The Variance Gamma (VG) Model with Long Range Dependence
Access status:
Open Access
Type
ThesisThesis type
Doctor of PhilosophyAuthor/s
Finlay, RichardAbstract
This thesis mainly builds on the Variance Gamma (VG) model for financial assets over time of Madan & Seneta (1990) and Madan, Carr & Chang (1998), although the model based on the t distribution championed in Heyde & Leonenko (2005) is also given attention. The primary contribution ...
See moreThis thesis mainly builds on the Variance Gamma (VG) model for financial assets over time of Madan & Seneta (1990) and Madan, Carr & Chang (1998), although the model based on the t distribution championed in Heyde & Leonenko (2005) is also given attention. The primary contribution of the thesis is the development of VG models, and the extension of t models, which accommodate a dependence structure in asset price returns. In particular it has become increasingly clear that while returns (log price increments) of historical financial asset time series appear as a reasonable approximation of independent and identically distributed data, squared and absolute returns do not. In fact squared and absolute returns show evidence of being long range dependent through time, with autocorrelation functions that are still significant after 50 to 100 lags. Given this evidence against the assumption of independent returns, it is important that models for financial assets be able to accommodate a dependence structure.
See less
See moreThis thesis mainly builds on the Variance Gamma (VG) model for financial assets over time of Madan & Seneta (1990) and Madan, Carr & Chang (1998), although the model based on the t distribution championed in Heyde & Leonenko (2005) is also given attention. The primary contribution of the thesis is the development of VG models, and the extension of t models, which accommodate a dependence structure in asset price returns. In particular it has become increasingly clear that while returns (log price increments) of historical financial asset time series appear as a reasonable approximation of independent and identically distributed data, squared and absolute returns do not. In fact squared and absolute returns show evidence of being long range dependent through time, with autocorrelation functions that are still significant after 50 to 100 lags. Given this evidence against the assumption of independent returns, it is important that models for financial assets be able to accommodate a dependence structure.
See less
Date
2009-10-01Licence
The author retains copyright of this thesis.Faculty/School
Faculty of Science, School of Mathematics and StatisticsAwarding institution
The University of SydneyShare