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Supplemental Material for
GEL Estimation for Heavy-Tailed GARCH Models with
Robust Empirical Likelihood Inference

Jonathan B. Hill* Artem Prokhorov!
University of North Carolina — Chapel Hill University of Sydney

September 8, 2015

The following supplemental material contains an omitted simulation experiment, and omitted
proofs of theorems and preliminary lemmata. Section S contains simulation results, and Section

A contains an appendix with omitted proofs.

S Simulation : Trimming Variations

In the main paper we reported GELITT simulation bias over a grid of trimming fractiles
{k:gf), k;q(ly)}. We now repreat the simulation and fix either & or k¥, and report bias, mse,
and test statistics.

We use kYY) ~ An/In(n), An'/2 and Aln(n) each with k&Y ~ 2In(n), and k&Y ~ An/In(n),
Ant/2 and A In(n) each with kS ~ .05n/1In(n). We summarize the various \’s and actual fractile

values {ki?, k¥} for n = {100,250} in the table below.

*Corresponding author. Dept. of Economics, University of North Carolina, Chapel Hill, NC;
http://www.unc.edu/~jbhill; jbhill@email.unc.edu

"Business School & CIREQ, University of Sydney; http://sydney.edu.au/business/staff/artemp;
artem.prokhorov@sydney.edu.au.



Alternative Fractiles for n = {100,250}

k)

kgy)

.01n/In(n)
An/In(n)
2n/1In(n)
5n/In(n)
Ant/?
1.51n(n)

{1, 1}
{2,5}
{4,9}
(11,23}
{4,6}
{7,8}

An/In(n)
2n/In(n)
5n/In(n)

0

1.75n1/2
61n(n)

{0,0}
{2,5}
{4,9}
{11,23}
(17,28}
{28,33}

a. Values are k) for n = {100, 250}.

See Tables A.1 and A.2 for simulation results. We find that many fractile values lead to
roughly similar results. Overall, setting the error fractile kY to be small for each n is optimal,
where greater bias and therefore t-test distortions arise when kY s larger. If we do not trim by
y; such that EY) = 0 then again there is bias. Furthermore, somewhat suprisingly trimming by

a larger number of y, extremes leads to better results than trimming by few values. That may

arise since kY is small, as the next experiment demonstrates.



TABLE A.1: Trimming Variations :

TT-CUE Results for Hg = .6

€ ~ Py 5 and ky = 1.5

|

n = 100

n = 250

kS Y] 6y | Bias [ RMS | KS | | {67, %} | Bias [ RMS | KS
1-1?(17:3 {1,1} 010 | .165 | 1.73 {1,1} 011 | 149 | 1.12
) ’ {1,1} .002 | .169 | 1.03 {2,1} | .001 | .140 | .895
T {2,1} 001 | .166 | 1.01 {5,1} 005 | .134 | 1.03
by | -2n(n) {4,1} -019 | 177 | 1.22 {9,1} 016 | .148 | 1.75
N0 {11,1} -017 | 176 | 1.11 {23,1} | .011 | .134 | 1.54
8nl/? {8,1} -016 | .175 | 1.14 {13,1} 020 | 152 | 1.72
1.51In(n) {7,1} -019 | 179 | 1.35 {8,1} 014 | 140 | 1.34
0 {1,0} 014 [ 167 | 1.74 {2,0} 012 | 140 | 1.23

O {1,2} -.005 | .176 | 1.04 {2,5} 004 | .138 | .995

N ’ O {1,4} -007 | 172 | 1.04 {2,9} | .009 | .134 | 1.27
0 {1,11} -.007 | .161 | .995 {2,23} | -.011| .150 | 1.16

1.75n1/2 {1,17} -.009 | .178 | 1.15 {2,28} 012 | .141 | 1.08

.21In(n) {1,1} .002 | .169 | 1.03 {2,1} .001 | .140 | .895

61n(n) {1,28} 010 | .165 | 1.64 {2,33} | .009 | .160 | 1.52

e~ N(0,1) and ky = 4.1
| n =100 n = 250

k) Y| 0,6y | Bias | RMS | KS | | (K, K} | Bias | RMS | KS
H?lg) {1,1} -012 | 145 | 1.25 {1,1} .004 | .081 | .801
e {1,1} -.004 | .101 | .987 {2,1} | .002 | .080 | .687
h-}(g) {2,1} -.009 | .105 | 1.12 {5,1} .008 | .087 | .772
h-fg) .21n (n) {4,1} -.003 | .102 | .821 {9,1} -.008 | .073 | .457
0 {11,1} -.022 | .098 | 1.47 {23,1} | .009 | .074 | .845
8nl/? {8,1} -.009 | .107 | .969 {13,1} 009 | .088 | 1.04
1.51n(n) {7,1} -.006 | .106 | .985 {8,1} 006 | .077 | .948
0 {1,0} -.011 | .106 | 1.22 {2,0} 007 | .082 | .841

h-}(g) {1,2} 003 | .105 | .774 {2,5} .003 | .076 | .633

) O {1,4} -.003 | .110 | .911 {2,9} | .001 | .078 | .649
H0) {1,11} -.006 | .105 | 1.11 {2,23} | .008 | .082 | 1.18

1.75n1/2 {1,17} -.008 | .102 | 1.20 {2,28} | -.006 | .078 | .737
21n(n) {1,1} -.004 | .101 | .987 {2,1} .002 | .080 | .687

61n(n) {1,28} -.008 | .112 | 1.17 {2,33} |-.010| .077 | 1.24

a. Displayed values for k$ = k are maxz{1, k}.
b. The base-case is {k:ée), k,(ly)} = {.05n/1n(n), .21n(n)}.



