Numerical Study on Some Rheological Problems of Fibre Suspensions

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

School of Aerospace, Mechanical and Mechatronic Engineering
The University of Sydney
May, 2006

Xijun Fan
Declaration

I declare that this thesis is based on my own research work in past years and it does not incorporate any material previously submitted for a degree or diploma in any university. To my knowledge and belief it does not contain any material previously published or written by another person where due reference is not made in the text.
Acknowledgements

I wish to greatly thank Professor Roger I. Tanner and Dr Rong Zheng for their constant encouragement, guidance and help during my thesis work.

Special thanks are given to Professor Nhan Phan-Thien for the long term cooperation of the research work in Rheology. These work placed a solid base for the thesis.

I also wish to thank Dr Rong Zheng and Dr Gilles Ausias for their cooperation in research.

I acknowledge the help of the Coorperative Research Centre for Polymers for giving me the opportunity to work on a Ph D thesis.

Finally I thank all in my family for their understanding, patience and support.
Abstract

This thesis deals with numerical investigations on some rheological problems of fibre suspensions: the fibre level simulation of non-dilute fibre suspensions in shear flow; the numerical simulation of complex fibre suspension flows and simulating the particle motion in viscoelastic flows. These are challenging problems in rheology.

Two numerical approaches were developed for simulating non-dilute fibre suspensions from the fibre level. The first is based on a model that accounts for full hydrodynamic interactions between fibres, which are approximately calculated as a superposition of the long-range and short-range hydrodynamic interactions. The long-range one is approximated by using slender body theory and includes infinite particle interactions. The short-range one is approximated in terms of the normal lubrication forces between close neighbouring fibres. The second is based on a model that accounts only for short-range interactions, which comprise the lubrication forces and normal contact and friction forces. These two methods were applied to simulate the microstructure evolution and rheological properties of non-dilute fibre suspensions.

The Brownian configuration method was combined with the highly stable finite element method to simulate the complex flow of fibre suspensions. The method is stable and robust, and can provide both micro and macro information. It does not require any closure approximations in calculating the fibre stress tensor and is more efficient and variance reduction, compared to CONNFFESSITT, for example. The flow of fibre suspensions past a sphere in a tube and the shear induced fibre migration were successfully simulated using this method.

The completed double layer boundary element method was extended to viscoelastic flow cases. A point-wise solver was developed to solve the constitutive equation point by point and the fixed least square method was employed to interpolate and differentiate data locally. The method avoids volume meshing and only requires the boundary mesh on particle surfaces and data points in the flow domain. A sphere settling in the Oldroyd-B fluid and a prolate spheroid rotating in shear flow of the Oldroyd-B fluid were simulated. Based on the simulated orbit of a prolate spheroid in
shear flow, a constitutive model for the weakly viscoelastic fibre suspensions was proposed and its predictions were compared with some available experimental results.

All simulated results are in general agreement with experimental and other numerical results reported in literature. This indicates that these numerical methods are useful tools in rheological research.
Contents

1. Introduction..1
 1.1. Motion of a single particle in shear flow ..2
 1.2. Interactions among fibres ..5
 1.2.1. Physical models of fibre interactions ...5
 1.2.2. Statistical model of fibre interactions ...9
 1.3. Characterization of the fibre structure in suspensions ...11
 1.4. Brownian Dynamics Simulation ...14
 1.5. Constitutive equations for fibre suspensions ...16
 1.6. Simulation of fibre suspensions ...20
 1.6.1. Fibre level simulation ...20
 1.6.2. Simulation of fibre suspension flows ...22
 1.6.2.1. Fibre suspension flow with constant volume fraction ...22
 1.6.2.2. Simulation of fibre migration in inhomogeneous flow fields ...25
 1.7. Motion of particles in viscoelastic flow ...26
 1.8. Outline of the following chapters ...29

2. Fibre Level Simulation for non-dilute fibre suspensions ...31
 2.1. Simulation based on the model of hydrodynamic interactions ..32
 2.1.1. Formulations ...32
 2.1.1.1. Boundary Integral Equations ..32
 2.1.1.2. Short Range Hydrodynamic Interaction ...34
 2.1.1.3. Periodic Fibre Suspensions ...37
 2.1.2. Numerical Scheme ...40
 2.1.3. Numerical Results ...40
 2.1.3.1. Evolution of Fibre's Configuration ...42
 2.1.3.2. Orbits of Fibres ...45
 2.1.3.3. Some Components of Structure Tensors ...47
 2.1.3.4. Viscosity ...49
 2.1.3.5. The probability distribution of the orbit constant, C_b ..51
 2.1.4. Folgar – Tucker constant ...54
2.1.4.1. Evolution equation of the structure tensor ... 55
2.1.4.2. Calculation of the Folgar–Tucker constant .. 57
2.2. Simulation based on the model of short-range interactions 59
 2.2.1. Modelling the short-range interactions ... 60
 2.2.2. Formulations ... 62
 2.2.3. Stress expression .. 66
 2.2.4. Numerical results .. 68
2.3. Remarks .. 75

3. Simulation of Fibre Suspension flows .. 79

 3.1. Governing equations for fibre suspension flow 80
 3.1.1. Conservation and constitutive equations ... 80
 3.1.2. Brownian configuration field .. 81
 3.1.3. Diffusion equation for concentration of fibres 83
 3.2. Numerical formulations ... 84
 3.2.1. DAVSS-G .. 85
 3.2.2. Discontinuous Galerkin finite element method (DG) and solution
 procedure .. 87
 3.2.3. Newton-Raphson Iteration Scheme .. 88
 3.3. Numerical results without fibre migration ... 89
 3.3.1. Simple flow .. 89
 3.3.2. Flow past a sphere in a tube ... 91
 3.4. Numerical results of shear-induced migration ... 101
 3.4.1. Circular Couette flow .. 101
 3.4.2. Planar Poiseuille Flow ... 108
 3.5. Discussions .. 110

4. Particle motion in viscoelastic Flow ... 114

 4.1. Formulations ... 114
 4.1.1. Direct BEM for Viscoelastic Flow .. 116
 4.1.2. CDL Boundary Element Formulation .. 118
 4.1.3. Particular Solutions .. 120
 4.1.4. Oldroyd-B Fluid .. 123
 4.2. Numerical Methods ... 124
4.2.1. Field points ... 124
4.2.2. Fixed Least Square Method ... 125
4.2.3. Point-wise Solver for Constitutive Equations 129
4.2.4. Numerical procedures ... 131
4.3. Numerical Examples .. 132
 4.3.1. 2D slit Flow ... 132
 4.3.2. Sphere Falling in an Oldroyd-B Fluid 134
 4.3.3. A prolate spheroid rotation in shear flow of the Oldroyd-B fluid 138
4.4. Modelling based on the numerical simulation 144
 4.4.1. Single prolate spheroid in weak elasticity flow 144
 4.4.2. Single fibre motion in weakly viscoelastic shear flow 148
 4.4.3. Modelling fibre suspensions ... 152
 4.4.4. Shear flow results ... 154
4.5. Discussions .. 160

5. Conclusions .. 164

6. References ... 168