of new selenium compounds may allow the production of more effective 
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antioxidant compounds. Furthermore, functionalisation using other moieties may 

produce more targeted antioxidants, for example, a triphenylphosphine group may 

make selenium antioxidants more specific for oxidants produced by the mitochondria, 

due to the attraction of the positive phosphine to the mitochondria. This mitochondrial 

targeting strategy has been shown to be effective for mitoquinone (MitoQ), which links 

ubiquinone to a triphenylphosphine group by a long alkyl chain [620]. MitoQ has been 

shown to protect against hypertension and cardiac hypertrophy, while improving 

endothelial function in spontaneously hypertensive rats [621]. It has also 

demonstrated an ability to reduce macrophage numbers in atherosclerotic plaques 

[622] and prevent HOCl-induced cellular damage [438]. 

 Potential for selenium compounds to modulate oxidative 

damage 

SeMet and SeTal have demonstrated efficacy in protecting isolated proteins against 

oxidative damage upon exposure to HOCl [486]. Incubation of BSA and plasma proteins 

with SeTal and the related selenium-containing carbohydrate, 1,5-anhydro-5-

selenogulitol, prior to exposure to HOCl was able to prevent damage to His, Lys, Met, 

Trp and Tyr residues, and also inhibited 3-Cl-Tyr formation [439, 486].  

In Chapter 6, the ability of SeMet and SeTal to modulate oxidative damage to 

J774A.1 cells upon HOCl or TauCl exposure was assessed using thiol levels and Met 

oxidation as markers of oxidative damage. Exposure of cells or lysates to HOCl or TauCl 

caused a loss of thiols and an oxidation of Met residues, but SeMet and SeTal were 

unable to modulate these changes under the conditions employed. This is in contrast 

to previous reports where the presence of SeMet or SeTal has been shown to protect 

Met residues from oxidation when isolated proteins were exposed to HOCl [439, 486]. 

However, the protection reported by Storkey et al only achieved significance when the 

ratio of selenium compounds to HOCl was greater than 1 : 4, which was the maximum 

ratio used in this study [439, 486]. Future studies could potentially use a higher 

concentration of SeMet and SeTal, which may result in greater protection of protein 

residues when cells are exposed to HOCl and N-chloramines. 

A potential limiting factor in the ability of SeMet and SeTal to scavenge hypohalous 

acids and N-chloramines in vivo is likely to be achieving a high enough concentration 
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in order to compete with other reactions. While no protection was observed in 

experiments measuring the consequences of oxidant exposure to cells in Chapter 6, it 

is unclear how much of the SeMet or SeTal were taken up by the cells. SeMet is known 

to be transported into the cell through Met channels [623], but the  levels of SeTal taken 

up by cells have not been measured. This is an important area for further study, and 

could be done using techniques such ICP-MS [624], or x-ray absorption and 

fluorescence spectroscopy [625] which have been used to speciate selenium 

compounds in biological samples, in order to compare levels of selenium in the media 

to levels in the cytosol after SeMet or SeTal supplementation.  

Kinetic modelling of HOCl reactions in plasma suggests that the primary target for 

HOCl would be protein residues, owing to their abundance, with Met and Cys residues 

being consumed first, followed by reaction with His and Lys residues [87]. The 

modelling demonstrates that GSH, which is present at 2 µM in plasma, and has a 

similarly high rate constant for the reaction with HOCl as SeMet and SeTal, consumes 

less than 1 % of HOCl [87]. However, the reaction with GSH is likely to be more 

significant in a cellular context where cytosolic GSH levels are 5-10 mM [626]. Based 

on these calculations and the rate constants for the reaction of SeMet and SeTal (which 

are similar to GSH (Table 7.1)), concentrations of SeMet and SeTal would need to reach 

a concentration of > 2 µM in plasma in order to make a significant contribution by 

directly scavenging HOCl. These concentrations of SeMet or SeTal may be difficult to 

achieve in plasma, owing to toxicity and factors such as absorption into the circulation 

and subsequent metabolism (in the case of SeMet). Possible toxicity and metabolism of 

SeTal is presently unknown, and should be the focus of future studies. 

Scavenging N-chloramines may be a more feasible mechanism for SeMet and SeTal. 

N-chloramines are longer-lived oxidants in vivo compared to HOCl due to their lower 

reactivity, and these have a greater specificity for sulfur-containing residues [86, 136, 

192]. The increased stability allows for diffusion away from the site of production, 

potentially inducing oxidative damage at other sites [14, 87, 181]. As the studies in 

Chapter 3 show that SeMet and SeTal are capable of rapid reaction with N-chloramines, 

they may be able to repair N-chloramine formation on proteins and hence reduce the 

propagation of oxidative damage away from the site of inflammation. 
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Furthermore, degradation of N-chloramines can lead to formation of N-centred 

radicals [141], which may also propagate HOCl-induced damage, or the formation of 

reactive aldehydes, which can further react to form advanced glycation end products 

[188]; these products are thought to be significant in diseases such as diabetes. 