TABLE A.2 : Trimming Variations : TT-CUE t-tests® at 5% level for 63

€ ~ Py5 and ky = 1.5

n = 100 n = 250
K0 | WD | ORDP | Hy | B | 5| 0| |{MO.RDY | He | 0| | HD
O] {1,1} .083¢ | .602 | .817 | .926 {1,1} 067 | 779 | 945 | .990
1-35% ’ {1,1} .084 | .589 | .821 | .930 {2,1} |.091 | .863 | .989 | 1.00
M) {2,1} 089 | .602 | .829 | .940 {5,1} 098 | .857 | .973 | 1.00
hy | -2In(n) {4,1} 082 | .630 | .815 | .933 {9,1} 086 | .786 | .958 | 1.00
e {11,1} 095 | .627 | .847 | .911 {23,1} | .087 | .834 | .968 | 1.00
8nl/? {8,1} 087 | .624 | .832 | .902 {13,1} 077 | 753 | 923 | .981

1.51n(n) {7,1} 075 | .669 | .849 | .933 {8,1} 102 | .833 | .969 | 1.00
0 {1,0} 067 | .696 | .893 | .964 {2,0} 092 | .814 | .970 | 1.00

o) {1,2} 097 | .632 | .840 | .923 {2,5} 087 | .833 | .956 | 1.00

s ’ T {1,4} 078 | .665 | .865 | .940 {2,9} .057 | .800 | .987 | 1.00
T {1,11} 087 | .714 | .899 | .966 {2,23} | .078 | .718 | .927 | .982

L7502 | {1,17} 063 | .526 | .807 | .937 {2,28} | .103 | .789 | .959 | 1.00
.21n(n) {1,1} .084 | .589 | .821 | .930 {2,1} |.091 | .863 | .989 | 1.00

61n(n) {1,28} 064 | .674 | .902 | .958 {2,33} | .082 | .756 | .900 | .956

e~ N(0,1) and ky = 4.1
| n =100 | n = 250

kY O )k | He | HY | HR | HY | [ {RORPY | Ho | HE | HP | HY
O {1,1} 094 | .830 | .977 | 1.00 {1,1} 101 | 1.00 | 1.00 | 1.00
oens {1,1} .094 | .834 | .979 | 1.00 {2,1} | .106 | 1.00 | 1.00 | 1.00
o) {2,1} 090 | .929 | 1.00 | 1.00 {5,1} 121 | 1.00 | 1.00 | 1.00
h | -2In(n) {4,1} 106 | .949 | 1.00 | 1.00 {9,1} 108 | 1.00 | 1.00 | 1.00
e {11,1} 081 | .966 | 1.00 | 1.00 {23,1} | .114 | 1.00 | 1.00 | 1.00
8nl/? {8,1} 131 | .925 | 1.00 | 1.00 {13,1} | .111 | 1.00 | 1.00 | 1.00
1.51n(n) {7,1} 094 | .915 | 1.00 | 1.00 {8,1} .095 | 1.00 | 1..00 | 1.00
0 {1,0} .093 | .940 | 1.00 | 1.00 {2,0} 111 | 1.00 | 1.00 | 1.00

o) {1,2} 092 | .953 | 1.00 | 1.00 {2,5} 103 | 1.00 | 1.00 | 1.00

N T {1,4} 079 | .823 | 1.00 | 1.00 {2,9} 102 | 1.00 | 1.00 | 1.00
ey {1,11} 095 | .944 | 1.00 | 1.00 {2,23} | .091 | 1.00 | 1.00 | 1.00

L7502 | {1,17} 089 | .960 | 1.00 | 1.00 {2,28} | .095 | 1.00 | 1.00 | 1.00
.21n(n) {1,1} .094 | .834 | .979 | 1.00 {2,1} | .106 | 1.00 | 1.00 | 1.00

61n(n) {1,28} 079 | .910 | 1.00 | 1.00 {2,33} | .109 | 1.00 | 1.00 | 1.00

a. The true Gg = .6. The hypotheses are Hy: 03 = .6; H%: A3 = .5; H%: A3 = .35; and Hif: A3 = 0.

b. Displayed values for kf = k are maz{1, k}.
c. Rejection frequencies at the 5% level.

d. The base-case is {k?),kﬁf’)} = {.05n/1n(n), .21n(n)}.



A  Appendix: Omitted Proofs

A.1 Notation and Assumptions

Throughout o, (1) does not depend on # and A, unless otherwise specified. ”w.p.a.1” means

"with probability approaching one”.

Recall
© C {6 € (0,00) x (0,1) x (0,1) : E [In (a + B¢])] < o0} (A.1)
and © )
€ ]{I'w
P(0)] 2 60(0) = = and P (juu(0)] > ¢2(60)) = = (A2)
and

={X: N, (0)eD, t=1,2,...,n} and An:{)\:supHXZ%/Q(Q)H SKn_l/z}.
e

We require a criterion and moments based on the trimmed equations m;, () that use non-
stochastic thresholds:

2(0,0) = —Zp (N1, ,(0)) and Qn(0,)) = lZ[)(A/yn;;t(e))

n

A, = {)\ : sup HXZ}/%Q)H < Kn_l/z}
fco

0cO

1 & - 1~ .
0) = - melt(ﬁ) and 1 (0) = EZmnvt(e and m, = sup HE [ nt(@)} || .
t=1 t=1

Asymptotic arguments require covariance and Jacobian components for tail-trimmed equations:

1 . Ak Ak / — 1 . * * /
o) = > g, (0)ms,(6) and E,(6) = - > my (0)ms, (6) (A.3)
t=1 t=1

~ 5, . 1w 0 .
Tna(0) = (—e2<9> < I0) — = e (0) x n?(e)) z(6)

t 89 t t n tz; 89 t t t

+ [ e0)I) ) — 1 zn: e2(0)1%)(9) 9, ()
t n,t n pa t n,t 89 t



Non-negligible trimming, and distribution continuity and non-degeneracy, ensure
liminf [|[m,|| > 0 and liminf||3,|| > 0, and X! exists as n — oo.
n—oo n—oo

In order to reduce the number of cases and to keep notation simple, we assume wherever

useful that we have exact identification:

* —_—
.T,n”t = S¢.

The proofs below extend to the over-identification case where w; contains lags of s;, and can be
easily generalized to allow for other &;_;-measurable w; that require trimming. Similarly, we

augment Assumption A.2 and impose power law tails on ¢; in general:
P (le)| >a) =da " (1+0(1l)) where d. € (0,00) and k. € (2,00). (A.4)
We compactly write throughout:
d=d.,, K=k k,= k,(f) and ¢, = cﬁf).

Assumption A holds throughout. Then {y;, 0?(6)} on © are stationary, ergodic, and geomet-
rically S-mixing on © by (A.1), cf. Nelson (1990) and Carrasco and Chen (2002). Therefore,
wy(6) is geometrically S-mixing since it is 8;_;-measurable, and €,(0) = €;0¢/0.(0) is stationary
and ergodic.

Since E(supgeg |07/02(0)]|)P < oo for any p > 0, cf. Francq and Zakoian (2004, eq. (4.25)),
it follows the product convolution €,(6) = €,0,/0,(0) has a power law tail with the same index x
> 2 (Breiman, 1965):

P (e(0)] > a) = d(0)a™" (1 + o (1)) (A.5)

where (}n(g d(0) € (0,00) and o(1) does not depend on 6.
=
By construction of ¢,(0) in (A.2), therefore,
cn(0) = d(O)% (n) k)" . (A.6)

Similarly supgepy, [5i4(0)] is Lp-bounded for any p > 2 and some compact subset Ny € © con-

taining 6°. This follows by a trivial generalization of arguments in Francq and Zakoian (2004,



Section 4.2). Therefore, in the exact identification case by independence m;.(0) = (€2(0) —
1)s;4(0) = (e20?/02(0) — 1)s;4(0) has a power-law tail with index /2 (see, e.g., Breiman, 1965):

P (|mis(0)] > a) = di(0)a™"* (1 + 0 (1)) (A7)

where gn(g d;(0) € (0,00) and o (1) does not depend on 6.
S

The trimmed moment &,(0) = E[e}(0)I(|e;(0)| < c,(0))] can be characterized by case by
invoking (A.5), (A.6) and Karamata’s Theorem (cf. Theorem 0.6 in Resnick, 1987):

e ~ B ¢,.(0) “ ¢.(0) -

if k=4: (0, )Feeg{ln(n)}gge@p{ln(n)}—>(O’ ) (A.8)

: . . ¢.(0) - ¢, (0) -

<t (000 < { sk <o Lt o 000)
Similarly, by (A.7) and Karamata’s Theorem, IM; ;,(0) = E[m;,, (0)m},, ()] satisfies

if k=4: (0,%)%52&{%}§21€15{%2<)6)}—>(0,00) (A.9)

s 000t (T ) <2 o) 0

Assumption A.

1. 2(0) € {€(0),w;+(0)} have for each 6 € © strictly stationary, ergodic, and absolutely contin-

uous non-degenerate finite dimensional distributions that are uniformly bounded:

wp{%P@@ﬁ@}<mmﬁ wp{%P@@S@}<w

a€R,0€0 ac€R,0cO
2. ki > 1 and ke > 2. If K. < 4 then P(le;| > a) = da™"(1 + o(1)) where d € (0,00). If Oy,
is not empty such that k;(0) < 1 for some 0, then

P (Jwis(8)] > ¢) = di()c ™D (1 + o(1)),

where infoce, , d;(0) > 0, infoce, , ki(0) > 0 and o(1) is not a function of 0.

3. wy(0) is y_1-measurable, continuous, differentiable, and E[supgeg |w;t(0)]'] < oo for some
tiny ¢ > 0.



4. kp/n* — oo for some tiny ¢ > 0.

A.2 Theorem 2.5 (higher order expansion)

Let {z;,} be tail-trimmed randoms variable and write Z, = 1/n'/2%}" 2%, Let z;,(0) =

2(0)1,,4(0) where 2,(6) is differentiable, I, ,(6) € {0,1} and infyeg I,,,(0) 5 1, and define

J o
2 5140) = (52 x 10).
Define
L (6)'A
miﬂf(ﬁ) = P(l) ()\Im:;,t(e)) x| g0 ™
m:,t(e)
5.0 = B | 200,9)| 63,09 = B | =2, (3)| . 65,009 = B [ — 2o (5)
n — @06 n,t ) in — éﬁjéﬁ n,t » Mikn — éﬁjaoﬂkaoﬁ n,t
* ao * * * 802 * * * *—1 *
n,t = o_mn7t - Q5TL7 %j,n,t = o 5] mni - 6.]7” and wn,t = —an mn,t'
5 oB;op

Recall we assume over-identifying restrictions are square integrable (e.g. they lags of s,(#)) and

therefore need not be trimmed:
m ,(0) = (6*2 0)—FE [6*2 (6)})) (24(0) — E'[x,(6)]) where e;‘m(e) = et(ﬁ)fnfz (). (A.10)

Recall Paretian tails ensures by Karamata theory (cf. Resnick, 1987, Theorem 0.6)

» » n 4/ke—1

. P (6)\P Oy - & gp/se [ 7

po s Bl ~ L () P (> ) = -2 (k£€)> (A1)
p=rke: Ele,,|” ~dn(n).

Theorem 2.5. Under Assumption A and ||E[wawj]|| < oo:

A 0 1 7k 1 7% 1 7k (E [6;’:175})2
Bn— B = mwn + 5@1 (%) + WQz <¢n) + Oy — 2 ) (A.12)



where

143

If £ ~ n/L(n) for some slowly varying L(n) — oo then for any ke > 2:

Bn—pB° = #@Ei + %Ql (@b ) +0, < 272)) for slowly varying L(n) — oo. (A.13)

Proof. Observe that

b b )
35 = 35 (€ = B X)) x (@ = Blal) + (6 — B[63]) x 55 (e =~ Elwi)

- ? ., . o . . B
505" O = 3y (6~ BLED) x (we = Blod) + 30 (6 = B [63]) % 57 (@1 = Elai)

and so on for (9°/96,00, 89) my, . and (6*/06;00, (%’k@@)

developed in the appendices:

%ém;,t =0p ((E (0] /”)1/2)

¢ Hence by the asymptotic theory

225 =8k (140, (B[] m)'")

2 2 5505 = G (140, (E i )™
t=1 ?