Carbonyls, as a marker of protein N-chloramine or N-chloramide degradation after 

HOCl treatment, could be measured by assay with 2,4-dinitrophenylhydrazine [137, 

547]. The ability of SeMet and SeTal to repair N-chloramines may lead to a decrease in 

protein carbonyl formation and therapeutic benefit.  

It is also possible that SeMet and SeTal may modulate oxidative damage by other 

mechanisms, such as the upregulation of antioxidant defences and oxidative repair 

enzymes of the selenoproteome [529-531]. SeMet has demonstrated an ability to 

increase the levels of GPx and TrxR in vivo [524, 535], however this effect is dependent 

on baseline selenium levels. In patients with low baseline Se levels, SeMet 

supplementation increased expression of these selenoproteins [535], but this was not 

observed in patients with adequate Se levels. In a cellular context, pre-treatment with 

SeMet in rat cardiomyocytes led to increased viability after ischemia-reperfusion 

treatment [529]. The effect was attributed to the ability of SeMet to mitigate the 

increase in oxidative damage seen with ischemia-reperfusion injury. SeMet pre-

treatment also prevented oxidative damage to trophoblast cells exposed to H2O2 or that 

induced by mitochondrial dysfunction [530, 531]. While no protection was afforded by 

SeMet in the current studies, which examine whether SeMet may protect against cell 

death in J774A.1 cells exposed to HOCl and TauCl, future studies using longer pre-

incubation times may demonstrate protection as a result of SeMet-mediated increases 

in antioxidant defences. The ability of SeTal to upregulate selenoproteins has not yet 

been examined, and should be the focus of future studies. If, like SeMet, SeTal is capable 

of upregulating selenoproteins, this may be another pathway that SeTal could be 

capable of affording protection against oxidant damage. 

 Factors that may affect use of selenium compounds as 

antioxidants in vivo 

Attempts to measure SeMet in human plasma have concluded that the majority of 

SeMet is bound to or incorporated into proteins, as free SeMet levels are below the 
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limits of detection [613]. However, supplementation with SeMet has been shown to 

increase Se levels in circulation with the increase being proportional to the level of 

SeMet being administered [505, 506, 627]. However, the speciation of the selenium 

compounds present in plasma is unclear, with most studies reporting total Se in plasma 

without identifying the chemical nature. In a study [627] where SeMet was 

administered at up to 500 µg per day as SeMet, total circulating Se levels were observed 

to increase with no change of expression of GPx or selenoprotein-P, though it was 

suggested that SeMet makes up 3% of total plasma Se. However, it should be noted that 

the reported increases in observed GPx and selenoprotein-P expression when patients 

are supplemented with SeMet are dependent on the subject’s initial baseline selenium 

levels. Another study [628] showed that less than 0.5% of Se excreted in urine was in 

the form of SeMet when patients were administered the L-SeMet isomer, though when 

they were given DL-SeMet the SeMet concentrations in urine increased to 20 % of total 

Se. This was suggested to be due to the easier metabolism of L-SeMet, as the 

stereochemistry makes this a preferred substrate [628]. This suggests 

supplementation with D-SeMet may be a viable option to increase the plasma 

availability of free SeMet to act as an oxidant scavenger. Similarly to in vivo studies, 

speciation of selenium in cells post-treatment is not performed, though many studies 

have demonstrated increases in SeMet incorporation into protein, or increases in the 

selenoproteome, though these generally doesn’t account for the total selenium studies 

[474, 513, 529-531, 538]. 

The low level of SeMet observed in plasma is likely to be due to either the 

metabolism of SeMet or due to the incorporation of SeMet into protein. SeMet is the 

major source of Se in the body [494], and is used by cells to produce Sec for insertion 

into selenoproteins [623].  SeMet can also be metabolised in the liver producing 

selenosugars, which are subsequently excreted in urine [623]. Alternatively, SeMet can 

be non-selectively incorporated into proteins replacing Met residues, as demonstrated 

by a cell-free synthesis of the human h-Ras protein [475]. When SeMet is incorporated 

into amyloid proteins, the ability of these proteins to form fibrils is reduced, hence 

decreasing toxicity [476]. The incorporation of SeMet may protect against oxidative 

damage, potentially due to the facile reduction of SeMetO, as demonstrated in Chapter 

4.  
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It has been demonstrated that metabolism of SeMet by methioninases increases 