1 i% i =0, X (1 +0, <(E [en] /n)1/2>> ‘



Further, (9/ 55)93?% has elements either 0 or E[(9/ 806)m27t] hence

165 = K x E %m;t (140, (B[] /m)"?)) ~ &
Expand:
0 = —sz (1+0p(1)) + l y jﬁﬂﬁ* (Bn—ﬁo) (1+0,(1)) (A.14)
t=1
q+3 R N 52 o (5 0 1 X
—l—;(ﬁm_ﬂz>%;8ﬁzaﬁ nt(ﬁn_6>( —i—Op( )
q+3 . . n 53 . 3 )
+E;Q%fw®(@n W)M§;a§%a§nwﬁmm—ﬁﬁa+%a»

The derivatives are valid asymptotically with probability approaching one, as fast as we choose.
This follows from arguments used to prove Theorem 2.2, cf. Cizek (2008, Appendices), but also
from indicator smoothing arguments used in similar proofs in Hill (2012, 2015b, 2013, 2015a). In
the following we drop o0,(1) in reduce notation: all subsequent equalities resulting from (A.14)
hold with probability approaching one.

By Remark 6 of Theorem 2.2 and the equation form (A.10), it follows ||3, — 5°|| = O, (14,72
=0, ((E [¢&"] /n)'/?), hence:

n e Gaasdp ) T Gk

n

1 1< 93
< My, — &gl + =
nzwmm ok n;

555555 {5 — o, }

l

n

1
< :; - &; n - p°
‘nzwmm co 4
Blet]\ "
=0, .
Therefore
. 1 -
Bn— 5" = m%ﬁ (A.15)

10



o) {—/m (B —8") + 5 5 (Bin = 87) &3, (5 = 8°) }

1 q+3 ) - ~
6,5 ; (ﬁn - 6?) m%* (5" - 50)
et 5 (- ) (3o ) e (- ) w0, (150
i,j=1

All terms except 97 /n'/? are O,(E [¢}] /n) hence B, — B° = % /n'/? + O,(E [¢4] /n). The
last three terms are O,((E [e;4] /n)*?), and replacing B, — B° with ¢ /n'/2 in the second and
third terms of (A.15) generates an error of order O,((E [e;4] /n)*/?). Therefore

A 1 *— * q+3 7 E 6;415 i
b= B = il {mw v Zwm m n}+0p (%)

1 1 Elet]\"”
Tk Tk Ok n,t
= Rl () +o, (T)

Now, in (A.15) replace 3, — ° with ¢ /n/2 + Q1 (7, 2*) in the second and third terms, and
with ¢ /n'/? in the fourth and fith terms, to deduce (A.16).
Finally, consider (A.13). By construction

; P P Elei])” Eleh

by independence of the errors E[¢*] = 0, and if E[e}] = oo then by (A.11) we have:

max{(E 64])’ E[e;;%ﬂ} o ()™ ) (i)

n2 T 32 n2 ) n3/2

ke

= K n3/2

Hence, irrespective of heavy tails in €;, the asymptotic higher order bias is

£ [in- ] - e[ ()

11



only if the remaining term in (A.16) vanishes rapidly enough. This holds for any k. > 2, for

example, whenever ki) ~ n/L(n) for some slowly varying L(n) — oo since

. 1 - 1
B, — B = W@DZ + EQl (@/} ) + 0, ( 272)> for slowly varying L(n) — oc.

This completes the proof. QED.

A.3 Theorem 2.6 (higher order bias)

Theorem 2.6. Write X; = x; — Elx;] and Sy = s; — Els4], and define

eV=Elel], 0 =E (k- E[¢2))] fori=2.3

n

J = —E[X[S)], T, = E[X,X}], H=(T'5;'T) J'=;' € R

P=x' -2l 7(J2 ) TS

and a = [a;]9_, where

1 - o
a; = it’l"{(jlzw_lj) 1 x F |:8986/ (E?—l)X],t]}

Under Assumption A and ||Elwawi]|| < oo:

— 1 5(2) 5(3) p3 ,
EH 5(1) ( a+ F [StX HXt]) @ (1 + 3) E [XtXtPXt]

e 1
Bias <ﬁn) =
! 5(2) 57(1,3) P3 /
P | g (o BISXHXD) + 5 (1+2) BIxixPx) |

| &P
Proof. Let e; be the unit vector, write

X, (0)=z,(0)— Ex; (6)] and S;(6) = s4(0) — E[s¢(9)]
and define

Y. =FE[X,X]] and J,=F %m;t] and J = —F [(z; — E[z4]) (s — E [s4))']

12



(j;z;lj,l)_lj,;z;l and H = (7/5717) " gu;!

Ry
3
Il

P,=vl w17, (j,;z;%) CAST ad s o n g (7)) s

e =p (2] md &= (- Blad))] fori=2.3

n,t nt n,t

1 . S\ -1 92
ni == X1 (lzrl n> E|——m: d a, = [an,]l_, .
nj =5 X 7’{ T2, T, X a8(%"711]%75 and a la ,3}34
Hence:!
Y, =EP%, and J,=—-EY x E [(Jct —FElx))(ss — FE [st})'] =eWg (A.17)
- 1 1
Hn = TH and Pn == —273
A% &>
& 1 -l 0° &>
Upj = él)XQtr{(j’Em J) XE[@O@Q’(Et )Xj’t]} 7(11)an
1
- N _5(2)2 —
0 . -, Hn nosE L)
G =—| - " and & ! =— N N = — 1 8”1
jn n H;L Pn Hl _’]D
£ @
and if B, =46, (j =1,2,3):
52m;§,t
G — 0 E [éajéef
Jn 52m2,z 5ma*1,t */ E x omyly
] B [Temin] + B [
orif B; = \; (j > 3):
1% s T . Omig
i} E | —zeds 1 E { 0 m”/vt} tE [mj’”vt o0’ }
ij?’l - — o o
’ v OM] s «  Omp, * * */
E [mn,tT +E |:mj,n,t 30 } —p3 X E [mj,n,tmn,tmn,t}

"Notice asymptotically J,, = Jn(1 + o(1)) hence H,, = H,(1 + o(1)) and P,, = P,,(1 + o(1)), but this requires
replacing Ele;%] with 1, and clearly E[e;%] < 1 places a role in the higher order bias.

13



By the martingale difference property it follows:

E [Ql (JJZH - _05:‘_1 { tq’bnt § ®; nt,lvb;kzl,t} ei}

= —621{E

d
—93??1 tﬁflmit
op ’

q+3
Z@jn(’ﬁ; L [ o] @Zlel}

Then since My, = —[0,m,] = —[0, (% — E [2]) (a1 — Ela])'] it is easily verified that
[ [0
3 E ﬁm P
5—fmii¢ x &t x im;t] = (9
p E 89 H n My, ¢+ My gy tan

&P x B | XIX,PoX,
P x E|SXH, X,| + &Y x E [X;XtﬁnXt}

[X XtPXt]
— 5(2 5(3)
8(1) X B [StX/HXt] 5(2) x E [X;XtPXt]
Further:
0 O
E mt* m*/ —
[ n,t n,t} [ O En ]
hence
1 q+3
—qun@; LB [ o] @i te
3 q+3
1 0 1 n 0
=—Y & - et )y 67, - |6
22; ’ P 22; 0 Pn]
3 0
= — 1
3] EVS I
2 8(% 00
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1 0 )
+3 - * */ « N A
qg 2 E mi7n’tmn’t _I_ E mi7n7t A /mn,t elpn
; 1
=4 N »
_§p3E [mj n,tmn,tmn,t} Pnez
—F | —m* an*/

— B [ XX, PX,]
=| & m&”
i —@(J, + EEE [Xt/XtPXt]
Therefore:
E [Bn - 50}
0
1 x—1
= __671 * 7/ * * */ * p3 * */ *
n —a, + E %mn,t%nmn,t + mn,tmn,tpnmn,t + EE mn,tmn,tpnmn,t
X [ 0
= __Q57>);_1 0 7/ P3 * * P *
n —a, + F %m;t?{nm?’;,t + (1 + E) E [mn7tmn7t73nmn7t]
X [ 0
n o (ot BISXHXD + (1 + 5) E[X/X/PX|]
Now use expressions for (A.17) to conclude
E [Bn - 60]
_ePy, Ly 0

1
- (2) (3)
1 , 1 X &y , En 03 ,

15



£@ ()
i (o BISXHX) + }) BIX/X,PX|

)
(3)

S|

@
! (1+
£
(

. &t
= (—a+ B[S, XHX/) + ;(H

l\3|b L\3|b

}) BIX/XPX)

iy

The proof is therefore complete. QED.

A.4 Proofs of Supporting Lemmas

Lemma A.1 (threshold bound). supyce{ct(0)/[|Z.(0)||} = o(n).

Proof. Use (A.6) and (A.9) to deduce the claim. QED.

Lemma A.2 (covariance bound). supycg ||2,(8)|| = o(n).

Proof. Let g : © — (0,00) be a bounded function, 0 < infyeg g(#) < supyeg g(f) < oo, that
may be different in different places. Similarly o(1) does not depend on 6 and may be different
in different places. By (A.6) and (A.8) we can express I, ,(6) as g(0)(1 + o(1)), In(n)g(0)(1 +
o(1)) and (n/k,)**1g(0)(1 + o(1)) respectively if & > 4, k = 4 or k < 4. The proof is complete
since supgee{M;(0)} = o(n) in each case. QED.

Lemma A.3 (uniform threshold law). supycq |EEZL)(6’)/cn(0) — 1] = Op(l/k;ﬁ).

Proof. In view of the stationary geometric S-mixing property, the claim follows from Lemma

B.2 in Hill (2015a). QED.

Lemma A.4 (generic ULLN). Let {2:(0)} be a strictly stationary geometrically B-mixing process,
with Paretian tail

P (|z(0)] > 2) = d(0)z7"9(1 + 0(1)), where (d(6),r(H)) € (0, 00).

Define the tail trimmed version z; ,(0) = 2(0)I(|z(0)] < ca(0)), where P(|z,(0)] > ca(0)) =
kn/n = o(1), and k, — oco. Let k,/n* — oo for some tiny v > 0. Then

sup | = Z{zm E[2,0)]} x (1+0,(1)| 20

fco | N

where 0,(1) may be a functions of 6.
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Proof. We first prove a pointwise LLN 1/n )" | 2 (6)/E[z; ,(0)] % 1 when Elz; (0)] # 0. We
then prove the required ULLN.

Step 1 (LLN): Let Elz; (0)] # 0. If 5(0) > 1 then 2}, ,(0)/E|2;, (0)] is uniformly integrable,
hence 1/n3 7", 2 (0)/Elz; (0)] % 1 by Theorem 2 in Andrews (1988). Now assume k(f) €
(0, 1], write wy, , = 2 ,(0) and k = k(0), and define

E [{win = B [wpa] ) {whp = B [w)pa] }]

E {w, — B w;]}']

Note E(1/n> 7 {w},/E [w;,] — 1})? is bounded from above by

pu(h) =

*

1 B [w,] 1E [{wn — B [wn1]}?] &
9— LM 4o : lon(R)]. (A.18)
AT AT

Recall by Karamata’s Theorem Elw},|? ~ K¢ (k,/n) = K(n/k,)"*" for any ¢ > k. If €
(0,1) then

RS Wy, 4 i 1 (n/ky)?/" 1 1 (n/kn) 2/t &
E (ﬁ Z {E [w:’t} B 1}) = Kﬁ (n/ky)?/r2 T Kﬁ (n/kn)?/5~2 ; |pn(R)]|
_ K (ki D ]pn(h)|> .

Since k, — oo the proof follows by Chebyshev’s inequality if 1/k, > " | |pn(i)] — 0. The
latter holds by noting under geometric S-mixing, for some p € (0,1) and tiny ¢ > 0 (Ibragimov,
1962)

Z ()] < K Hw}i*l E wy, 4 ||2+ i ||w;§*1 - K [w;*l] ||2+5 (A.19)
Hwn,l nl Hz h=1 Hwn,l - E [wn,l] Hz

hence by Karamata’s Theorem

n (n/kn)l/n—l/(2+§) 1/2-1/(248)
E n(h)| < K = (n/k, :
o |p ( )‘ (n/kjn)l/,{_l/z ( / )

Therefore 1/k, > " | |pn(i)] — 0 for any sequence {k,} that satisfies (n/k,)/2"YC+)/k, —
0. It is easy to check that k,/n* — oo for some infinitessimal ¢+ > 0 by supposition ensures
(n/k,)/?=1/@+9) [k — 0 since we can take § > 0 to be arbitrarily small.
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If kK = 1 then by Karamata’s Theorem for some slowly varying L (n) — oo

L) wh S 1 (k) n )
p(15 e ) <t ) < L (1 )

t=1 n,t h=1

Therefore Y 1 |pn(h)| < (n/kn)"> @) — o(k,) exactly as above.