ROS generation in cells, particularly O2
-, due to formation of selenolates [513]. This is 

potentially reflected in results from Chapter 6, where a reduction in thiol levels was 

observed in the presence of SeMet and SeTal, though this decrease was not statistically 

significant. The increase in ROS is believed to lead to apoptosis by induction of the p53 

pathway [513, 518, 519], however, no increase in apoptosis was observed in J774A.1 

cells incubated with SeMet in this study. Increases in O2
- when J774A.1 cells are 

exposed to SeMet and SeTal could be assessed by electron paramagnetic spectroscopy 

with spin trapping [629], or by assaying O2
- production using dihydroethidium and 

product determination by HPLC coupled with mass spectrometry [630]. Furthermore, 

induction of p53 may be occurring in J774A.1 cells at a later time point than that 

assessed in this study (2 h), as apoptosis due to SeMet has been reported after 48 – 72 

h in other cells lines [513, 518, 519]. Further work at extended time points may be 

required in order to more fully elucidate the consequences of SeMet or SeTal 

incubation with the J774A.1 cells. 

SeTal may not face the same limitations as SeMet, which is a primary source of 

selenium in the diet [494], is readily metabolised, and subsequently causes ROS 

formation [513] and is incorporated protein [623]. This may make SeTal a better 

candidate as an antioxidant scavenger by the Se being more available in the circulation, 

as it may not be metabolised to the same extent as SeMet. SeTal, in the conditions used 

in this study, was well tolerated by J774A.1 macrophages; however, bioavailability and 

toxicity have not been extensively examined with SeTal supplementation and should 

be the subject of future studies.  

The studies in Chapter 6 used a macrophage-like murine cell line to assess the 

potential for SeMet and SeTal to modulate cellular damage due to exposure to HOCl or 

TauCl. The study could be extended to assess the benefit of SeMet and SeTal 

supplementation on primary human monocyte-derived macrophages, which would be 

a more relevant cell model for assessing potential production in vivo. Furthermore, 

future studies could assess the benefit of supplementing endothelial cells with SeMet 

and SeTal, as endothelial dysfunction induced by oxidant exposure is implicated in the 

initiation of atherosclerosis [310, 316, 631, 632]. This is significant as HOCl and N-

chloramines activate independent cellular pathways in different cell types [89]. 
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Supplementation with SeMet and SeTal may also be beneficial in other pathologies. 

Supplementation with SeMet or the selenium-containing compound ebselen has been 

reported to protect against alcohol-induced liver injury in rat models [633, 634]. 

Supplementation with SeMet reduces levels of oxidative stress in brains, which may be 

beneficial for neurological disorders such as Alzheimer’s and Parkinson’s disease [476, 

635, 636]. trans-3,4-dihydroxyselenolane (DHS) is a cyclic selenium compound with 

similar chemical structure to SeTal and has been demonstrated to reduce 

indomethacin-induced gastric inflammation [637]. These studies demonstrate that 

selenium supplementation may be used as a potential therapy in numerous disease 

states, potentially by reducing of oxidative stress by acting as a catalytic oxidant 

scavenger as outlined in this thesis. 

 Concluding remarks 

The studies presented in this Thesis highlight the potential for the use of SeMet and 

SeTal as catalytic scavengers of MPO-derived oxidants. It has demonstrated that SeMet 

and SeTal rapidly react with HOCl and N-chloramines in order to form selenoxides, 

which have been chemically characterised. Potential biologically relevant reduction 

pathways of the selenoxides were identified including rapid reduction by the 

endogenous thiol GSH, the rate of which has been determined, as well as through direct 

enzymatic reduction via the activity of TrxR. Taken together, these processes highlight 

the potential for a catalytic scavenging cycle that may modulate oxidative damage in 

vivo. 

However, while SeMet and SeTal demonstrated favourable chemical properties as 

MPO-derived oxidant scavengers, limited modulation of oxidative damage was 

observed when cells were exposed to HOCl and TauCl in the presence of the selenium 

compounds. Given the limitations associated with the treatment conditions and 

methodology used to assess markers of oxidative damage and the cellular viability 

assays examined in this thesis, it is clear that more work is required to more fully 

elucidate how these selenium compounds are metabolised by cells, and whether they 

can protect cells from damage by MPO-derived oxidants. 

The findings in this Thesis contribute significantly to the understanding of the 

mechanisms through which selenoethers may modulate oxidative damage. This may 
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provide insight into how better to design protective agents or antioxidants in the 

future. This has particular relevance for numerous inflammatory pathologies where 

MPO and oxidative damage induced by HOCl and N-chloramines are prevalent, 

including atherosclerosis, a disease that affects ca. 40 % of the Australian population. 

The ability of selenoethers to modulate inflammatory damage therefore has important 

implications for therapeutic application.    
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