Step 2 (ULLN): We proceed by proving two preliminary ULLN’s. First, define 1, () =
|2 (0)|/ supgeei £z, ,(0)]}. Since by construction py ,(0) is uniformly L;-bounded on compact
© x I', it belongs to a separable Banach space. Therefore the Li-bracketing numbers satisfy
Npi(e,© x T, || -]]1) < oo (e.g. Dudley, 1999, Proposition 7.1.7). In view of the Step 1 pointwise
law 1/n 30 (i ,(0) — E [15,(0)]) = 0,(1), we have by Theorem 7.1.5 of Dudley (1999):

sup |—
0cO

- Z {1.4(0) = E [117,,(9)] }‘ = 0,(1). (A.20)

Second, replace z;, ,(0) with g (0) = |27 ,(0)|/E|z; ,(0)] and invoke (A.20) to obtain:

sup |—

0cO 0cO

Finally, for any 6 > 0 define

s = i (a0 — Bz, 0)] ] 1 2na(0) = E [27,(0)]
n(0,0) = n Z ({ |E [z;‘;t(@)” +0 } ‘E [z;‘m(ﬁ)} } +0 { }E [Z;t(H)H +0 }) '

t=1

Note that supgeg |rn(f,6)| = 0,(1) by a generalization of the second ULLN. In particular

LS (ot 6) = B [5400)] = 1n(6.8) x (|E [52400)] +5>}‘

l & Z’:,,t(e) - F [Z:t(e)]
"Z{UWMMH5H

t=1

= sup
0co

is 0, (1) by (A.21). Now use suppeg |7n(0,9)] = 0p(1) to conclude supgeg |1/ {2 (0) —
Elz: (0)] x (1 — 0,(1))}| = 0p(1) as claimed. QED.

n,t

Lemma A.5 (approximation). supgeq Hn_1/2251/2(9) > iy (0) — my (0)}H] = op(1).

Proof. Define &,+(0) = |e:(6)] — ¢,(0) and En,t(e) = |e(0)| — GEZL)(Q). We exploit arguments

18



developed in Hill (2012, 2015a, 2013) to prove

1 "o *
@) [ 2 (Minel®) = min ()] = oy(1).
n t=1

Throughout ¢ () satisfies |c}(0) — ¢, (0)| < ]652)(9) — ¢, (0)] a.s. and may be different in different
places.
The indicator function I(u) = I(u < 0) can be approximated by a smooth regular sequence

{73, (u) }n>1. Define N
3, (u) = /_ [(@) SN (@ — 1) Noe =% 4

where . ) .
e~ 1/0-€%) e V=) qw if €] <1
0 if £ >1

and let {N,} be a sequence of finite positive numbers that satisfies ,, — oco. Observe J,,(u)
is uniformly bounded in u, and continuous and differentiable. Also, I(u) is differentiable except
at 0, with derivative d(u) = (0/0u)I(u) the Dirac delta function. Therefore d(u) has a regular
sequence D, (u) = (N, /7)Y2 exp{—N,u?}. Lighthill (1958, p. 22).

Note that N,, — oo be made as fast as we choose. Hence, for some o, (1) that is not a

function of 6,

1 - Aok *
||Z (9) ||1/2 n1/2 Z {mi,n,t(e) - mi,n,t<6)} (A22)
n t=1

— B (9)31/2 Y 263(9) (Jn(gn,t(e)) — 3, (5n,t(9))> x (s:4(0) — E [5:4(0)])

_ B[G(0)3 (Ear0)] (/030 G(0)30(Enn(0)
PROIES Eef(0)3n (€.4(0))]
X 1 D (50al6) — Elsiu(O)]) + 0, (1)

Consider 1/n>"} | € (9)371(5”,75(9)). By differentiability of J,(-) we have by the mean-value-

theorem
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3

) A2 /7r1/2 Ezi)(g) -
(6) exp { N, (|&] — ¢ uQ} en(0) ( 1 (0) L

+
S|~

t=1

By distribution continuity infgeg ||€:(6)] — ¢ (6)] > 0 a.s.; by Lemma A.3 supyeq ]eEZi)(H)/cn(G)
-1 = Op(l/k‘,l@/Q); and use Lemmas A.1 and A.2 to deduce supycg{c.(6)} = o(n'/?). Therefore

(a)
e(kn)(e)
cn(0) x ( (0] -1

Since N,, — oo is arbitrary, and €(6) is Le-bounded, N,, can therefore be set to satisfy

sup =0, (n/k}lﬂ) :

0cO

n
~

LSS0 {3,E0) -, <en,t<e>>}‘ =0, (1). (A.23)

t=1

sup
[2S(C]

By the same argument:

1
sup
0O { I (0)[|% n1/2

t=1

= sup { N e>i“2 5 |2 HODL(E0) X (s:e(0) — E [si,twm‘} = 0,(1).

Moreover, s,() is stationary, continuous, with a Ly ,-bounded enveloped, and an Lo, ,-bounded
gradient enveloped (Francq and Zakoian, 2004). Hence by Theorem 1 in Doukhan, Massart, and
Rio (1995)

75| D (si4(6) — B [Si,t(9)])'} = 0p(1). (A.25)

Combine (A.22)-(A.25) to conclude

[€(0)Tn (£04(0))]
t znte = 0Op | SU 1/2 :
{Hz [RaE2 WZ{ v ()}} (p{ BYOIE }>

Finally, by construction lim sup,, _, .. sup;<;<,, Jn(Ent(6)) < K, by tail property (A.5) supgee El€;(6)]

< 00, and by non-degeneracy liminf,, , [|X,(0)|| > 0. Hence

BRI EON
p{ 15.0)] 2 } W
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This completes the proof. QED.

Lemma A.6 (covariance consistency). Recall ¥, and 3, in (A.8), and assume 6, 5 6°. a.
Sn(0n) = Sa(1 + 0,(1)); and b. £,(0,) = (1 + 0,(1)).

Proof.
Claim (a) By an application of ULLN Lemma A.4: supyee ||X,"(0)n ™" 320 mi (0)m, ,(6)
— I,|| & 0. Furthermore, by continuity and the definition of a derivative, any {z ]} element

satisfies ¥,,5.(0n) — Spi; = (0/00)%0.(0)|g0 x (8, — 0°) x (1 + 0,(1)). We will show below

that
0

g 2nid (O)leo || = O ([Za]]) (A.26)

Since 6, 2 6° hence ¥;'5,,(6,) 5 I,, thus as claimed:
X, 1 Zmnt (0,)m é W) 21,

Now consider (A.26). Since trimming is negligible we can use Lemma A.6.c in Hill (2015a)

to deduce:

9
06

n,t n,t

Ele2(0)]lo = —E |ési0] x (14 0(1)) = =B [63] x Els)] x (1+0(1) ~ ~Els].

Similarly, by independence
O 5is Ol = SB[~ B[20))°] % £ [s0a(0)s,00)] o
90 n,i,j 0 o0 n,t n,t 1t Jit 0

= {E[e}] =1} x Els)] x E[sis4] x (1+0(1))
0
+ (B[] = 1) x 55E [51(0)554(0)] loo x (1+0(1)).

Observe ||(0/00)E[s:(0)s:(0)]|go]| < o0, ||E[st]|| < oo and ||E[stst]|| < oco. By dominated con-
vergence and independence X, = {E[e}] — 1}E[s;s;] x (1 + o(1)), hence (A.26) follows.

Claim (b). Considering (a), it suffices to prove

t=1

The property can be shown by imitating the proof of Lemma A.5. QED.
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Lemma A.7 (Jacobian consistency). 1/nd 1, jnt(é ) = T x (1 4 0,(1)) for any 6, % 6°.

Proof. Define

By the same argument used to prove Lemma A.5

sup
0cO

Z{jnt j\nt(e)}H = 0p(1)

Further:
o (z szmst) (ef,sz z )—

By stationary geometric mixing 1/n ") | s, = E[s;] (Andrews, 1988), hence by independence,
stationarity and E [ef[ﬁf?] — 1

ETJ:] =—FE [z (si — Elsi])] x (140(1)) = T x (14 0(1)).

The remaining proof that 1/n> ) 7h’;,:(én) = Jn X (1 + 0,(1)) is essentially identical to the
proof of Lemma A.6. See also the proof of Lemma A.5 in Hill (2015a). QED.

Lemma A.8 (CLT). n=/25,"* S0 mz, % N(0,1,).

Proof. Write z;,(§) = n Y/%¢'s, 2 Pm m;,, for any £ € R?, 6 = 1. Write &, =[G, = 5, —
Els)), &y =€, — Elex3] and &, = ¢ (E[Gthf])*l/2 S;. Hence E[Gg’t] = 1; under Assumption

A infsq infeey [Sey| > ¢ almost surely for some tiny ¢ > 0; Francq and Zakoian (2004, p. 619)’s

arguments carry over to show E \65,1‘/]4” < oo for tiny § > 0; and by independence

1 Er
L Se, where liminf E[£3%] > 0

Z;,t(é) = nl/2 (E [8*%])1/2 T 00

{2n:(€)} is a martingale difference array with respect to Sy = o({y-} : 7 < t). We will
verify equations (1.1), (1.2) and (2.14) in McLeish (1974, Corollary 2.13) to prove »_ ;" 2% ,(§)
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AN (0,1), and invoke the Cramér-Wold Theorem. The equality
n 2 n
£|(Xa0) | - Xl -1
t=1 t=1

yields (1.1).
Lindeberg condition (1.2) holds:

ST E 21 (|25,(6)] > )] = 0z > 0.

This follows by first noting by stationarity

ZE {Z;ft(f)l( Z;t(f)‘ > 5)}

= plererr(e2el, > nE (€3] )]

nk &3]
1 * * TLE [8;:12] 82
- E [&;ﬂ B 6§,tE 5n,2t1 <5n2t > Tj) |%t—1]>

_ - 2 *2
== [5;;’%] E 6“ /nE[E;ft}GngZ P (Emt > u) du)
4

== [;,’*2]E &2, / ’ P (e - E[e2]) > u) du) (A.27)

E[£;2]6, €2

4

L 2 - *2 %2 2
< E[£2] E <6§,t /mg[g:%]b_182 P ((En,t —F [En,tb > u) dU> (A.28)

n,t
1 n
= h *2 %2 7)\2
B [5:;%} /nE[g;;?t]ngz P <<€"7t E [EW]) > u) du. (A.29)

Equality (A.27) exploits 5;‘;2,5 < ¢ in view of trimming; (A.28) uses inf;>q infeeq |Se,| > ¢; and
(A.29) follows from independence of ¢, and E[&Z,] = 1.
By (A.4), € has a power law tail with index x/2 > 1, and E[e;%] — 1. Hence on the interval

[nE[E;3]"e?, ¢;] we have for some positive sequence {d,,}:
P((e2-E[e2)" >u) =P ((¢-B[6a])" > u) = du ™" (14 0(1)), a5 u - ox.
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It is easily verified that d,, — d, the tail scale in (A.4). Therefore

cn

Z*2 o* c —1 u—n/4 U 0
E (251 (|z,(6)] > )] < K— G E ([mmw d ) (140(1)). (A.30)

[o.¢] C4
If £ > 4 then [*“u/*du < oo for any a > 0 hence fng[g*z]L_leg u ' *du — 0 a.s., thus by
n,t

4
dominated convergence E( [

(€2 ]1~1e2 u™"/*du) — 0. This implies the Cesaro mean converges:
n,t

1 & g

—ZE(/: u™"du) — 0.

L B&3 )1

In view of (A.30) and liminf_, E[£}7] > 0, the Lindeberg condition therefore follows.

If k = 4 then use (A.6) and (A.8) to deduce 41n(c,) — In(nE[E}3]) ~ In(n/k,) — In(n) —
In(n) < 0 for all n > N and finite N > 1. Therefore f:é[g;Qt]L_leg u**du = 0 Yn > N. Repeat
the above argument to deduce the Lindeberg condition.

Finally, if £ € (2,4) then from (A.6) and (A.8) it follows ¢, /(nE[E;3]) ~ K/[n(kn/n)] =
K/k, — 0. Hence fiz[gzgth,lsQ u™*/*du = 0 VYn > N which again proves the Lindeberg condition.

Finally, for McLeish (1974)s (2.14) we must show limsup,, ., >, E[2:%(£)2:%(§)] < 1. By
independence of €, limsup,,_, >, El2:%(§)2:7(€)] is exactly

n,s n,t

21i F|l——11 &2 &2 | =21 =N E[6?2.&2,].
e TR B =

Write S, = E(1/n'?Y,_{&%, — E[&,]})*. Invoke the S-mixing property and E|S¢[** <
oo to deduce by Theorem 1.7 in Ibragimov (1962)

2 2
1 1 1 1 &
p(xst) - te(dasist-sletl) « A3 pletlplenl
t=1 t=1

s,t=1

_ %sn +1=0(1/n) = o(1).

Therefore limsup,, .. Y., E[2:%(£)2:%(€)] < 1. This completes the proof. QED.

Lemma A.9 (uniform GEL argument). supgcg rea, {maxi<i<n [A'm;, ,(0)]} 50, SUDgeo reA,

{max; << [N, (0)]} 20 and A, C Ay(0) wp.al. VO € ©. In particular SUDpeo reA,
{maXlgtgn !X{mi;,t@) - m:t(e)}’} = 0.
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Proof. By threshold bound Lemma A.1

sup max HZ_l/Q(G)m* (H)H =0, (nl/Q) :

peo 1<t<n " mt

The first claim now follows by the construction of A,,:

su max |[Nm* ()] = nY? su max | NSY2(0)n22 1 2(0)ym* (0
GEG,AI;A»,L 1§t§n| n,t( )‘ GEG,AI;ATL 1§t§n| n ( ) n ( ) n,t( )‘

< % sup ma |92 (6)m (0)] % 0

Apply uniform threshold law Lemma A.3 to obtain

sup {max |Xm;;,t(9)]} 0.

0O NEA, (1st<n

Next, A, C Ay(f) w.p.a.1. ¥ € © follows from the second claim and 0 € D since Ny (0) €
D w.p.a.l for all § € © and any A: [|NSY(0)|] < n~Y2. The last claim follows from the first
and second. Q&D.

Lemma A.10 (constrained GEL). Consider any sequence {én}, 0, € O, 0, 5 6°, such that
||mjl(0~n)|| = O,(||Z,|[Y?/nY?). Then A, = argmaxkeAn(én){Qn(én,)\)} exists w.p.a.1,

A = Op(|[Ea(@II72n7Y%) = 0,(1),

and
. 1
s {Quln N} <0+ 0, | =
NERn (62) En(n)|| n
Proof. We prove the following below:
Sup  [Qul0.3) — Gu(,0)] =0, (1), (A.31)
0€O,\EN,

Hence, it suffices to work with Qn(G, A). We assume 6, 2 6°, and smoothness of p coupled with
the uniform GEL argument Lemma A.9 ensure \, = argmaxyea, {Qn(f, \)} exists w.p.a.1,
where \, € A, satisfies by construction A, = O,(||X,(6,)||7/>n~/2). We may therefore apply
Newey and Smith (2004, Lemma A.2, p. 239) argument to prove each claim.
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Now consider (A.31). We need only show

P,= sup max |p(Nr(0)) — p(N'mi ,(0))] 5 0.

n,t n,t
0O NEA, 1St<n

By the definition of a derivative and the triangle inequality

P, < sup max |p(1) ()\'m;’t(ﬁ))‘ (A.32)

0€O NN, 1SN
x sup max [N, (0) — XN'm; (0)| x (1+0,(1)).
0O, e, 1St=n ’ ’
Let p denote Lebesgue measure on R. Apply Lemma A.9 to deduce there exists a sequence of

neighborhoods {ﬁn} in D, with lim,, ,u(f?n) = 0, such that asymptotically w.p.a.1

sup  max [Nmj (0)] € D, and sup max [N, (0)| € D,.

0O NN, 1St<n 9cO N, 1St<n
Further, p(-) is twice differentiable, and p(*)(0) = —1. Hence, some sequence of positive numbers
{6n}, 0, = 0,
sup  max |p" (X'm,(0)) + 1| € [<6,,6,] w.p.a.l. (A.33)

€O, e, 1StSn
Therefore

Q) (1, % D
sup  max AXmy (0)) + 1] = 0.
s o) (Vo (6) + 1

Lemma A.9 with (A.32) and (A.33) prove P, % 0. QED.

Lemma A.11 (equation limit). m(6,) = O,(||Z.]|"/2/n'/?) = 0,(1).

Proof. Lemma A.10 trivially holds for 6, = #°. Now combine that with ULLN Lemma A.4, CLT
Lemma A.8, and uniform GEL argument Lemma A.9 to deduce m%(6,) = O,(||Z.||*/2/n'/?) by
the same proof Newey and Smith (2004) use for their Lemma A3. Now invoke Lemma A.2 for

~

[|X,||/n — 0 hence m}(6,) = 0,(1). QED.

Lemma A.12 (profile weight). Let

pD (Nt ,(0))

ﬁ;’t(e) = — —— )
Zt:l pm ()\;mm(e))
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If A = O,(||50|]72n7 %) where O,(-) is not a function of 0, then

1
=0y ——— .
’ (Hznu” n3/2>

Proof. Expand p® (A, ,(6)) around A = 0: for some ||| < |[A]] = Op(||S0|| 720 71/2):

s 1
Trn,t(e) -

n

Sup max
gce 1<t<n

o (N (0)) = =1+ (N5, (0)) x A,

= =14 p® (X i, (0) % Op (1Sl 2072,
Further, Lemma A.9, twice differentiability of p, and p®(0) = -1 ensure

SUPgco reA,, MaAX1<i<n |p(2)()\’m;§7t(0))] 2 1. Hence

sup max
peo 1<t<n

=0,

e <:\;m;’t(9)> +1+4+0, (HEnH‘m nfl/z)

which proves

o (N @)
= sup max + —

e 1SS S ) (N () T

140, (IS 2)
- — — <0, (Imal 202
n (140, (ISl ™2 n-v2))  m

1

Fal6) —

sup max
feo 1stsn

This completes the proof. QED.
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